WO2023004610A1 - 激光雷达测距系统 - Google Patents

激光雷达测距系统 Download PDF

Info

Publication number
WO2023004610A1
WO2023004610A1 PCT/CN2021/108813 CN2021108813W WO2023004610A1 WO 2023004610 A1 WO2023004610 A1 WO 2023004610A1 CN 2021108813 W CN2021108813 W CN 2021108813W WO 2023004610 A1 WO2023004610 A1 WO 2023004610A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
photoelectric sensor
differential driver
analog signal
differential
Prior art date
Application number
PCT/CN2021/108813
Other languages
English (en)
French (fr)
Inventor
李彦民
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN202180100043.5A priority Critical patent/CN118076908A/zh
Priority to PCT/CN2021/108813 priority patent/WO2023004610A1/zh
Publication of WO2023004610A1 publication Critical patent/WO2023004610A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Definitions

  • the present application relates to the field of laser ranging, in particular to a laser radar ranging system.
  • lidar As the most important navigation system in the intelligent driving system, lidar has been valued by major car companies. Lidar uses the echo signal generated after the laser touches the object during the propagation process to be received by the receiving circuit of the lidar, and the ranging data of the echo signal is analyzed to measure the distance, so as to perceive and construct a three-dimensional physical image.
  • the amplitude dynamic range of the echo signal as an analog signal has a considerable probability of exceeding the linear range of the receiving circuit of the lidar.
  • the amplitude change frequency of the echo signal may exceed the range of the lidar
  • the acquisition frequency of the receiving circuit makes the receiving circuit work in the nonlinear region, resulting in the lack of acquisition of the echo signal, which further leads to a decrease in the accuracy based on laser ranging, and has a bad influence on the navigation system composed of laser radar.
  • the embodiment of the present application provides a laser radar ranging system, which can reduce the influence of laser test error caused by nonlinearity, reduce the cost and power consumption of the ranging circuit, and improve reliability on the premise of improving the accuracy of laser ranging. Reduce the cost of the laser radar ranging system on the premise of improving the accuracy of laser ranging. Described technical scheme is as follows:
  • an embodiment of the present application provides a laser radar ranging system, the method includes: a photoelectric sensor, a differential driver, an acquisition unit, a control unit, and a processing unit;
  • the photoelectric sensor is electrically connected to the differential driver
  • the differential driver is electrically connected to the acquisition unit
  • the acquisition unit is electrically connected to the processing unit
  • the control unit is electrically connected to the differential driver. electrically connected;
  • the control unit is configured to send a first reference signal carrying a first threshold voltage value to the differential driver
  • the photoelectric sensor is used to generate an analog signal when receiving the laser echo signal, and send the analog signal to the differential driver;
  • the differential driver is configured to receive the analog signal and the first reference signal, convert the analog signal into a digital signal based on the first threshold voltage value, and send the digital signal to the acquisition unit;
  • the collection unit is configured to collect ranging data based on the digital signal, and send the ranging data to the processing unit;
  • the processing unit is configured to measure distance based on the distance measurement data.
  • control unit is also electrically connected to the processing unit;
  • the control unit includes a control terminal and an output terminal;
  • the processing unit includes a control terminal;
  • control terminal of the control unit is connected to the control terminal of the processing unit, and the output terminal of the control unit is connected to the differential driver;
  • the processing unit is further configured to restore the digital signal based on the ranging time information carried in the ranging data, the signal width of the laser echo signal, and the amplitude value of the first threshold voltage value calculating, acquiring a reduction calculation result, and sending a control signal to the control unit based on the reduction calculation result;
  • the control unit is configured to send a second reference signal carrying a second threshold voltage value to the differential driver through an output terminal of the control unit based on the control signal; wherein the second reference signal is used for instructing the differential driver to convert the analog signal into the digital signal based on the second threshold voltage value, the voltage difference between the second threshold voltage value and the analog signal being smaller than the first threshold voltage value and the The voltage difference of the analog signal.
  • the system further includes: an amplification circuit
  • the amplifying circuit includes an input end and an output end; the photoelectric sensor includes an input end; the differential driver includes an input end;
  • the input end of the amplifying circuit is connected to the output end of the photoelectric sensor, and the output end of the amplifying circuit is connected to the input end of the differential driver;
  • the photoelectric sensor is also used to send an analog signal to the amplifying circuit through the output terminal of the photoelectric sensor;
  • the amplifying circuit is configured to receive the analog signal through the input terminal of the amplifying circuit, and obtain an amplified analog signal after amplifying the analog signal, and convert the amplified analog signal through the output terminal of the amplifying circuit sending the signal to the differential driver;
  • the differential driver is further configured to receive the amplified analog signal through an input terminal of the differential driver, convert the amplified analog signal into a digital signal, and send the digital signal to the acquisition unit.
  • the amplification circuit includes: an amplifier and an amplification gain resistor;
  • the amplification gain resistor includes a first end and a second end, and the amplifier includes an inverting input end, a non-inverting input end and an output end;
  • the first terminal of the amplification gain resistor is connected to the inverting input terminal of the amplifier, the second terminal of the amplification gain resistor is connected to the output terminal of the amplifier, and the non-inverting input terminal of the amplifier is connected to the bias voltage source
  • the output terminal of the photoelectric sensor is connected to the inverting input terminal of the amplifier, and the output terminal of the amplifier is connected to the input terminal of the differential driver.
  • the system further includes: a cancellation and amplification circuit;
  • the photoelectric sensor includes: a reference photoelectric sensor and a detection photoelectric sensor; wherein, the reference photoelectric sensor is in a light-shielding state;
  • the reference photoelectric sensor includes an output end, the detection photoelectric sensor includes an output end, and the cancellation and amplification circuit includes an input end and an output end;
  • the detection photoelectric sensor is connected in parallel with the reference photoelectric sensor, the output end of the detection photoelectric sensor and the output end of the reference photoelectric sensor are connected with the input end of the cancellation and amplification circuit, and the cancellation and amplification circuit
  • the output terminal is connected to the differential driver
  • the detection photoelectric sensor is used to generate a ranging current signal when receiving the laser echo signal, and send the ranging current signal to the cancellation and amplification circuit through the output terminal of the detection photoelectric sensor;
  • the reference photoelectric sensor is used to generate a noise current signal based on the operating voltage applied to both ends of the photoelectric sensor, and send the noise current signal to the cancellation and amplification circuit through the output terminal of the reference photoelectric sensor;
  • the analog signal includes the noise current signal and the ranging current signal;
  • the cancellation and amplification circuit is used to receive the analog signal through the cancellation and amplification circuit, and to cancel and amplify the ranging current signal based on the noise current signal to obtain the processed analog signal , and sending the processed analog signal to the differential driver through the output terminal of the cancellation and amplification circuit;
  • the differential driver is further configured to receive the processed analog signal and the reference signal, convert the processed analog signal into a digital signal based on the threshold voltage value, and send the digital signal to the acquisition unit .
  • the cancellation and amplification circuit includes: a cancellation transformer and an amplification circuit
  • the cancellation transformer includes an input end and an output end, and the amplifying circuit includes an input end and an output end;
  • the input end of the cancellation transformer is connected to the output end of the detection photoelectric sensor and the reference photoelectric sensor, the output end of the cancellation transformer is connected to the input end of the amplifying circuit, and the output end of the amplifying circuit connected to the differential driver;
  • the cancellation transformer is configured to receive the analog signal through the input terminal of the cancellation transformer, and to obtain a noise cancellation signal after canceling the ranging current signal based on the noise current signal, and to convert the The denoising signal is sent to the amplifying circuit through the output end of the canceling transformer;
  • the amplifying circuit is configured to receive the denoising signal through an input terminal of the amplifying circuit, and amplify the denoising signal to obtain the processed analog signal, and pass the processed analog signal through the The output end of the amplifying circuit is sent to the differential driver.
  • the system further includes: a differential signal generating unit;
  • the differential signal generation unit includes an input terminal and an output terminal
  • the input end of the differential signal generating unit is connected to the photoelectric sensor, and the output end of the differential signal generating unit is connected to the differential driver;
  • the differential signal generating unit is configured to receive an analog signal from the photoelectric sensor through an input terminal of the differential signal generating unit, convert the analog signal into a differential signal, and pass the differential signal through the differential signal.
  • the output terminal of the signal generating unit is sent to the differential driver;
  • the differential driver is configured to receive the differential signal and the first reference signal, convert the differential signal into a digital signal based on the first threshold voltage value, and send the digital signal to the acquisition unit.
  • the system further includes: a decoupling capacitor
  • the first end of the decoupling circuit is connected to the input end of the photoelectric sensor, and the second end of the decoupling capacitor is grounded.
  • connection distance between the differential driver and the amplification circuit is smaller than the connection distance between the differential driver and the acquisition unit.
  • the system further includes: a cooling system;
  • the heat dissipation system is connected to the differential driver;
  • the heat dissipation system is used to dissipate heat for the differential driver.
  • This application uses a differential driver to convert analog signals with different rising slopes into digital signals with consistent slopes and then send them to the acquisition unit, so that the width data of the digital signal can be mapped to the amplitude data of the analog signal, which can reduce the nonlinearity.
  • Influenced by the laser test error on the premise of improving the accuracy of laser ranging, reduce the cost and power consumption of the ranging circuit, and improve the reliability of the system; avoid the analog signal that is easily affected by the signal-to-noise ratio from being transmitted to the acquisition unit through long distances, and advance Convert the analog signal to a digital signal, and use the better anti-interference ability of the digital signal to better carry the ranging data in the long-distance transmission; set a differential driver between the receiving module including the photoelectric sensor and the acquisition module including the acquisition unit, It can provide stronger ESD protection for the interconnection path between the receiving module and the acquisition module, and improve the reliability of the system.
  • FIG. 1 is a schematic structural diagram of a laser radar ranging system provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a laser radar ranging system provided in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a laser radar ranging system provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a laser radar ranging system provided in an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a lidar ranging system provided by an embodiment of the present application.
  • plural means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • FIG. 1 it is a schematic structural diagram of a laser radar ranging system provided by the embodiment of the present application.
  • This embodiment does not include functional blocks, control logic, circuits, and acquisition unit 103, processing unit 104 and control unit 105. All internal and external interfaces are required.
  • the lidar ranging system shown includes: a photoelectric sensor 101 , a differential driver (differential driver) 102 , an acquisition unit 103 , a control unit 105 and a processing unit 104 .
  • the photoelectric sensor 101 is electrically connected to the differential driver 102
  • the differential driver 102 is electrically connected to the acquisition unit 103
  • the acquisition unit 103 is electrically connected to the processing unit 104
  • the control unit 105 is electrically connected to the differential driver 102. connected.
  • the photoelectric sensor 101 can be understood as a sensor that converts optical signals into electrical signals, preferably a single-photon array sensor, and can be understood as a single-photon avalanche photodiode used in laser communication, with the advantage of utilizing the avalanche multiplication effect of carriers To amplify the photoelectric signal to improve the detection sensitivity.
  • the model of the photoelectric sensor 101 includes but not limited to C30659-900-R5BH, C30659-1550-R08BH, C30919E and so on.
  • the photosensor 101 is composed of highly sensitive silicon photomultiplier tube SiPM: the silicon photomultiplier tube SiPM is composed of a plurality of micro-units connected in parallel, and each micro-unit is composed of a single photon avalanche diode SPAD and a quenching resistor;
  • the reverse bias voltage is applied to the silicon photomultiplier tube SiPM, the depletion layer of the single photon avalanche diode SPAD of each micro-unit has a very high electric field;
  • the electron-hole pairs in the electron-hole pair undergo Compton scattering to generate electrons or holes.
  • each The current output by the micro-unit suddenly increases, and the voltage on the quenching resistor also increases, and then the electric field of the depletion layer of the single-photon avalanche diode SPAD decreases instantaneously, that is, the single-photon avalanche diode SPAD outputs an instantaneous current after receiving a photon pulse, and then the avalanche stops; based on the above working principle, the silicon photomultiplier tube SiPM array can be used as a photoelectric sensor to convert the light signal into a current signal.
  • the photoelectric sensor 101 is used to generate an analog signal based on the above principle when receiving the laser echo signal, and send the analog signal to the differential driver 102 .
  • An analog signal can be understood as a current signal whose phase and amplitude change continuously over time.
  • the photoelectric sensor 101 is provided with an output terminal, and an analog signal is sent to the differential driver 102 through the output terminal of the photoelectric sensor 101 .
  • the differential driver 102 can be understood as a comparator that converts an analog signal into a digital signal based on a threshold voltage value. The voltage value is compared with the threshold voltage value, when it is greater than the threshold voltage value, it outputs a high level, when it is less than the threshold voltage value, it outputs a low level, and when it is equal to the threshold voltage value, it outputs 0, so as to convert the analog signal into a digital signal .
  • the model number of the differential driver 102 includes, but is not limited to, the LTC2387-18.
  • the differential driver 102 may be implemented as a stand-alone device or integrated into an electronic device, and in another embodiment, the differential driver 102 is implemented in an integrated circuit.
  • the differential driver 101 Compared with traditional comparators or analog-to-digital converters, the differential driver 101 has at least the following advantages: high integration, printed circuit board (Printed Circuit Board, PCB) wiring and peripheral circuits are simple, and it can achieve the same acquisition frequency and conversion Under the premise of the frequency, the cost of the differential driver is lower; the anti-interference ability is strong, the driving ability is strong, and it can be driven across the board for a long time; the electrostatic impedance (Electro-Static discharge, ESD) has strong protection, which is beneficial to the isolation protection of the digital-analog area.
  • ESD Electro-Static discharge
  • the differential driver is placed in the area close to the photoelectric sensor 101 as the receiving device, as the boundary between the analog and digital areas of the receiving device, to increase the isolation from the acquisition module including the acquisition unit 103 and the processing unit 104, and reduce the number The possibility of signal crosstalk.
  • the differential driver 102 is used to receive the analog signal from the photoelectric sensor 101, and receive the first reference signal carrying the first threshold voltage value from the control unit 105, and convert the analog signal based on the first threshold value is a digital signal, and the digital signal is sent to the acquisition unit 103.
  • the differential driver 102 is provided with an output terminal, a non-inverting input terminal and an inverting input terminal, the non-inverting input terminal is connected to the photoelectric sensor 101, the inverting input terminal is connected to the control unit 105, and the output terminal is connected to the acquisition unit 103,
  • the differential driver 102 receives the analog signal from the photoelectric sensor 101 through the non-inverting input terminal, receives the reference signal from the control unit 105 through the inverting input terminal, wherein the reference signal includes the above-mentioned first reference signal, and sends the digital signal to the acquisition unit through the output terminal 103.
  • the digital signal output from the differential driver 102 to the acquisition unit 103 is a differential digital signal, and the digital signal is converted into a differential digital signal by setting two output terminals or a differential signal generating unit.
  • the beneficial effects brought by the technical solutions provided by some embodiments of the present application at least include: compared with digital signals, differential digital signals have better anti-interference performance, and reduce the impact of long-distance transmission on differential digital signals.
  • the Acquisition unit 103 can be understood as a circuit for collecting ranging data based on digital signals.
  • the ranging data includes but is not limited to the flight time of the laser echo signal, the amplitude of the laser echo signal, the amplitude data of the laser echo signal, and the analog signal. noise floor data.
  • the acquisition unit 103 includes a clock subunit, a delay latch subunit, a time count subunit and N delay subunits unit; N delay subunits delay the digital signal N times to obtain N delay signals, and send the N delay signals to the delay latch subunit; the clock subunit sends the signal to the time technology subunit based on the start signal The unit and the delay latch subunit send a clock signal; the delay latch subunit delays and latches N delay signals based on the clock signal; the time count subunit obtains an echo based on the result of the delay latch and the count amount The time-of-flight of the signal.
  • the acquisition unit 103 is provided with an input terminal and an output terminal, the input terminal is connected to the differential driver 102, the output terminal is connected to the processing unit 104, the acquisition unit 103 receives the digital signal from the differential driver 102 through the input terminal, and outputs The terminal sends the ranging data to the processing unit 104.
  • the processing unit 104 can be implemented in at least one hardware form of Digital Signal Processing (Digital Signal Processing, DSP), Field-Programmable Gate Array (Field-Programmable GateArray, FPGA), and Programmable Logic Array (Programmable LogicArray, PLA).
  • DSP Digital Signal Processing
  • Field-Programmable Gate Array Field-Programmable GateArray
  • FPGA Field-Programmable GateArray
  • PLA Programmable Logic Array
  • Field Programmable Gate Array is a program-driven logic device, just like a microprocessor, its control program is stored in the memory, and the program is automatically loaded into the chip for execution after power-on.
  • Field programmable gate array generally consists of two programmable modules and storage SRAM.
  • CLB is a programmable logic block, the core component of the field programmable gate array, and the basic unit for realizing logic functions.
  • the switch matrix is characterized by high access efficiency, suitable for multi-point access at the same time, easy to provide very high bandwidth, and easy performance expansion, not subject to the limitations of CPU, bus and memory technology.
  • the processing unit 104 is used for ranging based on the ranging data, specifically, receiving the ranging data from the acquisition unit 103, calculating the distance information between the target device and the device to be detected based on the ranging data, and The distance information is displayed.
  • the above-mentioned target object is equipped with the laser radar ranging system and the equipment that emits laser signals and receives laser echo signals.
  • the equipment to be detected is the equipment that generates laser echo signals, such as vehicles, obstacles, pedestrians, etc. driving on the road.
  • the processing unit 104 displays the distance information obtained based on the ranging data.
  • the distance information is sent to the display device, so that the display device generates a three-dimensional model of the device to be detected through an imaging system, and a distance label between the three-dimensional model of the target device and the three-dimensional model of the device to be detected.
  • the display device may be a liquid crystal display screen, an infrared projection display screen, or the like.
  • Beneficial effects of the technical solution provided by this embodiment at least include: realizing the visualization of distance information and improving the vividness of distance signal display.
  • the control unit 105 can be understood as an integrated chip that sends a reference signal to the differential driver 102, and the reference signal carries a threshold voltage value, so that the differential driver 102 converts the analog signal into a digital signal based on the threshold voltage value.
  • the threshold voltage value is 30V
  • the control unit 105 sends the reference signal to the differential driver 102
  • the differential driver 102 collects the analog signal based on the collection frequency and collects the voltage value of the analog signal, Based on the conversion frequency, compare the voltage value of the analog signal with the threshold voltage value of 30V. When it is greater than the threshold voltage value of 30V, it will output a high level. When it is less than the threshold voltage value, it will output a low level. When it is equal to the threshold voltage value, it will output 0. This converts an analog signal to a digital signal.
  • the value of the threshold voltage may be input by the manufacturer's firing control unit 105 at any time.
  • the value of the threshold voltage value can be modified after the control unit 105 receives a modification instruction from the user. For example, the user touches the display device to trigger the trigger condition of the modification instruction and changes the voltage threshold value from 30V to 20V.
  • the beneficial effects of the technical solution provided by this embodiment at least include: realizing the personal customization of the laser radar ranging system, satisfying various customization needs of users, and improving the intelligence of the laser radar ranging system.
  • control unit 105 includes a reference level subunit, and the control unit 105 is provided with an output terminal, and the output terminal is connected to the differential driver 102 .
  • the control unit 105 sends a control signal to the reference level subunit, so that the reference level subunit sends a reference signal carrying a threshold voltage value to the differential driver through an output terminal based on the control signal.
  • the laser radar ranging system shown in FIG. 1 further includes a pre-emphasis module (not shown in the figure), the pre-emphasis module is provided with an input terminal and an output terminal, and the input terminal is connected to the control unit 105, The output terminal is connected to the differential driver 102 .
  • the pre-emphasis module can be understood as: receiving the pre-emphasis control signal generated by the control unit 105 through the input terminal of the pre-emphasis module, and providing an additional driving current to the differential driver at the rising/falling edge of the digital signal generated by the differential driver 102 to improve the differential
  • the driver 102 converts an analog signal to a conversion frequency of a digital signal.
  • the pre-emphasis module includes: PMOS current source, NMOS current source and 8 NMOS switch tubes, of which 2 switch tubes form a current mirror structure through the bias voltage provided by the PMOS current source and NMOS current source, and 8 switch tubes form a pre-emphasis Module switch control circuit.
  • the beneficial effects brought by the technical solutions provided by some embodiments of the present application include at least: by adding a pre-emphasis module to provide additional drive current to the differential driver, increasing the conversion frequency of the differential driver converting an analog signal into a digital signal, and further improving the differential driver. Acquire the acquisition frequency of analog signals to enhance the acquisition accuracy and conversion accuracy of the differential driver; when the laser radar ranging system works under the rated voltage, the pre-emphasis module effectively suppresses current noise by providing instantaneous high voltage, improving the laser radar ranging system. anti-interference ability.
  • This application uses a differential driver to convert analog signals with different rising slopes into digital signals with consistent slopes and then send them to the acquisition unit, so that the width data of the digital signal can be mapped to the amplitude data of the analog signal, which can reduce the nonlinearity.
  • Influenced by the laser test error on the premise of improving the accuracy of laser ranging, reduce the cost and power consumption of the ranging circuit, and improve the reliability of the system; avoid the analog signal that is easily affected by the signal-to-noise ratio from being transmitted to the acquisition unit through long distances, and advance Convert the analog signal to a digital signal, and use the better anti-interference ability of the digital signal to better carry the ranging data in the long-distance transmission; set a differential driver between the receiving module including the photoelectric sensor and the acquisition module including the acquisition unit, It can provide stronger ESD protection for the interconnection path between the receiving module and the acquisition module, and improve the reliability of the system.
  • FIG. 2 it is a schematic structural diagram of a laser radar ranging system provided by the embodiment of the present application.
  • This embodiment does not include functional blocks, control logic, circuits, and the acquisition unit 103, the processing unit 104 and the control unit 105. All interfaces required by both internal and external, the lidar ranging system shown further includes: the control unit 105 is also electrically connected to the processing unit 104 .
  • control unit 105 comprises control terminal and output terminal, and processing unit 104 comprises control terminal;
  • the control terminal of control unit 105 is connected with the control terminal of processing unit 104, and the output terminal of control unit 105 is connected with differential driver 102 connected.
  • connection relationship and working principle of the photoelectric sensor 101, the differential driver 102, the acquisition unit 103, the processing unit 104 and the control unit 105 are shown in FIG. 1 above, and will not be repeated here.
  • the photoelectric sensor 101 generates an analog signal when receiving the laser echo signal, and sends the analog signal to the differential driver 102; the differential driver 102 receives the first reference signal carrying the first threshold voltage value sent by the control unit 105, based on the first threshold
  • the voltage value converts the analog signal into a digital signal, and sends the digital signal to the acquisition unit 103; the acquisition unit 103 collects distance measurement data based on the digital signal, and sends the distance measurement data to the processing unit 104, the distance measurement data carries The distance time information, the signal width of the laser echo signal and the amplitude value of the first threshold voltage value, the ranging time information represents the trigger time of the laser echo signal and the acquisition time of the corresponding amplitude value of the first threshold voltage value; the processing unit 104 Based on the ranging time information, the signal width of the laser echo signal, and the amplitude value of the first threshold voltage value, perform a restoration calculation on the digital signal, and obtain a restoration calculation result, specifically, utilize the signal width of the laser echo signal; And based
  • the signal width of the analog signal obtained after the laser echo signal is converted falls between the signal width of the voltage value of 15V-45V, and the differential driver 102 will be based on the first threshold value of 30V.
  • the analog signal is converted into a digital signal. Specifically, the voltage value of the analog signal is compared with the threshold voltage value based on the conversion frequency. When it is greater than the threshold voltage value, it outputs a high level. Output 0 when it is equal to the threshold voltage value, the voltage value of the analog signal is the voltage amplitude of the above analog signal.
  • the ambient light value is 100000Lux when the weather is clear and clear, and the ambient light value is 10000Lux when the weather is cloudy; when the ambient light value is 10000Lux
  • the photoelectric sensor 101 receives the laser echo signal and converts it to obtain the signal width of the analog signal. 80% of the signal width falls between the signal width of the 15V-45V voltage value.
  • the photoelectric sensor laser echo signal is obtained after conversion. 80% of the signal width of the analog signal falls within the signal width of the voltage value of 50V-100V.
  • the photoelectric sensor 101 converts the analog signal into a digital signal based on the first threshold voltage value of 30V, and the digital signal is converted into distance measurement data and reaches the control unit 105 after passing through the acquisition unit 103.
  • the distance measurement data includes distance measurement time information and laser echo signals.
  • the processing unit 104 based on the measurement The distance time information, the signal width of the laser echo signal and the amplitude value of the first threshold voltage value are used to perform restoration calculation on the digital signal to obtain the restoration calculation result, wherein the restoration calculation result represents the digital signal obtained based on the current first threshold voltage value reasonable degree; the processing unit 104 obtains the second threshold voltage value based on the magnitude value of the restoration calculation result and the first threshold voltage value, and the control signal includes the second threshold voltage value, and sends the control signal to the control unit 105 through the output terminal of the processing unit 104 signal, the control signal includes any form of pulse signal or digital signal, for example, the digital signal 00111111 indicates that the second threshold voltage value is 63V; the control unit 105 sends a reference signal including the second threshold voltage value 63V to the differential driver 102
  • the above-mentioned processing unit judges that the first threshold voltage value is unreasonable and instructs the control unit to send the reference signal including the second threshold voltage value, and this application does not make any limitation.
  • the numerical values of the first threshold voltage value and the second threshold voltage value mentioned above are for example purposes only, and do not represent real situations.
  • the control unit sends a reference signal carrying a second threshold voltage value to the differential driver according to the control signal of the processing unit, so that the differential driver is based on the second threshold voltage value.
  • This application uses a differential driver to convert analog signals with different rising slopes into digital signals with consistent slopes and then send them to the acquisition unit, so that the width data of the digital signal can be mapped to the amplitude data of the analog signal, which can reduce the nonlinearity.
  • Influenced by the laser test error on the premise of improving the accuracy of laser ranging, reduce the cost and power consumption of the ranging circuit, and improve the reliability of the system; avoid the analog signal that is easily affected by the signal-to-noise ratio from being transmitted to the acquisition unit through long distances, and advance Convert the analog signal to a digital signal, and use the better anti-interference ability of the digital signal to better carry the ranging data in the long-distance transmission; set a differential driver between the receiving module including the photoelectric sensor and the acquisition module including the acquisition unit, It can provide stronger ESD protection for the interconnection path between the receiving module and the acquisition module, and improve the reliability of the system.
  • FIG. 3 it is a schematic structural diagram of a laser radar ranging system provided by the embodiment of the present application.
  • This embodiment does not include functional blocks, control logic, circuits, and the acquisition unit 103, the processing unit 104 and the control unit 105. All internal and external interfaces are required.
  • the lidar ranging system shown includes: a photoelectric sensor 101 , a differential driver 102 , an acquisition unit 103 , a control unit 105 , a processing unit 104 and an amplification circuit 301 .
  • the amplifying circuit 301 includes an input end and an output end; the photoelectric sensor 101 includes an output end; the differential driver 102 includes an input end; the input end of the amplifying circuit 301 is connected with the output end of the photoelectric sensor 101, and the The output terminal is connected to the input terminal of the differential driver 102 .
  • the amplification circuit 301 includes an amplification gain resistor R1 and an amplifier U1 .
  • the amplification gain circuit R1 includes a first terminal and a second terminal, and the amplifier U1 includes an inverting input terminal, a non-inverting input terminal and an output terminal.
  • the first terminal of the amplification gain resistor R1 is connected to the inverting input terminal of the amplifier U1, the second terminal of the amplification gain resistor R1 is connected to the output terminal of the amplifier U1, the non-inverting input terminal of the amplifier U1 is connected to the bias voltage source, and the photoelectric sensor 101
  • the output terminal of the amplifier U1 is connected to the inverting input terminal of the amplifier U1, and the output terminal of the amplifier U1 is connected to the input terminal of the differential driver 102.
  • the amplifying circuit 301 is composed of an integrated circuit or an integrated chip, such as CA3130, CA3140, ICL7650 and the like.
  • the distance between the differential driving unit 102 and the amplification circuit 301 is greater than the distance between the differential driving unit 102 and the acquisition unit 103 .
  • the differential drive unit 102 is arranged in the area close to the receiving module including the photoelectric sensor 101 and the amplifier circuit 301, and converts the analog signal into a digital signal in advance, which can effectively avoid the long-distance transmission of the analog electrical signal to the acquisition unit 103, and solve the signal-to-noise of the analog signal
  • the long-distance transmission of the digital signal to the acquisition unit can greatly improve the driving ability and reduce the influence of interference on the subsequent transmission path of the digital signal.
  • connection relationship and working principle of the photoelectric sensor 101, the differential driver 102, the acquisition unit 103, the processing unit 104 and the control unit 105 are shown in FIG. 1 above, and will not be repeated here.
  • the photoelectric sensor 101 sends the analog signal to the amplifying circuit 301 through the output end of the photoelectric sensor 101; the amplifying circuit 301 receives the analog signal through the input end of the amplifying circuit 301, and amplifies the analog signal to obtain an amplified analog signal, and passes the amplifying circuit
  • the output terminal of the differential driver 102 receives the amplified analog signal through the input terminal of the differential driver 102, converts the amplified analog signal into a digital signal, and sends the digital signal to the acquisition unit 103.
  • the amplifying circuit 301 includes an amplifier U1, which is a general-purpose integrated operational amplifier, and 14 stages of amplification of the input signal are realized by 14 transistors;
  • the terminal receives the bias voltage from the bias voltage source, and the bias voltage pushes 14 transistors to achieve digital amplification of the analog signal, and outputs the amplified analog signal at the output end of the amplifier U1, and the amplified analog signal is 14 times larger than the analog signal.
  • the intensity of the laser echo signal is low, which further makes the voltage value of the analog signal converted by the photoelectric sensor relatively low. low, even below the acquisition range of the differential driver.
  • the analog signal In order to prevent the voltage value of the analog signal sent to the differential driver from falling outside the collection range of the differential driver, the analog signal needs to be amplified by an amplification circuit.
  • the beneficial effects brought by the technical solutions provided by some embodiments of the present application at least include: amplifying the analog signal generated by the photoelectric sensor through the amplifier circuit, improving the acquisition rate of the analog signal collected by the differential driver, further improving the accuracy of distance measurement and the laser radar distance measurement system.
  • the working reliability of the laser radar ranging system of this application has been improved, and the maximum ranging distance of the laser radar ranging system has been improved.
  • This application uses a differential driver to convert analog signals with different rising slopes into digital signals with consistent slopes and then send them to the acquisition unit, so that the width data of the digital signal can be mapped to the amplitude data of the analog signal, which can reduce the nonlinearity.
  • Influenced by the laser test error on the premise of improving the accuracy of laser ranging, reduce the cost and power consumption of the ranging circuit, and improve the reliability of the system; avoid the analog signal that is easily affected by the signal-to-noise ratio from being transmitted to the acquisition unit through long distances, and advance Convert the analog signal into a digital signal, and use the better anti-interference ability of the digital signal to better carry the ranging data in the long-distance transmission; set up between the receiving module including the photoelectric sensor and the amplifier circuit and the acquisition module including the acquisition unit
  • the differential driver can provide stronger ESD protection for the interconnection path between the receiving module and the acquisition module, and improve the reliability of the system.
  • FIG. 4 it is a schematic structural diagram of a laser radar ranging system provided by the embodiment of the present application.
  • This embodiment does not include functional blocks, control logic, circuits, and the acquisition unit 103, the processing unit 104 and the control unit 105. All interfaces required both internally and externally, the lidar ranging system shown includes: photoelectric sensor 101, differential driver 102, acquisition unit 103, control unit 105, processing unit 104, power supply 401, decoupling capacitor C1 and decoupling capacitor C2 and cancellation and amplification circuit 402 .
  • photoelectric sensor 101 comprises: reference photoelectric sensor L2 and detection photoelectric sensor L1; Wherein, reference photoelectric sensor L2 is in light-shielding state; Reference photoelectric sensor L2 comprises output terminal, detection photoelectric sensor L1 comprises output terminal, to
  • the cancellation and amplification circuit 402 includes an input end and an output end; the decoupling capacitor C1 includes a first end and a second end, and the decoupling capacitor C2 includes a first end and a second end.
  • the detection photoelectric sensor L1 is connected in parallel with the reference photoelectric sensor L2, the output end of the detection photoelectric sensor L1 and the output end of the reference photoelectric sensor L2 are connected to the input end of the cancellation and amplification circuit 402, and the output end of the cancellation and amplification circuit 402 is connected to the differential driver 102 connected, the first end of the decoupling capacitor C1 is connected to the output end of the detection photoelectric sensor L1, the second end of the decoupling capacitor C1 is grounded; the first end of the decoupling capacitor C2 is connected to the output end of the reference photoelectric sensor L2, and the power supply 401 is connected to the input end of the detection photoelectric sensor L1 and the input end of the reference photoelectric sensor L2.
  • connection relationship and working principle of the photoelectric sensor 101 , differential driver 102 , acquisition unit 103 , processing unit 104 and control unit 105 are shown in FIG. 2 above, and will not be repeated here.
  • the distance between the differential driving unit 102 and the cancellation and amplification circuit 402 is greater than the distance between the differential driving unit 102 and the acquisition unit 103 .
  • the differential drive unit 102 is arranged in an area close to the receiving module including the photoelectric sensor 101 and the cancellation and amplification circuit 402, and converts the analog signal into a digital signal in advance, which can effectively avoid the long-distance transmission of the analog electrical signal to the acquisition unit 103, and solve the problem of analog signal
  • the long-distance transmission of digital signals to the acquisition unit can greatly improve the driving ability and reduce the influence of interference on digital signals on the subsequent transmission path.
  • the photoelectric sensor L2 and the detection photoelectric sensor L1 refers especially to the single photon array sensor, which can be understood as an avalanche photodiode used in laser ranging, which utilizes the avalanche multiplication effect of carriers to amplify the photoelectric signal to Improve detection sensitivity.
  • a decoupling capacitor C1 and a decoupling capacitor C2 are provided for removing power supply noise and stabilizing the working voltage applied to both ends of the photoelectric sensor by the power supply.
  • a light-shielding component is provided on the reference photoelectric sensor L2, and the light-shielding component is used for light-shielding treatment of the reference photoelectric sensor L2, which may be but not limited to a light-shielding plate, a light-shielding cover, or a light-shielding cloth. It can be understood that, in the case of no light, when the applied working voltage is greater than the breakdown voltage, the second light sensor L2 will also output the second current signal.
  • the current signal caused by the laser echo signal on the detection photoelectric sensor L1 is called the laser current signal, and the current signal caused by the working voltage provided by the power supply 401 is called the noise current signal. Therefore, the ranging current signal output by the detection photoelectric sensor L1 may only include the noise current signal at most of the time, and when the laser echo signal reaches the detection photoelectric sensor L1, the ranging current signal includes the laser current signal and the noise current signal. Signal. It can be understood that when the intensity of the laser echo signal is weak, the laser current signal converted by the detection photoelectric sensor L1 is weaker than the noise current signal, so the acquisition unit 103 and even The processing unit 104 causes considerable disturbance.
  • the reference photoelectric sensor L2 is connected in parallel with the detection photoelectric sensor L1, and the same operating voltage is provided by the same power supply 401, so the operating voltage of the reference photoelectric sensor L2 is equal to the operating voltage of the detection photoelectric sensor L1, That is, the voltage value of the noise current signal of the reference photoelectric sensor L2 and the detection photoelectric sensor L1 is the same.
  • the reference photosensor L2 because the reference photosensor L2 is in a light-shielding state, the reference photosensor L2 outputs a noise current signal at any moment.
  • the analog signal sent from the photoelectric sensor 101 to the cancellation and amplification circuit 402 includes a detection current signal and a noise current signal.
  • the cancellation and amplification circuit 402 receives the analog signal, performs cancellation and amplification on the ranging current signal based on the noise current signal to obtain a processed analog signal, and sends the processed analog signal to the Differential driver 102;
  • the differential driver 102 receives the processed analog signal and the reference signal from the control unit 105, and the threshold voltage converts the processed analog signal into a digital signal, and sends the digital signal to the acquisition unit 103.
  • the above-mentioned cancellation and amplification processing is to remove the current value belonging to the noise current signal in the ranging current signal to obtain a cancellation analog signal, and to obtain a processed analog signal after amplifying the cancellation analog signal.
  • the beneficial effects brought by the technical solutions provided by some embodiments of the present application at least include: through the cancellation and amplification circuit, the noise current signal in the analog signal is removed to retain the ranging current signal, and the differential driver 102 can sensitively collect
  • the ranging current signal converted from the wave signal improves the sensitivity and accuracy of detecting the laser echo signal, and improves the accuracy of ranging.
  • the cancellation and amplification circuit 402 includes a cancellation transformer 4021 and an amplification circuit 4022 .
  • the cancellation transformer 4021 includes an input terminal and an output terminal, and the amplifying circuit 4022 includes an input terminal and an output terminal; the input terminal of the cancellation transformer 4021 is connected with the output terminals of the detection photoelectric sensor L1 and the reference photoelectric sensor L2 , the output end of the cancellation transformer is connected to the input end of the amplifier circuit 4022 , and the output end of the amplifier circuit 4022 is connected to the differential driver 102 .
  • the cancellation transformer 4021 connects the analog signal to the input terminal of the cancellation transformer 4021, and performs cancellation processing on the ranging current signal based on the noise current signal to obtain the noise cancellation signal, and sends the noise cancellation signal to the amplifying circuit.
  • a balun transformer is used in this application, that is, an unbalanced transformer used for twisted-pair wires, which has functions of balanced transmission, unbalanced and impedance transformation.
  • the amplifying circuit 4022 receives the denoising signal through the input terminal of the amplifying circuit 4022 , amplifies the denoising signal to obtain a processed analog signal, and sends the processed analog signal to the differential driver 102 through the output terminal of the amplifying circuit 4022 .
  • the amplifier circuit 301 shown in FIG. 3 for the structure of the amplifier circuit 4022 that is, it includes an amplifier gain resistor R1 and an amplifier U1 .
  • the cancellation and amplification circuit 402 there are at least two ways to implement the cancellation and amplification circuit 402: one is to firstly perform cancellation processing on the analog signal, and then perform transimpedance amplification, which is the implementation mode provided by the above-mentioned embodiment of the present application; The method is to amplify the analog signal transimpedance first, and then perform cancellation processing. Since the second implementation manner will limit the effective dynamic range of the signal chain and increase power consumption and cost, the present invention adopts the first implementation manner to implement the cancellation and amplification circuit 402 .
  • this embodiment can select a low insertion loss and high symmetry balun transformer to form a cancellation and amplifying circuit, reducing the impact on signal attenuation and canceling processing Good performance; through the cancellation and amplification circuit, the noise current signal in the analog signal is removed to retain the ranging current signal, and the differential driver can sensitively collect the ranging current signal based on the conversion of the laser echo signal, which improves the detection of the laser echo signal.
  • the sensitivity and accuracy of wave signals improve the accuracy of ranging.
  • This application uses a differential driver to convert analog signals with different rising slopes into digital signals with consistent slopes and then send them to the acquisition unit, so that the width data of the digital signal can be mapped to the amplitude data of the analog signal, which can reduce the nonlinearity.
  • Influenced by the laser test error on the premise of improving the accuracy of laser ranging, reduce the cost and power consumption of the ranging circuit, and improve the reliability of the system; avoid the analog signal that is easily affected by the signal-to-noise ratio from being transmitted to the acquisition unit through long distances, and advance Convert the analog signal into a digital signal, and use the better anti-interference ability of the digital signal to better carry the ranging data in the long-distance transmission; set up between the receiving module including the photoelectric sensor and the amplifier circuit and the acquisition module including the acquisition unit
  • the differential driver can provide stronger ESD protection for the interconnection path between the receiving module and the acquisition module, and improve the reliability of the system.
  • FIG. 5 it is a schematic structural diagram of a laser radar ranging system provided by the embodiment of the present application.
  • This embodiment does not include functional blocks, control logic, circuits, and the acquisition unit 103, the processing unit 104 and the control unit 105. All internal and external interfaces are required.
  • the lidar ranging system shown includes: photoelectric sensor 101 , differential driver 102 , acquisition unit 103 , control unit 105 , processing unit 104 , differential signal generation unit 501 and heat dissipation system 502 .
  • the differential signal generating unit 501 includes an input terminal and an output terminal; the input terminal of the differential signal generating unit 501 is connected to the amplifier circuit 301, and the output terminal of the differential signal generating unit 501 is connected to the differential driver 102; the cooling system 502 is connected to the differential driver 102 .
  • connection relationship and working principle of the photoelectric sensor 101, the differential driver 102, the acquisition unit 103, the processing unit 104, the amplification circuit 301 and the control unit 105 are shown in FIG. 4 above, and will not be repeated here.
  • the differential signal generating unit 501 receives the amplified analog signal from the amplifying circuit 301 through the input terminal of the differential signal generating unit 501, and converts the amplified analog signal into a differential signal, and passes the differential signal through the differential signal generating unit 501 The output terminal of is sent to the differential driver 102.
  • the differential signal generation unit 501 receives the analog signal from the photoelectric sensor 101 through the input terminal of the differential signal generation unit 501, and converts the analog signal into a differential signal, and passes the differential signal through the differential signal generation unit 501.
  • the output terminal is sent to the differential driver 102 .
  • the differential signal generating unit 501 includes a pair of gain resistors and a low-pass filter with the same resistance value, and sets the input terminals of the differential driver 102 for receiving analog signals as two input terminals, and the two input terminals are driven by The twisted pair is connected to the differential signal generation unit 501 .
  • the advantage of this embodiment is that the peripheral wiring is relatively simple and the cost is low.
  • the differential driver 102 and the differential signal generation unit 501 are packaged in the same integrated chip, or it can be understood that the differential signal generation unit 501 is a subunit of the differential driver 102 .
  • the advantage of this embodiment is that the integrated chip requires less installation space and is easy to install.
  • the differential driver 102 is used for receiving the differential signal and the reference signal from the control unit 105 , converting the differential signal into a digital signal based on the threshold voltage value, and sending the digital signal to the acquisition unit 103 .
  • the principle of the differential driver 102 is shown in FIG. 1 , which will not be repeated here.
  • the cooling system 502 including but not limited to a hydraulic fluid cooling system using hydraulic transmission, a cooling fan driven by wind, etc., is used for cooling the differential driver 102 .
  • connection distance between the differential driver 102 and the amplification circuit 301 is smaller than the connection distance between the differential driver 102 and the acquisition unit 103 .
  • the analog signal is converted into a differential signal through the differential signal generating unit to be input to the differential driver, which reduces the interference of external electromagnetic interference (EMI) and improves signal stability; the differential driver is dissipated through the heat dissipation system to avoid differential
  • EMI external electromagnetic interference
  • the overheating of the drive causes the work to fail; by setting the distance between the differential drive and the acquisition unit as the boundary between the analog area and the digital area, the isolation between the two areas is increased and the possibility of digital-analog signal crosstalk is reduced.
  • This application uses a differential driver to convert analog signals with different rising slopes into digital signals with consistent slopes and then send them to the acquisition unit, so that the width data of the digital signal can be mapped to the amplitude data of the analog signal, which can reduce the nonlinearity.
  • Influenced by the laser test error on the premise of improving the accuracy of laser ranging, reduce the cost and power consumption of the ranging circuit, and improve the reliability of the system; avoid the analog signal that is easily affected by the signal-to-noise ratio from being transmitted to the acquisition unit through long distances, and advance Convert the analog signal into a digital signal, and use the better anti-interference ability of the digital signal to better carry the ranging data in the long-distance transmission; set up between the receiving module including the photoelectric sensor and the amplifier circuit and the acquisition module including the acquisition unit
  • the differential driver can provide stronger ESD protection for the interconnection path between the receiving module and the acquisition module, and improve the reliability of the system.
  • the processes in the methods of the above embodiments can be implemented through computer programs to instruct related hardware, and the programs can be stored in a computer-readable storage medium. During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory or a random access memory, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达测距系统,包括:光电传感器(101)、差分驱动器(102)、采集单元(103)、控制单元(105)和处理单元(104);其中,光电传感器(101)与差分驱动器(102)电性相连,差分驱动器(102)与采集单元(103)电性相连,采集单元(103)与处理单元(104)电性相连、控制单元(105)与差分驱动器(102)电性相连;差分驱动器(102)用于接收模拟信号和第一参考信号,以及基于第一门限电压值将模拟信号转换为数字信号,以及将数字信号发送给采集单元(103)。该系统可以降低非线性带来的激光测试误差影响,在提高激光测距精度的前提下,降低测距电路的成本功耗,提高可靠性。

Description

激光雷达测距系统 技术领域
本申请涉及激光测距领域,尤其涉及一种激光雷达测距系统。
背景技术
激光雷达作为智能驾驶系统中最重要的导航系统,已经被各大车企所重视。激光雷达通过激光在传播过程中触碰物体后产生的回波信号被激光雷达的接收电路进行接收,以及分析回波信号的测距数据来进行距离测算,从而达到感知和构建三维物理图像。然而在现有技术中,作为模拟信号的回波信号的幅值动态范围有相当几率超过激光雷达的接收电路的线性区范围,换而言之,回波信号的幅值变化频率可能超过激光雷达的接收电路的采集频率,使得接收电路工作在非线性区,造成对回波信号的采集缺失,进一步导致了基于激光测距的精度降低,对由激光雷达组成的导航系统造成恶劣影响。
发明内容
本申请实施例提供了一种激光雷达测距系统,可以降低非线性带来的激光测试误差影响,在提高激光测距精度的前提下,降低测距电路的成本功耗,提高可靠性,在提高激光测距的精度的前提下降低激光雷达测距系统的成本。所述技术方案如下:
第一方面,本申请实施例提供了一种激光雷达测距系统,所述方法包括:光电传感器、差分驱动器、采集单元、控制单元和处理单元;
其中,所述光电传感器与所述差分驱动器电性相连,所述差分驱动器与所述采集单元电性相连,所述采集单元与所述处理单元电性相连、所述控制单元与所述差分驱动器电性相连;
所述控制单元,用于向所述差分驱动器发送携带有第一门限电压值的第一参考信号;
所述光电传感器,用于当接收到激光回波信号时产生模拟信号,以及将所述模拟信号发送给所述差分驱动器;
所述差分驱动器,用于接收所述模拟信号和所述第一参考信号,以及基于所述第一门限电压值将所述模拟信号转换为数字信号,以及将所述数字信号发送给所述采集单元;
所述采集单元,用于基于所述数字信号采集测距数据,以及将所述测距数据发送给所述处理单元;
所述处理单元,用于基于所述测距数据测距。
在一个可能的实施例中,所述控制单元还与所述处理单元电性连接;
所述控制单元包括控制端和输出端;所述处理单元包括控制端;
所述控制单元的控制端与所述处理单元的控制端相连,所述控制单元的输出端与所述差分驱动器相连;
所述处理单元,还用于基于所述测距数据中携带的测距时间信息、所述激光回波信号的信号宽度和所述第一门限电压值的幅度数值,对所述数字信号进行还原计算,获取还原计算结果,以及基于所述还原计算结果向所述控制单元发送控制信号;
所述控制单元,用于基于所述控制信号,通过所述控制单元的输出端向所述差分驱动器发送携带有第二门限电压值的第二参考信号;其中,所述第二参考信号用于指示所述差分驱动器基于所述第二门限电压值将所述模拟信号转换为所述数字信号,所述第二门限电压值与所述模拟信号的电压差值小于所述第一门限电压值与所述模拟信号的电压差值。
在一个可能的实施例中,所述系统还包括:放大电路;
所述放大电路包括输入端和输出端;所述光电传感器包括输入端;所述差分驱动器包括输入端;
所述放大电路的输入端与所述光电传感器的输出端相连,所述放大电路的输出端与所述差分驱动器的输入端相连;
所述光电传感器,还用于将通过所述光电传感器的输出端将模拟信号发送给所述放大电路;
所述放大电路,用于通过所述放大电路的输入端接收所述模拟信号,以及对所述模拟信号进行放大处理后得到放大模拟信号,以及通过所述放大电路的输出端将所述放大模拟信号发送给所述差分驱动器;
所述差分驱动器,还用于通过所述差分驱动器的输入端接收所述放大模拟信号,以及将所述放大模拟信号转换为数字信号,以及将数字信号发送给所述采集单元。
在一个可能的实施例中,所述放大电路包括:放大器和放大增益电阻;
所述放大增益电阻包括第一端和第二端,所述放大器包括反相输入端、同相输入端和输出端;
所述放大增益电阻的第一端与所述放大器的反相输入端相连,所述放大增益电阻的第二端与所述放大器的输出端相连,所述放大器的同相输入端与偏置电压源相连,所述光电传感器的输出端与所述放大器的反相输入端相连,所述放大器的输出端与所述差分驱动器的输入端相连。
在一个可能的实施例中,所述系统还包括:对消及放大电路;
所述光电传感器包括:参考光电传感器和检测光电传感器;其中,所述参考光电传感 器处于遮光状态;
所述参考光电传感器包括输出端,所述检测光电传感器包括输出端,所述对消及放大电路包括输入端和输出端;
所述检测光电传感器与所述参考光电传感器并联,所述检测光电传感器的输出端、所述参考光电传感器的输出端与所述对消及放大电路的输入端相连,所述对消及放大电路的输出端与所述差分驱动器相连;
所述检测光电传感器,用于当接收到激光回波信号时产生测距电流信号,以及通过所述检测光电传感器的输出端将所述测距电流信号发送给所述对消及放大电路;
所述参考光电传感器,用于基于施加于所述光电传感器两端的工作电压产生噪声电流信号,以及通过所述参考光电传感器的输出端将所述噪声电流信号发送给所述对消及放大电路;其中,所述模拟信号包括所述噪声电流信号和所述测距电流信号;
所述对消及放大电路,用于通过所述对消及放大电路接收所述模拟信号,以及基于所述噪声电流信号对所述测距电流信号进行对消及放大后得到所述处理模拟信号,以及通过所述对消及放大电路的输出端将所述处理模拟信号发送给所述差分驱动器;
所述差分驱动器,还用于接收所述处理模拟信号和所述参考信号,以及基于所述门限电压值将所述处理模拟信号转换为数字信号,以及将所述数字信号发送给所述采集单元。
在一个可能的实施例中,所述对消及放大电路包括:对消变压器和放大电路;
所述对消变压器包括输入端和输出端,所述放大电路包括输入端和输出端;
所述对消变压器的输入端与所述检测光电传感器、所述参考光电传感器的输出端相连,所述对消变压器的输出端与所述放大电路的输入端相连,所述放大电路的输出端与所述差分驱动器相连;
所述对消变压器,用于通过所述对消变压器的输入端接收所述模拟信号,以及基于所述噪声电流信号对所述测距电流信号进行对消处理后得到消噪信号,以及将所述消噪信号通过所述对消变压器的输出端发送给所述放大电路;
所述放大电路,用于通过所述放大电路的输入端接收所述消噪信号,以及对所述消噪信号进行放大处理后得到所述处理模拟信号,以及将所述处理模拟信号通过所述放大电路的输出端发送给所述差分驱动器。
在一个可能的实施例中,所述系统还包括:差分信号生成单元;
所述差分信号生成单元包括输入端和输出端;
所述差分信号生成单元的输入端与所述光电传感器相连,所述差分信号生成单元的输 出端与所述差分驱动器相连;
所述差分信号生成单元,用于通过所述差分信号生成单元的输入端接收来自所述光电传感器的模拟信号,以及将所述模拟信号转换为差分信号,以及将所述差分信号通过所述差分信号生成单元的输出端发送给所述差分驱动器;
所述差分驱动器,用于接收所述差分信号和所述第一参考信号,以及基于所述第一门限电压值将所述差分信号转换为数字信号,以及将所述数字信号发送给所述采集单元。
在一个可能的实施例中,所述系统还包括:去耦电容;
所述去耦电路的第一端与所述光电传感器的输入端相连,所述去耦电容的第二端接地。
在一个可能的实施例中,所述差分驱动器与所述放大电路之间的连接距离小于所述差分驱动器与所述采集单元之间的连接距离。
在一个可能的实施例中,所述系统还包括:散热系统;
所述散热系统与所述差分驱动器相连;
所述散热系统,用于为所述差分驱动器散热。
本申请一些实施例提供的技术方案带来的有益效果至少包括:
本申请通过差分驱动器将上升沿斜率不一的模拟信号转换为斜率一致的数字信号后发送给采集单元,以使数字信号的宽度数据可以映射到模拟信号的幅度数据上,可以降低非线性带来的激光测试误差影响,在提高激光测距精度的前提下,降低测距电路的成本功耗,提高系统的可靠性;避免易受信噪比影响的模拟信号通过长距离传输到采集单元,提前将模拟信号转换为数字信号,利用数字信号较好的抗干扰能力更好地在长距离传输中携带测距数据;在包括光电传感器的接收模块和包括采集单元的采集模块之间设置差分驱动器,可为接收模块和采集模块之间的互联路径提供更强的ESD防护,提高系统的可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种激光雷达测距系统的结构示意图;
图2是本申请实施例提供的一种激光雷达测距系统的结构示意图;
图3是本申请实施例提供的一种激光雷达测距系统的结构示意图;
图4是本申请实施例提供的一种激光雷达测距系统的结构示意图;
图5是本申请实施例提供的一种激光雷达测距系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。在本申请的描述中,需要说明的是,除非另有明确的规定和限定,“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。此外,在本申请的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
下面结合具体的实施例对本申请进行详细说明。
可以理解的是,术语“电性相连”意指间接或直接的电性连接。因此,若文中描述一个装置与于另一装置电性相连,则代表该装置可直接电性连接于该另一装置,或者透过其它装置或连接手段间接地电性连接至该另一装置。另外,本申请附图部分的各附图清楚地说明了对应的实施例的相关部分,并且并不一样按真实结构的比例绘制,仅大致示意各装置之间的位置关系。
如图1所示,为本申请实施例提供的一种激光雷达测距系统的结构示意图,本实施例并不包括功能块、控制逻辑、电路以及采集单元103、处理单元104和控制单元105的内部和外部都要求的全部接口,所示激光雷达测距系统包括:光电传感器101、差分驱动器(differential driver)102、采集单元103、控制单元105和处理单元104。
如图1所示连接关系,光电传感器101与差分驱动器102电性相连,差分驱动器102与采集单元103电性相连,采集单元103与处理单元104电性相连,控制单元105与差分 驱动器102电性相连。
光电传感器101,可以理解为将光信号转换为电信号的传感器,优选为单光子列阵传感器,可以理解为在激光通信中使用的单光子雪崩光电二极管,优点为利用载流子的雪崩倍增效应来放大光电信号以提高检测的灵敏度。举例来说,光电传感器101的型号包括但不限于C30659-900-R5BH、C30659-1550-R08BH、C30919E等。下述为光电传感器101由高灵敏度的硅光电倍增管SiPM组成的工作原理:硅光电倍增管SiPM由多个微单元并联组成,每个微单元由单光子雪崩二极管SPAD和淬灭电阻组成;当在硅光电倍增管SiPM施加反向偏置电压时,每个微单元的单光子雪崩二极管SPAD的耗尽层有强度很高的电场;当外界有光子照射进来,光子会和单光子雪崩二极管SPAD中的电子空穴对发生康普顿散射,生成出电子或空穴,高能的电子和空穴随即在电场中加速,激发大量的次级电子和空穴,即发生雪崩效应,此时每个微单元输出的电流突然变大,在淬灭电阻上的电压也变大,随后单光子雪崩二极管SPAD的耗尽层的电场瞬间变小,即单光子雪崩二极管SPAD接收一个光子后输出一个瞬时电流脉冲,随后雪崩停止;基于上述工作原理,硅光电倍增管SiPM阵列可以作为光电传感器,将光信号转换为电流信号。
在本申请实施例中,光电传感器101用于当接收到激光回波信号时基于上述原理产生模拟信号,以及将模拟信号发送给差分驱动器102。模拟信号可以理解为相位和幅值随时间作连续变化的电流信号。在一个实施例中,光电传感器101设置有输出端,通过光电传感器101的输出端将模拟信号发送给差分驱动器102。
差分驱动器102,可以理解为基于门限电压值将模拟信号转换为数字信号的比较器,换而言之,差分驱动器102基于采集频率采集模拟信号并采集模拟信号的电压值,基于转换频率将模拟信号的电压值与门限电压值进行比较,当大于门限电压值时输出高电平,当小于门限电压值时输出低电平,当等于门限电压值时输出0,以此将模拟信号转换为数字信号。例如,差分驱动器102的型号包括但不限于LTC2387-18。在一个实施例中,差分驱动器102可以作为独立装置实施或集成到电子装置中,在另一个实施例中,差分驱动器102在集成电路中实施。
相比于传统的比较器或模数转换器,差分驱动器101至少具有以下优点:高集成度,印制电路板(Printed Circuit Board,PCB)布线和外围电路简单,在达到同样的采集频率和转换频率的前提下差分驱动器的成本更低;抗干扰能力强,驱动能力强,可跨板长线驱动;静电阻抗器(Electro-Static discharge,ESD)防护性强,利于数模区域隔离保护。换而言之,差分驱动器放置在靠近作为接收装置的光电传感器101的区域,作为接收装置的模拟和数 字区域分界,增大与包括采集单元103和处理单元104的采集模块的隔离度,降低数模信号串扰的可能。
在本申请实施例中,差分驱动器102用于接收来自光电传感器101的模拟信号,以及接收来自控制单元105携带有第一门限电压值的第一参考信号,基于第一门限值将模拟信号转换为数字信号,以及将数字信号发送给采集单元103。在一个实施例中,差分驱动器102设置有输出端、同相输入端和反相输入端,同相输入端与光电传感器101相连,反相输入端与控制单元105相连,输出端与采集单元103相连,差分驱动器102通过同相输入端接收来自光电传感器101的模拟信号,通过反相输入端接收控制单元105的参考信号,其中,参考信号包括上述第一参考信号,通过输出端将数字信号发送给采集单元103。
在一个实施例中,差分驱动器102向采集单元103输出的数字信号为差分数字信号,通过设置两个输出端或差分信号生成单元将数字信号转换为差分数字信号。本申请一些实施例提供的技术方案带来的有益效果至少包括:差分数字信号相比于数字信号,抗干扰性更好,减少长距离传输对差分数字信号的影响。
采集单元103,可以理解基于数字信号采集测距数据的电路,测距数据包括但不限于激光回波信号的飞行时间、激光回波信号的幅值大小、激光回波信号的幅度数据、模拟信号的底噪数据。
举例来说,下述为采集单元103基于数字信号采集激光回波信号的飞行时间的工作原理:采集单元103包括时钟子单元、延时锁存子单元、时间计数子单元和N个延时子单元;N个延时子单元对数字信号进行N次延时后得到N个延时信号,以及将N个延时信号发送给延时锁存子单元;时钟子单元基于start信号向时间技术子单元和延时锁存子单元发送时钟信号;延时锁存子单元基于时钟信号将N个延时信号进行延时锁存;时间计数子单元基于延时锁存的结果和计数量得到回波信号的飞行时间。
在一个实施例中,采集单元103设置有输入端和输出端,输入端与差分驱动器102相连,输出端与处理单元104相连,采集单元103通过输入端接收来自差分驱动器102的数字信号,通过输出端将测距数据发送给处理单元104。
处理单元104,可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable GateArray,FPGA)、可编程逻辑阵列(Programmable LogicArray,PLA)中的至少一种硬件形式来实现,其中,现场可编程门阵列是一种程序驱动逻辑器件,就像一个微处理器,其控制程序存储在内存中,加电后,程序自动装载到芯片执行。现场可编程门阵列一般由2个可编程模块和存储SRAM构成。CLB是可编程逻辑块,是现场可 编程门阵列的核心组成部分,是实现逻辑功能的基本单元,主要由逻辑函数发生器、触发器、数据选择器等数字逻辑电路构成。其中,ASIC芯片技术所有接口模块(包括控制模块)都连接到一个矩阵式背板上,通过ASIC芯片到ASIC芯片的直接转发,可同时进行多个模块之间的通信;每个模块的缓存只处理本模块上的输入输出队列,因此对内存芯片性能的要求大大低于共享内存方式。总之,交换矩阵的特点是访问效率高,适合同时进行多点访问,容易提供非常高的带宽,并且性能扩展方便,不易受CPU、总线以及内存技术的限制。
在本申请中,处理单元104用于基于测距数据测距,具体而言,接收来自采集单元103的测距数据,基于测距数据计算目标设备与待检测设备之间的距离信息,以及将该距离信息进行展示。上述目标物体即设置有该激光雷达测距系统以及发射激光信号并接受激光回波信号的设备,待检测设备为产生激光回波信号的设备,例如在路上行驶的车辆、障碍物、行人等。
在一个实施例中,处理单元104将基于测距数据得到的距离信息进行展示。例如,将距离信息发送给显示设备,以使显示设备通过成像系统生成待检测设备的立体模型,以及目标设备的立体模型与该待检测设备的立体模型之间的距离标注。显示设备可以是液晶显示屏、红外投影显示屏等。本实施例提供的技术方案带有的有益效果至少包括:实现距离信息的可视化,提高距离信号展示的生动性。
控制单元105,可以理解为向差分驱动器102发送参考信号的集成芯片,该参考信号携带有门限电压值,以使差分驱动器102基于该门限电压值将模拟信号转换为数字信号。举例来说,参考信号为稳定30V的模拟信号,则门限电压值为30V;控制单元105将该参考信号发送给差分驱动器102;差分驱动器102基于采集频率采集模拟信号并采集模拟信号的电压值,基于转换频率将模拟信号的电压值与门限电压值30V进行比较,当大于门限电压值30V时输出高电平,当小于门限电压值时输出低电平,当等于门限电压值时输出0,以此将模拟信号转换为数字信号。
在一个实施例中,门限电压值的数值可以是由制造商烧制控制单元105时刻入的。在另一个实施例中,门限电压值的数值可以由控制单元105接收来自用户的修改指令后进行修改,例如用户通过触摸显示设备以触发修改指令的触发条件,将电压门限值从30V改为20V。本实施例提供的技术方案带有的有益效果至少包括:实现该激光雷达测距系统的私人定制化,满足用户各式各样的定制需求,提高该激光雷达测距系统的智能性。
在一个实施例中,控制单元105中包括参考电平子单元,以及控制单元105设置有输出端,该输出端与差分驱动器102相连。控制单元105向参考电平子单元发送控制信号, 以使参考电平子单元基于该控制信号通过输出端向差分驱动器发送携带有门限电压值的参考信号。
在一个实施例中,图1所示的激光雷达测距系统还包括预加重模块(图中未示出),该预加重模块设置有输入端和输出端,该输入端与控制单元105相连,输出端与差分驱动器102相连。预加重模块可以理解为:通过预加重模块的输入端接收由控制单元105产生的预加重控制信号,在差分驱动器102生成数字信号的上升/下降沿向差分驱动器提供额外的驱动电流,以提高差分驱动器102将模拟信号转换为数字信号的转换频率。预加重模块包括:PMOS电流源、NMOS电流源和8个NMOS开关管,其中2个开关管通过PMOS电流源和NMOS电流源提供的偏置电压形成电流镜结构,8个开关管组成为预加重模块的开关控制电路。
本申请一些实施例提供的技术方案带来的有益效果至少包括:通过增加了预加重模块向差分驱动器提供额外的驱动电流,提高差分驱动器将模拟信号转换为数字信号的转换频率,进一步提高差分驱动器采集模拟信号的采集频率,以增强差分驱动器的采集精度和转换精度;当激光雷达测距系统工作在额定电压之下时,预加重模块通过提供瞬间高压有效抑制电流噪声,提高激光雷达测距系统的抗干扰能力。
本申请通过差分驱动器将上升沿斜率不一的模拟信号转换为斜率一致的数字信号后发送给采集单元,以使数字信号的宽度数据可以映射到模拟信号的幅度数据上,可以降低非线性带来的激光测试误差影响,在提高激光测距精度的前提下,降低测距电路的成本功耗,提高系统的可靠性;避免易受信噪比影响的模拟信号通过长距离传输到采集单元,提前将模拟信号转换为数字信号,利用数字信号较好的抗干扰能力更好地在长距离传输中携带测距数据;在包括光电传感器的接收模块和包括采集单元的采集模块之间设置差分驱动器,可为接收模块和采集模块之间的互联路径提供更强的ESD防护,提高系统的可靠性。
如图2所示,为本申请实施例提供的一种激光雷达测距系统的结构示意图,本实施例并不包括功能块、控制逻辑、电路以及采集单元103、处理单元104和控制单元105的内部和外部都要求的全部接口,所示激光雷达测距系统还包括:控制单元105还与处理单元104电性连接。
如图2所示连接关系:控制单元105包括控制端和输出端,处理单元104包括控制端;控制单元105的控制端与处理单元104的控制端相连,控制单元105的输出端与差分驱动器102相连。
在本申请实施例中,光电传感器101、差分驱动器102、采集单元103、处理单元104和控制单元105的连接关系和工作原理参见上述图1所示,此处不再赘述。
下述为图2所示本申请实施例的工作原理:
光电传感器101接收到激光回波信号时产生模拟信号,以及将模拟信号发送给差分驱动器102;差分驱动器102接收控制单元105发送的携带有第一门限电压值的第一参考信号,基于第一门限电压值将模拟信号转换为数字信号,以及将数字信号发送给采集单元103;采集单元103基于数字信号采集测距数据,以及将测距数据发送给处理单元104,该测距数据中携带了测距时间信息、激光回波信号的信号宽度和第一门限电压值的幅度数值,测距时间信息表征激光回波信号的触发时间和对应的第一门限电压值的幅度数值的采集时间;处理单元104基于测距时间信息、激光回波信号的信号宽度和第一门限电压值的幅度数值,对数字信号进行还原计算,获取还原计算结果,具体而言,通过激光回波信号的信号宽度利用;以及基于还原计算结果,通过处理单元104的输出端向控制单元105发送控制信号;控制单元105基于控制信号通过控制单元105的输出端向差分驱动器102发送携带有第二门限电压值的第二参考信号;差分驱动器102接收第二参考信号,基于第二门限电压值将模拟信号转换为数字信号,第二门限电压值与模拟信号的电压差值小于第一门限电压值与模拟信号的电压差值。
举例来说,第一门限电压值为30V时,激光回波信号经过转换后得到模拟信号的信号宽度落在15V-45V电压值的信号宽度之间,差分驱动器102基于第一门限值30V将模拟信号转换为数字信号,具体而言,基于转换频率将模拟信号的电压值与门限电压值进行比较,当大于门限电压值时输出高电平,当小于门限电压值时输出低电平,当等于门限电压值时输出0,该模拟信号的电压值即上述模拟信号的电压幅度。
当激光雷达测距系统处于高强度环境光的环境时,例如天气为碧空如洗时的环境光的数值为100000Lux,天气为多云时的环境光的数值为10000Lux;当环境光的数值为10000Lux时光电传感器101接收激光回波信号经过转换后得到模拟信号的信号宽度80%落在15V-45V电压值的信号宽度之间,当环境光的数值为100000Lux时光电传感器激光回波信号经过转换后得到模拟信号的信号宽度80%落在50V-100V电压值的信号宽度之间。
光电传感器101基于第一门限电压值30V将模拟信号转换为数字信号,该数字信号经过采集单元103后转换为测距数据到达控制单元105,测距数据包括测距时间信息、激光回波信号的信号宽度和第一门限电压值的幅度数值,测距时间信息表征从激光回波信号的触发时间到基于第一门限电压值转换为数字信号的采集时间之间的时间信息;处理单元104 基于测距时间信息、激光回波信号的信号宽度和第一门限电压值的幅度数值,对数字信号进行还原计算,获取还原计算结果,其中,还原计算结果表征基于当前第一门限电压值得到的数字信号的合理程度;处理单元104基于还原计算结果和第一门限电压值的幅度数值得到第二门限电压值,控制信号中包括第二门限电压值,通过处理单元104的输出端向控制单元105发送控制信号,该控制信号包括脉冲信号或者数字信号等任意一种形式,例如数字信号00111111表示第二门限电压值为63V;控制单元105基于控制信号向差分驱动器102发送包括第二门限电压值63V的参考信号;差分驱动器102基于第二门限电压值63V对信号宽度有80%落在50V-100V电压值的信号宽度之间的模拟信号转换为数字信号,以使数字信号中高电平和低电平的数量数值更合理,减少数字信号中的环境底噪,得到更合理的数字信号,从而有效提高激光雷达测距系统的测距精度。可以理解的是,上述处理单元判断第一门限电压值不合理从而指示控制单元发送包括第二门限电压值的参考信号中的判断方法,本申请不作任何限制。以及上述第一门限电压值和第二门限电压值的数值仅以示例为目的,并不代表真实情况。
本申请一些实施例提供的技术方案带来的有益效果至少包括:控制单元根据处理单元的控制信号,向差分驱动器发送携带第二门限电压值的参考信号,以使差分驱动器基于第二门限电压值将模拟信号转换为数字信号,第二门限电压值与模拟信号的电压差值小于第一门限电压值与模拟信号的电压差值,进而使数字信号中高电平和低电平的数量数值更合理,减少数字信号中的环境底噪,得到更合理的数字信号,从而有效提高激光雷达测距系统的测距精度。
本申请通过差分驱动器将上升沿斜率不一的模拟信号转换为斜率一致的数字信号后发送给采集单元,以使数字信号的宽度数据可以映射到模拟信号的幅度数据上,可以降低非线性带来的激光测试误差影响,在提高激光测距精度的前提下,降低测距电路的成本功耗,提高系统的可靠性;避免易受信噪比影响的模拟信号通过长距离传输到采集单元,提前将模拟信号转换为数字信号,利用数字信号较好的抗干扰能力更好地在长距离传输中携带测距数据;在包括光电传感器的接收模块和包括采集单元的采集模块之间设置差分驱动器,可为接收模块和采集模块之间的互联路径提供更强的ESD防护,提高系统的可靠性。
如图3所示,为本申请实施例提供的一种激光雷达测距系统的结构示意图,本实施例并不包括功能块、控制逻辑、电路以及采集单元103、处理单元104和控制单元105的内部和外部都要求的全部接口,所示激光雷达测距系统包括:光电传感器101、差分驱动器 102、采集单元103、控制单元105、处理单元104和放大电路301。
如3所示连接关系:放大电路301包括输入端和输出端;光电传感器101包括输出端;差分驱动器102包括输入端;放大电路301的输入端与光电传感器101的输出端相连,放大电路301的输出端与差分驱动器102的输入端相连。
在一个实施例中,如图3所示:放大电路301包括放大增益电阻R1和放大器U1。放大增益电路R1包括第一端和第二端,放大器U1包括反相输入端、同相输入端和输出端。放大增益电阻R1的第一端与放大器U1的反相输入端相连,放大增益电阻R1的第二端与放大器U1的输出端相连,放大器U1的同相输入端与偏置电压源相连,光电传感器101的输出端与放大器U1的反相输入端相连,放大器U1的输出端与差分驱动器102的输入端相连。在另一个实施例中,放大电路301为集成电路或集成芯片组成,例如CA3130、CA3140、ICL7650等。
在本申请实施例中,差分驱动单元102与放大电路301之前的距离大于差分驱动单元102与采集单元103之间的距离。差分驱动单元102设置在靠近包括光电传感器101和放大电路301的接收模块的区域,提前将模拟信号转化为数字信号,可有效避免模拟电信号长距离传输至采集单元103,解决模拟信号的信噪比差的问题,由数字信号完成长距离传输至采集单元,可大幅提高驱动能力、降低数字信号在后续传输路径上受到干扰的影响。
在本申请实施例中,光电传感器101、差分驱动器102、采集单元103、处理单元104和控制单元105的连接关系和工作原理参见上述图1所示,此处不再赘述。
下述为如图3所示的本申请实施例的工作原理:
光电传感器101通过光电传感器101的输出端将模拟信号发送给放大电路301;放大电路301通过放大电路301的输入端接收模拟信号,以及对模拟信号进行放大处理后得到放大模拟信号,以及通过放大电路的输出端将放大模拟信号发送给差分驱动器;差分驱动器102通过差分驱动器102的输入端接收放大模拟信号,以及将放大模拟信号转换为数字信号,以及将数字信号发送给采集单元103。
举例来说,放大电路301包括放大器U1,U1是一个通用型集成运算放大器,由14个三极管实现输入信号的14级放大;模拟信号从放大器U1的反相输入端输入,由放大器U1的同相输入端从偏置电压源接收偏置电压,偏置电压推动14个三极管实现模拟信号的数级放大,在放大器U1的输出端输出放大模拟信号,放大模拟信号相比于模拟信号放大了14倍。
可以理解的是,当环境光微弱,或待检测物体与发射激光信号的目标物体之间的距离 较远时,激光回波信号的强度较低,进一步使光电传感器转换的模拟信号的电压值较低,甚至低于差分驱动器的采集范围。为避免发送给差分驱动器的模拟信号的电压值落在差分驱动器的采集范围外,需要通过放大电路将模拟信号放大。
本申请一些实施例提供的技术方案带来的有益效果至少包括:通过放大电路放大光电传感器生成的模拟信号,提高差分驱动器采集模拟信号的采集率,进一步提高测距的精度和激光雷达测距系统的工作可靠性,以及提高了本申请激光雷达测距系统的最大测距距离。
本申请通过差分驱动器将上升沿斜率不一的模拟信号转换为斜率一致的数字信号后发送给采集单元,以使数字信号的宽度数据可以映射到模拟信号的幅度数据上,可以降低非线性带来的激光测试误差影响,在提高激光测距精度的前提下,降低测距电路的成本功耗,提高系统的可靠性;避免易受信噪比影响的模拟信号通过长距离传输到采集单元,提前将模拟信号转换为数字信号,利用数字信号较好的抗干扰能力更好地在长距离传输中携带测距数据;在包括光电传感器和放大电路的接收模块和包括采集单元的采集模块之间设置差分驱动器,可为接收模块和采集模块之间的互联路径提供更强的ESD防护,提高系统的可靠性。
如图4所示,为本申请实施例提供的一种激光雷达测距系统的结构示意图,本实施例并不包括功能块、控制逻辑、电路以及采集单元103、处理单元104和控制单元105的内部和外部都要求的全部接口,所示激光雷达测距系统包括:光电传感器101、差分驱动器102、采集单元103、控制单元105、处理单元104、电源401、去耦电容C1和去耦电容C2和对消及放大电路402。
如图4所示连接关系:光电传感器101包括:参考光电传感器L2和检测光电传感器L1;其中,参考光电传感器L2处于遮光状态;参考光电传感器L2包括输出端,检测光电传感器L1包括输出端,对消及放大电路402包括输入端和输出端;去耦电容C1包括第一端和第二端,去耦电容C2包括第一端和第二端。
检测光电传感器L1与参考光电传感器L2并联,检测光电传感器L1的输出端、参考光电传感器L2的输出端与对消及放大电路402的输入端相连,对消及放大电路402的输出端与差分驱动器102相连,去耦电容C1的第一端与检测光电传感器L1的输出端相连,去耦电容C1的第二端接地;去耦电容C2的第一端与参考光电传感器L2的输出端相连,电源401与检测光电传感器L1的输入端、参考光电传感器L2的输入端相连。
在本申请实施例中,光电传感器101、差分驱动器102、采集单元103、处理单元104 和控制单元105的连接关系和工作原理参见上述图2所示,此处不再赘述。
在本申请实施例中,差分驱动单元102与对消及放大电路402之前的距离大于差分驱动单元102与采集单元103之间的距离。差分驱动单元102设置在靠近包括光电传感器101和对消及放大电路402的接收模块的区域,提前将模拟信号转化为数字信号,可有效避免模拟电信号长距离传输至采集单元103,解决模拟信号的信噪比差的问题,由数字信号完成长距离传输至采集单元,可大幅提高驱动能力、降低数字信号在后续传输路径上受到干扰的影响。
参考光电传感器L2和检测光电传感器L1,在本申请中尤其指单光子列阵传感器,可以理解为在激光测距中使用的雪崩光电二极管,利用了载流子的雪崩倍增效应来放大光电信号以提高检测的灵敏度。
在本申请实施例中,设置有去耦电容C1和去耦电容C2,用于去除电源噪声,稳定电源施加在光电传感器两端的工作电压。
参考光电传感器L2上设置有遮光部件,遮光部件用于对参考光电传感器L2作遮光处理,可以但不限于遮光板、遮光罩或遮光布等。可以理解的是,在无光照情况下,当施加的工作电压大于击穿电压时,第二光传感器L2同样会输出第二电流信号。
下述为本申请实施例激光雷达测距系统的工作原理:
在检测光电传感器L1上由激光回波信号导致的电流信号称为激光电流信号,电源401提供的工作电压导致的电流信号称为噪声电流信号。因此检测光电传感器L1输出的测距电流信号中,可能在大部分时刻仅包括噪声电流信号,而在激光回波信号到达检测光电传感器L1的时刻,测距电流信号中包括激光电流信号和噪声电流信号。可以理解的是,当激光回波信号的强度较弱时,检测光电传感器L1转换的激光电流信号相比于噪声电流信号较弱,因此对通过激光回波信号获取测距数据的采集单元103乃至处理单元104来说造成相当大的干扰。
因此,在本申请实施例中,参考光电传感器L2与检测光电传感器L1并联,且由同一个电源401提供相同的工作电压,因此参考光电传感器L2的工作电压与检测光电传感器L1的工作电压相等,即参考光电传感器L2与检测光电传感器L1的噪声电流信号的电压值相同。同时,因为参考光电传感器L2处于遮光状态,因此参考光电传感器L2在任何时刻均输出噪声电流信号。综上,光电传感器101发送给对消及放大电路402的模拟信号中包括检测电流信号和噪声电流信号。
对消及放大电路402接收到模拟信号,基于噪声电流信号对测距电流信号进行对消及 放大后得到处理模拟信号,以及通过对消及放大电路402的输出端将处理模拟信号发送给所述差分驱动器102;差分驱动器102接收处理模拟信号和来自控制单元105的参考信号,以及门限电压值将处理模拟信号转换为数字信号,以及将数字信号发送给采集单元103。
具体而言,上述对消及放大处理为将测距电流信号中的属于噪声电流信号的电流值去除,得到对消模拟信号,以及将对消模拟信号进行放大处理后得到处理模拟信号。
本申请一些实施例提供的技术方案带来的有益效果至少包括:通过对消及放大电路,将模拟信号中的噪声电流信号去除得以保留测距电流信号,差分驱动器102可以灵敏地采集基于激光回波信号转换的测距电流信号,提高了检测到激光回波信号的灵敏度和准确度,提高了测距的准确性。
在一个实施例中,如图4所示,对消及放大电路402包括对消变压器4021和放大电路4022。
如图4所示连接关系:对消变压器4021包括输入端和输出端,放大电路4022包括输入端和输出端;对消变压器4021的输入端与检测光电传感器L1、参考光电传感器L2的输出端相连,对消变压器的输出端与放大电路4022的输入端相连,放大电路4022的输出端与差分驱动器102相连。
对消变压器4021通过对消变压器4021的输入端接模拟信号,以及基于噪声电流信号对测距电流信号进行对消处理后得到消噪信号,以及将消噪信号通过对消变压器的输出端发送给放大电路。优选的,本申请中采用巴伦变压器,即一种具有平衡传非平衡、阻抗变换作用,用于双绞线的不平衡变压器。
放大电路4022通过放大电路4022的输入端接收消噪信号,以及对消噪信号进行放大处理后得到处理模拟信号,以及将处理模拟信号通过放大电路4022的输出端发送给差分驱动器102。放大电路4022的结构参见图3所示放大电路301,即包括放大增益电阻R1和放大器U1。
需要说明的是,对消及放大电路402的实现至少有两种方式:一种是先将模拟信号进行对消处理,然后跨阻放大,即上述本申请实施例提供的实施方式;另一种是先将模拟信号先跨阻放大,然后进行对消处理。由于第二种实施方式会限制信号链路的有效动态范围,并增加功耗和成本,因此,本发明采用第一种实施方式实现对消及放大电路402。
本申请一些实施例提供的技术方案带来的有益效果至少包括:本实施例可以选用低插入损耗和高对称性的巴伦变压器组成对消及放大电路,降低对信号衰减的影响且对消处理性能好;通过对消及放大电路,将模拟信号中的噪声电流信号去除得以保留测距电流信号, 差分驱动器可以灵敏地采集基于激光回波信号转换的测距电流信号,提高了检测到激光回波信号的灵敏度和准确度,提高了测距的准确性。
本申请通过差分驱动器将上升沿斜率不一的模拟信号转换为斜率一致的数字信号后发送给采集单元,以使数字信号的宽度数据可以映射到模拟信号的幅度数据上,可以降低非线性带来的激光测试误差影响,在提高激光测距精度的前提下,降低测距电路的成本功耗,提高系统的可靠性;避免易受信噪比影响的模拟信号通过长距离传输到采集单元,提前将模拟信号转换为数字信号,利用数字信号较好的抗干扰能力更好地在长距离传输中携带测距数据;在包括光电传感器和放大电路的接收模块和包括采集单元的采集模块之间设置差分驱动器,可为接收模块和采集模块之间的互联路径提供更强的ESD防护,提高系统的可靠性。
如图5所示,为本申请实施例提供的一种激光雷达测距系统的结构示意图,本实施例并不包括功能块、控制逻辑、电路以及采集单元103、处理单元104和控制单元105的内部和外部都要求的全部接口,所示激光雷达测距系统包括:光电传感器101、差分驱动器102、采集单元103、控制单元105、处理单元104、差分信号生成单元501和散热系统502。
如图5所示连接关系:差分信号生成单元501包括输入端和输出端;差分信号生成单元501的输入端与放大电路301相连,差分信号生成单元501的输出端与差分驱动器102相连;散热系统502与差分驱动器102相连。
在本申请实施例中,光电传感器101、差分驱动器102、采集单元103、处理单元104、放大电路301和控制单元105的连接关系和工作原理参见上述图4所示,此处不再赘述。
在本实施例中,差分信号生成单元501通过差分信号生成单元501的输入端接收来自放大电路301的放大模拟信号,以及将放大模拟信号转换为差分信号,以及将差分信号通过差分信号生成单元501的输出端发送给差分驱动器102。
在另一个实施例中,差分信号生成单元501通过差分信号生成单元501的输入端接收来自光电传感器101的模拟信号,以及将模拟信号转换为差分信号,以及将差分信号通过差分信号生成单元501的输出端发送给差分驱动器102。
在一个实施例中,差分信号生成单元501包括一对相同电阻值的增益电阻和低通滤波器,以及将差分驱动器102接收模拟信号的输入端设置为两个输入端,两个输入端通过驱动双绞线与差分信号生成单元501相连。本实施例的优点是外围布线较为简单,成本较低。在另一个实施例中,差分驱动器102与差分信号生成单元501封装在同一个集成芯片中, 或者可以理解为差分信号生成单元501为差分驱动器102的子单元。本实施例的优点是集成芯片需要的安装空间较小,便于安装。
差分驱动器102,用于接收差分信号和来自控制单元105的参考信号,以及基于门限电压值将差分信号转换为数字信号,以及将数字信号发送给采集单元103。差分驱动器102的原理参见如图1所示,此处不再赘述。
散热系统502,包括但不限于采用液压传动的液压流体散热系统、风传动的散热扇等,用于对差分驱动器102进行散热。
如图5所示,差分驱动器102与放大电路301之间的连接距离小于差分驱动器102与采集单元103之间的连接距离。
本申请一些实施例提供的技术方案带来的有益效果至少包括:
通过差分信号生成单元将模拟信号转换为差分信号,以输入到差分驱动器中,降低了外部电磁干扰(Electromagnetic Interference,EMI)的干扰,提高信号稳定性;通过散热系统对差分驱动器进行散热,避免差分驱动器出现过热的现象从而导致工作失灵;通过设置差分驱动与采集单元之间的距离,作为模拟区域和数字区域分界,增大两个区域的隔离度,降低数模信号串扰的可能性。
本申请通过差分驱动器将上升沿斜率不一的模拟信号转换为斜率一致的数字信号后发送给采集单元,以使数字信号的宽度数据可以映射到模拟信号的幅度数据上,可以降低非线性带来的激光测试误差影响,在提高激光测距精度的前提下,降低测距电路的成本功耗,提高系统的可靠性;避免易受信噪比影响的模拟信号通过长距离传输到采集单元,提前将模拟信号转换为数字信号,利用数字信号较好的抗干扰能力更好地在长距离传输中携带测距数据;在包括光电传感器和放大电路的接收模块和包括采集单元的采集模块之间设置差分驱动器,可为接收模块和采集模块之间的互联路径提供更强的ESD防护,提高系统的可靠性。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种激光雷达测距系统,其特征在于,所述系统包括:
    光电传感器、差分驱动器、采集单元、控制单元和处理单元;
    其中,所述光电传感器与所述差分驱动器电性相连,所述差分驱动器与所述采集单元电性相连,所述采集单元与所述处理单元电性相连,所述控制单元与所述差分驱动器电性相连;
    所述控制单元,用于向所述差分驱动器发送携带有第一门限电压值的第一参考信号;
    所述光电传感器,用于当接收到激光回波信号时产生模拟信号,以及将所述模拟信号发送给所述差分驱动器;
    所述差分驱动器,用于接收所述模拟信号和所述第一参考信号,以及基于所述第一门限电压值将所述模拟信号转换为数字信号,以及将所述数字信号发送给所述采集单元;
    所述采集单元,用于基于所述数字信号采集测距数据,以及将所述测距数据发送给所述处理单元;
    所述处理单元,用于基于所述测距数据测距。
  2. 根据权利要求1所述系统,其特征在于,所述控制单元还与所述处理单元电性连接;
    所述控制单元包括控制端和输出端;所述处理单元包括控制端;
    所述控制单元的控制端与所述处理单元的控制端相连,所述控制单元的输出端与所述差分驱动器相连;
    所述处理单元,还用于基于所述测距数据中携带的测距时间信息、所述激光回波信号的信号宽度和所述第一门限电压值的幅度数值,对所述数字信号进行还原计算,获取还原计算结果,以及基于所述还原计算结果向所述控制单元发送控制信号;
    所述控制单元,用于基于所述控制信号,通过所述控制单元的输出端向所述差分驱动器发送携带有第二门限电压值的第二参考信号;其中,所述第二参考信号用于指示所述差分驱动器基于所述第二门限电压值将所述模拟信号转换为所述数字信号,所述第二门限电压值与所述模拟信号的电压差值小于所述第一门限电压值与所述模拟信号的电压差值。
  3. 根据权利要求1所述系统,其特征在于,所述系统还包括:放大电路;
    所述放大电路包括输入端和输出端;所述光电传感器包括输入端;所述差分驱动器包括输入端;
    所述放大电路的输入端与所述光电传感器的输出端相连,所述放大电路的输出端与所述差分驱动器的输入端相连;
    所述光电传感器,还用于将通过所述光电传感器的输出端将模拟信号发送给所述放大电路;
    所述放大电路,用于通过所述放大电路的输入端接收所述模拟信号,以及对所述模拟信号进行放大处理后得到放大模拟信号,以及通过所述放大电路的输出端将所述放大模拟信号发送给所述差分驱动器;
    所述差分驱动器,还用于通过所述差分驱动器的输入端接收所述放大模拟信号,以及将所述放大模拟信号转换为数字信号,以及将数字信号发送给所述采集单元。
  4. 根据权利要求3所述系统,所述放大电路包括:放大器和放大增益电阻;
    所述放大增益电阻包括第一端和第二端,所述放大器包括反相输入端、同相输入端和输出端;
    所述放大增益电阻的第一端与所述放大器的反相输入端相连,所述放大增益电阻的第二端与所述放大器的输出端相连,所述放大器的同相输入端与偏置电压源相连,所述光电传感器的输出端与所述放大器的反相输入端相连,所述放大器的输出端与所述差分驱动器的输入端相连。
  5. 根据权利要求1所述系统,其特征在于,所述系统还包括:对消及放大电路;
    所述光电传感器包括:参考光电传感器和检测光电传感器;其中,所述参考光电传感器处于遮光状态;
    所述参考光电传感器包括输出端,所述检测光电传感器包括输出端,所述对消及放大电路包括输入端和输出端;
    所述检测光电传感器与所述参考光电传感器并联,所述检测光电传感器的输出端、所述参考光电传感器的输出端与所述对消及放大电路的输入端相连,所述对消及放大电路的输出端与所述差分驱动器相连;
    所述检测光电传感器,用于当接收到激光回波信号时产生测距电流信号,以及通过所述检测光电传感器的输出端将所述测距电流信号发送给所述对消及放大电路;
    所述参考光电传感器,用于基于施加于所述光电传感器两端的工作电压产生噪声电流信号,以及通过所述参考光电传感器的输出端将所述噪声电流信号发送给所述对消及放大 电路;其中,所述模拟信号包括所述噪声电流信号和所述测距电流信号;
    所述对消及放大电路,用于通过所述对消及放大电路接收所述模拟信号,以及基于所述噪声电流信号对所述测距电流信号进行对消及放大后得到所述处理模拟信号,以及通过所述对消及放大电路的输出端将所述处理模拟信号发送给所述差分驱动器;
    所述差分驱动器,还用于接收所述处理模拟信号和所述参考信号,以及基于所述门限电压值将所述处理模拟信号转换为数字信号,以及将所述数字信号发送给所述采集单元。
  6. 根据权利要求5所述系统,其特征在于,所述对消及放大电路包括:对消变压器和放大电路;
    所述对消变压器包括输入端和输出端,所述放大电路包括输入端和输出端;
    所述对消变压器的输入端与所述检测光电传感器、所述参考光电传感器的输出端相连,所述对消变压器的输出端与所述放大电路的输入端相连,所述放大电路的输出端与所述差分驱动器相连;
    所述对消变压器,用于通过所述对消变压器的输入端接收所述模拟信号,以及基于所述噪声电流信号对所述测距电流信号进行对消处理后得到消噪信号,以及将所述消噪信号通过所述对消变压器的输出端发送给所述放大电路;
    所述放大电路,用于通过所述放大电路的输入端接收所述消噪信号,以及对所述消噪信号进行放大处理后得到所述处理模拟信号,以及将所述处理模拟信号通过所述放大电路的输出端发送给所述差分驱动器。
  7. 根据权利要求1所述系统,其特征在于,所述系统还包括:差分信号生成单元;
    所述差分信号生成单元包括输入端和输出端;
    所述差分信号生成单元的输入端与所述光电传感器相连,所述差分信号生成单元的输出端与所述差分驱动器相连;
    所述差分信号生成单元,用于通过所述差分信号生成单元的输入端接收来自所述光电传感器的模拟信号,以及将所述模拟信号转换为差分信号,以及将所述差分信号通过所述差分信号生成单元的输出端发送给所述差分驱动器;
    所述差分驱动器,用于接收所述差分信号和所述第一参考信号,以及基于所述第一门限电压值将所述差分信号转换为数字信号,以及将所述数字信号发送给所述采集单元。
  8. 根据权利要求1所述系统,其特征在于,所述系统还包括:去耦电容;
    所述去耦电路的第一端与所述光电传感器的输入端相连,所述去耦电容的第二端接地。
  9. 根据权利要求1或3所述系统,其特征在于,所述差分驱动器与所述光电传感器之间的连接距离小于所述差分驱动器与所述采集单元之间的连接距离。
  10. 根据权利要求1所述系统,其特征在于,所述系统还包括:散热系统;
    所述散热系统与所述差分驱动器相连;
    所述散热系统,用于为所述差分驱动器散热。
PCT/CN2021/108813 2021-07-28 2021-07-28 激光雷达测距系统 WO2023004610A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180100043.5A CN118076908A (zh) 2021-07-28 2021-07-28 激光雷达测距系统
PCT/CN2021/108813 WO2023004610A1 (zh) 2021-07-28 2021-07-28 激光雷达测距系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108813 WO2023004610A1 (zh) 2021-07-28 2021-07-28 激光雷达测距系统

Publications (1)

Publication Number Publication Date
WO2023004610A1 true WO2023004610A1 (zh) 2023-02-02

Family

ID=85086193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108813 WO2023004610A1 (zh) 2021-07-28 2021-07-28 激光雷达测距系统

Country Status (2)

Country Link
CN (1) CN118076908A (zh)
WO (1) WO2023004610A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116300377A (zh) * 2023-03-06 2023-06-23 深圳市镭神智能系统有限公司 一种时间数字转换器与激光雷达

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070171119A1 (en) * 2006-01-24 2007-07-26 Raytheon Company Micro movement pulsed radar system and method of phase noise compensation
CN101655563A (zh) * 2008-08-21 2010-02-24 金华市蓝海光电技术有限公司 一种高精度、低功耗激光测距的方法及其装置
CN102707290A (zh) * 2012-05-02 2012-10-03 中山市柏棱光电有限公司 一种激光测距的方法
CN202794522U (zh) * 2012-07-16 2013-03-13 深圳市瑞尔幸电子有限公司 一种逐点采样手持式脉冲激光测距仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070171119A1 (en) * 2006-01-24 2007-07-26 Raytheon Company Micro movement pulsed radar system and method of phase noise compensation
CN101655563A (zh) * 2008-08-21 2010-02-24 金华市蓝海光电技术有限公司 一种高精度、低功耗激光测距的方法及其装置
CN102707290A (zh) * 2012-05-02 2012-10-03 中山市柏棱光电有限公司 一种激光测距的方法
CN202794522U (zh) * 2012-07-16 2013-03-13 深圳市瑞尔幸电子有限公司 一种逐点采样手持式脉冲激光测距仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116300377A (zh) * 2023-03-06 2023-06-23 深圳市镭神智能系统有限公司 一种时间数字转换器与激光雷达
CN116300377B (zh) * 2023-03-06 2023-09-08 深圳市镭神智能系统有限公司 一种时间数字转换器与激光雷达

Also Published As

Publication number Publication date
CN118076908A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US20230400558A1 (en) Lidar receiving apparatus, lidar system and laser ranging method
CN106817101A (zh) 具有自适应控制增益大动态范围的跨阻放大器及接收器
WO2023004610A1 (zh) 激光雷达测距系统
CN107255808A (zh) 一种激光雷达出射的窄脉冲峰值能量监测装置
WO2021031667A1 (zh) 单光子探测装置和方法
JP4724874B2 (ja) 光子検出装置および光子検出方法
US20230288538A1 (en) Laser receiving system and laser ranging system
US20220137244A1 (en) Silicon photomultipliers reflective pulse compression
WO2023092722A1 (zh) 提高雷达系统激光测距能力的方法、装置及存储介质
CN113740878B (zh) 用于测风雷达的平衡探测器电路
Li et al. A real-time SiPM based receiver for FSO communication
CN206611391U (zh) 具有自适应控制增益大动态范围的跨阻放大器
CN113405677A (zh) 高速正弦门控单光子探测器
WO2024114705A1 (en) Receving circuit, receiving method and lidar
CN111901036A (zh) 一种基于激光的空间光通信装置
CN215581104U (zh) 光电转换电路模块
US20230062555A1 (en) Avalanche photodiode gain compensation for wide dynamic range
CN110687519B (zh) 激光雷达信号降噪装置及方法
CN218006253U (zh) 激光器驱动装置
CN219456504U (zh) 激光接收模块和激光雷达
CN221123589U (zh) 光检测电路及安全芯片
CN117741623A (zh) 光电接收系统及激光雷达
CN214669460U (zh) 一种集成电路电磁抗扰性能检测装置
US20240210533A1 (en) Ac coupling circuit, laser detection module, and lidar
CN117639920A (zh) 一种信号处理电路、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100043.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15/05/2024)