WO2023005254A1 - 冷藏冷冻装置及其控制方法 - Google Patents

冷藏冷冻装置及其控制方法 Download PDF

Info

Publication number
WO2023005254A1
WO2023005254A1 PCT/CN2022/085546 CN2022085546W WO2023005254A1 WO 2023005254 A1 WO2023005254 A1 WO 2023005254A1 CN 2022085546 W CN2022085546 W CN 2022085546W WO 2023005254 A1 WO2023005254 A1 WO 2023005254A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
temperature
refrigerating
refrigeration system
heating device
Prior art date
Application number
PCT/CN2022/085546
Other languages
English (en)
French (fr)
Inventor
董山东
吕自成
卫洁
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023005254A1 publication Critical patent/WO2023005254A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the invention relates to the field of refrigerating equipment, in particular to a refrigerating and freezing device and a control method thereof.
  • Refrigeration and freezing devices such as refrigerators, freezers, storage cabinets, etc.
  • An object of the present invention is to overcome at least one technical defect in the prior art, and provide a refrigerating and freezing device and a control method thereof.
  • a further object of the present invention is to provide a new control method for the defrosting process, so that the evaporator can defrost uniformly, increase the defrosting rate, and shorten the defrosting period.
  • Another further object of the present invention is to reduce or avoid significant temperature rise in the storage compartment of the refrigerator-freezer.
  • Another further object of the present invention is to improve the flexibility of the defrosting process of the refrigerator-freezer.
  • a method for controlling a refrigerating and freezing device includes a refrigeration system and a heating device for circulating a refrigerant, the refrigeration system has a compressor and an evaporator, and the heating device is used for heating the evaporator.
  • the control method includes: obtaining a defrosting start signal of the refrigerating and freezing device for the evaporator; starting the heating device; starting the refrigeration system, so that the refrigerant flowing out of the compressor flows through the evaporator, so as to heat the evaporator with the heat released by the refrigerant.
  • the step of activating the refrigeration system is performed simultaneously with the step of activating the heating device.
  • the heating device after starting the heating device, it also includes: detecting the temperature of the evaporator; adjusting the working status of the heating device and the refrigeration system according to the temperature of the evaporator.
  • the step of adjusting the working state of the heating device and the refrigeration system according to the temperature of the evaporator includes: judging whether the temperature of the evaporator is greater than a preset temperature threshold; if the temperature of the evaporator is greater than the temperature threshold, shutting down The heating device, and makes the refrigeration system stop using the heat released by the refrigerant to heat the evaporator.
  • the step of adjusting the working state of the heating device and the refrigeration system according to the temperature of the evaporator further includes: if the temperature of the evaporator is not greater than the temperature threshold, then detecting the start-up time of the heating device; judging whether the start-up time of the heating device reaches the predetermined The set first duration threshold; if reached, the heating device will be turned off, and the refrigeration system will continue to use the heat released by the refrigerant to heat the evaporator.
  • the step of adjusting the working state of the refrigeration system includes: detecting the heating time of the refrigeration system using the refrigerant to heat the evaporator; judging whether the heating time exceeds the preset The second duration threshold and the temperature of the evaporator is not greater than the preset temperature threshold, and the second duration threshold is greater than the first duration threshold; if so, adjust the operating parameters of the refrigeration system to improve the heating efficiency of the refrigerant heating evaporator.
  • the step of starting the refrigeration system includes: detecting the temperature of the evaporator; determining the initial operating parameters of the compressor according to the temperature of the evaporator; and starting the compressor according to the initial operating parameters.
  • the step of determining the initial operating parameters of the compressor according to the temperature of the evaporator includes: obtaining a plurality of preset temperature ranges, each temperature range is set with a corresponding initial operating parameter of the compressor; The temperature range configures the initial operating parameters of the compressor.
  • the step of starting the refrigeration system is performed after the step of starting the heating device; and before the step of starting the refrigeration system, it also includes: obtaining the temperature change rate of the evaporator within a set time period; the temperature change rate of the evaporator In case the rate falls below a preset rate threshold, the step of starting the refrigeration system is performed.
  • a refrigerating and freezing device including: a refrigeration system for circulating a refrigerant, which has a compressor and an evaporator; a heating device for heating the evaporator; and a processor and a memory, A machine-executable program is stored in the memory, and when the machine-executable program is executed by the processor, it is used to realize the control method according to any one of the above items.
  • the refrigerating and freezing device and its control method of the present invention can use the heating device and the refrigeration system to heat the evaporator, and when the refrigeration system uses the heat released by the refrigerant to heat the evaporator, it can evenly and efficiently deliver heat to the evaporator, which makes The evaporator can defrost evenly and thoroughly, and is conducive to increasing the defrosting rate and shortening the defrosting cycle.
  • the defrosting control method provided by the present invention has a better defrosting effect.
  • the refrigerating and freezing device and its control method of the present invention because the defrosting means of the refrigerating and freezing device are diversified, on the basis of starting the heating device to heat the evaporator, it can also supplementarily use the refrigerant flowing through the evaporator to heat and evaporate device, which enables the refrigerating and freezing device of the present invention to quickly complete defrosting, thereby reducing or avoiding an obvious temperature rise in the storage compartment of the refrigerating and freezing device.
  • the step of heating the evaporator with the refrigerant flowing through the evaporator can be performed after starting the heating device and when the temperature change rate of the evaporator is lower than the preset rate threshold This enables the refrigerating and freezing device of the present invention to adjust the defrosting means according to the actual defrosting conditions of the evaporator, which has the advantages of energy saving and flexible control process.
  • Fig. 1 is a schematic block diagram of a refrigerator-freezer according to one embodiment of the present invention
  • Fig. 2 is the schematic diagram of the refrigerating system of the refrigerating and freezing device according to one embodiment of the present invention
  • Fig. 3 is a schematic diagram of a control method of a refrigerating and freezing device according to an embodiment of the present invention
  • Fig. 4 is the control flow chart of the refrigerator freezer according to one embodiment of the present invention.
  • Fig. 5 is a control flow diagram of a refrigerating and freezing device according to another embodiment of the present invention.
  • Fig. 1 is a schematic block diagram of a refrigerating and freezing device 200 according to an embodiment of the present invention.
  • the refrigerating and freezing device 200 may generally include a cabinet 100 , a refrigeration system 130 , a heating device 140 , a processor 110 and a storage 120 .
  • the refrigeration system 130 , the heating device 140 , the processor 110 and the storage 120 may be disposed in the box 100 .
  • a storage compartment is also formed inside the box body 100 .
  • FIG. 2 is a schematic diagram of a refrigeration system 130 of a refrigerator-freezer 200 according to an embodiment of the present invention.
  • the refrigerating system 130 is used for circulating refrigerant, and has a compressor 1 and an evaporator 10 .
  • the refrigeration system 130 may further include a throttling device 5 , a condenser 4 and a switching valve 2 .
  • the compressor 1, the condenser 4, the throttling device 5 and the evaporator 10 are sequentially connected in series to form a refrigeration circuit.
  • the evaporator 10 is used to supply cooling to the storage compartment.
  • the switching valve 2 can be connected to the refrigeration circuit for adjusting the flow path of the refrigerant flowing through it.
  • the switching valve 2 has a valve port communicating with the condenser 4 and a valve port communicating with the evaporator 10 .
  • the valve port refers to the outlet of switching valve 2.
  • the inlet of the switching valve 2 can communicate with the exhaust port of the compressor 1 .
  • the heating device 140 is used to heat the evaporator 10 , for example, the heating device 140 may be an electric heating device 140 such as a heating wire or a heating sheet.
  • the heating device 140 may be selectively installed at a lower section, a middle section or an upper section of the evaporator 10 .
  • the processor 110 and the memory 120 may form a control device of the refrigerating and freezing device 200 and are arranged in the box body 100 .
  • the control device may be a main control board.
  • a machine-executable program 121 is stored in the memory 120, and when the machine-executable program 121 is executed by the processor 110, it is used to implement the control method of the refrigerating and freezing device 200 in any of the following embodiments.
  • the processor 110 may be a central processing unit (CPU), or a digital processing unit (DSP) and so on.
  • the memory 120 is used to store programs executed by the processor 110 .
  • the memory 120 may be any medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the storage 120 may also be a combination of various storages 120 . Since the machine-executable program 121 is executed by the processor 110 to implement each process of the following method embodiments and achieve the same technical effect, to
  • Fig. 3 is a schematic diagram of a control method of the refrigerating and freezing device 200 according to an embodiment of the present invention.
  • the control method may generally include:
  • Step S302 acquiring a defrosting start signal for the evaporator 10 of the refrigerating and freezing device 200 .
  • the defrosting start signal is used to instruct the refrigerating and freezing device 200 to start defrosting to heat the evaporator 10 so as to reduce or eliminate the frost layer on the evaporator 10 .
  • Step S304 start the heating device 140 .
  • the refrigerating and freezing device 200 may supply power to the heating device 140 to activate the heating device 140, so that the heating device 140 is energized and generates heat.
  • Step S306 start the refrigeration system 130, make the refrigerant flowing out of the compressor 1 flow through the evaporator 10, and use the heat released by the refrigerant to heat the evaporator 10.
  • making the refrigerant flowing out of the compressor 1 flow through the evaporator 10 to heat the evaporator 10 with the heat released by the refrigerant refers to directly introducing the refrigerant from the compressor 1 into the evaporator 10, and the refrigerant may be in a high-pressure state.
  • the evaporator 10 Since the refrigeration system 130 can use the refrigerant to provide heat to the evaporator 10, the evaporator 10 relies on the heat generated inside to defrost "from the inside out", which is beneficial to increase the defrosting rate of the evaporator 10 and shorten the defrosting cycle.
  • the evaporator 10 can be heated by the heating device 140 and the refrigeration system 130, and when the refrigeration system 130 uses the heat released by the refrigerant to heat the evaporator 10, heat can be delivered to the evaporator 10 uniformly and efficiently, which makes the evaporation
  • the device 10 can defrost evenly, and is beneficial to increase the defrosting rate and shorten the defrosting cycle.
  • the defrosting control method provided in this embodiment has a better defrosting effect.
  • the defrosting means of the refrigerating and freezing device 200 Due to the diversification of the defrosting means of the refrigerating and freezing device 200, on the basis of starting the heating device 140 to heat the evaporator 10, it can also supplementarily utilize the refrigerant flowing through the evaporator 10 to heat the evaporator 10, which makes the refrigeration of this embodiment
  • the freezing device 200 can quickly complete defrosting, thereby reducing or avoiding an obvious temperature rise in the storage compartment of the refrigerating and freezing device 200 .
  • the step of activating the refrigeration system 130 and the step of activating the heating device 140 may be performed simultaneously. That is, the two defrosting means can be started synchronously, and the heat provided by the heating device 140 and the heat released by the refrigerant can act on the evaporator 10 at the same time, which is beneficial to the rapid defrosting of the evaporator 10 .
  • the above control method may further include: detecting the temperature of the evaporator 10 , and adjusting the working states of the heating device 140 and the refrigeration system 130 according to the temperature of the evaporator 10 . Since the temperature of the evaporator 10 can reflect the actual defrosting situation of the evaporator 10, after the two defrosting means are started synchronously, the working status of the two defrosting means can be adjusted according to the temperature of the evaporator 10, and the defrosting can be performed as required , which is beneficial to save energy consumption.
  • the refrigerating and freezing apparatus 200 may arrange a temperature sensor on the evaporator 10 to detect the temperature of the evaporator 10 .
  • a temperature sensor may be provided on the coil of the evaporator 10 .
  • the step of adjusting the working state of the heating device 140 and the refrigeration system 130 according to the temperature of the evaporator 10 may include: judging whether the temperature of the evaporator 10 is greater than a preset temperature threshold, and if so, shutting down
  • the heating device 140 makes the refrigeration system 130 stop using the heat released by the refrigerant to heat the evaporator 10 .
  • the temperature threshold can be set according to the temperature of the evaporator 10 in different stages of the defrosting process, for example, the temperature threshold can be the temperature when the evaporator 10 just finishes defrosting.
  • the above temperature threshold may be any value from 1 to 3°C, for example, it may be 2°C.
  • the refrigeration system 130 may stop using the refrigerant to heat the evaporator 10 by stopping the operation of the refrigeration system 130 .
  • the step of adjusting the working state of the heating device 140 and the refrigeration system 130 according to the temperature of the evaporator 10 may also include: if the temperature of the evaporator 10 is not greater than the temperature threshold, then detecting the starting time of the heating device 140 and judging the starting time of the heating device 140 Whether the preset first duration threshold is reached, and if so, the heating device 140 is turned off, and the refrigeration system 130 continues to use the heat released by the refrigerant to heat the evaporator 10 .
  • the first duration threshold can be set according to a preset defrosting cycle of the evaporator 10, and the preset defrosting cycle refers to a preset duration for the evaporator 10 to complete one defrosting, and the preset duration can be set by a user or a manufacturer.
  • the first duration threshold may be equal to a preset defrosting period.
  • the first duration threshold may also be less than the preset defrosting period, for example, may be 0.8-0.9 times of the preset defrosting period.
  • the first duration threshold may be any value within the range of 70-110 minutes, for example, it may be 90 minutes.
  • the heating device 140 may be unilaterally turned off, so that the refrigeration system 130 continues to use the heat released by the refrigerant to heat the evaporator 10 .
  • the heating area of the heating device 140 is limited and can only provide heat to the evaporator 10 around it.
  • its heating effect tends to increase or decrease first. That is, when the start-up duration of the heating device 140 reaches the first duration threshold, even if the heating device 140 continues to operate, the residual ice left by the evaporator 10 will not melt smoothly.
  • the heating device 140 is controlled to be turned off when the start-up time reaches the first time threshold, and only the refrigerant is used to heat the evaporator 10 , which can reduce or avoid unnecessary waste of electric energy by the heating device 140 .
  • the step of adjusting the working state of the refrigeration system 130 includes: detecting that the refrigeration system 130 uses the refrigerant to heat the evaporator 10 Heating duration, judging whether the heating duration exceeds the preset second duration threshold and the temperature of the evaporator 10 is not greater than the preset temperature threshold, the second duration threshold is greater than the first duration threshold, if so, adjust the operating parameters of the refrigeration system 130, In order to improve the heating efficiency of the evaporator 10 heated by the refrigerant. After adjusting the operating parameters of the refrigeration system 130, when the temperature of the evaporator 10 reaches a preset temperature threshold, the refrigeration system 130 can stop using the heat released by the refrigerant to heat the evaporator 10.
  • the second duration threshold may be greater than the preset defrosting period, for example, may be 1.1-2 times of the preset defrosting period. In some optional embodiments, the second duration threshold may be any value within the range of 150-210 minutes, for example, it may be 180 minutes. When the heating duration exceeds the preset second duration threshold and the temperature of the evaporator 10 is not greater than the preset temperature threshold, it indicates that within the range of the second duration threshold, the evaporator 10 fails to complete defrosting.
  • the defrosting of the evaporator 10 can be adjusted in time. Frost rate, so that it can complete defrosting as soon as possible.
  • the step of adjusting the operating parameters of the refrigeration system 130 may include: increasing the speed of the compressor 1 and the like.
  • the operating frequency of the compressor 1 can be increased by one gear every 5-15 minutes until the compressor 1 reaches the maximum rotational speed.
  • the above control method may further include: controlling the switching valve 2 to open the valve port connected to the evaporator 10 and closing the valve port connected to the condenser 4, that is, controlling the switching valve 2 to adjust the cooling system 130
  • the refrigerant flow path is such that the refrigerant flowing out of the compressor 1 can be directly introduced into the evaporator 10 to condense and release heat in the evaporator 10 .
  • the step of starting the refrigeration system 130 may include: detecting the temperature of the evaporator 10, determining the initial operating parameters of the compressor 1 according to the temperature of the evaporator 10, and starting the compressor 1 according to the initial operating parameters, thereby The refrigeration system 130 is activated.
  • the initial operating parameters of the compressor 1 may include initial rotational speed and other parameters. Since the temperature of the evaporator 10 can reflect the degree of frost accumulation on the evaporator 10, before starting the compressor 1, the initial operating parameters of the compressor 1 are determined according to the temperature of the evaporator 10, and the compressor 1 can be started on demand, which satisfies the actual Defrost needs, but also can save energy consumption, kill two birds with one stone.
  • the step of determining the initial operating parameters of the compressor 1 according to the temperature of the evaporator 10 may include: obtaining a plurality of preset temperature ranges, each temperature range is provided with a corresponding initial operating parameter of the compressor 1, according to the evaporator 10 The temperature range to which the temperature belongs configures the initial operating parameters of the compressor 1 .
  • the process of determining the parameters of the compressor can be simplified, thereby improving the operating efficiency of the defrosting process.
  • the timing of starting the refrigeration system 130 may be changed.
  • the step of activating the refrigeration system 130 may be performed after the step of activating the heating device 140.
  • the above-mentioned control method may further include: obtaining the temperature change rate of the evaporator 10 within a set time period, and the temperature change rate of the evaporator 10 In case the rate is lower than the preset rate threshold, the step of starting the refrigeration system 130 is performed.
  • the temperature change rate of the evaporator 10 can be obtained by calculating the temperature of the evaporator 10 at each moment within a set period of time.
  • the rate threshold may be determined according to the temperature range to which the initial temperature of the evaporator 10 starts to defrost, wherein each temperature range is correspondingly set with a rate threshold.
  • the refrigerating and freezing device 200 can adjust the defrosting means according to the actual defrosting situation of the evaporator 10, and has the advantages of energy saving and flexible control process.
  • the above control method may further include: acquiring the temperature change rate of the evaporator 10, according to The temperature change rate of 10 determines the estimated defrosting duration of the evaporator 10, and when the estimated defrosting duration exceeds the preset third duration threshold, the step of starting the refrigeration system 130 is performed.
  • the third duration threshold may be equal to the preset defrosting period, or may be 1.5-2.5 times of the preset defrosting period.
  • the estimated defrosting time of the evaporator 10 is used to describe the total time required for the evaporator 10 to complete defrosting.
  • the step of determining the estimated defrosting duration of the evaporator 10 according to the temperature change rate of the evaporator 10 may include: obtaining the initial temperature when the evaporator 10 starts defrosting, and according to the initial temperature of the evaporator 10 and the preset The difference between the temperature thresholds and the ratio of the difference to the rate of temperature change calculates the estimated defrost duration.
  • Fig. 4 is a control flowchart of the refrigerating and freezing device 200 according to one embodiment of the present invention.
  • the control process may generally include:
  • Step S402 acquiring a defrosting start signal for the evaporator 10 of the refrigerating and freezing device 200 .
  • Step S404 detecting the temperature of the evaporator 10 .
  • Step S406 obtaining multiple preset temperature ranges, each temperature range is set with a corresponding initial operating parameter of the compressor 1 .
  • Step S408 configuring the initial operating parameters of the compressor 1 according to the temperature range to which the temperature of the evaporator 10 belongs.
  • Step S410 start the compressor 1 according to the initial operating parameters, thereby starting the refrigeration system 130 .
  • Step S412 start the heating device 140 .
  • step S410 and step S412 are executed simultaneously.
  • Step S414 detecting the temperature of the evaporator 10 .
  • Step S416 judging whether the temperature of the evaporator 10 is greater than a preset temperature threshold, if yes, execute step S418, if not, execute step S420.
  • step S4108 the heating device 140 is turned off, and the refrigeration system 130 stops heating the evaporator 10 with the heat released by the refrigerant.
  • Step S420 detecting the start-up time of the heating device 140 .
  • step S422 it is determined whether the activation time of the heating device 140 reaches the preset first time threshold, if yes, execute step S424, and if not, execute step S414.
  • Step S424 turn off the heating device 140, and make the refrigeration system 130 continue to use the heat released by the refrigerant to heat the evaporator 10.
  • Step S426 detecting the heating time of the refrigeration system 130 using the refrigerant to heat the evaporator 10 .
  • Step S428 when the heating duration exceeds the preset second duration threshold and the temperature of the evaporator 10 is not greater than the preset temperature threshold, adjust the operating parameters of the refrigeration system 130 to improve the heating efficiency of the refrigerant heating evaporator 10 .
  • the second duration threshold is greater than the first duration threshold.
  • Fig. 5 is a control flow chart of the refrigerating and freezing device 200 according to another embodiment of the present invention.
  • the control process may generally include:
  • Step S502 acquiring a defrosting start signal for the evaporator 10 of the refrigerating and freezing device 200 .
  • Step S504 start the heating device 140 .
  • Step S506 acquiring the temperature change rate of the evaporator 10 within a set period of time.
  • Step S508 when the rate of temperature change of the evaporator 10 is lower than the preset rate threshold, start the refrigeration system 130 to make the refrigerant flowing out of the compressor 1 flow through the evaporator 10, so as to heat the evaporator 10 with the heat released by the refrigerant .
  • step S508 is executed after step S504.
  • the step of starting the refrigeration system 130 may include: detecting the temperature of the evaporator 10, obtaining a plurality of preset temperature ranges, each temperature range is set with a corresponding initial operating parameter of the compressor 1, and according to the temperature of the evaporator 10 The range configures the initial operating parameters of the compressor 1 , and starts the compressor 1 according to the initial operating parameters, thereby starting the refrigeration system 130 .
  • Step S510 detecting the temperature of the evaporator 10 .
  • Step S512 judging whether the temperature of the evaporator 10 is greater than a preset temperature threshold, if yes, execute step S514, if not, execute step S516.
  • Step S514 turning off the heating device 140, and making the refrigeration system 130 stop heating the evaporator 10 with the heat released by the refrigerant.
  • Step S516 detecting the start-up time of the heating device 140 .
  • step S528 it is determined whether the activation time of the heating device 140 reaches the preset first time threshold, if yes, execute step S520, and if not, execute step S510.
  • Step S520 turn off the heating device 140, and make the refrigeration system 130 continue to use the heat released by the refrigerant to heat the evaporator 10.
  • Step S522 detecting the heating time of the refrigeration system 130 using the refrigerant to heat the evaporator 10 .
  • Step S524 when the heating duration exceeds the preset second duration threshold and the temperature of the evaporator 10 is not greater than the preset temperature threshold, adjust the operating parameters of the refrigeration system 130 to improve the heating efficiency of the refrigerant heating evaporator 10 .
  • the second duration threshold in this embodiment may be greater than or equal to the first duration threshold.
  • the refrigerating and freezing device 200 and its control method of the present invention can use the heating device 140 and the refrigeration system 130 to heat the evaporator 10, and when the refrigeration system 130 uses the heat released by the refrigerant to heat the evaporator 10, it can evenly and efficiently transfer heat to the evaporator.
  • the heat is delivered to the evaporator 10, which enables the evaporator 10 to defrost evenly and thoroughly, and is conducive to increasing the defrosting rate and shortening the defrosting period.
  • the defrosting control method provided by the present invention has a better defrosting effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Abstract

一种冷藏冷冻装置及其控制方法。冷藏冷冻装置包括用于流通冷媒的制冷系统和加热装置,制冷系统具有压缩机和蒸发器,加热装置用于加热蒸发器,并且控制方法包括:获取冷藏冷冻装置针对蒸发器的化霜启动信号;启动加热装置;启动制冷系统,使流出压缩机的冷媒流经蒸发器,以利用冷媒放出的热量加热蒸发器。与仅利用加热装置加热蒸发器的技术方案相比,本发明所提供的化霜控制方法具备更优的化霜效果,蒸发器能够均匀地、彻底地化霜,且有利于提高化霜速率、缩短化霜周期。

Description

冷藏冷冻装置及其控制方法 技术领域
本发明涉及制冷设备领域,特别是涉及冷藏冷冻装置及其控制方法。
背景技术
冷藏冷冻装置,例如冰箱、冷柜、储藏柜等,利用制冷系统的蒸发器向储物间室提供冷量。由于水汽在蒸发器上凝结会形成霜层,霜层会导致蒸发器的换热效率下降,因此,冷藏冷冻装置需要针对形成霜层的蒸发器进行化霜。
发明人认识到,现有技术中,部分冷藏冷冻装置采用加热装置加热蒸发器的方式进行化霜,由于加热装置的加热面积有限,仅能对周边的部位进行加热,这导致蒸发器经常出现化霜不均匀、遗留残冰的现象,并且这种化霜方式的化霜速率缓慢,化霜周期长,还会导致储物间室产生明显的温升,影响冷藏冷冻装置的保鲜性能。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种冷藏冷冻装置及其控制方法。
本发明的一个进一步的目的是要提供一种新的针对化霜过程的控制方法,使得蒸发器均匀地化霜,且提高化霜速率、缩短化霜周期。
本发明的另一个进一步的目的是要减少或避免冷藏冷冻装置的储物间室产生明显的温升。
本发明的另一个进一步的目的是要提高冷藏冷冻装置的化霜过程的灵活性。
根据本发明的一方面,提供了一种冷藏冷冻装置的控制方法,冷藏冷冻装置包括用于流通冷媒的制冷系统和加热装置,制冷系统具有压缩机和蒸发器,加热装置用于加热蒸发器,并且控制方法包括:获取冷藏冷冻装置针对蒸发器的化霜启动信号;启动加热装置;启动制冷系统,使流出压缩机的冷媒流经蒸发器,以利用冷媒放出的热量加热蒸发器。
可选地,启动制冷系统的步骤与启动加热装置的步骤同时执行。
可选地,在启动加热装置之后,还包括:检测蒸发器的温度;根据蒸发 器的温度调整加热装置和制冷系统的工作状态。
可选地,根据蒸发器的温度调整加热装置和制冷系统的工作状态的步骤包括:判断蒸发器的温度是否大于预设的温度阈值;若所述蒸发器的温度大于所述温度阈值,则关闭加热装置,并使得制冷系统停止利用冷媒放出的热量加热蒸发器。
可选地,根据蒸发器的温度调整加热装置和制冷系统的工作状态的步骤还包括:若蒸发器的温度不大于温度阈值,则检测加热装置的启动时长;判断加热装置的启动时长是否达到预设的第一时长阈值;若达到,则关闭加热装置,且使得制冷系统继续利用冷媒放出的热量加热蒸发器。
可选地,在使得制冷系统继续利用冷媒放出的热量加热蒸发器的过程中,调整制冷系统的工作状态的步骤包括:检测制冷系统利用冷媒加热蒸发器的加热时长;判断加热时长是否超出预设的第二时长阈值且蒸发器的温度不大于预设的温度阈值,第二时长阈值大于第一时长阈值;若是,则调整制冷系统的运行参数,以提高冷媒加热蒸发器的加热效率。
可选地,启动制冷系统的步骤包括:检测蒸发器的温度;根据蒸发器的温度确定压缩机的初始运行参数;按照初始运行参数启动压缩机。
可选地,根据蒸发器的温度确定压缩机的初始运行参数的步骤包括:获取预设的多个温度范围,每一温度范围设置有对应的压缩机的初始运行参数;根据蒸发器的温度所属的温度范围配置压缩机的初始运行参数。
可选地,启动制冷系统的步骤在启动加热装置的步骤之后执行;且在启动制冷系统的步骤之前,还包括:获取设定时间段内蒸发器的温度变化速率;在蒸发器的温度变化速率低于预设的速率阈值的情况下,执行启动制冷系统的步骤。
根据本发明的另一方面,还提供了一种冷藏冷冻装置,包括:制冷系统,用于流通冷媒,其具有压缩机和蒸发器;加热装置,用于加热蒸发器;以及处理器和存储器,存储器内存储有机器可执行程序,机器可执行程序被处理器执行时,用于实现根据上述任一项的控制方法。
本发明的冷藏冷冻装置及其控制方法,由于能够利用加热装置和制冷系统加热蒸发器,且在制冷系统利用冷媒放出的热量加热蒸发器时,能够均匀、高效地向蒸发器输送热量,这使得蒸发器能够均匀地、彻底地化霜,且有利于提高化霜速率、缩短化霜周期。与仅利用加热装置加热蒸发器的技术方案 相比,本发明所提供的化霜控制方法具备更优的化霜效果。
进一步地,本发明的冷藏冷冻装置及其控制方法,由于冷藏冷冻装置的化霜手段多样化,在启动加热装置加热蒸发器的基础上,还能够辅助性地利用流经蒸发器的冷媒加热蒸发器,这使得本发明的冷藏冷冻装置能够快速地完成化霜,从而减少或避免冷藏冷冻装置的储物间室产生明显的温升。
进一步地,本发明的冷藏冷冻装置及其控制方法,由于利用流经蒸发器的冷媒加热蒸发器的步骤可以在启动加热装置之后、且在蒸发器的温度变化速率低于预设的速率阈值的情况下执行,这使得本发明的冷藏冷冻装置能够根据蒸发器的实际化霜情况调整化霜手段,具备节约能耗且控制过程灵活的优点。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的示意性框图;
图2是根据本发明一个实施例的冷藏冷冻装置的制冷系统的示意图;
图3是根据本发明一个实施例的冷藏冷冻装置的控制方法的示意图;
图4是根据本发明一个实施例的冷藏冷冻装置的控制流程图;
图5是根据本发明另一实施例的冷藏冷冻装置的控制流程图。
具体实施方式
图1是根据本发明一个实施例的冷藏冷冻装置200的示意性框图。冷藏冷冻装置200一般性地可包括箱体100、制冷系统130、加热装置140、处理器110和存储器120。制冷系统130、加热装置140、处理器110和存储器120可以设置于箱体100内。箱体100的内部还形成有储物间室。
图2是根据本发明一个实施例的冷藏冷冻装置200的制冷系统130的示意图。制冷系统130,用于流通冷媒,其具有压缩机1和蒸发器10。制冷系统130还可以进一步地包括节流装置5、冷凝器4和切换阀2。压缩机1、冷凝器4、节流装置5和蒸发器10依次串接并形成制冷回路。蒸发器10用于 向储物间室供冷。
切换阀2可以连接至制冷回路,用于调节流经其的冷媒的流动路径。切换阀2具有连通冷凝器4的阀口以及连通蒸发器10的阀口。阀口是指切换阀2的出口。切换阀2的入口可以连通压缩机1的排气口。当切换阀2打开连通冷凝器4的阀口时,流出压缩机1的冷媒可以依次流经管路3、冷凝器4、节流装置5、管路9和蒸发器10,以使蒸发器10供冷。当切换阀2打开连通蒸发器10的阀口时,流出压缩机1的冷媒可以直接地经由管路8流经蒸发器10,以使蒸发器10化霜。
加热装置140用于加热蒸发器10,例如加热装置140可以为加热丝、加热片等电加热装置140。加热装置140可以选择性地安装在蒸发器10的下部区段、中部区段或者上部区段。
处理器110和存储器120可以形成冷藏冷冻装置200的控制装置,设置于箱体100内。控制装置可以为主控板。其中存储器120内存储有机器可执行程序121,机器可执行程序121被处理器110执行时用于实现以下任一实施例的冷藏冷冻装置200的控制方法。处理器110可以是一个中央处理单元(CPU),或者为数字处理单元(DSP)等等。存储器120用于存储处理器110执行的程序。存储器120可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,但不限于此。存储器120也可以是各种存储器120的组合。由于机器可执行程序121被处理器110执行时实现下述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图3是根据本发明一个实施例的冷藏冷冻装置200的控制方法的示意图。该控制方法一般性地可包括:
步骤S302,获取冷藏冷冻装置200针对蒸发器10的化霜启动信号。化霜启动信号用于指示冷藏冷冻装置200启动化霜,以加热蒸发器10,从而减少或消除蒸发器10上的霜层。
步骤S304,启动加热装置140。例如,冷藏冷冻装置200可以向加热装置140供电以启动加热装置140,从而使加热装置140通电并发热。
步骤S306,启动制冷系统130,使流出压缩机1的冷媒流经蒸发器10,以利用冷媒放出的热量加热蒸发器10。其中,使流出压缩机1的冷媒流经蒸发器10以利用冷媒放出的热量加热蒸发器10是指,向蒸发器10直接地导 入来自压缩机1的冷媒,该冷媒可以为高压状态。
由于制冷系统130能够利用冷媒向蒸发器10提供热量,蒸发器10依靠内部产生的热量“由内而外”地化霜,这有利于提高蒸发器10化霜速率,缩短化霜周期。
使用上述方法,由于能够利用加热装置140和制冷系统130加热蒸发器10,且在制冷系统130利用冷媒放出的热量加热蒸发器10时,能够均匀、高效地向蒸发器10输送热量,这使得蒸发器10能够均匀地化霜,且有利于提高化霜速率、缩短化霜周期。与仅利用加热装置140加热蒸发器10的技术方案相比,本实施例所提供的化霜控制方法具备更优的化霜效果。
由于冷藏冷冻装置200的化霜手段多样化,在启动加热装置140加热蒸发器10的基础上,还能够辅助性地利用流经蒸发器10的冷媒加热蒸发器10,这使得本实施例的冷藏冷冻装置200能够快速地完成化霜,从而减少或避免冷藏冷冻装置200的储物间室产生明显的温升。
在一些实施例中,启动制冷系统130的步骤与启动加热装置140的步骤可以同时执行。即,两种化霜手段可以同步地启动,加热装置140所提供的热量和冷媒所放出的热量可以同时作用于蒸发器10,这有利于蒸发器10的快速化霜。
在一些进一步的实施例中,在启动加热装置140的同时,上述控制方法还可以进一步地包括:检测蒸发器10的温度,根据蒸发器10的温度调整加热装置140和制冷系统130的工作状态。由于蒸发器10的温度能够反映蒸发器10的实际化霜情况,在两种化霜手段同步地启动之后,根据蒸发器10的温度调整两种化霜手段的工作状态,能够按需执行化霜,这有利于节约能耗。
冷藏冷冻装置200可以在蒸发器10上布置温度传感器,以检测蒸发器10的温度。温度传感器可以设置于蒸发器10的盘管上。
在一些可选的实施例中,根据蒸发器10的温度调整加热装置140和制冷系统130的工作状态的步骤可以包括:判断蒸发器10的温度是否大于预设的温度阈值,若大于,则关闭加热装置140,并使得制冷系统130停止利用冷媒放出的热量加热蒸发器10。温度阈值可以根据化霜过程的不同阶段的蒸发器10的温度进行设置,例如,该温度阈值可以为蒸发器10恰好完成化霜时的温度。在一些实施例中,上述温度阈值可以为1~3℃的任意值,例如 可以为2℃。
当蒸发器10的温度大于预设的温度阈值时,表明蒸发器10已完成化霜,此时通过关闭加热装置140,并使得制冷系统130停止利用冷媒加热蒸发器10,可以及时地停止化霜,以防储物间室的冷量继续散失。在一些实施例中,可以通过使制冷系统130停止运行,从而使得制冷系统130停止利用冷媒加热蒸发器10。
根据蒸发器10的温度调整加热装置140和制冷系统130的工作状态的步骤还可以包括:若蒸发器10的温度不大于温度阈值,则检测加热装置140的启动时长,判断加热装置140的启动时长是否达到预设的第一时长阈值,若达到,则关闭加热装置140,且使得制冷系统130继续利用冷媒放出的热量加热蒸发器10。
第一时长阈值可以根据蒸发器10的预设化霜周期进行设置,预设化霜周期是指蒸发器10完成一次化霜的预设时长,该预设时长可以由用户或制造者进行设置。例如,第一时长阈值可以等于预设化霜周期。在一些实施例中,第一时长阈值也可以小于预设化霜周期,例如可以为预设化霜周期的0.8~0.9倍。在一些实施例中,第一时长阈值可以为70~110min范围内的任意值,例如可以为90min。在第一时长阈值范围内,若蒸发器10未完成化霜,则可以单方面地关闭加热装置140,以使制冷系统130继续利用冷媒放出的热量加热蒸发器10。
发明人认识到,加热装置140的加热面积有限,仅能向其周围附近的蒸发器10部位提供热量,随着加热装置140工作时间的延长,其加热效果呈现先上升或下降的趋势。即,在加热装置140的启动时长达到第一时长阈值时,即便继续运行加热装置140,蒸发器10所遗留的残冰也不会顺利消融。使用上述方法,使加热装置140在其启动时长达到第一时长阈值时受控关闭,仅利用冷媒加热蒸发器10,可以减少或避免加热装置140浪费无谓的电能。
在一些可选的实施例中,在使得制冷系统130继续利用冷媒放出的热量加热蒸发器10的过程中,调整制冷系统130的工作状态的步骤包括:检测制冷系统130利用冷媒加热蒸发器10的加热时长,判断加热时长是否超出预设的第二时长阈值且蒸发器10的温度不大于预设的温度阈值,第二时长阈值大于第一时长阈值,若是,则调整制冷系统130的运行参数,以提高冷媒加热蒸发器10的加热效率。在调整制冷系统130的运行参数之后,当蒸发 器10的温度达到预设的温度阈值时,可以使得制冷系统130停止利用冷媒放出的热量加热蒸发器10。
第二时长阈值可以大于预设化霜周期,例如可以为预设化霜周期的1.1~2倍。在一些可选的实施例中,第二时长阈值可以为150~210min范围内的任意值,例如可以为180min。当加热时长超出预设的第二时长阈值且蒸发器10的温度不大于预设的温度阈值时,表明在第二时长阈值范围内,蒸发器10未能完成化霜。
使用上述方法,在蒸发器10未能在规定时间内完成化霜的情况下,通过调整制冷系统130的运行参数,以提高冷媒加热蒸发器10的加热效率,可以及时地调整蒸发器10的化霜速率,使其尽快地完成化霜。
在一些进一步的实施例中,调整制冷系统130的运行参数的步骤可以包括:提高压缩机1的转速等。例如,可以将压缩机1的运行频率每5~15min上调一个档位,直至压缩机1达到最大转速。
在执行上述步骤S306的同时或者之前,上述控制方法还可以包括:控制切换阀2打开连通蒸发器10的阀口且关闭连通冷凝器4的阀口,即,控制切换阀2调整制冷系统130的冷媒流动路径,使得流出压缩机1的冷媒可以直接地被导入蒸发器10内,从而在蒸发器10内冷凝放热。
在一些可选的实施例中,启动制冷系统130的步骤可以包括:检测蒸发器10的温度,根据蒸发器10的温度确定压缩机1的初始运行参数,按照初始运行参数启动压缩机1,从而启动制冷系统130。压缩机1的初始运行参数可以包括初始转速等参数。由于蒸发器10的温度能够反映蒸发器10的积霜程度,在启动压缩机1之前,先根据蒸发器10的温度确定压缩机1的初始运行参数,可以按需启动压缩机1,既满足实际化霜需求,又能节约能耗,一举两得。
其中,根据蒸发器10的温度确定压缩机1的初始运行参数的步骤可以包括:获取预设的多个温度范围,每一温度范围设置有对应的压缩机1的初始运行参数,根据蒸发器10的温度所属的温度范围配置压缩机1的初始运行参数。
使用上述方法,通过将压缩机1的初始运行参数与多个温度范围进行预先对应,可以简化压机参数的确定过程,从而提高化霜过程的运行效率。
在一些可选的实施例中,可以对启动制冷系统130的时机进行变换。启 动制冷系统130的步骤可以在启动加热装置140的步骤之后执行。在启动加热装置140的步骤之后,且在启动制冷系统130的步骤之前,上述控制方法还可以进一步地包括:获取设定时间段内蒸发器10的温度变化速率,在蒸发器10的温度变化速率低于预设的速率阈值的情况下,执行启动制冷系统130的步骤。
其中,蒸发器10的温度变化速率可以通过设定时间段内各个时刻的蒸发器10的温度进行计算得到。速率阈值可以根据蒸发器10开始化霜时的起始温度所属的温度范围进行确定,其中,每一温度范围对应设置有一速率阈值。
由于利用流经蒸发器10的冷媒加热蒸发器10的步骤可以在启动加热装置140之后、且在蒸发器10的温度变化速率低于预设的速率阈值的情况下执行,这使得本实施例的冷藏冷冻装置200能够根据蒸发器10的实际化霜情况调整化霜手段,具备节约能耗且控制过程灵活的优点。
在另一些可选的实施例中,在启动加热装置140的步骤之后,且在启动制冷系统130的步骤之前,上述控制方法还可以进一步地包括:获取蒸发器10的温度变化速率,根据蒸发器10的温度变化速率确定蒸发器10的预估化霜时长,在预估化霜时长超出预设的第三时长阈值的情况下,执行启动制冷系统130的步骤。第三时长阈值可以等于预设化霜周期,也可以为预设化霜周期的1.5~2.5倍。
蒸发器10的预估化霜时长用于描述蒸发器10完成化霜所需的全部时长。例如,根据蒸发器10的温度变化速率确定蒸发器10的预估化霜时长的步骤可以包括:获取蒸发器10开始化霜时的起始温度,根据蒸发器10的起始温度与预设的温度阈值之间的差值、以及该差值与温度变化速率之间的比值计算预估化霜时长。
图4是根据本发明一个实施例的冷藏冷冻装置200的控制流程图。该控制流程一般性地可包括:
步骤S402,获取冷藏冷冻装置200针对蒸发器10的化霜启动信号。
步骤S404,检测蒸发器10的温度。
步骤S406,获取预设的多个温度范围,每一温度范围设置有对应的压缩机1的初始运行参数。
步骤S408,根据蒸发器10的温度所属的温度范围配置压缩机1的初始 运行参数。
步骤S410,按照初始运行参数启动压缩机1,从而启动制冷系统130。
步骤S412,启动加热装置140。本实施例中,步骤S410与步骤S412同时执行。
步骤S414,检测蒸发器10的温度。
步骤S416,判断蒸发器10的温度是否大于预设的温度阈值,若是,则执行步骤S418,若否,则执行步骤S420。
步骤S418,关闭加热装置140,并使得制冷系统130停止利用冷媒放出的热量加热蒸发器10。
步骤S420,检测加热装置140的启动时长。
步骤S422,判断加热装置140的启动时长是否达到预设的第一时长阈值,若是,则执行步骤S424,若否,则执行步骤S414。
步骤S424,关闭加热装置140,且使得制冷系统130继续利用冷媒放出的热量加热蒸发器10。
步骤S426,检测制冷系统130利用冷媒加热蒸发器10的加热时长。
步骤S428,在加热时长超出预设的第二时长阈值且蒸发器10的温度不大于预设的温度阈值的情况下,调整制冷系统130的运行参数,以提高冷媒加热蒸发器10的加热效率。第二时长阈值大于第一时长阈值。
图5是根据本发明另一实施例的冷藏冷冻装置200的控制流程图。该控制流程一般性地可包括:
步骤S502,获取冷藏冷冻装置200针对蒸发器10的化霜启动信号。
步骤S504,启动加热装置140。
步骤S506,获取设定时间段内蒸发器10的温度变化速率。
步骤S508,在蒸发器10的温度变化速率低于预设的速率阈值的情况下,启动制冷系统130,使流出压缩机1的冷媒流经蒸发器10,以利用冷媒放出的热量加热蒸发器10。
本实施例中,步骤S508在步骤S504之后执行。启动制冷系统130的步骤可以包括:检测蒸发器10的温度,获取预设的多个温度范围,每一温度范围设置有对应的压缩机1的初始运行参数,根据蒸发器10的温度所属的温度范围配置压缩机1的初始运行参数,按照初始运行参数启动压缩机1,从而启动制冷系统130。
步骤S510,检测蒸发器10的温度。
步骤S512,判断蒸发器10的温度是否大于预设的温度阈值,若是,则执行步骤S514,若否,则执行步骤S516。
步骤S514,关闭加热装置140,并使得制冷系统130停止利用冷媒放出的热量加热蒸发器10。
步骤S516,检测加热装置140的启动时长。
步骤S518,判断加热装置140的启动时长是否达到预设的第一时长阈值,若是,则执行步骤S520,若否,则执行步骤S510。
步骤S520,关闭加热装置140,且使得制冷系统130继续利用冷媒放出的热量加热蒸发器10。
步骤S522,检测制冷系统130利用冷媒加热蒸发器10的加热时长。
步骤S524,在加热时长超出预设的第二时长阈值且蒸发器10的温度不大于预设的温度阈值的情况下,调整制冷系统130的运行参数,以提高冷媒加热蒸发器10的加热效率。本实施例的第二时长阈值可以大于或等于第一时长阈值。
本发明的冷藏冷冻装置200及其控制方法,由于能够利用加热装置140和制冷系统130加热蒸发器10,且在制冷系统130利用冷媒放出的热量加热蒸发器10时,能够均匀、高效地向蒸发器10输送热量,这使得蒸发器10能够均匀地、彻底地化霜,且有利于提高化霜速率、缩短化霜周期。与仅利用加热装置140加热蒸发器10的技术方案相比,本发明所提供的化霜控制方法具备更优的化霜效果。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冷藏冷冻装置的控制方法,所述冷藏冷冻装置包括用于流通冷媒的制冷系统和加热装置,所述制冷系统具有压缩机和蒸发器,所述加热装置用于加热所述蒸发器,并且所述控制方法包括:
    获取所述冷藏冷冻装置针对所述蒸发器的化霜启动信号;
    启动所述加热装置;
    启动所述制冷系统,使流出所述压缩机的冷媒流经所述蒸发器,以利用所述冷媒放出的热量加热所述蒸发器。
  2. 根据权利要求1所述的冷藏冷冻装置的控制方法,其中,
    所述启动所述制冷系统的步骤与所述启动所述加热装置的步骤同时执行。
  3. 根据权利要求1或2所述的冷藏冷冻装置的控制方法,在启动所述加热装置之后,还包括:
    检测所述蒸发器的温度;
    根据所述蒸发器的温度调整所述加热装置和所述制冷系统的工作状态。
  4. 根据权利要求3所述的冷藏冷冻装置的控制方法,根据所述蒸发器的温度调整所述加热装置和所述制冷系统的工作状态的步骤包括:
    判断所述蒸发器的温度是否大于预设的温度阈值;
    若所述蒸发器的温度大于所述温度阈值,则关闭所述加热装置,并使得所述制冷系统停止利用所述冷媒放出的热量加热所述蒸发器。
  5. 根据权利要求4所述的冷藏冷冻装置的控制方法,其中,根据所述蒸发器的温度调整所述加热装置和所述制冷系统的工作状态的步骤还包括:
    若所述蒸发器的温度不大于所述温度阈值,则检测所述加热装置的启动时长;
    判断所述加热装置的启动时长是否达到预设的第一时长阈值;
    若达到,则关闭所述加热装置,且使得所述制冷系统继续利用所述冷媒放出的热量加热所述蒸发器。
  6. 根据权利要求5所述的冷藏冷冻装置的控制方法,其中,在使得所述制冷系统继续利用所述冷媒放出的热量加热所述蒸发器的过程中,调整所述制冷系统的工作状态的步骤包括:
    检测所述制冷系统利用所述冷媒加热所述蒸发器的加热时长;
    判断所述加热时长是否超出预设的第二时长阈值且所述蒸发器的温度不大于预设的温度阈值,所述第二时长阈值大于所述第一时长阈值;
    若是,则调整所述制冷系统的运行参数,以提高所述冷媒加热所述蒸发器的加热效率。
  7. 根据权利要求1-6中任一项所述的冷藏冷冻装置的控制方法,其中,启动所述制冷系统的步骤包括:
    检测所述蒸发器的温度;
    根据所述蒸发器的温度确定所述压缩机的初始运行参数;
    按照所述初始运行参数启动所述压缩机。
  8. 根据权利要求7所述的冷藏冷冻装置的控制方法,其中,根据所述蒸发器的温度确定所述压缩机的初始运行参数的步骤包括:
    获取预设的多个温度范围,每一所述温度范围设置有对应的所述压缩机的初始运行参数;
    根据所述蒸发器的温度所属的温度范围配置所述压缩机的初始运行参数。
  9. 根据权利要求1所述的冷藏冷冻装置的控制方法,其中,
    所述启动所述制冷系统的步骤在所述启动所述加热装置的步骤之后执行;且
    在启动所述制冷系统的步骤之前,还包括:
    获取设定时间段内所述蒸发器的温度变化速率;
    在所述蒸发器的温度变化速率低于预设的速率阈值的情况下,执行启动所述制冷系统的步骤。
  10. 一种冷藏冷冻装置,包括:
    制冷系统,用于流通冷媒,其具有压缩机和蒸发器;
    加热装置,用于加热所述蒸发器;以及
    处理器和存储器,所述存储器内存储有机器可执行程序,所述机器可执行程序被所述处理器执行时,用于实现根据权利要求1-9中任一项所述的控制方法。
PCT/CN2022/085546 2021-07-30 2022-04-07 冷藏冷冻装置及其控制方法 WO2023005254A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110875187.X 2021-07-30
CN202110875187.XA CN115682512A (zh) 2021-07-30 2021-07-30 冷藏冷冻装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2023005254A1 true WO2023005254A1 (zh) 2023-02-02

Family

ID=85060095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085546 WO2023005254A1 (zh) 2021-07-30 2022-04-07 冷藏冷冻装置及其控制方法

Country Status (2)

Country Link
CN (1) CN115682512A (zh)
WO (1) WO2023005254A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518642A (ja) * 1991-07-08 1993-01-26 Mitsubishi Electric Corp 冷却装置
JP2005249254A (ja) * 2004-03-03 2005-09-15 Hitachi Home & Life Solutions Inc 冷凍冷蔵庫
CN101655302A (zh) * 2009-07-16 2010-02-24 上海理工大学 一种光电传感热气旁通融霜式冰箱及工作方法
CN102317724A (zh) * 2009-02-11 2012-01-11 Lg电子株式会社 冰箱的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518642A (ja) * 1991-07-08 1993-01-26 Mitsubishi Electric Corp 冷却装置
JP2005249254A (ja) * 2004-03-03 2005-09-15 Hitachi Home & Life Solutions Inc 冷凍冷蔵庫
CN102317724A (zh) * 2009-02-11 2012-01-11 Lg电子株式会社 冰箱的控制方法
CN101655302A (zh) * 2009-07-16 2010-02-24 上海理工大学 一种光电传感热气旁通融霜式冰箱及工作方法

Also Published As

Publication number Publication date
CN115682512A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN107726712B (zh) 冰箱控制方法及运用该控制方法的冰箱
KR101573538B1 (ko) 냉장고 제어방법
CN106482423B (zh) 冰箱的控制方法
EP2217872B1 (en) Control method of refrigerator
CN102679685B (zh) 风冷冰箱的节能化霜控制方法
WO2017049962A1 (zh) 冰箱及其控制方法
RU2465522C2 (ru) Холодильный аппарат и способ управления холодильным аппаратом
JP2008075964A (ja) 冷却装置の除霜装置
CN106016920A (zh) 一种双系统冰箱除霜能耗控制方法、系统及冰箱
JP2019039609A (ja) 低温貯蔵庫
US10473388B2 (en) Refrigerator and method for controlling constant temperature thereof
JP5624295B2 (ja) 冷蔵庫
CN202613892U (zh) 风冷冰箱
KR20090046151A (ko) 냉장고 제어방법
CN106642922A (zh) 用于冰箱的制冷控制方法及冰箱
WO2023005254A1 (zh) 冷藏冷冻装置及其控制方法
KR101373568B1 (ko) 냉장 및 냉동 시스템의 제상 제어 장치 및 방법
WO2023029521A1 (zh) 冷藏冷冻装置及其控制方法
CN110873491B (zh) 冷柜控制方法及冷柜
KR20100085270A (ko) 복수의 증발기들을 구비하는 냉장고의 제상제어 방법
RU2337283C2 (ru) Охлаждающее устройство и способ управления им
JP2011052935A (ja) 冷蔵庫
KR20010037545A (ko) 냉장고의 제상주기 제어방법 및 그 장치
WO2020142930A1 (zh) 冰箱及其制冷控制方法与装置
JP2010281491A (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE