WO2023005113A1 - 一种基于路径描述的含微网的配电系统可靠性分析方法 - Google Patents

一种基于路径描述的含微网的配电系统可靠性分析方法 Download PDF

Info

Publication number
WO2023005113A1
WO2023005113A1 PCT/CN2021/138593 CN2021138593W WO2023005113A1 WO 2023005113 A1 WO2023005113 A1 WO 2023005113A1 CN 2021138593 W CN2021138593 W CN 2021138593W WO 2023005113 A1 WO2023005113 A1 WO 2023005113A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
microgrid
load
state
grid
Prior art date
Application number
PCT/CN2021/138593
Other languages
English (en)
French (fr)
Inventor
钱仲豪
袁松
张骏
杨俊�
吴茜
李伟伦
毛艳芳
Original Assignee
国网江苏省电力有限公司南通供电分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网江苏省电力有限公司南通供电分公司 filed Critical 国网江苏省电力有限公司南通供电分公司
Publication of WO2023005113A1 publication Critical patent/WO2023005113A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Definitions

  • the invention belongs to the technical field of distribution network reliability assessment, and in particular relates to a method for analyzing the reliability of a distribution system including a microgrid based on path description.
  • Distribution system reliability assessment refers to a series of indicators to measure the ability of the distribution system to supply power to users in accordance with acceptable quality standards and required quantities, mainly including two aspects of adequacy and safety.
  • the adequacy assessment of the distribution system is to describe the ability of the distribution system to provide users with specified power quality and quantity under static conditions
  • the safety assessment is to describe the ability of the distribution system to provide users with uninterrupted power when the system is disturbed.
  • the state assessment methods of power distribution system are mainly divided into analytical method and simulation method.
  • the analytical method has a clear concept and a clear mathematical expression, but it is subject to NP problems, and its complexity increases exponentially with the number of components.
  • the simulation method generally refers to the Monte Carlo method, which is mainly divided into non-sequential Monte Carlo method, sequential Monte Carlo method, pseudo-sequential Monte Carlo method, etc.
  • the computational complexity is relatively analytical Therefore, it is widely used in power system evaluation.
  • the present invention adopts a common sequential Monte Carlo method.
  • the Carlo method that is, the state transition sampling method, samples the state of each equipment in the power distribution system to obtain the equipment state of the power distribution system at each time.
  • the network structure of the power distribution system including the microgrid is complex, it contains a variety of equipment, and it will become a multi-source network during operation, so it is necessary to analyze the structure of the power distribution network.
  • the invention analyzes the source-load connectivity in the distribution network based on the series-parallel structure, and combines the connectivity analysis result with a simulation method to evaluate the reliability of the distribution network.
  • Reliability index as a scale to measure the reliability of power distribution system, is of great significance in reliability evaluation.
  • most of the reliability indexes of traditional power distribution system are used, including load point reliability index and system reliability index.
  • the present invention proposes a path description-based reliability analysis method for power distribution systems containing microgrids.
  • the sequential Monte Carlo method state transition sampling method
  • the source-load connectivity is analyzed based on the method of path description, and then the reliability index of distribution system including microgrid is constructed to analyze the reliability of distribution network.
  • This method can consider the radial operation of the ring network, energy storage, wind power and other time-dependent equipment for reliability evaluation.
  • the present invention provides a path description-based reliability analysis method for power distribution systems containing microgrids, which can perform reliability assessments by considering time-dependent equipment such as ring network radial operation, energy storage, and wind power.
  • the present invention is specifically a method for analyzing the reliability of a power distribution system containing a microgrid based on path description.
  • the method for analyzing the reliability of a power distribution system containing a microgrid includes the following steps:
  • Step (1) Sampling the state of the micro-grid power generation system including wind and diesel storage to obtain the state sequence of each unit; combined with the wind and diesel output model, the actual output of wind power and diesel units is obtained;
  • Step (2) Sampling the state of the lines, circuit breakers and transformers in the microgrid, analyzing the connectivity between the load and the power supply according to the sampling results, and dividing the load points into those connected to the power supply in the microgrid. load points and disconnected load points;
  • Step (3) Calculate the total load time series of the load point connected to the power supply, and obtain the charge and discharge capacity of the battery at each moment according to the Fengchai time series output obtained in step (1) and in combination with the battery operation strategy;
  • Step (4) If the power supply in the microgrid is sufficient, calculate the surplus power of diesel generator sets and wind turbines in the microgrid, and at this time, the microgrid pair distribution network is equivalent to a power supply, and the load in the microgrid It is divided into a distributed power supply point and a power outage point; if the power generation in the microgrid cannot meet the load connected to it, then the microgrid is equivalent to a load for the distribution network at this time, and the microgrid The load in the network is divided into power supply points from distributed power sources, power supply points from distribution network and power outage points;
  • Step (5) Sampling the state of each device in the distribution network, analyzing the connectivity between each load point and the bus bar, and obtaining the load points powered by the bus bar and the load points that cannot be powered by the bus bar;
  • the load point powered by the bus bar is connected to the PCC common connection point, and the microgrid is in the equivalent power supply state at this time, then the load point is transferred to the microgrid for power supply, and in this case, all connections with the microgrid are counted
  • Connected loads adopt a load reduction strategy to obtain load points that are actually powered by the microgrid and load points that cannot be powered by the microgrid;
  • Step (6) If the microgrid is in the equivalent load state, analyze the connectivity between the PCC public connection point and the distribution network bus. If it is connected to it, the power shortage load point connected to the PCC public node in the microgrid will be powered by the distribution network ; If it is not connected, the load reduction strategy is adopted to obtain the actual power failure load point inside the microgrid at that moment;
  • Step (7) Calculate the system reliability index from the actual state of each load point obtained in step (4), step (5), and step (6).
  • the inverse transformation of the probability density distribution function can obtain the duration of the system state under the current state S j Where U is a uniformly distributed random number generated between [0,1];
  • U' is a uniformly distributed random number generated between [0,1].
  • step (2) the connectivity between the load point and the power supply is analyzed based on the series-parallel structure.
  • the analysis process is as follows:
  • step (3) it is necessary to solve the wind power output.
  • the power of the wind turbine has a nonlinear relationship with the wind speed.
  • the power is zero;
  • the power is approximately a quadratic function related to the wind speed;
  • the power is the maximum power;
  • A, B, and C are related to the cut-in wind speed, cut-out wind speed and rated wind speed
  • the diesel unit adopts a two-state model, that is, the "operating-fault" model, regardless of the derating operation state of the diesel unit.
  • the available capacity is the rated capacity; when the component fails , the available capacity is 0MW;
  • condition A For the charge and discharge strategy of the energy storage device, taking into account the constraints of the allowable access ratio of wind power, define the mathematical formula for the condition that "the wind power exceeds the allowable access ratio and the microgrid is still in a power shortage state after absorbing the allowable access wind power". expression Denote this condition as condition A;
  • the charging and discharging model of strategy II energy storage system is obtained as follows:
  • step (4) the operating strategy of the microgrid needs to be explained:
  • the micro-grid island and grid-connected state are controlled by the public connection point PCC, and the micro-grid preferentially consumes its internal distributed power supply power.
  • the PCC public connection point is turned on, and the distribution network supplies power to the power shortage load in the microgrid;
  • the PCC common node When the PCC common node is connected, the PCC common connection point is turned on, and the microgrid supplies power to the power shortage load in the distribution network; load, and the power of the battery energy storage system does not supply power to the outside;
  • the grid-connected operating conditions of the microgrid are first that there is a power shortage at the load point in the microgrid and the load is connected to the PCC common node, and the second is that the microgrid
  • the internal power supply is sufficient, and some loads in the distribution network are short of power and are connected to the PCC common node; in other cases, the microgrid adopts an island operation state;
  • the loads in the microgrid at any time can be classified into three types, the first is powered by distributed power sources, the second is powered by the distribution network, and the third is power failure loads;
  • the loads in the distribution network can be classified into four types, the first type is powered by the distribution network, the second type is powered by the micro-grid, and the other two types are blackout loads.
  • step (7) the annual average equivalent power supply of the microgrid is calculated
  • P mtod (t) is the power provided by the micro-grid to the distribution network at time t, and the unit is MW; the unit of the annual average equivalent power supply power of the micro-grid is MWh;
  • MEAST is the annual average equivalent power supply time of the microgrid, the unit is h/a, and the unit of MEASP is MW;
  • P dtom (t) is the power provided by the microgrid to the distribution network at time t, the unit is MW, and the unit of MEAL is MWh;
  • MEALT is the average annual load time of the microgrid, the unit is h/a, and the unit of MEALP is MW;
  • the beneficial effect is that: the reliability analysis method of the power distribution system containing microgrids first adopts the sequential Monte Carlo method, that is, the state transition sampling method, to sample the states of each equipment in the power distribution system, so as to obtain each The equipment status of the power distribution system at all times; after that, the source-load connectivity is analyzed based on the method of path description, and then the reliability index of the power distribution system including the micro-grid is constructed to analyze the reliability of the distribution network, which can consider the radial state of the ring network. Reliability assessment of time-dependent equipment such as operation, energy storage, and wind power.
  • Fig. 1 is an analysis flowchart of a method for analyzing the reliability of a power distribution system containing a microgrid based on path description in the present invention
  • Figure 2 is a schematic diagram of the state transition sampling method
  • Figure 3 is the source-load connectivity analysis system structure
  • Figure 4 is a simple power distribution network topology.
  • the reliability analysis method of the power distribution system containing the microgrid of the present invention comprises the following steps:
  • Step (1) Sampling the state of the micro-grid power generation system including wind and diesel storage to obtain the state sequence of each unit; combined with the wind and diesel output model, the actual output of wind power and diesel units is obtained;
  • Step (2) Sampling the state of the lines, circuit breakers and transformers in the microgrid, analyzing the connectivity between the load and the power supply according to the sampling results, and dividing the load points into those connected to the power supply in the microgrid. load points and disconnected load points;
  • Step (3) Calculate the total load time series of the load point connected to the power supply, and obtain the charge and discharge capacity of the battery at each moment according to the Fengchai time series output obtained in step (1) and in combination with the battery operation strategy;
  • Step (4) If the power supply in the microgrid is sufficient, calculate the surplus power of diesel generator sets and wind turbines in the microgrid, and at this time, the microgrid pair distribution network is equivalent to a power supply, and the load in the microgrid It is divided into a distributed power supply point and a power outage point; if the power generation in the microgrid cannot meet the load connected to it, then the microgrid is equivalent to a load for the distribution network at this time, and the microgrid The load in the network is divided into power supply points from distributed power sources, power supply points from distribution network and power outage points;
  • Step (5) Sampling the state of each device in the distribution network, analyzing the connectivity between each load point and the bus bar, and obtaining the load points powered by the bus bar and the load points that cannot be powered by the bus bar;
  • the load point powered by the bus bar is connected to the PCC common connection point, and the microgrid is in the equivalent power supply state at this time, then the load point is transferred to the microgrid for power supply, and in this case, all connections with the microgrid are counted
  • Connected loads adopt a load reduction strategy to obtain load points that are actually powered by the microgrid and load points that cannot be powered by the microgrid;
  • Step (6) If the microgrid is in the equivalent load state, analyze the connectivity between the PCC public connection point and the distribution network bus. If it is connected to it, the power shortage load point connected to the PCC public node in the microgrid will be powered by the distribution network ; If it is not connected, the load reduction strategy is adopted to obtain the actual power failure load point inside the microgrid at that moment;
  • Step (7) Calculate the system reliability index from the actual state of each load point obtained in step (4), step (5), and step (6).
  • the inverse transformation of the probability density distribution function can obtain the duration of the system state under the current state S j Where U is a uniformly distributed random number generated between [0,1];
  • U' is a uniformly distributed random number generated between [0,1].
  • step (2) the simulation method is used to analyze the reliability of the power distribution system.
  • One idea is similar to the failure mode consequence analysis method.
  • the simulation method is used to sample the state of each device in the system to obtain the The state of all equipment in the system, and then analyze the impact of each equipment failure state on the load point, and there are many equipment in the power distribution system, and the workload of analyzing the failure impact of each equipment is relatively heavy. Therefore, this paper starts from the load point and analyzes the connectivity between the load point and the power supply based on the series-parallel structure.
  • the analysis process is as follows:
  • the equipment 1-equipment 8 in the power distribution system performs state sampling to obtain the states S 1 -S 8 of the equipment 1-8.
  • the connectivity between the load LP1 and the power supply is min ⁇ S 1 , S 2 , S 3 , S 4 ⁇
  • the connectivity between LP2 and the power supply is min ⁇ S 1 , S 2 , S 5 , S 6 ⁇ , min ⁇ S 1 , S 2 , S 5 , S 7 , S 8 ⁇ for the connectivity between LP3 and the power supply.
  • node 0 is a power node, and its feeder outlet contains three switches S 1 -S 3 , nodes 1-5 are load nodes, H 1 is a ring net box, and there are switches S 3 -S on both sides of it 4 .
  • the power supply node 0 supplies power to the load nodes 1-5.
  • line L3 fails, take nodes 1 and 3 as representatives to analyze the connectivity with the power source 0 node.
  • S 2 min ⁇ L 3 ,L 4 ,L 5 ⁇
  • S 4 min ⁇ L 3 ,L 4 ,L 5 ⁇ are all 0, to isolate the fault.
  • the state quantity value is 1, value is 0, The value is 1, so load node 1 can be powered by power node 0 normally.
  • the connectivity state quantity LB 30 between the analysis node 3 and the power supply node 0 is 0 according to the above process.
  • step (3) it is necessary to solve the wind power output.
  • the power of the wind turbine has a nonlinear relationship with the wind speed.
  • the power is zero;
  • the power is approximately a quadratic function related to the wind speed;
  • the power is the maximum power;
  • A, B, and C are related to the cut-in wind speed, cut-out wind speed and rated wind speed
  • the diesel unit adopts a two-state model, that is, the "operating-fault" model, regardless of the derating operation state of the diesel unit.
  • the available capacity is the rated capacity; when the component fails , the available capacity is 0MW;
  • condition A For the charge and discharge strategy of the energy storage device, taking into account the constraints of the allowable access ratio of wind power, define the mathematical formula for the condition that "the wind power exceeds the allowable access ratio and the microgrid is still in a power shortage state after absorbing the allowable access wind power". expression Denote this condition as condition A;
  • the charging and discharging model of strategy II energy storage system is obtained as follows:
  • step (4) the operating strategy of the microgrid needs to be explained:
  • the micro-grid island and grid-connected state are controlled by the public connection point PCC, and the micro-grid preferentially consumes its internal distributed power supply power.
  • the PCC public connection point is turned on, and the distribution network supplies power to the power shortage load in the microgrid;
  • the PCC common node When the PCC common node is connected, the PCC common connection point is turned on, and the microgrid supplies power to the power shortage load in the distribution network; load, and the power of the battery energy storage system does not supply external power; the reason is that the internal load power supply requirements of the microgrid are high, and the battery energy storage system should ensure the reliability of its internal load to prevent power failure of the internal load of the microgrid due to insufficient battery power after supplying power to the external load .
  • the grid-connected operation condition of the microgrid is that there is a power shortage at the load point in the microgrid and the load is connected to the PCC common node, and the second is that the power supply in the microgrid is sufficient, and the part in the distribution network The load is short of power and it is connected to the PCC public node; in other cases, the microgrid adopts an island operation state;
  • the loads in the microgrid at any time can be classified into three types, the first type is powered by the distributed power supply, the second type is powered by the distribution network, and the third type of power failure load, the reason for the power failure It is a device failure that causes no connection to the power supply.
  • the loads in the distribution network can be classified into four types. The first type is powered by the distribution network, the second type is powered by the micro-grid, and the other two are power failure loads, but the reasons for the power failure are different. One is disconnection with the power supply due to equipment failure, and the other is power outage due to load reduction during microgrid power supply.
  • step (7) there are few studies in the existing literature to measure the index of mutual backup between the microgrid and the distribution network.
  • Equivalent power supply power MEASP microgrid annual average equivalent load power MEAL, microgrid annual average equivalent load time MEALT, microgrid equivalent load power MEALP, microgrid island operation rate ⁇ is , microgrid grid-connected operation rate ⁇ nis and other indicators :
  • P mtod (t) is the power provided by the micro-grid to the distribution network at time t, and the unit is MW; the unit of the annual average equivalent power supply power of the micro-grid is MWh;
  • MEAST is the average annual equivalent power supply time of the microgrid, the unit is h/a, and the unit of MEASP is MW;
  • P dtom (t) is the power provided by the microgrid to the distribution network at time t, the unit is MW, and the unit of MEAL is MWh;
  • MEALT is the average annual load time of the microgrid, the unit is h/a, and the unit of MEALP is MW;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种基于路径描述的含微网的配电系统可靠性分析方法,包括:(1):获取各机组的状态序列;得到风电和柴油机组实际出力;(2):对负荷和电源之间连通性进行分析;(3):计算与电源连通负荷点的总负荷时间序列,得到电池各时刻充放电量;(4):若微网内供电充足,计算微网内过剩柴油机组和风电机组电量;若微网内供电不充足,微网内负荷分为由分布式电源供电点、由配网供电点和停电点;(5):分析配网内各负荷点与母线的连通性;(6):若微网处于等效负荷状态,分析PCC公共连接点与配网母线的连通性;(7):计算系统可靠性指标。所提供的一种基于路径描述的含微网的配电系统可靠性分析方法,能够进行可靠性评估。

Description

一种基于路径描述的含微网的配电系统可靠性分析方法 技术领域
本发明属于配电网可靠性评估技术领域,特别涉及一种基于路径描述的含微网的配电系统可靠性分析方法。
背景技术
配电系统可靠性评估是指通过一系列指标来衡量配电系统按照可接受的质量标准和所需数量向用户供电的能力,主要包含充裕性和安全性两个方面。配电系统充裕性评估是描述静态条件下配电系统向用户提供规定电能质量和数量的能力,安全性评估是描述系统受到扰动的情况下配电系统向用户不间断提供电能的能力。
配电系统状态评估方法主要分为解析法和模拟法。解析法概念清晰,数学表达式明确,但受制于NP问题,其复杂度随元件数目呈指数型增长。模拟法一般指蒙特卡洛方法,主要分为非序贯蒙特卡洛方法、序贯蒙特卡洛方法、伪序贯蒙特卡洛方法等,对于含有大量元件的复杂系统,其计算复杂度相对解析法较低,因此在电力系统评估中得到广泛应用。由于含微网的配电系统不仅包含线路、变压器、熔断器和断路器等传统配电系统元件,同时还含有蓄电池、风机、光伏、柴油机等设备,因此本发明采取一种常见的序贯蒙特卡洛方法即状态转移抽样法对配电系统各设备进行状态抽样,以获取各时刻配电系统的设备状态。含微网的配电系统网络结构复杂,包含的设备多种多样,且运行过程中会成为一个多源网络,因此有必要对配电网络结构进行分析。本发明基于串并联结构对配电网中源荷连通性做分析,将连通性分析结果与模拟法相结合,对配电网进行可靠性评估。
可靠性指标作为衡量配电系统可靠性的尺度,在可靠性评估中具有重要意义。目前在含微网的配电系统研究中,大多采用传统配电系统可靠性指标,包含负荷点可靠性指标和系统可靠性指标。
本发明提出一种基于路径描述的含微网的配电系统可靠性分析方法,首先采取序贯蒙特卡洛方法即状态转移抽样法对配电系统各设备进行状态抽样,以获取各时刻配电系统的设备状态。之后,基于路径描述的方法对源荷连通性进行分析,再进而构建含微网的配电系统可靠性指标对配网可靠性进行分析。该方法能够考虑环网辐射状运行、储能、风电等时间相关性设备,进行可靠性评估。
技术问题
本发明提供一种基于路径描述的含微网的配电系统可靠性分析方法,能够考虑环网辐射 状运行、储能、风电等时间相关性设备,进行可靠性评估。
技术解决方案
本发明具体为一种基于路径描述的含微网的配电系统可靠性分析方法,所述含微网的配电系统可靠性分析方法包括以下步骤:
步骤(1):对包含风柴储的微网发电系统进行状态抽样,获取各机组的状态序列;结合风柴出力模型,得到风电和柴油机组实际出力;
步骤(2):对所述微网中线路、断路器和变压器进行状态抽样,根据抽样结果对负荷和电源之间的连通性进行分析,将负荷点分为与所述微网内电源连通的负荷点和不连通的负荷点;
步骤(3):计算与所述电源连通负荷点的总负荷时间序列,根据步骤(1)得到的风柴时序出力,结合电池运行策略,得到所述电池各时刻的充放电量;
步骤(4):若所述微网内供电充足,计算所述微网内过剩柴油机组和风电机组电量,此时将所述微网对配网等效为一个电源,所述微网内负荷分为由分布式电源供电点和停电点;若所述微网内发电量不能满足与其连通的负荷量,则此时将所述微网对所述配网等效为一个负荷,所述微网内负荷分为由分布式电源供电点、由配网供电点和停电点;
步骤(5):对所述配网内各设备进行状态抽样,分析各负荷点与母线的连通性,得到由所述母线进行供电的负荷点和不能由母线供电的负荷点;若不能由所述母线供电的负荷点与PCC公共连接点连通,且此时所述微网为等效电源状态,则所述负荷点转由所述微网进行供电,统计该情况下所有与所述微网相连的负荷,采用负荷削减策略,得到实际由所述微网供电的负荷点及不能由所述微网供电的负荷点;
步骤(6):若微网处于等效负荷状态,分析PCC公共连接点与配网母线的连通性,若与其连通,则微网内与PCC公共节点相连的缺电负荷点由配网进行供电;若不连通,则采用负荷削减策略,得到该时刻微网内部实际停电负荷点;
步骤(7):由步骤(4)、步骤(5)、步骤(6)得到的各负荷点实际状态计算系统可靠性指标。
步骤(1)中,序贯蒙特卡洛方法即状态转移抽样法对所述配电系统各设备进行状态抽样,以获取各时刻所述配电系统的设备状态:使用假设系统内含有m个元件,共k个状态,并且每个所述元件的状态持续时间服从指数分布;所述系统的状态序列G={S 1,S 2···,S K},所述元件处于当前状态S j下的转移率为λ i(i=1,2···,m),若每个所述元件的状态持续时间T i服从参数 为λ i的指数分布,那么所述系统的状态持续时间T也服从指数分布,其概率密度分布函数为:
Figure PCTCN2021138593-appb-000001
对所述概率密度分布函数进行逆变换可得到当前状态S j下的所述系统状态持续时间
Figure PCTCN2021138593-appb-000002
其中U为[0,1]间生成的均匀分布随机数;
对于每一个所述系统状态S j,其实际由m个所述元件共同决定,若任意一个所述元件状态发生改变,则所述系统状态也发生改变。因此,所述系统从当前所述状态S j开始将有m个可能达到的状态,达到每个状态的概率为:
Figure PCTCN2021138593-appb-000003
下一个系统状态可通过抽样决定
Figure PCTCN2021138593-appb-000004
其中,U′为[0,1]间生成的均匀分布随机数。
步骤(2)中,基于串并联结构分析负荷点和电源的连通性,分析过程如下:
(1)采用状态抽样法对所述系统各设备进行状态抽样,获取各时刻全部设备的状态S i,故障状态记为0,运行状态记为1;
(2)分析每个负荷点到电源的连通路径,得到路径上所有设备的标号;
(3)由(1)得到的设备状态和(2)得到设备编号,获得每个路径上各个设备的状态:若m个设备之间为并联关系,则源荷之间的连通性为max{S k,S k+1,···S k+m+1},若n个设备之间为串联关系,则所述源荷之间连通性为min{S k,S k+1,···S k+n+1};若源荷间同时包含串并联结构,则将并联设备连通性等效为单个设备连通性后,再按照串联结构分析。
步骤(3)中,需要求解风力出力,研究表明风电机组的功率与风速呈非线性关系,当风速低于切入风速V ci时,功率为零;当风速介于切入风速V ci和额定风速V r之间时,功率近似为与风速相关的二次函数;当风速介于额定风速V r和切出风速V co之间时,功率为最大功率;风速超过切出风速时,功率为零,对应表达式如下所示:
Figure PCTCN2021138593-appb-000005
其中A、B、C与切入风速、切出风速及额定风速有关,
Figure PCTCN2021138593-appb-000006
除此之外,还需求解柴油机出力,柴油机组采用两状态模型即“运行—故障”模型,不考虑柴油机组的降额运行状态,当元件正常运行时,可用容量为额定容量;当元件故障时,可用容量为0MW;
对于所述储能装置的充放电策略,计及风电允许接入比例的约束,定义“风电超出允许接入比例而微网吸收允许接入的风电后仍处于缺电状态”这一条件的数学表达式
Figure PCTCN2021138593-appb-000007
将此条件记为条件A;
当风电和柴油机组出力不满足条件A时,储能系统充电或放电电量按式ΔG b(t)=G c(t)+G w(t)-P L(t);
当风电和柴油机组出力满足条件A时,储能系统放电电量ΔG ob(t)=G c(t)-P L(t)×(1-η%);
得到策略Ⅱ储能系统充放电模型如式
Figure PCTCN2021138593-appb-000008
步骤(4)、步骤(5)、步骤(6)中,需要说明所述微网的运行策略:
采用公共连接点PCC对所述微网孤岛和并网状态进行控制,所述微网优先消耗其内部分布式电源电量,当所述微网内缺电且缺电负荷点与PCC公共节点连通时,所述PCC公共连接点导通,由配网对所述微网内缺电负荷进行供电;当所述微网供电充足,所述配网内存在负荷点缺电且所述负荷点与所述PCC公共节点连通时,所述PCC公共连接点导通,由所述微网对所述配网内缺电负荷进行供电;所述微网对外部电网供电时,优先满足所述微网内部负荷,且电池储能系统电量不对外供电;所述微网并网运行条件一是所述微网内存在负荷点缺电且所述负荷与所述PCC公共节点连通,二是所述微网内供电充足,所述配网内部分负荷缺电且其与所述PCC公共节点连通;其余情况下,所述微网采用孤岛运行状态;
同时由上述分析可知,任意时刻所述微网内负荷可归于为三种,第一种由分布式电源进 行供电,第二种由所述配网进行供电,第三种停电负荷;任意时刻所述配网内负荷可归于为四种,第一种由所述配网进行供电,第二种由所述微网进行供电,另外两种都是停电负荷。
步骤(7)中,计算微网年均等值电源电量
Figure PCTCN2021138593-appb-000009
其中P mtod(t)为t时刻所述微网向所述配网提供的功率,单位为MW;所述微网年均等值电源电量单位为MWh;
计算微网等值电源功率
Figure PCTCN2021138593-appb-000010
其中MEAST为所述微网年均等值电源时间,单位为h/a,MEASP单位为MW;
计算微网年均等值负荷电量
Figure PCTCN2021138593-appb-000011
其中P dtom(t)为t时刻所述微网向配网提供的功率,单位为MW,MEAL单位为MWh;
计算微网等值负荷功率
Figure PCTCN2021138593-appb-000012
其中MEALT为所述微网年均等值负荷时间,单位为h/a,MEALP单位为MW;
计算微网孤岛运行率
Figure PCTCN2021138593-appb-000013
计算微网并网运行率
Figure PCTCN2021138593-appb-000014
有益效果
与现有技术相比,有益效果是:所述含微网的配电系统可靠性分析方法首先采取序贯蒙特卡洛方法即状态转移抽样法对配电系统各设备进行状态抽样,以获取各时刻配电系统的设备状态;之后,基于路径描述的方法对源荷连通性进行分析,再进而构建含微网的配电系统可靠性指标对配网可靠性进行分析,能够考虑环网辐射状运行、储能、风电等时间相关性设备,进行可靠性评估。
附图说明
图1为本发明一种基于路径描述的含微网的配电系统可靠性分析方法的分析流程图;
图2为状态转移抽样法原理图;
图3为源荷连通性分析系统结构;
图4为简单配电网络拓扑图。
本发明的最近实施方式
下面结合附图对本发明一种基于路径描述的含微网的配电系统可靠性分析方法的具体实施方式做详细阐述。
如图1所示,本发明的含微网的配电系统可靠性分析方法包括以下步骤:
步骤(1):对包含风柴储的微网发电系统进行状态抽样,获取各机组的状态序列;结合风柴出力模型,得到风电和柴油机组实际出力;
步骤(2):对所述微网中线路、断路器和变压器进行状态抽样,根据抽样结果对负荷和电源之间的连通性进行分析,将负荷点分为与所述微网内电源连通的负荷点和不连通的负荷点;
步骤(3):计算与所述电源连通负荷点的总负荷时间序列,根据步骤(1)得到的风柴时序出力,结合电池运行策略,得到所述电池各时刻的充放电量;
步骤(4):若所述微网内供电充足,计算所述微网内过剩柴油机组和风电机组电量,此时将所述微网对配网等效为一个电源,所述微网内负荷分为由分布式电源供电点和停电点;若所述微网内发电量不能满足与其连通的负荷量,则此时将所述微网对所述配网等效为一个负荷,所述微网内负荷分为由分布式电源供电点、由配网供电点和停电点;
步骤(5):对所述配网内各设备进行状态抽样,分析各负荷点与母线的连通性,得到由所述母线进行供电的负荷点和不能由母线供电的负荷点;若不能由所述母线供电的负荷点与PCC公共连接点连通,且此时所述微网为等效电源状态,则所述负荷点转由所述微网进行供电,统计该情况下所有与所述微网相连的负荷,采用负荷削减策略,得到实际由所述微网供电的负荷点及不能由所述微网供电的负荷点;
步骤(6):若微网处于等效负荷状态,分析PCC公共连接点与配网母线的连通性,若与其连通,则微网内与PCC公共节点相连的缺电负荷点由配网进行供电;若不连通,则采用负荷削减策略,得到该时刻微网内部实际停电负荷点;
步骤(7):由步骤(4)、步骤(5)、步骤(6)得到的各负荷点实际状态计算系统可靠性指标。
步骤(1)中,序贯蒙特卡洛方法即状态转移抽样法对所述配电系统各设备进行状态抽样,以获取各时刻所述配电系统的设备状态,如图2所示:使用假设系统内含有m个元件,共k个状态,并且每个所述元件的状态持续时间服从指数分布;所述系统的状态序列G={S 1,S 2···,S K},所述元件处于当前状态S j下的转移率为λ i(i=1,2···,m),若每个所述元件的状态持续时间T i服从参数为λ i的指数分布,那么所述系统的状态持续时间T也服从指数分布, 其概率密度分布函数为:
Figure PCTCN2021138593-appb-000015
对所述概率密度分布函数进行逆变换可得到当前状态S j下的所述系统状态持续时间
Figure PCTCN2021138593-appb-000016
其中U为[0,1]间生成的均匀分布随机数;
对于每一个所述系统状态S j,其实际由m个所述元件共同决定,若任意一个所述元件状态发生改变,则所述系统状态也发生改变,因此,所述系统从当前所述状态S j开始将有m个可能达到的状态,达到每个状态的概率为:
Figure PCTCN2021138593-appb-000017
下一个系统状态可通过抽样决定
Figure PCTCN2021138593-appb-000018
其中,U′为[0,1]间生成的均匀分布随机数。
步骤(2)中,采用模拟法对配电系统进行可靠性分析,一种思路是类似于故障模式后果分析法,首先采用模拟法对所述系统各个设备进行状态抽样,获取各时刻的所述系统中所有设备的状态,然后分析各所述设备故障状态对负荷点产生的影响,而所述配电系统中设备众多,分析每个设备的故障影响工作量较为繁巨。因此本文从负荷点出发,基于串并联结构分析负荷点和电源的连通性,分析过程如下:
(1)采用状态抽样法对所述系统各设备进行状态抽样,获取各时刻全部设备的状态S i,故障状态记为0,运行状态记为1;
(2)分析每个负荷点到电源的连通路径,得到路径上所有设备的标号;
(3)由(1)得到的设备状态和(2)得到设备编号,获得每个路径上各个设备的状态:若m个设备之间为并联关系,则源荷之间的连通性为max{S k,S k+1,···S k+m+1},若n个设备之间为串联关系,则所述源荷之间连通性为min{S k,S k+1,···S k+n+1};若源荷间同时包含串并联结构,则将并联设备连通性等效为单个设备连通性后,再按照串联结构分析。
对如图3所示系统结构作源荷连通性分析,分析过程如下:
1)配电系统内设备1-设备8进行状态抽样,得到设备1-8的状态S 1-S 8
2)对于负荷LP1其与电源之间的连通性为min{S 1,S 2,S 3,S 4},对于LP2与电源之间的连 通性为min{S 1,S 2,S 5,S 6},对于LP3与电源之间的连通性为min{S 1,S 2,S 5,S 7,S 8}。
为了便于理解上述连通性分析方法,以如图4所示系统结构做相关分析。
图4中,0号节点为电源节点,其馈线出口包含3个开关S 1-S 3,1-5号节点为负荷节点,H 1为环网箱,其两侧分别有开关S 3-S 4。由电源节点0向负荷节点1-5进行供电。假设线路L 3发生故障,以节点1和节点3为代表分析与电源0节点的连通性。首先,L 3=0,则开关S 2和S 4构成的故障区域内存在故障,因此S 2=min{L 3,L 4,L 5},S 4=min{L 3,L 4,L 5}均为0,对故障进行隔离。节点1和0之间包含两条供电路径,其状态量
Figure PCTCN2021138593-appb-000019
值为1,
Figure PCTCN2021138593-appb-000020
Figure PCTCN2021138593-appb-000021
值为0,
Figure PCTCN2021138593-appb-000022
值为1,因此负荷节点1可由电源节点0正常供电。同理,按照上述过程分析节点3与电源节点0之间连通性状态量LB 30为0。
步骤(3)中,需要求解风力出力,研究表明风电机组的功率与风速呈非线性关系,当风速低于切入风速V ci时,功率为零;当风速介于切入风速V ci和额定风速V r之间时,功率近似为与风速相关的二次函数;当风速介于额定风速V r和切出风速V co之间时,功率为最大功率;风速超过切出风速时,功率为零,对应表达式如下所示:
Figure PCTCN2021138593-appb-000023
其中A、B、C与切入风速、切出风速及额定风速有关,
Figure PCTCN2021138593-appb-000024
除此之外,还需求解柴油机出力,柴油机组采用两状态模型即“运行—故障”模型,不考虑柴油机组的降额运行状态,当元件正常运行时,可用容量为额定容量;当元件故障时,可用容量为0MW;
对于所述储能装置的充放电策略,计及风电允许接入比例的约束,定义“风电超出允许接入比例而微网吸收允许接入的风电后仍处于缺电状态”这一条件的数学表达式
Figure PCTCN2021138593-appb-000025
将此条件记为条件A;
当风电和柴油机组出力不满足条件A时,储能系统充电或放电电量按式 ΔG b(t)=G c(t)+G w(t)-P L(t);
当风电和柴油机组出力满足条件A时,储能系统放电电量ΔG ob(t)=G c(t)-P L(t)×(1-η%);
得到策略Ⅱ储能系统充放电模型如式
Figure PCTCN2021138593-appb-000026
步骤(4)、步骤(5)、步骤(6)中,需要说明所述微网的运行策略:
采用公共连接点PCC对所述微网孤岛和并网状态进行控制,所述微网优先消耗其内部分布式电源电量,当所述微网内缺电且缺电负荷点与PCC公共节点连通时,所述PCC公共连接点导通,由配网对所述微网内缺电负荷进行供电;当所述微网供电充足,所述配网内存在负荷点缺电且所述负荷点与所述PCC公共节点连通时,所述PCC公共连接点导通,由所述微网对所述配网内缺电负荷进行供电;所述微网对外部电网供电时,优先满足所述微网内部负荷,且电池储能系统电量不对外供电;原因是微网内部负荷供电要求高,电池储能系统应保证其内部负荷可靠性,防止对外部负荷供电后,电池电量不足导致微网内部负荷停电。因此,所述微网并网运行条件一是所述微网内存在负荷点缺电且所述负荷与所述PCC公共节点连通,二是所述微网内供电充足,所述配网内部分负荷缺电且其与所述PCC公共节点连通;其余情况下,所述微网采用孤岛运行状态;
同时由上述分析可知,任意时刻所述微网内负荷可归于为三种,第一种由分布式电源进行供电,第二种由所述配网进行供电,第三种停电负荷,其停电原因是设备故障导致与电源不连通。任意时刻所述配网内负荷可归于为四种,第一种由所述配网进行供电,第二种由所述微网进行供电,另外两种都是停电负荷,但是其停电原因不同,一种是由于设备故障导致与电源不连通,另一种是微网供电时负荷削减导致停电。
步骤(7)中,现有文献少有研究衡量微网与配网间互为备用性质的指标,本发明提出了微网年均等值电源电量MEASE、微网年均等值电源时间MEAST、微网等值电源功率MEASP、微网年均等值负荷电量MEAL、微网年均等值负荷时间MEALT、微网等值负荷功率MEALP、微网孤岛运行率η is和微网并网运行率η nis等指标:
计算微网年均等值电源电量
Figure PCTCN2021138593-appb-000027
其中P mtod(t)为t时刻所述微网向所述配网提供的功率,单位为MW;所述微网年均等值电源电量单位为MWh;
计算微网等值电源功率
Figure PCTCN2021138593-appb-000028
其中MEAST为所述微网年均等值电源时间, 单位为h/a,MEASP单位为MW;
计算微网年均等值负荷电量
Figure PCTCN2021138593-appb-000029
其中P dtom(t)为t时刻所述微网向配网提供的功率,单位为MW,MEAL单位为MWh;
计算微网等值负荷功率
Figure PCTCN2021138593-appb-000030
其中MEALT为所述微网年均等值负荷时间,单位为h/a,MEALP单位为MW;
计算微网孤岛运行率
Figure PCTCN2021138593-appb-000031
计算微网并网运行率
Figure PCTCN2021138593-appb-000032
最后应该说明的是,结合上述实施例仅说明本发明的技术方案而非对其限制。所属领域的普通技术人员应当理解到,本领域技术人员可以对本发明的具体实施方式进行修改或者等同替换,但这些修改或变更均在申请待批的权利要求保护范围之中。

Claims (6)

  1. 一种基于路径描述的含微网的配电系统可靠性分析方法,其特征在于,所述含微网的配电系统可靠性分析方法包括以下步骤:
    步骤1:对包含风柴储的微网发电系统进行状态抽样,获取各机组的状态序列;结合风柴出力模型,得到风电和柴油机组实际出力;
    步骤2:对所述微网中线路、断路器和变压器进行状态抽样,根据抽样结果对负荷和电源之间的连通性进行分析,将负荷点分为与所述微网内电源连通的负荷点和不连通的负荷点;
    步骤3:计算与所述电源连通负荷点的总负荷时间序列,根据步骤(1)得到的风柴时序出力,结合电池运行策略,得到所述电池各时刻的充放电量;
    步骤4:若所述微网内供电充足,计算所述微网内过剩柴油机组和风电机组电量,此时将所述微网对配网等效为一个电源,所述微网内负荷分为由分布式电源供电点和停电点;若所述微网内发电量不能满足与其连通的负荷量,则此时将所述微网对所述配网等效为一个负荷,所述微网内负荷分为由分布式电源供电点、由配网供电点和停电点;
    步骤5:对所述配网内各设备进行状态抽样,分析各负荷点与母线的连通性,得到由所述母线进行供电的负荷点和不能由所述母线供电的负荷点;若不能由所述母线供电的负荷点与PCC公共连接点连通,且此时所述微网为等效电源状态,则所述负荷点转由所述微网进行供电,统计该情况下所有与所述微网相连的负荷,采用负荷削减策略,得到实际由所述微网供电的负荷点及不能由所述微网供电的负荷点;
    步骤6:若所述微网处于等效负荷状态,分析所述PCC公共连接点与所述配网母线的连通性,若与其连通,则所述微网内与所述PCC公共节点相连的缺电负荷点由所述配网进行供电;若不连通,则采用负荷削减策略,得到该时刻微网内部实际停电负荷点;
    步骤7:由步骤4、步骤5、步骤6得到的各负荷点实际状态计算系统可靠性指标。
  2. 根据权利要求1所述的一种基于路径描述的含微网的配电系统可靠性分析方法,其特征在于,步骤1中,采用序贯蒙特卡洛方法即状态转移抽样法对所述配电系统各设备进行状态抽样,以获取各时刻所述配电系统的设备状态:假设系统内含有m个元件,共k个状态,并且每个所述元件的状态持续时间服从指数分布;所述系统的状态序列G={S 1,S 2…,S K},所述元件处于当前状态S j下的转移率为λ i(i=1,2…,m),若每个所述元件的状态持续时间T i服从参数为λ i的指数分布,那么所述系统的状态持续时间T也服从指数分布,其概率密度分布函数为:
    Figure PCTCN2021138593-appb-100001
    对所述概率密度分布函数进行逆变换可得到当前状态S j下的所述系统状态持续时间
    Figure PCTCN2021138593-appb-100002
    其中U为[0,1]间生成的均匀分布随机数;
    所述系统从当前所述状态S j开始将有m个可能达到的状态,达到每个状态的概率为:
    Figure PCTCN2021138593-appb-100003
    下一个系统状态可通过抽样决定
    Figure PCTCN2021138593-appb-100004
    其中,U′为[0,1]间生成的均匀分布随机数。
  3. 根据权利要求2所述的一种基于路径描述的含微网的配电系统可靠性分析方法,其特征在于,步骤2中,基于串并联结构分析负荷点和电源的连通性,分析过程如下:
    (1)采用状态抽样法对所述系统各设备进行状态抽样,获取各时刻全部设备的状态S i,故障状态记为0,运行状态记为1;
    (2)分析每个负荷点到电源的连通路径,得到路径上所有所述设备的标号;
    (3)由(1)得到的设备状态和(2)得到的设备标号,获得每个路径上各个设备的状态:若m个设备之间为并联关系,则源荷之间的连通性为max{S k,S k+1,…S k+m+1},若n个设备之间为串联关系,则所述源荷之间连通性为min{S k,S k+1,…S k+n+1};若源荷间同时包含串并联结构,则将并联设备连通性等效为单个设备连通性后,再按照串联结构分析。
  4. 根据权利要求3所述的一种基于路径描述的含微网的配电系统可靠性分析方法,其特征在于,步骤3中,需要求解风力出力,研究表明风电机组的功率与风速呈非线性关系,当风速低于切入风速V ci时,功率为零;当风速介于切入风速V ci和额定风速V r之间时,功率近似为与风速相关的二次函数;当风速介于额定风速V r和切出风速V co之间时,功率为最大功率;风速超过切出风速时,功率为零,对应表达式如下所示:
    Figure PCTCN2021138593-appb-100005
    其中A、B、C与切入风速、切出风速及额定风速 有关,
    Figure PCTCN2021138593-appb-100006
    除此之外,还需求解柴油机出力,柴油机组采用两状态模型即“运行—故障”模型,不考虑柴油机组的降额运行状态,当元件正常运行时,可用容量为额定容量;当元件故障时,可用容量为0MW;
    对于所述储能装置的充放电策略,计及风电允许接入比例的约束,定义“风电超出允许接入比例而微网吸收允许接入的风电后仍处于缺电状态”这一条件的数学表达式
    Figure PCTCN2021138593-appb-100007
    将此条件记为条件A;
    当风电和柴油机组出力不满足条件A时,储能系统充电或放电电量按式ΔG b(t)=G c(t)+G w(t)-P L(t);
    当风电和柴油机组出力满足条件A时,储能系统放电电量ΔG ob(t)=G c(t)-P L(t)×(1-η%);
    得到策略Ⅱ储能系统充放电模型如式
    Figure PCTCN2021138593-appb-100008
  5. 根据权利要求4所述的一种基于路径描述的含微网的配电系统可靠性分析方法,其特征在于,步骤4-步骤6中,所述微网的运行策略为:
    采用所述PCC公共连接点对所述微网孤岛和并网状态进行控制,所述微网优先消耗其内部分布式电源电量,当所述微网内缺电且缺电负荷点与PCC所述公共节点连通时,所述PCC公共连接点导通,由所述配网对所述微网内缺电负荷进行供电;当所述微网供电充足,所述配网内存在负荷点缺电且所述负荷点与所述PCC公共节点连通时,所述PCC公共连接点导通,由所述微网对所述配网内缺电负荷进行供电;所述微网对外部电网供电时,优先满足所述微网内部负荷,且电池储能系统电量不对外供电;
    所述微网并网运行条件一是所述微网内存在负荷点缺电且所述负荷与所述PCC公共节点连通,二是所述微网内供电充足,所述配网内部分负荷缺电且其与所述PCC公共节点连通;其余情况下,所述微网采用孤岛运行状态;
    任意时刻所述微网内负荷可归于为三种,第一种由分布式电源进行供电,第二种由所述配网进行供电,第三种停电负荷;任意时刻所述配网内负荷可归于为四种,第一种由所述配 网进行供电,第二种由所述微网进行供电,另外两种都是停电负荷。
  6. 根据权利要求5所述的一种基于路径描述的含微网的配电系统可靠性分析方法,其特征在于,步骤7中,计算微网年均等值电源电量
    Figure PCTCN2021138593-appb-100009
    其中P mtod(t)为t时刻所述微网向所述配网提供的功率,单位为MW;所述微网年均等值电源电量单位为MWh;
    计算微网等值电源功率
    Figure PCTCN2021138593-appb-100010
    其中MEAST为所述微网年均等值电源时间,单位为h/a,MEASP单位为MW;
    计算微网年均等值负荷电量
    Figure PCTCN2021138593-appb-100011
    其中P dtom(t)为t时刻所述微网向配网提供的功率,单位为MW,MEAL单位为MWh;
    计算微网等值负荷功率
    Figure PCTCN2021138593-appb-100012
    其中MEALT为所述微网年均等值负荷时间,单位为h/a,MEALP单位为MW;
    计算微网孤岛运行率
    Figure PCTCN2021138593-appb-100013
    计算微网并网运行率
    Figure PCTCN2021138593-appb-100014
PCT/CN2021/138593 2021-07-26 2021-12-16 一种基于路径描述的含微网的配电系统可靠性分析方法 WO2023005113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110844239.7 2021-07-26
CN202110844239.7A CN113468705B (zh) 2021-07-26 2021-07-26 一种基于路径描述的含微网的配电系统可靠性分析方法

Publications (1)

Publication Number Publication Date
WO2023005113A1 true WO2023005113A1 (zh) 2023-02-02

Family

ID=77882399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138593 WO2023005113A1 (zh) 2021-07-26 2021-12-16 一种基于路径描述的含微网的配电系统可靠性分析方法

Country Status (2)

Country Link
CN (1) CN113468705B (zh)
WO (1) WO2023005113A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117421891A (zh) * 2023-10-20 2024-01-19 国网湖北省电力有限公司电力科学研究院 基于改进序贯交叉熵算法的输变电系统可靠性评估方法及装置
CN117810990A (zh) * 2024-01-02 2024-04-02 国网江苏省电力有限公司宿迁供电分公司 一种基于配网两线三站结构提升新能源承载力的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113468705B (zh) * 2021-07-26 2023-09-22 国网江苏省电力有限公司南通供电分公司 一种基于路径描述的含微网的配电系统可靠性分析方法
CN114117795B (zh) * 2021-11-29 2023-04-11 南通大学 一种基于负荷-电源连通性分析的配网可靠性评估方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436631A (zh) * 2012-01-18 2012-05-02 重庆大学 一种风/柴/储混合系统可靠性评估方法
US20130346011A1 (en) * 2012-06-20 2013-12-26 Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan Microgrid power distribution system and power flow asymmetrical fault analysis method therefor
CN104201723A (zh) * 2014-08-29 2014-12-10 重庆大学 基于时序模拟的离网型微网可靠性评估方法
CN111861029A (zh) * 2020-07-29 2020-10-30 国网上海市电力公司 一种计及孤岛划分和网络重构的供电可靠性评估方法
CN113468705A (zh) * 2021-07-26 2021-10-01 国网江苏省电力有限公司南通供电分公司 一种基于路径描述的含微网的配电系统可靠性分析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028745B1 (ko) * 2008-05-15 2011-04-14 남서울대학교 산학협력단 배전계통에서 지능형 frtu 기반의 고장구간 판단 및자율 분리 방법
CN104851053B (zh) * 2015-05-14 2018-04-17 上海电力学院 一种含风光储的配电网供电可靠性评估方法
CN105762795A (zh) * 2016-04-05 2016-07-13 华南理工大学 一种基于非线性整数规划的含分布式电源的配网负荷转供优化模型

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436631A (zh) * 2012-01-18 2012-05-02 重庆大学 一种风/柴/储混合系统可靠性评估方法
US20130346011A1 (en) * 2012-06-20 2013-12-26 Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan Microgrid power distribution system and power flow asymmetrical fault analysis method therefor
CN104201723A (zh) * 2014-08-29 2014-12-10 重庆大学 基于时序模拟的离网型微网可靠性评估方法
CN111861029A (zh) * 2020-07-29 2020-10-30 国网上海市电力公司 一种计及孤岛划分和网络重构的供电可靠性评估方法
CN113468705A (zh) * 2021-07-26 2021-10-01 国网江苏省电力有限公司南通供电分公司 一种基于路径描述的含微网的配电系统可靠性分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU ZHIJUN , LI MINGKUN: "Reliability Evaluation of Grid-connected Micro-grid based on Feeder Path Set Methods", ELECTRICAL ENGINEERING, no. 10, 15 October 2016 (2016-10-15), pages 17 - 22, XP093028730 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117421891A (zh) * 2023-10-20 2024-01-19 国网湖北省电力有限公司电力科学研究院 基于改进序贯交叉熵算法的输变电系统可靠性评估方法及装置
CN117810990A (zh) * 2024-01-02 2024-04-02 国网江苏省电力有限公司宿迁供电分公司 一种基于配网两线三站结构提升新能源承载力的方法

Also Published As

Publication number Publication date
CN113468705B (zh) 2023-09-22
CN113468705A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2023005113A1 (zh) 一种基于路径描述的含微网的配电系统可靠性分析方法
Sedghi et al. Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation
WO2018014450A1 (zh) 基于rt-lab的真实微电网运行动态仿真测试平台
Nguyen et al. A novel agent-based distributed power flow solver for smart grids
Peng et al. Static security risk assessment for islanded hybrid AC/DC microgrid
Ge et al. Reliability assessment of active distribution system using Monte Carlo simulation method
WO2024037522A1 (zh) 大容量中压链式储能系统作离网测试电源控制方法及系统
Gao et al. Field exploration and analysis of power grid side battery energy storage system
Liao et al. Load transfer capability analysis considering interconnection of distributed generation and energy storage system
Samuel et al. A Novel Energy Management Approach to Networked Microgrids for Disaster Resilience
Xiao et al. Operation risk assessment of AC/DC hybrid distribution system based on two-point estimation method
CN111952964A (zh) 一种配电网多时段故障恢复模型的解耦方法
CN105896533B (zh) 一种主动配电网静态安全评估方法
Ye et al. Comprehensive mitigation strategy of voltage sag based on sensitive load clustering
Ndlela et al. Reliability and security analysis of the southern Africa power pool regional grid
CN207318607U (zh) 一种大功率储能系统模拟测试平台
Khushi et al. A smart microgrid approach for distributed network combined with power line fault location detection
Zhao et al. Reliability analysis of distribution network based on the deep coupling of high penetration distributed generation and energy storage
Yang et al. Optimization of sitting and sizing of microgrid in distributed generation considering reliability costs
Li et al. Reliability index setting and fuzzy multi-state modeling for battery storage station
Yang et al. Identification of weak nodes in ac/dc hybrid power grid based on entropy theory
Duan et al. Adaptability Evaluation Method of Distribution Network Considering Flexibility Resource
Huang et al. Electric Energy Storage System Modelling for Power System Dynamic Analysis in Multi-time Scale
Lu et al. Comprehensive Evaluation of Grid Adaptability Considering Rolling Access of Cascade Power Stations
Zhao et al. Influence Analysis of Distributed Generation on Reliability of Distribution Network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE