WO2023002682A1 - 情報処理装置、通信装置、情報処理方法、通信方法、及び通信システム - Google Patents
情報処理装置、通信装置、情報処理方法、通信方法、及び通信システム Download PDFInfo
- Publication number
- WO2023002682A1 WO2023002682A1 PCT/JP2022/011195 JP2022011195W WO2023002682A1 WO 2023002682 A1 WO2023002682 A1 WO 2023002682A1 JP 2022011195 W JP2022011195 W JP 2022011195W WO 2023002682 A1 WO2023002682 A1 WO 2023002682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- network
- communication device
- information
- public cellular
- address
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 357
- 238000000034 method Methods 0.000 title claims abstract description 161
- 230000010365 information processing Effects 0.000 title claims abstract description 62
- 238000003672 processing method Methods 0.000 title claims description 7
- 230000006870 function Effects 0.000 claims abstract description 188
- 230000001413 cellular effect Effects 0.000 claims abstract description 135
- 238000012545 processing Methods 0.000 claims description 66
- 230000005540 biological transmission Effects 0.000 claims description 44
- 230000008569 process Effects 0.000 abstract description 7
- 238000007726 management method Methods 0.000 description 60
- 238000010586 diagram Methods 0.000 description 44
- 238000003860 storage Methods 0.000 description 25
- 238000005516 engineering process Methods 0.000 description 16
- 230000009977 dual effect Effects 0.000 description 12
- 238000012546 transfer Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000010267 cellular communication Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000013523 data management Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 101150119040 Nsmf gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
Definitions
- the present disclosure relates to an information processing device, a communication device, an information processing method, a communication method, and a communication system.
- a conventional private network can communicate not only with communication devices within the private network, but also with communication devices outside the private network (eg, communication devices in other private networks).
- the communication device when communicating between different private networks, the communication device communicates with the other party's communication device via the public network, making it difficult to maintain security.
- transfer of IP address information of a communication device to another private network outside a certain private network leads to leakage of personal information, so countermeasures are necessary.
- the present disclosure proposes an information processing device, a communication device, an information processing method, a communication method, and a communication system that can realize communication with high security strength between private networks.
- an information processing apparatus includes at least one of network functions arranged in two non-public cellular closed networks connected by secure communication.
- An information processing device wherein the network function acquires information about a communication device connected to the non-public cellular closed network of one's own side or the other's side, and based on the acquired information, the two non-public cellular It performs processing related to packet arrival from the communication device connected to one side of the closed network to the communication device connected to the other side.
- FIG. 1 illustrates an example of a private network
- FIG. FIG. 2 is a diagram showing a communication system with one partner 4G/5G private network
- 1 is a diagram showing a communication system when there are multiple partner 4G/5G private networks
- FIG. FIG. 2 is a diagram showing how a RAMNF is arranged in each of a plurality of 4G/5G private networks
- 1 is a diagram illustrating a configuration example of a communication system according to an embodiment of the present disclosure
- FIG. It is a figure which shows the structural example of the management apparatus which concerns on embodiment of this indication.
- 1 is a diagram illustrating a configuration example of a base station according to an embodiment of the present disclosure
- FIG. 1 is a diagram illustrating a configuration example of a terminal device according to an embodiment of the present disclosure
- FIG. 1 is a diagram illustrating an example of a 5G architecture
- FIG. 1 is a diagram showing an example of a 4G architecture
- FIG. 2 is a diagram showing how a plurality of 4G/5G private networks are linked
- FIG. 10 is a sequence diagram showing a procedure for creating a 4G/5G private network pair
- FIG. 10 is a diagram for explaining method 1-1
- FIG. 10 is a diagram for explaining method 1-2
- FIG. 10 is a sequence diagram showing the procedure of method 1-1
- FIG. 10 is a diagram for explaining method 2-1
- FIG. 10 is a sequence diagram showing the procedure of method 2-1;
- FIG. 10 is a sequence diagram showing the procedure of method 2-1;
- FIG. 10 is a sequence diagram showing the procedure of method 2-1;
- FIG. 11 is a diagram for explaining method 2-2;
- FIG. 10 is a sequence diagram showing the procedure of method 2-2;
- FIG. 10 is a sequence diagram obtained by adding a procedure of method 3 to the procedure of method 2-2;
- FIG. 4 is a diagram for explaining a period during which packet transmission is permitted;
- FIG. 12 is a sequence diagram for explaining the procedure of method 4;
- FIG. 10 is a diagram for explaining method 1-3;
- a plurality of components having substantially the same functional configuration may be distinguished by attaching different numerals after the same reference numerals.
- a plurality of configurations having substantially the same functional configurations are distinguished like terminal devices 30 1 , 30 2 and 30 3 as necessary.
- the terminal devices 30 1 , 30 2 and 30 3 are simply referred to as the terminal devices 30 when there is no particular need to distinguish them.
- a private network is also called a non-public network.
- private 5G and local 5G are referred to as 4G/5G private networks.
- Security is important in many use cases. For example, in the case of a factory, it is a case of dealing with highly confidential technology such as the production line of the factory. Hospitals and the like often handle personal information related to patient privacy, so this is a highly confidential use case. Universities and offices often handle personal information, and communications involving such personal information are required to be highly confidential.
- FIG. 1 is a diagram showing an example of a private network.
- the closed network is, for example, a VPN (Virtual Private network).
- a base station located in a LAN and a core network located in a cloud use a private IP address without using a public IP address. Connected.
- it is resistant to eavesdropping from the outside.
- It is also possible to set to block all accesses from outside the closed network, or to send a packet from inside the closed network to the outside and put only the response into the closed network.
- it is not possible to access a device or a terminal device in a closed network by applying a trigger from outside the closed network so it can be said that the confidentiality of the closed network is high.
- UDP User Datagram Protocol
- TCP Transmission Control Protocol
- IP Address Assigned to Terminal Device When a terminal device attaches to a network, an IP address is assigned to the terminal device from the core network. A private IP address is usually assigned. In the case of a public network, a public IP address may be assigned directly to the terminal device, but in a 4G/5G private network, which is a non-public network, the terminal device is usually , give a private IP address. Therefore, when going out from the closed network, NAT (Network Address Translation) is performed to convert the private IP address to the public IP address before leaving.
- NAT Network Address Translation
- this network function is tentatively called RAMNF (Reachability Management Network Function).
- RAMNF Sendability Management Network Function
- the name of this network function is not limited to RAMNF, and other names may be used. RAMNF will be described in detail later.
- FIG. 2 is a diagram showing a communication system when there is one partner 4G/5G private network.
- two 4G/5G private networks are directly connected by VPN tunneling. Since closed networks are connected to each other, packets can be sent to terminal devices and client applications on the opposite side using private IP addresses.
- FIG. 3 is a diagram showing a communication system when there are multiple partner 4G/5G private networks.
- VPN tunnels are set for each of the plurality of destinations, as shown in FIG. Connecting in a star configuration is not desirable because if there is a failure in the central switch, the impact will be large.
- the destination of information diffusion is only the partner side, so this topology is desirable also from the viewpoint of security.
- IoT Internet of Things
- 4G/5G private network There is a demand to place IoT devices under the control of a 4G/5G private network, control those IoT devices with an information processing device, and extract information from those IoT devices.
- simply controlling IoT devices in one 4G/5G private network and acquiring information poses a problem that the scale of the IoT system is insufficient due to the limited number of IoT sensors. Therefore, there is a demand for coordinating a plurality of private networks to collect their information.
- the location of the IoT device with which communication is desired is often known in advance. TCP connections tend to place a heavy burden on IoT devices in terms of power consumption, so there is a demand for communication using UDP.
- Private networks may belong to different operators. Although it is desirable for one business operator to manage a plurality of private networks, the customers using the private networks are different. For example, let's say there is a customer A who is measuring using an IoT sensor that can measure wind power in Japan, and a customer B who is measuring wind power in Europe using an IoT sensor. Assume that the terminal device of customer A is connected to private network A, and the terminal device of customer B is connected to private network B. At this time, it is assumed that business operator C must collect information from each of the terminal devices of customers A and B using terminal devices connected to private network C. In this case, operator C would want private networks A and B to be connected.
- RAMNF> By connecting private networks with a VPN tunnel, it is possible to prevent information leakage during communication between private networks. However, it is not desirable to randomly give the other party's private network information about one's own private network. In particular, transferring the IP address information of a communication device to another private network outside one private network leads to leakage of personal information.
- a network function called RAMNF (Reachability Management Network Function) is placed in each of two non-public cellular closed networks connected by secure communication.
- RAMNF Sendability Management Network Function
- two non-public cellular closed networks connected by secure communication are, for example, two 4G/5G private networks connected by a VPN tunnel.
- the RAMNF obtains information about the communication device connected to the non-public cellular closed network of its own side or the other side, and based on the obtained information, the communication device connected to one of the two non-public cellular closed networks. performs processing related to packet arrival to the communication device connected to the other.
- the RAMNF may be one function of the core network, or may be a function located outside the core network.
- the RAMNF will be explained below.
- the IP address assigned to the terminal device by the core network can be held on the core network side.
- the IP address here may be a local IP address or a global IP address.
- the RAMNF defined in this embodiment acquires information as to whether or not the terminal device is assigned an IP address based on information from the core network, and if the IP address is assigned, the terminal device The IP address of the terminal device is held in association with the ID of the device. This enables the RAMNF, which has received a message transmission request from a client application installed in another terminal device or another AF, to transmit a UDP/TCP message from the network side. Since it becomes possible to send UDP/TCP messages directly from the network side, there is an advantage that the power consumption load of the terminal device is small and the delay is small. It is important to consider not to lose this advantage even when connecting multiple 4G/5G private networks.
- RAMNF plays an important role in delivering packets to the sender when connecting multiple 4G/5G private networks.
- Name Resolution Name resolution means obtaining an IP address from a destination ID or the like.
- a DNS Domain Name System
- RAMNF has a name resolution function. The difference from normal DNS is that only two types of name resolution are performed: name resolution on the own side and name resolution from the paired partner side. In normal name resolution, unknown names are propagated to different DNS one after another, but in this embodiment, which emphasizes security, such names are not propagated.
- Push Notification In addition to the DNS-like function that resolves the name and returns the IP address, it also has a push notification function that adds the IP address of the terminal device to the message sent based on the ID of the terminal device and sends it.
- a normal push notification uses something existing outside the closed network, but in this embodiment, the function is performed by the RAMNF placed inside the closed network. Furthermore, the big difference is that it only works for requests to send messages from within two paired 4G/5G private networks.
- Provision of information on the state of the terminal device RAMNF uses an API called 5G SBI (Service Base Interface) (hereinafter referred to as 5G API) to determine the state of the terminal device, for example, whether it is in idle mode or not. It provides the sender with information such as whether it is in Connected mode, whether it has obtained an IP address, or whether it has not obtained an IP address, so that the sender can determine the appropriate time to send the message.
- 5G API Service Base Interface
- FIG. 4 is a diagram showing how RAMNFs are arranged in each of a plurality of 4G/5G private networks.
- 4G/5G private network A cooperates with 4G/5G private network B and 4G/5G private network C
- the information processing device that manages the private networks is a pair of A and B and a pair of A and C. need to make In this case, B and C cannot communicate.
- AF Application Function
- a terminal device is a communication device connected to the other 4G/5G private network.
- the AF may be read as the transmission side communication device, and the terminal device may be read as the reception side communication device.
- RAMNF on the terminal device side that first holds the IP address of the terminal device.
- Method 1 in which the IP address is held only in the RAMNF on the terminal device side, and Method 2, in which the IP address is held also in the RAMNF on the AF side, are conceivable.
- RAMNF is an entity that has a function like DNS and also has a function to manage reachability related to the state of the terminal device (state of whether or not an IP address is assigned, state of RRC IDLE/CONNECTED) is.
- Method 1 corresponds to methods (1) to (3)
- method 2 corresponds to methods (4) to (5).
- Method 1-1 the AF sends an IP packet storing a message together with an ID specifying the terminal device to the RAMNF on the AF side.
- the RAMNF on the AF side identifies to which RAMNF of the 4G/5G private network the data should be sent from the ID that identifies the terminal device.
- the RAMNF on the AF side assigns the IP address of the identified RAMNF to the IP packet, and transfers the packet assigned the IP address.
- the RAMNF on the terminal device side reassigns the IP address of the terminal device to the packet and transmits the packet with the reassigned IP address to the terminal device.
- the RAMNF on the AF side requires information in advance for determining whether to send a packet to the RAMNF of the 4G/5G private network from the ID of the terminal device. Therefore, it is considered to be superior to method 1-2 and method 1-3 below.
- Method 1-2 the AF acquires the IP address of the terminal device from the RAMNF on the terminal device side. Using the IP address thus obtained, the AF directly transmits IP packets to the terminal device.
- Method 1-3 the AF sends an IP packet containing an ID specifying a terminal device and a message to the terminal device to the RAMNF on the terminal device side. Then, the RAMNF on the terminal device side transmits the message to the terminal device.
- the AF needs to hold information for determining to which RAMNF the message should be sent for each ID of the terminal device.
- the IP address of the terminal device is held only in the RAMNF on the terminal device side, so security threats are relatively small.
- Method 2-1 the AF transmits an IP packet storing a message together with an ID specifying the terminal device to the RAMNF on the AF side.
- the RAMNF on the AF side assigns the IP address of the terminal device to the IP packet and transmits the IP packet to which the IP address is assigned to the terminal device.
- the operation of the AF may be a simple operation of sending a message to the RAMNF on the AF side. Note that the RAMNF on the AF side takes time and effort to transfer the reply from the terminal device to the AF.
- Method 2-2 the AF inquires of the RAMNF on the AF side about the IP address of the terminal device based on the ID of the terminal device. Using the IP address thus obtained, the AF directly transmits IP packets to the terminal device. Method 1-2 allows direct communication between the terminal device and the AF, resulting in the least delay.
- one feature is where the IP address of the terminal device is added to the packet. If the RAMNF on the terminal device side passes the IP address of the terminal device to the AF on the other side as it is, communication with lower delay becomes possible, but the IP address is transferred to the farthest opposite side, which is a security problem. increasing threat of Further, if the RAMNF on the terminal device side does not pass the IP address of the terminal device to the other party, the communication delay increases.
- FIG. 5 is a diagram showing a configuration example of the communication system 1 according to the embodiment of the present disclosure.
- the communication system 1 comprises a plurality of private networks PN.
- the private network PN is, for example, a private network using cellular wireless communication such as 4G and 5G.
- a plurality of private networks PN are connected via a network N. Although only one network N is shown in the example of FIG. 5, a plurality of networks N may exist.
- network N is, for example, a public network such as the Internet.
- the network N is not limited to the Internet, and may be, for example, a LAN (Local Area Network), a WAN (Wide Area Network), a cellular network, a fixed telephone network, or a regional IP (Internet Protocol) network.
- the network N may include wired networks or wireless networks.
- Each private network PN includes a management device 10, a base station 20, and a terminal device 30.
- the communication system 1 provides users with a wireless network capable of mobile communication by operating in cooperation with each wireless communication device that configures the communication system 1 .
- the radio network of this embodiment is composed of, for example, a radio access network and a core network.
- the wireless communication device is a device having a wireless communication function, and corresponds to the base station 20 and the terminal device 30 in the example of FIG.
- the communication system 1 may include multiple management devices 10 , base stations 20 , and terminal devices 30 .
- the communication system 1 includes management devices 10 1 and 10 2 as the management device 10 and base stations 20 1 and 20 2 as the base stations 20 .
- the communication system 1 also includes terminal devices 30 1 , 30 2 , 30 3 and the like as terminal devices 30 .
- the device in the figure can be considered as a device in a logical sense.
- part of the devices in the figure may be realized by virtual machines (VMs), containers, Dockers, etc., and they may be physically implemented on the same hardware.
- VMs virtual machines
- containers containers
- Dockers etc.
- the communication system 1 may be compatible with radio access technologies (RAT: Radio Access Technology) such as LTE (Long Term Evolution) and NR (New Radio).
- RAT Radio Access Technology
- LTE and NR are types of cellular communication technology, and enable mobile communication of terminal devices by arranging a plurality of areas covered by base stations in a cell.
- the radio access method used by the communication system 1 is not limited to LTE and NR, and may be other radio access methods such as W-CDMA (Wideband Code Division Multiple Access), cdma2000 (Code Division Multiple Access 2000), etc. good too.
- W-CDMA Wideband Code Division Multiple Access
- cdma2000 Code Division Multiple Access 2000
- the base station or relay station that configures the communication system 1 may be a ground station or a non-ground station.
- a non-ground station may be a satellite station or an aircraft station. If the non-earth stations are satellite stations, the communication system 1 may be a Bent-pipe (Transparent) type mobile satellite communication system.
- a ground station also referred to as a ground base station refers to a base station (including a relay station) installed on the ground.
- base station including a relay station
- the term “terrestrial” is used in a broad sense to include not only land, but also underground, above water, and underwater. In the following description, the description of "earth station” may be replaced with “gateway”.
- the LTE base station is sometimes referred to as eNodeB (Evolved Node B) or eNB.
- the NR base stations are sometimes referred to as gNodeBs or gNBs.
- a terminal device also called a mobile station or a terminal
- UE User Equipment
- a terminal device is a type of communication device, and is also called a mobile station or a terminal.
- the concept of a communication device includes not only portable mobile devices (terminal devices) such as mobile terminals, but also devices installed in structures and mobile bodies.
- a structure or a mobile object itself may be regarded as a communication device.
- the concept of a communication device includes not only a terminal device but also a base station and a relay station.
- a communication device is a type of processing device and information processing device.
- the communication device can be called a transmitting device or a receiving device.
- each device constituting the communication system 1 will be specifically described below. Note that the configuration of each device shown below is merely an example. The configuration of each device may differ from the configuration shown below.
- the management device 10 is an information processing device (computer) that manages the wireless network.
- the management device 10 is an information processing device that manages communication of the base station 20 .
- the management device 10 may be, for example, a device that functions as an MME (Mobility Management Entity).
- the management device 10 may be a device having functions as AMF (Access and Mobility Management Function) and/or SMF (Session Management Function).
- AMF Access and Mobility Management Function
- SMF Session Management Function
- the functions of the management device 10 are not limited to MME, AMF, and SMF.
- the management device 10 may be a device having functions as NSSF (Network Slice Selection Function), AUSF (Authentication Server Function), PCF (Policy Control Function), and UDM (Unified Data Management).
- the management device 10 may be a device having a function as an HSS (Home Subscriber Server).
- the management device 10 may have a gateway function.
- the management device 10 may have functions as an S-GW (Serving Gateway) or a P-GW (Packet Data Network Gateway).
- the management device 10 may have a function as a UPF (User Plane Function).
- the management device 10 may have a function as a RAMNF (Reachability Management Network Function).
- the core network consists of multiple network functions, and each network function may be integrated into one physical device or distributed over multiple physical devices.
- the management device 10 can be distributed to a plurality of devices. Additionally, this distribution may be controlled to be performed dynamically.
- the base station 20 and the management device 10 configure one network and provide wireless communication services to the terminal device 30 .
- the management device 10 is connected to the Internet, and the terminal device 30 can use various services provided via the Internet via the base station 20 .
- the management device 10 does not necessarily have to constitute a core network.
- the core network is a W-CDMA (Wideband Code Division Multiple Access) or cdma2000 (Code Division Multiple Access 2000) core network.
- the management device 10 may be a device that functions as an RNC (Radio Network Controller).
- FIG. 6 is a diagram showing a configuration example of the management device 10 according to the embodiment of the present disclosure.
- the management device 10 includes a communication section 11 , a storage section 12 and a control section 13 .
- the configuration shown in FIG. 6 is a functional configuration, and the hardware configuration may differ from this.
- the functions of the management device 10 may be statically or dynamically distributed and implemented in a plurality of physically separated configurations.
- the management device 10 may be composed of a plurality of server devices.
- the communication unit 11 is a communication interface for communicating with other devices.
- the communication unit 11 may be a network interface or a device connection interface.
- the communication unit 11 may be a LAN (Local Area Network) interface such as a NIC (Network Interface Card), or a USB interface configured by a USB (Universal Serial Bus) host controller, a USB port, etc. good too.
- the communication unit 11 may be a wired interface or a wireless interface.
- the communication unit 11 functions as communication means for the management device 10 .
- the communication unit 11 communicates with the base station 20 and the like under the control of the control unit 13 .
- the storage unit 12 is a data readable/writable storage device such as a DRAM (Dynamic Random Access Memory), an SRAM (Static Random Access Memory), a flash memory, a hard disk, or the like.
- the storage unit 12 functions as storage means of the management device 10 .
- the storage unit 12 stores, for example, the connection state of the terminal device 30 .
- the storage unit 12 stores the RRC (Radio Resource Control) state and ECM (EPS Connection Management) state of the terminal device 30, or the 5G System CM (Connection Management) state.
- the storage unit 12 may function as a home memory that stores position information of the terminal device 30 .
- the control unit 13 is a controller that controls each unit of the management device 10 .
- the control unit 13 is implemented by a processor such as a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), or the like.
- the control unit 13 is implemented by the processor executing various programs stored in the storage device inside the management device 10 using a RAM (Random Access Memory) or the like as a work area.
- the control unit 13 may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- the base station 20 is a wireless communication device that wirelessly communicates with the terminal device 30 .
- the base station 20 may be configured to wirelessly communicate with the terminal device 30 via a relay station, or may be configured to directly wirelessly communicate with the terminal device 30 .
- the base station 20 is a type of communication device. More specifically, the base station 20 is a device corresponding to a radio base station (Base Station, Node B, eNB, gNB, etc.) or a radio access point (Access Point). Base station 20 may be a radio relay station. Also, the base station 20 may be an optical extension device called RRH (Remote Radio Head) or RU (Radio Unit). Also, the base station 20 may be a receiving station such as an FPU (Field Pickup Unit). Also, the base station 20 is an IAB (Integrated Access and Backhaul) donor node or an IAB relay node that provides radio access lines and radio backhaul lines by time division multiplexing, frequency division multiplexing, or space division multiplexing. good too.
- RRH Remote Radio Head
- RU Radio Unit
- FPU Field Pickup Unit
- the wireless access technology used by the base station 20 may be cellular communication technology or wireless LAN technology.
- the radio access technologies used by the base station 20 are not limited to these, and other radio access technologies may be used.
- the radio access technology used by the base station 20 may be LPWA (Low Power Wide Area) communication technology.
- the wireless communication used by the base station 20 may be wireless communication using millimeter waves.
- the wireless communication used by the base station 20 may be wireless communication using radio waves, or wireless communication using infrared rays or visible light (optical wireless).
- the base station 20 may be capable of NOMA (Non-Orthogonal Multiple Access) communication with the terminal device 30 .
- NOMA communication is communication (transmission, reception, or both) using non-orthogonal resources.
- the base station 20 may be capable of NOMA communication with another base station 20 .
- the base stations 20 may be able to communicate with each other via a base station-core network interface (eg, NG Interface, S1 Interface, etc.). This interface can be wired or wireless. Also, the base stations may be able to communicate with each other via inter-base station interfaces (eg, Xn Interface, X2 Interface, S1 Interface, F1 Interface, etc.). This interface can be wired or wireless.
- a base station-core network interface eg, NG Interface, S1 Interface, etc.
- This interface can be wired or wireless.
- inter-base station interfaces eg, Xn Interface, X2 Interface, S1 Interface, F1 Interface, etc.
- base station includes not only donor base stations but also relay base stations (also called relay stations).
- relay base station may be any one of RF Repeater, Smart Repeater, and Intelligent Surface.
- concept of a base station includes not only a structure having the functions of a base station but also devices installed in the structure.
- Structures are, for example, skyscrapers, houses, steel towers, station facilities, airport facilities, port facilities, office buildings, school buildings, hospitals, factories, commercial facilities, stadiums, and other buildings.
- the concept of structures includes not only buildings, but also non-building structures such as tunnels, bridges, dams, fences, and steel pillars, as well as equipment such as cranes, gates, and windmills.
- the concept of structures includes not only structures on land (in a narrow sense, above ground) or underground, but also structures on water such as piers and mega-floats, and underwater structures such as oceanographic observation equipment.
- a base station can be rephrased as an information processing device.
- the base station 20 may be a donor station or a relay station (relay station). Also, the base station 20 may be a fixed station or a mobile station.
- a mobile station is a mobile wireless communication device (eg, base station).
- the base station 20 may be a device installed in the mobile body, or may be the mobile body itself.
- a relay station with mobility can be regarded as the base station 20 as a mobile station.
- vehicles, UAVs (Unmanned Aerial Vehicles) typified by drones, smartphones, and other devices that are inherently mobile and equipped with base station functions (at least part of the base station functions) are also mobile. It corresponds to the base station 20 as a station.
- the mobile object may be a mobile terminal such as a smartphone or mobile phone.
- the mobile body may be a mobile body (for example, vehicles such as automobiles, bicycles, buses, trucks, motorcycles, trains, linear motor cars, etc.) that moves on land (narrowly defined ground), or underground (for example, it may be a moving body (eg, subway) that moves in a tunnel.
- the mobile body may be a mobile body that moves on water (for example, a passenger ship, a cargo ship, a ship such as a hovercraft), or a mobile body that moves underwater (for example, a submarine, a submarine, an unmanned underwater vehicle, etc.). submersible).
- the mobile object may be a mobile object that moves in the atmosphere (for example, an aircraft such as an airplane, an airship, or a drone).
- the base station 20 may be a ground base station (ground station) installed on the ground.
- the base station 20 may be a base station located in a structure on the ground, or a base station installed in a mobile body moving on the ground.
- the base station 20 may be an antenna installed in a structure such as a building and a signal processing device connected to the antenna.
- the base station 20 may be a structure or a mobile object itself. "Terrestrial" is not only land (terrestrial in a narrow sense), but also ground in a broad sense, including underground, above water, and underwater.
- the base station 20 is not limited to a ground base station.
- the base station 20 may be an aircraft station. From the perspective of a satellite station, an aircraft station located on the earth is a ground station.
- the base station 20 is not limited to a ground station.
- the base station 20 may be a non-terrestrial base station (non-terrestrial station) capable of floating in the air or space.
- base station 20 may be an aircraft station or a satellite station.
- a satellite station is a satellite station that can float outside the atmosphere.
- the satellite station may be a device mounted on a space mobile such as an artificial satellite, or may be the space mobile itself.
- a space vehicle is a mobile object that moves outside the atmosphere.
- Space mobiles include artificial celestial bodies such as artificial satellites, spacecraft, space stations, and probes.
- the satellites that will become satellite stations are Low Earth Orbiting (LEO) satellites, Medium Earth Orbiting (MEO) satellites, Geostationary Earth Orbiting (GEO) satellites, and Highly Elliptical Orbiting (HEO) satellites. ) satellite.
- LEO Low Earth Orbit
- MEO Medium Earth Orbit
- GEO Geostationary Earth Orbit
- HEO Highly Elliptical Orbit
- a satellite station may be a device onboard a low orbit satellite, a medium orbit satellite, a geostationary satellite, or a high elliptical orbit satellite.
- An aircraft station is a wireless communication device that can float in the atmosphere, such as an aircraft.
- the aircraft station may be a device mounted on an aircraft or the like, or may be the aircraft itself.
- the concept of aircraft includes not only heavy aircraft such as airplanes and gliders, but also light aircraft such as balloons and airships.
- the concept of aircraft includes not only heavy aircraft and light aircraft, but also rotorcraft such as helicopters and autogyros. Note that the aircraft station (or an aircraft on which the aircraft station is mounted) may be an unmanned aerial vehicle such as a drone.
- unmanned aircraft also includes unmanned aircraft systems (UAS) and tethered unmanned aerial systems (tethered UAS).
- UAS unmanned aircraft systems
- tethered UAS tethered unmanned aerial systems
- unmanned aerial vehicles includes light unmanned aerial systems (LTA: Lighter than Air UAS) and heavy unmanned aerial systems (HTA: Heavier than Air UAS).
- LTA Lighter than Air UAS
- HTA Heavier than Air UAS
- HAPs High Altitude UAS Platforms
- the size of the coverage of the base station 20 may be as large as a macrocell or as small as a picocell. Of course, the size of the coverage of the base station 20 may be extremely small such as femtocell.
- the base station 20 may also have beamforming capabilities. In this case, the base station 20 may form a cell or service area for each beam.
- FIG. 7 is a diagram showing a configuration example of the base station 20 according to the embodiment of the present disclosure.
- the base station 20 includes a wireless communication unit 21, a storage unit 22, and a control unit 23. Note that the configuration shown in FIG. 7 is a functional configuration, and the hardware configuration may differ from this. Also, the functions of the base station 20 may be distributed and implemented in multiple physically separated configurations.
- the wireless communication unit 21 is a signal processing unit for wirelessly communicating with another wireless communication device (for example, the terminal device 30).
- the radio communication section 21 operates under the control of the control section 23 .
- the radio communication unit 21 supports one or more radio access schemes.
- the wireless communication unit 21 supports both NR and LTE.
- the wireless communication unit 21 may support W-CDMA and cdma2000 in addition to NR and LTE.
- the wireless communication unit 21 may support an automatic retransmission technique such as HARQ (Hybrid Automatic Repeat reQuest).
- HARQ Hybrid Automatic Repeat reQuest
- the wireless communication unit 21 includes a transmission processing unit 211, a reception processing unit 212, and an antenna 213.
- the wireless communication unit 21 may include multiple transmission processing units 211 , reception processing units 212 , and antennas 213 . Note that when the wireless communication unit 21 supports a plurality of wireless access methods, each unit of the wireless communication unit 21 can be individually configured for each wireless access method.
- the transmission processing unit 211 and the reception processing unit 212 may be individually configured for LTE and NR.
- the antenna 213 may be composed of a plurality of antenna elements (for example, a plurality of patch antennas).
- the wireless communication unit 21 may be configured to be capable of beam forming.
- the radio communication unit 21 may be configured to be capable of polarization beamforming using vertical polarization (V polarization) and horizontal polarization (H polarization).
- the transmission processing unit 211 performs transmission processing of downlink control information and downlink data.
- the transmission processing unit 211 encodes downlink control information and downlink data input from the control unit 23 using an encoding method such as block encoding, convolutional encoding, turbo encoding.
- the encoding may be encoding by polar code or encoding by LDPC code (Low Density Parity Check Code).
- the transmission processing unit 211 modulates the coded bits with a predetermined modulation scheme such as BPSK, QPSK, 16QAM, 64QAM, 256QAM.
- the signal points on the constellation do not necessarily have to be equidistant.
- the constellation may be a non-uniform constellation (NUC).
- the transmission processing unit 211 multiplexes the modulation symbols of each channel and downlink reference signals, and arranges them in predetermined resource elements. Then, the transmission processing unit 211 performs various signal processing on the multiplexed signal. For example, the transmission processing unit 211 performs conversion to the frequency domain by fast Fourier transform, addition of a guard interval (cyclic prefix), generation of a baseband digital signal, conversion to an analog signal, quadrature modulation, up-conversion, extra Processing such as removal of frequency components and amplification of power is performed. A signal generated by the transmission processing unit 211 is transmitted from the antenna 213 .
- a guard interval cyclic prefix
- the reception processing unit 212 processes uplink signals received via the antenna 213 .
- the reception processing unit 212 performs down-conversion, removal of unnecessary frequency components, control of amplification level, orthogonal demodulation, conversion to digital signals, removal of guard intervals (cyclic prefixes), and high-speed Extraction of frequency domain signals by Fourier transform, etc. are performed.
- the reception processing unit 212 separates uplink channels such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and uplink reference signals from the signal subjected to these processes.
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- the reception processing unit 212 demodulates the received signal using a modulation scheme such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying) for the modulation symbols of the uplink channel.
- the modulation scheme used for demodulation may be 16QAM (Quadrature Amplitude Modulation), 64QAM, or 256QAM.
- the signal points on the constellation do not necessarily have to be equidistant.
- the constellation may be a non-uniform constellation (NUC).
- the reception processing unit 212 performs decoding processing on the coded bits of the demodulated uplink channel.
- the decoded uplink data and uplink control information are output to the control section 23 .
- the antenna 213 is an antenna device (antenna unit) that mutually converts electric current and radio waves.
- the antenna 213 may be composed of one antenna element (for example, one patch antenna), or may be composed of a plurality of antenna elements (for example, a plurality of patch antennas).
- the wireless communication section 21 may be configured to be capable of beamforming.
- the radio communication unit 21 may be configured to generate directional beams by controlling the directivity of radio signals using a plurality of antenna elements.
- the antenna 213 may be a dual polarized antenna.
- the wireless communication unit 21 may use vertical polarized waves (V polarized waves) and horizontal polarized waves (H polarized waves) for transmitting wireless signals. Then, the wireless communication unit 21 may control the directivity of the wireless signal transmitted using the vertically polarized wave and the horizontally polarized wave. Also, the radio communication unit 21 may transmit and receive signals that are spatially multiplexed via a plurality of layers composed of a plurality of antenna elements.
- the storage unit 22 is a data readable/writable storage device such as a DRAM, SRAM, flash memory, or hard disk.
- the storage unit 22 functions as storage means for the base station 20 .
- the control unit 23 is a controller that controls each unit of the base station 20 .
- the control unit 23 is implemented by a processor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit), for example.
- the control unit 23 is implemented by the processor executing various programs stored in the storage device inside the base station 20 using a RAM (Random Access Memory) or the like as a work area.
- the control unit 23 may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- CPUs, MPUs, ASICs, and FPGAs can all be considered controllers.
- the control unit 23 may be implemented by a GPU (Graphics Processing Unit) in addition to or instead of the CPU.
- the concept of a base station may consist of a collection of multiple physical or logical devices.
- the base station may be classified into a plurality of devices such as BBU (Baseband Unit) and RU (Radio Unit). A base station may then be interpreted as a collection of these devices.
- the base station may be one or both of the BBU and RU.
- the BBU and RU may be connected by a predetermined interface (eg, eCPRI (enhanced Common Public Radio Interface)).
- RU may also be called RRU (Remote Radio Unit) or RD (Radio DoT).
- the RU may correspond to gNB-DU (gNB Distributed Unit), which will be described later.
- the BBU may correspond to gNB-CU (gNB Central Unit), which will be described later.
- the RU may be a wireless device connected to a gNB-DU as described below.
- the gNB-CU, gNB-DU, and RUs connected to the gNB-DU may be configured to comply with O-RAN (Open Radio Access Network).
- the RU may be a unit integrally formed with the antenna.
- the antenna that the base station has eg, an antenna integrally formed with the RU
- the antennas of the base station may have, for example, 64 transmitting antenna ports and 64 receiving antenna ports.
- the antenna mounted on the RU may be an antenna panel composed of one or more antenna elements, and the RU may mount one or more antenna panels.
- the RU has two types of antenna panels, a horizontally polarized antenna panel and a vertically polarized antenna panel, or two types of antenna panels, a right-handed circularly polarized antenna panel and a left-handed circularly polarized antenna panel. Can be installed.
- the RU may also form and control independent beams for each antenna panel.
- a plurality of base stations may be connected to each other.
- One or more base stations may be included in a Radio Access Network (RAN).
- the base station may simply be called RAN, RAN node, AN (Access Network), or AN node.
- EUTRAN Enhanced Universal Terrestrial RAN
- the RAN in NR is sometimes called NGRAN.
- the RAN in W-CDMA (UMTS) is sometimes called UTRAN.
- the LTE base station is sometimes referred to as eNodeB (Evolved Node B) or eNB.
- the EUTRAN then includes one or more eNodeBs (eNBs).
- the NR base stations are sometimes referred to as gNodeBs or gNBs.
- the NGRAN includes one or more gNBs.
- the EUTRAN may include gNBs (en-gNBs) connected to a core network (EPC) in the LTE communication system (EPS).
- NGRAN may include ng-eNBs connected to a core network 5GC in a 5G communication system (5GS).
- the base station is sometimes called 3GPP Access.
- the base station when the base station is a wireless access point (Access Point), the base station may be referred to as a non-3GPP access (Non-3GPP Access).
- the base station may be an optical extension device called RRH (Remote Radio Head) or RU (Radio Unit).
- RRH Remote Radio Head
- RU Radio Unit
- the base station when the base station is a gNB, the base station may be a combination of the above-described gNB-CU and gNB-DU, or either gNB-CU or gNB-DU. may
- the gNB-CU uses multiple upper layers (for example, RRC (Radio Resource Control), SDAP (Service Data Adaptation Protocol), PDCP (Packet On the other hand, gNB-DU hosts multiple lower layers (for example, RLC (Radio Link Control), MAC (Medium Access Control), PHY (Physical layer)) of the access stratum.
- RRC Radio Resource Control
- SDAP Service Data Adaptation Protocol
- PDCP Packet
- gNB-DU hosts multiple lower layers (for example, RLC (Radio Link Control), MAC (Medium Access Control), PHY (Physical layer)) of the access stratum.
- RLC Radio Link Control
- MAC Medium Access Control
- PHY Physical layer
- RRC signaling (semi-static notification) is generated in the gNB-CU, while MAC CE and DCI (dynamic notification) are generated in the gNB-DU
- RRC configuration (semi-static notification)
- some configurations such as IE: cellGroupConfig are generated in gNB-DU, and the remaining configurations are gNB - may be generated at the CU, and these configurations may be sent and received at the F1 interface described below.
- the base station may be configured to be able to communicate with other base stations.
- the base stations may be connected via an X2 interface.
- the devices may be connected via an Xn interface.
- the devices may be connected by the F1 interface described above.
- Messages/information described later may be transmitted between multiple base stations, e.g., via the X2 interface, the Xn interface, or the F1 interface. .
- a cell provided by a base station is sometimes called a serving cell.
- the concept of serving cell includes PCell (Primary Cell) and SCell (Secondary Cell).
- PCell Primary Cell
- SCell Secondary Cell
- dual connectivity is configured in the UE (for example, the terminal device 30)
- the PCell provided by the MN (Master Node) and zero or more SCells may be called a Master Cell Group.
- dual connectivity include EUTRA-EUTRA Dual Connectivity, EUTRA-NR Dual Connectivity (ENDC), EUTRA-NR Dual Connectivity with 5GC, NR-EUTRA Dual Connectivity (NEDC), and NR-NR Dual Connectivity.
- the serving cell may include a PSCell (Primary Secondary Cell or Primary SCG Cell).
- PSCell Primary Secondary Cell or Primary SCG Cell
- a PSCell provided by an SN (Secondary Node) and zero or more SCells may be called an SCG (Secondary Cell Group).
- PUCCH Physical Uplink control channel
- SCell Secondary Cell Group
- a radio link failure Radio Link Failure
- SCell SCell
- One cell may be associated with one downlink component carrier and one uplink component carrier.
- the system bandwidth corresponding to one cell may be divided into a plurality of BWPs (Bandwidth Parts).
- one or more BWPs may be set in the UE, and one BWP may be used by the UE as an active BWP.
- the radio resources for example, frequency band, numerology (subcarrier spacing), slot format (Slot configuration)
- the radio resources for example, frequency band, numerology (subcarrier spacing), slot format (Slot configuration) that can be used by the terminal device 30 may differ for each cell, each component carrier, or each BWP.
- the terminal device 30 is a wireless communication device that wirelessly communicates with other communication devices such as the base station 20 .
- the terminal device 30 is, for example, a mobile phone, a smart device (smartphone or tablet), a PDA (Personal Digital Assistant), or a personal computer.
- the terminal device 30 may be a device such as a business-use camera equipped with a communication function, or may be a motorcycle, mobile relay vehicle, or the like equipped with a communication device such as an FPU (Field Pickup Unit).
- the terminal device 30 may be an M2M (Machine to Machine) device or an IoT (Internet of Things) device.
- the terminal device 30 may be capable of NOMA communication with the base station 20. Also, the terminal device 30 may be able to use an automatic retransmission technique such as HARQ when communicating with the base station 20 . The terminal device 30 may be capable of sidelink communication with another terminal device 30 . The terminal device 30 may be able to use an automatic retransmission technique such as HARQ even when performing sidelink communication. Note that the terminal device 30 may be capable of NOMA communication also in communication (side link) with another terminal device 30 . Also, the terminal device 30 may be capable of LPWA communication with other communication devices (for example, the base station 20 and other terminal devices 30). Also, the wireless communication used by the terminal device 30 may be wireless communication using millimeter waves. The wireless communication (including side link communication) used by the terminal device 30 may be wireless communication using radio waves, or wireless communication using infrared rays or visible light (optical wireless). good.
- the terminal device 30 may be a mobile device.
- a mobile device is a mobile wireless communication device.
- the terminal device 30 may be a wireless communication device installed in a mobile object, or may be the mobile object itself.
- the terminal device 30 is a vehicle that moves on roads such as automobiles, buses, trucks, and motorcycles, a vehicle that moves on rails installed on a track such as a train, or a It may be a wireless communication device.
- the mobile object may be a mobile terminal, or a mobile object that moves on land (ground in a narrow sense), underground, on water, or in water.
- the mobile object may be a mobile object such as a drone, a helicopter, or the like that moves in the atmosphere, or a mobile object that moves outside the atmosphere, such as an artificial satellite.
- the terminal device 30 may communicate with multiple base stations or multiple cells at the same time. For example, when one base station supports a communication area through multiple cells (for example, pCell, sCell), carrier aggregation (CA: Carrier Aggregation) technology and dual connectivity (DC: Dual Connectivity) technology,
- CA Carrier Aggregation
- DC Dual Connectivity
- the multi-connectivity (MC) technology enables the base station 20 and the terminal device 30 to communicate by bundling the plurality of cells.
- CoMP Coordinatd Multi-Point Transmission and Reception
- FIG. 8 is a diagram showing a configuration example of the terminal device 30 according to the embodiment of the present disclosure.
- the terminal device 30 includes a wireless communication section 31 , a storage section 32 and a control section 33 .
- the configuration shown in FIG. 8 is a functional configuration, and the hardware configuration may differ from this. Also, the functions of the terminal device 30 may be distributed and implemented in a plurality of physically separated configurations.
- the wireless communication unit 31 is a signal processing unit for wirelessly communicating with other wireless communication devices (eg, the base station 20 and other terminal devices 30).
- the radio communication section 31 operates under the control of the control section 33 .
- the wireless communication unit 31 includes a transmission processing unit 311 , a reception processing unit 312 and an antenna 313 .
- the configurations of the radio communication unit 31, the transmission processing unit 311, the reception processing unit 312, and the antenna 313 may be the same as those of the radio communication unit 21, the transmission processing unit 211, the reception processing unit 212, and the antenna 213 of the base station 20.
- the wireless communication unit 31 may be configured to be capable of beam forming, similarly to the wireless communication unit 21 .
- the radio communication unit 31 may be configured to be capable of transmitting and receiving spatially multiplexed signals.
- the storage unit 32 is a data readable/writable storage device such as a DRAM, SRAM, flash memory, or hard disk.
- the storage unit 32 functions as storage means of the terminal device 30 .
- the control unit 33 is a controller that controls each unit of the terminal device 30 .
- the control unit 33 is implemented by a processor such as a CPU or MPU, for example.
- the control unit 33 is implemented by the processor executing various programs stored in the storage device inside the terminal device 30 using the RAM or the like as a work area.
- the control unit 33 may be realized by an integrated circuit such as ASIC or FPGA. CPUs, MPUs, ASICs, and FPGAs can all be considered controllers.
- the control unit 33 may be realized by a GPU in addition to or instead of the CPU.
- FIG. 9 is a diagram illustrating an example of a 5G architecture.
- the 5G core network CN is also called 5GC (5G Core)/NGC (Next Generation Core).
- 5G core network CN is also referred to as 5GC/NGC.
- the core network CN connects with UE (User Equipment) 30 via (R)AN 430 .
- UE30 is the terminal device 30, for example.
- the core network CN shown in FIG. 9 does not include a RAMNF, the core network CN may include a RAMNF as one of network functions. Of course, it may also be a network function located outside the RAMNF core network CN.
- the (R)AN 430 has a function that enables connection with a RAN (Radio Access Network) and connection with an AN (Access Network) other than the RAN.
- the (R)AN 430 includes base stations called gNBs or ng-eNBs.
- the core network CN mainly performs connection permission and session management when UE30 connects to the network.
- the core network CN may be configured including user plane functional group 420 and control plane functional group 440 .
- the user plane function group 420 includes a UPF (User Plane Function) 421 and a DN (Data Network) 422.
- the UPF 421 has a user plane processing function.
- the UPF 421 includes routing/forwarding functions for data handled on the user plane.
- the DN 422 has a function of providing connection to an operator's own service, such as an MNO (Mobile Network Operator), Internet connection, or providing connection to a third party's service.
- an operator's own service such as an MNO (Mobile Network Operator), Internet connection, or providing connection to a third party's service.
- the user plane function group 420 plays the role of a gateway that serves as a boundary between the core network CN and the Internet.
- the control plane function group 440 includes AMF (Access Management Function) 441, SMF (Session Management Function) 442, AUSF (Authentication Server Function) 443, NSSF (Network Slice Selection Function) 444, NEF (Network Exposure Function) 445, NRF ( Network Repository Function) 446, PCF (Policy Control Function) 447, UDM (Unified Data Management) 448, and AF (Application Function) 449.
- AMF Access Management Function
- SMF Session Management Function
- AUSF Authentication Server Function
- NSSF Network Slice Selection Function
- NEF Network Exposure Function
- NRF Network Repository Function
- PCF Policy Control Function
- UDM Unified Data Management
- AF Application Function
- the AMF 441 has functions such as UE 30 registration processing, connection management, and mobility management.
- the SMF 442 has functions such as session management, UE 30 IP allocation and management.
- AUSF 443 has an authentication function.
- the NSSF 444 has functions related to network slice selection.
- the NEF 445 has the ability to provide network function capabilities and events to third parties, AF 449 and edge computing functions.
- the NRF 446 has the function of discovering network functions and holding profiles of network functions.
- the PCF 447 has a function of policy control.
- the UDM 448 has functions for generating 3GPP AKA authentication information and processing user IDs.
- AF449 has the function of interacting with the core network to provide services.
- control plane function group 440 acquires information from the UDM 448 in which the subscriber information of the UE 30 is stored, and determines whether the UE 30 may connect to the network.
- the control plane function group 440 uses the contract information of the UE 30 and the encryption key included in the information acquired from the UDM 448 for this determination. Also, the control plane function group 440 generates a key for encryption and the like.
- control plane function group 440 determines whether or not network connection is possible depending on whether information about the UE 30 linked to the subscriber number called IMSI (International Mobile Subscriber Identity) is stored in the UDM 448.
- IMSI International Mobile Subscriber Identity
- the IMSI is stored in, for example, a SIM (Subscriber Identity Module) card in the UE30.
- Namf is a service-based interface provided by the AMF 441
- Nsmf is a service-based interface provided by the SMF 442.
- Nnef is a service-based interface provided by the NEF 445
- Npcf is a service-based interface provided by the PCF 447.
- Nudm is a service-based interface provided by UDM 448 and Naf is a service-based interface provided by AF 449 .
- Nnrf is a service-based interface provided by NRF 446 and Nnssf is a service-based interface provided by NSSF 444 .
- Nausf is a service-based interface provided by AUSF443.
- Each of these NFs (Network Functions) exchanges information with other NFs via each service-based interface.
- N1 shown in FIG. 9 is a reference point between UE30 and AMF441
- N2 is a reference point between RAN/AN430 and AMF441.
- N4 is a reference point between SMF 442 and UPF 421, and information is exchanged between these NFs (Network Functions).
- the core network CN is provided with an interface for transmitting information and controlling functions via an application programming interface (API) called a service-based interface.
- API application programming interface
- the API specifies a resource and performs GET (resource acquisition), POST (resource creation, data addition), PUT (resource creation, resource update), DELETE (resource deletion) for the resource. etc.
- GET resource acquisition
- POST resource creation, data addition
- PUT resource creation, resource update
- DELETE resource deletion
- the AMF 441, SMF 442, and UDM 448 shown in FIG. 9 exchange information with each other using an API when establishing a communication session.
- applications for example, AF449
- AF449's use of such APIs will allow AF449 to use information on the 5G cellular network, and it will be possible to further evolve the functionality of the application.
- API (1) to API (4) described here are described in 3GPP TS23.502.
- API (1) is an API by which the SMF 442 notifies that the UE 30 that has been registered in advance transitions from the power off state to the power on state and attaches to the network, and the IP address acquired at that time. .
- the SMF 442 uses API (1) to notify the NF when the UE 30 of the registered IMSI acquires the IP address.
- API (2) The UE 30 enters the Idle mode when not communicating, and transitions to the Connected mode when communicating.
- API (2) is an API by which the AMF 441 notifies whether the UE 30 is in the Idle mode or the Connected mode.
- API (3) is an API for broadcasting from the base station a message (paging message) for instructing the UE 30 to transition from the idle mode to the connected mode.
- API (4) API (4) is an API by which the AMF 441 provides the location information of the UE30.
- the AMF 441 may use API (4) to inform which Tracking Area the UE 30 is in, which Cell it belongs to, and when it enters a particular region.
- An example of the UE 30 in FIG. 9 is the terminal device 30 of this embodiment.
- An example of the RAN/AN 430 is the base station 20 of this embodiment.
- the management device 10 shown in FIG. 5 is an example of a device having, for example, AF449 or AMF441 functions.
- FIG. 10 is a diagram illustrating an example of a 4G architecture.
- the core network CN shown in FIG. 10 does not include a RAMNF, the core network CN may include a RAMNF as one of network functions. Of course, it may also be a network function located outside the RAMNF core network CN.
- the core network CN includes eNB 20, MME (Mobility Management Entity) 452, S-GW (Serving Gateway) 453, P-GW (Packet Data Network Gateway) 454, and HSS (Home Subscriber Server) 455. include.
- MME Mobility Management Entity
- S-GW Serving Gateway
- P-GW Packet Data Network Gateway
- HSS Home Subscriber Server
- the eNB 20 functions as a 4G base station.
- MME452 is a control node which handles the signal of a control plane (control plane), and manages the movement state of UE401.
- UE401 transmits an Attach request to MME452 in order to attach to the cellular system.
- the S-GW 453 is a control node that handles user plane signals, and is a gateway device that switches the transfer path of user data.
- the P-GW 454 is a control node that handles user plane signals, and is a gateway device that serves as a connection point between the core network CN and the Internet.
- HSS 455 is a control node that handles subscriber data and performs service control.
- the MME 452 corresponds to the functions of the AMF 441 and SMF 442 in 5G networks. Also, the HSS 455 corresponds to the functions of the UDM 448 .
- the eNB 20 is connected with the MME 452 via the S1-MME interface, and is connected with the S-GW 453 via the S1-U interface.
- S-GW 453 is connected to MME 452 via an S11 interface
- MME 452 is connected to HSS 455 via an S6a interface.
- P-GW 454 is connected to S-GW 453 via S5/S8 interfaces.
- a private network has characteristics that are strong against security threats, but since it is a network in a limited location, it is necessary to expand that location. Therefore, in this embodiment, by connecting a plurality of private networks by the method described below, the closed network is expanded while maintaining the property of being resistant to security threats.
- the communication system 1 links two private networks as a pair (1:1) in order to limit the communication range.
- 1:N N private networks
- the communication system 1 creates N pairs of 1:1 private networks.
- N:M networks create M 1:1 private networks and create N of them.
- the networks are paired (1:1) for private networks.
- the IP address and ID of the terminal device 30 are prevented from spreading and being transferred. By creating pairs only when necessary, the closed network is prevented from expanding when unnecessary.
- FIG. 11 is a diagram showing how a plurality of 4G/5G private networks are linked.
- the two private networks are connected by a VPN (Virtual Private network) as shown in FIG.
- VPN Virtual Private network
- 4G/5G private network (1) and 4G/5G private network (n) cannot communicate.
- the communication system 1 sets the routing table so that packets cannot be delivered via the 4G/5G private network. As a result, the IP address and ID of the terminal device 30 are prevented from spreading and being transferred.
- FIG. 12 is a sequence diagram showing a procedure for creating a 4G/5G private network pair.
- UE is the terminal device 30 .
- the RAMNF, AF, and gateway are functions of the management device 10 .
- a procedure for creating a 4G/5G private network pair will be described below with reference to FIG.
- Step 1 A client application (eg, UE/AF on the transmitting side) sends a request to the 4G/5G private network association management to communicate between 4G/5G private network A and 4G/5G private network B.
- the request at this time may use the normal Internet.
- 4G/5G private network association management is a function for linking two private networks. Rather than being placed in a closed network, this function is preferably placed where multiple private network gateways are accessible, eg, on the Internet. This is because its role is to control the creation of a VPN tunnel between two private networks upon request.
- 4G/5G private network association management may be referred to as association manager.
- Step 2 The association manager sets up a VPN tunnel between 4G/5G private network A and 4G/5G private network B.
- One RAMNF is arranged in each 4G/5G private network.
- Each RAMNF provides the following functions for the UEs in the 4G/5G private network to which it belongs. ⁇ Name Resolution ⁇ Push notifications ⁇ Provision of information on the state of the terminal device
- Name resolution is a function of returning the IP address of the inquired terminal when there is an inquiry about the IP address of the terminal device 30 with the ID of the terminal device 30. Normally, it is the same as the function of DNS (Domain Name System).
- Push notification means that when a message addressed to the terminal is received from the client application together with the ID of the terminal device 30, the packet containing the message is sent to the terminal using the IP address addressed to the terminal. It is a function to send.
- Provision of terminal device status information is a function that informs the client application whether the terminal device 30 is in the Idle mode or the Connected mode.
- Step 3 After the pair is established, the client application uses the ID or IP address of the destination terminal device 30 to resolve the name to the RAMNF of the 4G/5G private network A or B to obtain the IP address, Send the message to the destination terminal. Alternatively, the client application uses the push notification function to send the message to the destination terminal.
- the private network management identified the IP address of the terminal device 30 by the ID of the terminal device 30 .
- the ID of the terminal device 30 will be described below.
- FQDN Full Qualified Domain Name
- ID of the terminal device 30 may be a UE number such as 1 or 2. This number may be the order of the UE as listed in the core network's subscriber file.
- the table below is an example of a subscriber file.
- SUPI Subscribescription Permanent Identifier
- IMSI International Mobile Subscriber Identity
- SUPI or IMSI is an ID for specifying a terminal, and SUPI or IMSI may be used instead of ID.
- SUPI and IMSI cannot be changed, there is a security risk such as abuse.
- the ID of this terminal device 30 may be called a terminal ID.
- Method 1 in which the IP address of the terminal device 30 on the receiving side is held only in the RAMNF of the private network on the receiving side;
- Method 2 is conceivable, in which the IP address of the device 30 is also held in the RAMNF of the sending private network.
- the receiving private network is a 4G/5G private network to which the terminal device 30 that receives packets is connected
- the transmitting private network is a 4G/5G private network to which the terminal device 30 that receives packets is connected.
- the terminal device 30 that transmits packets is sometimes referred to as the transmitting side UE, and the terminal device 30 that receives packets is sometimes referred to as the receiving side UE.
- packet transmission between terminal devices 30 is assumed, but the application of the present embodiment is not limited to packet transmission between terminal devices 30 as long as it is packet transmission between private networks.
- the present embodiment can perform packet transmission from the transmitting UE to the AF of the receiving core network, packet transmission from the AF of the transmitting core network to the receiving UE, or from the AF of the transmitting core network to the receiving core network. , sending packets to the AF of .
- Method 1 the RAMNF of the private network of the receiving side pushes the message to the UE of the receiving side without exposing the IP address of the UE of the receiving side obtained by the RAMNF of the private network of the receiving side to the outside of the private network of the receiving side.
- method 1-1 shown in FIG. 13 is conceivable.
- FIG. 13 is a diagram for explaining method 1-1.
- 4G/5G private network A is the receiving private network and 4G/5G private network B is the transmitting private network.
- RAMNF (A) is the RAMNF of the private network on the receiving side
- RAMNF (B) is the RAMNF of the private network on the sending side.
- the UE or AF ID may be referred to as a terminal ID.
- RAMNF (A) first acquires the IP address of the receiving UE.
- the RAMNF(A) stores the terminal ID of the receiving side UE and its IP address as a pair in a storage device.
- RAMNF (A) obtains the IP address of the terminal directly from the core network by using the SBI (Service Based Interface) of the core network.
- SBI Service Based Interface
- RAMNF (B) When the RAMNF (B) receives the terminal ID of the receiving side UE and the message from the client application installed in the UE, based on the terminal ID, it determines which pair of 4G/5G private networks the communication is with. to decide. Once the corresponding 4G/5G private network is found, RAMNF(B) sends a message to the IP address of RAMNF(A) of the found 4G/5G private network with the terminal ID of the receiving UE. When RAMNF (A) receives a packet containing a terminal ID and a message, it identifies the IP address of the receiving UE based on the terminal ID included in the packet, and transmits the message to that IP address. .
- the client application only needs to send a message along with the terminal ID to the RAMNF in the 4G/5G private network to which it belongs, which has the advantage of simplifying the operation of the client application. .
- RAMNF(B) needs to keep track of which RAMNF(A) to forward the message and destination terminal ID to for each terminal ID.
- this information conveys the terminal ID range of each 4G/5G private network and the IP address of RAMNF (A) to RAMNF (B) on the other side. It is necessary to keep This information exchange between RAMNF (A) and RAMNF (B) is one of the features of this method.
- RAMNF (A) and RAMNF (B) have push notification functions.
- the destination terminal had to keep setting up the TCP connection up to the RAMNF, but in this method, the UE does not need to set up the TCP connection in advance. Further, the client application can communicate only by knowing the terminal ID, thus reducing the burden on the client application.
- FIG. 14 is a diagram for explaining method 1-2.
- method 1-2 is preferable because method 1-2 causes a larger delay than method 1-1.
- FIG. 15 is a sequence diagram showing the procedure of method 1-1.
- a VPN tunnel is set up between the 4G/5G private network A and the 4G/5G private network B by the procedure enclosed by the dashed line.
- the procedure of this part is the same as the procedure explained using FIG.
- RAMNF (A) may establish a TCP connection in advance with the Association Manager in order to periodically communicate its own IP address to the Association Manager before the tunnel is created. .
- RAMNF (A) communicates RAMNF (A)'s IP address to RAMNF (B) after the VPN tunnel is established.
- RAMNF(A) does not initially know the IP address of RAMNF(B), this may not be the preferred method.
- a method of learning each other's IP addresses via an association manager is considered desirable.
- the acquired IP address of the UE is not released from the acquired 4G/5G private network, so security can be strengthened.
- Method 2 the IP address of the receiving UE obtained by the RAMNF of the receiving private network is forwarded to the RAMNF of the transmitting private network.
- the RAMNF of the sending private network then pushes the message to the receiving UE.
- the IP address of the UE on the receiving side remains within the private network on the receiving side, which is desirable from a security point of view.
- processing is required in two RAMNFs on the transmitting side and the receiving side, and there is a concern that the delay will increase.
- Method 2 the drawback of Method 1 is improved.
- Method 2-1 in which the RAMNF of the private network on the transmitting side issues a push notification, and method 2-2 in which the UE on the transmitting side issues a push notification are conceivable.
- Method 2-1 will be explained.
- FIG. 16 is a diagram for explaining method 2-1.
- FIG. 17 is a sequence diagram showing the procedure of method 2-1.
- 4G/5G private network A is the receiving private network
- 4G/5G private network B is the transmitting private network.
- RAMNF (A) is the RAMNF of the private network on the receiving side
- RAMNF (B) is the RAMNF of the private network on the sending side.
- the UE or AF ID may be referred to as a terminal ID.
- RAMNF (A) first acquires the IP address of the receiving UE.
- the RAMNF(A) stores the terminal ID of the receiving side UE and its IP address as a pair in a storage device.
- RAMNF (A) obtains the IP address of the terminal directly from the core network by using the SBI (Service Based Interface) of the core network.
- SBI Service Based Interface
- RAMNF (A) After 4G/5G private network A and 4G/5G private network B are paired, RAMNF (A) notifies RAMNF (B) of the IP address information of the receiving side UE together with the terminal ID.
- RAMNF (B) When RAMNF (B) receives a packet from the client application of the UE on the sending side, it replaces the destination of the packet with the IP address of the UE on the receiving side. Then, RAMNF (B) transmits the packet with the exchanged destination to the receiving side UE. For example, RAMNF (B) performs push notification based on UDP (User Datagram Protocol) to the receiving side UE.
- UDP User Datagram Protocol
- the RAMNFs communicate with each other the information received from the other side's RAMNF (e.g. terminal's IP address information) is promptly discarded.
- FIG. 18 is a diagram for explaining method 2-2.
- FIG. 19 is a sequence diagram showing the procedure of method 2-2.
- 4G/5G private network A is the receiving private network
- 4G/5G private network B is the transmitting private network.
- RAMNF (A) is the RAMNF of the private network on the receiving side
- RAMNF (B) is the RAMNF of the private network on the sending side.
- the UE or AF ID may be referred to as a terminal ID.
- RAMNF (A) first acquires the IP address of the receiving UE.
- the RAMNF(A) stores the terminal ID of the receiving side UE and its IP address as a pair in a storage device.
- RAMNF (A) obtains the IP address of the terminal directly from the core network by using the SBI (Service Based Interface) of the core network.
- SBI Service Based Interface
- RAMNF (A) After 4G/5G private network A and 4G/5G private network B are paired, RAMNF (A) notifies RAMNF (B) of the IP address information of the receiving side UE together with the terminal ID.
- RAMNF (B) When RAMNF (B) receives a request for the IP address of the receiving side UE accompanied by the terminal ID of the receiving side UE from the client application of the sending side UE, it returns the IP address of the receiving side UE to the client application.
- the client application Upon receiving the IP address of the receiving UE, the client application transmits a packet to the received IP address. For example, the client application performs a push notification based on UDP (User Datagram Protocol) to the receiving side UE.
- UDP User Datagram Protocol
- the RAMNFs communicate with each other the information received from the other side's RAMNF (e.g. terminal's IP address information) is promptly discarded.
- the client application can directly communicate with the destination terminal, so the delay can be reduced.
- TCP communication of course, even in UDP communication, the client application and the destination terminal can communicate directly, so the delay is small.
- Communication system 1 may also operate as follows.
- Method 3 also forwards the IP address of the receiving UE obtained by the RAMNF of the receiving private network to the RAMNF of the transmitting private network.
- the RAMNF of the transmitting private network may not transfer information on the state of the receiving UE such as Idle/Connected to the RAMNF of the transmitting private network depending on the state of the receiving UE.
- RAMNF has three functions regarding UE information within the private network to which it belongs.
- the three functions are "name resolution”, "push notification", and “provision of terminal device status information”.
- the state of the terminal device in “providing the state of the terminal device” means whether or not the terminal device 30 has acquired an IP address, and whether the terminal device 30 is in the idle mode or the connected mode. .
- the key point of this method is which of these pieces of information is transmitted from RAMNF (A) to RAMNF (B)/transmitting UE.
- the table shown below is a table showing an example of the state of the terminal device.
- RAMNF (A) transfers RRC status information to RAMNF (B)
- RAMNF (B) RAMNF
- RAMNF(A) should send the latest registration information to RAMNF(B) from time to time.
- FIG. 20 is a sequence diagram in which the procedure of method 3 is added to the procedure of method 2-2.
- the procedure of Method 3 will be described below with reference to FIG.
- the client application inquires of RAMNF (B) whether the receiving UE has obtained an IP address (that is, whether the receiving UE is in a registered state).
- the client application inquires of RAMNF (A) whether the receiving-side UE is in Connected mode or Idle mode.
- the client application sends messages to the receiving UE only when the receiving UE is Connected. This is because the power consumption of the receiving side UE can be suppressed by transmitting the message only when Connected.
- the reason why the inquiry destination is RAMNF(A) is that the state of Idle/Connected changes frequently.
- a client application that has decided to send a message uses the terminal ID of the receiving UE to query RAMNF (B) for the IP address of the receiving UE. After obtaining the IP address, the client application sends a message to the receiving UE using an IP packet with that IP address.
- B RAMNF
- RAMNF (B) determines whether the receiving side UE is in Connected mode or Idle mode. ) may be contacted. Then, the client application may transmit the message to the receiving UE only when the receiving UE is Connected.
- the transfer of UE status information can be minimized. As a result, it is possible to reduce the security threat that the UE state information is seen by other companies.
- Method 4 when the plan for the Idle mode/Connected mode of the destination terminal is indicated by RAMNF (A), the communication device of the 4G/5G private network A is limited to the Connected mode section associated with Allow transmission of packets from 4G/5G private network B to UE in 4G/5G private network A only during the period. If the packet arrives during any other period, the communication device discards the packet.
- FIG. 21 is a diagram for explaining the period during which packet transmission is permitted.
- Some 5G AMF (Access Management Function) APIs can transition a UE from Idle mode to Connected mode. By using this API, it is possible to keep the UE in Connected mode at certain times. Using this API, it is possible to systematically set a specific UE to Connected mode in a specific section.
- FIG. 22 is a sequence diagram for explaining the procedure of Method 4.
- RAMNF (A) transmits to RAMNF (B) the terminal ID of the receiving side UE and the information on the time period in which the UE is accessible (the period during which the terminal is in Connected mode).
- the communication device of the 4G/5G private network A When the communication device of the 4G/5G private network A receives a packet from the client application on the RAMNF (B) side, if the received packet is addressed to the RAMNF (A), it accepts all of the packet. For packets destined for other destinations, the communication device accepts the packet during a time period accessible by the receiving UE, and discards the packet during other time periods. This process may be implemented by RAMNF(A) checking all packets from the 4G/5G private network A gateway. Note that the accessible time interval may be linked to the interval in which the terminal is scheduled to enter Connected mode.
- Method 4 it is possible to reject packets that arrive outside of the pre-disclosed time, making it more resistant to attacks from malicious client applications.
- Method 1-3> ⁇ 5-1.
- Method 1-1 and Method 1-2 are exemplified as Method 1.
- Method 1 Method 1 shown in FIG. 23 may also be conceived.
- FIG. 23 is a diagram for explaining method 1-3.
- 4G/5G private network A is the receiving private network and 4G/5G private network B is the transmitting private network.
- RAMNF (A) is the RAMNF of the private network on the receiving side
- RAMNF (B) is the RAMNF of the private network on the sending side.
- the UE or AF ID may be referred to as a terminal ID.
- the transmitting-side UE preliminarily It is necessary to hold information for determining to which RAMNF the message is sent for each terminal ID of the receiving side UE.
- the client application of the transmitting side UE transmits a packet containing the terminal ID of the receiving side UE and a message to the receiving side UE to the RAMNF (A) specified based on this information.
- RAMNF (A) When RAMNF (A) receives a packet from a client application, it determines to which UE the communication is directed based on the terminal ID stored in the packet. RAMNF(A) then transmits the packet to the identified UE.
- the sending UE must manage the IP addresses of multiple RAMNFs. However, since the IP address of the terminal device is held only in the RAMNF on the terminal device side, there is relatively little security threat.
- two 4G/5G private networks connected by a VPN tunnel were taken as an example of "two non-public cellular closed networks connected by secure communication".
- "two non-public cellular closed networks connected by secure communication” are not limited to this, and may be, for example, two 4G/5G private networks by encrypted communication.
- a control device that controls the management device 10, the base station 20, and the terminal device 30 of this embodiment may be realized by a dedicated computer system or by a general-purpose computer system.
- a communication program for executing the above operations is distributed by storing it in a computer-readable recording medium such as an optical disk, semiconductor memory, magnetic tape, or flexible disk.
- the control device is configured by installing the program in a computer and executing the above-described processing.
- the control device may be a device (for example, a personal computer) external to the management device 10, the base station 20, and the terminal device 30.
- the control device may be a device inside the management device 10, the base station 20, and the terminal device 30 (for example, the control unit 13, the control unit 23, and the control unit 33).
- the above communication program may be stored in a disk device provided in a server device on a network such as the Internet, so that it can be downloaded to a computer.
- the functions described above may be realized through cooperation between an OS (Operating System) and application software.
- the parts other than the OS may be stored in a medium and distributed, or the parts other than the OS may be stored in a server device so that they can be downloaded to a computer.
- each component of each device illustrated is functionally conceptual and does not necessarily need to be physically configured as illustrated.
- the specific form of distribution and integration of each device is not limited to the illustrated one, and all or part of them can be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions. Can be integrated and configured. Note that this distribution/integration configuration may be performed dynamically.
- the present embodiment can be applied to any configuration that constitutes a device or system, such as a processor as a system LSI (Large Scale Integration), a module using a plurality of processors, a unit using a plurality of modules, etc. Furthermore, it can also be implemented as a set or the like (that is, a configuration of a part of the device) to which other functions are added.
- a processor as a system LSI (Large Scale Integration)
- module using a plurality of processors a unit using a plurality of modules, etc.
- it can also be implemented as a set or the like (that is, a configuration of a part of the device) to which other functions are added.
- the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing, are both systems. .
- this embodiment can take a configuration of cloud computing in which one function is shared by a plurality of devices via a network and processed jointly.
- the information processing apparatus (for example, the management apparatus 10) of the present embodiment has at least network functions (for example, RAMNF) arranged in two non-public cellular closed networks connected by secure communication. It is an information processing device having one network function.
- the network function acquires information (e.g., terminal ID and/or IP address) about a communication device connected to its own or the other party's non-public cellular closed network, and based on the acquired information, two non-public It performs processing related to packet arrival from a communication device (for example, a transmitting-side UE) connected to one side of a cellular closed network to a communication device (for example, a receiving-side UE) connected to the other side.
- a communication device for example, a transmitting-side UE
- a communication device for example, a receiving-side UE
- An information processing device having at least one network function among network functions arranged in each of two non-public cellular closed networks connected by secure communication,
- the network function is Acquiring information about a communication device connected to the non-public cellular closed network of one's own side or the other's side; Based on the acquired information, perform processing related to packet arrival from the communication device connected to one of the two non-public cellular closed networks to the communication device connected to the other; Information processing equipment.
- the network function is Acquiring information about a communication device connected to the non-public cellular closed network on its own side; Notifying the acquired information to the network function of the non-public cellular closed network of the other party, The information processing device according to (1) above.
- the network function is Acquiring the IP address of the communication device connected to the non-public cellular closed network on its own side and the terminal ID of the communication device corresponding to the IP address; Notifying the IP address of the communication device connected to the non-public cellular closed network on the own side, together with the terminal ID of the communication device corresponding to the IP address, to the network function of the non-public cellular closed network on the other side;
- the information processing device according to (2) above.
- the network function is Acquiring the IP address of the communication device connected to the non-public cellular closed network on its own side and the terminal ID of the communication device corresponding to the IP address; Without notifying the IP address of the communication device connected to the non-public cellular closed network on the own side, the terminal ID of the communication device corresponding to the IP address is transmitted together with the IP address of the network function itself. notify the network function of the closed non-public cellular network, The information processing device according to (2) above.
- the network function is acquiring information about the state of a communication device connected to the non-public cellular closed network on the own side from the core network of the non-public cellular closed network on the own side; Notifying the acquired information about the state of the communication device to the network function of the non-public cellular closed network of the other party;
- the information about the state of the communication device includes information for specifying that the communication device is in Connected mode.
- the information on the state of the communication device includes information on the registration of the communication device and does not include information on the RRC status of the communication device;
- the information processing apparatus according to (5) or (6).
- the network function is Acquiring information about a communication device connected to the non-public cellular closed network of the other party, Based on the acquired information, perform processing related to packet arrival from the communication device connected to the non-public cellular closed network on the own side to the communication device connected to the non-public cellular closed network on the other side;
- the information processing device according to (1) above.
- the network function is acquiring the IP address of the communication device connected to the non-public cellular closed network of the other party, together with the terminal ID of the communication device corresponding to the IP address, from the network function of the non-public cellular closed network of the other party;
- the transmission information is acquired together with the terminal ID of the communication device to which the information is to be transmitted from the communication device connected to the non-public cellular closed network on the own side, the IP of the transmission destination communication device is obtained based on the terminal ID. Identifying an address and transmitting transmission information to the identified IP address as a destination;
- the information processing device according to (8) above.
- the network function is Push notification of the transmission information based on UDP (User Datagram Protocol) to the destination communication device;
- the information processing device according to (9) above.
- the network function is acquiring the IP address of the communication device connected to the non-public cellular closed network of the other party, together with the terminal ID of the communication device corresponding to the IP address, from the network function of the non-public cellular closed network of the other party;
- the IP address of the destination communication device is determined based on the terminal ID. specify and respond to The information processing device according to (8) above.
- the network function is The terminal ID of the communication device connected to the non-public cellular closed network of the other party, together with the IP address of the network function of the non-public cellular closed network of the other party, from the network function of the non-public cellular closed network of the other party.
- the network function is obtaining information about the state of the communication device connected to the non-public cellular closed network of the other party from the network function of the non-public cellular closed network of the other party; Based on the obtained information about the state of the communication device, processing related to packet arrival from the communication device connected to the non-public cellular closed network on the own side to the communication device connected to the non-public cellular closed network on the other side. conduct, The information processing device according to (8) above.
- the information about the state of the communication device includes information for specifying that the communication device is in the Connected state,
- the network function is perform information transmission processing when the state of the destination communication device is identified as the Connected state; The information processing device according to (13) above.
- the two non-public cellular closed networks are directly connected by a VPN (virtual private network), The information processing apparatus according to any one of (1) to (14) above.
- the network function is located in a core network of the non-public cellular closed network. The information processing apparatus according to any one of (1) to (15).
- a communication device connected to one of two non-public cellular closed networks connected by secure communication For each of the two non-public cellular closed networks, obtain information about a communication device connected to the non-public cellular closed network of the own side or the other side, and based on the obtained information, the two non-public cellular networks
- a network function is arranged to perform processing related to packet arrival from a communication device connected to one side of a closed network to a communication device connected to the other side,
- the communication device Acquiring information about a communication device connected to the non-public cellular closed network of the other party from the network function; based on the acquired information, transmitting the packet to the communication device connected to the non-public cellular closed network of the other party; Communication device.
- a communication method executed by a communication device connected to one of two private non-public cellular networks connected by secure communication For each of the two non-public cellular closed networks, obtain information about a communication device connected to the non-public cellular closed network of the own side or the other side, and based on the obtained information, the two non-public cellular networks
- a network function is arranged to perform processing related to packet arrival from a communication device connected to one side of a closed network to a communication device connected to the other side,
- the communication device Acquiring information about a communication device connected to the non-public cellular closed network of the other party from the network function; Based on the acquired information, the packet is transmitted to the communication device connected to the non-public cellular closed network of the other party.
- An information processing device having at least one of the network functions arranged in each of two non-public cellular closed networks connected by secure communication, and a communication device connected to one of the two non-public cellular closed networks. and a communication system comprising:
- the network function is Acquiring information about a communication device connected to the non-public cellular closed network of one's own side or the other's side; Based on the acquired information, perform processing related to packet arrival from the communication device connected to one of the two non-public cellular closed networks to the communication device connected to the other;
- the communication device obtaining information about a communication device connected to the non-public cellular closed network of the other party from the network function; Based on the acquired information, the packet is transmitted to the communication device connected to the non-public cellular closed network of the other party. Communications system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
1.概要
1-1.ローカル5G/プライベート5G
1-2.4G/5Gプライベートネットワークの特徴
1-3.複数のプライベートネットワークの連携
1-4.RAMNF
2.通信システムの構成
2-1.通信システムの全体構成
2-2.管理装置の構成
2-3.基地局の構成
2-4.端末装置の構成
3.ネットワークアーキテクチャ
3-1.5Gのネットワークアーキテクチャの構成例
3-2.4Gのネットワークアーキテクチャの構成例
4.通信システム1の基本動作
4-1.プライベートネットワークの連携方法
4-2.プライベートネットワークのペアの作成手順
4-3.通信相手を特定するためのIDについて
5.通信システムの動作の詳細
5-1.方法1
5-2.方法2
6.通信システム1のその他の動作
6-1.方法3
6-2.方法4
6-3.方法1-3
7.変形例
8.むすび
近年、ローカル5G(Local 5G)やプライベート5G(Private 5G)等のプライベートネットワークが注目されている。プライベートネットワークは、非公衆ネットワーク(Non Public Network)とも呼ばれる。
ローカル5G及びプライベート5Gは、工場やオフィス、スタジオ、病院内、大学内など、限られたエリアでセルラー通信のサービスを行うことである。サービスの提供をローカルなエリアに限定することにより、カスタマイズされたセルラーサービスを提供できるといったメリットがある。本実施形態では、プライベート5G及びローカル5Gのことを、4G/5Gプライベートネットワーク(4G/5G Private network)と呼ぶ。多くのユースケースでセキュリティが重要視される。例えば、工場の場合には、工場の生産ラインなど、秘匿性が高い技術を扱う場合である。病院などでも、患者のプライバシーに関する個人情報を扱うことが多いので秘匿性が大きいユースケースである。大学やオフィスでも、個人情報を扱うことが多く、それらの個人情報に関わる通信は、秘匿性が高いものが求められる。
本実施形態の概要を説明する前に、プライベートネットワークの特徴を示す。図1はプライベートネットワークの一例を示す図である。
プライベートネットワークでは、閉域網の中で、LANとクラウドを接続する。閉域網は、例えばVPN(Virtual Private network)である。閉域網の中では、LANに配置された基地局と、クラウドに配置されたコアネットワークが、パブリックIPアドレス(Public IP Address)を使用することなく、プライベートIPアドレス(Private IP Address)を使用して接続している。閉域網の中だけで、通信をしている場合には、外からの盗聴などに強い。閉域網の外からのアクセスを一切遮断する設定もできるし、閉域網の中から外へパケットを送り、そのレスポンスだけを閉域網の中に入れるということも可能である。通常は、閉域網の外からトリガーをかけて、閉域網の中の装置や端末装置にアクセスすることはできないので、閉域網の秘匿性は高いといえる。
端末装置がネットワークにアッタチした時に、コアネットワークから端末装置にIPアドレスが付与される。通常は、プライベートIPアドレスが付与される。パブリックネットワーク(Public Network)の場合には、端末装置に直接、パブリックIPアドレスを付与する場合もあるが、非公衆ネットワーク(Non Public Network)である4G/5Gプライベートネットワークでは、通常は、端末装置に、プライベートIPアドレスを付与する。したがって、閉域網から外へ出ていくときには、NAT変換(Network Address Translation)を行って、プライベートIPアドレスからパブリックIPアドレスに変換して出ていく。
本実施形態では、異なるプライベートネットワーク間での通信を考える。例えば、複数の4G/5Gプライベートネットワークをインターネット越しに接続する場合を考える。この場合、一度、公衆のインターネットへパケットが出ていくので、セキュリティ上の脅威が大きくなる。端末装置のIPアドレスを相手側に直接伝えるのもセキュリティ上、望ましくない。また、インターネットへ出るときに一度、プライベートIPアドレスからパブリックIPアドレスに変換されるため、NAT(Network Address Translation)越えの問題が起きる。したがって、UDPの直接通信は困難である。
4G/5Gプライベートネットワークの配下にIoT機器を配置し、それらのIoT機器を情報処理装置で制御し、それらのIoT機器から情報を吸い出したいという要求がある。この場合に、一つの4G/5Gプライベートネットワークの中のIoT機器を制御し、情報を取得するのみでは、IoTセンサーの数に限りがあるため、IoTシステムとしての規模が足りないという問題がある。したがって、複数のプライベートネットワークを連携させて、それらの情報を収集したいという要求がある。この場合、通信をしたいIoT機器の場所があらかじめ既知である場合が多い。TCPコネクションは、IoT機器にとって消費電力の負担が大きい傾向があるので、UDPで通信したいという要求がある。
ネットワークゲームを行う時に、相手が、異なる4G/5Gプライベートネットワークに属している場合が想起され得る。この場合、通信をしたい相手は、ゲームのサーバが決定した相手なので、どの相手と通信するかは、直前までわからない場合が多い。この場合、遅延の制約から、TCPよりもUDPで通信したい場合が多いと考えられる。
遠隔に置いたカメラからの映像を、監視したい場合があるだろう。VRなどの映像の場合には、大容量でかつ、低遅延が求められるだろう。それらの監視映像が非常に重要な情報である場合に、4G/5Gプライベートネットワーク間で通信できることは、セキュリティの観点で望ましい。
複数のプライベートネットワークは、異なる事業者のものである場合もある。複数のプライベートネットワークのネットワーク管理は一事業者が行うことが望ましいが、そのプライベートネットワークを使用している顧客は異なる。例えば、日本の風力を測定できるIoTセンサーを使って測定している顧客Aと、IoTセンサーを使って欧州の風力を測定している顧客Bとがいるとする。そして、顧客Aの端末装置はプライベートネットワークAに接続しており、顧客Bの端末装置はプライベートネットワークBに接続しているとする。このとき、事業者Cが、プライベートネットワークCの接続する端末装置を使って、顧客A、Bそれぞれの端末装置から情報を収集しなければならないとする。この場合、事業者Cは、プライベートネットワークAとBを連結させたくなると考えられる。
プライベートネットワーク間をVPNトンネルで接続することで、プライベートネットワーク間での通信の途中で情報が漏洩ることを防ぐことができる。しかしながら、相手側プライベートネットワークに無秩序に自分側のプライベートネットワークの情報を与えることは望ましくない。特に、あるプライベートネットワークの外にある別のプライベートネットワークに、通信装置のIPアドレスの情報を転送することは、個人情報の流出につながる。
各4G/5Gプライベートネットワークでは、コアネットワークが端末装置に対して付与したIPアドレスをコアネットワーク側で保持することができる。ここでいうIPアドレスは、ローカルIPアドレスであってもよいし、グローバルIPアドレスでもあってもよい。本実施形態で定義するRAMNFは、コアネットワークからの情報をもとに、端末装置がIPアドレスを付与されているかどうかの情報を得た上で、IPアドレスを付与されている場合には、端末装置のIDに紐づけて、端末装置のIPアドレスを保持する。これにより、他の端末装置や他のAFに搭載されているクライアントアプリケーションからのメッセージ送信の依頼を受けたRAMNFは、ネットワーク側からUDP/TCPメッセージを送ることが可能になる。ネットワーク側から直接UDP/TCPメッセージを送ることが可能になるので、端末装置の電力消費の負荷が少なく、遅延も少ないというメリットがある。複数の4G/5Gプライベートネットワークを連結した場合にも、このメリットが損なわれないように考慮することが重要である。
RAMNFは、複数の4G/5Gプライベートネットワークを接続する時に、送信側にパケットを届ける時に重要な役割を担う。
名前解決とは、送信先のIDなどから、IPアドレスを取得することをいう。DNS(Domain Name System)などが、通常は、名前解決を行っている。RAMNFは、名前解決の機能を持つ。通常のDNSとの違いは、自分側の名前解決と、ペアになった相手側からの名前解決の2種類のみの名前解決をするところである。通常の名前解決は、わからない名前は、次々と別のDNSへ伝搬していってしまうが、セキュリティを重視する本実施形態では、そのような名前の伝搬はない。
名前解決をして、IPアドレスを返信するDNS的な機能だけでなく、端末装置のIDをもとに送られてきたmessageに、端末装置のIPアドレスを付与して送信するプッシュ通知の機能を持つ。通常のプッシュ通知は、閉域網の外に存在しているものを使用するが、本実施形態では、閉域網の中に配置するRAMNFでその機能を行う。さらに、ペアとなった2つの4G/5Gプライベートネットワークの中からのmessage送信の依頼にのみ機能するというところが大きな違いである。
RAMNFは、5G SBI(Service Base Interface)というAPI(以下5G APIと呼ぶ。)を使って、端末装置の状態、例えば、Idleモード(Idle mode)なのかConnectedモード(Connected mode)なのか、IPアドレスを取得済みなのか、取得前なのかといった情報を送信側に提供し、メッセージを送信する適切な時間を送信側が判断できるようにする。これらの端末装置の状態がRAMNF間でやりとりされるというところが、本実施形態の特徴の一つでもある。
複数の4G/5Gプライベートネットワークが連携した後に、RAMNFの個数は、いくつになるかという疑問があるが、RAMNFは、一つの4G/5Gプライベートネットワークにそれぞれ一つ配置されることが望ましい。複数の4G/5Gプライベートネットワークが定常的に、恒久的に接続されるネットワークトポロジーでは、複数のネットワーク間をまたがったパケットのルーティングが必要になり、セキュリティ上の脅威が増す。したがって、4G/5Gプライベートネットワークの連携は、1:1のペアとして接続し、必要がなくなった時には、そのペアを解消することが望ましい。このことを考慮すると、一つの4G/5Gプライベートネットワークに一つのRAMNFを配置することが望ましい。
上述したように、4G/5Gプライベートネットワークがペアで接続するので、そのペアとなるネットワークには、RAMNFが2個存在することになる。その2個のRAMNFの役割について、以下に述べる。
方法1-1では、AFは、端末装置を特定するIDとともにメッセージを格納したIPパケットをAF側のRAMNFへ送る。AF側のRAMNFは、端末装置を特定するIDから、どの4G/5GプライベートネットワークのRAMNFへ送ればいいかを特定する。AF側のRAMNFは、特定したRAMNFのIPアドレスをIPパケットに付与するともに、IPアドレスを付与したパケットを転送する。端末装置側のRAMNFは、端末装置のIPアドレスをパケットに付与し直すとともに、IPアドレスを付与しなおしたパケットを端末装置へ送信する。この方法では、端末装置のIPアドレスが端末装置側のRAMNFだけに保持されるので、セキュリティ上の脅威が比較的少ない。この方法では、AF側のRAMNFは、端末装置のIDから、4G/5GプライベートネットワークのRAMNFへパケットを送信するかを判断するための情報を事前に必要であるが、これらの処理は、AFではなく、RAMNFが行うので、以下の方法1-2や方法1-3よりも優れた方法であると考える。
方法1-2では、AFは、端末装置側のRAMNFから端末装置のIPアドレスを取得する。AFは、それにより取得したIPアドレスを使って、直接、端末装置宛てにIPパケットを送信する。
方法1-3では、AFは、端末装置を特定するIDと当該端末装置へのメッセージとを格納したIPパケットを、端末装置側のRAMNFへ送る。そして、端末装置側のRAMNFは、メッセージを端末装置に送信する。この方法では、AFは、端末装置のID毎に、どこのRAMNFへメッセージを送るかを判断するための情報を保持しておく必要がある。この方法の場合、端末装置のIPアドレスが端末装置側のRAMNFだけに保持されるので、セキュリティ上の脅威が比較的少ない。なお、複数の端末装置から情報を収集するためのコマンドをメッセージとして送信する場合には、複数のRAMNFのIPアドレスを管理していないといけないため、AFの作りが複雑になるという欠点がある。
方法2-1では、AFは、端末装置を特定するIDとともにメッセージを格納したIPパケットをAF側のRAMNFへ送信する。AF側のRAMNFは、IPパケットに端末装置のIPアドレスを付与するとともに、IPアドレスを付与したIPパケットを端末装置に送信する。方法1-1では、端末装置のIPアドレスを端末装置側のRAMNFからAF側のRAMNFへ転送する必要がある。IPアドレスを格納する場所が一か所から二か所に増えるとともに、転送時にセキュリティの脅威が増す。方法1-1の場合、AFの動作は、AF側のRAMNFにメッセージを送るという簡単な動作でよい。なお、AF側のRAMNFは、端末装置からの返信を、AFへ転送する手間が生じる。
方法2-2では、AFは、端末装置のIDをもとに、AF側のRAMNFに端末装置のIPアドレスを問い合わせする。AFは、それにより取得したIPアドレスを使って、直接、端末装置宛てにIPパケットを送信する。方法1-2では、端末装置とAFの間で直接通信が可能となるので、遅延が最も少ない。
方法1-1、方法2-1、方法2-2を説明する前に、通信システム1の構成を説明する。
図5は、本開示の実施形態に係る通信システム1の構成例を示す図である。通信システム1は、複数のプライベートネットワークPNを備える。プライベートネットワークPNは、例えば、4G、5G等のセルラー方式の無線通信を使ったプライベートネットワークである。複数のプライベートネットワークPNは、ネットワークNを介して接続されている。なお、図5の例では、ネットワークNが1つしか示されていないが、ネットワークNは複数存在していてもよい。
次に、管理装置10の構成を説明する。
次に、基地局20の構成を説明する。
次に、端末装置30の構成を説明する。
以上、通信システム1の構成について説明したが、次に、本実施形態の通信システム1で適用され得るネットワークアーキテクチャについて説明する。
まず、通信システム1のコアネットワークCNの一例として、第5世代移動体通信システム(5G)のアーキテクチャについて説明する。図9は、5Gのアーキテクチャの一例を示す図である。5GのコアネットワークCNは、5GC(5G Core)/NGC(Next Generation Core)とも呼ばれる。以下、5GのコアネットワークCNを5GC/NGCとも称する。コアネットワークCNは、(R)AN430を介してUE(User Equipment)30と接続する。UE30は、例えば、端末装置30である。なお、図9に示すコアネットワークCNには、RAMNFが含まれていないが、コアネットワークCNには、ネットワーク機能の一つとしてRAMNFが含まれていてもよい。勿論、RAMNFコアネットワークCNの外に配置されるネットワーク機能であってもよい。
API(1)は、あらかじめ登録しておいたUE30が電源Offの状態から電源Onの状態に遷移してネットワークにattachしたこと、及び、そのときに取得したIPアドレスをSMF442が通知するAPIである。
UE30は、通信をしていない場合にIdleモードとなり、通信する場合にConnectedモードに遷移する。API(2)は、UE30がIdleモードであるかConnectedモードであるかをAMF441が通知するAPIである。
API(3)は、UE30に対してIdleモードからConnectedモードに遷移するよう指示を出すためのメッセージ(Paging message)を基地局からブロードキャストするためのAPIである。
API(4)は、UE30の位置情報をAMF441が提供するAPIである。AMF441は、API(4)を使用して、UE30がどのTracking Areaにいるのか、どのCellに所属しているのか、また、特定の地域に入った時にそのことを知らせ得る。
図10を参照して通信システム1のコアネットワークCNの一例として、第4世代移動体通信システム(4G)のアーキテクチャについて説明する。図10は、4Gのアーキテクチャの一例を示す図である。なお、図10に示すコアネットワークCNには、RAMNFが含まれていないが、コアネットワークCNには、ネットワーク機能の一つとしてRAMNFが含まれていてもよい。勿論、RAMNFコアネットワークCNの外に配置されるネットワーク機能であってもよい。
次に、本実施形態の通信システム1の基本動作について説明する。
本実施形態では、通信範囲を限定するために、通信システム1は、2つのプライベートネットワークをペアー(1:1)として連携させる。1:N(N個のプライベートネットワーク)の通信を実現する場合は、通信システム1は、1:1のプライベートネットワークのペアをN個作る。N:Mのネットワークの場合には、1:1のプライベートネットワークをM個作り、それをN個作る。あくまでも、ネットワークは、プライベートネットワークはペア(1:1)とする。
次に、4G/5Gプライベートネットワークのペアの作成手順について説明する。図12は、4G/5Gプライベートネットワークのペアの作成手順を示すシーケンス図である。なお、図12において、UEは端末装置30である。また、RAMNF、AF、及びゲートウェイは、管理装置10の有する機能である。以下、図12を参照しながら、4G/5Gプライベートネットワークのペアの作成手順について説明する。
クライアントアプリケーション(例えば、送信側のUE/AF)は、4G/5GプライベートネットワークAと4G/5GプライベートネットワークBとの間で通信をしたいというリクエストを4G/5Gプライベートネットワークアソシエーションマネージメントに送信する。この時の要求は、通常のインターネットを使用してもよい。4G/5Gプライベートネットワークアソシエーションマネージメントは、2つのプライベートネットワークを結びつけるための機能である。この機能は、閉域網の中に配置するよりも、複数のプライベートネットワークのゲートウェイにアクセスできる場所、例えば、インターネット上に配置されることが望ましい。リクエストにしたがって、2つのプライベートネットワーク間にVPNトンネルを張る制御を行うのが役割だからである。以下の説明では、4G/5Gプライベートネットワークアソシエーションマネージメントのことをアソシエーションマネージャー(Association manager)ということがある。
アソシエーションマネージャーは、4G/5GプライベートネットワークAと4G/5GプライベートネットワークBの間にVPNのトンネルを設定する。各4G/5Gプライベートネットワークには、一つずつRAMNFが配置されている。各RAMNFは、自分が所属している4G/5Gプライベートネットワーク中のUEのために以下の機能を提供する。
・名前解決(Name Resolution)
・プッシュ通知(Push notification)
・端末装置の状態の情報の提供
ペアが確立した後、クライアントアプリケーションは、宛先となる端末装置30のIDまたはIPアドレスを使って、4G/5GプライベートネットワークAまたはBのRAMNFに対して、名前解決して、IPアドレスを取得し、メッセージを宛先端末まで送信する。または、クライアントアプリケーションは、プッシュ通知機能を使って、メッセージを宛先端末まで送信する。
上述の名前解決では、プライベートネットワークマネージメントは、端末装置30のIDで端末装置30のIPアドレスと特定した。以下、端末装置30のIDについて説明する。
以上、通信システム1の基本動作について説明したが、以下、通信システム1の動作を詳細に説明する。
方法1では、受信側プライベートネットワークのRAMNFが取得した受信側UEのIPアドレスを受信側プライベートネットワークの外に出すことなく、受信側プライベートネットワークのRAMNFが受信側UEにメッセージのプッシュを行う。方法1としては図13に示す方法1-1が考えられる。
方法2では、受信側プライベートネットワークのRAMNFが取得した受信側UEのIPアドレスを送信側プライベートネットワークのRAMNFに転送する。そして、送信側プライベートネットワークのRAMNFが受信側UEにメッセージのプッシュを行う。
図16は、方法2-1を説明するための図である。また、図17は、方法2-1の手順を示すシーケンス図である。図16及び図17の例では、4G/5GプライベートネットワークAが受信側プライベートネットワークであり、4G/5GプライベートネットワークBが送信側プライベートネットワークである。また、RAMNF(A)が受信側プライベートネットワークのRAMNFであり、RAMNF(B)が送信側プライベートネットワークのRAMNFである。また、以下の説明では、UE又はAFのIDのことを端末IDということがある。
図18は、方法2-2を説明するための図である。また、図19は、方法2-2の手順を示すシーケンス図である。図18及び図19の例では、4G/5GプライベートネットワークAが受信側プライベートネットワークであり、4G/5GプライベートネットワークBが送信側プライベートネットワークである。また、RAMNF(A)が受信側プライベートネットワークのRAMNFであり、RAMNF(B)が送信側プライベートネットワークのRAMNFである。また、以下の説明では、UE又はAFのIDのことを端末IDということがある。
通信システム1は以下のようにも動作しうる。
方法3でも、受信側プライベートネットワークのRAMNFが取得した受信側UEのIPアドレスを送信側プライベートネットワークのRAMNFに転送する。このとき、送信側プライベートネットワークのRAMNFは、受信側UEの状態によって、Idle/Connectedなどの受信側UEの状態の情報を、送信側プライベートネットワークのRAMNFに転送しないようにしてもよい。
方法4では、RAMNF(A)により相手先端末のIdleモード/Connectedモードの計画が示されたとき、4G/5GプライベートネットワークAの通信装置は、そのConnectedモードの区間と紐づけられた限定された期間でのみ、4G/5GプライベートネットワークBから4G/5GプライベートネットワークAのUEへのパケットの送信を認める。それ以外の期間にパケットが到着した時は、通信装置はパケットを廃棄する。
上述の<5-1.方法1>では、方法1として、方法1-1と方法1-2を例示した。しかしながら、方法1としては、図23に示す方法1-3も想起しうる。
上述の実施形態は一例を示したものであり、種々の変更及び応用が可能である。
以上説明したように、本実施形態の情報処理装置(例えば、管理装置10)は、セキュアーな通信で接続された2つの非公衆セルラー閉域網それぞれに配置されたネットワーク機能(例えば、RAMNF)の少なくとも一方のネットワーク機能を備える情報処理装置である。ネットワーク機能は、自分側の又は相手側の非公衆セルラー閉域網に接続された通信装置に関する情報(例えば、端末ID及び/又はIPアドレス)を取得し、取得した情報に基づいて、2つの非公衆セルラー閉域網の一方に接続された通信装置(例えば、送信側UE)から他方に接続された通信装置(例えば、受信側UE)へのパケット到達に関する処理を行う。これにより、2つの非公衆セルラー閉域網間での高いセキュリティ強度の通信を実現できる。
(1)
セキュアーな通信で接続された2つの非公衆セルラー閉域網それぞれに配置されたネットワーク機能の少なくとも一方のネットワーク機能を備える情報処理装置であって、
前記ネットワーク機能は、
自分側の又は相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、前記2つの非公衆セルラー閉域網の一方に接続された通信装置から他方に接続された通信装置へのパケット到達に関する処理を行う、
情報処理装置。
(2)
前記ネットワーク機能は、
自分側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報を相手側の前記非公衆セルラー閉域網のネットワーク機能へ通知する、
前記(1)に記載の情報処理装置。
(3)
前記ネットワーク機能は、
自分側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスと、該IPアドレスに対応する通信装置の端末IDと、を取得し、
自分側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスを、該IPアドレスに対応する通信装置の端末IDとともに、相手側の前記非公衆セルラー閉域網のネットワーク機能へ通知する、
前記(2)に記載の情報処理装置。
(4)
前記ネットワーク機能は、
自分側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスと、該IPアドレスに対応する通信装置の端末IDと、を取得し、
自分側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスを通知することなく、該IPアドレスに対応する通信装置の端末IDを、前記ネットワーク機能自身のIPアドレスとともに、相手側の前記非公衆セルラー閉域網のネットワーク機能へ通知する、
前記(2)に記載の情報処理装置。
(5)
前記ネットワーク機能は、
自分側の前記非公衆セルラー閉域網のコアネットワークから自分側の前記非公衆セルラー閉域網に接続された通信装置の状態に関する情報を取得し、
取得した通信装置の状態に関する情報を、相手側の前記非公衆セルラー閉域網のネットワーク機能へ通知する、
前記(2)に記載の情報処理装置。
(6)
前記通信装置の状態に関する情報には、該通信装置がConnectedモードであることを特定するための情報が含まれる、
前記(5)に記載の情報処理装置。
(7)
前記通信装置の状態に関する情報には、該通信装置のレジストレーションの情報が含まれ、該通信装置のRRCステータスの情報は含まれない、
前記(5)又は(6)に記載の情報処理装置。
(8)
前記ネットワーク機能は、
相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、自分側の前記非公衆セルラー閉域網に接続された通信装置から相手側の前記非公衆セルラー閉域網に接続された通信装置へのパケット到達に関する処理を行う、
前記(1)に記載の情報処理装置。
(9)
前記ネットワーク機能は、
相手側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスを、該IPアドレスに対応する通信装置の端末IDとともに、相手側の前記非公衆セルラー閉域網のネットワーク機能から取得し、
自分側の前記非公衆セルラー閉域網に接続された通信装置から、情報の送信先となる通信装置の端末IDとともに送信情報を取得した場合には、該端末IDに基づいて送信先通信装置のIPアドレスを特定し、特定したIPアドレスを宛先として送信情報を送信する、
前記(8)に記載の情報処理装置。
(10)
前記ネットワーク機能は、
前記送信先通信装置に対してUDP(User Datagram Protocol)に基づく前記送信情報のプッシュ通知を行う、
前記(9)に記載の情報処理装置。
(11)
前記ネットワーク機能は、
相手側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスを、該IPアドレスに対応する通信装置の端末IDとともに、相手側の前記非公衆セルラー閉域網のネットワーク機能から取得し、
自分側の前記非公衆セルラー閉域網に接続された通信装置から情報の送信先となる通信装置の端末IDの情報を受信した場合には、該端末IDに基づいて送信先通信装置のIPアドレスを特定して返信する、
前記(8)に記載の情報処理装置。
(12)
前記ネットワーク機能は、
相手側の前記非公衆セルラー閉域網に接続された通信装置の端末IDを、相手側の前記非公衆セルラー閉域網のネットワーク機能のIPアドレスとともに、相手側の前記非公衆セルラー閉域網のネットワーク機能から取得し、
自分側の前記非公衆セルラー閉域網に接続された通信装置から、情報の送信先となる通信装置の端末IDとともに、送信情報を取得した場合には、該端末IDに基づいて送信先となるネットワーク機能のIPアドレスを特定し、特定したIPアドレスを宛先として該端末IDとともに送信情報を送信する、
前記(8)に記載の情報処理装置。
(13)
前記ネットワーク機能は、
相手側の前記非公衆セルラー閉域網のネットワーク機能から相手側の前記非公衆セルラー閉域網に接続された通信装置の状態に関する情報を取得し、
取得した通信装置の状態に関する情報に基づいて、自分側の前記非公衆セルラー閉域網に接続された通信装置から相手側の前記非公衆セルラー閉域網に接続された通信装置へのパケット到達に関する処理を行う、
前記(8)に記載の情報処理装置。
(14)
前記通信装置の状態に関する情報には、該通信装置がConnected状態であることを特定するための情報が含まれ、
前記ネットワーク機能は、
送信先の通信装置の状態がConnected状態であると特定された場合に情報の送信処理を行う、
前記(13)に記載の情報処理装置。
(15)
前記2つの非公衆セルラー閉域網は、直接、VPN(virtual private network)で接続されている、
前記(1)~(14)のいずれかに記載の情報処理装置。
(16)
前記ネットワーク機能は、前記非公衆セルラー閉域網のコアネットワークに配置されている、
前記(1)~(15)のいずれかに記載の情報処理装置。
(17)
セキュアーな通信で接続された2つの非公衆セルラー閉域網の一方に接続される通信装置であって、
前記2つの非公衆セルラー閉域網それぞれには、自分側の又は相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、取得した情報に基づいて、前記2つの非公衆セルラー閉域網の一方に接続された通信装置から他方に接続された通信装置へのパケット到達に関する処理を行うネットワーク機能が配置されており、
前記通信装置は、
前記ネットワーク機能から相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、相手側の前記非公衆セルラー閉域網に接続された通信装置へのパケットの送信を行う、
通信装置。
(18)
セキュアーな通信で接続された2つの非公衆セルラー閉域網それぞれに配置されたネットワーク機能の少なくとも一方のネットワーク機能を備える情報処理装置により実行される情報処理方法であって、
前記情報処理装置は、前記ネットワーク機能を実行することにより、
自分側の又は相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、前記2つの非公衆セルラー閉域網の一方に接続された通信装置から他方に接続された通信装置へのパケット到達に関する処理を行う、
情報処理方法。
(19)
セキュアーな通信で接続された2つの非公衆セルラー閉域網の一方に接続される通信装置が実行する通信方法であって、
前記2つの非公衆セルラー閉域網それぞれには、自分側の又は相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、取得した情報に基づいて、前記2つの非公衆セルラー閉域網の一方に接続された通信装置から他方に接続された通信装置へのパケット到達に関する処理を行うネットワーク機能が配置されており、
前記通信装置は、
前記ネットワーク機能から相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、相手側の前記非公衆セルラー閉域網に接続された通信装置へパケットの送信を行う、
通信方法。
(20)
セキュアーな通信で接続された2つの非公衆セルラー閉域網それぞれに配置されたネットワーク機能の少なくとも一方のネットワーク機能を備える情報処理装置と、前記2つの非公衆セルラー閉域網の一方に接続される通信装置と、を備える通信システムであって、
前記ネットワーク機能は、
自分側の又は相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、前記2つの非公衆セルラー閉域網の一方に接続された通信装置から他方に接続された通信装置へのパケット到達に関する処理を行い、
前記通信装置は、
前記ネットワーク機能から相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、相手側の前記非公衆セルラー閉域網に接続された通信装置へパケットの送信を行う、
通信システム。
10 管理装置
20 基地局
30 端末装置
11 通信部
21、31 無線通信部
12、22、32 記憶部
13、23、33 制御部
211、311 送信処理部
212、312 受信処理部
213、313 アンテナ
Claims (20)
- セキュアーな通信で接続された2つの非公衆セルラー閉域網それぞれに配置されたネットワーク機能の少なくとも一方のネットワーク機能を備える情報処理装置であって、
前記ネットワーク機能は、
自分側の又は相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、前記2つの非公衆セルラー閉域網の一方に接続された通信装置から他方に接続された通信装置へのパケット到達に関する処理を行う、
情報処理装置。 - 前記ネットワーク機能は、
自分側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報を相手側の前記非公衆セルラー閉域網のネットワーク機能へ通知する、
請求項1に記載の情報処理装置。 - 前記ネットワーク機能は、
自分側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスと、該IPアドレスに対応する通信装置の端末IDと、を取得し、
自分側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスを、該IPアドレスに対応する通信装置の端末IDとともに、相手側の前記非公衆セルラー閉域網のネットワーク機能へ通知する、
請求項2に記載の情報処理装置。 - 前記ネットワーク機能は、
自分側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスと、該IPアドレスに対応する通信装置の端末IDと、を取得し、
自分側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスを通知することなく、該IPアドレスに対応する通信装置の端末IDを、前記ネットワーク機能自身のIPアドレスとともに、相手側の前記非公衆セルラー閉域網のネットワーク機能へ通知する、
請求項2に記載の情報処理装置。 - 前記ネットワーク機能は、
自分側の前記非公衆セルラー閉域網のコアネットワークから自分側の前記非公衆セルラー閉域網に接続された通信装置の状態に関する情報を取得し、
取得した通信装置の状態に関する情報を、相手側の前記非公衆セルラー閉域網のネットワーク機能へ通知する、
請求項2に記載の情報処理装置。 - 前記通信装置の状態に関する情報には、該通信装置がConnectedモードであることを特定するための情報が含まれる、
請求項5に記載の情報処理装置。 - 前記通信装置の状態に関する情報には、該通信装置のレジストレーションの情報が含まれ、該通信装置のRRCステータスの情報は含まれない、
請求項5に記載の情報処理装置。 - 前記ネットワーク機能は、
相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、自分側の前記非公衆セルラー閉域網に接続された通信装置から相手側の前記非公衆セルラー閉域網に接続された通信装置へのパケット到達に関する処理を行う、
請求項1に記載の情報処理装置。 - 前記ネットワーク機能は、
相手側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスを、該IPアドレスに対応する通信装置の端末IDとともに、相手側の前記非公衆セルラー閉域網のネットワーク機能から取得し、
自分側の前記非公衆セルラー閉域網に接続された通信装置から、情報の送信先となる通信装置の端末IDとともに送信情報を取得した場合には、該端末IDに基づいて送信先通信装置のIPアドレスを特定し、特定したIPアドレスを宛先として送信情報を送信する、
請求項8に記載の情報処理装置。 - 前記ネットワーク機能は、
前記送信先通信装置に対してUDP(User Datagram Protocol)に基づく前記送信情報のプッシュ通知を行う、
請求項9に記載の情報処理装置。 - 前記ネットワーク機能は、
相手側の前記非公衆セルラー閉域網に接続された通信装置のIPアドレスを、該IPアドレスに対応する通信装置の端末IDとともに、相手側の前記非公衆セルラー閉域網のネットワーク機能から取得し、
自分側の前記非公衆セルラー閉域網に接続された通信装置から情報の送信先となる通信装置の端末IDの情報を受信した場合には、該端末IDに基づいて送信先通信装置のIPアドレスを特定して返信する、
請求項8に記載の情報処理装置。 - 前記ネットワーク機能は、
相手側の前記非公衆セルラー閉域網に接続された通信装置の端末IDを、相手側の前記非公衆セルラー閉域網のネットワーク機能のIPアドレスとともに、相手側の前記非公衆セルラー閉域網のネットワーク機能から取得し、
自分側の前記非公衆セルラー閉域網に接続された通信装置から、情報の送信先となる通信装置の端末IDとともに、送信情報を取得した場合には、該端末IDに基づいて送信先となるネットワーク機能のIPアドレスを特定し、特定したIPアドレスを宛先として該端末IDとともに送信情報を送信する、
請求項8に記載の情報処理装置。 - 前記ネットワーク機能は、
相手側の前記非公衆セルラー閉域網のネットワーク機能から相手側の前記非公衆セルラー閉域網に接続された通信装置の状態に関する情報を取得し、
取得した通信装置の状態に関する情報に基づいて、自分側の前記非公衆セルラー閉域網に接続された通信装置から相手側の前記非公衆セルラー閉域網に接続された通信装置へのパケット到達に関する処理を行う、
請求項8に記載の情報処理装置。 - 前記通信装置の状態に関する情報には、該通信装置がConnected状態であることを特定するための情報が含まれ、
前記ネットワーク機能は、
送信先の通信装置の状態がConnected状態であると特定された場合に情報の送信処理を行う、
請求項13に記載の情報処理装置。 - 前記2つの非公衆セルラー閉域網は、直接、VPN(virtual private network)で接続されている、
請求項1に記載の情報処理装置。 - 前記ネットワーク機能は、前記非公衆セルラー閉域網のコアネットワークに配置されている、
請求項1に記載の情報処理装置。 - セキュアーな通信で接続された2つの非公衆セルラー閉域網の一方に接続される通信装置であって、
前記2つの非公衆セルラー閉域網それぞれには、自分側の又は相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、取得した情報に基づいて、前記2つの非公衆セルラー閉域網の一方に接続された通信装置から他方に接続された通信装置へのパケット到達に関する処理を行うネットワーク機能が配置されており、
前記通信装置は、
前記ネットワーク機能から相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、相手側の前記非公衆セルラー閉域網に接続された通信装置へのパケットの送信を行う、
通信装置。 - セキュアーな通信で接続された2つの非公衆セルラー閉域網それぞれに配置されたネットワーク機能の少なくとも一方のネットワーク機能を備える情報処理装置により実行される情報処理方法であって、
前記情報処理装置は、前記ネットワーク機能を実行することにより、
自分側の又は相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、前記2つの非公衆セルラー閉域網の一方に接続された通信装置から他方に接続された通信装置へのパケット到達に関する処理を行う、
情報処理方法。 - セキュアーな通信で接続された2つの非公衆セルラー閉域網の一方に接続される通信装置が実行する通信方法であって、
前記2つの非公衆セルラー閉域網それぞれには、自分側の又は相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、取得した情報に基づいて、前記2つの非公衆セルラー閉域網の一方に接続された通信装置から他方に接続された通信装置へのパケット到達に関する処理を行うネットワーク機能が配置されており、
前記通信装置は、
前記ネットワーク機能から相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、相手側の前記非公衆セルラー閉域網に接続された通信装置へパケットの送信を行う、
通信方法。 - セキュアーな通信で接続された2つの非公衆セルラー閉域網それぞれに配置されたネットワーク機能の少なくとも一方のネットワーク機能を備える情報処理装置と、前記2つの非公衆セルラー閉域網の一方に接続される通信装置と、を備える通信システムであって、
前記ネットワーク機能は、
自分側の又は相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、前記2つの非公衆セルラー閉域網の一方に接続された通信装置から他方に接続された通信装置へのパケット到達に関する処理を行い、
前記通信装置は、
前記ネットワーク機能から相手側の前記非公衆セルラー閉域網に接続された通信装置に関する情報を取得し、
取得した情報に基づいて、相手側の前記非公衆セルラー閉域網に接続された通信装置へパケットの送信を行う、
通信システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280049372.6A CN117643021A (zh) | 2021-07-19 | 2022-03-14 | 信息处理设备、通信设备、信息处理方法、通信方法及通信系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-118404 | 2021-07-19 | ||
JP2021118404 | 2021-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023002682A1 true WO2023002682A1 (ja) | 2023-01-26 |
Family
ID=84979886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/011195 WO2023002682A1 (ja) | 2021-07-19 | 2022-03-14 | 情報処理装置、通信装置、情報処理方法、通信方法、及び通信システム |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117643021A (ja) |
WO (1) | WO2023002682A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009089062A (ja) * | 2007-09-28 | 2009-04-23 | Fuji Xerox Co Ltd | 仮想ネットワークシステム及び仮想ネットワーク接続装置 |
-
2022
- 2022-03-14 WO PCT/JP2022/011195 patent/WO2023002682A1/ja active Application Filing
- 2022-03-14 CN CN202280049372.6A patent/CN117643021A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009089062A (ja) * | 2007-09-28 | 2009-04-23 | Fuji Xerox Co Ltd | 仮想ネットワークシステム及び仮想ネットワーク接続装置 |
Also Published As
Publication number | Publication date |
---|---|
CN117643021A (zh) | 2024-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240022315A1 (en) | Communication device, communication method, base station, and method performed by base station | |
US11785479B2 (en) | Terminal device and communication method | |
WO2022131100A1 (ja) | 通信装置、及び通信方法 | |
WO2021241302A1 (ja) | 情報処理装置、情報処理システム及び通信方法 | |
WO2023085092A1 (ja) | 情報処理方法、情報処理装置、及び情報処理システム | |
WO2021192930A1 (ja) | アプリケーションファンクションノード及び通信方法 | |
WO2023002682A1 (ja) | 情報処理装置、通信装置、情報処理方法、通信方法、及び通信システム | |
WO2021241345A1 (ja) | 情報処理装置、通信システム及び情報処理方法 | |
WO2023085078A1 (ja) | 情報処理方法、情報処理装置、及び情報処理システム | |
WO2023182203A1 (ja) | 情報処理方法、情報処理装置、及び情報処理システム | |
WO2023149185A1 (ja) | 通信装置、通信方法、及び通信システム | |
WO2024195529A1 (ja) | 端末装置、情報処理装置及び通信方法 | |
WO2024070555A1 (ja) | 情報処理装置、及び情報処理方法 | |
WO2023127173A1 (ja) | 通信方法、通信装置、及び通信システム | |
WO2021192946A1 (ja) | 基地局装置、アプリケーションファンクションノード及び通信方法 | |
CN118872250A (zh) | 信息处理方法、信息处理设备和信息处理系统 | |
WO2024070677A1 (ja) | 端末装置、及び通信方法 | |
WO2022153866A1 (ja) | 通信装置、通信方法、及び通信システム | |
WO2023106066A1 (ja) | 通信装置、通信方法、及び通信システム | |
WO2023189515A1 (ja) | 通信装置、及び通信方法 | |
WO2024203517A1 (ja) | 端末装置、制御装置、通信方法、及び情報処理方法 | |
WO2022230351A1 (ja) | 通信装置、通信システム及び通信方法 | |
WO2023166969A1 (ja) | 通信装置、及び通信方法 | |
EP4318994A1 (en) | Communication device, communication method, and communication system | |
WO2024203379A1 (ja) | 基地局、端末装置、通信方法、及び通信システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22845622 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317084329 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18576393 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280049372.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22845622 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |