WO2023005024A1 - 一种移动式生物质热解活化分区偶联方法及装置 - Google Patents

一种移动式生物质热解活化分区偶联方法及装置 Download PDF

Info

Publication number
WO2023005024A1
WO2023005024A1 PCT/CN2021/126876 CN2021126876W WO2023005024A1 WO 2023005024 A1 WO2023005024 A1 WO 2023005024A1 CN 2021126876 W CN2021126876 W CN 2021126876W WO 2023005024 A1 WO2023005024 A1 WO 2023005024A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
activation
gas
reaction chamber
activated
Prior art date
Application number
PCT/CN2021/126876
Other languages
English (en)
French (fr)
Inventor
曾德望
刘攀笏
肖睿
邱宇
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2023005024A1 publication Critical patent/WO2023005024A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/39Apparatus for the preparation thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention relates to the technical field of biomass pyrolysis and biochar activation, in particular to a mobile biomass pyrolysis activation partition coupling method and device.
  • Biomass is a kind of energy with huge reserves.
  • pyrolysis technology has great potential and advantages.
  • Biochar can be obtained through pyrolysis.
  • Activation technology is to transform biochar into activated carbon with higher application value.
  • Activated carbon can be used in various fields such as environment, chemical industry, food and so on, with great value.
  • the traditional rotary kiln pyrolysis reactor has been applied to a certain extent, but due to the short residence time of the material, the pyrolysis efficiency is greatly reduced.
  • the unique spiral feeding structure of the spiral pyrolysis reactor can greatly increase the residence time of the material, and the single-pass spiral can complete the pyrolysis of biomass to obtain pyrolysis gas and biochar. At present, this technology is still in the research stage.
  • biomass pyrolysis gas mainly uses processes such as condensation cooling and catalytic reforming to obtain purer chemical products. This technology has been recognized by the industry, but this process consumes a lot of time and economic costs. In fact, the combustion heat contained in pyrolysis gas has been neglected.
  • the complete combustion products of pyrolysis gas are water vapor and carbon dioxide, which are good activated gases. To solve the problem of high cost, realize the efficient utilization of biomass pyrolysis gas.
  • biochar requires high-temperature water vapor or carbon dioxide or a mixture of the two. At present, most of the biochar activation and pyrolysis are carried out separately. The activation needs to be equipped with separate steam generators and other equipment. This technology has a certain degree of maturity.
  • the spiral reactor used for pyrolysis or activation has the following technical problems: the pyrolysis reaction does not match the residence time, and the quality of the pyrolysis reaction is not high; in the case of gas participation, the spiral blade will greatly reduce the flow of gas If it is used for biochar activation, it will greatly affect the activation effect and efficiency; the use of pyrolysis gas is difficult and the cost of use is high; the setting of external water or gas sources results in a large activation process system and high process costs.
  • the present invention provides a mobile biomass pyrolysis activation partition coupling method and device to realize the integration of biomass pyrolysis and activation, so as to solve the problem of poor pyrolysis reaction quality in the existing pyrolysis technology.
  • a mobile biomass pyrolysis activation partition coupling device including a pyrolysis reaction chamber, an activation reaction chamber and an activation gas generator, the pyrolysis reaction chamber is used for high-temperature pyrolysis of biomass to generate pyrolysis gas and biochar
  • the activated gas generator is used to burn the pyrolysis gas to generate activated gas
  • the activation reaction chamber is used to activate the biochar to generate activated carbon under the action of the activated gas and ultrasonic waves.
  • the pyrolysis reaction chamber is provided with a feed inlet and a pyrolysis gas outlet connected to the pyrolysis gas inlet of the activated gas generator;
  • the cavity forms the activation reaction chamber, and the activation reaction chamber communicates with the pyrolysis reaction chamber through the return port on the outer screw shaft;
  • the inner screw shaft is arranged in the activation reaction chamber, and an activation flow channel is formed in it, and its inlet is connected with the activation
  • the activation gas outlet of the gas generator is connected, and the surface of the inner screw shaft is provided with several groups of inner screw blades arranged at intervals along the axial direction, and the surface of the inner screw shaft is evenly distributed with a number of activation gas distribution ports for communicating with the pyrolysis reaction chamber;
  • the outlet of the activation reaction chamber is connected with the activated carbon collection device.
  • the material return port and the pyrolysis gas outlet are located at one end away from the feed port; the outer helical blade extends in a spiral shape along the outer screw axis from the feed port to the direction of the return port, and the pitch is first gradually Get bigger and then get smaller.
  • the inner helical blades are arranged at equal intervals in the axial direction, and the axial distance between two adjacent groups of inner helical blades is 5/6 of the diameter of the inner helical shaft; each group of inner helical blades includes three blades, and the three blades are relatively The distance between two adjacent blades is 120° along the circumference, and each set of inner helical blades is arranged at an angle of 15° to the inner helical axis.
  • the activated gas generator is provided with a combustion-supporting air inlet, which is connected to a blower connected with a frequency converter through a pipeline; the pyrolysis gas inlet is connected to the pyrolysis gas outlet through a pyrolysis gas pipeline, and the pyrolysis gas
  • the gas pipeline is provided with a flow control valve; the activated gas generator is provided with a temperature sensor at the outlet of the activated gas, which is connected with a temperature display.
  • the feed inlet is connected with the feed hopper; the activation reaction chamber is connected with the ultrasonic generator; the pyrolysis reaction chamber is wrapped with a heating device.
  • a mobile biomass pyrolysis activation partition coupling method including the following process:
  • the biochar generates activated carbon through the activation gas and ultrasonic waves under high temperature conditions.
  • the activated carbon is formed on the inner screw shaft and its surface It is transported under the action of the inner spiral blade, discharged out of the activation reaction chamber and collected by the activated carbon collection device.
  • Biomass is fed into the pyrolysis reaction chamber and is pyrolyzed at high temperature.
  • the pyrolysis temperature is controlled at 350-550°C, and the temperature of the pyrolysis gas generated by pyrolysis is controlled at 500-650°C.
  • the combustion temperature of the pyrolysis gas in the activated gas generator is controlled at 850-950°C, and the temperature of the generated activated gas is adjusted by controlling the flow of combustion air and pyrolysis gas entering the activated gas generator.
  • the biochar at the material return port prevents the pyrolysis gas from diffusing to the activation reaction chamber, and prevents the pyrolysis gas from interfering with the activation of the biochar.
  • the present invention creatively proposes a biochar self-activating method and device, and realizes the goal of high-efficiency utilization of biomass and integrated pyrolysis-activation rapid preparation of activated carbon.
  • the present invention has the following advantages:
  • the invention has high pyrolysis reaction intensity.
  • the variable pitch design of the outer helical blade first accelerates the evaporation of biomass moisture with a small pitch, and then ensures the full volatiles are separated out with a large pitch, and finally promotes the rapid removal of the material form at the stage close to biochar by a small pitch.
  • the biochar forms a structure with high-density carbon atoms. Therefore, the pyrolysis reaction is sufficient and the reaction intensity is improved.
  • the present invention integrates pyrolysis and activation. Combining biomass pyrolysis and biochar activation, the system is greatly simplified and requires less space, which is beneficial to large-scale applications. All the pyrolysis gas is introduced into the activated gas generator and fully burned in the combustion chamber of the activated gas generator. The combustion product becomes the activated gas required for the activation reaction, and the heat released by the combustion reaction provides the temperature required for the activation reaction. The chemical energy of the decomposed gas is effectively converted, and the pyrolysis gas is fully utilized. In addition, the pyrolysis gas is completely combusted, and the products are water vapor and carbon dioxide. The combustion product is used as an activation gas to participate in the biochar activation reaction, and no waste liquid is generated at all.
  • the activation gas of the present invention is self-supplied. Compared with the traditional activation process, which needs to use an external water source or gas source to generate activation gas, the activation gas of this device comes entirely from the combustion of pyrolysis gas generated by the pyrolysis of biomass raw materials, and the temperature of the gas after combustion can basically reach about 900 °C. Exactly the temperature required for biochar activation, so no external water or air source is required.
  • the activated carbon of the invention has high quality.
  • the inner helical blade adopts a three-blade blade, and its streamlined structure allows the gas to easily bypass the blade, greatly reducing the resistance of the activated gas, increasing the circulation area of the activated gas and the heat exchange area between the biochar and the activated gas, and at the same time it does not Reduce the conveying effect of materials.
  • the iodine value of activated carbon obtained by activation can be increased by 400mg/g, the total volume of micropores can be increased by 300%, the total volume of mesopores can be increased by 400%, and the specific surface area can be increased by 460m 2 /g. The activation effect and reaction efficiency are greatly improved.
  • the activation gas and activated carbon of the invention are evenly distributed, and the activation effect is good.
  • the activation gas is introduced into the cavity of the inner screw shaft, and then the activation gas enters the inner screw activation reaction chamber through the activation gas distribution port, thereby improving the distribution uniformity of the activation gas.
  • the ultrasonic wave is transmitted to the internal helical activation reaction chamber through the ultrasonic generator, which improves the uniformity of the activated carbon particles.
  • the activation reaction is uniform and sufficient, so that the internal temperature of the material is kept uniform, and the over-activation or under-activation caused by the local temperature of the material is too high or too low is avoided.
  • the error between the iodine value of the final activated carbon and the target value is within 10 mg/g, the error between the total volume of micropores and the target value is within 10%, the error between the total volume of mesopores and the target value is within 10%, and the specific surface area is within 10% of the target value.
  • the error is within 12m 2 /g.
  • the temperature of the activated gas in the present invention can be controlled within the desired range.
  • the temperature sensor senses the temperature of the activated gas, and the temperature display is used to display the temperature.
  • the flow rate of the combustion-supporting air can be adjusted through the frequency converter, and the flow rate of the pyrolysis gas can be adjusted through the pyrolysis gas flow control valve. , and then adjust the combustion intensity, so that the temperature of the activation gas is stable in the range of 850-950 ° C, ensuring that the activation reaction is carried out at a suitable temperature.
  • Fig. 1 is a structural schematic diagram of a specific embodiment of the device of the present invention.
  • Fig. 2 is a schematic structural view of the internal helical blade in a specific embodiment of the device of the present invention.
  • Fig. 3 is a schematic diagram of the distance and angle of inner helical blades arranged on the inner helical shaft in a specific embodiment of the device of the present invention.
  • the mobile biomass pyrolysis activation zonal coupling device of this embodiment comprises a pyrolysis reaction chamber 8, an activation reaction chamber 9 and an activated gas generator 21, and the pyrolysis reaction chamber 8 makes the biomass high-temperature heat Decompose to generate pyrolysis gas and biochar.
  • the activated gas generator 21 uses the pyrolysis gas to burn to generate activated gas.
  • the activation reaction chamber 9 is used to activate the biochar under the action of the activated gas and ultrasonic waves to generate activated carbon.
  • the activation reaction chamber 9 is located inside the pyrolysis reaction chamber 8
  • the activation gas generator 21 is located outside the pyrolysis reaction chamber 8 .
  • the pyrolysis reaction chamber 8 is provided with a feed inlet 15, and the pyrolysis reaction chamber 8 is provided with an outer screw shaft 16, and its surface is provided with an outer helical blade 6 extending helically along the axial direction.
  • the outer screw shaft 16 The above-mentioned activation reaction chamber 9 is formed inside, and it is communicated with the pyrolysis reaction chamber 8 through the return port 13 on the outer screw shaft 16;
  • the inlet of the flow channel is connected with the activated gas outlet 19 of the activated gas generator 21,
  • the surface of the inner screw shaft 17 is provided with several groups of inner screw blades 10 uniformly distributed along the axial direction, and the surface of the inner screw shaft 17 is evenly distributed with a number of
  • the activation gas generator 21 communicates with the inner screw shaft 17 through the activation gas pipeline 4 , and the activation gas is delivered to the inner screw shaft 17 and the activation reaction chamber 9 under the action of pressure difference.
  • the outer screw blade 6 is welded to the surface of the outer screw shaft 16 , and the material return port 13 is arranged at the end of the outer screw shaft 16 ;
  • the pitch of the external helical blade 6 is optimally designed according to the three stages of biomass pyrolysis drying, volatilization analysis, and carbon chain polycondensation. From the feeding port 15 to the direction of the feeding port 13, the screw pitch first gradually increases and then gradually decreases.
  • This variable pitch design matches the reaction and residence time, among which the residence time required for the drying and carbon chain polycondensation stages is shorter, while the volatilization analysis stage requires a longer residence time: firstly, the biomass moisture is accelerated with a small pitch The evaporation of the volatile matter is followed by a large pitch to ensure the full analysis of volatiles.
  • the small pitch promotes the rapid removal of hydroxyl groups, carboxyl groups, aromatic groups and other oxygen-containing functional groups at the stage close to the biochar, so that the biological Char forms a structure with a high density of carbon atoms. Therefore, the pyrolysis reaction in the pyrolysis reaction chamber 8 is sufficient and the strength is high.
  • each group of internal helical blades 10 includes three blades, and the distance between adjacent two blades of the three blades is 120° along the circumference, and each group of internal helical blades 10 and the internal helical
  • the shafts 17 are arranged at an angle of 15°; the axial distance between two adjacent groups of inner helical blades 10 is 5/6 of the diameter of the inner helical shaft 17 .
  • the three-leaf blade of the inner spiral blade 10 greatly reduces the resistance of the activated gas, increases the circulation area of the activated gas and the heat exchange area between the biochar and the activated gas.
  • the iodine value of the activated carbon obtained by activation can be increased by 400mg/g , the total volume of micropores can be increased by 300%, the total volume of mesopores can be increased by 400%, and the specific surface area can be increased by 460m 2 /g.
  • a combustion chamber 2 is formed in the activated gas generator 21, and a combustion air inlet 1 is provided on one side thereof, which is connected to a blower 24 connected with a frequency converter 23 through a combustion air pipeline 29, and the combustion chamber 2 is located in the activation
  • the gas outlet 19 is provided with a temperature sensor 27, which is connected to an external temperature display 25.
  • Blower 24 is used to deliver combustion-supporting air
  • frequency converter 23 is used to adjust the flow rate of combustion-supporting air
  • temperature indicator 25 and temperature sensor 27 are used to monitor the temperature of activated gas
  • pyrolysis gas inlet 18 passes through pyrolysis gas pipeline 3 and pyrolysis gas outlet 14 Connected, the pyrolysis gas pipeline 3 is provided with a flow control valve 22 for adjusting the flow rate of the pyrolysis gas.
  • the activation reaction chamber 9 is connected to the ultrasonic generator 26; the activation reaction chamber 9 is used for the activation of biochar and the delivery of the activated carbon, and the ultrasonic generator 26 is used for transmitting ultrasonic waves to the activation reaction chamber 9.
  • the pyrolysis reaction chamber 8 is wrapped with a heating device 5, which can be an electric heating device; the feeding port 15 is connected to the feeding hopper 7, which is convenient for biomass feeding.
  • Biomass pyrolysis The biomass raw material falls into the pyrolysis reaction chamber 8 from the biomass feed hopper 7, and the biomass raw material undergoes a high-temperature pyrolysis reaction in the pyrolysis reaction chamber 8; at the same time, the outer spiral blade 6 will generate The raw materials are transported to the direction of the return port 13. In the process of pyrolysis, they are volatilized and analyzed to become pyrolysis gas.
  • the pyrolysis gas contains combustible gases such as methane, carbon monoxide, hydrogen, and bio-oil vapor, and non-combustible gases such as water vapor. , and the remaining solid matter becomes biochar.
  • the pyrolysis gas enters the pyrolysis gas pipeline 3 from the pyrolysis gas outlet 14 under the action of the pressure difference, and the biochar is transported to the return port 13 under the action of the outer spiral blade 6 .
  • pyrolysis gas enters combustion chamber 2 (activation gas generator 21) from pyrolysis gas inlet 18 through pyrolysis gas pipeline 3, and at the same time, blower 24 inhales combustion-supporting air from the environment to support combustion
  • the air enters the combustion chamber 2 from the combustion air inlet 1 through the combustion air pipe 29, and under the action of the combustion air, the pyrolysis gas is fully combusted in the combustion chamber 2 to generate carbon dioxide and water vapor, and these two gases are used as the activation of activated biochar.
  • the gas enters the activation gas pipeline 4 from the activation gas outlet 19 under the action of the pressure difference.
  • the activation gas enters the inner screw shaft 17 from the activation gas inlet 20 through the activation gas pipeline 4, and then enters the activation reaction chamber 9 through the activation gas distribution port 28, and the biochar falls from the pyrolysis reaction chamber 8 through the return port 13.
  • the ultrasonic generator 26 transmits ultrasonic waves to the activation reaction chamber 9, under the action of activation gas and ultrasonic vibration, the biochar is activated into activated carbon, and under the action of the inner spiral blade 10, the activated carbon is transported to the discharge The mouth 12 falls into the activated carbon collection device 11.
  • the biomass is fed into the pyrolysis reaction chamber 8 and is pyrolyzed at a high temperature.
  • the pyrolysis temperature is controlled at 350-550°C, and the temperature of the pyrolysis gas generated by the pyrolysis is controlled at 500-650°C.
  • the pyrolysis gas at this temperature can be ignited and burned in the combustion chamber 2 .
  • the combustion-supporting air flow rate can be adjusted by the frequency converter 23 , the temperature of the activated gas is displayed by the temperature display device 25 , and the temperature of the activated gas is adjusted by the pyrolysis gas flow control valve 22 and the frequency converter 23 .
  • the combustion temperature of the pyrolysis gas in the activated gas generator 21 is controlled at 850-950° C., and the temperature of the generated activated gas is adjusted by controlling the flow of combustion-supporting air entering the activated gas generator 21;
  • the biochar at the feeding port 13 prevents the pyrolysis gas from diffusing to the activation reaction chamber 9 and prevents the pyrolysis gas from interfering with the activation of the biochar.
  • the activation gas communicates with the activation reaction chamber 9 through the activation gas distribution port 28 on the inner screw shaft 17, so as to improve the distribution uniformity of the activation gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种移动式生物质热解活化分区偶联方法及装置,装置主要结构包括热解反应室、活化反应室和活化气发生器。热解反应室对生物质原料进行热解,得到热解气和生物炭;活化气发生器在助燃空气的辅助下将热解气点燃并充分燃烧,得到活化气体水蒸汽和二氧化碳;活化反应室在活化气体的作用下将生物炭活化,得到活性炭。本发明提出了生物炭自活化的方法和工艺,实现了生物质的高效利用和热解-活化一体化快速制备活性炭的目标。解决了现有的热解技术中热解反应质量不高、热解气利用困难以及生物炭活化工艺中工艺繁琐、成本过高的问题。

Description

一种移动式生物质热解活化分区偶联方法及装置 技术领域
本发明涉及生物质热解和生物炭活化技术领域,尤其是一种移动式生物质热解活化分区偶联方法及装置。
背景技术
生物质是一种储量巨大的能源,在诸多的利用方式中,热解技术具有巨大的潜力和优势,通过热解可以获取生物炭。活化技术则是将生物炭转变为应用价值更高的活性炭,活性炭可以应用于环境、化工、食品等等各个领域,价值巨大。
传统的回转窑热解反应器已经得到一定的应用,但是由于物料的停留时间较短,大大降低了热解效率。螺旋热解反应器的独特的螺旋式送料结构能够大大提高物料的停留时间,单程螺旋就可以完成生物质的热解,得到热解气和生物炭,目前该技术仍处于研究阶段。
目前对生物质热解气的利用主要是采用冷凝降温、催化重整等工艺得到更为纯净的化工产品,该技术得到了业内的认可,但这一过程耗费的时间代价和经济代价较大。事实上,热解气所蕴含的燃烧热能一直被忽略,热解气的完全燃烧产物为水蒸汽和二氧化碳,这是良好的活化气体,如果能加以利用,将能够解决热解气利用困难、利用成本高的问题,实现生物质热解气的高效利用。
生物炭的物理活化需要高温的水蒸汽或者二氧化碳或者二者的混合气,目前大多采用的是生物炭活化和热解分开进行,活化时需单独配备蒸汽发生器等设备,此技术已具备一定的成熟度。
目前螺旋反应器用于热解或活化存在以下技术问题:热解反应和停留时间不匹配,热解反应质量不高;在有气体的参与的情况下,螺旋叶片将会大大减小气体的通流面积,导致气体流量骤降,若用于生物炭活化,将大大影响活化效果和效率;热解气利用困难,利用成本大;外部水源或气源的设置造成活化工艺系统庞大,工艺成本高。
发明内容
针对现有技术的缺陷,本发明提供一种移动式生物质热解活化分区偶联方法及装置,实现生物质热解-活化一体化,以解决现有的热解技术中热解反应质量不高、热解气利用困难的问题以及生物炭活化工艺中工艺繁琐、成本过高的问题。
本发明采用的技术方案如下:
一种移动式生物质热解活化分区偶联装置,包括热解反应室、活化反应室和活化气发生器,所述热解反应室用于供生物质高温热解生成热解气和生物炭,所述活化气发生器用于供所述热解气燃烧产生活化气体,所述活化反应室用于供所述生物炭在所述活化气体及超声波作用下进行活化反应生成活性炭。
其进一步技术方案为:
所述热解反应室上设有进料口和用于与活化气发生器的热解气进口连接的热解气出口; 热解反应室内设有带外螺旋叶片的外螺旋轴,其内部空腔形成所述活化反应室,活化反应室与热解反应室通过所述外螺旋轴上的返料口连通;活化反应室内设有内螺旋轴,其内形成有活化气流道,其入口与活化气发生器的活化气出口连接,内螺旋轴表面设有若干组沿轴向间隔设置的内螺旋叶片,且内螺旋轴表面均布有若干用于与热解反应室连通的活化气分配口;活化反应室的出料口与活性炭收集装置连接。
所述返料口、热解气出口位于远离所述进料口的一端;外螺旋叶片从所述进料口至所述返料口方向,沿外螺旋轴呈螺旋状延伸,且螺距先渐渐变大再渐渐变小。
所述内螺旋叶片沿轴向等间距设置,相邻两组内螺旋叶片沿轴向的距离为内螺旋轴直径的5/6;每组内螺旋叶片包括三个叶片,且三个叶片中相邻两叶片之间沿圆周成120°,且每组所述内螺旋叶片与内螺旋轴成15°角设置。
所述活化气发生器上设有助燃空气进口,其通过管路与连接有变频器的鼓风机相连;所述热解气进口通过热解气管道与所述热解气出口连接,所述热解气管道上设有流量控制阀;活化气发生器内位于所述活化气出口处设有温度传感器,其与温度显示仪连接。
所述进料口与进料斗连接;所述活化反应室与超声波发生器连接;所述热解反应室外包裹有加热装置。
一种移动式生物质热解活化分区偶联方法,包括以下流程:
生物质在热解反应室内发生高温热解反应,生成热解气和生物炭;热解气由连接管路进入活化气发生器内,与助燃空气混合并充分燃烧,燃烧生成的二氧化碳和水蒸汽作为活化气体,通过设置在活化反应室内的内螺旋轴及其表面上均布的活化气分配口均分扩散到活化反应室内,生物炭则通过设置在热解反应室内的带有外螺旋叶片的外螺旋轴输送,并由连通热解反应室与活化反应室的返料口进入活化反应室内,生物炭在高温条件下通过活化气体及超声波作用生成活性炭,活性炭在内螺旋轴及其表面设置的内螺旋叶片作用下被输送,排出活化反应室并被活性炭收集装置收集。
其进一步技术方案为:
生物质进料到热解反应室,在高温下被热解,热解温度控制在350-550℃,热解产生的热解气温度控制在500-650℃。
热解气在活化气发生器内燃烧温度控制在850-950℃,生成的活化气体的温度通过控制进入活化气发生器助燃空气及热解气的流量进行调节。
所述返料口的生物炭阻止热解气向所述活化反应室扩散,防止热解气对生物炭活化造成干扰。
本发明的有益效果如下:
本发明创造性地提出了生物炭自活化的方法和装置,实现了生物质的高效利用和热解-活化一体化快速制备活性炭的目标。本发明具有如下有点:
本发明热解反应强度高。外螺旋叶片的变螺距设计,先是以小螺距加速了生物质水分的蒸发,紧接着又以大螺距保证了挥发分的充分析出,最后再由小螺距促进物料形态在接近生物炭的阶段快速脱除羟基、羧基、芳香族基团和其他含氧官能团,使生物炭形成具有高密度碳原子的结构。从而使得热解反应充分,提高了反应强度。
本发明热解、活化一体化。将生物质热解与生物炭活化合为一体,系统得到大幅度简化,所需空间较小,有益于规模化应用。将热解气全部引入活化气发生器,在活化气发生器的燃 烧室中充分燃烧,燃烧产物成为活化反应所需的活化气,燃烧反应放出的热量则提供了活化反应所需的温度,热解气的化学能得到有效转化,热解气得到充分利用。此外,热解气完全燃烧,产物为水蒸汽和二氧化碳,燃烧产物作为活化气参与生物炭活化反应,完全不产生废液。
本发明的活化气自供给。相比较于传统的活化工艺需要借用外部水源或气源产生活化气,本装置的活化气完全来自于生物质原料热解产生的热解气燃烧,燃烧后的气体温度基本能达到900℃左右,正好满足生物炭活化所需的温度,因此无需外部水源或气源。
本发明活性炭品质高。内螺旋叶片采用了三叶叶片,其流线型结构可以使气体轻易绕过叶片,大大减小了活化气阻力,提高了活化气的流通面积以及生物炭与活化气的换热面积,同时并不会降低物料的输送效果。活化得到的活性炭碘值可以提高400mg/g,微孔总体积可提高300%,中孔总体积可提高400%,比表面积可提高460m 2/g。极大提升了活化效果和反应效率。
本发明活化气体和活性炭分布均匀,活化效果佳。将活化气体引入内螺旋轴的空腔内,之后活化气通过活化气分配口进入内螺旋活化反应室,提高了活化气的分布均匀性。通过超声波发生器向内螺旋活化反应室传递超声波,提高了活性炭颗粒的均匀性。对于单个热解炭的活化来说,使得活化反应均匀而充分,使得物料内部温度保持均匀,避免了物料的局部温度过高或者过低而造成的过活化或欠活化。最终的活性炭的碘值与目标值的误差在10mg/g内,微孔总体积与目标值的误差在10%内,中孔总体积与目标值的误差在10%内,比表面积与目标值的误差在12m 2/g内。
本发明活化气温度可控制在所需范围内。温度传感器感知活化气温度,采用温度显示仪显示温度,当活化气温度不在850-950℃范围内时,可通过变频器调节助燃空气流量大小、通过热解气流量控制阀调节热解气流量大小,进而调节燃烧强度,使活化气温度稳定在850-950℃范围内,保证了活化反应在合适的温度下进行。
附图说明
图1为本发明装置具体实施例的结构示意图。
图2为本发明装置具体实施例中内螺旋叶片的结构示意图。
图3为本发明装置具体实施例中内螺旋叶片在内螺旋轴上排布的距离和角度示意图。
图中:1、助燃空气进口;2、燃烧室;3、热解气管道;4、活化气管道;5、加热装置;6、外螺旋叶片;7、进料斗;8、热解反应室;9、活化反应室;10、内螺旋叶片;11、活性炭收集装置;12、出料口;13、返料口;14、热解气出口;15、进料口;16、外螺旋轴;17、内螺旋轴;18、热解气进口;19、活化气出口;20、活化气进口;21、活化气发生器;22、流量控制阀;23、变频器;24、鼓风机;25、温度显示仪;26、超声波发生器;27、温度传感器;28、活化气分配口;29、助燃空气管道。
具体实施方式
以下结合附图说明本发明的具体实施方式。
本实施例的移动式生物质热解活化分区偶联装置,如图1所示,包括热解反应室8、活 化反应室9和活化气发生器21,热解反应室8使生物质高温热解生成热解气和生物炭,活化气发生器21利用热解气燃烧产生活化气体,活化反应室9用于使生物炭在活化气体及超声波作用下进行活化反应生成活性炭。
上述实施例中,活化反应室9位于热解反应室8内部,活化气发生器21位于热解反应室8外部。具体地,热解反应室8上设有进料口15,热解反应室8内设有外螺旋轴16,其表面设有沿轴向呈螺旋状延伸的外螺旋叶片6,外螺旋轴16内部形成了上述活化反应室9,其与热解反应室8通过外螺旋轴16上的返料口13连通;活化反应室9内设有内螺旋轴17,其内形成有活化气流道,活化气流道入口与活化气发生器21的活化气出口19连接,内螺旋轴17表面设有若干组沿轴向均匀分布的内螺旋叶片10,且内螺旋轴17表面均布有若干用于与热解反应室8连通的活化气分配口28,活化气发生器21的热解气进口18与热解反应室8的热解气出口14连接,活化反应室9的出料口12与活性炭收集装置11连接。
具体地,活化气发生器21与内螺旋轴17通过活化气管道4相连通,化气体在压差作用下,输送至内螺旋轴17及活化反应室9内。
具体地,外螺旋叶片6焊接于外螺旋轴16表面,返料口13设置于外螺旋轴16的末端;返料口13、热解气出口14位于远离进料口15的一端。
上述外螺旋叶片6的螺距根据生物质热解的干燥、挥发分析出、碳链缩聚三个阶段进行优化设计。从进料口15至返料口13方向,螺距先渐渐变大再渐渐变小。该种变螺距设计,使反应和停留时间匹配,其中干燥和碳链缩聚阶段所需的停留时间较短,而挥发分析出阶段则需要较长的停留时间:先是以小螺距加速了生物质水分的蒸发,紧接着又以大螺距保证了挥发分的充分析出,最后再由小螺距促进物料形态在接近生物炭的阶段快速脱除羟基、羧基、芳香族基团和其他含氧官能团,使生物炭形成具有高密度碳原子的结构。因而热解反应室8中热解反应充分,强度较高。
具体地,如图2和图3所示,每组内螺旋叶片10包括三个叶片,且三个叶片中相邻两叶片之间沿圆周成120°,且每组内螺旋叶片10与内螺旋轴17成15°角设置;相邻两组内螺旋叶片10沿轴向的距离为内螺旋轴17直径的5/6。内螺旋叶片10的三叶叶片大大减小了活化气阻力,提高了活化气的流通面积以及生物炭与活化气的换热面积,在此工艺下,活化得到的活性炭碘值可以提高400mg/g,微孔总体积可提高300%,中孔总体积可提高400%,比表面积可提高460m 2/g。
上述实施例中,活化气发生器21内形成有燃烧室2,其一侧设有助燃空气进口1,其通过助燃空气管道29与连接有变频器23的鼓风机24相连,燃烧室2内位于活化气出口19处设有温度传感器27,其与位于外部的温度显示仪25连接。鼓风机24用于输送助燃空气,变频器23用于调节助燃空气流量,温度显示仪25和温度传感器27用于监测活化气温度;热解气进口18通过热解气管道3与热解气出口14连接,热解气管道3上设有流量控制阀22,用于调节热解气流量。
具体地,活化反应室9与超声波发生器26连接;活化反应室9用于生物炭的活化和活化后活性炭的输送,超声波发生器26用于向活化反应室9传递超声波。
具体地,热解反应室8外包裹有加热装置5,其可采用电加热装置;进料口15与进料斗7连接,方便生物质进料。
本实施例的移动式生物质热解活化分区偶联方法,包括以下流程:
生物质的热解:生物质原料从生物质的进料斗7中落入热解反应室8,生物质原料在热解反应室8内发生高温热解反应;同时,外螺旋叶片6将生物质原料向返料口13方向输送,在热解这一过程中,挥发分析出,成为热解气,热解气包含甲烷、一氧化碳、氢气、生物油蒸汽等可燃气体和水蒸汽等不可燃气体,剩下的固体物质成为生物炭。热解气在压差的作用下由热解气出口14进入热解气管道3,生物炭在外螺旋叶片6的作用下被输送至返料口13。
热解气的燃烧及活化气的生成:热解气经由热解气管道3由热解气进口18进入燃烧室2(活化气发生器21),同时,鼓风机24从环境中吸入助燃空气,助燃空气经由助燃空气管道29由助燃空气进口1进入燃烧室2,在助燃空气的作用下,热解气在燃烧室2中充分燃烧,生成二氧化碳和水蒸汽,这两种气体作为活化生物炭的活化气体,在压差的作用下由活化气出口19进入活化气管道4。
生物炭的活化:活化气体经由活化气管道4由活化气进口20进入内螺旋轴17,再经由活化气分配口28进入活化反应室9,生物炭经由返料口13从热解反应室8落入活化反应室9,超声波发生器26向活化反应室9传递超声波,在活化气和超声波振动的作用下,生物炭被活化为活性炭,在内螺旋叶片10的作用下,活性炭被输送至出料口12,落入活性炭收集装置11。
生物质进料到热解反应室8,在高温下被热解,热解温度控制在350-550℃,热解产生的热解气温度控制在500-650℃。该温度下的热解气可在所述燃烧室2中被点燃燃烧。助燃空气流量可由所述变频器23调节,活化气体的温度由温度显示仪25显示,并通过热解气流量控制阀22和变频器23调节活化气温度。热解气在活化气发生器21内燃烧温度控制在850-950℃,生成的活化气体的温度通过控制进入活化气发生器21助燃空气的流量进行调节;
上述方法流程中,返料口13的生物炭阻止热解气向活化反应室9扩散,防止热解气对生物炭活化造成干扰。
上述方法流程中,活化气通过内螺旋轴17上的活化气分配口28与活化反应室9相连通,提高活化气的分布均匀性。

Claims (10)

  1. 一种移动式生物质热解活化分区偶联装置,其特征在于,包括热解反应室(8)、活化反应室(9)和活化气发生器(21),所述热解反应室(8)用于供生物质高温热解生成热解气和生物炭,所述活化气发生器(21)用于供所述热解气燃烧产生活化气体,所述活化反应室(9)用于供所述生物炭在所述活化气体及超声波作用下进行活化反应生成活性炭。
  2. 根据权利要求1所述的移动式生物质热解活化分区偶联装置,其特征在于,所述热解反应室(8)上设有进料口(15)和用于与活化气发生器(21)的热解气进口(18)连接的热解气出口(14);热解反应室(8)内设有带外螺旋叶片(6)的外螺旋轴(16),其内部空腔形成所述活化反应室(9),活化反应室(9)与热解反应室(8)通过所述外螺旋轴(16)上的返料口(13)连通;活化反应室(9)内设有内螺旋轴(17),其内形成有活化气流道,其入口与活化气发生器(21)的活化气出口(19)连接,内螺旋轴(17)表面设有若干组沿轴向间隔设置的内螺旋叶片(10),且内螺旋轴(17)表面均布有若干用于与热解反应室(8)连通的活化气分配口(28);活化反应室(9)的出料口(12)与活性炭收集装置(11)连接。
  3. 根据权利要求2所述的移动式生物质热解活化分区偶联装置,其特征在于,所述返料口(13)、热解气出口(14)位于远离所述进料口(15)的一端;外螺旋叶片(6)从所述进料口(15)至所述返料口(13)方向,沿外螺旋轴(16)呈螺旋状延伸,且螺距先渐渐变大再渐渐变小。
  4. 根据权利要求2所述的移动式生物质热解活化分区偶联装置,其特征在于,所述内螺旋叶片(10)沿轴向等间距设置,相邻两组内螺旋叶片(10)沿轴向的距离为内螺旋轴(17)直径的5/6;每组内螺旋叶片(10)包括三个叶片,且三个叶片中相邻两叶片之间沿圆周成120°,且每组所述内螺旋叶片(10)与内螺旋轴(17)成15°角设置。
  5. 根据权利要求2所述的移动式生物质热解活化分区偶联装置,其特征在于,所述活化气发生器(21)上设有助燃空气进口(1),其通过管路与连接有变频器(23)的鼓风机(24)相连;所述热解气进口(18)通过热解气管道(3)与所述热解气出口(14)连接,所述热解气管道(3)上设有流量控制阀(22);活化气发生器(21)内位于所述活化气出口(19)处设有温度传感器(27),其与温度显示仪(25)连接。
  6. 根据权利要求2所述的移动式生物质热解活化分区偶联装置,其特征在于,所述进料口(15)与进料斗(7)连接;所述活化反应室(9)与超声波发生器(26)连接;所述热解反应室(8)外包裹有加热装置(5)。
  7. 一种移动式生物质热解活化分区偶联方法,其特征在于,包括以下流程:
    生物质在热解反应室(8)内发生高温热解反应,生成热解气和生物炭;热解气由连接管路进入活化气发生器(21)内,与助燃空气混合并充分燃烧,燃烧生成的二氧化碳和水蒸汽作为活化气体,通过设置在活化反应室(9)内的内螺旋轴(17)及其表面上均布的活化气分配口(28)均分扩散到活化反应室(9)内,生物炭则通过设置在热解反应室(8)内的带有外螺旋叶片(6)的外螺旋轴(16)输送,并由连通热解反应室(8)与活化反应室(9)的返 料口(13)进入活化反应室(9)内,生物炭在高温条件下通过活化气体及超声波作用生成活性炭,活性炭在内螺旋轴(17)及其表面设置的内螺旋叶片(10)作用下被输送,排出活化反应室(9)并被活性炭收集装置(11)收集。
  8. 根据权利要求7所述的移动式生物质热解活化分区偶联方法,其特征在于,生物质进料到热解反应室(8),在高温下被热解,热解温度控制在350-550℃,热解产生的热解气温度控制在500-650℃。
  9. 根据权利要求7所述的移动式生物质热解活化分区偶联方法,其特征在于,热解气在活化气发生器(21)内燃烧温度控制在850-950℃,生成的活化气体的温度通过控制进入活化气发生器(21)助燃空气及热解气的流量进行调节。
  10. 根据权利要求7所述的移动式生物质热解活化分区偶联方法,其特征在于,所述返料口(13)的生物炭阻止热解气向所述活化反应室(9)扩散,防止热解气对生物炭活化造成干扰。
PCT/CN2021/126876 2021-07-28 2021-10-28 一种移动式生物质热解活化分区偶联方法及装置 WO2023005024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110860895.6 2021-07-28
CN202110860895.6A CN113461007B (zh) 2021-07-28 2021-07-28 一种移动式生物质热解活化分区偶联方法及装置

Publications (1)

Publication Number Publication Date
WO2023005024A1 true WO2023005024A1 (zh) 2023-02-02

Family

ID=77883264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126876 WO2023005024A1 (zh) 2021-07-28 2021-10-28 一种移动式生物质热解活化分区偶联方法及装置

Country Status (2)

Country Link
CN (1) CN113461007B (zh)
WO (1) WO2023005024A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461007B (zh) * 2021-07-28 2023-12-29 东南大学 一种移动式生物质热解活化分区偶联方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416829A (zh) * 2017-05-31 2017-12-01 大连理工大学 一种生物质热解活化制备活性炭的工艺
CN108423680A (zh) * 2018-06-13 2018-08-21 浙江瑞能炭材料科技有限公司 一种自供热式两段化学活化炉
CN110002445A (zh) * 2019-04-10 2019-07-12 浙江清风源环保科技有限公司 利用高粱秸秆制备高吸附性能活性炭及活化的方法
CN111286349A (zh) * 2020-02-24 2020-06-16 东南大学 一种基于热解炭内循环强化传热的双螺旋热解反应器
CN111847452A (zh) * 2020-08-03 2020-10-30 范思辰 一种生物质活性炭一步制备装置及其方法
CN113461007A (zh) * 2021-07-28 2021-10-01 东南大学 一种移动式生物质热解活化分区偶联方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205933748U (zh) * 2016-05-26 2017-02-08 北京神雾环境能源科技集团股份有限公司 一种生物质制备活性炭的系统
CN105838400A (zh) * 2016-05-26 2016-08-10 北京神雾环境能源科技集团股份有限公司 一种生物质制备活性炭的系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416829A (zh) * 2017-05-31 2017-12-01 大连理工大学 一种生物质热解活化制备活性炭的工艺
CN108423680A (zh) * 2018-06-13 2018-08-21 浙江瑞能炭材料科技有限公司 一种自供热式两段化学活化炉
CN110002445A (zh) * 2019-04-10 2019-07-12 浙江清风源环保科技有限公司 利用高粱秸秆制备高吸附性能活性炭及活化的方法
CN111286349A (zh) * 2020-02-24 2020-06-16 东南大学 一种基于热解炭内循环强化传热的双螺旋热解反应器
CN111847452A (zh) * 2020-08-03 2020-10-30 范思辰 一种生物质活性炭一步制备装置及其方法
CN113461007A (zh) * 2021-07-28 2021-10-01 东南大学 一种移动式生物质热解活化分区偶联方法及装置

Also Published As

Publication number Publication date
CN113461007B (zh) 2023-12-29
CN113461007A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN101230280B (zh) 一种固体生物质立式连续干馏装置
CN101709224B (zh) 一种生物质螺旋热解装置及热解工艺
CN201567310U (zh) 一种生物质螺旋热解装置
WO2023005024A1 (zh) 一种移动式生物质热解活化分区偶联方法及装置
CN201046949Y (zh) 生物质快速热解炉
CN101003739A (zh) 一种固体生物质内燃式低压热裂解气化方法及装置
CN106587060B (zh) 一种外热式活化转炉及其生产活性炭的方法
CN110295063B (zh) 一种生物质外热法热炭联产系统及方法
WO2009060461A2 (en) Method and apparatus for producing fuel gas from biomass
CN102199451B (zh) 生物质干馏及裂解一体化设备及生物质干馏及裂解系统
CN201180122Y (zh) 一种固体生物质立式连续干馏装置
CN111748364B (zh) 一种固体燃料螺旋干馏机
CN110257093B (zh) 一种生物质外热法热炭联产系统中碳化系统的控制方法
CN218910235U (zh) 一种内部供热的立式渐变螺旋热解系统
CN207877647U (zh) 一种有机蒸馏废弃物无害处理装置
CN210945516U (zh) 一种上吸式热解气化系统
CN210945494U (zh) 一种无氧中温下吸式热解装置
CN107384485A (zh) 煤质颗粒固定床气化的气炭联产装置
CN200992537Y (zh) 一种固体生物质内燃式低压热裂解气化炉
CN209383701U (zh) 处理玉米秸秆的系统
CN103788978B (zh) 内燃加热旋叶式生物质热解液化装置
CN110747009A (zh) 一种上吸式热解气化系统
CN202124600U (zh) 生物质空气-水蒸汽气化系统
CN110791303A (zh) 一种无氧中温下吸式热解装置
CN220334786U (zh) 一种生物质炭化、活化一体化制备活性炭的设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE