WO2023003096A1 - Composition for variable focus lens, variable focus lens comprising same, and method for manufacturing same - Google Patents

Composition for variable focus lens, variable focus lens comprising same, and method for manufacturing same Download PDF

Info

Publication number
WO2023003096A1
WO2023003096A1 PCT/KR2021/017077 KR2021017077W WO2023003096A1 WO 2023003096 A1 WO2023003096 A1 WO 2023003096A1 KR 2021017077 W KR2021017077 W KR 2021017077W WO 2023003096 A1 WO2023003096 A1 WO 2023003096A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polymer resin
variable focus
mixed solution
composition
Prior art date
Application number
PCT/KR2021/017077
Other languages
French (fr)
Korean (ko)
Inventor
배진우
김상연
Original Assignee
한국기술교육대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기술교육대학교 산학협력단 filed Critical 한국기술교육대학교 산학협력단
Publication of WO2023003096A1 publication Critical patent/WO2023003096A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length

Definitions

  • the present invention relates to a composition for a variable focus lens, a variable focus lens including the same, and a manufacturing method thereof.
  • variable focus lens refers to a lens capable of changing its focal length by changing its external appearance or internal structure by a current, voltage, electric field, or magnetic field provided from the outside.
  • Such a variable focus lens may be in a liquid or gel state, and can be operated with less power than conventional lenses, and can be miniaturized due to a small space required for changing the focus.
  • Korean Patent Publication No. 10-2018-0114382 which is a prior art document, discloses a variable focus lens capable of independently controlling the focal length of both sides by applying a light-transmitting polymer resin and a plasticizer.
  • An object of the present invention is to provide a composition for a variable focus lens capable of improving the ductility of the variable focus lens, a variable focus lens including the composition, and a manufacturing method thereof.
  • a composition for a variable focus lens according to an embodiment of the present invention includes a light-transmitting polymer resin; P(VC-VA) [poly(vinyl chloride-co-vinyl acetate)]; And a plasticizer; includes.
  • the P(VC-VA) may have the following molecular formula 1.
  • a method for manufacturing a variable focus lens according to an embodiment of the present invention includes preparing a mixed solution by dissolving a mixture of a light-transmitting polymer resin, P(VC-VA), and a plasticizer in a solvent; and removing the solvent of the mixed solution.
  • the weight ratio of the light-transmissive polymer resin and P(VC-VA) introduced in the step of preparing the mixed solution may be 1:0.9 to 1:1.1.
  • the content of the DAG introduced in the step of preparing the mixed solution may be 1:1 to 1:11 with respect to the total weight of the light-transmitting polymer resin and P(VC-VA).
  • variable focus lens including the composition for a variable focus lens according to an embodiment of the present invention and a variable focus lens manufactured by the method for manufacturing the same may have higher ductility.
  • FIG. 1(a) shows a variable focus lens according to an embodiment of the present invention
  • FIG. 1(b) is an exploded perspective view of FIG. 1(a).
  • FIG. 2 is a cross-section of the variable focus lens of FIG. 1, illustrating deformation of a lens unit according to supply of power.
  • FIG. 5(a) is a graph measuring the relative permittivity of DBA and Comparative Example 1
  • FIG. 5(b) is a graph measuring the relative permittivity of Examples 1 to 5.
  • Figure 6 (a) is a graph measuring the impedance of DBA and Comparative Example 1
  • Figure 6 (b) is a graph measuring the impedance of Examples 1 to 5.
  • a composition for a variable focus lens includes a light-transmitting polymer resin; P(VC-VA) [poly(vinyl chloride-co-vinyl acetate)]; And a plasticizer; includes.
  • the composition may be provided as a powder or a liquid dissolved in a solvent.
  • P(VC-VA) poly(vinyl chloride-co-vinyl acetate)
  • P(VC-VA) is a polymeric material formed by interconnecting chains of vinyl chloride and vinyl acetate.
  • the P(VC-VA) may be represented by the following molecular formula 1.
  • the molecular weight of the P(VC-VA) may be 100,000 or more in consideration of ductility.
  • P(VC-VA) may be represented by Formula 1 below.
  • the light-transmissive polymer resin is a polymer material having transparency and flexibility, and functions to maintain the shape of a lens and refract an incident wavelength.
  • the light-transmitting polymer resin may be at least one of PVC (Poly vinyl chloride), PC (PolyCarbonate), PET (PolyEthylene Terephthalate), and TAC (TriAcetate Cellulose), and preferably may be PVC that is transparent and easy to process.
  • the light-transmitting polymer resin may have a molecular weight of 150,000 or more in consideration of ductility and the like.
  • PVC can be represented by the molecular formula 2 below.
  • the plasticizer performs a function of curing the light-transmitting polymer resin and P(VC-VA) and converting them into a gel phase. Through this, the plasticizer may lower leakage current.
  • the plasticizer is not particularly limited, but may be DBA (Dibutyl Adipate).
  • the DBA may be represented by molecular formula 3 below.
  • the light-transmitting polymer resin and P(VC-VA) may have a weight ratio of 1:0.9 to 1:1.1.
  • the content of the light-transmitting polymer resin and P (VC-VA) is preferably 1:0.9 to 1:1.1, , more preferably 1:1.
  • the amount of the plasticizer added in the step of preparing the mixed solution may be 1:1 to 1:11, more preferably 1:1, based on the total weight of the light-transmitting polymer resin and P(VC-VA). to 1:3. If the plasticizer content is too low, the effect of adding the plasticizer may not appear, and if the plasticizer content is too high, deformation does not occur easily, so a lot of power is consumed for deformation or there is a risk of damage.
  • the variable focus lens 100 includes the composition for a variable focus lens described above.
  • the variable focus lens 100 includes a lens unit 110 made of a composition for a variable focus lens, an upper substrate 120 disposed above and below the lens unit 110, and a lower portion.
  • a substrate 130 may be included.
  • the upper substrate 120 and the lower substrate 130 may include a hollow in which the curved surface of the lens unit 110 is disposed, and may include an electrode contacting the lens unit 110 to allow current to flow.
  • FIG. 2 is a cross-section of the variable focus lens of FIG. 1, illustrating deformation of a lens unit according to supply of power.
  • FIG. 2(a) shows a case where current is not applied, FIG.
  • variable focus lens can control the shape of both sides according to the current application method.
  • a method for manufacturing a variable focus lens according to an embodiment of the present invention includes preparing a mixed solution by dissolving a mixture of a light-transmitting polymer resin, P(VC-VA), and a plasticizer in a solvent; and removing the solvent of the mixed solution.
  • the solvent may be a polar organic solvent. This is to easily dissolve the light-transmissive polymer resin and P(VC-VA).
  • the polar organic solvent may be any one of dioxane, tetrahydrofuran (THF), acetone, dimethyl sulfoxide (DMSO), dimethylformamide (DMF) and 1-methyl-2-pyrrolidone (NMP). .
  • the light-transmitting polymer resin, P(VC-VA), and the plasticizer have been previously described in the composition of the variable focus lens.
  • the weight ratio of the light-transmissive polymer resin and P(VC-VA) introduced in the step of preparing the mixed solution may be 1:0.9 to 1:1.1.
  • the content of the plasticizer added in the step of preparing the mixed solution may be 1:1 to 1:11 with respect to the total weight of the light-transmitting polymer resin and P(VC-VA).
  • Preparing the mixed solution includes preparing a solvent, preparing a light-transmitting polymer resin and P(VC-VA), mixing and dissolving the light-transmitting polymer resin and P(VC-VA) in the solvent, and a plasticizer It may include the step of mixing.
  • Preparing the light-transmitting polymer resin and P(VC-VA) may include purifying the light-transmitting polymer resin and P(VC-VA). Through this, the light-transmitting polymer resin and P(VC-VA) can be completely dissolved and dispersed in a solvent, and through this, the bonding structure between the light-transmitting polymer resin and P(VC-VA) can be improved to further increase ductility. there is.
  • the purifying step may include dissolving the light-transmitting polymer resin and P(VC-VA) in a polar solvent, precipitating the dissolved light-transmitting polymer resin and P(VC-VA) in an organic solvent, and drying the light-transmitting polymer. obtaining resin and P(VC-VA) powder.
  • Mixing the plasticizer may include stirring the mixed solution in a stirrer. This step may be performed under appropriate conditions so that the light-transmissive polymer resin, P(VC-VA) and the plasticizer are dissolved in a solvent, and may be performed at room temperature.
  • the step of removing the solvent from the mixed solution may include drying at room temperature and treating in a vacuum oven.
  • the drying at room temperature may be performed for 2 to 5 days, and then the solvent-reduced mixed solution may be put into a vacuum oven and treated at room temperature for 12 to 48 hours to remove the remaining solvent.
  • a step of injecting the mixed solution into a lens mold may be further included.
  • This step is a step of controlling the thickness and shape of the lens unit. This step may be performed during the step of removing the solvent of the mixed solution. After the solvent of the mixed solution is removed to some extent and the mixed solution has an appropriate viscosity, it may be put into a lens mold and the remaining solvent may be completely removed. Through this, the shape of the lens unit can be more easily controlled, and the surface state can be more excellently manufactured.
  • an upper substrate and a lower substrate may be disposed on the upper and lower portions of the lens unit, respectively.
  • the upper substrate and the lower substrate are the same as those described above.
  • THF (Sigma-Aldrich, 99.9%, CAS: 109-99-9) was prepared as a solvent, PVC powder (Scientific Polymer Products, Inc., Mw 275,000, CAS: 9002-86-2) and P (VC-VA ) powder (Scientific Polymer Products, Mw 115,000, CAS: 9003-22-9) was prepared.
  • PVC powder Scientific Polymer Products, Inc., Mw 275,000, CAS: 9002-86-2
  • P (VC-VA ) powder Scientific Polymer Products, Mw 115,000, CAS: 9003-22-9
  • the prepared PVC powder and 1 g of P(VC-VA) powder were mixed and completely dissolved in 10 ml of a THF solvent.
  • DBA Sigma-Aldrich, CAS: 105-99-7
  • 9 g was mixed with the above solution, and stirred for 4 hours at 400 rpm with a stirrer.
  • the mixed solution was poured into a glass dish and stored at room temperature for 3 days to remove the solvent.
  • the gelled mixed solution was put into a vacuum oven and treated for 24 hours to remove the solvent, thereby preparing a lens part of a variable focus lens.
  • a variable focus lens was manufactured by disposing an upper substrate and a lower substrate on the upper and lower portions of the lens unit, respectively.
  • XRD analysis was performed at 40 kV and 30 mA using an X-ray diffractometer (Empyrean, PANalytical). 3 shows the XRD analysis results. Referring to FIG. 3 , it can be seen that peaks indicating that the lens unit has an amorphous structure appear at 7 and 20 degrees. At this time, the higher the content of DBA, the thinner and clearer the peak. Through this analysis, it can be seen that the examples have microcrystals connected by amorphous polymer chains.
  • the relative permittivity was measured in the frequency range of 1 Hz to 1 MHz with a signal amplitude of 2 V at room temperature.
  • 5(a) is a graph measuring the relative permittivity of DBA and Comparative Example 1
  • FIG. 5(b) is a graph measuring the relative permittivity of Examples 1 to 5.
  • FIG. 5 in the case of Comparative Example 1, there was no change in the entire frequency range and a relatively low value was maintained.
  • the permittivity greatly increased in the low frequency range.
  • the higher the content of DBA the higher the dielectric constant in the low frequency range.
  • FIG. 6 is a graph measuring the impedance of DBA and Comparative Example 1
  • Figure 6 (b) is a graph measuring the impedance of Examples 1 to 5. Referring to FIG. 6 , it can be seen that impedance is reduced in a low frequency region due to the addition of DBA in Examples 1 to 5.
  • Examples 1 to 5 were prepared as dumbbell-shaped specimens and performed according to the ASTM D638 test method using a general-purpose tester (Tinius Olsen, H5KT). 7 shows the results of a stress-strain experiment. Referring to FIG. 7, Examples 1 and 2 showed a very high degree of deformation, Examples 3 and 4 showed a low degree of deformation, and Example 5 showed a tearing phenomenon even under low stress conditions.
  • variable focus lens 110: lens unit
  • 120 upper substrate
  • 130 lower substrate

Abstract

The present invention relates to a composition for a variable focus lens, a variable focus lens comprising same, and a method for manufacturing same. A composition for a variable focus lens according to an embodiment of the present invention comprises: a light-transmitting polymer resin; poly(vinyl chloride-co-vinyl acetate) [P(VC-VA)]; and a plasticizer.

Description

가변 초점 렌즈용 조성물, 이를 포함하는 가변 초점 렌즈 및 그 제조방법Composition for variable focus lens, variable focus lens comprising the same and manufacturing method thereof
본 발명은 가변 초점 렌즈용 조성물, 이를 포함하는 가변 초점 렌즈 및 그 제조방법에 관한 것이다. The present invention relates to a composition for a variable focus lens, a variable focus lens including the same, and a manufacturing method thereof.
가변 초점 렌즈는 외부에서 제공되는 전류, 전압, 전기장 또는 자기장 등에 의해 외형 또는 내부 구조를 변화하여 초점 거리를 변화할 수 있는 렌즈를 의미한다. 이러한 가변 초점 렌즈는 액상 또는 겔(gel)상일 수 있으며, 종래의 렌즈에 비하여 적은 전력으로 작동이 가능하고 초점 가변을 위해 요구되는 공간이 적어 소형화가 가능하다. A variable focus lens refers to a lens capable of changing its focal length by changing its external appearance or internal structure by a current, voltage, electric field, or magnetic field provided from the outside. Such a variable focus lens may be in a liquid or gel state, and can be operated with less power than conventional lenses, and can be miniaturized due to a small space required for changing the focus.
선행기술문헌인 한국 공개특허 제10-2018-0114382호에는 투광성 고분자 수지 및 가소제를 적용하여 양면의 초점거리를 독립적으로 제어 가능한 가변 초점 렌즈를 개시한다.Korean Patent Publication No. 10-2018-0114382, which is a prior art document, discloses a variable focus lens capable of independently controlling the focal length of both sides by applying a light-transmitting polymer resin and a plasticizer.
본 발명의 목적은 가변 초점 렌즈의 연성을 향상시킬 수 있는 가변 초점 렌즈용 조성물, 이를 포함하는 가변 초점 렌즈 및 그 제조방법을 제공하는 것이다. An object of the present invention is to provide a composition for a variable focus lens capable of improving the ductility of the variable focus lens, a variable focus lens including the composition, and a manufacturing method thereof.
또한, 약한 전기장에서 초점 변동이 가능하다. Also, focus shift is possible in a weak electric field.
또한, 내구성이 우수하다.Also, it is excellent in durability.
본 발명의 실시 예를 따르는 가변 초점 렌즈용 조성물은, 투광성 고분자 수지; P(VC-VA)[poly(vinyl chloride-co-vinyl acetate)]; 및 가소제;를 포함한다.A composition for a variable focus lens according to an embodiment of the present invention includes a light-transmitting polymer resin; P(VC-VA) [poly(vinyl chloride-co-vinyl acetate)]; And a plasticizer; includes.
상기 P(VC-VA)는 아래의 분자식1을 가질 수 있다.The P(VC-VA) may have the following molecular formula 1.
[분자식1][Molecular formula 1]
Figure PCTKR2021017077-appb-I000001
Figure PCTKR2021017077-appb-I000001
본 발명의 실시 예를 따르는 가변 초점 렌즈의 제조방법은, 용매에 투광성 고분자 수지, P(VC-VA) 및 가소제를 혼합하여 용해하여 혼합용액을 제조하는 단계; 및 상기 혼합용액의 용매를 제거하는 단계;를 포함한다. A method for manufacturing a variable focus lens according to an embodiment of the present invention includes preparing a mixed solution by dissolving a mixture of a light-transmitting polymer resin, P(VC-VA), and a plasticizer in a solvent; and removing the solvent of the mixed solution.
상기 혼합용액을 제조하는 단계에서 투입하는 상기 투광성 고분자 수지 및 P(VC-VA)의 중량비는 1:0.9 내지 1:1.1일 수 있다.The weight ratio of the light-transmissive polymer resin and P(VC-VA) introduced in the step of preparing the mixed solution may be 1:0.9 to 1:1.1.
상기 혼합용액을 제조하는 단계에서 투입하는 상기 DAG의 함량은, 상기 투광성 고분자 수지 및 P(VC-VA)의 중량 총합에 대하여 1:1 내지 1:11일 수 있다.The content of the DAG introduced in the step of preparing the mixed solution may be 1:1 to 1:11 with respect to the total weight of the light-transmitting polymer resin and P(VC-VA).
본 발명의 실시 예를 따르는 가변 초점 렌즈용 조성물을 포함하는 가변 초점 렌즈 및 그 제조방법에 의해 제조된 가변 초점 렌즈는, 보다 높은 연성을 가질 수 있다. A variable focus lens including the composition for a variable focus lens according to an embodiment of the present invention and a variable focus lens manufactured by the method for manufacturing the same may have higher ductility.
또한, 약한 전기장에서 초점 변동이 가능하다. Also, focus shift is possible in a weak electric field.
또한, 내구성이 우수하다.Also, it is excellent in durability.
도 1(a)는 본 발명의 실시 예를 따르는 가변 초점 렌즈를 도시한 것이고, 도 1(b)는 도 1(a)의 분해 사시도이다. FIG. 1(a) shows a variable focus lens according to an embodiment of the present invention, and FIG. 1(b) is an exploded perspective view of FIG. 1(a).
도 2는 도 1의 가변 초점 렌즈의 단면이며, 전원의 공급에 따른 렌즈부의 변형을 도시한 것이다.FIG. 2 is a cross-section of the variable focus lens of FIG. 1, illustrating deformation of a lens unit according to supply of power.
도 3은 XRD 분석 결과를 도시한 것이다.3 shows the XRD analysis results.
도 4는 광 투과율 분석 결과를 도시한 것이다.4 shows the light transmittance analysis result.
도 5(a)는 DBA 및 비교 예1의 상대 유전율을 측정한 그래프이고, 도 5(b)는 실시 예1 내지 5의 상대 유전율을 측정한 그래프이다.5(a) is a graph measuring the relative permittivity of DBA and Comparative Example 1, and FIG. 5(b) is a graph measuring the relative permittivity of Examples 1 to 5.
도 6(a)는 DBA 및 비교 예1의 임피던스를 측정한 그래프이고, 도 6(b)는 실시 예1 내지 5의 임피던스를 측정한 그래프이다.Figure 6 (a) is a graph measuring the impedance of DBA and Comparative Example 1, Figure 6 (b) is a graph measuring the impedance of Examples 1 to 5.
도 7은 Stress-Strain 실험 결과를 도시한 것이다.7 shows the results of a stress-strain experiment.
도 8은 누설 전류 실험 결과를 도시한 것이다.8 shows leakage current test results.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 다음과 같이 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.  또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.  따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면 상의 동일한 부호로 표시되는 요소는 동일한 요소이다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다. 덧붙여, 명세서 전체에서 어떤 구성요소를 "포함"한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention may be modified in various forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Therefore, the shape and size of elements in the drawings may be exaggerated for clearer description, and elements indicated by the same reference numerals in the drawings are the same elements. In addition, the same reference numerals are used throughout the drawings for parts having similar functions and actions. In addition, "include" a component in the entire specification means that other components may be further included without excluding other components unless otherwise stated.
가변 초점 렌즈용 조성물Composition for varifocal lenses
본 발명의 실시 예를 따르는 가변 초점 렌즈용 조성물은, 투광성 고분자 수지; P(VC-VA)[poly(vinyl chloride-co-vinyl acetate)]; 및 가소제;를 포함한다. 상기 조성물은 분말 또는 용매에 용해된 액상으로 제공될 수 있다. A composition for a variable focus lens according to an embodiment of the present invention includes a light-transmitting polymer resin; P(VC-VA) [poly(vinyl chloride-co-vinyl acetate)]; And a plasticizer; includes. The composition may be provided as a powder or a liquid dissolved in a solvent.
P(VC-VA)[poly(vinyl chloride-co-vinyl acetate)]는 비닐클로라이드 및 비닐아세테이트의 체인(chain)이 상호간에 연결되어 형성된 고분자 물질이다. 상기 P(VC-VA)가 투광성 고분자 수지에 첨가됨으로써 투광성 고분자 수지 체인의 쌍극자-쌍극자 분자간 상호작용이 감소하게 되어, 제조된 물질의 연성이 증가할 수 있다. 이 경우, 투광성 고분자 수지 및 P(VC-VA) 혼합물에 가소제가 투입되더라도 충분한 연성을 확보할 수 있다. 상기 P(VC-VA)는 아래의 분자식1로 표현될 수 있다. 상기 P(VC-VA)의 분자량은 연성을 고려하여 100,000 이상일 수 있다. P(VC-VA) [poly(vinyl chloride-co-vinyl acetate)] is a polymeric material formed by interconnecting chains of vinyl chloride and vinyl acetate. When the P(VC-VA) is added to the light-transmitting polymer resin, the dipole-dipole interaction of the chain of the light-transmitting polymer resin is reduced, so that the ductility of the manufactured material can be increased. In this case, even if a plasticizer is added to the mixture of the light-transmissive polymer resin and P(VC-VA), sufficient ductility can be secured. The P(VC-VA) may be represented by the following molecular formula 1. The molecular weight of the P(VC-VA) may be 100,000 or more in consideration of ductility.
[분자식1][Molecular formula 1]
Figure PCTKR2021017077-appb-I000002
Figure PCTKR2021017077-appb-I000002
(여기서 x 및 y는 임의의 수 임).(where x and y are arbitrary numbers).
또한, 상기 P(VC-VA)는 아래의 화학식1로 표현될 수 있다.In addition, the P(VC-VA) may be represented by Formula 1 below.
[화학식1][Formula 1]
[-CH2CH(Cl)-]x[-CH2CH(O2CCH3)-]y [-CH 2 CH(Cl)-] x [-CH 2 CH(O 2 CCH 3 )-] y
(여기서 x 및 y는 임의의 수 임).(where x and y are arbitrary numbers).
투광성 고분자 수지는 투명성 및 가요성을 가지는 고분자 물질로서 렌즈의 형상을 유지하고 입사된 파장을 굴절하는 기능을 수행한다. 상기 투광성 고분자 수지는 PVC(Poly vinyl chloride), PC(PolyCarbonate), PET(PolyEthylene Terephthalate) 및 TAC(TriAcetate Cellulose) 중 적어도 어느 하나일 수 있으며, 바람직하게는 투과성 및 가공이 용이한 PVC일 수 있다. 상기 투광성 고분자 수지의 분자량은 연성 등을 고려하여 150,000 이상일 수 있다. The light-transmissive polymer resin is a polymer material having transparency and flexibility, and functions to maintain the shape of a lens and refract an incident wavelength. The light-transmitting polymer resin may be at least one of PVC (Poly vinyl chloride), PC (PolyCarbonate), PET (PolyEthylene Terephthalate), and TAC (TriAcetate Cellulose), and preferably may be PVC that is transparent and easy to process. The light-transmitting polymer resin may have a molecular weight of 150,000 or more in consideration of ductility and the like.
PVC는 아래의 분자식2로 표현될 수 있다.PVC can be represented by the molecular formula 2 below.
[분자식2][Molecular Formula 2]
Figure PCTKR2021017077-appb-I000003
Figure PCTKR2021017077-appb-I000003
(여기서 n은 자연수임.)(Where n is a natural number.)
상기 가소제는 투광성 고분자 수지 및 P(VC-VA)를 경화하여 겔(gel)상으로 변환하는 기능을 수행한다. 이를 통해 상기 가소제는 누설 전류를 낮출 수 있다. 상기 가소제는 특별히 제한하지 않지만 DBA(Dibutyl Adipate)일 수 있다.The plasticizer performs a function of curing the light-transmitting polymer resin and P(VC-VA) and converting them into a gel phase. Through this, the plasticizer may lower leakage current. The plasticizer is not particularly limited, but may be DBA (Dibutyl Adipate).
상기 DBA는 아래의 분자식3으로 표현될 수 있다.The DBA may be represented by molecular formula 3 below.
[분자식3][Molecular formula 3]
Figure PCTKR2021017077-appb-I000004
Figure PCTKR2021017077-appb-I000004
상기 투광성 고분자 수지 및 P(VC-VA)의 중량비는 1:0.9 내지 1:1.1일 수 있다. 상기 투광성 고분자 수지 및 P(VC-VA) 사이의 상호작용에 의해 우수한 연성을 확보할 수 있도록 하기 위해 상기 투광성 고분자 수지 및 P(VC-VA)의 함량은 1:0.9 내지 1:1.1이 바람직하며, 보다 바람직하게는 1:1일 수 있다. The light-transmitting polymer resin and P(VC-VA) may have a weight ratio of 1:0.9 to 1:1.1. In order to secure excellent ductility by the interaction between the light-transmitting polymer resin and P (VC-VA), the content of the light-transmitting polymer resin and P (VC-VA) is preferably 1:0.9 to 1:1.1, , more preferably 1:1.
상기 혼합용액을 제조하는 단계에서 투입하는 상기 가소제의 함량은, 상기 투광성 고분자 수지 및 P(VC-VA)의 중량 총합에 대하여 1:1 내지 1:11일 수 있고, 보다 바람직하게는 1:1 내지 1:3일 수 있다. 가소제의 함량이 너무 낮은 경우에는 가소제 첨가에 따른 효과가 나타나지 않을 수 있고, 가소제의 함량이 너무 높은 경우에는 변형이 쉽게 일어나지 않아 변형을 위해 많은 전력이 소모되거나 파손될 우려가 있다. The amount of the plasticizer added in the step of preparing the mixed solution may be 1:1 to 1:11, more preferably 1:1, based on the total weight of the light-transmitting polymer resin and P(VC-VA). to 1:3. If the plasticizer content is too low, the effect of adding the plasticizer may not appear, and if the plasticizer content is too high, deformation does not occur easily, so a lot of power is consumed for deformation or there is a risk of damage.
가변 초점 렌즈varifocal lens
본 발명의 실시 예를 따르는 가변 초점 렌즈(100)는 앞서 설명한 가변 초점 렌즈용 조성물을 포함한다. 도 1을 참조하면, 상기 가변 초점 렌즈(100)는 가변 초점 렌즈용 조성물을 포함하여 제작된 렌즈부(110), 상기 렌즈부(110)의 상부 및 하부에 배치된 상부기판(120) 및 하부기판(130)을 포함할 수 있다. 상기 상부기판(120) 및 하부기판(130)은 상기 렌즈부(110)의 곡면이 배치되는 중공을 포함하고, 상기 렌즈부(110)에 접촉하여 전류를 흐르도록 하는 전극을 포함할 수 있다. 도 2는 도 1의 가변 초점 렌즈의 단면이며, 전원의 공급에 따른 렌즈부의 변형을 도시한 것이다. 도 2(a)는 전류를 인가하지 않는 경우이고, 도 2(b)는 하부기판의 전극을 통해 전류를 인가한 경우이고, 도 2(c)는 상부기판의 전극을 통해 전류를 인가한 경우이고, 도 2(d)는 상부기판 및 하부기판의 전극을 통해 전류를 인가한 경우에다. 이와 같이, 본 발명의 실시 예를 따르는 가변 초점 렌즈는 전류의 인가 방법에 따라 양면의 형상을 제어할 수 있다. The variable focus lens 100 according to an embodiment of the present invention includes the composition for a variable focus lens described above. Referring to FIG. 1 , the variable focus lens 100 includes a lens unit 110 made of a composition for a variable focus lens, an upper substrate 120 disposed above and below the lens unit 110, and a lower portion. A substrate 130 may be included. The upper substrate 120 and the lower substrate 130 may include a hollow in which the curved surface of the lens unit 110 is disposed, and may include an electrode contacting the lens unit 110 to allow current to flow. FIG. 2 is a cross-section of the variable focus lens of FIG. 1, illustrating deformation of a lens unit according to supply of power. FIG. 2(a) shows a case where current is not applied, FIG. 2(b) shows a case where current is applied through an electrode of a lower substrate, and FIG. 2(c) shows a case where current is applied through an electrode of an upper substrate 2(d) is a case where current is applied through the electrodes of the upper substrate and the lower substrate. As such, the variable focus lens according to an embodiment of the present invention can control the shape of both sides according to the current application method.
가변 초점 렌즈의 제조방법Manufacturing method of varifocal lens
본 발명의 실시 예를 따르는 가변 초점 렌즈의 제조방법은, 용매에 투광성 고분자 수지, P(VC-VA) 및 가소제를 혼합하여 용해하여 혼합용액을 제조하는 단계; 및 상기 혼합용액의 용매를 제거하는 단계;를 포함한다. A method for manufacturing a variable focus lens according to an embodiment of the present invention includes preparing a mixed solution by dissolving a mixture of a light-transmitting polymer resin, P(VC-VA), and a plasticizer in a solvent; and removing the solvent of the mixed solution.
상기 혼합용액을 제조하는 단계에서, 상기 용매는 극성 유기용매일 수 있다. 이는 투광성 고분자 수지 및 P(VC-VA)를 쉽게 용해하기 위함이다. 상기 극성 유기용매는, 다이옥산, 테트라하이드로퓨란(THF), 아세톤, 디메틸 설폭사이드(DMSO), 디메틸포 름아마이드(DMF) 및 1-메틸-2-피롤리돈(NMP) 중 어느 하나일 수 있다.In the step of preparing the mixed solution, the solvent may be a polar organic solvent. This is to easily dissolve the light-transmissive polymer resin and P(VC-VA). The polar organic solvent may be any one of dioxane, tetrahydrofuran (THF), acetone, dimethyl sulfoxide (DMSO), dimethylformamide (DMF) and 1-methyl-2-pyrrolidone (NMP). .
상기 투광성 고분자 수지, P(VC-VA) 및 가소제는 앞서 가변 초점 렌즈의 조성물에서 설명한 것이다. 상기 혼합용액을 제조하는 단계에서 투입하는 상기 투광성 고분자 수지 및 P(VC-VA)의 중량비는 1:0.9 내지 1:1.1일 수 있다. 또한, 상기 혼합용액을 제조하는 단계에서 투입하는 상기 가소제의 함량은, 상기 투광성 고분자 수지 및 P(VC-VA)의 중량 총합에 대하여 1:1 내지 1:11일 수 있다.The light-transmitting polymer resin, P(VC-VA), and the plasticizer have been previously described in the composition of the variable focus lens. The weight ratio of the light-transmissive polymer resin and P(VC-VA) introduced in the step of preparing the mixed solution may be 1:0.9 to 1:1.1. In addition, the content of the plasticizer added in the step of preparing the mixed solution may be 1:1 to 1:11 with respect to the total weight of the light-transmitting polymer resin and P(VC-VA).
상기 혼합용액을 제조하는 단계는 용매를 준비하는 단계, 투광성 고분자 수지 및 P(VC-VA)를 준비하는 단계, 상기 용매에 투광성 고분자 수지 및 P(VC-VA)를 혼합하여 용해하는 단계 및 가소제를 혼합하는 단계를 포함할 수 있다. Preparing the mixed solution includes preparing a solvent, preparing a light-transmitting polymer resin and P(VC-VA), mixing and dissolving the light-transmitting polymer resin and P(VC-VA) in the solvent, and a plasticizer It may include the step of mixing.
상기 투광성 고분자 수지 및 P(VC-VA)를 준비하는 단계는 상기 투광성 고분자 수지 및 P(VC-VA)를 정제하는 단계를 포함할 수 있다. 이를 통해 상기 투광성 고분자 수지 및 P(VC-VA)가 용매에 완전히 용해되고 분산되도록 할 수 있으며, 이를 통해 상기 투광성 고분자 수지 및 P(VC-VA) 사이의 결합구조를 향상하여 연성을 보다 높일 수 있다. 상기 정제하는 단계는 상기 투광성 고분자 수지 및 P(VC-VA)를 극성 용매에 용해하는 단계, 용해된 상기 투광성 고분자 수지 및 P(VC-VA)를 유기용매에 침전하는 단계, 건조하여 상기 투광성 고분자 수지 및 P(VC-VA) 분말을 수득하는 단계를 포함할 수 있다. Preparing the light-transmitting polymer resin and P(VC-VA) may include purifying the light-transmitting polymer resin and P(VC-VA). Through this, the light-transmitting polymer resin and P(VC-VA) can be completely dissolved and dispersed in a solvent, and through this, the bonding structure between the light-transmitting polymer resin and P(VC-VA) can be improved to further increase ductility. there is. The purifying step may include dissolving the light-transmitting polymer resin and P(VC-VA) in a polar solvent, precipitating the dissolved light-transmitting polymer resin and P(VC-VA) in an organic solvent, and drying the light-transmitting polymer. obtaining resin and P(VC-VA) powder.
상기 가소제를 혼합하는 단계는 혼합용액을 교반기에서 교반하는 단계를 포함할 수 있다. 본 단계는 투광성 고분자 수지, P(VC-VA) 및 가소제가 용매에 용해되도록 적절한 조건에서 수행할 수 있으며, 상온에서 수행할 수 있다.Mixing the plasticizer may include stirring the mixed solution in a stirrer. This step may be performed under appropriate conditions so that the light-transmissive polymer resin, P(VC-VA) and the plasticizer are dissolved in a solvent, and may be performed at room temperature.
상기 혼합용액의 용매를 제거하는 단계는 상온에서 건조하는 단계 및 진공 오븐에서 처리하는 단계를 포함할 수 있다. 상기 상온에서 건조하는 단계는 2 내지 5일 동안 수행할 수 있으며, 이후 용매가 감소된 혼합용액을 진공 오븐에 투입하여 상온에서 12 내지 48시간 동안 처리함으로써 나머지 용매를 제거할 수 있다. The step of removing the solvent from the mixed solution may include drying at room temperature and treating in a vacuum oven. The drying at room temperature may be performed for 2 to 5 days, and then the solvent-reduced mixed solution may be put into a vacuum oven and treated at room temperature for 12 to 48 hours to remove the remaining solvent.
상기 혼합용액을 제조하는 단계 이후에, 상기 혼합용액을 렌즈 몰드에 투입하는 단계를 더 포함할 수 있다. 본 단계는 렌즈부의 두께, 형상을 제어하는 단계이다. 본 단계는, 혼합용액의 용매를 제거하는 단계 중에 수행할 수도 있다. 혼합용액의 용매가 어느 정도 제거되어 상기 혼합용액의 적당한 점도를 가진 상태가 된 후에 렌즈 몰드에 투입하고 나머지 용매를 마저 제거할 수 있다. 이를 통해 렌즈부의 형상을 보다 쉽게 제어할 수 있고, 표면 상태를 보다 우수하게 제조할 수 있다. After preparing the mixed solution, a step of injecting the mixed solution into a lens mold may be further included. This step is a step of controlling the thickness and shape of the lens unit. This step may be performed during the step of removing the solvent of the mixed solution. After the solvent of the mixed solution is removed to some extent and the mixed solution has an appropriate viscosity, it may be put into a lens mold and the remaining solvent may be completely removed. Through this, the shape of the lens unit can be more easily controlled, and the surface state can be more excellently manufactured.
다음으로, 상기 렌즈부의 상부 및 하부에 각각 상부기판 및 하부기판을 배치할 수 있다. 상기 상부기판 및 하부기판은 앞서 설명한 것과 동일한 것이다. Next, an upper substrate and a lower substrate may be disposed on the upper and lower portions of the lens unit, respectively. The upper substrate and the lower substrate are the same as those described above.
실시 예: 가변 초점 렌즈의 제조Example: Manufacture of variable focus lens
용매로 THF(Sigma- Aldrich , 99.9 %, CAS : 109-99-9)를 준비하였고, PVC 분말 (Scientific Polymer Products, Inc., Mw 275,000, CAS : 9002-86-2) 및 P (VC-VA) 분말(Scientific Polymer Products, Mw 115,000, CAS : 9003-22-9)을 준비하였다. PVC 분말과 P (VC-VA) 분말을 정제하기 위해 각각 1g을 20ml의 THF 용매에 녹인 후 메탄올에 침전시켰다. 다음으로 이를 건조하여 정제함으로써 정제된 PVC 분말과 P (VC-VA) 분말을 수득하였다. 이렇게 준비된 PVC 분말과 P(VC-VA) 분말 1g을 10ml의 THF 용매에 혼합하여 완전히 용해하였다. 다음으로 가소제로 DBA (Sigma-Aldrich, CAS : 105-99-7)를 준비하여 상기 용액에 9g을 혼합하였고, 교반기로 400 rpm에서 4 시간 동안 교반 하였다. 다음으로 상기 혼합용액을 유리 접시에 붓고 상온에서 3일 동안 저장하여 용매를 제거하였다. 이렇게 겔화된 혼한용액을 진공 오븐에 투입하여 24시간 동안 처리하여 용매를 제거함으로써 가변 초점 렌즈의 렌즈부를 제조하였다. 다음으로 상기 렌즈부의 상부 및 하부에 각각 상부기판 및 하부기판을 배치하여 가변 초점 렌즈를 제조하였다. THF (Sigma-Aldrich, 99.9%, CAS: 109-99-9) was prepared as a solvent, PVC powder (Scientific Polymer Products, Inc., Mw 275,000, CAS: 9002-86-2) and P (VC-VA ) powder (Scientific Polymer Products, Mw 115,000, CAS: 9003-22-9) was prepared. To purify PVC powder and P(VC-VA) powder, 1 g each was dissolved in 20 ml of THF solvent and then precipitated in methanol. Next, by drying and refining, purified PVC powder and P (VC-VA) powder were obtained. The prepared PVC powder and 1 g of P(VC-VA) powder were mixed and completely dissolved in 10 ml of a THF solvent. Next, DBA (Sigma-Aldrich, CAS: 105-99-7) was prepared as a plasticizer, 9 g was mixed with the above solution, and stirred for 4 hours at 400 rpm with a stirrer. Next, the mixed solution was poured into a glass dish and stored at room temperature for 3 days to remove the solvent. The gelled mixed solution was put into a vacuum oven and treated for 24 hours to remove the solvent, thereby preparing a lens part of a variable focus lens. Next, a variable focus lens was manufactured by disposing an upper substrate and a lower substrate on the upper and lower portions of the lens unit, respectively.
위 제조 예에서 PVC, P(VC-VA) 및 DBA의 함량에 따라 표 1과 같이 비교 예 및 실시 예를 구분하였다. In the above preparation examples, comparative examples and examples were classified as shown in Table 1 according to the contents of PVC, P (VC-VA) and DBA.
분류Classification PVC 함량(g)PVC content (g) P(VC-VA) 함량(g)P(VC-VA) content (g) DBA 함량(g)DBA content (g) 표시mark
비교 예1Comparison example 1 0.50.5 0.50.5 00 SPNIPGel0SPNIPGel0
실시 예1Example 1 0.50.5 0.50.5 33 SPNIPGel3SPNIPGel3
실시 예2Example 2 0.50.5 0.50.5 55 SPNIPGel5SPNIPGel5
실시 예3Example 3 0.50.5 0.50.5 77 SPNIPGel7SPNIPGel7
실시 예4Example 4 0.50.5 0.50.5 99 SPNIPGel9SPNIPGel9
실시 예5Example 5 0.50.5 0.50.5 1111 SPNIPGel11SPNIPGel11
XRD 분석실시 예1 내지 5의 렌즈부를 샘플로 하여, X선 회절장치(Empyrean, PANalytical)를 사용하여 40kV, 30mA 조건에서 XRD 분석을 수행하였다. 도 3은 XRD 분석 결과를 도시한 것이다. 도 3을 참조하면, 렌즈부의 구조가 비정질(amorphous structure)임을 나타내는 피크가 7 및 20도에서 나타남을 알 수 있다. 이때, DBA의 함량이 높을 수로 피크가 얇아지고 뚜렷하였다. 본 분석을 통해 실시 예들은 비정질의 폴리머 사슬로 연결된 미세 결정을 가지고 있음을 알 수 있다. XRD Analysis Using the lens parts of Examples 1 to 5 as samples, XRD analysis was performed at 40 kV and 30 mA using an X-ray diffractometer (Empyrean, PANalytical). 3 shows the XRD analysis results. Referring to FIG. 3 , it can be seen that peaks indicating that the lens unit has an amorphous structure appear at 7 and 20 degrees. At this time, the higher the content of DBA, the thinner and clearer the peak. Through this analysis, it can be seen that the examples have microcrystals connected by amorphous polymer chains.
광 투과율 분석Light transmittance analysis
실시 예1 내지 5의 렌즈부를 샘플로 하여, UV-vis 분광 광도계(HP 8452, HP,USA)를 사용하여 수행하였다. 도 4는 광 투과율 분석 결과를 도시한 것이다. 도 4를 참조하면 모든 실시 예에서 가시광선 영역에 대한 광 투과율을 나타냈다. 이는 DBA가 PVC의 비정질 영역에서 완전하게 혼합되었으며, 가소화 효과에 의해 PVC 폴리머 체인의 결정화를 효과적으로 방지하였으며, 이를 통해 미세 결정이 초래된 것으로 이해할 수 있다. Using the lens parts of Examples 1 to 5 as samples, this was performed using a UV-vis spectrophotometer (HP 8452, HP, USA). 4 shows the light transmittance analysis result. Referring to FIG. 4 , light transmittance in the visible ray region was shown in all examples. It can be understood that DBA was completely mixed in the amorphous region of PVC and effectively prevented crystallization of the PVC polymer chain by the plasticizing effect, resulting in microcrystalization.
상대 유전율 분석Relative permittivity analysis
상대 유전율은 상온에서 2V의 신호 진폭으로 1Hz 내지 1MHz의 주파수 범위에서 측정하였다. 도 5(a)는 DBA 및 비교 예1의 상대 유전율을 측정한 그래프이고, 도 5(b)는 실시 예1 내지 5의 상대 유전율을 측정한 그래프이다. 도 5를 참조하면, 비교 예1의 경우 주파수 전 범위에서 변화가 없으며, 상대적으로 낮은 값을 유지하였다. 실시 예1 내지 5의 경우 낮은 주파수 범위에서 유전율이 크게 증가한 것을 알 수 있다. 도한, 실시 예에서 DBA의 함량이 높을수록 낮은 주파수 범위에서의 유전율이 높은 것을 알 수 있다. The relative permittivity was measured in the frequency range of 1 Hz to 1 MHz with a signal amplitude of 2 V at room temperature. 5(a) is a graph measuring the relative permittivity of DBA and Comparative Example 1, and FIG. 5(b) is a graph measuring the relative permittivity of Examples 1 to 5. Referring to FIG. 5, in the case of Comparative Example 1, there was no change in the entire frequency range and a relatively low value was maintained. In the case of Examples 1 to 5, it can be seen that the permittivity greatly increased in the low frequency range. Also, in the examples, it can be seen that the higher the content of DBA, the higher the dielectric constant in the low frequency range.
임피던스 분석impedance analysis
임피던스 분석은 1260 임피던스 분석기(Solartron Analytical Co., Farnborough, UK)를 사용하였다. 도 6(a)는 DBA 및 비교 예1의 임피던스를 측정한 그래프이고, 도 6(b)는 실시 예1 내지 5의 임피던스를 측정한 그래프이다. 도 6을 참조하면, 실시 예1 내지 5에서 DBA의 첨가로 인하여 낮은 주파수 영역에서 임피던스가 감소함을 알 수 있다. Impedance analysis was performed using a 1260 impedance analyzer (Solartron Analytical Co., Farnborough, UK). Figure 6 (a) is a graph measuring the impedance of DBA and Comparative Example 1, Figure 6 (b) is a graph measuring the impedance of Examples 1 to 5. Referring to FIG. 6 , it can be seen that impedance is reduced in a low frequency region due to the addition of DBA in Examples 1 to 5.
Stress-Strain 실험Stress-Strain experiment
Stress-Strain 실험은 외부 영향에 따른 변형 정도를 분석하기 위해 실행하였다. 실시 예1 내지 5를 덤벨 모양의 시편으로 제작하고 범용 시험기(Tinius Olsen, H5KT)를 이용하여 ASTM D638 시험법에 따라 수행하였다. 도 7은 Stress-Strain 실험 결과를 도시한 것이다. 도 7을 참조하면, 실시 예1 및 2의 경우 매우 높은 변형 정도를 보였으나, 실시 예3 및 4는 낮은 변형 정도를 보였으며, 실시 예5는 낮은 Stress 조건에서도 찢어지는 현상을 보였다. Stress-Strain experiments were performed to analyze the degree of deformation due to external influences. Examples 1 to 5 were prepared as dumbbell-shaped specimens and performed according to the ASTM D638 test method using a general-purpose tester (Tinius Olsen, H5KT). 7 shows the results of a stress-strain experiment. Referring to FIG. 7, Examples 1 and 2 showed a very high degree of deformation, Examples 3 and 4 showed a low degree of deformation, and Example 5 showed a tearing phenomenon even under low stress conditions.
누설 전류 실험Leakage current experiment
누설 전류 실험은 상온에서 400V / mm의 인가 된 전기장에서 potentiostat / galvanostat (Biologic Science Instruments, SP300)를 사용하여 측정하였다. 도 8은 누설 전류 실험 결과를 도시한 것이다. 도 8을 참조하면, 실시 예1 및 2는 실시 예 3 내지 5에 비하여 낮은 누설전류를 보임을 알 수 있다. Leakage current experiments were measured using a potentiostat / galvanostat (Biologic Science Instruments, SP300) in an applied electric field of 400 V / mm at room temperature. 8 shows leakage current test results. Referring to FIG. 8 , it can be seen that Examples 1 and 2 show a lower leakage current than Examples 3 to 5.
본 발명은 상술한 실시 형태 및 첨부된 도면에 의해 한정되는 것이 아니며 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다. The present invention is not limited by the above-described embodiments and accompanying drawings, but is intended to be limited by the appended claims. Therefore, various forms of substitution, modification, and change will be possible by those skilled in the art within the scope of the technical spirit of the present invention described in the claims, which also falls within the scope of the present invention. something to do.
[부호의 설명] [Description of code]
100: 가변 초점 렌즈, 110: 렌즈부, 120: 상부기판, 130: 하부기판100: variable focus lens, 110: lens unit, 120: upper substrate, 130: lower substrate

Claims (13)

  1. 투광성 고분자 수지;light-transmitting polymer resin;
    P(VC-VA)[poly(vinyl chloride-co-vinyl acetate)]; 및P(VC-VA) [poly(vinyl chloride-co-vinyl acetate)]; and
    가소제;를 포함하는,Including; plasticizer;
    가변 초점 렌즈용 조성물.A composition for varifocal lenses.
  2. 제1항에 있어서,According to claim 1,
    상기 P(VC-VA)는 아래의 분자식1을 갖는 것인,The P (VC-VA) has the following molecular formula 1,
    가변 초점 렌즈용 조성물:Composition for varifocal lenses:
    [분자식1][Molecular Formula 1]
    Figure PCTKR2021017077-appb-I000005
    .
    Figure PCTKR2021017077-appb-I000005
    .
  3. 제1항에 있어서,According to claim 1,
    상기 투광성 고분자 수지 및 P(VC-VA)의 중량비는 1:0.9 내지 1:1.1인,The weight ratio of the light-transmissive polymer resin and P (VC-VA) is 1: 0.9 to 1: 1.1,
    가변 초점 렌즈용 조성물.A composition for varifocal lenses.
  4. 제1항에 있어서,According to claim 1,
    상기 투광성 고분자 수지는 PVC(Poly vinyl chloride), PC(PolyCarbonate), PET(PolyEthylene Terephthalate) 및 TAC(TriAcetate Cellulose) 중 적어도 어느 하나인,The light-transmissive polymer resin is at least one of PVC (Poly vinyl chloride), PC (PolyCarbonate), PET (PolyEthylene Terephthalate) and TAC (TriAcetate Cellulose),
    가변 초점 렌즈용 조성물.A composition for varifocal lenses.
  5. 제1항에 있어서,According to claim 1,
    상기 가소제는 DBA(Dibutyl Adipate)인,The plasticizer is DBA (Dibutyl Adipate),
    가변 초점 렌즈용 조성물.A composition for varifocal lenses.
  6. 가변 초점 렌즈용 조성물을 포함하는 가변 초점 렌즈로서,A variable focus lens comprising a composition for a variable focus lens,
    상기 가변 초점 렌즈용 조성물은 제1항의 것인,The composition for the variable focus lens of claim 1,
    가변 초점 렌즈.varifocal lens.
  7. 용매에 투광성 고분자 수지, P(VC-VA) 및 가소제를 혼합하여 용해하여 혼합용액을 제조하는 단계; 및preparing a mixed solution by dissolving a mixture of a light-transmitting polymer resin, P(VC-VA), and a plasticizer in a solvent; and
    상기 혼합용액의 용매를 제거하는 단계;를 포함하는,Including, removing the solvent of the mixed solution;
    가변 초점 렌즈의 제조 방법.Manufacturing method of varifocal lens.
  8. 제7항에 있어서,According to claim 7,
    상기 혼합용액을 제조하는 단계에서 투입하는 상기 투광성 고분자 수지 및 P(VC-VA)의 중량비는 1:0.9 내지 1:1.1인,The weight ratio of the light-transmissive polymer resin and P (VC-VA) introduced in the step of preparing the mixed solution is 1: 0.9 to 1: 1.1,
    가변 초점 렌즈의 제조 방법.Manufacturing method of varifocal lens.
  9. 제7항에 있어서,According to claim 7,
    상기 혼합용액을 제조하는 단계에서 투입하는 상기 DAG의 함량은, 상기 투광성 고분자 수지 및 P(VC-VA)의 중량 총합에 대하여 1:1 내지 1:11인,The content of the DAG added in the step of preparing the mixed solution is 1: 1 to 1: 11 with respect to the total weight of the light-transmitting polymer resin and P (VC-VA),
    가변 초점 렌즈의 제조 방법.Manufacturing method of varifocal lens.
  10. 제7항에 있어서,According to claim 7,
    상기 혼합용액을 제조하는 단계에서,In the step of preparing the mixed solution,
    상기 용매에 투광성 고분자 수지 및 P(VC-VA)를 혼합하여 용해한 후, 상기 가소제를 투입하는 것인,After mixing and dissolving the light-transmitting polymer resin and P (VC-VA) in the solvent, the plasticizer is added,
    가변 초점 렌즈의 제조 방법.Manufacturing method of varifocal lens.
  11. 제7항에 있어서,According to claim 7,
    상기 혼합용액을 제조하는 단계에서,In the step of preparing the mixed solution,
    상기 용매는 극성 유기용매인,The solvent is a polar organic solvent,
    가변 초점 렌즈의 제조 방법.Manufacturing method of varifocal lens.
  12. 제11항에 있어서,According to claim 11,
    상기 극성 유기용매는, 다이옥산, 테트라하이드로퓨란(THF), 아세톤, 디메틸 설폭사이드(DMSO), 디메틸포 름아마이드(DMF) 및 1-메틸-2-피롤리돈(NMP) 중 어느 하나인,The polar organic solvent is any one of dioxane, tetrahydrofuran (THF), acetone, dimethyl sulfoxide (DMSO), dimethylformamide (DMF) and 1-methyl-2-pyrrolidone (NMP),
    가변 초점 렌즈의 제조 방법.Manufacturing method of varifocal lens.
  13. 제7항에 있어서,According to claim 7,
    상기 혼합용액을 제조하는 단계 이후에,After preparing the mixed solution,
    상기 혼합용액을 렌즈 몰드에 투입하는 단계를 더 포함하는,Further comprising the step of injecting the mixed solution into a lens mold,
    가변 초점 렌즈의 제조 방법.Manufacturing method of varifocal lens.
PCT/KR2021/017077 2021-07-20 2021-11-19 Composition for variable focus lens, variable focus lens comprising same, and method for manufacturing same WO2023003096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210094901A KR102532423B1 (en) 2021-07-20 2021-07-20 Varifocal lens composition, varifocal lens having the same and manufacturing method for the same
KR10-2021-0094901 2021-07-20

Publications (1)

Publication Number Publication Date
WO2023003096A1 true WO2023003096A1 (en) 2023-01-26

Family

ID=84979414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017077 WO2023003096A1 (en) 2021-07-20 2021-11-19 Composition for variable focus lens, variable focus lens comprising same, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102532423B1 (en)
WO (1) WO2023003096A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0137686A2 (en) * 1983-09-08 1985-04-17 Minnesota Mining And Manufacturing Company Polymer blends with high water absorption
KR100979253B1 (en) * 2005-08-23 2010-08-31 세이코 프레시죤 가부시키가이샤 Variable focal length lens, and focal length adjusting device and imaging apparatus that use the same
US20130242368A1 (en) * 2010-12-09 2013-09-19 Kilolambda Technologies Ltd. Fast response photochromic composition and device
KR20180114382A (en) * 2017-04-10 2018-10-18 한국기술교육대학교 산학협력단 Variable focus double convex lens
KR20200100657A (en) * 2017-12-28 2020-08-26 닛토덴코 가부시키가이샤 Optical element, microlens array, and optical element manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757459A (en) * 1995-03-03 1998-05-26 Vision-Ease Lens, Inc. Multifocal optical elements
US6143558A (en) 1997-07-08 2000-11-07 The Regents Of The University Of Michigan Optical fiberless sensors for analyzing cellular analytes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0137686A2 (en) * 1983-09-08 1985-04-17 Minnesota Mining And Manufacturing Company Polymer blends with high water absorption
KR100979253B1 (en) * 2005-08-23 2010-08-31 세이코 프레시죤 가부시키가이샤 Variable focal length lens, and focal length adjusting device and imaging apparatus that use the same
US20130242368A1 (en) * 2010-12-09 2013-09-19 Kilolambda Technologies Ltd. Fast response photochromic composition and device
KR20180114382A (en) * 2017-04-10 2018-10-18 한국기술교육대학교 산학협력단 Variable focus double convex lens
KR20200100657A (en) * 2017-12-28 2020-08-26 닛토덴코 가부시키가이샤 Optical element, microlens array, and optical element manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAE JIN WOO, CHOI DONG-SOO, YUN IN-HO, HAN DONG-HEON, OH SEUNG-JU, KIM TAE-HOON, CHO JEONG HO, LIN LIWEI, KIM SANG-YOUN: "Electrically Adaptive and Shape-Changeable Invertible Microlens", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 8, 3 March 2021 (2021-03-03), US , pages 10397 - 10408, XP093026718, ISSN: 1944-8244, DOI: 10.1021/acsami.0c21497 *

Also Published As

Publication number Publication date
KR102532423B1 (en) 2023-05-15
KR20230013877A (en) 2023-01-27

Similar Documents

Publication Publication Date Title
WO2009088239A2 (en) Optical film and electronic information device employing the same
WO2009134097A2 (en) Resin composition and an optical film formed through use of the same
WO2014003210A1 (en) Polyamide-imide copolymer film and method of preparing polyamide-imide copolymer
WO2010036049A2 (en) Polyimide film
WO2023003096A1 (en) Composition for variable focus lens, variable focus lens comprising same, and method for manufacturing same
WO2009088237A2 (en) Transparent resin composition
WO2012002634A1 (en) Acryl-based copolymers and optical film including the same
WO2012091308A2 (en) Polycarbonate-polysiloxane copolymer, and method for preparing same
WO2013137531A1 (en) Polycarbonate-polysiloxane copolymer, and method for preparing same
WO2020197132A1 (en) Thermoplastic resin composition and molded article formed therefrom
CN114957678A (en) High-toughness TPX material, preparation method thereof and compatilizer
WO2017150750A1 (en) Compound for preparing copolymerized polyester resin and method for preparing copolymerized polyester resin using same
CN114213657A (en) Intrinsic black polyimide and preparation method and application thereof
WO2021066438A1 (en) Polymer composite material comprising aramid nanofiber, and method for preparing same
KR20230025216A (en) Varifocal lens composition comprising transparency polymer and poly(vinyl chloride-co-vinyl acetate), varifocal lens having the same and manufacturing method for the same
WO2017052091A1 (en) Light diffusion particles and light diffusion plate comprising same
KR102619503B1 (en) Varifocal lens composition comprising poly(vinyl chloride-co-vinyl acetate), varifocal lens having the same and manufacturing method for the same
WO2013032059A1 (en) Conductive composition and method for preparing same
WO2020091524A1 (en) Acrylonitrile-based copolymer for carbon fiber
WO2019168325A1 (en) Thermoplastic resin composition and molded product manufactured therefrom
WO2018212633A1 (en) Resin composition, method for evaluating reliability thereof, and color-conversion film comprising same
WO2017078478A1 (en) Crosslinked polyglutarimide including isosorbide, and method of producing same
WO2016129926A1 (en) Polyamic acid, polyimide resin and polyimide film
WO2019139386A1 (en) Thermoplastic resin composition
WO2019132574A1 (en) Thermoplastic resin composition and molded product formed therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE