WO2023002734A1 - Fluid machine - Google Patents

Fluid machine Download PDF

Info

Publication number
WO2023002734A1
WO2023002734A1 PCT/JP2022/018902 JP2022018902W WO2023002734A1 WO 2023002734 A1 WO2023002734 A1 WO 2023002734A1 JP 2022018902 W JP2022018902 W JP 2022018902W WO 2023002734 A1 WO2023002734 A1 WO 2023002734A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottom wall
rotor
fluid machine
wall portion
cylindrical
Prior art date
Application number
PCT/JP2022/018902
Other languages
French (fr)
Japanese (ja)
Inventor
智彦 岩崎
博 齋藤
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2023002734A1 publication Critical patent/WO2023002734A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings

Definitions

  • the present disclosure relates to fluid machinery.
  • a fluid machine has an operating body that sucks and discharges fluid within a housing.
  • Fluid machinery may also include a motor that is housed in a housing and that rotates an operating body.
  • the motor has a stator having a cylindrical stator core fixed to the inner peripheral surface of the housing, and a rotor arranged radially inside the stator.
  • the rotor has a tubular portion having one axial end and the other axial end, a magnetic body fixed to the inner peripheral surface of the tubular portion, and a shaft member fixed to one end of the tubular portion.
  • the shaft member may have an annular plate portion that protrudes radially outward of the stator from the tubular portion.
  • a fluid machine may include a radial bearing that rotatably supports a rotor and a thrust bearing that rotatably supports a plate portion.
  • the shaft member is not fixed to the other end of the tubular portion, and the other end of the tubular portion may be open. In this way, a space may be formed in the other end of the cylindrical portion.
  • the radial bearing is provided radially outside the space, for example.
  • the rotor when an operator assembles a fluid machine having such a rotor, the rotor may be inserted into the radial bearing after fixing the shaft member to one end of the cylindrical portion. At this time, since the shaft member fixed to one end of the cylindrical portion has a plate portion, when an operator inserts the rotor into the radial bearing, the rotor is pulled from the other end of the cylindrical portion. It must be inserted against the radial bearing. Therefore, in order to improve the assembling workability of the fluid machine, it is desirable to make it easier to insert the rotor into the radial bearing from the other end of the cylindrical portion.
  • a fluid machine includes a housing, an operating body that sucks and discharges fluid in the housing, and a motor that is housed in the housing and rotates the operating body.
  • the motor has a stator having a cylindrical stator core fixed to the inner peripheral surface of the housing, a rotor arranged radially inside the stator, and a radial bearing rotatably supporting the rotor.
  • the rotor includes a tubular portion having one axial end and the other axial end, a magnetic body fixed to an inner peripheral surface of the tubular portion, and a shaft member fixed to one end of the tubular portion. have.
  • the shaft member has an annular plate portion that protrudes radially outward from the cylindrical portion.
  • the fluid machine further includes a thrust bearing that rotatably supports the plate portion.
  • a space is formed at the other end of the cylindrical portion.
  • the radial bearing is positioned radially outward of the space.
  • the rotor has a bottom wall portion continuously extending from the other end of the tubular portion.
  • the bottom wall portion extends further inward in the radial direction than the tubular portion.
  • the bottom wall portion partitions the space portion together with the cylindrical portion and the magnetic body.
  • the bottom wall portion has a tapered outer peripheral surface. The outer diameter of the outer peripheral surface decreases with increasing distance from the other end of the cylindrical portion in the axial direction.
  • FIG. 1 is a side cross-sectional view showing a fluid machine according to an embodiment
  • FIG. Sectional drawing which expands and shows a part of fluid machine The front view of a cylinder member. Sectional drawing which expands and shows a part of fluid machine in another embodiment. The front view of a cylinder member. Sectional drawing which expands and shows a part of fluid machine in another another embodiment. The front view of a cylinder member. Sectional drawing which expands and shows a part of fluid machine in another another embodiment.
  • the fluid machine 10 has a tubular housing 11 .
  • Housing 11 includes motor housing 12 , actuator housing 13 , first intermediate housing 16 and second intermediate housing 17 .
  • the motor housing 12, the actuator housing 13, the first intermediate housing 16, and the second intermediate housing 17 are each made of metal material, for example, aluminum.
  • the motor housing 12 has a plate-like end wall 12a and a peripheral wall 12b.
  • the peripheral wall 12b extends cylindrically from the outer peripheral portion of the end wall 12a.
  • the second intermediate housing 17 is connected to the motor housing 12 while closing the opening of the peripheral wall 12b on the side opposite to the end wall 12a.
  • a motor chamber 18 is defined by the end wall 12 a of the motor housing 12 , the peripheral wall 12 b and the second intermediate housing 17 .
  • a suction hole 12h for sucking fluid is formed in a portion of the peripheral wall 12b near the end wall 12a. The suction hole 12h communicates with the motor chamber 18. As shown in FIG. Therefore, fluid is sucked into the motor chamber 18 through the suction hole 12h.
  • a circular shaft insertion hole 17 a is formed in the central portion of the second intermediate housing 17 .
  • the second intermediate housing 17 also has a cylindrical first bearing holding portion 19 .
  • the first bearing holding portion 19 is located in the central portion of the second intermediate housing 17 .
  • the inner side of the first bearing holding portion 19 communicates with the shaft insertion hole 17a.
  • the central axis of the first bearing holding portion 19 and the central axis of the shaft insertion hole 17a coincide with each other.
  • a first radial bearing 20 is held in the first bearing holding portion 19 .
  • the end wall 12a of the motor housing 12 has a cylindrical second bearing holding portion 21. As shown in FIG.
  • the second bearing holding portion 21 is located in the central portion of the end wall 12 a of the motor housing 12 .
  • the central axis of the first bearing holding portion 19 and the central axis of the second bearing holding portion 21 are aligned.
  • a second radial bearing 22 is held in the second bearing holding portion 21 .
  • a first chamber-forming concave portion 17b is formed on the outer surface of the second intermediate housing 17 on the side opposite to the motor chamber 18 .
  • the first chamber forming recess 17b communicates with the shaft insertion hole 17a.
  • the second intermediate housing 17 has a plurality of through holes 23 .
  • Each through hole 23 is located at a portion near the outer periphery of the second intermediate housing 17 .
  • Each through hole 23 extends through the second intermediate housing 17 .
  • the through hole 23 communicates the motor chamber 18 and the first chamber-forming concave portion 17b.
  • the first intermediate housing 16 is connected to the second intermediate housing 17.
  • the first intermediate housing 16 is connected to the second intermediate housing 17 so as to block the opening of the first chamber forming recess 17b.
  • a thrust bearing accommodating chamber 25 is defined by the first intermediate housing 16 and the first chamber-forming concave portion 17 b of the second intermediate housing 17 .
  • a circular shaft insertion hole 16 a is formed in the central portion of the first intermediate housing 16 .
  • the first intermediate housing 16 has a plurality of through holes 16b. Each through-hole 16 b is located at a portion near the outer periphery of the first intermediate housing 16 . Each through hole 16b penetrates through the first intermediate housing 16 .
  • a second chamber-forming concave portion 16 c is formed on the outer surface of the first intermediate housing 16 on the side opposite to the thrust bearing accommodating chamber 25 .
  • the second chamber forming recess 16c communicates with the shaft insertion hole 16a.
  • Each through hole 16b communicates the thrust bearing housing chamber 25 with the second chamber forming recess 16c.
  • the actuator housing 13 is connected to the first intermediate housing 16 .
  • the operating body housing 13 has a discharge hole 13h for discharging fluid. 13 h of discharge holes discharge the fluid from the actuator housing 13. As shown in FIG.
  • the fluid machine 10 has a motor 40 .
  • a motor 40 is housed in the motor chamber 18 .
  • the motor 40 has a stator 41 and a rotor 42 .
  • the stator 41 is fixed to the peripheral wall 12b of the motor housing 12.
  • the stator 41 has a cylindrical stator core 43 and coils 44 .
  • the stator core 43 is fixed to the inner peripheral surface 121b of the peripheral wall 12b of the motor housing 12.
  • Coil 44 is wound around stator core 43 .
  • the motor 40 has a coil end 44e. The coil ends 44e are part of the coil 44 and protrude from the first end surface 43a and the second end surface 43b of the stator core 43, respectively.
  • the rotor 42 has a tubular member 46 , a permanent magnet 47 that is a magnetic material, and a shaft member 48 .
  • the cylindrical member 46 is made of stainless steel, for example.
  • the cylindrical member 46 is made of SUS316, for example.
  • the cylindrical member 46 has a cylindrical cylindrical portion 49 . Therefore, the rotor 42 has a tubular portion 49 .
  • the permanent magnet 47 has a solid cylindrical shape.
  • the permanent magnet 47 is press-fitted into the inner peripheral surface 491 of the cylindrical portion 49 . Thereby, the permanent magnet 47 is fixed to the inner peripheral surface 491 of the cylindrical portion 49 .
  • the axis of the permanent magnet 47 coincides with the axis of the tubular portion 49 .
  • the axial length of the permanent magnet 47 is shorter than the axial length of the cylindrical portion 49 .
  • a first end surface 47a and a second end surface 47b in the axial direction of the permanent magnet 47 are flat surfaces.
  • the first end surface 47a and the second end surface 47b extend in a direction orthogonal to the axial direction.
  • the permanent magnets 47 are magnetized in the radial direction of the permanent magnets 47 .
  • the first end surface 47a of the permanent magnet 47 is located inside the inner peripheral surface 491 of the cylindrical portion 49. Accordingly, one axial end 49 a of the cylindrical portion 49 protrudes from the first end face 47 a of the permanent magnet 47 .
  • a second end surface 47 b of the permanent magnet 47 is located inside the inner peripheral surface 491 of the cylindrical portion 49 . Therefore, the other axial end portion 49 b of the cylindrical portion 49 protrudes from the second end surface 47 b of the permanent magnet 47 .
  • the axial length of the cylindrical portion 49 is longer than the axial length of the stator core 43 .
  • One end portion 49 a of the cylindrical portion 49 protrudes from the first end surface 43 a of the stator core 43 .
  • the other end portion 49b of the tubular portion 49 protrudes from the second end surface 43b of the stator core 43 .
  • the rotor 42 is arranged radially inside the stator 41 .
  • the shaft member 48 is provided at one end portion 49 a of the tubular portion 49 .
  • the shaft member 48 is made of iron.
  • the shaft member 48 has a press-fit portion 48a, a flange portion 48b, a shaft portion 48c, and a plate portion 48d.
  • the press-fit portion 48a has a cylindrical shape.
  • the press-fitting portion 48 a is press-fitted into one end portion 49 a of the tubular portion 49 . Therefore, the shaft member 48 is fixed to one end portion 49 a of the tubular portion 49 .
  • the axis of the shaft member 48 coincides with the axis of the permanent magnet 47 .
  • the flange portion 48b is cylindrical.
  • the flange portion 48b is continuous with the end portion of the press-fitting portion 48a on the side opposite to the permanent magnet 47 .
  • the outer diameter of the flange portion 48b is larger than the outer diameter of the press-fitting portion 48a.
  • the shaft portion 48c is cylindrical.
  • the shaft portion 48c is continuous with the end portion of the flange portion 48b opposite to the permanent magnet 47 .
  • the outer diameter of the shaft portion 48c is smaller than the outer diameter of the flange portion 48b.
  • the plate portion 48d is arranged in the thrust bearing housing chamber 25.
  • the plate portion 48d protrudes in an annular shape from the outer peripheral surface 480b of the flange portion 48b.
  • the outer diameter of the plate portion 48 d is larger than the outer diameter of the cylinder portion 49 . Therefore, the plate portion 48 d protrudes radially outward from the cylindrical portion 49 .
  • the plate portion 48d is rotatable integrally with the flange portion 48b.
  • the cylindrical member 46 has a bottom wall portion 50.
  • the rotor 42 further has a bottom wall portion 50 .
  • the bottom wall portion 50 extends continuously from the other end portion 49 b of the tubular portion 49 . Therefore, the bottom wall portion 50 is integrated with the tubular portion 49 .
  • the bottom wall portion 50 is integrally formed with the tubular portion 49 . Therefore, the bottom wall portion 50 is made of stainless steel.
  • the bottom wall portion 50 is made of SUS316.
  • the bottom wall portion 50 is substantially disc-shaped.
  • the bottom wall portion 50 has an inner end surface 501 and an outer end surface 502 .
  • the inner end face 501 faces the second end face 47 b of the permanent magnet 47 .
  • the bottom wall portion 50 has an outer peripheral surface 500 .
  • the outer peripheral surface 500 is flat.
  • the outer peripheral surface 500 is tapered.
  • the outer diameter of the outer peripheral surface 500 decreases with distance from the other end 49b of the cylindrical portion 49 in the axial direction. Therefore, the bottom wall portion 50 extends radially inward of the tubular portion 49 from the tubular portion 49 .
  • the outer peripheral surface 500 extends along the entire circumference of the cylindrical portion 49 . Therefore, the bottom wall portion 50 extends over the entire circumference of the tubular portion 49 in the circumferential direction.
  • the thickness T1 of the bottom wall portion 50 is thicker than the thickness T2 of the tubular portion 49 .
  • the bottom wall portion 50 is formed in the cylindrical member 46 by forming the cylindrical member 46 by deep drawing.
  • a space portion S1 is formed in the other end portion 49b of the cylindrical portion 49. As shown in FIG.
  • the space S ⁇ b>1 is defined by the inner peripheral surface 491 of the tubular portion 49 , the second end surface 47 b of the permanent magnet 47 , and the inner end surface 501 of the bottom wall portion 50 . Therefore, the bottom wall portion 50 extends radially inward of the tubular portion 49 from the tubular portion 49 .
  • the bottom wall portion 50 defines a space portion S1 together with the cylindrical portion 49 and the permanent magnets 47 . In this embodiment, the bottom wall portion 50 closes the space S1.
  • the first radial bearing 20 rotatably supports one end portion 49a of the cylindrical portion 49.
  • the second radial bearing 22 rotatably supports the other end portion 49b of the tubular portion 49 .
  • the first radial bearing 20 and the second radial bearing 22 are gas bearings. It supports the tubular portion 49 while in contact with the portion 49 . Then, when the rotation speed of the rotor 42 reaches the floating rotation speed, dynamic pressure generated between the tubular portion 49 and the first radial bearing 20 and between the tubular portion 49 and the second radial bearing 22 causes the tubular portion 49 to move.
  • the cylindrical portion 49 is rotatably supported in a non-contact state with respect to the first radial bearing 20 and the second radial bearing 22 . Therefore, the first radial bearing 20 and the second radial bearing 22 rotatably support the rotor 42 .
  • the second radial bearing 22 is provided radially outside the space S1. Therefore, the second radial bearing 22 is a radial bearing that rotatably supports the rotor 42 and is provided radially outside the space S1.
  • Thrust bearings 51 which are gas bearings, are arranged between the first intermediate housing 16 and the plate portion 48d and between the second intermediate housing 17 and the plate portion 48d.
  • the plate portion 48 d rotates with the rotation of the rotor 42 , dynamic pressure is generated between the plate portion 48 d and both thrust bearings 51 .
  • the plate portion 48 d is floated with respect to the thrust bearings 51 by the thrust bearings 51 , and the rotor 42 is rotatably supported without contact with the thrust bearings 51 .
  • the fluid machine 10 includes an operating body A1.
  • the actuator A ⁇ b>1 is housed in the actuator housing 13 .
  • the actuator A ⁇ b>1 is connected to a shaft member 48 inserted through the actuator housing 13 .
  • the fluid is sucked into the motor chamber 18 through the suction hole 12h.
  • the fluid sucked into the motor chamber 18 passes through the through holes 23 , the thrust bearing housing chamber 25 , the through holes 16 b , and the second chamber forming recess 16 c and is sucked into the actuator housing 13 .
  • Fluid is discharged from the actuator housing 13 through the discharge hole 13h by the rotation of the actuator A1. Accordingly, the working body A1 draws and discharges fluid within the housing 11 .
  • the operator fixes the shaft member 48 to the one end portion 49 a of the cylindrical portion 49 and then attaches the rotor 42 to the first radial bearing 20 . , the inside of the stator core 43 and the second radial bearing 22 .
  • the shaft member 48 fixed to the one end portion 49a of the cylindrical portion 49 has a plate portion 48d. Therefore, when an operator inserts the rotor 42 into the first radial bearing 20 , the inside of the stator core 43 , and the second radial bearing 22 , the operator inserts the rotor 42 from the other end 49 b of the cylindrical portion 49 . should be inserted into the first radial bearing 20 , the inside of the stator core 43 and the second radial bearing 22 .
  • the bottom wall portion 50 has a tapered outer peripheral surface 500, and the outer diameter of the outer peripheral surface 500 becomes smaller as the distance from the other end portion 49b of the tubular portion 49 in the axial direction of the tubular portion 49 increases. . That is, the end portion of the rotor 42 corresponding to the other end portion 49b of the tubular portion 49 is tapered. Therefore, the operator can easily insert the rotor 42 into the first radial bearing 20 , the inside of the stator core 43 , and the second radial bearing 22 from the end corresponding to the other end 49 b of the cylindrical portion 49 . As a result, the assembling workability of the fluid machine 10 is improved.
  • the rotor 42 has a bottom wall portion 50 . According to this, the strength of the other end portion 49b of the tubular portion 49 can be improved as compared with the case where the rotor 42 does not have the bottom wall portion 50 . Therefore, for example, even if the other end portion 49b of the tubular portion 49 receives a radial load, the other end portion 49b of the tubular portion 49 is less likely to deform, so the durability of the rotor 42 can be improved.
  • the bottom wall portion 50 has a tapered outer peripheral surface 500 , and the outer diameter of the outer peripheral surface 500 decreases as the distance from the other end portion 49 b of the tubular portion 49 in the axial direction of the tubular portion 49 increases. That is, the end portion of the rotor 42 corresponding to the other end portion 49b of the tubular portion 49 is tapered. Therefore, the operator can easily insert the rotor 42 into the second radial bearing 22 from the end corresponding to the other end 49 b of the cylindrical portion 49 . As a result, workability of assembling the fluid machine 10 can be improved. As described above, it is possible to improve the assembling workability while improving the durability of the rotor 42 .
  • the bottom wall portion 50 extends over the entire circumference of the cylinder portion 49 in the circumferential direction. According to this, the strength of the other end portion 49b of the tubular portion 49 can be further improved compared to the case where the bottom wall portion 50 extends only in a part of the tubular portion 49 in the circumferential direction. Therefore, since the other end portion 49b of the cylindrical portion 49 is more difficult to deform, the durability of the rotor 42 can be further improved.
  • the thickness T1 of the bottom wall portion 50 is thicker than the thickness T2 of the tubular portion 49 . According to this, the strength of the bottom wall portion 50 can be improved compared to the case where the thickness T1 of the bottom wall portion 50 is equal to or less than the thickness T2 of the tubular portion 49 . As a result, the other end portion 49b of the cylindrical portion 49 is more difficult to deform, so the durability of the rotor 42 can be further improved. In addition, the thinner the thickness T2 of the cylindrical portion 49, the more the eddy current loss generated in the cylindrical portion 49 can be reduced, so the motor efficiency can be improved.
  • the bottom wall portion 50 closes the space portion S1. According to this, the strength of the bottom wall portion 50 can be improved compared to the case where the bottom wall portion 50 does not block the space portion S1. As a result, the other end portion 49b of the cylindrical portion 49 is more difficult to deform, so the durability of the rotor 42 can be further improved.
  • the bottom wall portion 50 is formed in the cylindrical member 46 by forming the cylindrical member 46 by deep drawing. According to this, for example, the manufacturing process can be simplified as compared with the case where the bottom wall portion 50 which is separate from the tubular portion 49 is welded to the other end portion 49b of the tubular portion 49 . Further, since the cylindrical member 46 is formed by deep drawing, the strength of the other end portion 49b of the cylindrical portion 49 can be improved by work hardening of the material.
  • the bottom wall portion 60 may be formed by bending the other end portion 49 b of the tubular member 46 radially inwardly of the tubular portion 49 . At this time, the bottom wall portion 60 does not block the space portion S1.
  • the other end portion 49b of the tubular portion 49 before being bent is illustrated by a chain double-dashed line.
  • the bottom wall portion 60 extends over the entire circumference of the cylinder portion 49 in the circumferential direction.
  • the bottom wall portion 60 has an outer peripheral surface 600 .
  • the outer peripheral surface 600 is tapered.
  • the outer peripheral surface 600 has an outer diameter smaller than that of the other end portion 49 b of the tubular portion 49 , and the outer diameter decreases with distance from the other end portion 49 b of the tubular portion 49 in the axial direction of the tubular portion 49 . Therefore, the end portion of the rotor 42 corresponding to the other end portion 49b of the tubular portion 49 is tapered.
  • the bottom wall portion 50 may have a communication hole 50h for introducing fluid into the space portion S1.
  • the communication hole 50h introduces part of the fluid sucked into the motor chamber 18 from the suction hole 12h into the space S1. According to this, the permanent magnet 47 is cooled by the fluid introduced into the space S1 through the communication hole 50h. Therefore, durability of the rotor 42 can be further improved.
  • the communication hole 50h does not have to introduce part of the fluid sucked into the motor chamber 18 from the suction hole 12h into the space S1.
  • a cooling channel may be connected to the communication hole 50h.
  • the bottom wall portion 50 may be positioned radially inside the second radial bearing 22 .
  • the bottom wall portion 50 is located radially inside the second radial bearing 22 .
  • the axial direction of the cylindrical portion 49 is reduced. shorter in length. As a result, a decrease in the primary resonance rotational speed of the rotor 42 can be suppressed.
  • the bottom wall portion 50 is inclined to the inner peripheral surface 220 of the second radial bearing 22 . Don't hit the corner.
  • the bottom wall portion 50 may extend only in a part of the cylindrical portion 49 in the circumferential direction. O In the embodiment, the thickness T1 of the bottom wall portion 50 may be equal to the thickness T2 of the tubular portion 49 .
  • the thickness T1 of the bottom wall portion 50 may be thinner than the thickness T2 of the tubular portion 49 .
  • bottom wall part 50 may be formed by ironing.
  • the cylinder part 49 and the bottom wall part 50 may be formed with the austenitic stainless steel like SUS304, for example.
  • the bottom wall part 50 of the cylinder part 49 may be partially notched in order to reduce the unbalance amount of the rotor 42.
  • the outer peripheral surface 500 of the bottom wall portion 50 may be curved, for example.
  • the bottom wall portion 50 has a tapered outer peripheral surface, and the outer peripheral surface has an outer diameter smaller than that of the other end portion 49b of the tubular portion 49. It is only necessary that the outer diameter becomes smaller as it is spaced apart in the axial direction of 49 .
  • the operating body A1 may be attached to the bottom wall portion 50 .
  • the fluid machine 10 may not be mounted on an automobile, and may be used for other purposes.
  • a magnetic body such as a laminated core, an amorphous core, or a dust core may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Motor Or Generator Frames (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Compressor (AREA)

Abstract

A fluid machine (10) comprises a housing (11), an operating body (A1), and a motor (40). The motor (40) includes a stator (41), a rotor (42), and radial bearings (20, 22). The rotor (42) includes a tubular portion (49) having one end portion and an other end portion, a magnetic body (47), and a shaft member (48). A space portion (S1) is formed inside the other end portion (49b) of the tubular portion (49). The radial bearings (20, 22) are positioned on the radially outer side of the space portion (S1). The rotor (42) has a bottom wall portion (50). The bottom wall portion (50) defines the space portion (S1) in conjunction with the tubular portion (49) and the magnetic body (47). An outer diameter of an outer circumferential surface (500) of the bottom wall portion decreases with increasing separation, in the axial direction, from the other end portion (49b) of the tubular portion (49).

Description

流体機械Fluid machinery
 本開示は、流体機械に関する。 The present disclosure relates to fluid machinery.
 流体機械は、ハウジング内にて流体を吸入して吐出する作動体を備えている。また、流体機械は、ハウジングに収容されるとともに作動体を回転させるモータを備えている場合がある。モータは、ハウジングの内周面に固定される筒状のステータコアを有するステータと、ステータの径方向内側に配置されるロータと、を有している。ロータは、軸方向の一端部と他端部とを有する筒部と、筒部の内周面に固定された磁性体と、筒部の一端部に固定された軸部材と、を有している場合がある。軸部材は、筒部よりもステータの径方向外側に突出する環状のプレート部を有している場合がある。そして、流体機械は、ロータを回転可能に支持するラジアル軸受と、プレート部を回転可能に支持するスラスト軸受と、を備えている場合がある。また、例えば特許文献1に開示されているロータのように、筒部の他端部には軸部材が固定されておらず、筒部の他端部が開口している場合がある。このように、筒部の他端部内に空間部が形成されている場合がある。このような場合、ラジアル軸受は、例えば、空間部の径方向外側に設けられている。 A fluid machine has an operating body that sucks and discharges fluid within a housing. Fluid machinery may also include a motor that is housed in a housing and that rotates an operating body. The motor has a stator having a cylindrical stator core fixed to the inner peripheral surface of the housing, and a rotor arranged radially inside the stator. The rotor has a tubular portion having one axial end and the other axial end, a magnetic body fixed to the inner peripheral surface of the tubular portion, and a shaft member fixed to one end of the tubular portion. There are cases. The shaft member may have an annular plate portion that protrudes radially outward of the stator from the tubular portion. A fluid machine may include a radial bearing that rotatably supports a rotor and a thrust bearing that rotatably supports a plate portion. Further, for example, as in the rotor disclosed in Patent Document 1, the shaft member is not fixed to the other end of the tubular portion, and the other end of the tubular portion may be open. In this way, a space may be formed in the other end of the cylindrical portion. In such a case, the radial bearing is provided radially outside the space, for example.
特開2002-142393号公報JP-A-2002-142393
 特許文献1のように、筒部の一端部に軸部材が固定されており、筒部の他端部が開口している場合、筒部の他端部の強度は、筒部の一端部の強度よりも低い。そのため、筒部の他端部がラジアル荷重を受けた際に筒部の他端部が変形し易く、ロータの耐久性が低下する虞がある。 When the shaft member is fixed to one end of the tubular portion and the other end of the tubular portion is open as in Patent Document 1, the strength of the other end of the tubular portion is the same as that of the one end of the tubular portion. lower than strength. Therefore, when the other end portion of the tubular portion receives a radial load, the other end portion of the tubular portion is likely to be deformed, which may reduce the durability of the rotor.
 また、作業者がこのようなロータを備えた流体機械を組み付ける際には、筒部の一端部に軸部材を固定した後に、ロータをラジアル軸受に対して挿入する場合がある。このとき、筒部の一端部に固定された軸部材は、プレート部を有しているため、作業者がロータをラジアル軸受に対して挿入する際には、筒部の他端部からロータをラジアル軸受に対して挿入する必要がある。したがって、流体機械の組み付け作業性を向上させるためには、筒部の他端部からロータをラジアル軸受に対して挿入し易くすることが望まれる。 Further, when an operator assembles a fluid machine having such a rotor, the rotor may be inserted into the radial bearing after fixing the shaft member to one end of the cylindrical portion. At this time, since the shaft member fixed to one end of the cylindrical portion has a plate portion, when an operator inserts the rotor into the radial bearing, the rotor is pulled from the other end of the cylindrical portion. It must be inserted against the radial bearing. Therefore, in order to improve the assembling workability of the fluid machine, it is desirable to make it easier to insert the rotor into the radial bearing from the other end of the cylindrical portion.
 本開示の一態様に係る流体機械は、ハウジングと、前記ハウジング内にて流体を吸入して吐出する作動体と、前記ハウジングに収容されるとともに前記作動体を回転させるモータと、を備える。前記モータは、前記ハウジングの内周面に固定される筒状のステータコアを有するステータと、前記ステータの径方向内側に配置されるロータと、前記ロータを回転可能に支持するラジアル軸受と、を有する。前記ロータは、軸方向の一端部と他端部とを有する筒部と、前記筒部の内周面に固定された磁性体と、前記筒部の一端部に固定された軸部材と、を有する。前記軸部材は、前記筒部よりも前記径方向外側に突出する環状のプレート部を有する。前記流体機械は、前記プレート部を回転可能に支持するスラスト軸受をさらに備える。前記筒部の他端部には、空間部が形成されている。前記ラジアル軸受は、前記空間部の径方向外側に位置している。前記ロータは、前記筒部の他端部から連続して延在する底壁部を有する。該底壁部は、前記筒部よりも前記径方向内側に向かって延在している。前記底壁部は、前記筒部及び前記磁性体と共に前記空間部を区画する。前記底壁部は、テーパ状の外周面を有する。前記外周面は、前記筒部の他端部から前記軸方向に離間するにつれて外径が小さくなっている。 A fluid machine according to an aspect of the present disclosure includes a housing, an operating body that sucks and discharges fluid in the housing, and a motor that is housed in the housing and rotates the operating body. The motor has a stator having a cylindrical stator core fixed to the inner peripheral surface of the housing, a rotor arranged radially inside the stator, and a radial bearing rotatably supporting the rotor. . The rotor includes a tubular portion having one axial end and the other axial end, a magnetic body fixed to an inner peripheral surface of the tubular portion, and a shaft member fixed to one end of the tubular portion. have. The shaft member has an annular plate portion that protrudes radially outward from the cylindrical portion. The fluid machine further includes a thrust bearing that rotatably supports the plate portion. A space is formed at the other end of the cylindrical portion. The radial bearing is positioned radially outward of the space. The rotor has a bottom wall portion continuously extending from the other end of the tubular portion. The bottom wall portion extends further inward in the radial direction than the tubular portion. The bottom wall portion partitions the space portion together with the cylindrical portion and the magnetic body. The bottom wall portion has a tapered outer peripheral surface. The outer diameter of the outer peripheral surface decreases with increasing distance from the other end of the cylindrical portion in the axial direction.
実施形態における流体機械を示す側断面図。1 is a side cross-sectional view showing a fluid machine according to an embodiment; FIG. 流体機械の一部分を拡大して示す断面図。Sectional drawing which expands and shows a part of fluid machine. 筒部材の正面図。The front view of a cylinder member. 別の実施形態における流体機械の一部分を拡大して示す断面図。Sectional drawing which expands and shows a part of fluid machine in another embodiment. 筒部材の正面図。The front view of a cylinder member. もう一つの別の実施形態における流体機械の一部分を拡大して示す断面図。Sectional drawing which expands and shows a part of fluid machine in another another embodiment. 筒部材の正面図。The front view of a cylinder member. さらにもう一つの別の実施形態における流体機械の一部分を拡大して示す断面図。Sectional drawing which expands and shows a part of fluid machine in another another embodiment.
 以下、流体機械の一実施形態を図1~図3にしたがって説明する。
 <流体機械10の全体構成>
 図1に示すように、流体機械10は、筒状のハウジング11を備えている。ハウジング11は、モータハウジング12、作動体ハウジング13、第1中間ハウジング16、及び第2中間ハウジング17を有している。モータハウジング12、作動体ハウジング13、第1中間ハウジング16、及び第2中間ハウジング17は、それぞれ金属材料製であり、例えば、アルミニウム製である。
An embodiment of the fluid machine will be described below with reference to FIGS. 1 to 3. FIG.
<Overall Configuration of Fluid Machine 10>
As shown in FIG. 1, the fluid machine 10 has a tubular housing 11 . Housing 11 includes motor housing 12 , actuator housing 13 , first intermediate housing 16 and second intermediate housing 17 . The motor housing 12, the actuator housing 13, the first intermediate housing 16, and the second intermediate housing 17 are each made of metal material, for example, aluminum.
 モータハウジング12は、板状の端壁12aと、周壁12bと、を有している。周壁12bは、端壁12aの外周部から筒状に延びている。
 第2中間ハウジング17は、周壁12bにおける端壁12aとは反対側の開口を閉塞した状態で、モータハウジング12に連結されている。そして、モータハウジング12の端壁12a、周壁12b、及び第2中間ハウジング17によって、モータ室18が区画されている。周壁12bにおける端壁12a寄りの部位には、流体を吸入する吸入孔12hが形成されている。吸入孔12hは、モータ室18に連通している。したがって、モータ室18には、吸入孔12hを介して流体が吸入される。
The motor housing 12 has a plate-like end wall 12a and a peripheral wall 12b. The peripheral wall 12b extends cylindrically from the outer peripheral portion of the end wall 12a.
The second intermediate housing 17 is connected to the motor housing 12 while closing the opening of the peripheral wall 12b on the side opposite to the end wall 12a. A motor chamber 18 is defined by the end wall 12 a of the motor housing 12 , the peripheral wall 12 b and the second intermediate housing 17 . A suction hole 12h for sucking fluid is formed in a portion of the peripheral wall 12b near the end wall 12a. The suction hole 12h communicates with the motor chamber 18. As shown in FIG. Therefore, fluid is sucked into the motor chamber 18 through the suction hole 12h.
 第2中間ハウジング17の中央部には、円孔状のシャフト挿通孔17aが形成されている。また、第2中間ハウジング17は、円筒状の第1軸受保持部19を有している。第1軸受保持部19は、第2中間ハウジング17の中央部に位置している。第1軸受保持部19の内側は、シャフト挿通孔17aに連通している。第1軸受保持部19の中心軸線とシャフト挿通孔17aの中心軸線とは互いに一致している。第1軸受保持部19には、第1ラジアル軸受20が保持されている。 A circular shaft insertion hole 17 a is formed in the central portion of the second intermediate housing 17 . The second intermediate housing 17 also has a cylindrical first bearing holding portion 19 . The first bearing holding portion 19 is located in the central portion of the second intermediate housing 17 . The inner side of the first bearing holding portion 19 communicates with the shaft insertion hole 17a. The central axis of the first bearing holding portion 19 and the central axis of the shaft insertion hole 17a coincide with each other. A first radial bearing 20 is held in the first bearing holding portion 19 .
 また、モータハウジング12の端壁12aは、円筒状の第2軸受保持部21を有している。第2軸受保持部21は、モータハウジング12の端壁12aの中央部に位置している。第1軸受保持部19の中心軸線と第2軸受保持部21の中心軸線とは一致している。第2軸受保持部21には、第2ラジアル軸受22が保持されている。 In addition, the end wall 12a of the motor housing 12 has a cylindrical second bearing holding portion 21. As shown in FIG. The second bearing holding portion 21 is located in the central portion of the end wall 12 a of the motor housing 12 . The central axis of the first bearing holding portion 19 and the central axis of the second bearing holding portion 21 are aligned. A second radial bearing 22 is held in the second bearing holding portion 21 .
 第2中間ハウジング17におけるモータ室18とは反対側の外面には、第1室形成凹部17bが形成されている。第1室形成凹部17bは、シャフト挿通孔17aに連通している。また、第2中間ハウジング17は、複数の貫通孔23を有している。各貫通孔23は、第2中間ハウジング17の外周寄りの部位に位置している。各貫通孔23は、第2中間ハウジング17を貫通している。貫通孔23は、モータ室18と第1室形成凹部17bとを連通している。 A first chamber-forming concave portion 17b is formed on the outer surface of the second intermediate housing 17 on the side opposite to the motor chamber 18 . The first chamber forming recess 17b communicates with the shaft insertion hole 17a. Also, the second intermediate housing 17 has a plurality of through holes 23 . Each through hole 23 is located at a portion near the outer periphery of the second intermediate housing 17 . Each through hole 23 extends through the second intermediate housing 17 . The through hole 23 communicates the motor chamber 18 and the first chamber-forming concave portion 17b.
 第1中間ハウジング16は、第2中間ハウジング17に連結されている。第1中間ハウジング16は、第1室形成凹部17bの開口を閉塞するように第2中間ハウジング17に連結されている。第1中間ハウジング16と第2中間ハウジング17の第1室形成凹部17bとによって、スラスト軸受収容室25が区画されている。第1中間ハウジング16の中央部には、円孔状のシャフト挿通孔16aが形成されている。 The first intermediate housing 16 is connected to the second intermediate housing 17. The first intermediate housing 16 is connected to the second intermediate housing 17 so as to block the opening of the first chamber forming recess 17b. A thrust bearing accommodating chamber 25 is defined by the first intermediate housing 16 and the first chamber-forming concave portion 17 b of the second intermediate housing 17 . A circular shaft insertion hole 16 a is formed in the central portion of the first intermediate housing 16 .
 第1中間ハウジング16は、複数の貫通孔16bを有している。各貫通孔16bは、第1中間ハウジング16の外周寄りの部位に位置している。各貫通孔16bは、第1中間ハウジング16を貫通している。第1中間ハウジング16におけるスラスト軸受収容室25とは反対側の外面には、第2室形成凹部16cが形成されている。第2室形成凹部16cは、シャフト挿通孔16aに連通している。各貫通孔16bは、スラスト軸受収容室25と第2室形成凹部16cとを連通している。 The first intermediate housing 16 has a plurality of through holes 16b. Each through-hole 16 b is located at a portion near the outer periphery of the first intermediate housing 16 . Each through hole 16b penetrates through the first intermediate housing 16 . A second chamber-forming concave portion 16 c is formed on the outer surface of the first intermediate housing 16 on the side opposite to the thrust bearing accommodating chamber 25 . The second chamber forming recess 16c communicates with the shaft insertion hole 16a. Each through hole 16b communicates the thrust bearing housing chamber 25 with the second chamber forming recess 16c.
 作動体ハウジング13は、第1中間ハウジング16に連結されている。作動体ハウジング13は、流体を吐出する吐出孔13hを有している。吐出孔13hは、作動体ハウジング13から流体を吐出する。 The actuator housing 13 is connected to the first intermediate housing 16 . The operating body housing 13 has a discharge hole 13h for discharging fluid. 13 h of discharge holes discharge the fluid from the actuator housing 13. As shown in FIG.
 <モータ40の構成>
 流体機械10は、モータ40を備えている。モータ40は、モータ室18に収容されている。モータ40は、ステータ41と、ロータ42と、を有している。ステータ41は、モータハウジング12の周壁12bに固定されている。ステータ41は、筒状のステータコア43と、コイル44と、を有している。ステータコア43は、モータハウジング12の周壁12bの内周面121bに固定されている。コイル44は、ステータコア43に巻回されている。モータ40は、コイルエンド44eを有している。コイルエンド44eは、コイル44の一部であるとともにステータコア43の第1端面43a及び第2端面43bからそれぞれ突出している。
<Configuration of Motor 40>
The fluid machine 10 has a motor 40 . A motor 40 is housed in the motor chamber 18 . The motor 40 has a stator 41 and a rotor 42 . The stator 41 is fixed to the peripheral wall 12b of the motor housing 12. As shown in FIG. The stator 41 has a cylindrical stator core 43 and coils 44 . The stator core 43 is fixed to the inner peripheral surface 121b of the peripheral wall 12b of the motor housing 12. As shown in FIG. Coil 44 is wound around stator core 43 . The motor 40 has a coil end 44e. The coil ends 44e are part of the coil 44 and protrude from the first end surface 43a and the second end surface 43b of the stator core 43, respectively.
 <ロータ42の構成>
 ロータ42は、筒部材46と、磁性体である永久磁石47と、軸部材48と、を有している。筒部材46は、例えば、ステンレス鋼により形成されている。筒部材46は、例えば、SUS316により形成されている。筒部材46は、円筒状の筒部49を有している。したがって、ロータ42は、筒部49を有している。
<Configuration of Rotor 42>
The rotor 42 has a tubular member 46 , a permanent magnet 47 that is a magnetic material, and a shaft member 48 . The cylindrical member 46 is made of stainless steel, for example. The cylindrical member 46 is made of SUS316, for example. The cylindrical member 46 has a cylindrical cylindrical portion 49 . Therefore, the rotor 42 has a tubular portion 49 .
 永久磁石47は、中実円柱状である。永久磁石47は、筒部49の内周面491に圧入されている。これにより、永久磁石47は、筒部49の内周面491に固定されている。永久磁石47の軸心は、筒部49の軸心と一致している。永久磁石47における軸方向の長さは、筒部49における軸方向の長さよりも短い。永久磁石47の軸方向における第1端面47aと第2端面47bとは、平坦面状である。第1端面47aと第2端面47bとは、軸方向に対して直交する方向に延びている。永久磁石47は、永久磁石47の径方向に着磁されている。 The permanent magnet 47 has a solid cylindrical shape. The permanent magnet 47 is press-fitted into the inner peripheral surface 491 of the cylindrical portion 49 . Thereby, the permanent magnet 47 is fixed to the inner peripheral surface 491 of the cylindrical portion 49 . The axis of the permanent magnet 47 coincides with the axis of the tubular portion 49 . The axial length of the permanent magnet 47 is shorter than the axial length of the cylindrical portion 49 . A first end surface 47a and a second end surface 47b in the axial direction of the permanent magnet 47 are flat surfaces. The first end surface 47a and the second end surface 47b extend in a direction orthogonal to the axial direction. The permanent magnets 47 are magnetized in the radial direction of the permanent magnets 47 .
 永久磁石47の第1端面47aは、筒部49の内周面491の内側に位置している。よって、筒部49の軸方向の一端部49aは、永久磁石47の第1端面47aから突出している。永久磁石47の第2端面47bは、筒部49の内周面491の内側に位置している。よって、筒部49の軸方向の他端部49bは、永久磁石47の第2端面47bから突出している。 The first end surface 47a of the permanent magnet 47 is located inside the inner peripheral surface 491 of the cylindrical portion 49. Accordingly, one axial end 49 a of the cylindrical portion 49 protrudes from the first end face 47 a of the permanent magnet 47 . A second end surface 47 b of the permanent magnet 47 is located inside the inner peripheral surface 491 of the cylindrical portion 49 . Therefore, the other axial end portion 49 b of the cylindrical portion 49 protrudes from the second end surface 47 b of the permanent magnet 47 .
 筒部49の軸方向の長さは、ステータコア43の軸方向の長さよりも長い。筒部49の一端部49aは、ステータコア43の第1端面43aに対して突出している。筒部49の他端部49bは、ステータコア43の第2端面43bに対して突出している。ロータ42は、ステータ41の径方向内側に配置されている。 The axial length of the cylindrical portion 49 is longer than the axial length of the stator core 43 . One end portion 49 a of the cylindrical portion 49 protrudes from the first end surface 43 a of the stator core 43 . The other end portion 49b of the tubular portion 49 protrudes from the second end surface 43b of the stator core 43 . The rotor 42 is arranged radially inside the stator 41 .
 軸部材48は、筒部49の一端部49aに設けられている。軸部材48は、鉄製である。軸部材48は、圧入部48aと、フランジ部48bと、軸部48cと、プレート部48dと、を有している。圧入部48aは、円柱状である。圧入部48aは、筒部49の一端部49aに圧入されている。よって、軸部材48は、筒部49の一端部49aに固定されている。軸部材48の軸線は、永久磁石47の軸線と一致している。 The shaft member 48 is provided at one end portion 49 a of the tubular portion 49 . The shaft member 48 is made of iron. The shaft member 48 has a press-fit portion 48a, a flange portion 48b, a shaft portion 48c, and a plate portion 48d. The press-fit portion 48a has a cylindrical shape. The press-fitting portion 48 a is press-fitted into one end portion 49 a of the tubular portion 49 . Therefore, the shaft member 48 is fixed to one end portion 49 a of the tubular portion 49 . The axis of the shaft member 48 coincides with the axis of the permanent magnet 47 .
 フランジ部48bは、円柱状である。フランジ部48bは、圧入部48aにおける永久磁石47とは反対側の端部に連続している。フランジ部48bの外径は、圧入部48aの外径よりも大きい。軸部48cは、円柱状である。軸部48cは、フランジ部48bにおける永久磁石47とは反対側の端部に連続している。軸部48cの外径は、フランジ部48bの外径よりも小さい。 The flange portion 48b is cylindrical. The flange portion 48b is continuous with the end portion of the press-fitting portion 48a on the side opposite to the permanent magnet 47 . The outer diameter of the flange portion 48b is larger than the outer diameter of the press-fitting portion 48a. The shaft portion 48c is cylindrical. The shaft portion 48c is continuous with the end portion of the flange portion 48b opposite to the permanent magnet 47 . The outer diameter of the shaft portion 48c is smaller than the outer diameter of the flange portion 48b.
 プレート部48dは、スラスト軸受収容室25に配置されている。プレート部48dは、フランジ部48bの外周面480bから環状をなすように突出している。プレート部48dの外径は、筒部49の外径よりも大きい。したがって、プレート部48dは、筒部49よりも径方向外側に突出している。プレート部48dは、フランジ部48bと一体的に回転可能である。 The plate portion 48d is arranged in the thrust bearing housing chamber 25. The plate portion 48d protrudes in an annular shape from the outer peripheral surface 480b of the flange portion 48b. The outer diameter of the plate portion 48 d is larger than the outer diameter of the cylinder portion 49 . Therefore, the plate portion 48 d protrudes radially outward from the cylindrical portion 49 . The plate portion 48d is rotatable integrally with the flange portion 48b.
 図2及び図3に示すように、筒部材46は、底壁部50を有している。したがって、ロータ42は、底壁部50をさらに有している。底壁部50は、筒部49の他端部49bから連続して延びている。したがって、底壁部50は、筒部49と一体である。底壁部50は、筒部49と一体形成されている。したがって、底壁部50は、ステンレス鋼により形成されている。底壁部50は、SUS316により形成されている。 As shown in FIGS. 2 and 3, the cylindrical member 46 has a bottom wall portion 50. As shown in FIGS. Therefore, the rotor 42 further has a bottom wall portion 50 . The bottom wall portion 50 extends continuously from the other end portion 49 b of the tubular portion 49 . Therefore, the bottom wall portion 50 is integrated with the tubular portion 49 . The bottom wall portion 50 is integrally formed with the tubular portion 49 . Therefore, the bottom wall portion 50 is made of stainless steel. The bottom wall portion 50 is made of SUS316.
 底壁部50は、略円板状である。底壁部50は、内端面501と外端面502とを有する。内端面501は、永久磁石47の第2端面47bと対向している。また、底壁部50は、外周面500を有している。外周面500は、平坦面状である。外周面500は、テーパ状である。外周面500は、筒部49の他端部49bから軸方向に離間するにつれて外径が小さくなっている。したがって、底壁部50は、筒部49よりも筒部49の径方向内側に向かって延在している。外周面500は、筒部49の周方向の全周に亘って延びている。したがって、底壁部50は、筒部49の周方向の全周に亘って延びている。底壁部50の厚さT1は、筒部49の厚さT2よりも厚い。本実施形態では、筒部材46が深絞り加工によって形成されることで、筒部材46に底壁部50が形成されている。 The bottom wall portion 50 is substantially disc-shaped. The bottom wall portion 50 has an inner end surface 501 and an outer end surface 502 . The inner end face 501 faces the second end face 47 b of the permanent magnet 47 . Also, the bottom wall portion 50 has an outer peripheral surface 500 . The outer peripheral surface 500 is flat. The outer peripheral surface 500 is tapered. The outer diameter of the outer peripheral surface 500 decreases with distance from the other end 49b of the cylindrical portion 49 in the axial direction. Therefore, the bottom wall portion 50 extends radially inward of the tubular portion 49 from the tubular portion 49 . The outer peripheral surface 500 extends along the entire circumference of the cylindrical portion 49 . Therefore, the bottom wall portion 50 extends over the entire circumference of the tubular portion 49 in the circumferential direction. The thickness T1 of the bottom wall portion 50 is thicker than the thickness T2 of the tubular portion 49 . In this embodiment, the bottom wall portion 50 is formed in the cylindrical member 46 by forming the cylindrical member 46 by deep drawing.
 筒部49の他端部49b内には、空間部S1が形成されている。空間部S1は、筒部49の内周面491と、永久磁石47の第2端面47bと、底壁部50の内端面501と、から区画されている。したがって、底壁部50は、筒部49よりも筒部49の径方向内側に向かって延在する。底壁部50は、筒部49及び永久磁石47と共に空間部S1を区画している。本実施形態では、底壁部50は、空間部S1を閉塞している。 A space portion S1 is formed in the other end portion 49b of the cylindrical portion 49. As shown in FIG. The space S<b>1 is defined by the inner peripheral surface 491 of the tubular portion 49 , the second end surface 47 b of the permanent magnet 47 , and the inner end surface 501 of the bottom wall portion 50 . Therefore, the bottom wall portion 50 extends radially inward of the tubular portion 49 from the tubular portion 49 . The bottom wall portion 50 defines a space portion S1 together with the cylindrical portion 49 and the permanent magnets 47 . In this embodiment, the bottom wall portion 50 closes the space S1.
 <第1ラジアル軸受20及び第2ラジアル軸受22の構成>
 図1に示すように、第1ラジアル軸受20は、筒部49の一端部49aを回転可能に支持している。第2ラジアル軸受22は、筒部49の他端部49bを回転可能に支持している。第1ラジアル軸受20及び第2ラジアル軸受22は気体軸受であり、ロータ42の回転速度が第1ラジアル軸受20及び第2ラジアル軸受22により筒部49が浮上する浮上回転速度に達するまでは、筒部49と接触した状態で筒部49を支持する。そして、ロータ42の回転速度が浮上回転速度に達すると、筒部49と第1ラジアル軸受20との間、及び筒部49と第2ラジアル軸受22との間に生じる動圧によって、筒部49は、第1ラジアル軸受20及び第2ラジアル軸受22に対して浮上する。これにより、筒部49は、第1ラジアル軸受20及び第2ラジアル軸受22に対して非接触の状態で回転可能に支持される。したがって、第1ラジアル軸受20及び第2ラジアル軸受22は、ロータ42を回転可能に支持する。第2ラジアル軸受22は、空間部S1の径方向外側に設けられている。したがって、第2ラジアル軸受22は、ロータ42を回転可能に支持するとともに、空間部S1の径方向外側に設けられるラジアル軸受である。
<Configuration of First Radial Bearing 20 and Second Radial Bearing 22>
As shown in FIG. 1, the first radial bearing 20 rotatably supports one end portion 49a of the cylindrical portion 49. As shown in FIG. The second radial bearing 22 rotatably supports the other end portion 49b of the tubular portion 49 . The first radial bearing 20 and the second radial bearing 22 are gas bearings. It supports the tubular portion 49 while in contact with the portion 49 . Then, when the rotation speed of the rotor 42 reaches the floating rotation speed, dynamic pressure generated between the tubular portion 49 and the first radial bearing 20 and between the tubular portion 49 and the second radial bearing 22 causes the tubular portion 49 to move. floats against the first radial bearing 20 and the second radial bearing 22 . Thereby, the cylindrical portion 49 is rotatably supported in a non-contact state with respect to the first radial bearing 20 and the second radial bearing 22 . Therefore, the first radial bearing 20 and the second radial bearing 22 rotatably support the rotor 42 . The second radial bearing 22 is provided radially outside the space S1. Therefore, the second radial bearing 22 is a radial bearing that rotatably supports the rotor 42 and is provided radially outside the space S1.
 <スラスト軸受51の構成>
 第1中間ハウジング16とプレート部48dとの間、及び第2中間ハウジング17とプレート部48dとの間には、気体軸受であるスラスト軸受51がそれぞれ配置されている。ロータ42の回転に伴ってプレート部48dが回転すると、プレート部48dと両スラスト軸受51との間に動圧が生じる。これにより、両スラスト軸受51によって、プレート部48dが両スラスト軸受51に対して浮上し、ロータ42が両スラスト軸受51に対して非接触の状態で回転可能に支持される。
<Configuration of Thrust Bearing 51>
Thrust bearings 51, which are gas bearings, are arranged between the first intermediate housing 16 and the plate portion 48d and between the second intermediate housing 17 and the plate portion 48d. When the plate portion 48 d rotates with the rotation of the rotor 42 , dynamic pressure is generated between the plate portion 48 d and both thrust bearings 51 . As a result, the plate portion 48 d is floated with respect to the thrust bearings 51 by the thrust bearings 51 , and the rotor 42 is rotatably supported without contact with the thrust bearings 51 .
 <作動体A1の構成>
 流体機械10は、作動体A1を備えている。作動体A1は、作動体ハウジング13に収容されている。作動体A1は、作動体ハウジング13内に挿通された軸部材48に連結されている。
<Structure of Actuator A1>
The fluid machine 10 includes an operating body A1. The actuator A<b>1 is housed in the actuator housing 13 . The actuator A<b>1 is connected to a shaft member 48 inserted through the actuator housing 13 .
 流体機械10において、流体は吸入孔12hからモータ室18に吸入される。モータ室18に吸入された流体は、各貫通孔23、スラスト軸受収容室25、各貫通孔16b、及び第2室形成凹部16cの内側を通過して、作動体ハウジング13内に吸入される。作動体A1の回転により流体は、作動体ハウジング13から吐出孔13hを介して吐出される。したがって、作動体A1は、ハウジング11内にて流体を吸入して吐出する。 In the fluid machine 10, the fluid is sucked into the motor chamber 18 through the suction hole 12h. The fluid sucked into the motor chamber 18 passes through the through holes 23 , the thrust bearing housing chamber 25 , the through holes 16 b , and the second chamber forming recess 16 c and is sucked into the actuator housing 13 . Fluid is discharged from the actuator housing 13 through the discharge hole 13h by the rotation of the actuator A1. Accordingly, the working body A1 draws and discharges fluid within the housing 11 .
 <作用>
 次に、本実施形態の作用について説明する。
 ロータ42は、底壁部50を有しているため、ロータ42が底壁部50を有していない場合に比べて、筒部49の他端部49bの強度が向上している。したがって、例えば、筒部49の他端部49bがラジアル荷重を受けたとしても、筒部49の他端部49bが変形し難い。
<Action>
Next, the operation of this embodiment will be described.
Since the rotor 42 has the bottom wall portion 50 , the strength of the other end portion 49 b of the cylindrical portion 49 is improved as compared with the case where the rotor 42 does not have the bottom wall portion 50 . Therefore, for example, even if the other end portion 49b of the tubular portion 49 receives a radial load, the other end portion 49b of the tubular portion 49 is less likely to deform.
 また、作業者がこのようなロータ42を備えた流体機械10を組み付ける際には、作業者は、筒部49の一端部49aに軸部材48を固定した後に、ロータ42を第1ラジアル軸受20、ステータコア43の内側、及び第2ラジアル軸受22に対して挿入する場合がある。このとき、筒部49の一端部49aに固定された軸部材48は、プレート部48dを有している。このため、作業者がロータ42を第1ラジアル軸受20、ステータコア43の内側、及び第2ラジアル軸受22に対して挿入する際には、作業者は、筒部49の他端部49bからロータ42を第1ラジアル軸受20、ステータコア43の内側、及び第2ラジアル軸受22に対して挿入する必要がある。 Further, when an operator assembles the fluid machine 10 having such a rotor 42 , the operator fixes the shaft member 48 to the one end portion 49 a of the cylindrical portion 49 and then attaches the rotor 42 to the first radial bearing 20 . , the inside of the stator core 43 and the second radial bearing 22 . At this time, the shaft member 48 fixed to the one end portion 49a of the cylindrical portion 49 has a plate portion 48d. Therefore, when an operator inserts the rotor 42 into the first radial bearing 20 , the inside of the stator core 43 , and the second radial bearing 22 , the operator inserts the rotor 42 from the other end 49 b of the cylindrical portion 49 . should be inserted into the first radial bearing 20 , the inside of the stator core 43 and the second radial bearing 22 .
 ここで、底壁部50は、テーパ状の外周面500を有し、外周面500は、筒部49の他端部49bから筒部49の軸方向に離間するにつれて外径が小さくなっている。つまり、ロータ42における筒部49の他端部49bに対応する端部が先細りしている。このため、作業者は、筒部49の他端部49bに対応する端部からロータ42を第1ラジアル軸受20、ステータコア43の内側、及び第2ラジアル軸受22に対して挿入し易い。その結果、流体機械10の組付け作業性が向上する。 Here, the bottom wall portion 50 has a tapered outer peripheral surface 500, and the outer diameter of the outer peripheral surface 500 becomes smaller as the distance from the other end portion 49b of the tubular portion 49 in the axial direction of the tubular portion 49 increases. . That is, the end portion of the rotor 42 corresponding to the other end portion 49b of the tubular portion 49 is tapered. Therefore, the operator can easily insert the rotor 42 into the first radial bearing 20 , the inside of the stator core 43 , and the second radial bearing 22 from the end corresponding to the other end 49 b of the cylindrical portion 49 . As a result, the assembling workability of the fluid machine 10 is improved.
 <効果>
 本実施形態では、以下の効果を得ることができる。
 (1)ロータ42は、底壁部50を有している。これによれば、ロータ42が底壁部50を有していない場合に比べて、筒部49の他端部49bの強度を向上させることができる。したがって、例えば、筒部49の他端部49bにラジアル荷重を受けたとしても、筒部49の他端部49bが変形し難くなるため、ロータ42の耐久性を向上させることができる。また、底壁部50は、テーパ状の外周面500を有し、外周面500は、筒部49の他端部49bから筒部49の軸方向に離間するにつれて外径が小さくなっている。つまり、ロータ42における筒部49の他端部49bに対応する端部が先細りしている。したがって、作業者は、筒部49の他端部49bに対応する端部からロータ42を第2ラジアル軸受22に対して挿入し易くなる。その結果、流体機械10の組み付け作業性を向上させることができる。以上により、ロータ42の耐久性を向上させつつも、組み付け作業性を向上させることができる。
<effect>
The following effects can be obtained in this embodiment.
(1) The rotor 42 has a bottom wall portion 50 . According to this, the strength of the other end portion 49b of the tubular portion 49 can be improved as compared with the case where the rotor 42 does not have the bottom wall portion 50 . Therefore, for example, even if the other end portion 49b of the tubular portion 49 receives a radial load, the other end portion 49b of the tubular portion 49 is less likely to deform, so the durability of the rotor 42 can be improved. Further, the bottom wall portion 50 has a tapered outer peripheral surface 500 , and the outer diameter of the outer peripheral surface 500 decreases as the distance from the other end portion 49 b of the tubular portion 49 in the axial direction of the tubular portion 49 increases. That is, the end portion of the rotor 42 corresponding to the other end portion 49b of the tubular portion 49 is tapered. Therefore, the operator can easily insert the rotor 42 into the second radial bearing 22 from the end corresponding to the other end 49 b of the cylindrical portion 49 . As a result, workability of assembling the fluid machine 10 can be improved. As described above, it is possible to improve the assembling workability while improving the durability of the rotor 42 .
 (2)底壁部50は、筒部49の周方向の全周に亘って延びている。これによれば、底壁部50が筒部49の周方向の一部においてのみ延びている場合に比べて、筒部49の他端部49bの強度をさらに向上させることができる。したがって、筒部49の他端部49bがさらに変形し難くなるため、ロータ42の耐久性をさらに向上させることができる。 (2) The bottom wall portion 50 extends over the entire circumference of the cylinder portion 49 in the circumferential direction. According to this, the strength of the other end portion 49b of the tubular portion 49 can be further improved compared to the case where the bottom wall portion 50 extends only in a part of the tubular portion 49 in the circumferential direction. Therefore, since the other end portion 49b of the cylindrical portion 49 is more difficult to deform, the durability of the rotor 42 can be further improved.
 (3)底壁部50の厚さT1は、筒部49の厚さT2よりも厚い。これによれば、底壁部50の厚さT1が筒部49の厚さT2以下である場合に比べて、底壁部50の強度を向上させることができる。その結果、筒部49の他端部49bがさらに変形し難くなるため、ロータ42の耐久性をさらに向上させることができる。また、筒部49の厚さT2が薄いほど、筒部49で発生する渦電流損を低減することができるため、モータ効率を向上させることができる。 (3) The thickness T1 of the bottom wall portion 50 is thicker than the thickness T2 of the tubular portion 49 . According to this, the strength of the bottom wall portion 50 can be improved compared to the case where the thickness T1 of the bottom wall portion 50 is equal to or less than the thickness T2 of the tubular portion 49 . As a result, the other end portion 49b of the cylindrical portion 49 is more difficult to deform, so the durability of the rotor 42 can be further improved. In addition, the thinner the thickness T2 of the cylindrical portion 49, the more the eddy current loss generated in the cylindrical portion 49 can be reduced, so the motor efficiency can be improved.
 (4)底壁部50は、空間部S1を閉塞している。これによれば、底壁部50が空間部S1を閉塞していない場合に比べて、底壁部50の強度を向上させることができる。その結果、筒部49の他端部49bがさらに変形し難くなるため、ロータ42の耐久性をさらに向上させることができる。 (4) The bottom wall portion 50 closes the space portion S1. According to this, the strength of the bottom wall portion 50 can be improved compared to the case where the bottom wall portion 50 does not block the space portion S1. As a result, the other end portion 49b of the cylindrical portion 49 is more difficult to deform, so the durability of the rotor 42 can be further improved.
 (5)筒部材46が深絞り加工によって形成されることにより、筒部材46に底壁部50が形成されている。これによれば、例えば、筒部49の他端部49bに、筒部49とは別体である底壁部50を溶接する場合に比べて、製造工程を簡素化することができる。また、筒部材46を深絞り加工によって形成するため、材料の加工硬化によって筒部49の他端部49bの強度を向上させることができる。 (5) The bottom wall portion 50 is formed in the cylindrical member 46 by forming the cylindrical member 46 by deep drawing. According to this, for example, the manufacturing process can be simplified as compared with the case where the bottom wall portion 50 which is separate from the tubular portion 49 is welded to the other end portion 49b of the tubular portion 49 . Further, since the cylindrical member 46 is formed by deep drawing, the strength of the other end portion 49b of the cylindrical portion 49 can be improved by work hardening of the material.
 <変更例>
 なお、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
<Change example>
It should be noted that the above embodiment can be implemented with the following modifications. The above embodiments and the following modifications can be combined with each other within a technically consistent range.
 ○ 図4及び図5に示すように、筒部材46の他端部49bが筒部49の径方向内側に折り曲げられることにより、底壁部60が形成されてもよい。このとき、底壁部60は、空間部S1を閉塞していない。なお、図4では、折り曲げられる前の筒部49の他端部49bを二点鎖線で図示している。底壁部60は、筒部49の周方向の全周に亘って延びている。底壁部60は、外周面600を有している。外周面600は、テーパ状である。外周面600は、筒部49の他端部49bよりも小さい外径を有するとともに、筒部49の他端部49bから筒部49の軸方向に離間するにつれて外径が小さくなっている。したがって、ロータ42における筒部49の他端部49bに対応する端部が先細りしている。 ○ As shown in FIGS. 4 and 5 , the bottom wall portion 60 may be formed by bending the other end portion 49 b of the tubular member 46 radially inwardly of the tubular portion 49 . At this time, the bottom wall portion 60 does not block the space portion S1. In addition, in FIG. 4, the other end portion 49b of the tubular portion 49 before being bent is illustrated by a chain double-dashed line. The bottom wall portion 60 extends over the entire circumference of the cylinder portion 49 in the circumferential direction. The bottom wall portion 60 has an outer peripheral surface 600 . The outer peripheral surface 600 is tapered. The outer peripheral surface 600 has an outer diameter smaller than that of the other end portion 49 b of the tubular portion 49 , and the outer diameter decreases with distance from the other end portion 49 b of the tubular portion 49 in the axial direction of the tubular portion 49 . Therefore, the end portion of the rotor 42 corresponding to the other end portion 49b of the tubular portion 49 is tapered.
 ○ 図6及び図7に示すように、底壁部50は、空間部S1に流体を導入する連通孔50hを有していてもよい。連通孔50hは、吸入孔12hからモータ室18に吸入された流体の一部を空間部S1に導入する。これによれば、連通孔50hを介して空間部S1に導入された流体によって永久磁石47が冷却される。したがって、ロータ42の耐久性をさらに向上させることができる。 ○As shown in FIGS. 6 and 7, the bottom wall portion 50 may have a communication hole 50h for introducing fluid into the space portion S1. The communication hole 50h introduces part of the fluid sucked into the motor chamber 18 from the suction hole 12h into the space S1. According to this, the permanent magnet 47 is cooled by the fluid introduced into the space S1 through the communication hole 50h. Therefore, durability of the rotor 42 can be further improved.
 なお、連通孔50hは、吸入孔12hからモータ室18に吸入された流体の一部を空間部S1に導入しなくてもよい。例えば、連通孔50hに冷却流路が接続されていてもよい。 It should be noted that the communication hole 50h does not have to introduce part of the fluid sucked into the motor chamber 18 from the suction hole 12h into the space S1. For example, a cooling channel may be connected to the communication hole 50h.
 ○ 図8に示すように、底壁部50は、第2ラジアル軸受22の径方向内側に位置していてもよい。例えば、第1ラジアル軸受20及び第2ラジアル軸受22の位置が一義的に決められている場合を考える。このとき、底壁部50が第2ラジアル軸受22の径方向内側に位置している。このため、例えば、底壁部50が第2ラジアル軸受22から突出するように筒部49が第2ラジアル軸受22の内側を通過して延びている場合に比べて、筒部49における軸方向の長さが短くなっている。その結果、ロータ42の一次共振回転速度の低下を抑制することができる。また、例えば、ロータ42が第2ラジアル軸受22に対して傾いたとしても、底壁部50の外周面500がテーパ状であるため、底壁部50が第2ラジアル軸受22の内周面220に対して角当たりしない。 ○As shown in FIG. 8 , the bottom wall portion 50 may be positioned radially inside the second radial bearing 22 . For example, consider a case where the positions of the first radial bearing 20 and the second radial bearing 22 are uniquely determined. At this time, the bottom wall portion 50 is located radially inside the second radial bearing 22 . For this reason, for example, compared to the case where the cylindrical portion 49 extends through the inner side of the second radial bearing 22 so that the bottom wall portion 50 protrudes from the second radial bearing 22, the axial direction of the cylindrical portion 49 is reduced. shorter in length. As a result, a decrease in the primary resonance rotational speed of the rotor 42 can be suppressed. Further, for example, even if the rotor 42 is tilted with respect to the second radial bearing 22 , since the outer peripheral surface 500 of the bottom wall portion 50 has a tapered shape, the bottom wall portion 50 is inclined to the inner peripheral surface 220 of the second radial bearing 22 . Don't hit the corner.
 ○ 実施形態において、底壁部50は、筒部49の周方向の一部においてのみ延びていてもよい。
 ○ 実施形態において、底壁部50の厚さT1は、筒部49の厚さT2と等しくてもよい。
O In the embodiment, the bottom wall portion 50 may extend only in a part of the cylindrical portion 49 in the circumferential direction.
O In the embodiment, the thickness T1 of the bottom wall portion 50 may be equal to the thickness T2 of the tubular portion 49 .
 ○ 実施形態において、底壁部50の厚さT1は、筒部49の厚さT2よりも薄くてもよい。
 ○ 実施形態において、底壁部50は、しごき加工によって形成されてもよい。
O In the embodiment, the thickness T1 of the bottom wall portion 50 may be thinner than the thickness T2 of the tubular portion 49 .
O In an embodiment, bottom wall part 50 may be formed by ironing.
 ○ 実施形態において、筒部49及び底壁部50は、例えば、SUS304のようなオーステナイト系のステンレス鋼により形成されていてもよい。
 ○ 実施形態において、筒部49の底壁部50は、ロータ42のアンバランス量を低減するために一部切り欠かれてもよい。
(circle) in embodiment, the cylinder part 49 and the bottom wall part 50 may be formed with the austenitic stainless steel like SUS304, for example.
(circle) in embodiment, the bottom wall part 50 of the cylinder part 49 may be partially notched in order to reduce the unbalance amount of the rotor 42. FIG.
 ○ 実施形態において、底壁部50の外周面500は、例えば、湾曲面状であってもよい。要は、底壁部50は、テーパ状の外周面を有し、外周面は、筒部49の他端部49bよりも小さい外径を有するとともに、筒部49の他端部49bから筒部49の軸方向に離間するにつれて外径が小さくなっていればよい。 ○ In the embodiment, the outer peripheral surface 500 of the bottom wall portion 50 may be curved, for example. In short, the bottom wall portion 50 has a tapered outer peripheral surface, and the outer peripheral surface has an outer diameter smaller than that of the other end portion 49b of the tubular portion 49. It is only necessary that the outer diameter becomes smaller as it is spaced apart in the axial direction of 49 .
 ○ 実施形態において、作動体A1は、底壁部50に取り付けられていてもよい。
 ○ 実施形態において、流体機械10は、自動車に搭載されていなくてもよく、その他の用途で用いられるものであってもよい。
O In the embodiment, the operating body A1 may be attached to the bottom wall portion 50 .
O In the embodiment, the fluid machine 10 may not be mounted on an automobile, and may be used for other purposes.
 ○ 実施形態において、永久磁石47に代えて、例えば、積層コア、アモルファスコア、又は圧粉コア等の磁性体を用いてもよい。 ○ In the embodiment, instead of the permanent magnet 47, for example, a magnetic body such as a laminated core, an amorphous core, or a dust core may be used.

Claims (6)

  1.  ハウジングと、
     前記ハウジング内にて流体を吸入して吐出する作動体と、
     前記ハウジングに収容されるとともに前記作動体を回転させるモータと、を備える流体機械であって、
     前記モータは、
      前記ハウジングの内周面に固定される筒状のステータコアを有するステータと、
      前記ステータの径方向内側に配置されるロータと、
      前記ロータを回転可能に支持するラジアル軸受と、を有し、
     前記ロータは、
      軸方向の一端部と他端部とを有する筒部と、
      前記筒部の内周面に固定された磁性体と、
      前記筒部の一端部に固定された軸部材と、を有し、
     前記軸部材は、前記筒部よりも前記径方向外側に突出する環状のプレート部を有し、
     前記流体機械は、前記プレート部を回転可能に支持するスラスト軸受をさらに備え、
     前記筒部の他端部内には、空間部が形成され、
     前記ラジアル軸受は、前記空間部の径方向外側に位置しており、
     前記ロータは、前記筒部の他端部から連続して延在する底壁部を有しており、
     該底壁部は、前記筒部よりも前記径方向内側に向かって延在しており、
     前記底壁部は、前記筒部及び前記磁性体と共に前記空間部を区画し、
     前記底壁部は、テーパ状の外周面を有し、
     前記外周面は、前記筒部の他端部から前記軸方向に離間するにつれて外径が小さくなっている流体機械。
    a housing;
    an operating body for sucking and discharging a fluid in the housing;
    a motor housed in the housing and rotating the operating body, the fluid machine comprising:
    The motor is
    a stator having a cylindrical stator core fixed to the inner peripheral surface of the housing;
    a rotor disposed radially inside the stator;
    a radial bearing that rotatably supports the rotor;
    The rotor is
    a tubular portion having one axial end and the other axial end;
    a magnetic body fixed to the inner peripheral surface of the cylindrical portion;
    and a shaft member fixed to one end of the tubular portion,
    The shaft member has an annular plate portion projecting radially outward from the tubular portion,
    The fluid machine further includes a thrust bearing that rotatably supports the plate portion,
    A space is formed in the other end of the cylindrical portion,
    The radial bearing is positioned radially outward of the space,
    The rotor has a bottom wall portion continuously extending from the other end of the tubular portion,
    The bottom wall portion extends toward the inner side in the radial direction from the cylinder portion,
    The bottom wall portion partitions the space portion together with the cylindrical portion and the magnetic body,
    The bottom wall portion has a tapered outer peripheral surface,
    A fluid machine in which the outer diameter of the outer peripheral surface decreases with increasing distance from the other end of the cylindrical portion in the axial direction.
  2.  前記底壁部は、前記筒部の周方向の全周に亘って延びている、請求項1に記載の流体機械。 The fluid machine according to claim 1, wherein the bottom wall portion extends along the entire circumferential direction of the cylindrical portion.
  3.  前記底壁部の厚さは、前記筒部の厚さよりも厚い、請求項1又は請求項2に記載の流体機械。 The fluid machine according to claim 1 or 2, wherein the thickness of the bottom wall portion is thicker than the thickness of the cylindrical portion.
  4.  前記底壁部は、前記ラジアル軸受の径方向内側に位置している、請求項1~請求項3のいずれか一項に記載の流体機械。 The fluid machine according to any one of claims 1 to 3, wherein the bottom wall portion is positioned radially inside the radial bearing.
  5.  前記底壁部は、前記空間部を閉塞している、請求項1~請求項4のいずれか一項に記載の流体機械。 The fluid machine according to any one of claims 1 to 4, wherein the bottom wall closes the space.
  6.  前記作動体は、前記軸部材に取り付けられており、
     前記底壁部は、前記空間部に流体を導入する連通孔を有する、請求項1~請求項4のいずれか一項に記載の流体機械。
    The actuating body is attached to the shaft member,
    The fluid machine according to any one of claims 1 to 4, wherein said bottom wall portion has a communication hole for introducing fluid into said space portion.
PCT/JP2022/018902 2021-07-21 2022-04-26 Fluid machine WO2023002734A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021120706A JP2023016417A (en) 2021-07-21 2021-07-21 Fluid machine
JP2021-120706 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023002734A1 true WO2023002734A1 (en) 2023-01-26

Family

ID=84979106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018902 WO2023002734A1 (en) 2021-07-21 2022-04-26 Fluid machine

Country Status (2)

Country Link
JP (1) JP2023016417A (en)
WO (1) WO2023002734A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243515A (en) * 2008-03-28 2009-10-22 Sony Corp Bearing unit, motor using the unit, electronic device , and manufacturing method of bearing unit
JP2014047795A (en) * 2012-08-29 2014-03-17 Ihi Corp Rotary machine
JP2016032422A (en) * 2014-07-30 2016-03-07 ミネベア株式会社 Inner rotor motor
WO2020002509A1 (en) * 2018-06-29 2020-01-02 Celeroton Ag Electrical machine
JP2021027602A (en) * 2019-07-31 2021-02-22 アイシン・エィ・ダブリュ株式会社 Rotor for rotary electric machine, rotary electric machine, and manufacturing method of rotor for rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243515A (en) * 2008-03-28 2009-10-22 Sony Corp Bearing unit, motor using the unit, electronic device , and manufacturing method of bearing unit
JP2014047795A (en) * 2012-08-29 2014-03-17 Ihi Corp Rotary machine
JP2016032422A (en) * 2014-07-30 2016-03-07 ミネベア株式会社 Inner rotor motor
WO2020002509A1 (en) * 2018-06-29 2020-01-02 Celeroton Ag Electrical machine
JP2021027602A (en) * 2019-07-31 2021-02-22 アイシン・エィ・ダブリュ株式会社 Rotor for rotary electric machine, rotary electric machine, and manufacturing method of rotor for rotary electric machine

Also Published As

Publication number Publication date
JP2023016417A (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP4788351B2 (en) Fuel cell supercharger
JP4994971B2 (en) Magnetic bearing, magnetic coupling device, and scroll type fluid machine using the same
US5945765A (en) Interior stator assembly for a brushless motor with exciting sheets for enhancing rotor-driving force
KR20060124702A (en) Motor-driven pump unit
JP2003532838A (en) Magnet bearing with damping part
US7712967B2 (en) Ball bearing
WO2023002734A1 (en) Fluid machine
CN115380167B (en) Centrifugal compressor
KR100751588B1 (en) A high speed motor with embedded permanent magnets
JP2002017063A (en) Motor and manufacturing method
JP2007218097A (en) Compressor
WO2021220701A1 (en) Electric compressor
JP6447724B2 (en) Rotating machine
JP2022131894A (en) Rotary electric machine rotor
JP2017219033A (en) Blower device
JP4774821B2 (en) Compressor
JP2022079358A (en) Fluid machine
JP7435901B2 (en) Motor rotor and supercharger
JP2013126267A (en) Rotating electric machine and compressor
JP4301060B2 (en) Rotor structure of axial gap motor
JP2019201502A (en) Rotating electric machine rotor and rotating electric machine
KR100320497B1 (en) Retainer use not water pump
JP7302626B2 (en) Shaft and rotating machine
JP2012120365A (en) Rotor, motor and compressor
WO2021171556A1 (en) Electric motor, fan, and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE