WO2023005523A1 - 一种光通信设备和光通信系统 - Google Patents

一种光通信设备和光通信系统 Download PDF

Info

Publication number
WO2023005523A1
WO2023005523A1 PCT/CN2022/100681 CN2022100681W WO2023005523A1 WO 2023005523 A1 WO2023005523 A1 WO 2023005523A1 CN 2022100681 W CN2022100681 W CN 2022100681W WO 2023005523 A1 WO2023005523 A1 WO 2023005523A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fan
communication device
optical communication
demultiplexing
Prior art date
Application number
PCT/CN2022/100681
Other languages
English (en)
French (fr)
Inventor
桂韬
李良川
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023005523A1 publication Critical patent/WO2023005523A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers

Definitions

  • the present application relates to the field of optical communication, and in particular to an optical communication device and an optical communication system.
  • the spectral efficiency of coherent optical transmission technology is higher than that of any direct transmission format, especially in the case of long distance and high data rate, it can not only maintain excellent transmission performance but also overcome the serious loss caused by high-speed signal transmission.
  • homologous coherent bidirectional transmission (Bi-Direction: BiDi) is a commonly used technology.
  • the light emitted from the local end to the opposite end can be divided into two channels, one of which is modulated into an optical signal for transmission, and the other is transmitted to the coherent demodulator through another optical fiber at the same time as a local oscillator (LO).
  • LO local oscillator
  • the opposite end can use the same mechanism to reversely transmit optical signals and local oscillator light.
  • the polarization direction of the local oscillator light may change due to changes in the environment, thereby affecting the performance of the receiving end.
  • a current solution is to set a polarization adjustment module in the receiving end to adjust the polarization direction of the input local oscillator light, so as to avoid the performance degradation of the receiving end caused by the random polarization direction of the local oscillator light.
  • setting the polarization adjustment module in the receiving end will make the structure of the receiving end more complicated.
  • the embodiment of the present application provides an optical communication device and an optical communication system, which can couple N channels of optical signals and one channel of local oscillator light to different cores of the same multi-core optical fiber for transmission, occupy a small volume, and improve the optical fiber
  • the transmission capacity is higher, and the transmission efficiency is higher.
  • the use of polarization-maintaining fiber cores to transmit local oscillator light ensures that the polarization direction of local oscillator light is stable during transmission. Therefore, there is no need to set a polarization adjustment module at the receiving end to adjust the polarization direction of local oscillator light.
  • the structure of the receiving end more simple.
  • the present application provides an optical communication device.
  • the optical communication device includes: a sending device and a first fan-in-fan-out device.
  • the sending device includes a light source and N coherent modulators, where N is an integer greater than or equal to 2.
  • the optical communication device is connected to another optical communication device through the first multi-core optical fiber.
  • the first multi-core optical fiber includes N first cores and one first polarization-maintaining core.
  • the light source is used to output N+1 channels of first optical carriers.
  • the first to N first optical carriers are respectively modulated by N coherent modulators to obtain N first optical signals.
  • the N channels of first optical signals are respectively coupled to N first fiber cores through the first fan-in-fan-out device, so as to be transmitted to another optical communication device.
  • the N+1th first optical carrier is coupled to the first polarization-maintaining fiber core through the first fan-in-fan-out device, so as to be transmitted to another optical communication device.
  • the N+1th first optical carrier can be used as local oscillator light, which is used for coherent frequency mixing with N first optical signals to perform coherent demodulation of the first optical signals .
  • the difference between the first polarization-maintaining fiber core and the first fiber core is that the first polarization-maintaining fiber core has a polarization-maintaining property, so that the local oscillator light transmitted in the first polarization-maintaining fiber core does not change the polarization direction, so that Ensure that the coherent demodulator receiving the local oscillator light can work normally.
  • the optical communication device at the local end can couple N optical signals and one local oscillator light to different cores of the same multi-core optical fiber for transmission, which occupies a small volume and improves the transmission of one optical fiber. capacity and higher transmission efficiency.
  • the use of the polarization-maintaining fiber core to transmit the local oscillator light ensures that the polarization direction of the local oscillator light is stable during the transmission process. Therefore, there is no need to install a polarization adjustment module in the optical communication equipment at the opposite end to adjust the polarization direction of the local oscillator light. , making the structure of the optical communication device at the opposite end simpler.
  • the optical communication device further includes a receiving device, a first optical splitter, and a second fan-in-fan-out device.
  • the receiving device includes M coherent demodulators, where M is an integer greater than or equal to 2.
  • the optical communication device is also connected to another optical communication device through a second multi-core optical fiber, and the second multi-core optical fiber includes M second cores and one second polarization-maintaining fiber.
  • One end of each second fiber core is connected to the second fan-in-fan-out device, and one end of the second polarization-maintaining fiber core is connected to the second fan-in-fan-out device.
  • M channels of second optical signals transmitted from another optical communication device through M second fiber cores are respectively coupled to M coherent demodulators through second fan-in-fan-out devices.
  • the second optical carrier transmitted from another optical communication device through the second polarization-maintaining fiber core is coupled to the first optical splitter through the second fan-in-fan-out device, so as to obtain M channels of second optical carrier.
  • M coherent demodulators are used to coherently mix M channels of second optical carriers and M channels of second optical signals according to a one-to-one relationship to respectively perform coherent demodulation of M channels of second optical signals, and output M channels of Coherently demodulated data.
  • an optical communication device supporting bidirectional transmission is provided, which expands the application scenarios of the optical communication device.
  • the optical communication device further includes a receiving device, a first optical splitter, and a first bidirectional multiplexing and demultiplexing device.
  • the receiving device includes M coherent demodulators, where M is an integer greater than or equal to 2.
  • the first multi-core optical fiber further includes M second cores. Specifically, the N+1th first optical carrier is input through the first port of the first bidirectional multiplexing and demultiplexing device, and is output to the first fan-in fan through the third port of the first bidirectional multiplexing and demultiplexing device. out the device. M channels of second optical signals transmitted from another optical communication device through the M second fiber cores are respectively coupled to M coherent demodulators through the first fan-in-fan-out device.
  • the second optical carrier transmitted through the first polarization-maintaining fiber core is coupled to the third port of the first bidirectional multiplexing and demultiplexing device through the first fan-in and fan-out device, and is transmitted through the first
  • the second port of the bidirectional multiplexing and demultiplexing device is output to the first optical splitter to obtain M channels of second optical carriers.
  • M coherent demodulators are used to coherently mix M channels of second optical carriers and M channels of second optical signals according to a one-to-one relationship to respectively perform coherent demodulation of M channels of second optical signals, and output M channels of Coherently demodulated data.
  • a first bidirectional multiplexing and demultiplexing device is added to the optical communication device to support the N+1th first optical carrier output from the local light source and the second optical carrier from the opposite end to be kept on the same root.
  • the polarization-maintaining fiber cores are respectively transmitted in different directions in the partial fiber core, thereby reducing the number of polarization-maintaining fiber cores.
  • N first fiber cores and M second fiber cores are integrated in the multi-core optical fiber 3, and only one multi-core fiber can realize that the first optical signals of N channels and the second optical signals of M channels are directed in different directions respectively. transmission, and also reduces the number of multi-core fibers. This makes the transmission efficiency of the first multi-core optical fiber higher.
  • the optical communication equipment further includes a receiving device, a first optical splitter, a first bidirectional multiplexing and demultiplexing device, and N second bidirectional multiplexing and demultiplexing devices
  • the receiving device includes N coherent demultiplexing devices Tuner.
  • the N+1th first optical carrier is input through the first port of the first bidirectional multiplexing and demultiplexing device, and output to the first fan-in and fan-out device through the third port of the first bidirectional multiplexing and demultiplexing device.
  • the N first optical signals are respectively input through the N first ports of the N second bidirectional multiplexing and demultiplexing devices, and are respectively output to the Nth third ports of the N second bidirectional multiplexing and demultiplexing devices.
  • a fan-in fan-out device N channels of second optical signals from another optical communication device transmitted through N first fiber cores are respectively coupled to N second bidirectional multiplexing and demultiplexing devices through the first fan-in and fan-out device. Three ports, and output to N coherent demodulators through N second ports of N second bidirectional multiplexing and demultiplexing devices respectively.
  • the second optical carrier transmitted through the first polarization-maintaining fiber core is coupled to the third port of the first bidirectional multiplexing and demultiplexing device through the first fan-in and fan-out device, and passed through the first
  • the second port of the bidirectional multiplexing and demultiplexing device is output to the first optical splitter to obtain N channels of second optical carriers.
  • N coherent demodulators are used to coherently mix N channels of second optical carriers and N channels of second optical signals in a one-to-one relationship to respectively perform coherent demodulation of N channels of second optical signals, and output N channels of Coherently demodulated data.
  • a first bidirectional multiplexing and demultiplexing device and N second bidirectional multiplexing and demultiplexing devices are added to the optical communication device to support the N+1th first optical carrier output by the local light source
  • the second optical carrier from the opposite end is transmitted in different directions in the same polarization-maintaining fiber core, and supports the transmission of N first optical signals and N second optical signals in N first optical cores in different directions , the number of the first fiber cores is reduced, and the transmission efficiency of the first polarization-maintaining fiber core and each first fiber core is improved.
  • each of the above-mentioned bidirectional multiplexing and demultiplexing devices is a three-port device, wherein two ports are unidirectional optical ports, and the directions of light transmitted by the two unidirectional ports are opposite.
  • the other port is a bidirectional transmission multiplexed port, which supports optical bidirectional transmission.
  • each bidirectional multiplexing and demultiplexing device may be a 1X2 coarse wavelength division multiplexing (Coarse wavelength division multiplexing, CWDM) optical filter, a three-port circulator, or a 1X2 optical splitter.
  • the light source includes a laser and a second optical splitter, and the second optical splitter is configured to split the first optical carrier output by the laser to obtain N+1 first optical carriers.
  • the N+1 first optical carrier and the N first optical signals have the same frequency and the same phase, so that the coherent demodulator can detect the first optical signal according to the N+1 first optical carrier.
  • the signal is coherently demodulated.
  • the present application provides an optical communication device.
  • the optical communication equipment includes: a receiving device, a first optical splitter and a first fan-in-fan-out device.
  • the receiving device includes M coherent demodulators, where M is an integer greater than or equal to 2.
  • the optical communication device is connected to another optical communication device through a first multi-core optical fiber, and the first multi-core optical fiber includes M first cores and one first polarization-maintaining fiber. Specifically, M channels of first optical signals transmitted from another optical communication device through the M first fiber cores are respectively coupled to M coherent demodulators through the first fan-in-fan-out device.
  • the first optical carrier transmitted from another optical communication device through the first polarization-maintaining fiber core is coupled to the first optical splitter through the first fan-in-fan-out device, so as to obtain M channels of the first optical carrier.
  • M coherent demodulators are used to coherently mix M first optical carriers and M first optical signals in a one-to-one relationship to respectively coherently demodulate M first optical signals and output M channels respectively. Coherently demodulated data.
  • the optical communication device at the opposite end can couple M optical signals and one local oscillator light to different cores of the same multi-core optical fiber for transmission, which occupies a small volume and improves the transmission of one optical fiber. capacity and higher transmission efficiency.
  • the use of the polarization-maintaining fiber core to transmit the local oscillator light ensures that the polarization direction of the local oscillator light is stable during the transmission process. Therefore, there is no need to install a polarization adjustment module in the optical communication equipment at the local end to adjust the polarization direction of the local oscillator light. , making the structure of the optical communication device at the local end simpler. In addition, only one local oscillator light needs to be transmitted in the multi-core optical fiber.
  • the optical communication equipment at the local end can divide the received local oscillator light into M channels and provide them to the local M coherent demodulators respectively, reducing the cost of The number of cores for transmitting local oscillator light, more cores for transmitting optical signals can be set in the multi-core optical fiber, which is convenient to expand to the scene of more optical signal transmission.
  • the optical communication device further includes a sending device and a second fan-in-fan-out device.
  • the sending device includes a light source and N coherent modulators, where N is an integer greater than or equal to 2.
  • the optical communication device is also connected to another optical communication device through a second multi-core optical fiber, where the second multi-core optical fiber includes N second cores and one second polarization-maintaining fiber.
  • the light source is used to output N+1 channels of second optical carriers.
  • the first to N second optical carriers are respectively modulated by N coherent modulators to obtain N second optical signals.
  • the N paths of second optical signals are respectively coupled to N second fiber cores through the second fan-in-fan-out device, so as to be transmitted to another optical communication device.
  • the N+1th second optical carrier is coupled to the second polarization-maintaining fiber core through the second fan-in-fan-out device, so as to be transmitted to another optical communication device.
  • the N+1th second optical carrier may be used as a local oscillator light, which is respectively used for coherent frequency mixing with the N second optical signals to perform coherent demodulation on the N second optical signals.
  • the optical communication device further includes a sending device and a first bidirectional multiplexing/demultiplexing device
  • the sending device includes a light source and N coherent modulators.
  • N is an integer greater than or equal to 2
  • the first multi-core optical fiber further includes N second cores.
  • the first optical carrier transmitted through the first polarization-maintaining fiber core is coupled to the third port of the first bidirectional multiplexing and demultiplexing device through the first fan-in and fan-out device, and output to the first optical splitter through the second port of the first bidirectional multiplexing and demultiplexing device.
  • the light source is used to output N+1 second optical carriers.
  • the first to N second optical carriers are respectively modulated by N coherent modulators to obtain N second optical signals. Furthermore, N channels of second optical signals are respectively coupled to N second fiber cores through the first fan-in-fan-out device, so as to be transmitted to another optical communication device.
  • the N+1th second optical carrier is input through the first port of the first bidirectional multiplexing and demultiplexing device, and output to the first fan-in and fan-out device through the third port of the first bidirectional multiplexing and demultiplexing device, Then, it is coupled to the first polarization-maintaining fiber core through the first fan-in and fan-out device, so as to be transmitted to another optical communication device.
  • the N+1th second optical carrier may be used as a local oscillator light, which is respectively used for coherent frequency mixing with the N second optical signals to perform coherent demodulation on the N second optical signals.
  • the optical communication device further includes a sending device, a first bidirectional multiplexing and demultiplexing device, and M second bidirectional multiplexing and demultiplexing devices
  • the sending device includes a light source and M coherent modulators.
  • M channels of first optical signals transmitted from another optical communication device through M first fiber cores are respectively coupled to M second bidirectional multiplexing and demultiplexing devices through the first fan-in and fan-out devices.
  • M third ports are output to M coherent demodulators through M second ports of M second bidirectional multiplexing and demultiplexing devices.
  • the first optical carrier transmitted through the first polarization-maintaining fiber core is coupled to the third port of the first bidirectional multiplexing and demultiplexing device through the first fan-in and fan-out device, and passed through the first
  • the second port of the bidirectional multiplexing and demultiplexing device is output to the first optical splitter.
  • the light source is used to output M+1 second optical carriers.
  • the first to M second optical carriers are respectively modulated by M coherent modulators to obtain M second optical signals.
  • M second optical signals are respectively input through M first ports of M second bidirectional multiplexing and demultiplexing devices, and are respectively output through M third ports of M second bidirectional multiplexing and demultiplexing devices to the first fan-in-fan-out device, and then respectively coupled to M first fiber cores through the first fan-in-fan-out device, so as to be transmitted to another optical communication device.
  • the M+1th second optical carrier is input through the first port of the first bidirectional multiplexing and demultiplexing device, and output to the first fan-in and fan-out device through the third port of the first bidirectional multiplexing and demultiplexing device, Then, it is coupled to the first polarization-maintaining fiber core through the first fan-in and fan-out device, so as to be transmitted to another optical communication device.
  • the M+1th second optical carrier may be used as a local oscillator light, which is respectively used for coherent frequency mixing with the M second optical signals to perform coherent demodulation on the M second optical signals.
  • each of the above-mentioned bidirectional multiplexing and demultiplexing devices is a three-port device, wherein two ports are unidirectional optical ports, and the directions of light transmitted by the two unidirectional ports are opposite.
  • the other port is a bidirectional transmission multiplexing port, which supports optical bidirectional transmission.
  • each bidirectional multiplexing and demultiplexing device may be a 1X2 CWDM optical filter, a three-port circulator or a 1X2 optical splitter.
  • the light source includes a laser and a second optical splitter, and the second optical splitter is configured to split the second optical carrier output by the laser to obtain multiple second optical carriers.
  • the first optical carrier transmitted from another optical communication device through the first polarization-maintaining fiber core has the same frequency and the same phase as the M channels of first optical signals.
  • the present application provides an optical communication system.
  • the optical communication system includes: a first optical communication device, a second optical communication device and a first multi-core optical fiber.
  • the first multi-core optical fiber is connected between the first optical communication device and the second optical communication device.
  • the first optical communication device includes a first sending device and a first fan-in-fan-out device
  • the first sending device includes a first light source and N first coherent modulators, where N is an integer greater than or equal to 2.
  • the second optical communication device includes a first receiving device, a first optical splitter, and a second fan-in-fan-out device
  • the second receiving device includes N first coherent demodulators.
  • the first multi-core optical fiber includes N first cores and one first polarization-maintaining core.
  • the first light source is used to output N+1 channels of first optical carriers.
  • the first to N first optical carriers are respectively modulated by N first coherent modulators to obtain N first optical signals, and the first fan-in and fan-out devices of the N first optical signals are respectively coupled to the N first
  • the fiber core is transmitted to the second optical communication device.
  • the N+1th first optical carrier is coupled to the first polarization-maintaining fiber core through the first fan-in-fan-out device, so as to be transmitted to the second optical communication device.
  • the N channels of first optical signals transmitted from the first optical communication device through the N first fiber cores are respectively coupled to the N first coherent demodulators through the second fan-in-fan-out device.
  • the first optical carrier transmitted from the first optical communication device through the first polarization-maintaining fiber core is coupled to the first optical splitter through the second fan-in-fan-out device, so as to obtain N channels of first optical carrier.
  • the N first coherent demodulators are used to coherently mix the N first optical carriers and the N first optical signals in a one-to-one relationship to respectively perform coherent demodulation on the N first optical signals, and output the The first data after N channels of coherent demodulation.
  • the optical communication system further includes a second multi-core optical fiber, and the second multi-core optical fiber is connected between the first optical communication device and the second optical communication device.
  • the first optical communication device further includes a second receiving device, a second optical splitter and a third fan-in-fan-out device.
  • the second receiving device includes M second coherent demodulators, where M is an integer greater than or equal to 2.
  • the second optical communication device further includes a second sending device and a fourth fan-in-fan-out device, and the second sending device includes a second light source and M second coherent modulators.
  • the second multi-core optical fiber includes M second cores and one second polarization-maintaining core.
  • the second light source is used to output M+1 channels of second optical carriers.
  • the 1st to Mth second optical carriers are respectively modulated by M second coherent modulators to obtain M second optical signals, and the M second optical signals are respectively coupled to the M second optical signals through the fourth fan-in and fan-out devices.
  • the M+1th second optical carrier is coupled to the second polarization-maintaining fiber core through the fourth fan-in-fan-out device, so as to be transmitted to the first optical communication device.
  • the M channels of second optical signals transmitted from the second optical communication device through the M second fiber cores are respectively coupled to the M second coherent demodulators through the third fan-in-fan-out device.
  • the second optical carrier transmitted from the second optical communication device through the second polarization-maintaining fiber core is coupled to the second optical splitter through the third fan-in-fan-out device, so as to obtain M channels of second optical carrier.
  • M second coherent demodulators are used to coherently mix M channels of second optical carriers and M channels of second optical signals according to a one-to-one relationship, so as to coherently demodulate M channels of second optical signals and output them respectively The second data after M channels of coherent demodulation.
  • the first optical communication device further includes a second receiving device, a second optical splitter, and a first bidirectional multiplexing and demultiplexing device
  • the second receiving device includes M second coherent demodulators
  • M is an integer greater than or equal to 2.
  • the second optical communication device further includes a second sending device and a second bidirectional multiplexing and demultiplexing device, and the second sending device includes a second light source and M second coherent modulators.
  • the first multi-core optical fiber further includes M second cores.
  • the N+1th first optical carrier is input through the first port of the first bidirectional multiplexing and demultiplexing device, and is output to the first fan-in fan through the third port of the first bidirectional multiplexing and demultiplexing device. out the device.
  • the first optical carrier transmitted through the first polarization-maintaining fiber core is coupled to the third port of the second bidirectional multiplexing and demultiplexing device through the second fan-in and fan-out device, and is transmitted through the second
  • the second port of the bidirectional multiplexing and demultiplexing device is output to the first optical splitter.
  • the second light source is used to output M+1 second optical carriers.
  • the first to M second optical carriers are respectively modulated by M second coherent modulators to obtain M second optical signals, and the M second optical signals are respectively coupled to the M second optical signals through the second fan-in and fan-out devices.
  • the M+1th second optical carrier is input through the first port of the second bidirectional multiplexing and demultiplexing device, and output to the second fan-in and fan-out device through the third port of the second bidirectional multiplexing and demultiplexing device, Then, it is coupled to the first polarization-maintaining fiber core through the second fan-in and fan-out device, so as to be transmitted to the first optical communication device.
  • M channels of second optical signals transmitted from the second optical communication device through the M second fiber cores are respectively coupled to M second coherent demodulators through the first fan-in-fan-out device.
  • the second optical carrier transmitted through the first polarization-maintaining fiber core is coupled to the third port of the first bidirectional multiplexing and demultiplexing device through the first fan-in and fan-out device, and is transmitted through the first
  • the second port of the bidirectional multiplexing and demultiplexing device is output to the second optical splitter to obtain M channels of second optical carriers.
  • M second coherent demodulators are used to coherently mix M channels of second optical carriers and M channels of second optical signals according to a one-to-one relationship, so as to coherently demodulate M channels of second optical signals and output them respectively The second data after M channels of coherent demodulation.
  • the first optical communication device further includes a second receiving device, a second optical splitter, a first bidirectional multiplexing and demultiplexing device and N third bidirectional multiplexing and demultiplexing devices, and the second receiving The apparatus includes N second coherent demodulators.
  • the second optical communication device also includes a second sending device, a second bidirectional multiplexing and demultiplexing device, and N fourth bidirectional multiplexing and demultiplexing devices, and the second sending device includes a second light source and N second coherent modulators .
  • the N+1th first optical carrier is input through the first port of the first bidirectional multiplexing and demultiplexing device, and is output to the first fan-in fan through the third port of the first bidirectional multiplexing and demultiplexing device. out the device.
  • the N first optical signals are respectively input through the N first ports of the N third bidirectional multiplexing and demultiplexing devices, and are respectively output to the N third ports of the N third bidirectional multiplexing and demultiplexing devices.
  • a fan-in fan-out device is respectively input through the N first ports of the N third bidirectional multiplexing and demultiplexing devices, and are respectively output to the N third ports of the N third bidirectional multiplexing and demultiplexing devices.
  • the first optical carrier transmitted through the first polarization-maintaining fiber core is coupled to the third port of the second bidirectional multiplexing and demultiplexing device through the second fan-in and fan-out device, and then passed through the second fan-in and fan-out device.
  • the second port of the two-way multiplexing and demultiplexing device outputs to the first optical splitter.
  • N channels of first optical signals transmitted from the first optical communication device through N first fiber cores are respectively coupled to N fourth bidirectional multiplexing and demultiplexing devices through second fan-in and fan-out devices.
  • the second light source is used to output N+1 second optical carriers.
  • the first to N second optical carriers output by the second light source are respectively modulated by N second coherent modulators to obtain N second optical signals.
  • the N second optical signals are respectively input through the N first ports of the N fourth bidirectional multiplexing and demultiplexing devices, and are respectively output to the Nth third ports of the N fourth bidirectional multiplexing and demultiplexing devices.
  • the two fan-in and fan-out devices are then coupled to the N first fiber cores via the second fan-in and fan-out device, so as to be transmitted to the first optical communication device.
  • the N+1th second optical carrier output by the second light source is input through the first port of the second bidirectional multiplexing and demultiplexing device, and output to the second fan through the third port of the second bidirectional multiplexing and demultiplexing device
  • the fan-in and fan-out device is coupled to the first polarization-maintaining fiber core via the second fan-in and fan-out device, so as to be transmitted to the first optical communication device.
  • N channels of second optical signals from the second optical communication device and transmitted through the N first fiber cores are respectively coupled to N third bidirectional multiplexing and demultiplexing devices through the first fan-in and fan-out device.
  • the second optical carrier transmitted through the first polarization-maintaining fiber core is coupled to the third port of the first bidirectional multiplexing and demultiplexing device through the first fan-in and fan-out device, and is transmitted through the first
  • the second port of the bidirectional multiplexing and demultiplexing device is output to the second optical splitter to obtain N channels of second optical carriers.
  • N second coherent demodulators are used to coherently mix N second optical carriers and N second optical signals in a one-to-one relationship to respectively coherently demodulate N second optical signals and output The second data after N channels of coherent demodulation.
  • each of the above-mentioned bidirectional multiplexing and demultiplexing devices is a three-port device, wherein two ports are unidirectional optical ports, and the directions of light transmitted by the two unidirectional ports are opposite.
  • the other port is a bidirectional transmission multiplexed port, which supports optical bidirectional transmission.
  • each bidirectional multiplexing and demultiplexing device may be a 1X2 CWDM optical filter, a three-port circulator or a 1X2 optical splitter.
  • the first light source includes a laser and a third optical splitter
  • the third optical splitter is configured to split the first optical carrier output by the laser to obtain N+1 first optical carriers.
  • the N+1-th path of the first optical carrier and the N paths of the first optical signal have the same frequency and phase.
  • the optical communication device at the local end can couple N optical signals and one local oscillator light to different cores of the same multi-core optical fiber for transmission, which occupies a small volume and improves the transmission of one optical fiber. capacity and higher transmission efficiency.
  • the use of the polarization-maintaining fiber core to transmit the local oscillator light ensures that the polarization direction of the local oscillator light is stable during the transmission process. Therefore, there is no need to install a polarization adjustment module in the optical communication equipment at the opposite end to adjust the polarization direction of the local oscillator light. , making the structure of the optical communication device at the opposite end simpler. In addition, only one local oscillator light needs to be transmitted in the multi-core optical fiber.
  • the optical communication equipment at the opposite end can divide the received local oscillator light into N channels and provide them to the local N coherent demodulators respectively, reducing the cost of The number of cores for transmitting local oscillator light, more cores for transmitting optical signals can be set in the multi-core optical fiber, which is convenient to expand to the scene of more optical signal transmission.
  • FIG. 1 is a schematic structural diagram of a coherent transmission system
  • FIG. 2 is a first structural schematic diagram of an optical communication system in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a coherent demodulator
  • FIG. 4 is a second structural schematic diagram of an optical communication system in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a third structure of an optical communication system in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a third structure of an optical communication system in an embodiment of the present application.
  • the embodiment of the present application provides an optical communication device and an optical communication system, which can couple N channels of optical signals and one channel of local oscillator light to different cores of the same multi-core optical fiber for transmission, occupy a small volume, and improve the optical fiber
  • the transmission capacity is higher, and the transmission efficiency is higher.
  • the use of polarization-maintaining fiber cores to transmit local oscillator light ensures that the polarization direction of local oscillator light is stable during transmission. Therefore, there is no need to set a polarization adjustment module at the receiving end to adjust the polarization direction of local oscillator light.
  • the structure of the receiving end more simple.
  • the naming or numbering of the steps in this application does not mean that the steps in the method flow must be executed in the time/logic sequence indicated by the naming or numbering.
  • the execution order of the technical purpose is changed, as long as the same or similar technical effect can be achieved.
  • the division of modules presented in this application is a logical division. In actual applications, there may be other division methods. For example, multiple modules can be combined or integrated into another system, or some features can be ignored. , or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection between modules may be electrical or other similar forms. Applications are not limited.
  • the modules or sub-modules described as separate components may or may not be physically separated, may or may not be physical modules, or may be distributed into multiple circuit modules, and some or all of them may be selected according to actual needs module to achieve the purpose of this application scheme.
  • FIG. 1 is a schematic structural diagram of a coherent transmission system.
  • the sending end device includes a laser, an optical splitter and a coherent modulator
  • the receiving end device includes a coherent demodulator.
  • the optical splitter splits one path of light output by the laser into two paths of output.
  • the coherent modulator performs coherent modulation on one path of light output by the optical splitter to obtain an optical signal, and the optical signal is transmitted to the receiving end device through the optical fiber 1 .
  • the other light output by the optical splitter is an unmodulated optical carrier, which is transmitted to the receiving end device through the optical fiber 2.
  • the optical carrier can be understood as the local oscillator light emitted by the remote end.
  • the coherent demodulator will coherently mix the received optical signal and optical carrier to realize coherent demodulation of the optical signal.
  • the present application makes improvements on the basis of the above-mentioned coherent transmission system, and provides a new optical communication system, which is suitable for coherent transmission of multiple optical signals only by matching at least one local oscillator light. Moreover, the local oscillator light and multiple optical signals can be transmitted in the same optical fiber, which occupies a small volume, and improves the transmission capacity of an optical fiber, and the transmission efficiency is higher.
  • the optical communication system provided by this application is introduced in detail below.
  • the unmodulated light is called “optical carrier”, and the modulated light is called “optical signal”.
  • the optical carrier input to the coherent demodulator can be regarded as the local oscillator light of the coherent demodulator.
  • the polarization-maintaining fiber core is used to transmit the local oscillator light provided for the coherent demodulator. The difference between the polarization-maintaining fiber core and the ordinary fiber core is that the polarization-maintaining fiber core has polarization-maintaining characteristics, so that the transmission in the polarization-maintaining fiber core The local oscillator light will not change the polarization direction, so as to ensure that the coherent demodulator receiving the local oscillator light can work normally.
  • Each optical splitter provided in the optical communication system may be a polarization maintaining optical splitter, so that each path of light after splitting does not change the polarization direction.
  • Each bidirectional multiplexing and demultiplexing device provided in the optical communication system is a three-port device, two of which are unidirectional optical ports, and the two unidirectional ports transmit light in opposite directions. The other port is a bidirectional transmission multiplexed port, which supports optical bidirectional transmission.
  • the bidirectional multiplexing and demultiplexing device may be a 1X2 coarse wavelength division multiplexing (Coarse wavelength division multiplexing, CWDM) optical filter, a three-port circulator, or a 1X2 optical splitter.
  • the fan-in and fan-out device provided in the optical communication system is a kind of optical fiber connector, which is used to couple the optical signal or optical carrier to the optical fiber for transmission, or to couple the optical signal or optical carrier from the optical fiber to other devices.
  • the meaning of the above “coupling” can be understood as the meaning of aligning or introducing, for example, “coupling light into an optical fiber” can be understood as “aligning light into an optical fiber” or "introducing light into an optical fiber”.
  • FIG. 2 is a schematic diagram of a first structure of an optical communication system in an embodiment of the present application.
  • the optical communication system includes an optical communication device 1 and an optical communication device 2 , and the optical communication device 1 and the optical communication device 2 are connected through a multi-core optical fiber 3 .
  • the optical communication device 1 includes a sending device 10 and a fan-in/out (fan-in/out) device 11, and the sending device 10 includes a light source 101 and N coherent modulators 102, where N is an integer greater than or equal to 2.
  • the optical communication device 2 includes a receiving device 20, a fan-in-fan-out device 21 and an optical splitter 22, and the receiving device 20 includes N coherent demodulators.
  • the fiber connection ports of the fan-in-fan-out device 11 and the fiber connection port of the fan-in-fan-out device 21 are connected through a multi-core optical fiber 3 .
  • the multi-core optical fiber 3 includes N common cores and one polarization-maintaining core.
  • the light source 101 is used to output N+1 first optical carriers, wherein the 1st to Nth first optical carriers are respectively output to N coherent modulators 102, and the N+1th first optical carrier is output to the fan In-fan-out device 11.
  • the N coherent modulators 102 are respectively configured to coherently modulate the input N channels of first optical carriers to obtain N channels of first optical signals, and output the N channels of first optical signals to the fan-in-fan-out device 11 respectively.
  • the fan-in and fan-out device 11 is used to couple the N channels of first optical signals to the N common cores in the multi-core optical fiber 3 respectively, and couple the N+1th channel of first optical carrier to the polarization-maintaining fiber in the multi-core optical fiber 3 core.
  • the aforementioned N+1-th first optical carrier may be understood as the local oscillator light transmitted by the optical communication device 1 . It should also be understood that each channel of the above-mentioned first optical signal is independent and different from each other.
  • the fan-in and fan-out device 21 is used to couple the N channels of first optical signals from N common fiber cores to N coherent demodulators 201 respectively, and couple the first optical carrier from the polarization-maintaining fiber core to the optical splitter 22 .
  • the optical splitter 22 is configured to split the input first optical carrier to obtain N first optical carriers, and output the N first optical carriers to N coherent demodulators 201 respectively.
  • Each coherent demodulator 201 is configured to coherently mix the input first optical signal and the first optical carrier to coherently demodulate the first optical signal, and output coherently demodulated data. That is to say, there is a one-to-one correspondence relationship between the N first optical carriers and the N first optical signals, and each first optical carrier can be used as a local oscillator to perform coherent mixing with the corresponding first optical signal.
  • multiple polarization-maintaining fiber cores may also be arranged in the multi-core optical fiber to transmit multiple channels of local oscillator light, which is not specifically limited here.
  • two polarization-maintaining fiber cores can be set in the multi-core fiber to transmit two channels of local oscillator light.
  • Output port to support 2-way local oscillator optical input. It should be understood that each of the following embodiments also does not limit the number of polarization-maintaining fiber cores in the multi-core optical fiber.
  • the aforementioned N+1th first optical carrier may be any first optical carrier output by the light source 101, that is to say, the first to Nth first optical carriers described above are not limited to the sequence , as long as there are N channels of first optical carriers output to N coherent modulators respectively. It should be noted that the above introduction to the multiple optical carriers output by the light source is applicable to each of the following embodiments, and will not be repeated hereafter.
  • the light source 101 includes a laser 101a and an optical splitter 101b, and the optical splitter 101b is used to split the first optical carrier output by the laser 101a to obtain N+1 first optical carriers. It should be understood that the present application does not limit the number of lasers in the light source 101, but the first optical carrier output by each laser needs to meet the characteristics of the same frequency and the same phase. It should be noted that the above introduction to the light source 101 is applicable to the light source in each of the following embodiments, and will not be repeated hereafter.
  • Fig. 3 is a schematic structural diagram of a coherent demodulator.
  • the coherent demodulator includes a coherent receiving device 30 and a digital signal processing (digital signal processing, DSP) 31.
  • the coherent receiving device 30 performs frequency mixing on the received local oscillator light and the optical signal, and converts the mixed optical signal into an electrical signal.
  • the digital signal processor 31 processes the electrical signal to realize coherent demodulation of the optical signal, and outputs coherently demodulated data.
  • the coherently demodulated data may be output to other devices for data transmission or data processing, such as a switch, which is not specifically limited here.
  • the structure of the coherent demodulator described above is only an example, and the above introduction of the coherent demodulator is applicable to the coherent demodulator in each of the following embodiments, and will not be repeated hereafter.
  • N channels of optical signals and one channel of local oscillator light can be coupled to different cores of the same multi-core optical fiber for transmission, which occupies a small volume, improves the transmission capacity of one optical fiber, and has higher transmission efficiency .
  • the use of polarization-maintaining fiber cores to transmit local oscillator light ensures that the polarization direction of local oscillator light is stable during transmission. Therefore, there is no need to set a polarization adjustment module at the receiving end to adjust the polarization direction of local oscillator light, and the structure of the receiving end is simpler. .
  • the receiving end can divide the received local oscillator light into N channels and provide them to the local N coherent demodulators respectively, reducing the need for transmission of local oscillators.
  • the number of optical cores, more cores for transmitting optical signals can be set in the multi-core optical fiber, which is convenient to expand to the scene of more optical signal transmission.
  • the optical communication system can also support bidirectional transmission, that is to say, the optical communication device 1 also includes a receiving device, and the optical communication device 2 also includes a sending device, which will be introduced through several specific embodiments below .
  • the first optical communication system supporting bidirectional transmission two multi-core optical fibers are connected between the optical communication device 1 and the optical communication device 2, and the transmission directions of the two multi-core optical fibers are different.
  • FIG. 4 is a schematic diagram of a second structure of an optical communication system in an embodiment of the present application.
  • the optical communication device 1 also includes a receiving device 12, an optical splitter 13 and a fan-in and fan-out device 14, and the receiving device 12 includes M coherent demodulators device, M is an integer greater than or equal to 2.
  • the optical communication device 2 further includes a sending device 23 and a fan-in-fan-out device 24 , and the sending device 23 includes a light source 231 and M coherent modulators 232 .
  • the fiber connection port of the fan-in-fan-out device 14 is connected to the fiber connection port of the fan-in-fan-out device 24 through a multi-core optical fiber 4 .
  • the multi-core optical fiber 4 includes M common cores and one polarization-maintaining core. It should be understood that the number of M in this embodiment may be the same as or different from the number of N in the above embodiment shown in FIG. 2 , which is not specifically limited here.
  • the light source 231 is used to output M+1 second optical carriers, wherein the 1st to Mth second optical carriers are respectively output to M coherent modulators 232, and the M+1th second optical carrier is output to Fan-in fan-out device 24.
  • the M coherent modulators 232 are respectively configured to coherently modulate the input M channels of second optical carriers to obtain M channels of second optical signals, and output the M channels of second optical signals to the fan-in-fan-out device 24 respectively.
  • the fan-in and fan-out device 24 is used to couple M channels of second optical signals to M common cores in the multi-core optical fiber 4 respectively, and couple the M+1th second optical carrier to the polarization-maintaining fiber in the multi-core optical fiber 4 core.
  • the aforementioned M+1th second optical carrier can be understood as the local oscillator light emitted by the optical communication device 2 . It should also be understood that each channel of the above-mentioned second optical signal is independent and different from each other.
  • the fan-in and fan-out device 14 is used to couple M channels of second optical signals from M common fiber cores to M coherent demodulators 121 respectively, and couple the second optical carrier from the polarization-maintaining fiber cores to the optical splitter 13 .
  • the optical splitter 13 is configured to split the input second optical carrier to obtain M second optical carriers, and output the M second optical carriers to M coherent demodulators 121 respectively.
  • Each coherent demodulator 121 is configured to coherently mix the input second optical signal and the second optical carrier to coherently demodulate the second optical signal, and output coherently demodulated data. That is to say, there is a one-to-one correspondence relationship between M channels of second optical carriers and M channels of second optical signals, and each channel of second optical carriers can be used as a local oscillator to perform coherent mixing with a corresponding channel of second optical signals.
  • the optical communication device 1 transmits N channels of first optical signals and one channel of local oscillator light to the optical communication device 2 in this embodiment. Let me repeat.
  • this embodiment realizes the bidirectional transmission between the optical communication device 1 and the optical communication device 2 , and enriches the application scenarios of the optical communication system provided by the present application.
  • the second type of optical communication system supporting bidirectional transmission a multi-core optical fiber is connected between the optical communication device 1 and the optical communication device 2, and the polarization-maintaining fiber core in the multi-core optical fiber supports bidirectional transmission.
  • FIG. 5 is a schematic diagram of a third structure of an optical communication system in an embodiment of the present application.
  • the optical communication equipment 1 also includes a receiving device 12, an optical splitter 13 and a bidirectional multiplexing and demultiplexing device 15, and the receiving device 12 includes M coherent In the demodulator 121, M is an integer greater than or equal to 2.
  • the optical communication device 2 further includes a sending device 23 and a bidirectional multiplexing/demultiplexing device 25 , and the sending device 23 includes a light source 231 and M coherent modulators 232 .
  • the multi-core optical fiber 3 includes N+M common fiber cores and 1 polarization-maintaining fiber core. It should be understood that the number of M in this embodiment may be the same as or different from the number of N in the above embodiment shown in FIG. 2 , which is not specifically limited here.
  • the light source 231 is configured to output M+1 channels of second optical carriers, wherein the 1st to Mth channels of second optical carriers are respectively output to M coherent modulators 232 .
  • the M coherent modulators 232 are respectively configured to coherently modulate the input M channels of second optical carriers to obtain M channels of second optical signals, and output the M channels of second optical signals to the fan-in-fan-out device 21 respectively.
  • the M+1th second optical carrier is input from port 1 of the bidirectional multiplexing and demultiplexing device 25 and output to the fan-in and fan-out device 21 from port 3 .
  • the fan-in and fan-out device 21 is used to couple M channels of second optical signals to M common cores in the multi-core optical fiber 3 respectively, and couple the M+1th second optical carrier to the polarization-maintaining fiber in the multi-core optical fiber 3 core.
  • the aforementioned M+1th second optical carrier can be understood as the local oscillator light emitted by the optical communication device 2 .
  • each channel of the above-mentioned second optical signal is independent and different from each other.
  • the fan-in and fan-out device 11 is used to couple M channels of second optical signals from M common fiber cores to M coherent demodulators 121 respectively. And couple the second optical carrier from the polarization-maintaining fiber core to the port 3 of the bidirectional multiplexing and demultiplexing device 15 . Furthermore, the second optical carrier from the polarization-maintaining fiber core is output to the optical splitter 13 from the port 2 of the bidirectional multiplexing and demultiplexing device 15 .
  • the optical splitter 13 is configured to split the input second optical carrier to obtain M second optical carriers, and output the M second optical carriers to M coherent demodulators 121 respectively.
  • Each coherent demodulator 121 is configured to coherently mix the input second optical signal and the second optical carrier to coherently demodulate the second optical signal, and output coherently demodulated data. That is to say, there is a one-to-one correspondence relationship between M channels of second optical carriers and M channels of second optical signals, and each channel of second optical carriers can be used as a local oscillator to perform coherent mixing with a corresponding channel of second optical signals.
  • the N+1th first optical carrier output by the light source 101 is input from port 1 of the bidirectional multiplexing and demultiplexing device 15 and Output from port 3 to fan-in fan-out device 11.
  • the optical communication device 1 transmits N channels of first optical signals to the optical communication device 2 in this embodiment, reference may be made to the relevant description of the embodiment shown in FIG. 2 above, which will not be repeated here.
  • a bidirectional multiplexing and demultiplexing device 15 is added to the optical communication device 1
  • a bidirectional multiplexing and demultiplexing device 25 is added to the optical communication device 2 .
  • the N+1th first optical carrier output by the light source 101 and the M+1th second optical carrier output by the light source 231 are respectively transmitted in different directions in the same polarization-maintaining fiber core, reducing the polarization-maintaining fiber core. quantity.
  • N+M common fiber cores are integrated in the multi-core optical fiber 3, and only one multi-core optical fiber can realize the transmission of N-channel first optical signals and M-channel second optical signals in different directions, which also reduces the number of The number of core fibers. On the whole, compared with the above-mentioned embodiment shown in FIG. 4 , this embodiment has higher transmission efficiency.
  • the third type of optical communication system supporting bidirectional transmission a multi-core optical fiber is connected between the optical communication device 1 and the optical communication device 2, and the polarization-maintaining fiber core and each common fiber core in the multi-core optical fiber support bidirectional transmission.
  • FIG. 6 is a schematic diagram of a third structure of an optical communication system in an embodiment of the present application.
  • the optical communication device 1 also includes a receiving device 12, an optical splitter 13, a bidirectional multiplexing and demultiplexing device 15, and N bidirectional multiplexing and demultiplexing devices Using the device 16, the receiving device 12 comprises N coherent demodulators.
  • the optical communication device 2 further includes a sending device 23 , a bidirectional multiplexing and demultiplexing device 25 and N bidirectional multiplexing and demultiplexing devices 26 , and the sending device 23 includes a light source 231 and N coherent modulators 232 .
  • the multi-core optical fiber 3 includes N common cores and one polarization-maintaining core.
  • the light source 231 is used to output N+1 channels of second optical carriers, wherein the first to Nth channels of second optical carriers are respectively output to N coherent modulators 232 .
  • N coherent modulators 232 are respectively used to coherently modulate the input N channels of second optical carriers to obtain N channels of second optical signals, and respectively output the N channels of second optical signals to N bidirectional multiplexing and demultiplexing devices 26 .
  • each second optical signal is input from the port 1 of the corresponding bidirectional multiplexing and demultiplexing device 26 , and is output to the fan-in and fan-out device 21 from the port 3 .
  • the N+1th second optical carrier is input from port 1 of the bidirectional multiplexing and demultiplexing device 25 , and is output from port 3 to the fan-in and fan-out device 21 .
  • the fan-in and fan-out device 21 is used to couple the N channels of second optical signals to the N common cores in the multi-core optical fiber 3 respectively, and couple the N+1th second optical carrier to the polarization-maintaining fiber in the multi-core optical fiber 3 core.
  • the aforementioned N+1th second optical carrier may be understood as the local oscillator light transmitted by the optical communication device 2 .
  • each channel of the above-mentioned second optical signal is independent and different from each other.
  • the fan-in and fan-out device 11 is used to couple N channels of second optical signals from N common fiber cores to N bidirectional multiplexing and demultiplexing devices 16 respectively. Wherein, each second optical signal is input from port 3 of the corresponding bidirectional multiplexing and demultiplexing device 16 , and is output from port 2 to the corresponding correlation receiver 121 .
  • the fan-in-fan-out device 11 is also used to couple the second optical carrier from the polarization-maintaining fiber core to the port 3 of the bidirectional multiplexing-demultiplexing device 15 . Furthermore, the second optical carrier from the polarization-maintaining fiber core is output to the optical splitter 13 from the port 2 of the bidirectional multiplexing and demultiplexing device 15 .
  • the optical splitter 13 is configured to split the input second optical carrier to obtain N second optical carriers, and output the N second optical carriers to N coherent demodulators 121 respectively.
  • Each coherent demodulator 121 is configured to coherently mix the input second optical signal and the second optical carrier to coherently demodulate the second optical signal, and output coherently demodulated data. That is to say, there is a one-to-one correspondence relationship between the N second optical carriers output by the optical splitter 13 and the N second optical signals, and each second optical carrier can be used as a local oscillator light to communicate with the corresponding second optical signal. coherent mixing.
  • the N+1th first optical carrier output by the light source 101 is input from port 1 of the bidirectional multiplexing and demultiplexing device 15 and Output from port 3 to fan-in fan-out device 11.
  • the N first optical signals output by the N coherent modulators 102 are respectively input from the port 1 of the N bidirectional multiplexing and demultiplexing devices 16, and are respectively output from the port 3 to the fan-in and fan-out device 11 .
  • the bidirectional multiplexing and demultiplexing device 15 and the bidirectional multiplexing and demultiplexing device 25 are respectively added in the optical communication device 1 and the optical communication device 2, but also the optical communication device 1 and the optical communication device 2 are respectively added N bidirectional multiplexing and demultiplexing devices 16 and N bidirectional multiplexing and demultiplexing devices 26 are provided.
  • the number of common fiber cores is reduced, and compared with the above-mentioned embodiment shown in Figure 5, further improved The transmission efficiency of each common fiber core.
  • the embodiment of the present application also provides an optical communication device.
  • the optical communication device can be the optical communication device 1 or the optical communication device introduced in any one of the optical communication systems shown in FIG. 2, FIG.
  • FIG. 2 For the device 2, for details, reference may be made to the introduction of the optical communication device 1 and the optical communication device 2 in the embodiments shown in FIG. 2, FIG. 4, FIG. 5 and FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种光通信设备和光通信系统,提升了光纤的传输容量,传输效率更高。该光通信设备包括:发送装置和第一扇入扇出器件。发送装置包括光源和N个相干调制器,N为大于或等于2的整数。光通信设备通过第一多芯光纤与另一光通信设备连接。第一多芯光纤包括N根第一纤芯和1根第一保偏纤芯。光源用于输出N+1路第一光载波。第1至第N路第一光载波经N个相干调制器分别进行调制得到N路第一光信号。N路第一光信号经第一扇入扇出器件分别被耦合至N根第一纤芯。第N+1路第一光载波经第一扇入扇出器件被耦合至第一保偏纤芯。在另一光通信设备中第N+1路光载波分别与N路第一光信号相干混频以对N路第一光信号进行相干解调。

Description

一种光通信设备和光通信系统
本申请要求于2021年7月28日提交中国国家知识产权局、申请号为202110859655.4、申请名称为“一种光通信设备和光通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种光通信设备和光通信系统。
背景技术
相干光传输技术的频谱效率比任何直接传输格式都要高,尤其是在长距离和高数据速率的情况下,它既能保持优异的传送性能又能克服信号高速传输而产生的严重损耗。其中,同源相干双向传输(Bi-Direction:BiDi)是一种常用的技术。本端向对端发射的光可以分为两路,其中一路调制成光信号用于传输,另一路通过另外一根光纤同时传到相干解调器作为本振光(Local oscillator,LO)。同理,对端可以用相同的机制内反向传输光信号和本振光。
本振光在光纤传输的过程中可能会由于环境的变化导致本振光的偏振方向改变,从而影响接收端的性能。目前的一种解决方式是在接收端中设置一个偏振调节模块,用于对输入的本振光进行偏振方向的调节,以避免本振光由于偏振方向随机引起接收端的性能下降。但是,在接收端内设置偏振调节模块会使得接收端的结构较为复杂。
发明内容
本申请实施例提供了一种光通信设备和光通信系统,可以将N路光信号和一路本振光耦合到同一根多芯光纤的不同纤芯中传输,占用的体积较小,并且提升了光纤的传输容量,传输效率更高。另外,采用保偏纤芯来传输本振光保证了本振光的偏振方向在传输过程中稳定不变,因此,无需在接收端设置偏振调节模块来调节本振光的偏振方向,接收端的结构更加简单。
第一方面,本申请提供了一种光通信设备。该光通信设备包括:发送装置和第一扇入扇出器件。发送装置包括光源和N个相干调制器,N为大于或等于2的整数。光通信设备通过第一多芯光纤与另一光通信设备连接。第一多芯光纤包括N根第一纤芯和1根第一保偏纤芯。具体地,光源用于输出N+1路第一光载波。第1至第N路第一光载波经N个相干调制器分别进行调制得到N路第一光信号。进而,N路第一光信号经第一扇入扇出器件分别被耦合至N根第一纤芯,以被传输至另一光通信设备。另外,第N+1路第一光载波经第一扇入扇出器件被耦合至第一保偏纤芯,以被传输至另一光通信设备。需要说明的是,在另一光通信设备中第N+1路第一光载波可以作为本振光,分别用于与N路第一光信号相干混频以对第一光信号进行相干解调。
应理解,第一保偏纤芯区别于第一纤芯的特征在于第一保偏纤芯具有偏振保持特性,使得在第一保偏纤芯中传输的本振光不会改变偏振方向,以保证接收到本振光的相干解调器可以正常工作。
在该实施方式中,本端的光通信设备可以将N路光信号和一路本振光耦合到同一根多 芯光纤的不同纤芯中传输,占用的体积较小,并且提升了一根光纤的传输容量,传输效率更高。并且,采用保偏纤芯来传输本振光保证了本振光的偏振方向在传输过程中稳定不变,因此,无需在对端的光通信设备中设置偏振调节模块来调节本振光的偏振方向,使得对端的光通信设备的结构更加简单。
在一些可能的实施方式中,光通信设备还包括接收装置、第一分光器和第二扇入扇出器件。接收装置包括M个相干解调器,M为大于或等于2的整数。光通信设备还通过第二多芯光纤与另一光通信设备连接,第二多芯光纤包括M根第二纤芯和1根第二保偏纤芯。每根第二纤芯的一端与第二扇入扇出器件连接,第二保偏纤芯的一端与第二扇入扇出器件连接。具体地,来自另一光通信设备、通过M根第二纤芯被传输的M路第二光信号经第二扇入扇出器件分别被耦合至M个相干解调器。来自另一光通信设备、通过第二保偏纤芯被传输的第二光载波经第二扇入扇出器件被耦合至第一分光器,以得到M路第二光载波。M个相干解调器用于将M路第二光载波与M路第二光信号按照一一对应的关系进行相干混频以分别对M路第二光信号进行相干解调,并分别输出M路相干解调后的数据。在该实施方式中,提供了一种支持双向传输的光通信设备,扩展了光通信设备的应用场景。
在一些可能的实施方式中,光通信设备还包括接收装置、第一分光器和第一双向复用解复用器件。接收装置包括M个相干解调器,M为大于或等于2的整数。第一多芯光纤还包括M根第二纤芯。具体地,第N+1路第一光载波经第一双向复用解复用器件的第一端口输入,并经第一双向复用解复用器件的第三端口输出至第一扇入扇出器件。来自另一光通信设备、通过M根第二纤芯被传输的M路第二光信号经第一扇入扇出器件分别被耦合至M个相干解调器。来自另一光通信设备、通过第一保偏纤芯被传输的第二光载波经第一扇入扇出器件被耦合至第一双向复用解复用器件的第三端口,并经第一双向复用解复用器件的第二端口输出至第一分光器,以得到M路第二光载波。M个相干解调器用于将M路第二光载波与M路第二光信号按照一一对应的关系进行相干混频以分别对M路第二光信号进行相干解调,并分别输出M路相干解调后的数据。
在该实施方式中,在光通信设备中增加了第一双向复用解复用器件,以支持本地光源输出的第N+1路第一光载波和来自对端的第二光载波在同一根保偏纤芯中分别朝不同方向传输,减少了保偏纤芯的数量。并且,多芯光纤3中集成了N根第一纤芯和M根第二纤芯,只用一根多芯光纤就可以实现N路第一光信号和M路第二光信号分别朝不同方向传输,也减少了多芯光纤的数量。使得第一多芯光纤的传输效率更高。
在一些可能的实施方式中,光通信设备还包括接收装置、第一分光器、第一双向复用解复用器件和N个第二双向复用解复用器件,接收装置包括N个相干解调器。第N+1路第一光载波经第一双向复用解复用器件的第一端口输入,并经第一双向复用解复用器件的第三端口输出至第一扇入扇出器件。N路第一光信号分别经N个第二双向复用解复用器件的N个第一端口输入,并分别经N个第二双向复用解复用器件的N个第三端口输出至第一扇入扇出器件。来自另一光通信设备、通过N根第一纤芯被传输的N路第二光信号经第一扇入扇出器件分别被耦合至N个第二双向复用解复用器件的N个第三端口,并分别经N个第二双向复用解复用器件的N个第二端口输出至N个相干解调器。来自另一光通信设备、 通过第一保偏纤芯被传输的第二光载波经第一扇入扇出器件被耦合至第一双向复用解复用器件的第三端口,并经第一双向复用解复用器件的第二端口输出至第一分光器,以得到N路第二光载波。N个相干解调器用于将N路第二光载波与N路第二光信号按照一一对应的关系进行相干混频以分别对N路第二光信号进行相干解调,并分别输出N路相干解调后的数据。
在该实施方式中,在光通信设备中增加了第一双向复用解复用器件和N个第二双向复用解复用器件,以支持本地光源输出的第N+1路第一光载波和来自对端的第二光载波在同一根保偏纤芯中分别朝不同方向传输,并支持N路第一光信号和N路第二光信号在N根第一纤芯中分别朝不同方向传输,减少了第一纤芯的数量,提高了第一保偏纤芯和每一根第一纤芯的传输效率。
在一些可能的实施方式中,上述的每个双向复用解复用器件为三端口器件,其中两个端口为单向光口,两个单向端口传输的光方向相反。另外一个端口为双向传输复用的端口,该端口支持光的双向传输。具体地,每个双向复用解复用器件可以是1X2的粗波分复用(Coarse wavelength division multiplexing,CWDM)滤光片、三端口的环形器或1X2的分光器。在该实施方式中,提供了双向复用解复用器件的多种具体实现,提高了本方案的可实现性。
在一些可能的实施方式中,光源包括激光器和第二分光器,第二分光器用于对激光器输出的第一光载波进行分光以得到N+1路第一光载波。
在一些可能的实施方式中,第N+1路第一光载波与N路第一光信号频率相同且相位相同,使得相干解调器可以根据第N+1路第一光载波对第一光信号进行相干解调。
第二方面,本申请提供了一种光通信设备。该光通信设备包括:接收装置、第一分光器和第一扇入扇出器件。接收装置包括M个相干解调器,M为大于或等于2的整数。光通信设备通过第一多芯光纤与另一光通信设备连接,第一多芯光纤包括M根第一纤芯和1根第一保偏纤芯。具体地,来自另一光通信设备、通过M根第一纤芯被传输的M路第一光信号经第一扇入扇出器件分别被耦合至M个相干解调器。来自另一光通信设备、通过第一保偏纤芯被传输的第一光载波经第一扇入扇出器件被耦合至第一分光器,以得到M路第一光载波。M个相干解调器用于将M路第一光载波与M路第一光信号按照一一对应的关系进行相干混频以分别对M路第一光信号进行相干解调,并分别输出M路相干解调后的数据。
在该实施方式中,对端的光通信设备可以将M路光信号和一路本振光耦合到同一根多芯光纤的不同纤芯中传输,占用的体积较小,并且提升了一根光纤的传输容量,传输效率更高。并且,采用保偏纤芯来传输本振光保证了本振光的偏振方向在传输过程中稳定不变,因此,无需在本端的光通信设备中设置偏振调节模块来调节本振光的偏振方向,使得本端的光通信设备的结构更加简单。另外,多芯光纤中只需要传输一路本振光即可,本端的光通信设备可以将接收到的一路本振光分成M路再分别提供给本地的M个相干解调器,减少了用于传输本振光的纤芯数量,多芯光纤中就可以设置更多用于传输光信号的纤芯,便于扩展到更多路光信号传输的场景中。
在一些可能的实施方式中,光通信设备还包括发送装置和第二扇入扇出器件。发送装置包括光源和N个相干调制器,N为大于或等于2的整数。光通信设备还通过第二多芯光纤与另一光通信设备连接,第二多芯光纤包括N根第二纤芯和1根第二保偏纤芯。具体地,光源用于输出N+1路第二光载波。第1至第N路第二光载波经N个相干调制器分别进行调制得到N路第二光信号。进而,N路第二光信号经第二扇入扇出器件分别被耦合至N根第二纤芯,以被传输至另一光通信设备。第N+1路第二光载波经第二扇入扇出器件被耦合至第二保偏纤芯,以被传输至另一光通信设备。在另一光通信设备中,第N+1路第二光载波可以作为本振光,分别用于与N路第二光信号相干混频以对N路第二光信号进行相干解调。
在一些可能的实施方式中,光通信设备还包括发送装置和第一双向复用解复用器件,发送装置包括光源和N个相干调制器。N为大于或等于2的整数,第一多芯光纤还包括N根第二纤芯。具体地,来自另一光通信设备、通过第一保偏纤芯被传输的第一光载波经第一扇入扇出器件被耦合至第一双向复用解复用器件的第三端口,并经第一双向复用解复用器件的第二端口输出至第一分光器。光源用于输出N+1路第二光载波。第1至第N路第二光载波经N个相干调制器分别进行调制得到N路第二光信号。进而,N路第二光信号经第一扇入扇出器件分别被耦合至N根第二纤芯,以被传输至另一光通信设备。第N+1路第二光载波经第一双向复用解复用器件的第一端口输入,并经第一双向复用解复用器件的第三端口输出至第一扇入扇出器件,再经第一扇入扇出器件被耦合至第一保偏纤芯,以被传输至另一光通信设备。在另一光通信设备中,第N+1路第二光载波可以作为本振光,分别用于与N路第二光信号相干混频以对N路第二光信号进行相干解调。
在一些可能的实施方式中,光通信设备还包括发送装置、第一双向复用解复用器件和M个第二双向复用解复用器件,发送装置包括光源和M个相干调制器。具体地,来自另一光通信设备、通过M根第一纤芯被传输的M路第一光信号经第一扇入扇出器件分别被耦合至M个第二双向复用解复用器件的M个第三端口,并分别经M个第二双向复用解复用器件的M个第二端口输出至M个相干解调器。来自另一光通信设备、通过第一保偏纤芯被传输的第一光载波经第一扇入扇出器件被耦合至第一双向复用解复用器件的第三端口,并经第一双向复用解复用器件的第二端口输出至第一分光器。光源用于输出M+1路第二光载波。第1至第M路第二光载波经M个相干调制器分别进行调制得到M路第二光信号。进而,M路第二光信号分别经M个第二双向复用解复用器件的M个第一端口输入,并分别经M个第二双向复用解复用器件的M个第三端口输出至第一扇入扇出器件,再经第一扇入扇出器件分别被耦合至M根第一纤芯,以被传输至另一光通信设备。第M+1路第二光载波经第一双向复用解复用器件的第一端口输入,并经第一双向复用解复用器件的第三端口输出至第一扇入扇出器件,再经第一扇入扇出器件被耦合至第一保偏纤芯,以被传输至另一光通信设备。在另一光通信设备中,第M+1路第二光载波可以作为本振光,分别用于与M路第二光信号相干混频以对M路第二光信号进行相干解调。
在一些可能的实施方式中,上述的每个双向复用解复用器件为三端口器件,其中两个端口为单向光口,两个单向端口传输的光方向相反。另外一个端口为双向传输复用的端口, 该端口支持光的双向传输。具体地,每个双向复用解复用器件可以是1X2的CWDM滤光片、三端口的环形器或1X2的分光器。
在一些可能的实施方式中,光源包括激光器和第二分光器,第二分光器用于对激光器输出的第二光载波进行分光以得到多路第二光载波。
在一些可能的实施方式中,来自另一光通信设备、通过第一保偏纤芯传输的第一光载波与M路第一光信号频率相同且相位相同。
第三方面,本申请提供了一种光通信系统。该光通信系统包括:第一光通信设备、第二光通信设备和第一多芯光纤。第一多芯光纤连接在第一光通信设备与第二光通信设备之间。其中,第一光通信设备包括第一发送装置和第一扇入扇出器件,第一发送装置包括第一光源和N个第一相干调制器,N为大于或等于2的整数。第二光通信设备包括第一接收装置、第一分光器和第二扇入扇出器件,第二接收装置包括N个第一相干解调器。第一多芯光纤包括N根第一纤芯和1根第一保偏纤芯。
具体地,第一光源用于输出N+1路第一光载波。第1至第N路第一光载波经N个第一相干调制器分别进行调制得到N路第一光信号,N路第一光信号第一扇入扇出器件分别被耦合至N根第一纤芯,以被传输至第二光通信设备。第N+1路第一光载波经第一扇入扇出器件被耦合至第一保偏纤芯,以被传输至第二光通信设备。来自第一光通信设备、通过N根第一纤芯被传输的N路第一光信号经第二扇入扇出器件分别被耦合至N个第一相干解调器。来自第一光通信设备、通过第一保偏纤芯被传输的第一光载波经第二扇入扇出器件被耦合至第一分光器,以得到N路第一光载波。N个第一相干解调器用于将N路第一光载波与N路第一光信号按照一一对应的关系进行相干混频以分别对N路第一光信号进行相干解调,并分别输出N路相干解调后的第一数据。
在一些可能的实施方式中,光通信系统还包括第二多芯光纤,第二多芯光纤连接在第一光通信设备与第二光通信设备之间。第一光通信设备还包括第二接收装置、第二分光器和第三扇入扇出器件,第二接收装置包括M个第二相干解调器,M为大于或等于2的整数。第二光通信设备还包括第二发送装置和第四扇入扇出器件,第二发送装置包括第二光源和M个第二相干调制器。第二多芯光纤包括M根第二纤芯和1根第二保偏纤芯。
具体地,第二光源用于输出M+1路第二光载波。第1至第M路第二光载波经M个第二相干调制器分别进行调制得到M路第二光信号,M路第二光信号经第四扇入扇出器件分别被耦合至M根第二纤芯,以被传输至第一光通信设备。第M+1路第二光载波经第四扇入扇出器件被耦合至第二保偏纤芯,以被传输至第一光通信设备。来自第二光通信设备、通过M根第二纤芯被传输的M路第二光信号经第三扇入扇出器件分别被耦合至M个第二相干解调器。来自第二光通信设备、通过第二保偏纤芯被传输的第二光载波经第三扇入扇出器件被耦合至第二分光器,以得到M路第二光载波。M个第二相干解调器用于将M路第二光载波与M路第二光信号按照一一对应的关系进行相干混频以分别对M路第二光信号进行相干解调,并分别输出M路相干解调后的第二数据。
在一些可能的实施方式中,第一光通信设备还包括第二接收装置、第二分光器和第一双向复用解复用器件,第二接收装置包括M个第二相干解调器,M为大于或等于2的整数。 第二光通信设备还包括第二发送装置和第二双向复用解复用器件,第二发送装置包括第二光源和M个第二相干调制器。第一多芯光纤还包括M根第二纤芯。
具体地,第N+1路第一光载波经第一双向复用解复用器件的第一端口输入,并经第一双向复用解复用器件的第三端口输出至第一扇入扇出器件。来自第一光通信设备、通过第一保偏纤芯被传输的第一光载波经第二扇入扇出器件被耦合至第二双向复用解复用器件的第三端口,并经第二双向复用解复用器件的第二端口输出至第一分光器。第二光源用于输出M+1路第二光载波。第1至第M路第二光载波经M个第二相干调制器分别进行调制得到M路第二光信号,M路第二光信号经第二扇入扇出器件分别被耦合至M根第二纤芯,以被传输至第一光通信设备。第M+1路第二光载波经第二双向复用解复用器件的第一端口输入,并经第二双向复用解复用器件的第三端口输出至第二扇入扇出器件,再经第二扇入扇出器件被耦合至第一保偏纤芯,以被传输至第一光通信设备。来自第二光通信设备、通过M根第二纤芯被传输的M路第二光信号经第一扇入扇出器件分别被耦合至M个第二相干解调器。来自第二光通信设备、通过第一保偏纤芯被传输的第二光载波经第一扇入扇出器件被耦合至第一双向复用解复用器件的第三端口,并经第一双向复用解复用器件的第二端口输出至第二分光器,以得到M路第二光载波。M个第二相干解调器用于将M路第二光载波与M路第二光信号按照一一对应的关系进行相干混频以分别对M路第二光信号进行相干解调,并分别输出M路相干解调后的第二数据。
在一些可能的实施方式中,第一光通信设备还包括第二接收装置、第二分光器、第一双向复用解复用器件和N个第三双向复用解复用器件,第二接收装置包括N个第二相干解调器。第二光通信设备还包括第二发送装置、第二双向复用解复用器件和N个第四双向复用解复用器件,第二发送装置包括第二光源和N个第二相干调制器。
具体地,第N+1路第一光载波经第一双向复用解复用器件的第一端口输入,并经第一双向复用解复用器件的第三端口输出至第一扇入扇出器件。N路第一光信号分别经N个第三双向复用解复用器件的N个第一端口输入,并分别经N个第三双向复用解复用器件的N个第三端口输出至第一扇入扇出器件。来自第一光通信设备、通过第一保偏纤芯被传输的第一光载波经经第二扇入扇出器件被耦合至第二双向复用解复用器件的第三端口,并经第二双向复用解复用器件的第二端口输出至第一分光器。来自第一光通信设备、通过N根第一纤芯被传输的N路第一光信号经第二扇入扇出器件分别被耦合至N个第四双向复用解复用器件的N个第三端口,并分别经N个第四双向复用解复用器件的N个第二端口输出至N个第二相干解调器。第二光源用于输出N+1路第二光载波。第二光源输出的第1至第N路第二光载波经N个第二相干调制器分别进行调制得到N路第二光信号。N路第二光信号分别经N个第四双向复用解复用器件的N个第一端口输入,并分别经N个第四双向复用解复用器件的N个第三端口输出至第二扇入扇出器件,再经第二扇入扇出器件被耦合至N根第一纤芯,以被传输至第一光通信设备。第二光源输出的第N+1路第二光载波经第二双向复用解复用器件的第一端口输入,并经第二双向复用解复用器件的第三端口输出至第二扇入扇出器件,再经第二扇入扇出器件被耦合至第一保偏纤芯,以被传输至第一光通信设备。来自第二光通信设备、通过N根第一纤芯被传输的N路第二光信号经第一扇入扇出器件分 别被耦合至N个第三双向复用解复用器件的N个第三端口,并分别经N个第三双向复用解复用器件的N个第二端口输出至N个第二相干解调器。来自第二光通信设备、通过第一保偏纤芯被传输的第二光载波经第一扇入扇出器件被耦合至第一双向复用解复用器件的第三端口,并经第一双向复用解复用器件的第二端口输出至第二分光器,以得到N路第二光载波。N个第二相干解调器用于将N路第二光载波与N路第二光信号按照一一对应的关系进行相干混频以分别对N路第二光信号进行相干解调,并分别输出N路相干解调后的第二数据。
在一些可能的实施方式中,上述的每个双向复用解复用器件为三端口器件,其中两个端口为单向光口,两个单向端口传输的光方向相反。另外一个端口为双向传输复用的端口,该端口支持光的双向传输。具体地,每个双向复用解复用器件可以是1X2的CWDM滤光片、三端口的环形器或1X2的分光器。
在一些可能的实施方式中,第一光源包括激光器和第三分光器,第三分光器用于对激光器输出的第一光载波进行分光以得到N+1路第一光载波。
在一些可能的实施方式中,第N+1路第一光载波与N路第一光信号频率相同且相位相同。
本申请实施例中,本端的光通信设备可以将N路光信号和一路本振光耦合到同一根多芯光纤的不同纤芯中传输,占用的体积较小,并且提升了一根光纤的传输容量,传输效率更高。并且,采用保偏纤芯来传输本振光保证了本振光的偏振方向在传输过程中稳定不变,因此,无需在对端的光通信设备中设置偏振调节模块来调节本振光的偏振方向,使得对端的光通信设备的结构更加简单。另外,多芯光纤中只需要传输一路本振光即可,对端的光通信设备可以将接收到的一路本振光分成N路再分别提供给本地的N个相干解调器,减少了用于传输本振光的纤芯数量,多芯光纤中就可以设置更多用于传输光信号的纤芯,便于扩展到更多路光信号传输的场景中。
附图说明
图1为相干传输系统的一种结构示意图;
图2为本申请实施例中光通信系统的第一种结构示意图;
图3为相干解调器的一种结构示意图;
图4为本申请实施例中光通信系统的第二种结构示意图;
图5为本申请实施例中光通信系统的第三种结构示意图;
图6为本申请实施例中光通信系统的第三种结构示意图。
具体实施方式
本申请实施例提供了一种光通信设备和光通信系统,可以将N路光信号和一路本振光耦合到同一根多芯光纤的不同纤芯中传输,占用的体积较小,并且提升了光纤的传输容量,传输效率更高。另外,采用保偏纤芯来传输本振光保证了本振光的偏振方向在传输过程中稳定不变,因此,无需在接收端设置偏振调节模块来调节本振光的偏振方向,接收端的结构更加简单。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似 的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。本申请中所出现的模块的划分,是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本申请方案的目的。
本申请主要应用于相干传输系统中,下面首先对相干传输系统的特点进行介绍。图1为相干传输系统的一种结构示意图。如图1所示,发送端设备包括激光器、分光器和相干调制器,接收端设备包括相干解调器。具体的,分光器将激光器输出的一路光分成两路输出。相干调制器对分光器输出的一路光进行相干调制得到光信号,该光信号通过光纤1传输至接收端设备。分光器输出的另外一路光是没有经过调制的光载波,该光载波通过光纤2传输至接收端设备,对相干解调器来说,该光载波可以理解为远端发射的本振光。相干解调器将对接收到的光信号和光载波进行相干混频,以实现对光信号的相干解调。
本申请在上述相干传输系统的基础上进行了改进,提供了一种新的光通信系统,只需要搭配至少一路本振光就可以适用于多路光信号的相干传输。并且,本振光和多路光信号可以在同一根光纤中传输,占用的体积较小,并且提升了一根光纤的传输容量,传输效率更高。下面对本申请提供的光通信系统进行详细介绍。
首先,这里对以下几个光通信系统实施例中的共性特征进行介绍,后面不再一一赘述。
第一:统一将未经过调制的光称之为“光载波”,将经过调制的光称之为“光信号”。并且,可以将输入到相干解调器的光载波视为该相干解调器的本振光。第二:保偏纤芯用于传输为相干解调器提供的本振光,保偏纤芯区别于普通纤芯的特征在于保偏纤芯具有偏振保持特性,使得在保偏纤芯中传输的本振光不会改变偏振方向,以保证接收到本振光的相干解调器可以正常工作。第三:提供给相干解调器的本振光与相干解调器接收到的每一路光信号具有频率相同且相位相同的特征,使得相干解调器可以根据本振光对光信号进行相干解调。第四:光通信系统中提供的每个分光器都可以是保偏分光器,以使得经过分光后的每一路光不会改变偏振方向。第五:光通信系统中提供的每个双向复用解复用器件为三端口器件,其中两个端口为单向光口,两个单向端口传输的光方向相反。另外一个端口为双向传输复用的端口,该端口支持光的双向传输。该双向复用解复用器件具体可以是1X2 的粗波分复用(Coarse wavelength division multiplexing,CWDM)滤光片、三端口的环形器或1X2的分光器等。第六:光通信系统中提供的扇入扇出器件是一种光纤接头,其作用是将光信号或光载波耦合至光纤中传输,或者将来自光纤的光信号或光载波耦合至其他器件。应理解,上述“耦合”的含义可以理解为对准或导入的意思,例如,“将光耦合至光纤”可以理解为“将光对准光纤”或者“将光导入光纤”。
图2为本申请实施例中光通信系统的第一种结构示意图。如图2所示,光通信系统包括光通信设备1和光通信设备2,光通信设备1与光通信设备2之间通过多芯光纤3连接。其中,光通信设备1包括发送装置10和扇入扇出(fan-in/out)器件11,发送装置10包括光源101和N个相干调制器102,N为大于或等于2的整数。光通信设备2包括接收装置20、扇入扇出器件21和分光器22,接收装置20包括N个相干解调器。扇入扇出器件11的光纤连接端口与扇入扇出器件21的光纤连接端口之间通过多芯光纤3连接。多芯光纤3包括N根普通纤芯和1根保偏纤芯。
具体地,光源101用于输出N+1路第一光载波,其中第1至第N路第一光载波分别输出至N个相干调制器102,第N+1路第一光载波输出至扇入扇出器件11。N个相干调制器102分别用于对输入的N路第一光载波进行相干调制得到N路第一光信号,并将N路第一光信号分别输出至扇入扇出器件11。扇入扇出器件11用于将N路第一光信号分别耦合至多芯光纤3中的N根普通纤芯,并将第N+1路第一光载波耦合至多芯光纤3中的保偏纤芯。应理解,对于光通信设备2来说,上述第N+1路第一光载波可以理解为光通信设备1发射的本振光。还应理解,上述的每一路第一光信号都是相互独立且不同的。
扇入扇出器件21用于将来自N根普通纤芯的N路第一光信号分别耦合至N个相干解调器201,并将来自保偏纤芯的第一光载波耦合至分光器22。分光器22用于将输入的第一光载波进行分光以得到N路第一光载波,并将N路第一光载波分别输出至N个相干解调器201。每个相干解调器201用于对输入的第一光信号和第一光载波进行相干混频,以对第一光信号进行相干解调,并输出相干解调后的数据。也就是说,N路第一光载波与N路第一光信号是一一对应的关系,每一路第一光载波都可以作为本振光与对应的一路第一光信号进行相干混频。
需要说明的是,虽然只需要在多芯光纤中设置1根保偏纤芯来传输本振光就可以适用于多路光信号的相干传输。但是,在实际应用中,也可以在多芯光纤中设置多根保偏纤芯来传输多路本振光,具体此处不做限定。例如,多芯光纤中可以设置2根保偏纤芯来传输2路本振光,相应的,上述分光器22将采用2:N的分光器,即分光器22具有两个输入端口和N个输出端口,以支持2路本振光的输入。应理解,以下的每个实施例同样不限定多芯光纤中保偏纤芯的数量。
应理解,上述的第N+1路第一光载波可以是光源101输出的任意一路第一光载波,也就是说,上述介绍的第1至第N路第一光载波并不是对顺序的限定,只要保证有N路第一光载波分别输出至N个相干调制器即可。需要说明的是,上述对于光源输出的多路光载波的介绍适用于以下每个实施例,之后不再赘述。
在一种可能的实施方式中,光源101包括激光器101a和分光器101b,分光器101b用 于对激光器101a输出的一路第一光载波进行分光以得到N+1路第一光载波。应理解,本申请不限定光源101中激光器的数量,但是每个激光器输出的第一光载波需要满足频率相同且相位相同的特征。需要说明的是,上述对于光源101的介绍适用于以下每个实施例中的光源,之后不再赘述。
下面对相干解调器的结构进行介绍。图3为相干解调器的一种结构示意图。如图3所示,相干解调器包括相干接收装置30和数字信号处理器(digital signal processing,DSP)31。在一种可能的实施方式中,相干接收装置30对接收到的本振光和光信号进行混频,并将混频后的光信号转换为电信号。进而,数字信号处理器31对电信号进行处理,以实现对光信号的相干解调,并输出相干解调后的数据。其中,相干解调后的数据可以输出至其他用于数据传输或数据处理的设备,例如交换机等,具体此处不做限定。需要说明的是,上述介绍的相干解调器的结构只是一种示例,并且,上述对于相干解调器的介绍适用于以下每个实施例中的相干解调器,之后不再赘述。
本实施例中,可以将N路光信号和一路本振光耦合到同一根多芯光纤的不同纤芯中传输,占用的体积较小,并且提升了一根光纤的传输容量,传输效率更高。采用保偏纤芯来传输本振光保证了本振光的偏振方向在传输过程中稳定不变,因此,无需在接收端设置偏振调节模块来调节本振光的偏振方向,接收端的结构更加简单。另外,多芯光纤中只需要传输一路本振光即可,接收端可以将接收到的一路本振光分成N路再分别提供给本地的N个相干解调器,减少了用于传输本振光的纤芯数量,多芯光纤中就可以设置更多用于传输光信号的纤芯,便于扩展到更多路光信号传输的场景中。
需要说明的是,本申请提供的光通信系统也可以支持双向传输,也就是说,光通信设备1还包括接收装置,光通信设备2还包括发送装置,下面通过几个具体的实施例进行介绍。
第一种支持双向传输的光通信系统:光通信设备1与光通信设备2之间连接有两条多芯光纤,两条多芯光纤的传输方向不同。
图4为本申请实施例中光通信系统的第二种结构示意图。如图4所示,在上述图2所示的光通信系统的基础上,光通信设备1还包括接收装置12、分光器13和扇入扇出器件14,接收装置12包括M个相干解调器,M为大于或等于2的整数。光通信设备2还包括发送装置23和扇入扇出器件24,发送装置23包括光源231和M个相干调制器232。扇入扇出器件14的光纤连接端口与扇入扇出器件24的光纤连接端口之间通过多芯光纤4连接。多芯光纤4包括M根普通纤芯和1根保偏纤芯。应理解,本实施例中M的数量与上述图2所示实施例中N的数量可以相同,也可以不同,具体此处不做限定。
具体地,光源231用于输出M+1路第二光载波,其中,第1至第M路第二光载波分别输出至M个相干调制器232,第M+1路第二光载波输出至扇入扇出器件24。M个相干调制器232分别用于对输入的M路第二光载波进行相干调制得到M路第二光信号,并将M路第二光信号分别输出至扇入扇出器件24。扇入扇出器件24用于将M路第二光信号分别耦合至多芯光纤4中的M根普通纤芯,并将第M+1路第二光载波耦合至多芯光纤4中 的保偏纤芯。应理解,对于光通信设备1来说,上述第M+1路第二光载波可以理解为光通信设备2发射的本振光。还应理解,上述的每一路第二光信号都是相互独立且不同的。
扇入扇出器件14用于将来自M根普通纤芯的M路第二光信号分别耦合至M个相干解调器121,并将来自保偏纤芯的第二光载波耦合至分光器13。分光器13用于将输入的第二光载波进行分光以得到M路第二光载波,并将M路第二光载波分别输出至M个相干解调器121。每个相干解调器121用于对输入的第二光信号和第二光载波进行相干混频,以对第二光信号进行相干解调,并输出相干解调后的数据。也就是说,M路第二光载波与M路第二光信号是一一对应的关系,每一路第二光载波都可以作为本振光与对应的一路第二光信号进行相干混频。
需要说明的是,本实施例中光通信设备1向光通信设备2传输N路第一光信号与一路本振光的具体实现方式可以参考上述图2所示实施例的相关描述,此处不再赘述。本实施例相对于上述图2所示的实施例,实现了光通信设备1与光通信设备2之间的双向传输,丰富了本申请提供的光通信系统的应用场景。
第二种支持双向传输的光通信系统:光通信设备1与光通信设备2之间连接有一条多芯光纤,该多芯光纤中的保偏纤芯支持双向传输。
图5为本申请实施例中光通信系统的第三种结构示意图。如图5所示,在上述图2所示的光通信系统的基础上,光通信设备1还包括接收装置12、分光器13和双向复用解复用器件15,接收装置12包括M个相干解调器121,M为大于或等于2的整数。光通信设备2还包括发送装置23和双向复用解复用器件25,发送装置23包括光源231和M个相干调制器232。多芯光纤3包括N+M根普通纤芯和1根保偏纤芯。应理解,本实施例中M的数量与上述图2所示实施例中N的数量可以相同,也可以不同,具体此处不做限定。
具体地,光源231用于输出M+1路第二光载波,其中,第1至第M路第二光载波分别输出至M个相干调制器232。M个相干调制器232分别用于对输入的M路第二光载波进行相干调制得到M路第二光信号,并将M路第二光信号分别输出至扇入扇出器件21。第M+1路第二光载波从双向复用解复用器件25的端口1输入并从端口3输出至扇入扇出器件21。扇入扇出器件21用于将M路第二光信号分别耦合至多芯光纤3中的M根普通纤芯,并将第M+1路第二光载波耦合至多芯光纤3中的保偏纤芯。应理解,对于光通信设备1来说,上述第M+1路第二光载波可以理解为光通信设备2发射的本振光。还应理解,上述的每一路第二光信号都是相互独立且不同的。
扇入扇出器件11用于将来自M根普通纤芯的M路第二光信号分别耦合至M个相干解调器121。并将来自保偏纤芯的第二光载波耦合至双向复用解复用器件15的端口3。进而,来自保偏纤芯的第二光载波从双向复用解复用器件15的端口2输出至分光器13。分光器13用于将输入的第二光载波进行分光以得到M路第二光载波,并将M路第二光载波分别输出至M个相干解调器121。每个相干解调器121用于对输入的第二光信号和第二光载波进行相干混频,以对第二光信号进行相干解调,并输出相干解调后的数据。也就是说,M路第二光载波与M路第二光信号是一一对应的关系,每一路第二光载波都可以作为本振光 与对应的一路第二光信号进行相干混频。
需要说明的是,区别于上述图2和图4所示的实施例,本实施例中光源101输出的第N+1路第一光载波从双向复用解复用器件15的端口1输入并从端口3输出至扇入扇出器件11。除此之外,本实施例中光通信设备1向光通信设备2传输N路第一光信号的具体实现方式可以参考上述图2所示实施例的相关描述,此处不再赘述。
本实施例中,在光通信设备1中增加了双向复用解复用器件15,并在光通信设备2中增加了双向复用解复用器件25。以支持光源101输出的第N+1路第一光载波和光源231输出的第M+1路第二光载波在同一根保偏纤芯中分别朝不同方向传输,减少了保偏纤芯的数量。并且,多芯光纤3中集成了N+M根普通纤芯,只用一根多芯光纤就可以实现N路第一光信号和M路第二光信号分别朝不同方向传输,也减少了多芯光纤的数量。综合来看,本实施例相对于上述图4所示的实施例,传输效率更高。
第三种支持双向传输的光通信系统:光通信设备1与光通信设备2之间连接有一条多芯光纤,该多芯光纤中的保偏纤芯和每条普通纤芯都支持双向传输。
图6为本申请实施例中光通信系统的第三种结构示意图。如图6所示,在上述图2所示的光通信系统的基础上,光通信设备1还包括接收装置12、分光器13、双向复用解复用器件15和N个双向复用解复用器件16,接收装置12包括N个相干解调器。光通信设备2还包括发送装置23、双向复用解复用器件25和N个双向复用解复用器件26,发送装置23包括光源231和N个相干调制器232。多芯光纤3包括N根普通纤芯和1根保偏纤芯。
具体地,光源231用于输出N+1路第二光载波,其中,第1至第N路第二光载波分别输出至N个相干调制器232。N个相干调制器232分别用于对输入的N路第二光载波进行相干调制得到N路第二光信号,并将N路第二光信号分别输出至N个双向复用解复用器件26。其中,每一路第二光信号从对应的双向复用解复用器件26的端口1输入,并从端口3输出至扇入扇出器件21。第N+1路第二光载波从双向复用解复用器件25的端口1输入,并从端口3输出至扇入扇出器件21。扇入扇出器件21用于将N路第二光信号分别耦合至多芯光纤3中的N根普通纤芯,并将第N+1路第二光载波耦合至多芯光纤3中的保偏纤芯。应理解,对于光通信设备1来说,上述第N+1路第二光载波可以理解为光通信设备2发射的本振光。还应理解,上述的每一路第二光信号都是相互独立且不同的。
扇入扇出器件11用于将来自N根普通纤芯的N路第二光信号分别耦合至N个双向复用解复用器件16。其中,每一路第二光信号从对应的双向复用解复用器件16的端口3输入,并从端口2输出至对应的相关接收机121。扇入扇出器件11还用于将来自保偏纤芯的第二光载波耦合至双向复用解复用器件15的端口3。进而,来自保偏纤芯的第二光载波从双向复用解复用器件15的端口2输出至分光器13。分光器13用于将输入的第二光载波进行分光以得到N路第二光载波,并将N路第二光载波分别输出至N个相干解调器121。每个相干解调器121用于对输入的第二光信号和第二光载波进行相干混频,以对第二光信号进行相干解调,并输出相干解调后的数据。也就是说,分光器13输出的N路第二光载波与N路第二光信号是一一对应的关系,每一路第二光载波都可以作为本振光与对应的一路 第二光信号进行相干混频。
需要说明的是,区别于上述图2和图4所示的实施例,本实施例中光源101输出的第N+1路第一光载波从双向复用解复用器件15的端口1输入并从端口3输出至扇入扇出器件11。并且,本实施例中N个相干调制器102输出的N路第一光信号分别从N个双向复用解复用器件16的端口1输入,并从端口3分别输出至扇入扇出器件11。
本实施例中,不仅在光通信设备1和光通信设备2中分别增加了双向复用解复用器件15和双向复用解复用器件25,还在光通信设备1和光通信设备2中分别增加了N个双向复用解复用器件16和N个双向复用解复用器件26。以支持N路第一光信号和N路第二光信号在N根普通纤芯中分别朝不同方向传输,减少了普通纤芯的数量,相对于上述图5所示的实施例,进一步提高了每一根普通纤芯的传输效率。
本申请实施例还提供了一种光通信设备,该光通信设备可以是上述图2、图4、图5和图6所示的任意一个光通信系统中所介绍的光通信设备1或光通信设备2,具体可以参照上述图2、图4、图5和图6所示实施例中关于光通信设备1和光通信设备2的介绍,此处不再赘述。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (21)

  1. 一种光通信设备,其特征在于,包括:发送装置和第一扇入扇出器件,所述发送装置包括光源和N个相干调制器,所述光通信设备通过第一多芯光纤与另一光通信设备连接,所述第一多芯光纤包括N根第一纤芯和1根第一保偏纤芯,所述N为大于或等于2的整数;
    所述光源用于输出N+1路第一光载波,其中:
    第1至第N路第一光载波经所述N个相干调制器分别进行调制得到N路第一光信号,所述N路第一光信号经所述第一扇入扇出器件分别被耦合至所述N根第一纤芯,以被传输至所述另一光通信设备;
    第N+1路第一光载波经所述第一扇入扇出器件被耦合至所述第一保偏纤芯,以被传输至所述另一光通信设备;所述第N+1路第一光载波用于在所述另一光通信设备中分别与所述N路第一光信号相干混频以分别对所述N路第一光信号进行相干解调。
  2. 根据权利要求1所述的光通信设备,其特征在于,所述光通信设备还包括接收装置、第一分光器和第二扇入扇出器件,所述接收装置包括M个相干解调器,所述光通信设备还通过第二多芯光纤与所述另一光通信设备连接,所述第二多芯光纤包括M根第二纤芯和1根第二保偏纤芯,所述M为大于或等于2的整数;
    来自所述另一光通信设备、通过所述M根第二纤芯被传输的M路第二光信号再经所述第二扇入扇出器件分别被耦合至所述M个相干解调器;
    来自所述另一光通信设备、通过所述第二保偏纤芯被传输的第二光载波再经所述第二扇入扇出器件被耦合至所述第一分光器,以得到M路第二光载波;
    所述M个相干解调器用于将所述M路第二光载波与所述M路第二光信号按照一一对应的关系进行相干混频以分别对所述M路第二光信号进行相干解调,并分别输出M路相干解调后的数据。
  3. 根据权利要求1所述的光通信设备,其特征在于,所述光通信设备还包括接收装置、第一分光器和第一双向复用解复用器件,所述接收装置包括M个相干解调器,所述第一多芯光纤还包括M根第二纤芯,所述M为大于或等于2的整数;
    所述第N+1路第一光载波经所述第一双向复用解复用器件的第一端口输入,并经所述第一双向复用解复用器件的第三端口输出至所述第一扇入扇出器件;
    来自所述另一光通信设备、通过所述M根第二纤芯被传输的M路第二光信号经所述第一扇入扇出器件分别被耦合至所述M个相干解调器;
    来自所述另一光通信设备、通过所述第一保偏纤芯被传输的第二光载波经所述第一扇入扇出器件被耦合至所述第一双向复用解复用器件的第三端口,并经所述第一双向复用解复用器件的第二端口输出至所述第一分光器,以得到M路第二光载波;
    所述M个相干解调器用于将所述M路第二光载波与所述M路第二光信号按照一一对应的关系进行相干混频以分别对所述M路第二光信号进行相干解调,并分别输出M路相干解调后的数据。
  4. 根据权利要求1所述的光通信设备,其特征在于,所述光通信设备还包括接收装置、第一分光器、第一双向复用解复用器件和N个第二双向复用解复用器件,所述接收装置包 括N个相干解调器;
    所述第N+1路第一光载波经所述第一双向复用解复用器件的第一端口输入,并经所述第一双向复用解复用器件的第三端口输出至所述第一扇入扇出器件;
    所述N路第一光信号分别经所述N个第二双向复用解复用器件的N个第一端口输入,并分别经所述N个第二双向复用解复用器件的N个第三端口输出至所述第一扇入扇出器件;
    来自所述另一光通信设备、通过所述N根第一纤芯被传输的N路第二光信号经所述第一扇入扇出器件分别被耦合至所述N个第二双向复用解复用器件的N个第三端口,并分别经所述N个第二双向复用解复用器件的N个第二端口输出至所述N个相干解调器;
    来自所述另一光通信设备、通过所述第一保偏纤芯被传输的第二光载波经所述第一扇入扇出器件被耦合至所述第一双向复用解复用器件的第三端口,并经所述第一双向复用解复用器件的第二端口输出至所述第一分光器,以得到N路第二光载波;
    所述N个相干解调器用于将所述N路第二光载波与所述N路第二光信号按照一一对应的关系进行相干混频以分别对所述N路第二光信号进行相干解调,并分别输出N路相干解调后的数据。
  5. 根据权利要求3或4所述的光通信设备,其特征在于,所述第一双向复用解复用器件为1X2的粗波分复用CWDM滤光片、三端口的环形器或1X2的分光器。
  6. 根据权利要求1至5中任一项所述的光通信设备,其特征在于,所述光源包括激光器和第二分光器,所述第二分光器用于对所述激光器输出的第一光载波进行分光以得到所述N+1路第一光载波。
  7. 根据权利要求1至6中任一项所述的光通信设备,其特征在于,所述第N+1路第一光载波与所述N路第一光信号频率相同且相位相同。
  8. 一种光通信设备,其特征在于,包括:接收装置、第一分光器和第一扇入扇出器件,所述接收装置包括M个相干解调器,所述光通信设备通过第一多芯光纤与另一光通信设备连接,所述第一多芯光纤包括M根第一纤芯和1根第一保偏纤芯,所述M为大于或等于2的整数;
    来自所述另一光通信设备、通过所述M根第一纤芯被传输的M路第一光信号经所述第一扇入扇出器件分别被耦合至所述M个相干解调器;
    来自所述另一光通信设备、通过所述第一保偏纤芯被传输的第一光载波经所述第一扇入扇出器件被耦合至所述第一分光器,以得到M路第一光载波;
    所述M个相干解调器用于将所述M路第一光载波与所述M路第一光信号按照一一对应的关系进行相干混频以分别对所述M路第一光信号进行相干解调,并分别输出M路相干解调后的数据。
  9. 根据权利要求8所述的光通信设备,其特征在于,所述光通信设备还包括发送装置和第二扇入扇出器件,所述发送装置包括光源和N个相干调制器,所述N为大于或等于2的整数,所述光通信设备还通过第二多芯光纤与所述另一光通信设备连接,所述第二多芯光纤包括N根第二纤芯和1根第二保偏纤芯;
    所述光源用于输出N+1路第二光载波;
    第1至第N路第二光载波经所述N个相干调制器分别进行调制得到N路第二光信号,所述N路第二光信号经所述第二扇入扇出器件分别被耦合至所述N根第二纤芯,以被传输至所述另一光通信设备;
    第N+1路第二光载波经所述第二扇入扇出器件被耦合至所述第二保偏纤芯,以被传输至所述另一光通信设备;
    所述第N+1路第二光载波用于在所述另一光通信设备中分别与所述N路第二光信号相干混频以分别对所述N路第二光信号进行相干解调。
  10. 根据权利要求8所述的光通信设备,其特征在于,所述光通信设备还包括发送装置和第一双向复用解复用器件,所述发送装置包括光源和N个相干调制器,所述N为大于或等于2的整数,所述第一多芯光纤还包括N根第二纤芯;
    来自所述另一光通信设备、通过所述第一保偏纤芯被传输的第一光载波经所述第一扇入扇出器件被耦合至所述第一双向复用解复用器件的第三端口,并经所述第一双向复用解复用器件的第二端口输出至所述第一分光器;
    所述光源用于输出N+1路第二光载波;
    第1至第N路第二光载波经所述N个相干调制器分别进行调制得到N路第二光信号,所述N路第二光信号经所述第一扇入扇出器件分别被耦合至所述N根第二纤芯,以被传输至所述另一光通信设备;
    第N+1路第二光载波经所述第一双向复用解复用器件的第一端口输入,并经所述第一双向复用解复用器件的第三端口输出至所述第一扇入扇出器件,再经所述第一扇入扇出器件被耦合至所述第一保偏纤芯,以被传输至所述另一光通信设备;
    所述第N+1路第二光载波用于在所述另一光通信设备中分别与所述N路第二光信号相干混频以分别对所述N路第二光信号进行相干解调。
  11. 根据权利要求8所述的光通信设备,其特征在于,所述光通信设备还包括发送装置、第一双向复用解复用器件和M个第二双向复用解复用器件,所述发送装置包括光源和M个相干调制器;
    来自所述另一光通信设备、通过所述M根第一纤芯被传输的M路第一光信号经所述第一扇入扇出器件分别被耦合至所述M个第二双向复用解复用器件的M个第三端口,并分别经所述M个第二双向复用解复用器件的M个第二端口输出至所述M个相干解调器;
    来自所述另一光通信设备、通过所述第一保偏纤芯被传输的第一光载波经所述第一扇入扇出器件被耦合至所述第一双向复用解复用器件的第三端口,并经所述第一双向复用解复用器件的第二端口输出至所述第一分光器;
    所述光源用于输出M+1路第二光载波;
    第1至第M路第二光载波经所述M个相干调制器分别进行调制得到M路第二光信号,所述M路第二光信号分别经所述M个第二双向复用解复用器件的M个第一端口输入,并分别经所述M个第二双向复用解复用器件的M个第三端口输出至所述第一扇入扇出器件,再经所述第一扇入扇出器件分别被耦合至所述M根第一纤芯,以被传输至所述另一光通信 设备;
    第M+1路第二光载波经所述第一双向复用解复用器件的第一端口输入,并经所述第一双向复用解复用器件的第三端口输出至所述第一扇入扇出器件,再经所述第一扇入扇出器件被耦合至所述第一保偏纤芯,以被传输至所述另一光通信设备;
    所述第M+1路第二光载波用于在所述另一光通信设备中分别与所述M路第二光信号相干混频以分别对所述M路第二光信号进行相干解调。
  12. 根据权利要求10或11所述的光通信设备,其特征在于,所述第一双向复用解复用器件为1X2的粗波分复用CWDM滤光片、三端口的环形器或1X2的分光器。
  13. 根据权利要求9至12中任一项所述的光通信设备,其特征在于,所述光源包括激光器和第二分光器,所述第二分光器用于对所述激光器输出的第二光载波进行分光以得到多路第二光载波。
  14. 根据权利要求8至13中任一项所述的光通信设备,其特征在于,来自所述另一光通信设备、通过所述第一保偏纤芯传输的第一光载波与所述M路第一光信号频率相同且相位相同。
  15. 一种光通信系统,其特征在于,包括:第一光通信设备、第二光通信设备和第一多芯光纤,所述第一多芯光纤连接在所述第一光通信设备与所述第二光通信设备之间,其中,所述第一光通信设备包括第一发送装置和第一扇入扇出器件,所述第一发送装置包括第一光源和N个第一相干调制器,所述N为大于或等于2的整数,所述第二光通信设备包括第一接收装置、第一分光器和第二扇入扇出器件,所述第二接收装置包括N个第一相干解调器,所述第一多芯光纤包括N根第一纤芯和1根第一保偏纤芯;
    所述第一光源用于输出N+1路第一光载波;
    第1至第N路第一光载波经所述N个第一相干调制器分别进行调制得到N路第一光信号,所述N路第一光信号所述第一扇入扇出器件分别被耦合至所述N根第一纤芯,以被传输至所述第二光通信设备;
    第N+1路第一光载波经所述第一扇入扇出器件被耦合至所述第一保偏纤芯,以被传输至所述第二光通信设备;
    来自所述第一光通信设备、通过所述N根第一纤芯被传输的所述N路第一光信号经所述第二扇入扇出器件分别被耦合至所述N个第一相干解调器;
    来自所述第一光通信设备、通过所述第一保偏纤芯被传输的第一光载波经所述第二扇入扇出器件被耦合至所述第一分光器,以得到N路第一光载波;
    所述N个第一相干解调器用于将所述N路第一光载波与所述N路第一光信号按照一一对应的关系进行相干混频以分别对所述N路第一光信号进行相干解调,并分别输出N路相干解调后的第一数据。
  16. 根据权利要求15所述的光通信系统,其特征在于,所述光通信系统还包括第二多芯光纤,所述第二多芯光纤连接在所述第一光通信设备与所述第二光通信设备之间,所述第一光通信设备还包括第二接收装置、第二分光器和第三扇入扇出器件,所述第二接收装置包括M个第二相干解调器,所述M为大于或等于2的整数,所述第二光通信设备还包 括第二发送装置和第四扇入扇出器件,所述第二发送装置包括第二光源和M个第二相干调制器,所述第二多芯光纤包括所述M根第二纤芯和1根第二保偏纤芯;
    所述第二光源用于输出M+1路第二光载波;
    第1至第M路第二光载波经所述M个第二相干调制器分别进行调制得到M路第二光信号,所述M路第二光信号经所述第四扇入扇出器件分别被耦合至所述M根第二纤芯,以被传输至所述第一光通信设备;
    第M+1路第二光载波经所述第四扇入扇出器件被耦合至所述第二保偏纤芯,以被传输至所述第一光通信设备;
    来自所述第二光通信设备、通过所述M根第二纤芯被传输的所述M路第二光信号经所述第三扇入扇出器件分别被耦合至所述M个第二相干解调器;
    来自所述第二光通信设备、通过所述第二保偏纤芯被传输的第二光载波经所述第三扇入扇出器件被耦合至所述第二分光器,以得到M路第二光载波;
    所述M个第二相干解调器用于将所述M路第二光载波与所述M路第二光信号按照一一对应的关系进行相干混频以分别对所述M路第二光信号进行相干解调,并分别输出M路相干解调后的第二数据。
  17. 根据权利要求15所述的光通信系统,其特征在于,所述第一光通信设备还包括第二接收装置、第二分光器和第一双向复用解复用器件,所述第二接收装置包括M个第二相干解调器,所述M为大于或等于2的整数,所述第二光通信设备还包括第二发送装置和第二双向复用解复用器件,所述第二发送装置包括第二光源和M个第二相干调制器,所述第一多芯光纤还包括M根第二纤芯;
    所述第N+1路第一光载波经所述第一双向复用解复用器件的第一端口输入,并经所述第一双向复用解复用器件的第三端口输出至所述第一扇入扇出器件;
    来自所述第一光通信设备、通过所述第一保偏纤芯被传输的第一光载波经所述第二扇入扇出器件被耦合至所述第二双向复用解复用器件的第三端口,并经所述第二双向复用解复用器件的第二端口输出至所述第一分光器;
    所述第二光源用于输出M+1路第二光载波;
    第1至第M路第二光载波经所述M个第二相干调制器分别进行调制得到M路第二光信号,所述M路第二光信号经所述第二扇入扇出器件分别被耦合至所述M根第二纤芯,以被传输至所述第一光通信设备;
    所述第M+1路第二光载波经所述第二双向复用解复用器件的第一端口输入,并经所述第二双向复用解复用器件的第三端口输出至所述第二扇入扇出器件,再经所述第二扇入扇出器件被耦合至所述第一保偏纤芯,以被传输至所述第一光通信设备;
    来自所述第二光通信设备、通过所述M根第二纤芯被传输的所述M路第二光信号经所述第一扇入扇出器件分别被耦合至所述M个第二相干解调器;
    来自所述第二光通信设备、通过所述第一保偏纤芯被传输的第二光载波经所述第一扇入扇出器件被耦合至所述第一双向复用解复用器件的第三端口,并经所述第一双向复用解复用器件的第二端口输出至所述第二分光器,以得到M路第二光载波;
    所述M个第二相干解调器用于将所述M路第二光载波与所述M路第二光信号按照一一对应的关系进行相干混频以分别对所述M路第二光信号进行相干解调,并分别输出M路相干解调后的第二数据。
  18. 根据权利要求15所述的光通信系统,其特征在于,所述第一光通信设备还包括第二接收装置、第二分光器、第一双向复用解复用器件和N个第三双向复用解复用器件,所述第二接收装置包括N个第二相干解调器,所述第二光通信设备还包括第二发送装置、第二双向复用解复用器件和N个第四双向复用解复用器件,所述第二发送装置包括第二光源和N个第二相干调制器;
    所述第N+1路第一光载波经所述第一双向复用解复用器件的第一端口输入,并经所述第一双向复用解复用器件的第三端口输出至所述第一扇入扇出器件;
    所述N路第一光信号分别经所述N个第三双向复用解复用器件的N个第一端口输入,并分别经所述N个第三双向复用解复用器件的N个第三端口输出至所述第一扇入扇出器件;
    来自所述第一光通信设备、通过所述第一保偏纤芯被传输的第一光载波经所述第二扇入扇出器件被耦合至所述第二双向复用解复用器件的第三端口,并经所述第二双向复用解复用器件的第二端口输出至所述第一分光器;
    来自所述第一光通信设备、通过所述N根第一纤芯被传输的所述N路第一光信号经所述第二扇入扇出器件分别被耦合至所述N个第四双向复用解复用器件的N个第三端口,并分别经所述N个第四双向复用解复用器件的N个第二端口输出至所述N个第二相干解调器;
    所述第二光源用于输出N+1路第二光载波;
    所述第二光源输出的第1至第N路第二光载波经所述N个第二相干调制器分别进行调制得到N路第二光信号,所述N路第二光信号分别经所述N个第四双向复用解复用器件的N个第一端口输入,并分别经所述N个第四双向复用解复用器件的N个第三端口输出至所述第二扇入扇出器件,再经所述第二扇入扇出器件被耦合至所述N根第一纤芯,以被传输至所述第一光通信设备;
    所述第二光源输出的第N+1路第二光载波经所述第二双向复用解复用器件的第一端口输入,并经所述第二双向复用解复用器件的第三端口输出至所述第二扇入扇出器件,再经所述第二扇入扇出器件被耦合至所述第一保偏纤芯,以被传输至所述第一光通信设备;
    来自所述第二光通信设备、通过所述N根第一纤芯被传输的所述N路第二光信号经所述第一扇入扇出器件分别被耦合至所述N个第三双向复用解复用器件的N个第三端口,并分别经所述N个第三双向复用解复用器件的N个第二端口输出至所述N个第二相干解调器;
    来自所述第二光通信设备、通过所述第一保偏纤芯被传输的第二光载波经所述第一扇入扇出器件被耦合至所述第一双向复用解复用器件的第三端口,并经所述第一双向复用解复用器件的第二端口输出至所述第二分光器,以得到N路第二光载波;
    所述N个第二相干解调器分别用于将所述N路第二光载波与所述N路第二光信号按照 一一对应的关系进行相干混频以对分别所述N路第二光信号进行相干解调,并分别输出N路相干解调后的第二数据。
  19. 根据权利要求17或18所述的光通信系统,其特征在于,所述第一双向复用解复用器件为粗波分复用CWDM滤光片、环形器或分光器,所述第二双向复用解复用器件为CWDM滤光片、环形器或分光器。
  20. 根据权利要求15至19中任一项所述的光通信系统,其特征在于,所述第一光源包括激光器和第三分光器,所述第三分光器用于对所述激光器输出的第一光载波进行分光以得到所述N+1路第一光载波。
  21. 根据权利要求15至20中任一项所述的光通信系统,其特征在于,所述第N+1路第一光载波与所述N路第一光信号频率相同且相位相同。
PCT/CN2022/100681 2021-07-28 2022-06-23 一种光通信设备和光通信系统 WO2023005523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110859655.4 2021-07-28
CN202110859655.4A CN115694650A (zh) 2021-07-28 2021-07-28 一种光通信设备和光通信系统

Publications (1)

Publication Number Publication Date
WO2023005523A1 true WO2023005523A1 (zh) 2023-02-02

Family

ID=85059345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100681 WO2023005523A1 (zh) 2021-07-28 2022-06-23 一种光通信设备和光通信系统

Country Status (2)

Country Link
CN (1) CN115694650A (zh)
WO (1) WO2023005523A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2903185A1 (en) * 2014-02-03 2015-08-05 Alcatel Lucent Optical amplification node for a Spatial Division Multiplexing optical network
CN110261955A (zh) * 2019-06-20 2019-09-20 长飞光纤光缆股份有限公司 一种保偏多芯光纤
CN112532325A (zh) * 2020-11-25 2021-03-19 浙江大学 一种多维复用的光子太赫兹通信系统
CN113132009A (zh) * 2019-12-31 2021-07-16 烽火通信科技股份有限公司 一种相干光模块及光通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2903185A1 (en) * 2014-02-03 2015-08-05 Alcatel Lucent Optical amplification node for a Spatial Division Multiplexing optical network
CN110261955A (zh) * 2019-06-20 2019-09-20 长飞光纤光缆股份有限公司 一种保偏多芯光纤
CN113132009A (zh) * 2019-12-31 2021-07-16 烽火通信科技股份有限公司 一种相干光模块及光通信系统
CN112532325A (zh) * 2020-11-25 2021-03-19 浙江大学 一种多维复用的光子太赫兹通信系统

Also Published As

Publication number Publication date
CN115694650A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
KR101019850B1 (ko) 광학 신호 수신 장치, 방법 및 편광 다이버시티 수신기
CN107222263A (zh) 一种基于相干光频梳的微波光子收发信机
JP2012515468A (ja) 共有光ハイブリッド(SharedOpticalHybrid)および多波長(Multi−Wavelength)局部発振器を有する多波長コヒーレント受信器(CoherentReceiver)
JP2005045789A (ja) 可変コヒーレント受信器を備えた光学装置
US8731402B2 (en) Orthogonally-combining wavelength selective switch multiplexer and systems and methods using same
US9880351B2 (en) Directly-modulated multi-polarization optical transmitters
US9020356B2 (en) Polarization multiplexed short distance connection
CN114450898B (zh) 双向光学通信
US20120195600A1 (en) Reference-signal distribution in an optical transport system
US10904648B2 (en) Transmission system, transmission device, and transmission method
CN111800197B (zh) 一种基于频率梳状光源的简化波分复用相干光通信系统
US10819431B2 (en) Optical communication system and method
WO2023005523A1 (zh) 一种光通信设备和光通信系统
JP4730560B2 (ja) 光伝送システム、光伝送方法及び光送信装置
CN111615799B (zh) 用于分布式微波mimo通信的微波频率电信号的光分配的系统和方法
US11251870B2 (en) Optical transmission system
WO2019140999A1 (zh) 波分复用光传输设备、系统及实现方法
WO2018214901A1 (en) Wavelength-division multiplexed polarization-insensitive transmissive modulator
JP2012528500A (ja) 多波長光信号を逆多重化するシステムおよび方法
JPWO2009004682A1 (ja) 光受信回路
US20240080124A1 (en) Multi-carrier transmitter with integrated multiplexer and receiver with integrated demultiplexer
CN103401617A (zh) 光通信多载波接收机的光学前端结构及多载波的接收方法
CN114866155B (zh) 波分相干接收装置、数据接收方法和收发系统
US10615904B2 (en) Method and apparatus for enabling a single fiber-working on an optical fiber
WO2023174165A1 (zh) 相干接收装置、相干发送装置和相干通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE