WO2023002770A1 - Power distribution system and malfunction detection method for power distribution system - Google Patents

Power distribution system and malfunction detection method for power distribution system Download PDF

Info

Publication number
WO2023002770A1
WO2023002770A1 PCT/JP2022/023249 JP2022023249W WO2023002770A1 WO 2023002770 A1 WO2023002770 A1 WO 2023002770A1 JP 2022023249 W JP2022023249 W JP 2022023249W WO 2023002770 A1 WO2023002770 A1 WO 2023002770A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution system
power supply
power
detection method
power distribution
Prior art date
Application number
PCT/JP2022/023249
Other languages
French (fr)
Japanese (ja)
Inventor
ハマ ゴヤル
輝 菊池
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023002770A1 publication Critical patent/WO2023002770A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Definitions

  • the present invention relates to the configuration of a power distribution system and its failure detection method, and particularly to technology applicable to identifying failed power supply lines.
  • transmission lines and distribution lines play an essential and important role in order to efficiently transmit power over long distances from centralized power plants.
  • these power lines are often subject to faults due to storms, lightning, snow, freezing rain, insulation breakdown, or short circuits caused by birds or other external objects.
  • a protection relay detects the fault and activates a circuit breaker to open the faulty wiring section, resulting in a power outage. Power outages are a serious problem in modern society.
  • the faulty power supply line can be identified with high accuracy, it can be restored quickly. This can reduce power outages for users connected to power lines that are not directly affected by the fault. Electrical failures often lead to mechanical damage to the equipment or equipment receiving power, requiring repair. Identifying a failed power supply line enables early repair, preventing recurrence of failures and serious damage.
  • NAGDG Neutral Ineffectively Grounded Distribution Grid
  • NIGDG NIGDG
  • Undetected HIFs do not damage distribution network components, but energized conductors on the ground can harm humans. Such faults also create a fire hazard when arcing occurs.
  • HIFs account for about 20-25% of all failures in the distribution grid. However, in practice, this rate is higher than reported values, so it is essential to solve this HIF detection problem.
  • Patent Document 1 describes a method of locating fault points for determining fault types of ground faults and short-circuit faults by measuring phase-to-phase impedance and ground impedance of distribution lines using a high-frequency power source, a voltage measurement sensor, and a current measurement sensor. is disclosed.
  • Patent Document 2 discloses "a system that ensures that a distributed resource of a distribution system remains connected to a circuit of the distribution system when a failure occurs in a distributed resource node".
  • Patent Document 3 describes "exploration signal injection means for injecting two probe signals with phases different by 180° between an underground distribution line and the ground, and a magnetic field generated by the two probe signals propagating through the underground distribution line. and ground fault point detection means for detecting the ground fault point of the underground distribution line based on the magnetic field detected by the magnetic field detection means". disclosed.
  • Past inventions have applied the injection of a single high-frequency current from power devices at multiple locations on the transmission line for fault detection and identification. These power units not only inject high frequency currents during system failures, but also block high frequency currents injected by other adjacent power units.
  • High Voltage (HV) voltage and current are detected by sensors installed along with power devices on multiple power lines. By evaluating and comparing the high frequency (HF) impedances of multiple power lines, faulty power lines are identified.
  • Patent Documents 1 to 3 above may similarly fail to distinguish well in the case of high impedance disturbances (HIF) and power distribution networks (NIGDG) in which the neutral point is ungrounded or grounded with high resistance. have a nature.
  • HIF high impedance disturbances
  • NAGDG power distribution networks
  • an object of the present invention is to provide a power distribution system and a failure detection method thereof that can accurately identify a failed power supply line regardless of the form of the power distribution network or the type of failure that occurs.
  • the present invention is a method of failure detection in an electrical distribution system to identify failed power lines in an electrical grid, comprising: a power converter or any active device to multiple power lines; of high-frequency current is injected, high-frequency impedances of the plurality of power supply lines are detected, and a failed power supply line is identified based on the detected high-frequency impedances.
  • the present invention provides a power converter or any active device for injecting a plurality of high-frequency currents into a plurality of power supply lines, a bus to which the current values of the plurality of power supply lines and the plurality of power supply lines are connected. and a sensor for detecting the bus voltage of, injecting a plurality of high-frequency currents from the power converter or the arbitrary active device into the plurality of power supply lines, and detecting the current value and the bus voltage detected by the sensor and detecting the high-frequency impedances of the plurality of power supply lines based on the above, and identifying a failed power supply line based on the detected high-frequency impedances.
  • the present invention it is possible to realize a power distribution system capable of accurately identifying a failed power supply line and a failure detection method thereof, regardless of the type of power distribution network or the type of failure that occurs.
  • FIG. 1 is a schematic diagram of a comb-type medium voltage distribution network with power converters installed on multiple buses;
  • FIG. 1 is a schematic diagram of a mesh medium voltage distribution network with power converters installed on multiple buses;
  • FIG. 1 is a diagram illustrating a power supply line configuration and components when a high impedance fault (HIF) occurs on one of a plurality of power supply lines of a medium voltage distribution network;
  • FIG. 1 illustrates a power line configuration and components in which a fault has occurred in one of a plurality of power lines of a Neutral Non-Grounded Grid (NIGDG);
  • NIGDG Neutral Non-Grounded Grid
  • FIG. 4 illustrates a method for identifying a faulty power supply line according to an embodiment of the present invention
  • 6 is a diagram showing the detailed configuration and operation of a faulty power supply line identification (FFI) block of FIG. 5
  • FIG. 4 is a flow chart illustrating a method for identifying a bad power supply line according to an embodiment of the invention
  • HV high-voltage
  • MV medium-voltage
  • LV low-voltage
  • FIGS. Figures 1 and 2 show two different configurations of medium voltage (MV) distribution networks.
  • FIG. 1 is a comb type medium voltage distribution network with power converters installed in multiple buses
  • FIG. 2 is a mesh type medium voltage distribution network with power converters installed in multiple buses.
  • a medium voltage (MV) distribution network 1 in FIG. It is configured as a comb-shaped medium voltage distribution network connected to the
  • a medium voltage (MV) distribution network 1 is divided into a plurality of power supply lines 104 , 108 , 112 by a plurality of buses (buses) 102 , 106 , 110 , 114 .
  • a fault in any power supply line can be isolated by circuit breakers 103, 105, 107, 109, 111, 113, and restoration of the remaining normal power supply lines can be efficiently performed.
  • Each of the different buses 102, 106, 110, 114 has a power converter 116, 117, 118, 119 that performs the additional function of Faulty Feeder Identification (FFI).
  • FFI Faulty Feeder Identification
  • the medium voltage (MV) distribution network 1 in FIG. 2 is connected at one end to the high voltage (HV) distribution network by the HV/MV transformer 201 and at the other end to the low voltage (LV) distribution network by the MV/LV transformer 207 . It is configured as a mesh-type medium-voltage distribution network connected to
  • Circuit components such as buses 202, 206, 212, power supply lines 204, 210, 215, power converters 208, 213, 217 perform similar functions as the components described in FIG.
  • Circuit breakers 203, 205, 209, 211, 214, 216 are used to isolate and reconfigure each power supply line from the main grid in the event of a fault or during maintenance.
  • FIG. 3 is an equivalent circuit when a high impedance fault (HIF) occurs in the power supply line 204
  • FIG. This is an equivalent circuit when HIF
  • FIG. 3 shows each component of power supply lines 204 and 210 connected to bus 206 .
  • a high impedance fault is introduced through fault resistor 304 , which is the resistance between fault point 302 and ground 305 .
  • a fault point 302 divides the faulty power supply line 204 into two sections with respective impedances 301 and 303 .
  • the total line impedance of normal power supply line 210 is 306 .
  • the total fault resistance includes fault resistance 304 and ground resistance 401 regardless of the type of fault.
  • FIG. 5 is a diagram illustrating a method for identifying faulty power supply lines in the medium voltage distribution network of FIG.
  • FIG. 6 is a diagram showing the detailed configuration and operation of the faulty power supply line identification (FFI) block 510 of FIG.
  • FIG. 7 is a flow chart showing a method of identifying a defective power supply line according to the present invention.
  • the next step is to identify and isolate the faulty power supply line so that the normal part of the system continues to operate.
  • power converters 208 are typically installed on a common bus 206 to which multiple power supply lines 204, 210 are also connected.
  • two different high frequency (HF) currents 504 are injected by block 502 after fault detection signal 501 is generated. Also, after the fault detection signal 501 is generated, the converter control block 503 stops injecting the base current from the power converter 208 and injects only two different high frequency (HF) currents 504 .
  • the two different high frequency (HF) currents 504 are, for example, high frequency (HF) currents with frequencies above 50 Hz.
  • the injected high frequency (HF) current 504 is split between the power supply lines as high frequency (HF) current 505 on power supply line 204 and high frequency (HF) current 506 on power supply line 210 .
  • Sensors 507, 508, 509 record bus voltage and power line current signals from the two power lines 204, 210 and transmit them to a faulty power line identification (FFI) block 510 for FFI operation. do.
  • FFI faulty power line identification
  • FIG. 6 shows the detailed steps performed by the power converter 208 FFI algorithm.
  • a faulty power line identification (FFI) block 510 requires recording of bus voltage and power line current by sensors 507, 508, 509 to assess high frequency (HF) impedance at different frequencies.
  • HF discrete high frequency
  • these filters are typically bandpass filters 601, 602, 603 and two output signals 604 corresponding to two separate high frequency (HF) signals from the input signals of bus voltage VA and power line currents IL1, IL2. , 605, 606, 607, 608 and 609, respectively.
  • Output signals 604, 605, 606, 607, 608 and 609 are VAh1, VAh2, IL1h1, IL1h2, IL2h1 and IL2h2, respectively.
  • WHF the selected high frequency (HF)
  • the damping ratio
  • Output signals 604, 605, 606, 607, 608, 609 of bandpass filters 601, 602, 603 compute high frequency (HF) impedances 614, 615, 616, 617 by impedance evaluation blocks 610, 611, 612, 613.
  • used for High frequency (HF) impedances 614, 615, 616 and 617 are respectively ZL1h1, ZL1h2, ZL2h1 and ZL2h2.
  • the high frequency (HF) impedance is calculated using equations (2) and (3).
  • the high frequency (HF) impedance is calculated using equations (4) and (5).
  • VAh1, VAh2 are the bus voltages at the selected high frequency (HF) h1 and h2
  • IL1h1, IL1h2, IL2h1, IL2h2 are the high frequency (HF) currents flowing through the failed and normal power lines respectively.
  • ZL1h1, ZL1h2, ZL2h1, and ZL2h2 are the line impedances of the faulty and normal power supply lines at high frequency (HF), respectively.
  • the power supply line with the lowest impedance contains the fault point and only one high frequency (HF) data can be used to perform FFI.
  • HF high frequency
  • the difference between the impedance of the faulty power supply line and the impedance of the normal power supply line becomes smaller.
  • the effect of fault resistance can be eliminated by subtracting the high frequency (HF) impedances ZL1h1 and ZL2h1 at two separate high frequencies (HF) from ZL1h2 and ZL2h2 in subtraction blocks 618 and 619, respectively.
  • HF high frequency
  • the outputs 620, 621 of the subtraction blocks 618, 619 are then compared as the new high frequency (HF) impedance in a comparison block 622 to identify the power line with the lowest value as the failed power line. Also, three or more high frequency (HF) currents can be injected to evaluate and compare high frequency (HF) impedances to identify faulty power lines.
  • HF high frequency
  • the recorded high frequency (HF) data of the failed power line output 624 of compare block 622, is used to determine the type of fault (fault type 626) in compare block 625. judge.
  • the calculated impedance ZL1h has three components corresponding to the three phases of the faulted line.
  • the type of fault (fault type 626) is determined by comparing the impedances of the three phases.
  • FIG. 7 shows a flowchart of a method for identifying a defective power supply line in the present invention.
  • step S701 it is determined whether or not there is a failure. If it is determined that there is no obstacle (NO), the operation is continued without doing anything (step S702). If it is determined that a fault exists (YES), the process proceeds to step S703, where the power converter injects two separate high frequency (HF) currents simultaneously (or sequentially).
  • HF high frequency
  • step S704 the sensor of the power converter detects and records the bus voltage and the current flowing through the plurality of power feeders.
  • the recorded data (bus voltage VA and power supply line currents IL1, IL2) are passed through a bandpass filter in step S705 to extract samples at selected high frequencies (HF) (steps S706, S707). ).
  • the high frequency (HF) impedance is calculated at the selected high frequency (HF) in steps S708 and S709 to They are subtracted from each other to cancel out the effects of resistance.
  • Equation (6) a new parameter shown in equation (6) is used to distinguish between a failed power supply line and a normal power supply line.
  • HF high frequency
  • step S714 the new normalized high frequency (HF) impedance is compared to identify the defective power supply line that has failed.
  • the defective power supply line that has failed is separated from the distribution network (step S716), and the normal power supply line is restored as the distribution network to continue operation (step S715).
  • step S717 the high frequency (HF) impedance of the faulty power supply line is compared between phases to identify the type of fault (failure type). Knowledge of fault type is useful in estimating fault location.
  • HF high frequency
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • 1...Medium-voltage distribution network 101, 201...HV/MV transformer, 115, 207...MV/LV transformer, 102, 106, 110, 114, 202, 206, 212...Bus (bus), 103, 105, 107, 109, 111, 113, 203, 205, 209, 211, 214, 216... circuit breakers, 104, 108, 112, 204, 210, 215... power supply lines, 116, 117, 118, 119, 208, 213, 217... power converter, 301, 303, 306... impedance, 302... fault point, 304... fault resistance, 305... grounding, 401... grounding resistance, 501... fault detection signal, 502...

Abstract

Provided are a power distribution system wherein it is possible to accurately identify a power supply line that has malfunctioned, regardless of the form of a power distribution grid and the variety of problem that has occurred, and a malfunction detection method therefor. This malfunction detection method for a power distribution system, which identifies a power supply line which has malfunctioned within a power distribution grid, is characterized by: injecting a plurality of high-frequency currents into a plurality of power supply lines from a power converter or an arbitrary active device; detecting the high-frequency impedances of the plurality of power supply lines; and identifying the power supply line which has malfunctioned on the basis of the detected high-frequency impedances.

Description

配電システム及び配電システムの故障検知方法DISTRIBUTION SYSTEM AND FAILURE DETECTION METHOD FOR DISTRIBUTION SYSTEM
 本発明は、配電システムの構成とその故障検知方法に係り、特に、故障した電力供給線の識別に適用可能な技術に関する。 The present invention relates to the configuration of a power distribution system and its failure detection method, and particularly to technology applicable to identifying failed power supply lines.
 電力の配電網において、中央集中型の発電所から効率的な長距離送電を行うために、送電線や配電線は欠くことのできない重要な役割を果たしている。しかしながら、これらの電力供給線には、しばしば暴風雨や雷、雪、凍結雨、絶縁破壊、または鳥やその他の外部物体による短絡によって障害が発生する。障害発生後、保護リレーが障害を検出し、遮断器を作動させて故障した配線区間を解放することで、停電に至る。現代社会において、停電は深刻な問題である。 In the power distribution network, transmission lines and distribution lines play an essential and important role in order to efficiently transmit power over long distances from centralized power plants. However, these power lines are often subject to faults due to storms, lightning, snow, freezing rain, insulation breakdown, or short circuits caused by birds or other external objects. After a fault occurs, a protection relay detects the fault and activates a circuit breaker to open the faulty wiring section, resulting in a power outage. Power outages are a serious problem in modern society.
 故障した電力供給線を精度良く識別することができれば、迅速に復旧することができる。これにより、障害の影響を直接受けていない電力供給線に接続しているユーザの停電を減らすことができる。多くの場合、電気的な障害は、電力供給を受けている設備や機器の機械的な損傷に繋がり、修理が必要となる。故障した電力供給線を識別することで、早期の修理が可能となり、故障の再発や重大な損傷を防止することができる。 If the faulty power supply line can be identified with high accuracy, it can be restored quickly. This can reduce power outages for users connected to power lines that are not directly affected by the fault. Electrical failures often lead to mechanical damage to the equipment or equipment receiving power, requiring repair. Identifying a failed power supply line enables early repair, preventing recurrence of failures and serious damage.
 したがって、配電網において、高品質なサービスと全体的なコスト削減のためには、障害を検出して電源を復旧するための高速かつ信頼性の高い方法が不可欠である。 Therefore, a fast and reliable method to detect faults and restore power is essential for high quality service and overall cost reduction in the distribution grid.
 ところで、主な接地モードの1つとして、中性点が非接地あるいは高抵抗接地された方式が、特にヨーロッパと中国の中電圧(MV:Medium Voltage)配電網で広く使用されている。このような中性点が非接地あるいは高抵抗接地された方式の配電網(NIGDG:Neutral Ineffectively Grounded Distribution Grid)には、単相地絡が発生した後も相間電圧が対称のままであるという利点がある。この配電システムは、1~2時間、場合によってはそれよりも長い期間、障害が持続した状態で動作することが可能である。これにより、電力会社は障害を解消し、中断なく電力を供給する時間を確保できる。 By the way, as one of the main grounding modes, a method in which the neutral point is ungrounded or grounded with high resistance is widely used, especially in Europe and China's Medium Voltage (MV) distribution networks. Such a Neutral Ineffectively Grounded Distribution Grid (NIGDG) has the advantage that the phase-to-phase voltage remains symmetrical even after a single-phase ground fault occurs. There is The distribution system is capable of operating with sustained faults for 1-2 hours, and possibly longer. This gives the power company time to clear the outage and provide uninterrupted power.
 しかしながら、NIGDGの固有の欠点は、故障電流の大きさが通常の動作電流を大きく上回らないことであり、故障した電力供給線の検出と識別が非常に困難であることが課題の1つである。 However, an inherent drawback of NIGDG is that the magnitude of the fault current does not greatly exceed the normal operating current, and one of the challenges is that the detection and identification of faulty power lines is very difficult. .
 また、配電網の導電体は、樹木や木製の柵、車両などの接地が不十分な物体と接触することがよくある。時には、これらの通電された導体が破損し、アスファルトやコンクリート、草、砂などの高インピーダンスの地面に接触する場合がある。これらの接触は、故障電流を数ミリアンペアから数十アンペアのみに制限する。過電流リレーや再閉路器、ヒューズに基づく従来の保護方式では、このような低電流の高インピーダンス障害(HIFs:High-Impedance Faults)を検出するのが困難である。 In addition, electrical grid conductors often come into contact with poorly grounded objects such as trees, wooden fences, and vehicles. Occasionally, these energized conductors break and contact high impedance grounds such as asphalt, concrete, grass, sand, and the like. These contacts limit fault currents to only a few milliamperes to tens of amperes. Conventional protection schemes based on overcurrent relays, reclosers, and fuses have difficulty detecting such low-current High-Impedance Faults (HIFs).
 検出されないHIFsは、配電網の構成要素に損傷を与えないが、地面上の通電された導体は人体に危害を及ぼす可能性がある。また、このような障害によってアーク放電が発生すると、火災の危険が生じる。 Undetected HIFs do not damage distribution network components, but energized conductors on the ground can harm humans. Such faults also create a fire hazard when arcing occurs.
 複数の報告書によれば、配電網のすべての障害の内、HIFsは20~25%程度であるとされている。しかしながら、実際には、この割合は報告されている値よりも高いため、このHIF検出の問題を解決することが不可欠である。  According to several reports, HIFs account for about 20-25% of all failures in the distribution grid. However, in practice, this rate is higher than reported values, so it is essential to solve this HIF detection problem.
 近年、持続可能な社会を目指す電力事業者は、より多くの再生可能エネルギーと電気自動車(EV:Electric Vehicle)を提供するために、スマートグリッドに移行している。再生可能エネルギーやEVからの電力変換には、電力変換装置が必要である。多機能電力変換装置からのインテリジェントな監視と制御を使用することにより、電力事業者は停電を減らすことができる。 In recent years, electric power companies aiming for a sustainable society have shifted to smart grids in order to provide more renewable energy and electric vehicles (EVs). A power converter is necessary for power conversion from renewable energy and EVs. By using intelligent monitoring and control from multifunction power converters, utilities can reduce outages.
 本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には「高周波電源と電圧測定センサと電流測定センサを用いて、配電線の相間インピーダンス及び対地インピーダンスを測定して、地絡事故及び短絡事故の故障種別を判定する故障点標定方法」が開示されている。 As a background technology in this technical field, there is a technology such as Patent Document 1, for example. Patent document 1 describes a method of locating fault points for determining fault types of ground faults and short-circuit faults by measuring phase-to-phase impedance and ground impedance of distribution lines using a high-frequency power source, a voltage measurement sensor, and a current measurement sensor. is disclosed.
 また、特許文献2には「配電システムの分散リソースが、分散リソースノードで障害が発生したときに配電システムの回路に接続されたままであることを保証するシステム」が開示されている。 In addition, Patent Document 2 discloses "a system that ensures that a distributed resource of a distribution system remains connected to a circuit of the distribution system when a failure occurs in a distributed resource node".
 また、特許文献3には「地中配電線路と大地間に位相が180°異なる二つの探査信号を各々注入する探査信号注入手段と、前記地中配電線路を伝搬する二つの探査信号により生じる磁界を検出する磁界検出手段と、前記磁界検出手段で検出された検出磁界に基づき前記地中配電線路の地絡事故点を検出する地絡事故点検出手段とを備える地絡事故点探査装置」が開示されている。 In addition, Patent Document 3 describes "exploration signal injection means for injecting two probe signals with phases different by 180° between an underground distribution line and the ground, and a magnetic field generated by the two probe signals propagating through the underground distribution line. and ground fault point detection means for detecting the ground fault point of the underground distribution line based on the magnetic field detected by the magnetic field detection means". disclosed.
特開2002-122628号公報JP-A-2002-122628 米国特許第9459308号明細書U.S. Pat. No. 9,459,308 特開2007-279031号公報Japanese Patent Application Laid-Open No. 2007-279031
 過去の発明では、障害の検出および識別のために、送電線の複数の場所にある電力装置からの単一の高周波電流の注入が適用されている。これらの電力装置は、系統障害時に高周波電流を注入するだけでなく、他の隣接する電力装置によって注入される高周波電流も遮断する。高電圧(HV:High Voltage)の電圧と電流は、複数の電力供給線に電力装置とともに設置されたセンサによって検出される。複数の電力供給線の高周波(HF)インピーダンスを評価し、比較することによって、障害のある電力供給線が識別される。 Past inventions have applied the injection of a single high-frequency current from power devices at multiple locations on the transmission line for fault detection and identification. These power units not only inject high frequency currents during system failures, but also block high frequency currents injected by other adjacent power units. High Voltage (HV) voltage and current are detected by sensors installed along with power devices on multiple power lines. By evaluating and comparing the high frequency (HF) impedances of multiple power lines, faulty power lines are identified.
 しかしながら、高インピーダンス障害(HIF)や中性点が非接地あるいは高抵抗接地された方式の配電網(NIGDG)の場合、電力供給線のHFインピーダンス間の差が小さいため、このような方法では上手く識別できない可能性がある。 However, in the case of high impedance faults (HIF) and ungrounded or high resistance grounded neutral distribution networks (NIGDG), the difference between the HF impedances of the power supply lines is small and such a method works well. may not be identifiable.
 上記特許文献1から特許文献3のいずれの技術も、同様に、高インピーダンス障害(HIF)や中性点が非接地あるいは高抵抗接地された方式の配電網(NIGDG)の場合、上手く識別できない可能性がある。 Any of the technologies of Patent Documents 1 to 3 above may similarly fail to distinguish well in the case of high impedance disturbances (HIF) and power distribution networks (NIGDG) in which the neutral point is ungrounded or grounded with high resistance. have a nature.
 そこで、本発明の目的は、配電網の形態や発生する障害の種別に依らず、故障した電力供給線を精度良く識別可能な配電システム及びその故障検知方法を提供することにある。 Therefore, an object of the present invention is to provide a power distribution system and a failure detection method thereof that can accurately identify a failed power supply line regardless of the form of the power distribution network or the type of failure that occurs.
 上記課題を解決するために、本発明は、配電網内の故障した電力供給線を識別する配電システムの故障検知方法であって、電力変換器または任意の能動デバイスから複数の電力供給線に複数の高周波電流を注入し、前記複数の電力供給線の高周波インピーダンスを検出し、当該検出した高周波インピーダンスに基づいて故障した電力供給線を識別することを特徴とする。 SUMMARY OF THE INVENTION In order to solve the above problems, the present invention is a method of failure detection in an electrical distribution system to identify failed power lines in an electrical grid, comprising: a power converter or any active device to multiple power lines; of high-frequency current is injected, high-frequency impedances of the plurality of power supply lines are detected, and a failed power supply line is identified based on the detected high-frequency impedances.
 また、本発明は、複数の電力供給線に複数の高周波電流を注入する電力変換器または任意の能動デバイスと、前記複数の電力供給線の電流値および前記複数の電力供給線が接続されたバスのバス電圧を検出するセンサと、を備え、前記電力変換器または前記任意の能動デバイスから前記複数の電力供給線に複数の高周波電流を注入し、前記センサにより検出した前記電流値および前記バス電圧に基づいて前記複数の電力供給線の高周波インピーダンスを検出し、当該検出した高周波インピーダンスに基づいて故障した電力供給線を識別することを特徴とする。 Further, the present invention provides a power converter or any active device for injecting a plurality of high-frequency currents into a plurality of power supply lines, a bus to which the current values of the plurality of power supply lines and the plurality of power supply lines are connected. and a sensor for detecting the bus voltage of, injecting a plurality of high-frequency currents from the power converter or the arbitrary active device into the plurality of power supply lines, and detecting the current value and the bus voltage detected by the sensor and detecting the high-frequency impedances of the plurality of power supply lines based on the above, and identifying a failed power supply line based on the detected high-frequency impedances.
 本発明によれば、配電網の形態や発生する障害の種別に依らず、故障した電力供給線を精度良く識別可能な配電システム及びその故障検知方法を実現することができる。 According to the present invention, it is possible to realize a power distribution system capable of accurately identifying a failed power supply line and a failure detection method thereof, regardless of the type of power distribution network or the type of failure that occurs.
 これにより、信頼性の高いスマートグリッドの構築が図れる。 This will enable the construction of a highly reliable smart grid.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
複数のバスに電力変換器が設置されたくし型中電圧配電網の概略図である。1 is a schematic diagram of a comb-type medium voltage distribution network with power converters installed on multiple buses; FIG. 複数のバスに電力変換器が設置されたメッシュ型中電圧配電網の概略図である。1 is a schematic diagram of a mesh medium voltage distribution network with power converters installed on multiple buses; FIG. 中電圧配電網の複数の電力供給線の1つで高インピーダンス障害(HIF)が発生した場合の電力供給線構成と構成部品を示す図である。1 is a diagram illustrating a power supply line configuration and components when a high impedance fault (HIF) occurs on one of a plurality of power supply lines of a medium voltage distribution network; FIG. 中性非有効接地配電網(NIGDG)の複数の電力供給線の1つで障害が発生した電力供給線構成と構成部品を示す図である。1 illustrates a power line configuration and components in which a fault has occurred in one of a plurality of power lines of a Neutral Non-Grounded Grid (NIGDG); FIG. 本発明の一実施形態に係る不良電力供給線の識別方法を示す図である。FIG. 4 illustrates a method for identifying a faulty power supply line according to an embodiment of the present invention; 図5の不良電力供給線識別(FFI)ブロックの詳細な構成と動作を示す図である。6 is a diagram showing the detailed configuration and operation of a faulty power supply line identification (FFI) block of FIG. 5; FIG. 本発明の一実施形態に係る不良電力供給線の識別方法を示すフローチャートである。4 is a flow chart illustrating a method for identifying a bad power supply line according to an embodiment of the invention;
 以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each drawing, the same configurations are denoted by the same reference numerals, and detailed descriptions of overlapping portions are omitted.
 また、以下では、相互接続される複数の配電網に対し、電圧範囲の相対的な関係に基づいて、それぞれ高電圧(HV)配電網、中電圧(MV)配電網、低電圧(LV)配電網と呼ぶが、本発明は特定の電圧範囲に限定されるものではなく、いずれの電圧範囲の配電網にも適用可能である。 In the following, we also refer to high-voltage (HV), medium-voltage (MV), and low-voltage (LV) distribution networks for interconnected distribution networks based on their relative voltage range relationships. Although referred to as a grid, the invention is not limited to any particular voltage range and is applicable to distribution networks of any voltage range.
 先ず、図1及び図2を参照して、本発明の適用対象となる電力の配電網について説明する。図1及び図2は、2つの異なる構成の中電圧(MV)配電網を示している。図1は、複数のバスに電力変換器が設置されたくし型中電圧配電網であり、図2は、複数のバスに電力変換器が設置されたメッシュ型中電圧配電網である。 First, a power distribution network to which the present invention is applied will be described with reference to FIGS. Figures 1 and 2 show two different configurations of medium voltage (MV) distribution networks. FIG. 1 is a comb type medium voltage distribution network with power converters installed in multiple buses, and FIG. 2 is a mesh type medium voltage distribution network with power converters installed in multiple buses.
 図1の中電圧(MV)配電網1は、一端がHV/MV変圧器101によって高電圧(HV)配電網に接続され、他端がMV/LV変圧器115によって低電圧(LV)配電網に接続されたくし型中電圧配電網として構成されている。 A medium voltage (MV) distribution network 1 in FIG. It is configured as a comb-shaped medium voltage distribution network connected to the
 中電圧(MV)配電網1は、複数のバス(母線)102,106,110,114によって、複数の電力供給線104,108,112に分割されている。 A medium voltage (MV) distribution network 1 is divided into a plurality of power supply lines 104 , 108 , 112 by a plurality of buses (buses) 102 , 106 , 110 , 114 .
 ここで、任意の電力供給線における故障は、回路遮断器103,105,107,109,111,113によって分離することができ、残りの正常な電力供給線の復旧を効率的に行うことができる。複数の異なるバス102,106,110,114の各々には、不良電力供給線識別(FFI:Faulty Feeder Identification)の追加機能を実行する電力変換器116,117,118,119が設置されている。 Here, a fault in any power supply line can be isolated by circuit breakers 103, 105, 107, 109, 111, 113, and restoration of the remaining normal power supply lines can be efficiently performed. . Each of the different buses 102, 106, 110, 114 has a power converter 116, 117, 118, 119 that performs the additional function of Faulty Feeder Identification (FFI).
 図2の中電圧(MV)配電網1は、一端がHV/MV変圧器201によって高電圧(HV)配電網に接続され、他端がMV/LV変圧器207によって低電圧(LV)配電網に接続されたメッシュ型中電圧配電網として構成されている。 The medium voltage (MV) distribution network 1 in FIG. 2 is connected at one end to the high voltage (HV) distribution network by the HV/MV transformer 201 and at the other end to the low voltage (LV) distribution network by the MV/LV transformer 207 . It is configured as a mesh-type medium-voltage distribution network connected to
 バス202,206,212、電力供給線204,210,215、電力変換器208,213,217などの回路構成要素は、図1で説明した構成要素と同様の機能を果たす。 Circuit components such as buses 202, 206, 212, power supply lines 204, 210, 215, power converters 208, 213, 217 perform similar functions as the components described in FIG.
 回路遮断器203,205,209,211,214,216は、障害発生時または保守中に、主系統から各電力供給線を分離し、再構成するために使用される。 Circuit breakers 203, 205, 209, 211, 214, 216 are used to isolate and reconfigure each power supply line from the main grid in the event of a fault or during maintenance.
 次に、図3及び図4を参照して、電力供給線204に障害が発生した場合について説明する。図3は、電力供給線204に高インピーダンス障害(HIF)が発生した場合の等価回路であり、図4は、接地抵抗401を有する中性点が高抵抗接地された配電網(NIGDG)で故障が発生した場合の等価回路である。 Next, a case where a failure occurs in the power supply line 204 will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is an equivalent circuit when a high impedance fault (HIF) occurs in the power supply line 204, and FIG. This is an equivalent circuit when
 図3では、バス206に接続された電力供給線204,210の各構成要素を示している。高インピーダンス障害は、故障点302と接地305との間の抵抗である故障抵抗304を介して発生している。故障点302は、故障した電力供給線204を、それぞれのインピーダンスが301及び303である2つの部分に分割する。正常な電力供給線210のラインインピーダンスの合計は、306である。 FIG. 3 shows each component of power supply lines 204 and 210 connected to bus 206 . A high impedance fault is introduced through fault resistor 304 , which is the resistance between fault point 302 and ground 305 . A fault point 302 divides the faulty power supply line 204 into two sections with respective impedances 301 and 303 . The total line impedance of normal power supply line 210 is 306 .
 図4では、全故障抵抗には、障害の種類に関係なく、故障抵抗304と接地抵抗401が含まれる。 In FIG. 4, the total fault resistance includes fault resistance 304 and ground resistance 401 regardless of the type of fault.
 次に、図5から図7を参照して、本発明の配電システムの構成と故障検知方法について説明する。図5は、図3の中電圧配電網における不良電力供給線の識別方法を示す図である。図6は、図5の不良電力供給線識別(FFI)ブロック510の詳細な構成と動作を示す図である。図7は、本発明における不良電力供給線の識別方法を示すフローチャートである。 Next, the configuration of the power distribution system and the failure detection method of the present invention will be described with reference to FIGS. 5 to 7. FIG. FIG. 5 is a diagram illustrating a method for identifying faulty power supply lines in the medium voltage distribution network of FIG. FIG. 6 is a diagram showing the detailed configuration and operation of the faulty power supply line identification (FFI) block 510 of FIG. FIG. 7 is a flow chart showing a method of identifying a defective power supply line according to the present invention.
 本発明では、障害が検出されると、次のステップにおいて、故障した電力供給線を識別して分離し、系統の正常な部分が継続して動作するようにする。 In the present invention, when a fault is detected, the next step is to identify and isolate the faulty power supply line so that the normal part of the system continues to operate.
 図5に示すように、電力変換器208は、通常、複数の電力供給線204,210も接続される共通のバス206に設置される。 As shown in FIG. 5, power converters 208 are typically installed on a common bus 206 to which multiple power supply lines 204, 210 are also connected.
 本発明では、故障検出信号501が生成された後、ブロック502によって2つの異なる高周波(HF)電流504が注入される。また、故障検出信号501が生成された後、コンバータ制御ブロック503は、電力変換器208からの基本電流注入を停止し、2つの異なる高周波(HF)電流504のみを注入する。2つの異なる高周波(HF)電流504には、例えば50Hz以上の周波数の高周波(HF)電流を用いる。 In the present invention, two different high frequency (HF) currents 504 are injected by block 502 after fault detection signal 501 is generated. Also, after the fault detection signal 501 is generated, the converter control block 503 stops injecting the base current from the power converter 208 and injects only two different high frequency (HF) currents 504 . The two different high frequency (HF) currents 504 are, for example, high frequency (HF) currents with frequencies above 50 Hz.
 注入された高周波(HF)電流504は、電力供給線204では高周波(HF)電流505として、電力供給線210では高周波(HF)電流506として、電力供給線間で分割される。センサ507,508,509は、2つの電力供給線204,210からのバス電圧と電力供給線電流の信号を記録し、それらをFFI動作のために不良電力供給線識別(FFI)ブロック510に伝送する。 The injected high frequency (HF) current 504 is split between the power supply lines as high frequency (HF) current 505 on power supply line 204 and high frequency (HF) current 506 on power supply line 210 . Sensors 507, 508, 509 record bus voltage and power line current signals from the two power lines 204, 210 and transmit them to a faulty power line identification (FFI) block 510 for FFI operation. do.
 なお、2つの別個の高周波(HF)電流504の注入は、同時に、または順番に行うことができ、FFI演算の結果として得られる出力は同じになる。 It should be noted that the injection of two separate high frequency (HF) currents 504 can be done simultaneously or sequentially and the resulting output of the FFI operation will be the same.
 図6に、電力変換器208のFFIアルゴリズムによって実行される詳細なステップを示す。 FIG. 6 shows the detailed steps performed by the power converter 208 FFI algorithm.
 不良電力供給線識別(FFI)ブロック510は、異なる周波数での高周波(HF)インピーダンスを評価するために、センサ507,508,509によるバス電圧と電力供給線電流の記録を必要とする。 A faulty power line identification (FFI) block 510 requires recording of bus voltage and power line current by sensors 507, 508, 509 to assess high frequency (HF) impedance at different frequencies.
 この評価では、検出されたバス電圧と電力供給線電流から個別の高周波(HF)の成分を抽出することが必要であるため、選択した別個の高周波(HF)で調整された2次フィルタを通過させる。これらのフィルタは、通常、バンドパスフィルタ601,602,603であり、バス電圧VA及び電力供給線電流IL1,IL2の入力信号から、2つの別個の高周波(HF)に対応する2つの出力信号604,605,606,607,608,609をそれぞれ生成する。出力信号604,605,606,607,608,609は、それぞれVAh1,VAh2,IL1h1,IL1h2,IL2h1,IL2h2である。 Because this evaluation requires extracting discrete high frequency (HF) components from the sensed bus voltage and power line current, they are passed through a selected discrete high frequency (HF) tuned second order filter. Let These filters are typically bandpass filters 601, 602, 603 and two output signals 604 corresponding to two separate high frequency (HF) signals from the input signals of bus voltage VA and power line currents IL1, IL2. , 605, 606, 607, 608 and 609, respectively. Output signals 604, 605, 606, 607, 608 and 609 are VAh1, VAh2, IL1h1, IL1h2, IL2h1 and IL2h2, respectively.
 このフィルタの伝達関数は、式(1)で定義される。 The transfer function of this filter is defined by equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、sはラプラス演算子、WHFは選択された高周波(HF)、ξは減衰比である。 where s is the Laplace operator, WHF is the selected high frequency (HF), and ξ is the damping ratio.
 バンドパスフィルタ601,602,603の出力信号604,605,606,607,608,609は、インピーダンス評価ブロック610,611,612,613によって高周波(HF)インピーダンス614,615,616,617を計算するために使用される。高周波(HF)インピーダンス614,615,616,617は、それぞれZL1h1,ZL1h2,ZL2h1,ZL2h2である。 Output signals 604, 605, 606, 607, 608, 609 of bandpass filters 601, 602, 603 compute high frequency (HF) impedances 614, 615, 616, 617 by impedance evaluation blocks 610, 611, 612, 613. used for High frequency (HF) impedances 614, 615, 616 and 617 are respectively ZL1h1, ZL1h2, ZL2h1 and ZL2h2.
 故障した電力供給線204については、式(2)及び式(3)により高周波(HF)インピーダンスを算出する。 For the failed power supply line 204, the high frequency (HF) impedance is calculated using equations (2) and (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 一方、正常な電力供給線210については、式(4)及び式(5)により高周波(HF)インピーダンスを算出する。 On the other hand, for the normal power supply line 210, the high frequency (HF) impedance is calculated using equations (4) and (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、VAh1,VAh2は選択された高周波(HF)h1及びh2におけるバス電圧、IL1h1,IL1h2,IL2h1,IL2h2は故障した電力供給線と正常な電力供給線をそれぞれ流れる高周波(HF)電流である。また、ZL1h1,ZL1h2,ZL2h1,ZL2h2はそれぞれ、高周波(HF)での故障した電力供給線と正常な電力供給線のラインインピーダンスである。 where VAh1, VAh2 are the bus voltages at the selected high frequency (HF) h1 and h2, and IL1h1, IL1h2, IL2h1, IL2h2 are the high frequency (HF) currents flowing through the failed and normal power lines respectively. . Also, ZL1h1, ZL1h2, ZL2h1, and ZL2h2 are the line impedances of the faulty and normal power supply lines at high frequency (HF), respectively.
 故障抵抗Rfがほぼゼロであれば、インピーダンスが最も低い電力供給線に故障点が含まれ、1つの高周波(HF)データのみを使用してFFIを実行できる。 If the fault resistance Rf is nearly zero, the power supply line with the lowest impedance contains the fault point and only one high frequency (HF) data can be used to perform FFI.
 より高い故障抵抗に対しては、故障した電力供給線のインピーダンスと正常な電力供給線のインピーダンスとの差が小さくなる。 For higher fault resistance, the difference between the impedance of the faulty power supply line and the impedance of the normal power supply line becomes smaller.
 2つの別個の高周波(HF)における高周波(HF)インピーダンスZL1h1,ZL2h1を、減算ブロック618,619において、それぞれZL1h2,ZL2h2から差し引くことによって、故障抵抗の影響を排除することができる。 The effect of fault resistance can be eliminated by subtracting the high frequency (HF) impedances ZL1h1 and ZL2h1 at two separate high frequencies (HF) from ZL1h2 and ZL2h2 in subtraction blocks 618 and 619, respectively.
 次いで、減算ブロック618,619の出力620,621を新たな高周波(HF)インピーダンスとして比較ブロック622で比較し、最も低い値を有する電力供給線を、故障した電力供給線として識別する。また、3つ以上の高周波(HF)電流を注入して、高周波(HF)インピーダンスを評価及び比較し、故障した電力供給線を特定することもできる。 The outputs 620, 621 of the subtraction blocks 618, 619 are then compared as the new high frequency (HF) impedance in a comparison block 622 to identify the power line with the lowest value as the failed power line. Also, three or more high frequency (HF) currents can be injected to evaluate and compare high frequency (HF) impedances to identify faulty power lines.
 故障した電力供給線を識別した後、比較ブロック622の出力624である故障した電力供給線の記録された高周波(HF)データを使用して、比較ブロック625で故障の種類(障害タイプ626)を判定する。 After identifying the failed power line, the recorded high frequency (HF) data of the failed power line, output 624 of compare block 622, is used to determine the type of fault (fault type 626) in compare block 625. judge.
 算出されたインピーダンスZL1hは、故障したラインの三相に対応する三つの成分を有する。比較ブロック625において、三相のインピーダンスを比較することによって、故障の種類(障害タイプ626)が判断される。 The calculated impedance ZL1h has three components corresponding to the three phases of the faulted line. In comparison block 625, the type of fault (fault type 626) is determined by comparing the impedances of the three phases.
 すべての地絡(LG:line-to-ground)障害では、インピーダンスが最も低い相には故障点が含まれ、残りの2つの相の高周波(HF)インピーダンスは比較的高くなる。 For all line-to-ground (LG) faults, the phase with the lowest impedance contains the fault point, and the remaining two phases have relatively high high frequency (HF) impedance.
 障害のある電力供給線の2相が同様のインピーダンスを示し、3番目の電力供給線のインピーダンスが比較的高い場合は、二線(LL:double line)障害または二線対地(LLG:double line-to-ground)障害が考えられる。 If the two phases of the faulty power feed line present similar impedances and the third power feed line has a relatively high impedance, then a double line (LL) fault or double line-to-ground (LLG) to-ground) failure.
 また、通常のグリッド状態での一般的なラインインピーダンスと比較して、3つの相すべてのインピーダンスが低い場合は、三線(LLL:triple line)障害または三線対地(LLLG:triple line-to-ground)障害が考えられる。 Also, when the impedance of all three phases is low compared to the typical line impedance under normal grid conditions, a triple line (LLL) fault or triple line-to-ground (LLLG) Obstacles are possible.
 図7に、本発明における不良電力供給線の識別方法のフローチャートを示す。 FIG. 7 shows a flowchart of a method for identifying a defective power supply line in the present invention.
 先ず、ステップS701において、障害が存在するか否かを判定する。障害が無いと判定された場合(NO)、何も行わずに運転を継続する(ステップS702)。障害が存在すると判定された場合(YES)、ステップS703に進み、電力変換器は2つの別個の高周波(HF)電流を同時に(または順番に)注入する。 First, in step S701, it is determined whether or not there is a failure. If it is determined that there is no obstacle (NO), the operation is continued without doing anything (step S702). If it is determined that a fault exists (YES), the process proceeds to step S703, where the power converter injects two separate high frequency (HF) currents simultaneously (or sequentially).
 次に、ステップS704において、電力変換器のセンサにより、バス電圧と複数の電力給電線を流れる電流を検出し、記録する。 Next, in step S704, the sensor of the power converter detects and records the bus voltage and the current flowing through the plurality of power feeders.
 続いて、記録されたデータ(バス電圧VA及び電力供給線電流IL1,IL2)は、ステップS705において、バンドパスフィルタを通過し、選択された高周波(HF)でサンプルを抽出する(ステップS706,S707)。 Subsequently, the recorded data (bus voltage VA and power supply line currents IL1, IL2) are passed through a bandpass filter in step S705 to extract samples at selected high frequencies (HF) (steps S706, S707). ).
 ステップS706,S707でそれぞれ抽出されたバンドパスフィルタの出力信号VAh1,VAh2,IL1h1,IL1h2に基づいて、ステップS708,S709において、選択された高周波(HF)で高周波(HF)インピーダンスが計算され、故障抵抗の影響を打ち消すために相互に差し引かれる。 Based on the output signals VAh1, VAh2, IL1h1, and IL1h2 of the band-pass filters respectively extracted in steps S706 and S707, the high frequency (HF) impedance is calculated at the selected high frequency (HF) in steps S708 and S709 to They are subtracted from each other to cancel out the effects of resistance.
 ここで、式(6)に示す新たなパラメータが、故障した電力供給線と正常な電力供給線とを区別するために使用される。 Here, a new parameter shown in equation (6) is used to distinguish between a failed power supply line and a normal power supply line.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 但し、電力供給線は、様々なグリッド構成で接続された、異なるケーブル材料、ラインインピーダンス及び長さとなる可能性がある。そこで、これを修正するために、新たな高周波(HF)インピーダンスは、故障前のインピーダンス値Z’L1pre-fault,Z’L2pre-faultに基づいて(ステップS713,S711)、ステップS712,S710でそれぞれ正規化される。 However, power supply lines can be of different cable materials, line impedances and lengths connected in various grid configurations. So, to correct this, the new high frequency (HF) impedances are based on the pre-fault impedance values Z'L1 pre-fault and Z'L2 pre-fault (steps S713 and S711) in steps S712 and S710 respectively. Normalized.
 その後、ステップS714において、正規化された新たな高周波(HF)インピーダンスを比較して、故障した不良電力供給線を特定する。故障した不良電力供給線は配電網から分離され(ステップS716)、正常な電力供給線は配電網として復旧し、運転を継続する(ステップS715)。 After that, in step S714, the new normalized high frequency (HF) impedance is compared to identify the defective power supply line that has failed. The defective power supply line that has failed is separated from the distribution network (step S716), and the normal power supply line is restored as the distribution network to continue operation (step S715).
 最後に、ステップS717において、故障した不良電力供給線の高周波(HF)インピーダンスを相間で比較し、故障の種類(障害タイプ)を特定する。障害タイプの知識は、故障位置の推定に有用である。 Finally, in step S717, the high frequency (HF) impedance of the faulty power supply line is compared between phases to identify the type of fault (failure type). Knowledge of fault type is useful in estimating fault location.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 1…中電圧配電網、101,201…HV/MV変圧器、115,207…MV/LV変圧器、102,106,110,114,202,206,212…バス(母線)、103,105,107,109,111,113,203,205,209,211,214,216…回路遮断器、104,108,112,204,210,215…電力供給線、116,117,118,119,208,213,217…電力変換器、301,303,306…インピーダンス、302…故障点、304…故障抵抗、305…接地、401…接地抵抗、501…故障検出信号、502…2つの異なる高周波(HF)電流を注入するブロック、503…コンバータ制御ブロック、504,505,506…高周波(HF)電流、507,508,509…センサ、510…不良電力供給線識別(FFI)ブロック、601,602,603…バンドパスフィルタ、604,605,606,607,608,609…バンドパスフィルタの出力信号、610,611,612,613…インピーダンス評価ブロック、614,615,616,617…高周波(HF)インピーダンス、618,619…減算ブロック、620,621…減算ブロックの出力、622…比較ブロック、623…不良電力供給線の特定・分離、624…比較ブロックの出力、625…比較ブロック、626…障害タイプ 1...Medium-voltage distribution network, 101, 201...HV/MV transformer, 115, 207...MV/LV transformer, 102, 106, 110, 114, 202, 206, 212...Bus (bus), 103, 105, 107, 109, 111, 113, 203, 205, 209, 211, 214, 216... circuit breakers, 104, 108, 112, 204, 210, 215... power supply lines, 116, 117, 118, 119, 208, 213, 217... power converter, 301, 303, 306... impedance, 302... fault point, 304... fault resistance, 305... grounding, 401... grounding resistance, 501... fault detection signal, 502... two different high frequencies (HF) Blocks for injecting current, 503 ... converter control blocks, 504, 505, 506 ... high frequency (HF) currents, 507, 508, 509 ... sensors, 510 ... faulty power line identification (FFI) blocks, 601, 602, 603 ... Bandpass filters, 604, 605, 606, 607, 608, 609... Output signals of bandpass filters, 610, 611, 612, 613... Impedance evaluation blocks, 614, 615, 616, 617... High frequency (HF) impedances, 618 , 619... Subtraction block 620, 621... Output of subtraction block 622... Comparison block 623... Identification and separation of faulty power supply line 624... Output of comparison block 625... Comparison block 626... Fault type

Claims (14)

  1.  配電網内の故障した電力供給線を識別する配電システムの故障検知方法であって、
     電力変換器または任意の能動デバイスから複数の電力供給線に複数の高周波電流を注入し、
     前記複数の電力供給線の高周波インピーダンスを検出し、
     当該検出した高周波インピーダンスに基づいて故障した電力供給線を識別することを特徴とする配電システムの故障検知方法。
    1. A method of fault detection in an electrical distribution system for identifying faulty power lines in an electrical distribution network, comprising the steps of:
    injecting multiple high frequency currents into multiple power supply lines from a power converter or any active device,
    detecting high-frequency impedance of the plurality of power supply lines;
    A failure detection method for a power distribution system, comprising identifying a failed power supply line based on the detected high-frequency impedance.
  2.  請求項1に記載の配電システムの故障検知方法であって、
     前記電力変換器または前記任意の能動デバイスから前記複数の電力供給線に異なる2つの周波数の高周波電流を注入し、
     前記異なる2つの周波数での前記複数の電力供給線の高周波インピーダンスを検出し、 当該検出した高周波インピーダンスの前記異なる2つの周波数での高周波インピーダンスの差分を電力供給線毎に算出し、
     当該算出した差分に基づいて故障した電力供給線を識別することを特徴とする配電システムの故障検知方法。
    A failure detection method for a power distribution system according to claim 1,
    injecting high-frequency currents of two different frequencies into the plurality of power supply lines from the power converter or the optional active device;
    detecting high-frequency impedances of the plurality of power supply lines at the two different frequencies, calculating a difference between the detected high-frequency impedances at the two different frequencies for each power supply line,
    A failure detection method for a distribution system, comprising identifying a failed power supply line based on the calculated difference.
  3.  請求項1に記載の配電システムの故障検知方法であって、
     前記電力変換器または前記任意の能動デバイスは、前記複数の高周波電流を同時にまたは順番に注入することを特徴とする配電システムの故障検知方法。
    A failure detection method for a power distribution system according to claim 1,
    A failure detection method for a power distribution system, wherein the power converter or the optional active device injects the plurality of high-frequency currents simultaneously or sequentially.
  4.  請求項2に記載の配電システムの故障検知方法であって、
     前記異なる2つの周波数での高周波インピーダンスの減算を実行して、故障抵抗の影響を排除することを特徴とする配電システムの故障検知方法。
    A failure detection method for a power distribution system according to claim 2,
    A fault detection method for a power distribution system, characterized by performing a subtraction of high frequency impedances at said two different frequencies to eliminate the effect of fault resistance.
  5.  請求項1に記載の配電システムの故障検知方法であって、
     前記電力変換器または前記任意の能動デバイスは、2つ以上の任意の数の高周波電流を注入することを特徴とする配電システムの故障検知方法。
    A failure detection method for a power distribution system according to claim 1,
    A failure detection method for a power distribution system, wherein the power converter or any active device injects any number of two or more high-frequency currents.
  6.  請求項2に記載の配電システムの故障検知方法であって、
     前記複数の電力供給線の電流値および前記複数の電力供給線が接続されたバスのバス電圧を検出し、
     当該検出した電流値およびバス電圧を、バンドパスフィルタを通過させて前記異なる2つの周波数での電圧値および電流値を抽出し、
     当該抽出した電圧値および電流値に基づいて高周波インピーダンスを算出することを特徴とする配電システムの故障検知方法。
    A failure detection method for a power distribution system according to claim 2,
    detecting a current value of the plurality of power supply lines and a bus voltage of a bus to which the plurality of power supply lines are connected;
    passing the detected current value and bus voltage through a band-pass filter to extract the voltage value and current value at the two different frequencies;
    A failure detection method for a power distribution system, comprising: calculating a high-frequency impedance based on the extracted voltage value and current value.
  7.  請求項1に記載の配電システムの故障検知方法であって、
     中電圧配電網を構成する複数の電力供給線から、故障した電力供給線を識別することを特徴とする配電システムの故障検知方法。
    A failure detection method for a power distribution system according to claim 1,
    A failure detection method for a power distribution system, comprising identifying a failed power supply line from among a plurality of power supply lines forming a medium voltage distribution network.
  8.  請求項1に記載の配電システムの故障検知方法であって、
     任意の種類の接地システムを有する配電網に適用可能であることを特徴とする配電システムの故障検知方法。
    A failure detection method for a power distribution system according to claim 1,
    A failure detection method for a power distribution system, characterized in that it is applicable to power distribution networks having any kind of grounding system.
  9.  請求項2に記載の配電システムの故障検知方法であって、
     前記異なる2つの周波数は、50Hz以上の周波数であることを特徴とする配電システムの故障検知方法。
    A failure detection method for a power distribution system according to claim 2,
    The failure detection method for a power distribution system, wherein the two different frequencies are frequencies of 50 Hz or higher.
  10.  請求項2に記載の配電システムの故障検知方法であって、
     故障前のインピーダンスを使用して前記高周波インピーダンスを正規化することを特徴とする配電システムの故障検知方法。
    A failure detection method for a power distribution system according to claim 2,
    A fault detection method for a distribution system, comprising normalizing the high frequency impedance using a pre-failure impedance.
  11.  請求項1に記載の配電システムの故障検知方法であって、
     前記複数の電力供給線を流れる三相電流の3つの相の高周波インピーダンスを比較することを特徴とする配電システムの故障検知方法。
    A failure detection method for a power distribution system according to claim 1,
    A failure detection method for a power distribution system, comprising comparing high-frequency impedances of three phases of three-phase currents flowing through the plurality of power supply lines.
  12.  複数の電力供給線に複数の高周波電流を注入する電力変換器または任意の能動デバイスと、
     前記複数の電力供給線の電流値および前記複数の電力供給線が接続されたバスのバス電圧を検出するセンサと、を備え、
     前記電力変換器または前記任意の能動デバイスから前記複数の電力供給線に複数の高周波電流を注入し、
     前記センサにより検出した前記電流値および前記バス電圧に基づいて前記複数の電力供給線の高周波インピーダンスを検出し、
     当該検出した高周波インピーダンスに基づいて故障した電力供給線を識別することを特徴とする配電システム。
    a power converter or any active device that injects multiple high frequency currents into multiple power supply lines;
    a sensor that detects the current values of the plurality of power supply lines and the bus voltage of a bus to which the plurality of power supply lines are connected;
    injecting a plurality of high frequency currents into the plurality of power supply lines from the power converter or the optional active device;
    detecting high-frequency impedance of the plurality of power supply lines based on the current value and the bus voltage detected by the sensor;
    A power distribution system, wherein a failed power supply line is identified based on the detected high-frequency impedance.
  13.  請求項12に記載の配電システムであって、
     前記電力変換器または前記任意の能動デバイスから前記複数の電力供給線に異なる2つの周波数の高周波電流を注入し、
     前記異なる2つの周波数での前記複数の電力供給線の高周波インピーダンスを検出し、 当該検出した高周波インピーダンスの前記異なる2つの周波数での高周波インピーダンスの差分を電力供給線毎に算出し、
     当該算出した差分に基づいて故障した電力供給線を識別することを特徴とする配電システム。
    13. The power distribution system of claim 12, comprising:
    injecting high-frequency currents of two different frequencies into the plurality of power supply lines from the power converter or the optional active device;
    detecting high-frequency impedances of the plurality of power supply lines at the two different frequencies, calculating a difference between the detected high-frequency impedances at the two different frequencies for each power supply line,
    A power distribution system, wherein a failed power supply line is identified based on the calculated difference.
  14.  請求項12に記載の配電システムの故障検知方法であって、
     前記電力変換器または前記任意の能動デバイスは、前記複数の高周波電流を同時にまたは順番に注入することを特徴とする配電システム。
    A failure detection method for a power distribution system according to claim 12,
    A power distribution system, wherein said power converter or said optional active device injects said plurality of high frequency currents simultaneously or sequentially.
PCT/JP2022/023249 2021-07-21 2022-06-09 Power distribution system and malfunction detection method for power distribution system WO2023002770A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021120535A JP2023016308A (en) 2021-07-21 2021-07-21 Power distribution system and failure detection method for power distribution system
JP2021-120535 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023002770A1 true WO2023002770A1 (en) 2023-01-26

Family

ID=84979921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023249 WO2023002770A1 (en) 2021-07-21 2022-06-09 Power distribution system and malfunction detection method for power distribution system

Country Status (2)

Country Link
JP (1) JP2023016308A (en)
WO (1) WO2023002770A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288139A (en) * 1996-04-22 1997-11-04 Mitsubishi Denki Bill Techno Service Kk Method and apparatus for detection of ground fault part in electric circuit
US20030085715A1 (en) * 2001-08-15 2003-05-08 David Lubkeman System and method for locating a fault on ungrounded and high-impedance grounded power systems
JP2004045118A (en) * 2002-07-10 2004-02-12 Tokyo Electric Power Co Inc:The Fault point survey method for overhead distribution line
JP2005341757A (en) * 2004-05-28 2005-12-08 Fuji Electric Systems Co Ltd Device for monitoring electrical path grounding state
JP2007279031A (en) * 2006-03-16 2007-10-25 Tokyo Electric Power Co Inc:The Grounding accident point survey device, and grounding accident point survey method using the same
JP2008089528A (en) * 2006-10-05 2008-04-17 Toshiba Corp Abandoned buried cable determination device and method
JP2014010027A (en) * 2012-06-29 2014-01-20 Waseda Univ Position orientation method of temperature changed place of insulation electric wire or cable
US20180241200A1 (en) * 2015-08-25 2018-08-23 Ge Energy Power Conversion Technology Ltd Ground fault protection methods
WO2019111292A1 (en) * 2017-12-04 2019-06-13 東芝三菱電機産業システム株式会社 Power conditioner system, power system comprising same, and fault location method
CN110579685A (en) * 2019-09-12 2019-12-17 国网四川省电力公司电力科学研究院 Method and device for protecting grounding electrode line of extra-high voltage direct current system
JP2020060370A (en) * 2018-10-04 2020-04-16 東京電力ホールディングス株式会社 Survey method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288139A (en) * 1996-04-22 1997-11-04 Mitsubishi Denki Bill Techno Service Kk Method and apparatus for detection of ground fault part in electric circuit
US20030085715A1 (en) * 2001-08-15 2003-05-08 David Lubkeman System and method for locating a fault on ungrounded and high-impedance grounded power systems
JP2004045118A (en) * 2002-07-10 2004-02-12 Tokyo Electric Power Co Inc:The Fault point survey method for overhead distribution line
JP2005341757A (en) * 2004-05-28 2005-12-08 Fuji Electric Systems Co Ltd Device for monitoring electrical path grounding state
JP2007279031A (en) * 2006-03-16 2007-10-25 Tokyo Electric Power Co Inc:The Grounding accident point survey device, and grounding accident point survey method using the same
JP2008089528A (en) * 2006-10-05 2008-04-17 Toshiba Corp Abandoned buried cable determination device and method
JP2014010027A (en) * 2012-06-29 2014-01-20 Waseda Univ Position orientation method of temperature changed place of insulation electric wire or cable
US20180241200A1 (en) * 2015-08-25 2018-08-23 Ge Energy Power Conversion Technology Ltd Ground fault protection methods
WO2019111292A1 (en) * 2017-12-04 2019-06-13 東芝三菱電機産業システム株式会社 Power conditioner system, power system comprising same, and fault location method
JP2020060370A (en) * 2018-10-04 2020-04-16 東京電力ホールディングス株式会社 Survey method
CN110579685A (en) * 2019-09-12 2019-12-17 国网四川省电力公司电力科学研究院 Method and device for protecting grounding electrode line of extra-high voltage direct current system

Also Published As

Publication number Publication date
JP2023016308A (en) 2023-02-02

Similar Documents

Publication Publication Date Title
EP2686691B1 (en) A method for detecting earth faults
KR101028745B1 (en) The Determination and Autonomous Isolation Method of Fault Zone based on Intelligent FRTU in Distribustion System
RU2631025C2 (en) Detection of direction of weakly resistant short circuit to earth of average voltage with help of linear correlation
RU2583452C2 (en) Directed detection of resistive ground fault and rupture of conductor of medium voltage
Ashok et al. MODWT-based fault detection and classification scheme for cross-country and evolving faults
CN108614180B (en) Single-phase earth fault line searching method
CN112534280A (en) System and method for locating faults on a multi-phase electrical network using positive and negative sequence voltage variations
CN111226363B (en) Method and device for identifying fault sections in a multi-terminal hybrid line
CN101436776A (en) Grounding and line selection method for low current grounding system
Garcia-Santander et al. Down-conductor fault detection and location via a voltage based method for radial distribution networks
Loos et al. Fault direction method in compensated network using the zero sequence active energy signal
JP4871511B2 (en) Interrupt insulation measuring device
Esmail et al. Detection and experimental investigation of open conductor and single-phase earth return faults in distribution systems
JP2006200898A5 (en)
Ravaglio et al. Evaluation of lightning-related faults that lead to distribution network outages: An experimental case study
WO2023002770A1 (en) Power distribution system and malfunction detection method for power distribution system
Velayudham et al. Locating ground fault in distribution systems using smart meter
US20230056065A1 (en) Earth fault sectionalizer for electric power distribution network
Burkhardt et al. The" Short-term Isolated Star Point Grounding" to Detect Earth Faults in Compensated Networks–The Concept
US20100097736A1 (en) Method and an apparatus for protecting a bus in a three-phase electrical power system
Selkirk et al. Why neutral-grounding resistors need continuous monitoring
Kokor et al. Effects of neutral point grounding methods on single-phase short circuit fault characteristics
Treider et al. Steady-state, iterative method for locating and clearing permanent high impedance earth faults in compensated networks
Kotulla et al. Measuring of fault distance using the fault locator function of protection relay
Burkhardt et al. The" Short-term Compensation Change" to Detect Earth Faults in Compensated Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE