WO2023001055A1 - 摄像模组及电子设备 - Google Patents

摄像模组及电子设备 Download PDF

Info

Publication number
WO2023001055A1
WO2023001055A1 PCT/CN2022/105707 CN2022105707W WO2023001055A1 WO 2023001055 A1 WO2023001055 A1 WO 2023001055A1 CN 2022105707 W CN2022105707 W CN 2022105707W WO 2023001055 A1 WO2023001055 A1 WO 2023001055A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
camera module
circuit board
imaging
assembly
Prior art date
Application number
PCT/CN2022/105707
Other languages
English (en)
French (fr)
Inventor
杨泽
聂磊
李华聪
张州辰
彭士玮
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023001055A1 publication Critical patent/WO2023001055A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the present application relates to the technical field of electronic products, in particular to a camera module and electronic equipment.
  • Portable digital products are generally equipped with camera modules.
  • the camera module also has an auto-focus function, such as driving the lens assembly through a voice coil motor to complete auto-focus.
  • an auto-focus function such as driving the lens assembly through a voice coil motor to complete auto-focus.
  • the number of lenses in the lens assembly is increasing, or the original plastic lenses are replaced by glass lenses with a higher refractive index, which will lead to an increase in the weight of the lens.
  • the voice coil motor needs to generate greater driving force to drive the lens assembly, resulting in increased power consumption of the voice coil motor.
  • the current camera module has the problem of high power consumption of the voice coil motor during the auto-focusing process.
  • the embodiments of the present application provide a camera module and electronic equipment to solve the problem of high power consumption of the voice coil motor in the auto-focusing process of the current camera module.
  • the embodiment of the present application provides a camera module, including:
  • the lens assembly is fixed on the housing
  • the imaging component is arranged inside the casing and is located in the direction of the optical axis of the lens component;
  • slide rail structure is located between the imaging assembly and the housing, and the sliding direction of the slide rail structure is the same as the direction of the optical axis;
  • a first magnetic driver and a second magnetic driver the first magnetic driver is arranged on the side of the imaging assembly, the second magnetic driver is arranged on the inner wall of the housing; the first magnetic driver The member is arranged opposite to the second magnetic drive member;
  • the magnetic driving force between the first magnetic driving member and the second magnetic driving member drives the imaging assembly to move closer to or away from the lens assembly along the optical axis direction through the slide rail structure.
  • the embodiment of the present application further provides an electronic device, including the above-mentioned camera module.
  • the imaging assembly is driven to move closer to or away from the lens assembly along the optical axis direction through the slide rail structure,
  • adjusting the distance between the lens assembly and the imaging assembly in the direction of the optical axis that is, realizing the focusing function of the camera module, and providing the moving direction of the imaging assembly through the slide rail structure, and also helping to reduce the resistance when the imaging assembly moves.
  • the first magnetic driver and the second magnetic driver in this solution are located on the side of the imaging assembly, which can reduce the space occupied by the first magnetic driver and the second magnetic driver in the direction of the optical axis, thereby ensuring When the adjustable distance between the imaging component and the lens component meets the focusing requirement, the overall thickness of the camera module is reduced.
  • Fig. 1 shows one of the exploded schematic diagrams of the camera module of the embodiment of the present application
  • Fig. 2 shows the three-dimensional schematic view of the camera module of the embodiment of the present application
  • Fig. 3 shows the schematic side view of the camera module of the embodiment of the present application
  • Fig. 4 represents the sectional schematic view of A-A plane among Fig. 3;
  • FIG. 5 shows one of the partially exploded schematic diagrams of the imaging assembly of the embodiment of the present application
  • Figure 6 shows one of the partial schematic diagrams of the imaging assembly of the embodiment of the present application.
  • FIG. 7 shows one of the installation schematic diagrams of the imaging assembly and the flexible circuit board of the embodiment of the present application.
  • FIG. 8 shows an exploded schematic view of the second magnetic drive member and the housing of the embodiment of the present application
  • Fig. 9 shows a schematic diagram of the installation of the second magnetic driver and the housing of the embodiment of the present application.
  • FIG. 10 shows an exploded schematic view of the flexible circuit board and the first circuit board of the embodiment of the present application
  • Fig. 11 shows one of the installation schematic diagrams of the flexible circuit board and the first circuit board of the embodiment of the present application
  • Fig. 12 shows the second exploded schematic view of the camera module of the embodiment of the present application
  • FIG. 13 shows a schematic cross-sectional view of the camera module of the embodiment of the present application.
  • Fig. 14 shows the second partially exploded schematic view of the imaging assembly of the embodiment of the present application
  • Fig. 15 shows the second partial view of the imaging component of the embodiment of the present application.
  • Fig. 16 is the second schematic diagram of the installation of the imaging component and the flexible circuit board of the embodiment of the present application.
  • the camera module involved in the embodiment of the present application includes key components such as a lens assembly, a motor (also referred to as a driving assembly), and an imaging assembly.
  • the imaging component includes an imaging chip for converting optical signals into electrical signals to realize imaging.
  • the lens assembly includes a lens that converges light on the imaging chip, and the motor is used to drive the imaging assembly to move to adjust the distance between the imaging assembly and the lens assembly on the optical axis, thereby realizing the focusing function.
  • the motor can be a voice coil motor, which specifically can include an open-loop voice coil motor and a closed-loop voice coil motor;
  • the closed-loop module may include: a ball-type closed-loop module and a shrapnel-type closed-loop module.
  • the embodiment of the present application provides a camera module, including: a housing 10, a lens assembly 20, an imaging assembly 30, a driving assembly 40, and a slide rail structure;
  • the lens assembly 20 is fixed on the housing 10; the imaging assembly 30 is connected to the driving assembly 40, and the imaging assembly 30 and the driving assembly 40 are both arranged on the housing 10 Inside, and the imaging assembly 30 is located in the optical axis direction of the lens assembly 20; the slide rail structure is located between the imaging assembly 30 and the housing 10, and the sliding direction of the slide rail structure is consistent with The directions of the optical axes are the same.
  • the driving assembly 40 drives the imaging assembly 30 to move close to or away from the lens assembly 20 along the optical axis through the slide rail structure, that is, the driving assembly 40 can drive the imaging assembly 30 to move through the sliding rail structure.
  • the rail structure moves close to the lens assembly 20 along the optical axis, or the driving assembly 40 can drive the imaging assembly 30 to move away from the lens assembly 20 along the optical axis through the slide rail structure.
  • the housing 10 is used to fix the lens assembly 20 and protect the imaging assembly 30 and the driving assembly 40 inside it.
  • the housing 10 may include a housing body 11 and a bottom plate 12, for example, the bottom plate 12 may be a steel plate.
  • the lens assembly 20 includes a lens for converging light on the imaging assembly 30, wherein the number of lenses may be one or more, and may be specifically set according to the desired imaging effect, which is not limited in this embodiment of the present application.
  • the imaging component 30 is arranged in the direction of the optical axis of the lens component 20, so that the imaging component 30 can convert the optical signal passing through the lens component 20 into an electrical signal to realize imaging.
  • the driving assembly 40 can generate a driving force to drive the imaging assembly 30 to move close to the lens assembly 20 along the optical axis, or drive the imaging assembly 30 to move away from the lens assembly 20 along the optical axis.
  • This solution avoids the movement of the lens assembly 20 when realizing the focusing function of the camera module, can avoid the increase of the power consumption of the drive assembly 40 due to the increase in the weight of the lens assembly 20, and provides the moving direction of the imaging assembly 30 through the slide rail structure It is also beneficial to reduce the resistance when the imaging component moves, thereby reducing the power consumption of the camera module during the focusing process to a large extent.
  • the imaging assembly 30 of the camera module (for example, a large bottom chip is selected in the imaging assembly 30) can be equipped with a large-scale lens (such as Improving the imaging effect by increasing the number of lenses).
  • the lens assembly 20 is fixed on the housing 10, it is possible to reduce screen printing windows, and the electronic equipment equipped with the camera module can avoid reserving the camera module and the screen or battery back cover for setting the dust-proof foam.
  • the lens assembly 20 can directly contact the dust-proof foam, which improves the dust-proof effect, is also conducive to the thinner and lighter design of the whole machine, and can also avoid abnormal noise caused by the movement of the lens assembly 20, and reduce the impact of the lens assembly 20 on electronic equipment
  • the internal structure risk is improved, and the reliability of the lens assembly 20 is improved.
  • the gap between the casing and the lens carrier in the camera module can be blocked to a greater extent, and the refinement of the whole machine can be improved.
  • the camera module includes: a housing 10 , a lens assembly 20 , an imaging assembly 30 , a slide rail structure, a first magnetic driver 41 and a second magnetic driver 42 .
  • the lens assembly 20 is fixed on the casing 10; the imaging assembly 30 is arranged inside the casing 10 and is located in the direction of the optical axis of the lens assembly 20; the slide rail structure is located on the Between the imaging assembly 30 and the housing 10, the sliding direction of the slide rail structure is the same as the direction of the optical axis; the first magnetic drive member 41 is arranged on the side of the imaging assembly 30, and the second The magnetic driving part 42 is disposed on the inner wall of the housing 10 ; the first magnetic driving part 41 is opposite to the second magnetic driving part 42 .
  • the magnetic driving force between the first magnetic driving member 41 and the second magnetic driving member 42 drives the imaging assembly 30 to approach or move away from the lens along the optical axis through the slide rail structure. Assembly 20 moves.
  • the above-mentioned driving assembly 40 may include the first magnetic driving part 41 and the second magnetic driving part 42 .
  • a magnetic driving force along the optical axis direction can be generated between the first magnetic driving part 41 and the second magnetic driving part 42, and the second magnetic driving part 42 arranged on the housing 10 can pass the magnetic driving force
  • Driving the first magnetic driver 41 drives the imaging assembly 30 to move relative to the casing 10, that is, the imaging assembly 30 moves close to the lens assembly 20 along the optical axis through the slide rail structure, or the imaging assembly 30 moves through the The sliding rail structure moves away from the lens assembly 20 along the optical axis direction.
  • the imaging assembly 30 is driven to approach or move away from the lens assembly 20 along the optical axis direction through the slide rail structure. move, thereby adjusting the distance between the lens assembly 20 and the imaging assembly 30 in the direction of the optical axis, that is, to realize the focusing function of the camera module, and this solution avoids the movement of the lens assembly 20 when realizing the focus function of the camera module, and can avoid due to
  • the increase in the weight of the lens assembly 20 results in an increase in driving power consumption, thereby reducing the power consumption of the camera module during the focusing process to a large extent.
  • the ball 80 has the function of supporting and carrying the imaging assembly 30 and the casing 10 at intervals, and also provides a sliding action between the imaging assembly 30 and the casing 10 to reduce sliding resistance, thereby ensuring that the imaging assembly 30 is in the first position.
  • the magnetic driving force between the first magnetic driving part 41 and the second magnetic driving part 42 can effectively slide relative to the housing 10, which is beneficial to further reduce loss.
  • first magnetic driver 41 and the second magnetic driver 42 in this solution are located on the side of the imaging assembly 30, which can reduce the space occupied by the first magnetic driver 41 and the second magnetic driver 42 in the direction of the optical axis. Therefore, the overall thickness of the camera module can be reduced while ensuring that the adjustable distance between the imaging component 30 and the lens component 20 meets the focusing requirements.
  • the imaging assembly 30 includes: a bearing bracket 31, a first circuit board 32 and an imaging chip 33; the first magnetic drive member 41 is located on a first side of the bearing bracket 31; The first surface is connected to the bottom surface of the supporting bracket 31 , and the imaging chip 33 is disposed on the first surface; wherein, the first side is disposed adjacent to the bottom surface.
  • the imaging chip 33 is used to convert the optical signal passing through the lens assembly 20 into an electrical signal, so as to realize imaging.
  • the imaging chip 33 can be welded on the first circuit board 32, such as soldering the imaging chip 33 on the first circuit board 32 by soldering, so as to be compatible with the wiring (or other components) on the first circuit board 32 ) to achieve electrical connection.
  • the supporting bracket 31 may be a plastic bracket with a frame-shaped structure; for example, the supporting bracket 31 may include: a surrounding frame body 311 , and a protrusion structure 312 disposed on the top surface of the surrounding frame body 311 .
  • the protruding structure 312 can be arranged around a part of the frame of the frame body 311 , specifically, it only needs to be able to realize the movement of the imaging component 30 relative to the lens component 20 .
  • the first circuit board 32 may include a central portion and an edge portion, and the edge portion surrounds the central portion.
  • the edge portion is connected to the bottom surface of the frame body 311 (the bottom surface is opposite to the top surface), the central portion corresponds to the central hollow area of the frame body 311, and the imaging chip 33 is arranged on the second
  • the first surface of a circuit board 32 is located at the center, so that the optical signal passing through the lens assembly 20 can pass through the central hollow area and project onto the imaging chip 33 , thereby ensuring the imaging effect of the imaging chip 33 .
  • the first surface of the central part (that is, the first surface of the first circuit board 32) may be provided with a concave cavity
  • the imaging chip 33 is fixed in the concave cavity
  • the concave cavity may also be provided with Electronic components such as capacitors, resistors, and registers are not limited in this embodiment of the present application.
  • the bottom surface of the carrying bracket 31 i.e. the bottom surface of the frame body 311
  • the top surface of the carrying bracket 31 i.e. the top surface of the frame body 311
  • the first circuit board 32 is arranged on the bottom surface of the bearing bracket 31. Compared with the way of arranging the first circuit board 32 on the top surface of the bearing bracket 31, it can be ensured that the imaging assembly 30 has the same thickness when the camera modules have the same thickness.
  • the supporting bracket 31 , the first circuit board 32 and the imaging chip 33 can be fixed as a whole (for example, they can be fixed as a whole by dispensing glue) to ensure the stability of the structure.
  • the carrier bracket 31 is driven to move by the magnetic driving force between the first magnetic driver 41 and the second magnetic driver 42, so that the carrier bracket 31 drives the imaging chip 33 to move close to the lens assembly 20 along the optical axis direction , or move away from the lens assembly 20 .
  • the imaging assembly 30 further includes: an infrared filter 34 , and the infrared filter 34 is disposed between the supporting bracket 31 and the imaging chip 33 .
  • the infrared filter 34 is used to block the passage of infrared light to ensure better imaging effect of the camera module.
  • the first magnetic driver 41 may be one of an electromagnet and a magnet (also referred to as a magnet), and the second magnetic driver 42 may be the other of the electromagnet and the magnet.
  • the first magnetic driver 41 can be an electromagnet
  • the second magnetic driver 42 can be a magnet
  • the electromagnet can be a coil that generates a magnetic field when energized.
  • the magnet and the electromagnet can constitute a driving system; if the first magnetic driving part 41 is an electromagnet, and the second magnetic driving part 42 is a magnet, the magnet can be fixed on the inner surface of the housing by dispensing, It is used to provide a magnetic field, and cooperate with the electromagnet to generate thrust to drive the movement of the imaging component 30, that is, the electromagnet generates a magnetic field when it is energized, and generates a driving force under the action of the magnetic field of the permanent magnet, so that the imaging component 30 can be driven along the The direction of the optical axis moves closer to the lens assembly 20 or moves away from the lens assembly 20 .
  • the first magnetic driver 41 is an electromagnet and the second magnetic driver 42 is a magnet, that is, the magnet is fixed relative to the housing 10, which can reduce the space occupation, and because the electromagnet is light in weight, by setting The electromagnet moves with the imaging component 30, which can further reduce power consumption.
  • the camera module further includes: a driver chip 50, which is electrically connected to the electromagnet; if the first magnetic driver 41 is an electromagnet, the driver chip 50 is It is connected with the first magnetic driver 41 .
  • the driver chip 50 is arranged on the first circuit board 32, and the driver chip 50 can be welded on the first circuit board 32, such as welding the driver chip 50 on the first circuit board by soldering. 32 to realize electrical connection with the traces (or other components) on the first circuit board 32 .
  • the driving chip 50 provides driving current for the electromagnet, so that the electromagnet generates a magnetic field when the current passes through it.
  • the driving chip 50 may further include a position feedback element, and the position feedback element is used for collecting position information of the imaging chip 33 .
  • the position feedback element used for position information feedback is integrated in the drive chip used to drive the electromagnet, which can avoid that when the position feedback element used for position feedback and the drive chip 50 used to drive the electromagnet are set independently, Possible magnetic interference problems.
  • the position of the imaging chip 33 can be captured by the built-in position feedback element of the driving chip 50 and fed back to the driving chip 50.
  • the driving chip 50 can change the electric energy output to the electromagnet in combination with the image information processing result of the camera module, so that the imaging chip 33 can move quickly and accurately along the optical axis direction to the point where the image can be clearly imaged under the drive of the supporting bracket 31 position to complete the focusing function.
  • a notch 313 is provided on the first side of the carrier bracket 31; In the notch 313, and the driving chip 50 protrudes from the first side.
  • the notch 313 on the support bracket 31 to form a space for accommodating the driver chip 50, the increase in the thickness of the camera module due to the thickness of the driver chip 50 can be avoided; and the driver chip 50 protrudes above the
  • the setting of the first side can facilitate the electrical connection between the driving chip 50 and the electromagnet.
  • the camera module further includes: a first magnetic Suction plate 60; the first magnetic attraction plate 60 is arranged on the first side of the bearing bracket 31, and the first magnetic attraction plate 60 is located between the first magnetic driving member 41 and the bearing bracket 31 .
  • the first magnetic attraction plate 60 may be a structure capable of being attracted by the magnetic force of the second magnetic drive member 42, such as the first magnetic attraction plate 60 may be a steel plate, a yoke iron plate, etc. limit.
  • the second magnetic driver 42 can absorb the first magnetic plate 60, that is, the second magnetic driver 42 can absorb the first magnetic plate 60 in the direction perpendicular to the optical axis, so as to ensure the connection of the imaging chip 33 reliability, and it is possible to avoid steps for fixing the bearing bracket 31 on the inner wall of the casing 10, thereby reducing the height in the Z direction (ie, the direction of the optical axis), thereby reducing the height of the camera module.
  • the second magnetic driving member 42 can form a magnetic circuit with the first magnetic attraction plate 60 to ensure a better magnetic concentration effect.
  • the first magnetic plate 60 includes: a first mounting portion 61 and a second mounting portion 62 arranged along a first edge of the first mounting portion 61, the second mounting portion 62 is connected to the The first installation parts 61 are arranged at a preset angle.
  • the first installation part 61 is fixed on the first side of the bearing bracket 31, and the first magnetic driver 41 is located between the first installation part 61 and the bearing bracket 31;
  • the top surface of the bracket 31 is provided with a groove, and the second mounting portion 62 is clamped in the groove; the top surface is opposite to the bottom surface.
  • the length of the second mounting portion 62 may be greater than the connection length between the second mounting portion 62 and the first mounting portion 61, that is, at the connection position between the second mounting portion 62 and the first mounting portion 61, the second mounting portion 62
  • a magnetic attraction plate 60 has at least one breach; Like this by being provided with the groove that matches with the shape of this second mounting part 62 on the top surface of bearing support 31, can avoid that this first magnetic attraction plate 60 along perpendicular to all The direction of the optical axis is out of the groove, so as to ensure the installation strength of the first magnetic plate 60 and the bearing bracket.
  • the first magnetic plate 60 can be further fixed to the bearing bracket 31 by dispensing glue in addition to being clamped with the bearing bracket 31 to increase the connection strength.
  • the first magnetic driving member 41 includes: a coil; the first side of the bearing bracket 31 is provided with a first protrusion 314 , the coil is wound on the first protruding portion 314 .
  • the number of the first protrusions 314 can be two, and the shape of the first protrusions 314 can be waist-shaped, which can be set according to the shape of the wound coil and the shape of the second magnetic driver 42.
  • the embodiment is not limited thereto.
  • the first mounting portion 61 of the first magnetic attraction plate 60 is further provided with a space-avoiding area 63 corresponding to the first protruding portion 314 .
  • the first protruding portion 314 is located in the space-avoiding area 63 , thereby saving the internal space of the camera module.
  • the driver chip 50 when the driver chip 50 is disposed on the first circuit board 32 , the first side of the supporting bracket 31 is further provided with a second protrusion 315 and a third protrusion 316 .
  • the second protruding portion 315 is disposed close to the second side, and the first connection end 411 of the coil is disposed on the second protruding portion 315 and is electrically connected to the driving chip 50; wherein, the second side It is arranged adjacent to the first side.
  • the third protruding portion 316 is disposed close to the third side, and the second connection end 412 of the coil is disposed on the third protruding portion 316 and is electrically connected to the driving chip 50; wherein, the third side It is arranged adjacent to the first side.
  • the coil can be fixed on the supporting bracket 31 by means of winding, dispensing glue, and the like.
  • the coil can be electrically connected to the driving chip 50 disposed on the first circuit board 32 by welding.
  • a first chamfer is provided on the infrared filter 34 corresponding to the first connecting end of the electromagnet.
  • a second chamfer is provided on the infrared filter 34 at a position corresponding to the second connection end of the electromagnet.
  • chamfers are provided at positions corresponding to the first connection end 411 and the second connection end 412 of the coil on the infrared filter 34, so as to avoid the first connection end 411, the second connection end 412 and the drive chip 50. wires to ensure the reliability of the connection between the coil and the driver chip 50 .
  • the process operation is simplified and the design of the circuit board is reduced.
  • the process operation is simplified and the design of the circuit board is reduced.
  • the camera module further includes: a bracket 70, the bracket 70 is fixed on the inner wall of the housing (that is, the inner wall of the housing body 11), and the second magnetic drive The component 42 is located between the bracket 70 and the housing (that is, the second magnetic driving component 42 is located between the bracket 70 and the housing body 11 ).
  • the bracket 70 can be fixed on the inner wall surface of the housing body 11 by dispensing glue, and the bracket 70 can also fix the second magnetic driver 42 on the inner wall of the housing body 11 through a limiting structure, Ensure good positional consistency when assembling the second magnetic driver 42 .
  • the second magnetic driving part 42 and the housing body 11 can also be further fixed by dispensing glue.
  • the slide rail structure includes: a plurality of balls 80 , at least one first groove 317 arranged on the first side of the bearing bracket 31 , at least one second groove 317 arranged on the bracket 70 Slot 71.
  • the at least one first groove 317 is provided in one-to-one correspondence with the at least one second groove 71, and one first groove 317 and one second groove 71 form an accommodating space , each of the accommodating spaces is provided with the balls 80 .
  • the ball has the function of supporting and spacing the bearing bracket 31 and the bracket 70, and also provides a sliding action between the bearing bracket 31 and the bracket 70, so as to reduce sliding resistance, thereby ensuring that the bearing bracket 31 is in the position of the first magnetic driver 41. Under the action of the magnetic driving force between the second magnetic driving member 42 , it can effectively slide relative to the bracket 70 and is beneficial to reduce loss.
  • the number of first grooves 317 is 2, and the number of corresponding second grooves 71 is also 2; in this way, 2 accommodating spaces can be formed by 2 first grooves 317 and 2 second grooves 71 , that is, the sliding track for accommodating the ball 80.
  • one of the two slide rails may be set close to the second side of the bearing bracket 31 (that is, set corresponding to the second protrusion 315), and the other slide track may be set close to the third side of the load support 31 (ie corresponding to The third protruding portion 316 is provided).
  • the camera module further includes: a flexible circuit board 90, the first part of the flexible circuit board 90 is located in the housing, and is electrically connected to the first circuit board 32 connection; the second part of the flexible circuit board 90 is located outside the housing.
  • the first part of the flexible circuit board 90 is connected to the first circuit board 32, and the second part is arranged outside the housing and can be connected to external devices (such as the main board of electronic equipment, etc.), that is, the connection of electronic devices can be realized through the flexible circuit board 90.
  • external devices such as the main board of electronic equipment, etc.
  • the second part of the flexible circuit board 90 can be provided with a connector 91, and the connector 91 can be used to connect with the main board of the electronic device, such as the connector can be a board-to-board (BTB) connector, so that the flexible circuit board The connection to the motherboard can be directly realized through this BTB connector.
  • BTB board-to-board
  • the first part of the flexible circuit board 90 includes: a central part 901, an edge part 902 and at least one connecting part 903;
  • the central portion 901 is electrically connected to the first surface of the imaging assembly 30; the first surface is a surface disposed away from the lens assembly 20; the edge portion 902 is disposed around the central portion 901, and The edge portion 902 is connected to the bottom of the casing; the bottom of the casing is a side away from the lens assembly 20 ; the connecting portion 903 is connected to the central portion 901 and the edge portion 902 .
  • the central portion 901 may be a protrusion, and the second surface of the first circuit board 32 may be provided with a groove corresponding to the central portion 901; or, the central portion 901 may be concave, and the first The second surface of the circuit board 32 may be provided with a protrusion corresponding to the central portion 901 ; or, the central portion 901 and the second surface of the first circuit board 32 are both plane, which is not limited in the embodiment of the present application.
  • the flexible circuit board 90 provides the function of electrical connection, and on the other hand, it provides a space for the flexible circuit board 90 to follow the imaging assembly 30 to move, so that when the imaging assembly 30 moves along the optical axis, the flexible circuit board 90 can flexibly follow the imaging assembly 30.
  • the imaging assembly 30 moves along the optical axis without breaking the fixed connection between the flexible circuit board 90 and the first circuit board 32 and the bottom surface of the casing.
  • the central part 901 can be electrically and structurally connected to the first circuit board 32 by means of glue bonding or the like.
  • the edge portion 902 may be structurally connected to the bottom surface of the housing by means of glue bonding or the like.
  • the wiring length of the connecting portion 903 is greater than the distance from the first position to the second position
  • the first position is a position on the central part 901 connected to the connecting part 903
  • the second position is a position on the edge part 902 connected to the connecting part 903 .
  • the connecting part 903 can be U-shaped, S-shaped or irregularly curved, etc., so that the length of the wiring from the central part 901 to the edge part 902 is extended through the connecting part 903, and the flexible circuit board 90 is provided to follow the imaging assembly 30 room to move.
  • the number of the connecting parts 903 may be four, which may be respectively located at four corners of the edge part 902 .
  • One end of a connecting portion 903 is connected to the first edge on the central portion 901 (the first edge may be an end close to the connector 91 on the flexible circuit board 90, or an end away from the connector 91 on the flexible circuit board 90 One end), the other end is connected to the first corner of the edge portion 902 (in the case that the first side is an end close to the connector 91 on the flexible circuit board 90, the first corner is close to the flexible circuit board 90 A corner of one end of the connector 91; in the case that the first side is away from the end of the connector 91 on the flexible circuit board 90, the first corner is the end away from the connector 91 on the flexible circuit board 90 corner).
  • the multi-directionally expanded flexible circuit board structure is beneficial to reduce its resistance, reduce the demand for driving force, and further reduce power consumption.
  • the housing 10 includes: a housing body 11 and a bottom plate 12, for example, the bottom plate 12 may be a steel plate.
  • the casing body 11 is provided with a first opening and a second opening, the lens assembly 20 is disposed at the first opening, and the imaging assembly 30 and the driving assembly 40 are both disposed at the casing body 11
  • the bottom plate 12 is disposed at the second opening, and the edge portion 902 is connected to the bottom plate 12; wherein, the first opening and the second opening are disposed opposite to each other.
  • the lens assembly 20 can be combined with the housing body 11 through threading, dispensing, buckling, etc., and the relative position is guaranteed to be stable.
  • the bottom plate 12 can be connected with the housing body 11 by dispensing glue, welding, buckling, etc., to protect the internal structure of the camera module.
  • the focusing process of the above-mentioned camera module is as follows:
  • the magnet absorbs the first magnetic attraction plate 60, and pulls the entire imaging assembly 30 to one side of the magnet, and at the same time There are sliding tracks on both sides of the magnet for arranging the balls 80 . At this time, the imaging assembly 30 is closely attached to the balls on the sliding track, and can move along the optical axis.
  • the first magnetic driver 41 When the first magnetic driver 41 is energized, that is, when the coil is energized, the energized coil generates an Ampere force under the magnetic field of the magnet, pushing the imaging assembly 30 to move along the optical axis against the sliding track. At this time, the central part 901 of the flexible circuit board 90 moves along the optical axis direction with the first circuit board 32 in the imaging assembly 30, and the connecting part 903 of the flexible circuit board 90 is deformed.
  • the bottom plate 12 is fixed and does not move, so that the imaging chip 33 in the imaging assembly 30 can move close to the lens assembly 20 or move away from the lens assembly 20 along the optical axis direction, that is, to realize the focusing process.
  • the imaging assembly 30 can move close to the lens assembly 20 or move away from the lens assembly 20 along the optical axis by controlling currents in different directions in the coil; and by controlling currents of different sizes in the coil, Realize that the imaging component 30 can move at different speeds along the optical axis direction, so as to meet different focusing requirements.
  • the embodiment of the present invention also provides a camera module, including: a housing 10, a lens assembly 20, an imaging assembly 30, a driving assembly 40 and a slide rail structure;
  • the lens assembly 20 is fixed on the housing 10; the imaging assembly 30 is connected to the driving assembly 40, and the imaging assembly 30 and the driving assembly 40 are both arranged on the housing 10 Inside, and the imaging assembly 30 is located in the optical axis direction of the lens assembly 20; the slide rail structure is located between the imaging assembly 30 and the housing 10, and the sliding direction of the slide rail structure is consistent with The directions of the optical axes are the same.
  • the driving assembly 40 drives the imaging assembly 30 to move closer to or away from the lens assembly 20 along the optical axis through the sliding rail structure.
  • the housing 10 is used to fix the lens assembly 20 and protect the imaging assembly 30 and the driving assembly 40 inside it.
  • the housing 10 may include a housing body 11 and a bottom plate 12 .
  • the lens assembly 20 includes a lens for converging light on the imaging assembly 30, wherein the number of lenses may be one or more, and may be specifically set according to the desired imaging effect, which is not limited in this embodiment of the present application.
  • the imaging component 30 is arranged in the direction of the optical axis of the lens component 20, so that the imaging component 30 can convert the optical signal passing through the lens component 20 into an electrical signal to realize imaging.
  • the driving assembly 40 can generate a driving force to drive the imaging assembly 30 to move close to the lens assembly 20 along the optical axis, or drive the imaging assembly 30 to move away from the lens assembly 20 along the optical axis.
  • the imaging assembly 30 is driven by the driving assembly 40 to move close to the lens assembly 20 in the direction of the optical axis, or to move away from the lens assembly 20, thereby adjusting the distance between the lens assembly 20 and the imaging assembly 30 in the direction of the optical axis, that is, realizing The focus function of the camera module.
  • This solution avoids the movement of the lens assembly 20 when realizing the focusing function of the camera module, can avoid the increase of the power consumption of the drive assembly 40 due to the increase in the weight of the lens assembly 20, and provides the moving direction of the imaging assembly 30 through the slide rail structure It is also beneficial to reduce the resistance when the imaging component moves, thereby reducing the power consumption of the camera module during the focusing process to a large extent.
  • the imaging assembly 30 of the camera module (for example, a large bottom chip is selected in the imaging assembly 30) can be equipped with a large-scale lens (such as Improving the imaging effect by increasing the number of lenses).
  • the lens assembly 20 is fixed on the housing 10, it is possible to reduce screen printing windows, and the electronic equipment equipped with the camera module can avoid reserving the camera module and the screen or battery back cover for setting the dust-proof foam.
  • the lens assembly 20 can directly contact the dust-proof foam, which improves the dust-proof effect, is also conducive to the thinner and lighter design of the whole machine, and can also avoid abnormal noise caused by the movement of the lens assembly 20, and reduce the impact of the lens assembly 20 on electronic equipment
  • the internal structure risk is improved, and the reliability of the lens assembly 20 is improved.
  • the gap between the casing and the lens carrier in the camera module can be blocked to a greater extent, and the refinement of the whole machine can be improved.
  • the imaging assembly 30 includes: a bearing bracket 31, a first circuit board 32 and an imaging chip 33; the first magnetic drive member 41 is located on a first side of the bearing bracket 31; The first surface is connected to the bottom surface of the supporting bracket 31 , and the imaging chip 33 is disposed on the first surface; wherein, the first side is disposed adjacent to the bottom surface.
  • the imaging chip 33 is used to convert the optical signal passing through the lens assembly 20 into an electrical signal, so as to realize imaging.
  • the imaging chip 33 can be welded on the first circuit board 32, such as soldering the imaging chip 33 on the first circuit board 32 by soldering, so as to be compatible with the wiring (or other components) on the first circuit board 32 ) to achieve electrical connection.
  • the supporting bracket 31 may be a plastic bracket with a frame-shaped structure; for example, the supporting bracket 31 may include: a surrounding frame body 311 , and a protrusion structure 312 disposed on the top surface of the surrounding frame body 311 .
  • the protruding structure 312 can be arranged around a part of the surrounding frame body 311, specifically, it only needs to meet the requirement of realizing the movement of the imaging component 30 relative to the lens component 20.
  • the first circuit board 32 may include a central portion and an edge portion, and the edge portion surrounds the central portion.
  • the edge portion is connected to the bottom surface of the frame body 311 (the bottom surface is opposite to the top surface), the central portion corresponds to the central hollow area of the frame body 311, and the imaging chip 33 is arranged on the second
  • the first surface of a circuit board 32 is located at the center, so that the optical signal passing through the lens assembly 20 can pass through the central hollow area and project onto the imaging chip 33 , thereby ensuring the imaging effect of the imaging chip 33 .
  • the first surface of the central part (that is, the first surface of the first circuit board 32) may be provided with a concave cavity
  • the imaging chip 33 is fixed in the concave cavity
  • the concave cavity may also be provided with Electronic components such as capacitors, resistors, and registers are not limited in this embodiment of the present application.
  • the bottom surface of the carrying bracket 31 i.e. the bottom surface of the frame body 311
  • the top surface of the carrying bracket 31 i.e. the top surface of the frame body 311
  • the first circuit board 32 is arranged on the bottom surface of the bearing bracket 31. Compared with the way of arranging the first circuit board 32 on the top surface of the bearing bracket 31, it can be ensured that the imaging assembly 30 has the same thickness when the camera modules have the same thickness.
  • the supporting bracket 31 , the first circuit board 32 and the imaging chip 33 can be fixed as a whole (for example, they can be fixed as a whole by dispensing glue, etc.) to ensure the stability of the structure.
  • the carrier bracket 31 is driven to move by the magnetic driving force between the first magnetic driver 41 and the second magnetic driver 42, so that the carrier bracket 31 drives the imaging chip 33 to move close to the lens assembly 20 along the optical axis direction , or move away from the lens assembly 20 .
  • the imaging assembly 30 further includes: an infrared filter 34 , and the infrared filter 34 is disposed between the supporting bracket 31 and the imaging chip 33 .
  • the infrared filter 34 is used to block the passage of infrared light to ensure better imaging effect of the camera module.
  • the drive assembly 40 includes: a first magnetic drive member 41 and a second magnetic drive member 42; the first magnetic drive member 41 is arranged on the side of the imaging assembly 30 (such as the first magnetic drive member 41 The component can be arranged on the first side of the bearing bracket 31), the second magnetic driver 42 is arranged on the inner wall of the housing 10, the first magnetic driver 41 and the second magnetic driver 42 relative settings.
  • the magnetic driving force between the first magnetic driving member 41 and the second magnetic driving member 42 drives the carrying bracket 31 to drive the imaging assembly 30 to approach or move away from the lens along the optical axis direction Assembly 20 moves.
  • the first magnetic driver 41 and the second magnetic driver 42 are placed on the side of the imaging assembly 30, it is possible to reduce the space occupied by the first magnetic driver 41 and the second magnetic driver 42 in the direction of the optical axis. Therefore, the overall thickness of the camera module can be reduced while ensuring that the adjustable distance between the imaging component 30 and the lens component 20 meets the focusing requirements.
  • the first magnetic driving part 41 is an electromagnet
  • the second magnetic driving part 42 is a magnet
  • the magnet and the electromagnet can constitute a driving system
  • the magnet can be fixed in the housing by dispensing
  • the surface is used to provide a magnetic field, and cooperate with the electromagnet to generate a thrust to drive the imaging component 30 to move, that is, the electromagnet generates a magnetic field when it is energized, and generates a driving force under the action of the magnetic field of the permanent magnet, so that the imaging component 30 can be driven along the The direction of the optical axis moves closer to the lens assembly 20 or moves away from the lens assembly 20 .
  • the first magnetic driver 41 is an electromagnet and the second magnetic driver 42 is a magnet, that is, the magnet is fixed relative to the housing 10, which can reduce the space occupation, and because the electromagnet is light in weight, by setting The electromagnet moves with the imaging component 30, which can further reduce power consumption.
  • the camera module further includes: a driving chip 50 electrically connected to the electromagnet; for example, the driving chip 50 is connected to the first magnetic driving member 41 .
  • the driver chip 50 is disposed on the first side of the supporting bracket 31 .
  • the infrared filter 34 is rectangular, that is, by setting the driving chip 50 and the electromagnet on the first side of the supporting bracket 31,
  • the design of the protrusion on the supporting bracket 31 for fixing the connecting terminal of the coil can be eliminated, and the design of the chamfer on the infrared filter 34 can be further eliminated, which further simplifies the processing technology.
  • the camera module further includes: a second circuit board 110 .
  • the driving chip 50 and the electromagnet are arranged on the first surface of the second circuit board 110, and the second surface of the second circuit board 110 is connected to the first side of the supporting bracket 31; wherein, the The first surface is opposite to the second surface.
  • the electromagnet that is, the coil
  • the driving chip 50 are fixed on one side of the second circuit board 110, and have an electrical connection property, so that the driving chip 50 can provide electric energy for the electromagnet to drive
  • the electromagnet generates a magnetic field.
  • the supporting bracket 31 is provided with a first protruding portion 314 for winding the coil
  • the second circuit board 110 is provided with an opening avoiding the first protruding portion 314 to ensure that the first protruding portion 314
  • the first surface of the second circuit board 110 can be attached to the supporting bracket 31 , and the coil disposed on the second surface of the second circuit board 110 can be wound on the first protrusion 314 .
  • the camera module further includes: a second magnetic plate 100; the second magnetic plate 100 is arranged on the first side of the bearing bracket 31, and the bearing bracket 31 is located on the second side. between the circuit board 110 and the second magnetic plate 100 .
  • the second magnetic plate 100 can be a structure capable of being attracted by the magnetic force of the second magnetic driver 42, such as the second magnetic plate 100 can be a steel plate, a yoke (or called a yoke) plate, etc., the present invention
  • the present invention The application examples are not limited thereto.
  • the coil is located between the magnet and the second magnetic plate 100, and the magnet and the second magnetic plate 100 form a magnetic circuit, which has the functions of collecting magnetism and increasing the thrust of the coil.
  • the adsorption force generated by the magnet on the second magnetic plate 100 can ensure the stability of the imaging assembly 30 inside the casing, and because the second magnetic plate 100 is fixed on the inner side of the bearing bracket 31, it has better support for the bearing bracket 31 role.
  • the driving chip 50 may further include a position feedback element, and the position feedback element is used for collecting position information of the imaging chip 33 .
  • the position feedback element used for position information feedback is integrated in the drive chip 50 used to drive the electromagnet, which can avoid when the position feedback element used for position feedback and the drive chip 50 used to drive the electromagnet are set independently , the possible magnetic interference problem.
  • the driver chip 50 is arranged outside the coil in this solution, it has strong anti-interference ability, and it is close to the magnet, so it has better position feedback accuracy.
  • the camera module further includes: a bracket 70, the bracket 70 is fixed on the inner wall of the housing (that is, the inner wall of the housing body 11), and the second magnetic drive The component 42 is located between the bracket 70 and the housing (that is, the second magnetic driving component 42 is located between the bracket 70 and the housing body 11 ).
  • the bracket 70 can be fixed on the inner wall surface of the housing body 11 by dispensing glue, and the bracket 70 can also fix the second magnetic driver 42 on the inner wall of the housing body 11 through a limiting structure, Ensure good positional consistency when assembling the second magnetic driver 42 .
  • the second magnetic driving part 42 and the housing body 11 can also be further fixed by dispensing glue.
  • the slide rail structure includes: a plurality of balls 80 , at least one first groove 317 arranged on the first side of the bearing bracket 31 , at least one second groove 317 arranged on the bracket 70 Slot 71.
  • the at least one first groove 317 is provided in one-to-one correspondence with the at least one second groove 71, and one first groove 317 and one second groove 71 form an accommodating space , each of the accommodating spaces is provided with the balls 80 .
  • the ball has the function of supporting and spacing the bearing bracket 31 and the bracket 70, and also provides a sliding action between the bearing bracket 31 and the bracket 70 to reduce sliding resistance, so as to ensure that the bearing bracket 31 is connected between the first magnetic driver 41 and the bearing bracket 70. Under the action of the magnetic driving force between the second magnetic driving parts 42 , they can effectively slide relative to the bracket 70 , which is beneficial to reduce loss.
  • the number of first grooves 317 is 2, and the number of corresponding second grooves 71 is also 2; in this way, 2 accommodating spaces can be formed by 2 first grooves 317 and 2 second grooves 71 , that is, the sliding track for accommodating the ball 80.
  • one of the two slide rails may be set close to the second side of the bearing bracket 31 (that is, set corresponding to the second protrusion 315), and the other slide track may be set close to the third side of the load support 31 (ie corresponding to The third protruding portion 316 is provided).
  • the camera module further includes: a flexible circuit board 90, the first part of the flexible circuit board 90 is located in the housing, and is electrically connected to the first circuit board 32 connection; the second part of the flexible circuit board 90 is located outside the housing.
  • the first part of the flexible circuit board 90 is connected to the first circuit board 32, and the second part is arranged outside the housing and can be connected to external devices (such as the main board of electronic equipment, etc.), that is, the connection of electronic devices can be realized through the flexible circuit board 90.
  • external devices such as the main board of electronic equipment, etc.
  • the second part of the flexible circuit board 90 can be provided with a connector 91, and the connector 91 can be used to connect with the main board of the electronic device, such as the connector can be a board-to-board (BTB) connector, so that the flexible circuit board The connection to the motherboard can be directly realized through this BTB connector.
  • BTB board-to-board
  • the first part of the flexible circuit board 90 includes: a central part 901, an edge part 902 and at least one connecting part 903;
  • the central portion 901 is electrically connected to the first surface of the imaging assembly 30; the first surface is a surface disposed away from the lens assembly 20; the edge portion 902 is disposed around the central portion 901, and The edge portion 902 is connected to the bottom of the casing; the bottom of the casing is a side away from the lens assembly 20 ; the connecting portion 903 is connected to the central portion 901 and the edge portion 902 .
  • the central portion 901 may be a protrusion, and the second surface of the first circuit board 32 may be provided with a groove corresponding to the central portion 901; or, the central portion 901 may be concave, and the first The second surface of the circuit board 32 may be provided with a protrusion corresponding to the central portion 901 ; or, the central portion 901 and the second surface of the first circuit board 32 are both plane, which is not limited in the embodiment of the present application.
  • the flexible circuit board 90 provides the function of electrical connection, and on the other hand, it provides a space for the flexible circuit board 90 to follow the imaging assembly 30 to move, so that when the imaging assembly 30 moves along the optical axis, the flexible circuit board 90 can flexibly follow the imaging assembly 30.
  • the imaging assembly 30 moves along the optical axis without breaking the fixed connection between the flexible circuit board 90 and the first circuit board 32 and the bottom surface of the casing.
  • the central part 901 can be electrically and structurally connected to the first circuit board 32 by means of glue bonding or the like.
  • the edge portion 902 may be structurally connected to the bottom surface of the housing by means of glue bonding or the like.
  • the wiring length of the connecting portion 903 is greater than the distance from the first position to the second position
  • the first position is a position on the central part 901 connected to the connecting part 903
  • the second position is a position on the edge part 902 connected to the connecting part 903 .
  • the connecting part 903 can be U-shaped, S-shaped or irregularly curved, etc., so that the length of the wiring from the central part 901 to the edge part 902 is extended through the connecting part 903, and the flexible circuit board 90 is provided to follow the imaging assembly 30 room to move.
  • the number of the connecting parts 903 may be four, which may be respectively located at four corners of the edge part 902 .
  • One end of a connecting portion 903 is connected to the first edge on the central portion 901 (the first edge may be an end close to the connector 91 on the flexible circuit board 90, or an end away from the connector 91 on the flexible circuit board 90 One end), the other end is connected to the first corner of the edge portion 902 (in the case that the first side is an end close to the connector 91 on the flexible circuit board 90, the first corner is close to the flexible circuit board 90 A corner of one end of the connector 91; in the case that the first side is away from the end of the connector 91 on the flexible circuit board 90, the first corner is the end away from the connector 91 on the flexible circuit board 90 corner).
  • the multi-directionally expanded flexible circuit board structure is beneficial to reduce its resistance, reduce the demand for driving force, and further reduce power consumption.
  • the housing 10 includes: a housing body 11 and a bottom plate 12, for example, the bottom plate 12 may be a steel plate.
  • the casing body 11 is provided with a first opening and a second opening, the lens assembly 20 is disposed at the first opening, and the imaging assembly 30 and the driving assembly 40 are both disposed at the casing body 11
  • the bottom plate 12 is disposed at the second opening, and the edge portion 902 is connected to the bottom plate 12; wherein, the first opening and the second opening are disposed opposite to each other.
  • the lens assembly 20 can be combined with the housing body 11 through threading, dispensing, buckling, etc., and the relative position is guaranteed to be stable.
  • the bottom plate 12 can be connected with the housing body 11 by dispensing, welding, buckling, etc., so as to protect the internal structure of the camera module.
  • the method of driving the imaging chip to achieve focusing can greatly reduce the requirement for thrust during focusing, which is beneficial to reduce power consumption.
  • the lens assembly is fixed relative to the casing, it is possible to prevent the lens assembly from colliding with the casing in the non-photographing state, and to avoid abnormal noise.
  • the camera module can form a closed cavity to prevent dust from entering the camera module The interior of the camera module reduces the probability of the inherent dust of the camera module falling on the surface of the imaging chip during the autofocus process of the camera module, thereby improving the quality of the camera.
  • the iron shell when the shell is an iron shell, the iron shell can be connected with the steel plate on the bottom surface to form a relatively closed electromagnetic shielding structure, which can improve the anti-electromagnetic interference (Electromagnetic Interference, EMI) effect of the camera module, and can reduce the noise between the camera module and electronic equipment.
  • EMI Electromagnetic Interference
  • the mutual interference of the antenna modules saves the auxiliary materials and related costs paid by the camera module to solve the EMI problem during the assembly process of the whole machine.
  • the embodiment of the present application can also combine the way of driving the imaging chip to achieve focusing with the focusing technology of driving the lens assembly, which can increase the amount of optical dimension movement and achieve ultra-macro focusing. It can also be combined with a continuous zoom lens assembly to achieve a continuous zoom and auto focus split into two moving parts, which can reduce the difficulty of realizing the existing continuous zoom module motor.
  • An embodiment of the present invention also provides an electronic device, which includes the above-mentioned camera module and can achieve the same technical effect as the above-mentioned camera module. To avoid repetition, details will not be repeated here.
  • the electronic device may be a mobile phone, a tablet, etc., and this embodiment of the present application is not limited thereto.

Abstract

本申请公开了一种摄像模组及电子设备。其中,摄像模组包括:壳体、镜头组件、成像组件、滑轨结构、第一磁性驱动件和第二磁性驱动件;镜头组件固定于壳体上;成像组件设置于壳体的内部,且位于镜头组件的光轴方向上;滑轨结构位于成像组件与壳体之间,滑轨结构的滑动方向与光轴方向相同;第一磁性驱动件设置于成像组件的侧面,第二磁性驱动件设置于壳体的内壁;第一磁性驱动件与第二磁性驱动件相对设置;其中,成像组件位于镜头组件的光轴方向上,第一磁性驱动件与第二磁性驱动件之间的磁性驱动力,驱动成像组件通过滑轨结构沿光轴方向靠近或远离镜头组件移动。

Description

摄像模组及电子设备
相关申请的交叉引用
本申请主张在2021年7月20日在中国提交的中国专利申请No.202110820140.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及电子产品技术领域,尤其涉及一种摄像模组及电子设备。
背景技术
便携式数码产品(如智能手机、平板电脑等)一般都配置有摄像模组。为了保证成像品质,摄像模组还具有自动对焦功能,如通过音圈马达驱动镜头组件完成自动对焦。为了保证摄像模组具有更好的成像效果,镜头组件中镜片的数量越来越多,或者采用折射率更高的玻璃镜片替代原有的塑胶镜片,这些都将导致镜头的重量增加,从而在自动对焦过程中需要音圈马达产生更大驱动力来驱动镜头组件,造成音圈马达的功耗增加。目前的摄像模组在自动对焦过程中存在音圈马达的功耗大的问题。
发明内容
本申请实施例提供了一种摄像模组及电子设备,以解决目前的摄像模组在自动对焦过程中存在音圈马达的功耗大的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种摄像模组,包括:
壳体;
镜头组件,所述镜头组件固定于所述壳体上;
成像组件,所述成像组件设置于所述壳体的内部,且位于所述镜头组件的光轴方向上;
滑轨结构,所述滑轨结构位于所述成像组件与所述壳体之间,所述滑轨结构的滑动方向与所述光轴方向相同;
第一磁性驱动件和第二磁性驱动件,所述第一磁性驱动件设置于所述成像组件的侧面,所述第二磁性驱动件设置于所述壳体的内壁;所述第一磁性驱动件与所述第二磁性驱动件相对设置;
其中,所述第一磁性驱动件与所述第二磁性驱动件之间的磁性驱动力,驱动所述成像组件通过所述滑轨结构沿所述光轴方向靠近或远离所述镜头组件移动。
第二方面,本申请实施例还提供了一种电子设备,包括如上所述的摄像模组。
这样,本申请的上述方案中,通过第一磁性驱动件和第二磁性驱动件之间的磁性驱动力,驱动成像组件通过滑轨结构沿所述光轴方向靠近或远离所述镜头组件移动,从而调整镜头组件与成像组件在光轴方向上的距离,即实现摄像模组的对焦功能,并且通过滑轨结构提供了成像组件的移动方向,还有利于减小成像组件移动时的阻力,在实现摄像模组的对焦功能时避免了镜头组件移动,可以避免由于镜头组件重量的增加而造成驱动功耗的增加,从而在较大程度上降低了摄像模组在对焦过程中的功耗;此外,该方案中的第一磁性驱动件和第二磁性驱动件位于成像组件的侧面,可以减少由于第一磁性驱动件和第二磁性驱动件在光轴方向上所占用的空间,从而可以在保证成像组件与镜头组件之间可调距离满足对焦需求的情况下,降低摄像模组的整机厚度。
附图说明
图1表示本申请实施例的摄像模组的分解示意图之一;
图2表示本申请实施例的摄像模组的立体示意图;
图3表示本申请实施例的摄像模组的侧面示意图;
图4表示图3中A-A面的剖面示意图;
图5表示本申请实施例的成像组件的部分分解示意图之一;
图6表示本申请实施例的成像组件的部分示意图之一;
图7表示本申请实施例的成像组件和柔性电路板的安装示意图之一;
图8表示本申请实施例的第二磁性驱动件与壳体的分解示意图;
图9表示本申请实施例的第二磁性驱动件与壳体的安装示意图;
图10表示本申请实施例的柔性电路板和第一电路板的分解示意图;
图11表示本申请实施例的柔性电路板和第一电路板的安装示意图之一;
图12表示本申请实施例的摄像模组的分解示意图之二;
图13表示本申请实施例的摄像模组的剖面示意图;
图14表示本申请实施例的成像组件的部分分解示意图之二;
图15表示本申请实施例的成像组件的部分意图之二;
图16本申请实施例的成像组件和柔性电路板的安装示意图之二。
具体实施方式
下面将参照附图更详细地描述本申请的示例性实施例。虽然附图中显示了本申请的示例性实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整的传达给本领域的技术人员。
本申请实施例涉及的摄像模组包括镜头组件、马达(也可以称为驱动组件)、成像组件等关键器件。其中,成像组件包括成像芯片,用于将光信号转换成电信号,以实现成像。镜头组件包括将光线汇聚在成像芯片上的透镜,马达用于驱动成像组件移动,以调整成像组件与镜头组件在光轴上的距离,从而实现对焦功能。
可选地,马达可以为音圈马达,具体可以包括开环音圈马达、闭环音圈马达;搭配闭环音圈马达的摄像模组(也可以称为闭环模组)与搭配开环音圈马达的摄像模组(也可以称为开环模组)相比,特别是在大光圈下具有对焦精准度高、对焦更快等特点。其中,闭环模组可以包括:滚珠式闭环模组、弹片式闭环模组。
如图1至图4所示,本申请实施例提供了一种摄像模组,包括:壳体10、镜头组件20、成像组件30、驱动组件40和滑轨结构;
其中,所述镜头组件20固定于所述壳体10上;所述成像组件30与所述驱动组件40连接,且所述成像组件30和所述驱动组件40均设置于所述壳体10的内部,且所述成像组件30位于所述镜头组件20的光轴方向上;所述滑 轨结构位于所述成像组件30与所述壳体10之间,所述滑轨结构的滑动方向与所述光轴方向相同。
所述驱动组件40驱动所述成像组件30通过所述滑轨结构沿所述光轴方向靠近或远离所述镜头组件20移动,也即是所述驱动组件40可以驱动所述成像组件30通过滑轨结构沿所述光轴方向靠近所述镜头组件20移动,或者所述驱动组件40可以驱动所述成像组件30通过滑轨结构沿所述光轴方向远离所述镜头组件20移动。
可选地,壳体10用于固定镜头组件20,并对其内部的成像组件30、驱动组件40等起到保护作用。壳体10可以包括壳体本体11和底板12,如该底板12可以是钢板。
可选地,镜头组件20包括将光线汇聚在成像组件30上的透镜,其中透镜的数量可以是一个或多个,具体可以根据所需成像效果设置,本申请实施例不以此为限。
可选地,成像组件30设置在镜头组件20的光轴方向上,使得成像组件30可以将透过镜头组件20的光信号转换为电信号,以实现成像。
可选地,驱动组件40可以产生驱动力,以驱动成像组件30沿所述光轴方向靠近所述镜头组件20移动,或驱动成像组件30沿所述光轴方向远离所述镜头组件20移动。
上述方案中,通过将镜头组件20固定在壳体10上,以及将成像组件30和驱动组件40设置在壳体10的内部,并在壳体10与成像组件30之间设置滑轨结构,以通过驱动组件40驱动成像组件30通过该滑轨结构沿所述光轴方向靠近所述镜头组件20移动,或远离所述镜头组件20移动,从而调整镜头组件20与成像组件30在光轴方向上的距离,即实现摄像模组的对焦功能。该方案在实现摄像模组的对焦功能时避免了镜头组件20移动,可以避免由于镜头组件20重量的增加而造成驱动组件40的功耗增加,并且通过滑轨结构提供了成像组件30的移动方向,还有利于减小成像组件移动时的阻力,从而在较大程度上降低了摄像模组在对焦过程中的功耗。
此外,本申请实施例中的摄像模组,由于镜头组件20固定在壳体10上,因此该摄像模组的成像组件30(如成像组件30中选择大底芯片)可以搭载 大规格镜头(如通过增加透镜的数量提高成像效果)。并且由于镜头组件20固定在壳体10上,可以减少丝印开窗,搭载该摄像模组的电子设备可以避免预留摄像模组与屏幕或电池后盖上用于设置防尘泡棉的容置空间,镜头组件20可以直接接触防尘泡棉,提升了防尘效果,也有利于整机的轻薄化设计,并且还可以避免由于镜头组件20移动造成的异响,降低镜头组件20撞击电子设备内部结构风险,提高镜头组件20的可靠性。特别的,对于超广角摄像模组而言,可以更大程度地遮挡摄像模组中壳体以及镜头载体之间的间隙,提升整机的精致度。
继续参阅图1至图4,所述摄像模组包括:壳体10、镜头组件20、成像组件30、滑轨结构、第一磁性驱动件41和第二磁性驱动件42。
所述镜头组件20固定于所述壳体10上;所述成像组件30设置于所述壳体10的内部,且位于所述镜头组件20的光轴方向上;所述滑轨结构位于所述成像组件30与所述壳体10之间,所述滑轨结构的滑动方向与所述光轴方向相同;所述第一磁性驱动件41设置于所述成像组件30的侧面,所述第二磁性驱动件42设置于所述壳体10的内壁;所述第一磁性驱动件41与所述第二磁性驱动件42相对设置。
其中,所述第一磁性驱动件41与所述第二磁性驱动件42之间的磁性驱动力,驱动所述成像组件30通过所述滑轨结构沿所述光轴方向靠近或远离所述镜头组件20移动。
例如:上述驱动组件40可以包括所述第一磁性驱动件41和所述第二磁性驱动件42。所述第一磁性驱动件41和所述第二磁性驱动件42之间可以产生沿光轴方向的磁性驱动力,设置在壳体10上的第二磁性驱动件42,可以通过该磁性驱动力驱动该第一磁性驱动件41带动成像组件30相对于壳体10移动,即该成像组件30通过所述滑轨结构沿所述光轴方向靠近所述镜头组件20移动,或该成像组件30通过所述滑轨结构沿所述光轴方向远离所述镜头组件20移动。
该实施例中,通过第一磁性驱动件41和第二磁性驱动件42之间的磁性驱动力,驱动成像组件30通过所述滑轨结构沿所述光轴方向靠近或远离所述镜头组件20移动,从而调整镜头组件20与成像组件30在光轴方向上的距离, 即实现摄像模组的对焦功能,并且该方案在实现摄像模组的对焦功能时避免了镜头组件20移动,可以避免由于镜头组件20重量的增加而造成驱动功耗增加,从而在较大程度上降低了摄像模组在对焦过程中的功耗。
并且,滚珠80具有支撑和间隔承载成像组件30和壳体10的作用,并且还提供了成像组件30和壳体10之间的滑动作用,以降低滑动阻力,从而保证成像组件30在所述第一磁性驱动件41与所述第二磁性驱动件42之间的磁性驱动力的作用下可以相对于壳体10有效地滑动,并且有利于进一步降低损耗。
此外,该方案中的第一磁性驱动件41和第二磁性驱动件42位于成像组件30的侧面,可以减少由于第一磁性驱动件41和第二磁性驱动件42在光轴方向上所占用的空间,从而可以在保证成像组件30与镜头组件20之间可调距离满足对焦需求的情况下,降低摄像模组的整机厚度。
其中,所述成像组件30包括:承载支架31、第一电路板32和成像芯片33;所述第一磁性驱动件41位于所述承载支架31的第一侧面;所述第一电路板32的第一表面与所述承载支架31的底面连接,所述成像芯片33设置于所述第一表面上;其中,所述第一侧面与所述底面相邻设置。
可选地,成像芯片33用于将透过镜头组件20的光信号转换为电信号,以实现成像。成像芯片33可以焊接在所述第一电路板32上,如采用锡焊的方式将成像芯片33焊接在第一电路板32上,以与第一电路板32上的走线(或其他元器件)实现电连接。
可选地,承载支架31的可以为塑胶支架,呈框形结构;如承载支架31可以包括:围框本体311,以及设置于围框本体311的顶面上的突起结构312。其中,该突起结构312可以围绕所述围框本体311的部分围框设置,具体可满足实现成像组件30相对于镜头组件20的移动即可。
可选地,第一电路板32可以包括中心部和边缘部,该边缘部包围中心部设置。所述边缘部与所述围框本体311的底面(该底面与上述顶面相对设置)连接,所述中心部对应该围框本体311的中心镂空区域,且该成像芯片33设置于所述第一电路板32的第一表面上且位于所述中心部,这样透过镜头组件20的光信号可以穿过该中心镂空区域投射到该成像芯片33上,从而保证成 像芯片33的成像效果。
可选地,该中心部的第一表面(即第一电路板32的第一表面)可以设有凹腔,所述成像芯片33固定在所述凹腔内,所述凹腔内还可以设置电容、电阻、寄存器等电子元件,本申请实施例不以此为限。
其中,所述承载支架31的底面(即围框本体311的底面)为远离(即背向)所述镜头组件20的一面,所述承载支架31的顶面(即围框本体311的顶面)为靠近(即朝向)所述镜头组件20的一面。这样在承载支架31的底面设置该第一电路板32,相对于在承载支架31的顶面设置第一电路板32的方式,可以保证在摄像模组具有相同厚度的情况下,成像组件30具有更大的移动空间,从而可以保证摄像模组具有更大的调焦范围,并且碰撞位置与成像芯片33之间具有更远的距离,加长了碰撞点与成像芯片33的距离,具有更有效的防尘结构,并且还便于摄像模组中电路板的设置。
该实施例中,承载支架31、第一电路板32和成像芯片33可以固定为一整体(如可以通过点胶等方式固定为一个整体),以保证结构的稳定性。通过第一磁性驱动件41和第二磁性驱动件42之间的磁性驱动力驱动承载支架31移动,以使得承载支架31带动所述成像芯片33沿所述光轴方向靠近所述镜头组件20移动,或远离所述镜头组件20移动。
其中,所述成像组件30还包括:红外滤光片34,所述红外滤光片34设置于所述承载支架31与所述成像芯片33之间。
该实施例中,红外滤光片34用于截止红外光通过,以保证摄像模组具有更好的成像效果。
可选地,所述第一磁性驱动件41可以为电磁体和磁铁(也可以称为磁石)中的一个,所述第二磁性驱动件42可以为所述电磁体和所述磁铁中的另一个。如所述第一磁性驱动件41可以为电磁体,所述第二磁性驱动件42可以为磁铁;如所述第一磁性驱动件41可以为磁铁,所述第二磁性驱动件42可以为电磁体。例如:该电磁体可以是线圈,在通电状态下可以产生磁场。
其中,磁铁与电磁体可以构成驱动系统;如第一磁性驱动件41为电磁体,第二磁性驱动件42为磁铁的情况下,该磁铁可以通过点胶的方式固定在壳体的内表面,用于提供磁场,并配合电磁体产生推力驱动成像组件30的移动, 即电磁体在通电的情况下产生磁场,并在永磁体的磁场作用下产生驱动力,从而可以驱动成像组件30沿所述光轴方向靠近所述镜头组件20移动,或远离所述镜头组件20移动。并且在第一磁性驱动件41为电磁体,第二磁性驱动件42为磁铁的情况下,即磁体相对壳体10是固定的,可减小空间占用,并且由于电磁体的重量轻,通过设置电磁体跟随成像组件30移动,可进一步降低功耗。
可选地,所述摄像模组还包括:驱动芯片50,所述驱动芯片50与所述电磁体电连接;如所述第一磁性驱动件41为电磁体的情况下,该驱动芯片50即与所述第一磁性驱动件41连接。
其中,所述驱动芯片50设置于所述第一电路板32上,该驱动芯片50可以焊接在所述第一电路板32上,如采用锡焊的方式将驱动芯片50焊接在第一电路板32上,以与第一电路板32上的走线(或其他元器件)实现电连接。
该实施例中,驱动芯片50为电磁体提供驱动电流,使得电磁体在通过电流的情况下,产生磁场。
可选地,所述驱动芯片50还可以包括位置反馈元件,所述位置反馈元件用于采集所述成像芯片33的位置信息。
该实施例中,用于位置信息反馈的位置反馈元件集成在用于驱动电磁体的驱动芯片内,可以避免用于位置反馈的位置反馈元件和用于驱动电磁体的驱动芯片50独立设置时,可能存在的磁干扰问题。
例如:当承载支架31被驱动向上(即靠近成像组件30)或者向下(即远离成像组件30)移动时,成像芯片33的位置可被驱动芯片50内置的位置反馈元件捕获并反馈给驱动芯片50,驱动芯片50结合摄像模组的图像信息处理结果,可以更改向电磁体输出的电能,使成像芯片33在承载支架31的带动下,沿着光轴方向快速、准确地移动到可清晰成像的位置,完成对焦的功能。
如图5至图7所示,在所述驱动芯片50设置于所述第一电路板32上的情况下,所述承载支架31的第一侧面设有缺口313;所述驱动芯片50位于所述缺口313内,且所述驱动芯片50突出于所述第一侧面设置。
该实施例中,通过在承载支架31上设置缺口313,以形成用于容纳驱动 芯片50的空间,可以避免由于驱动芯片50的厚度造成摄像模组厚度的增加;并且驱动芯片50突出于所述第一侧面设置,可以便于该驱动芯片50与电磁体的电连接。
可选地,在所述第一磁性驱动件41为所述电磁体,且所述驱动芯片50设置于所述第一电路板32上的情况下,所述摄像模组还包括:第一磁吸板60;所述第一磁吸板60设置于所述承载支架31的第一侧面,且所述第一磁吸板60位于所述第一磁性驱动件41与所述承载支架31之间。
其中,该第一磁吸板60可以是能够被第二磁性驱动件42的磁力吸附的结构,如该第一磁吸板60可以是钢板、轭铁板等,本申请实施例不以此为限。
该实施例中,第二磁性驱动件42可以吸附第一磁吸板60,即第二磁性驱动件42可以在垂直光轴的方向上吸附该第一磁吸板60,保证成像芯片33的连接可靠性,并且可以避免壳体10的内壁上设置用于固定承载支架31的台阶,从而可降低Z向(即光轴方向)的高度,从而降低摄像模组的高度。并且该第二磁性驱动件42可以与第一磁吸板60构成磁回路,以保证具有更好的聚磁效果。
可选地,所述第一磁吸板60包括:第一安装部61以及沿所述第一安装部61的第一边缘设置的第二安装部62,所述第二安装部62与所述第一安装部61之间呈预设角度设置。
其中,所述第一安装部61固定于所述承载支架31的第一侧面,且所述第一磁性驱动件41位于所述第一安装部61与所述承载支架31之间;所述承载支架31的顶面设有凹槽,所述第二安装部62卡设于所述凹槽内;所述顶面与所述底面相背设置。
可选地,第二安装部62的长度可以大于,第二安装部62与第一安装部61之间的连接长度,即在第二安装部62与第一安装部61的连接位置,该第一磁吸板60具有至少一个缺口;这样通过在承载支架31的顶面上设有与该第二安装部62的形状相匹配的凹槽,可以避免该第一磁吸板60沿垂直于所述光轴的方向脱出该凹槽,从而保证第一磁吸板60与承载支架的安装强度。此外,该第一磁吸板60除与该承载支架31卡接外,还可以进一步通过点胶的方式与承载支架31固定,以增加连接强度。
可选地,在所述第一磁性驱动件41为所述电磁体的情况下,所述第一磁性驱动件41包括:线圈;所述承载支架31的第一侧面设有第一突起部314,所述线圈缠绕于所述第一突起部314上。
例如:该第一突起部314的数量可以为2个,该第一突起部314部的形状可以呈腰形,具体可以根据所缠绕线圈的形状以及第二磁性驱动件42的形状设置,本申请实施例不以此为限。
相应地,该第一磁吸板60的第一安装部61上还设有与所述第一突起部314对应的避空区域63。这样在第一磁吸板60安装于承载支架31上时,该第一突起部314位于所述避空区域63内,从而可以节省摄像模组的内部空间。
可选地,在所述驱动芯片50设置于所述第一电路板32上的情况下,所述承载支架31的第一侧面还设有第二突起部315和第三突起部316。
所述第二突起部315靠近第二侧面设置,所述线圈的第一连接端411设置于所述第二突起部315上,并与所述驱动芯片50电连接;其中,所述第二侧面与所述第一侧面相邻设置。
所述第三突起部316靠近第三侧面设置,所述线圈的第二连接端412设置于所述第三突起部316上,并与所述驱动芯片50电连接;其中,所述第三侧面与所述第一侧面相邻设置。
可选地,该线圈可以通过绕线、点胶等方式固定在承载支架31上。线圈可以通过焊接的方式与设置于第一电路板32上的驱动芯片50实现电性连接。
可选地,在所述驱动芯片50设置于所述第一电路板32上的情况下,所述红外滤光片34上对应于所述电磁体的第一连接端的位置设有第一倒角,所述红外滤光片34上对应于所述电磁体的第二连接端的位置设有第二倒角。
这样,红外滤光片34上对应该线圈的第一连接端411和第二连接端412的位置处设有倒角,以避让第一连接端411、第二连接端412与驱动芯片50的走线,保证线圈与驱动芯片50之间的连接可靠性。
该实施例中,由于线圈为单侧布局,且直接绕制在承载支架31上,从而简化了工艺操作,并且减少了电路板的设计。并且由于单侧线圈的设置,使得线圈绕制到承载支架31上时无遮挡特征,更便于线圈绕制,并且可以减少红外滤光片34上设计倒角的数量,进一步简化了工艺操作。
如图8和图9所示,所述摄像模组还包括:支架70,所述支架70固定于所述壳体的内壁(也即壳体本体11的内壁),且所述第二磁性驱动件42位于所述支架70与所述壳体之间(也即所述第二磁性驱动件42位于所述支架70与所述壳体本体11之间)。
可选地,该支架70可以通过点胶的方式固定在壳体本体11的内壁表面,并且该支架70还可以通过限位结构将第二磁性驱动件42固定在壳体本体11的内壁上,确保组装第二磁性驱动件42时位置一致性较好。当然,为了保证第二磁性驱动件42的固定可靠性,该第二磁性驱动件42与所述壳体本体11之间也可以通过点胶的方式进一步固定。
可选地,所述滑轨结构包括:多个滚珠80、设置于所述承载支架31的第一侧面上的至少一个第一凹槽317、设置于所述支架70上的至少一个第二凹槽71。
其中,所述至少一个第一凹槽317与所述至少一个第二凹槽71一一对应地设置,且一个所述第一凹槽317与一个所述第二凹槽71形成一容置空间,每个所述容置空间内均设置有所述滚珠80。该滚珠具有支撑和间隔承载支架31和支架70的作用,并且还提供了承载支架31和支架70之间的滑动作用,以降低滑动阻力,从而保证承载支架31在所述第一磁性驱动件41与所述第二磁性驱动件42之间的磁性驱动力的作用下可以相对于支架70有效地滑动,并且有利于降低损耗。
例如:第一凹槽317的数量为2个,相应第二凹槽71的数量也为2个;这样由2个第一凹槽317和2个第二凹槽71可以构成2个容置空间,即用于容纳滚珠80的滑动轨道。可选地,这两个滑动轨道的其中一个可以靠近承载支架31的第二侧面设置(即对应第二突起部315设置),另一个滑动轨道可以靠近承载支架31的第三侧面设置(即对应第三突起部316设置)。
如图4、图10和图11所示,所述摄像模组还包括:柔性电路板90,所述柔性电路板90的第一部分位于所述壳体内,并与所述第一电路板32电连接;所述柔性电路板90的第二部分位于所述壳体外。
这样,通过柔性电路板90的第一部分与第一电路板32连接,第二部分设置在壳体外,可以与外部设备(如电子设备的主板等)连接,即通过柔性 电路板90可以实现连接电子设备主板和摄像模组内部的第一电路板32。
该柔性电路板90的第二部分上可以设有连接器91,该连接器91可以用于与电子设备的主板连接,如该连接器可以是板对板(BTB)连接器,从而柔性电路板可以通过该BTB连接器直接实现与主板的连接。
可选地,所述柔性电路板90的第一部分包括:中心部分901、边缘部分902和至少一个连接部分903;
所述中心部分901与所述成像组件30的第一表面电连接;所述第一表面是背向所述镜头组件20设置的一表面;所述边缘部分902包围所述中心部分901设置,且所述边缘部分902与所述壳体的底面连接;所述壳体的底面是远离所述镜头组件20的一面;所述连接部分903连接于所述中心部分901与所述边缘部分902。
可选地,所述中心部分901可以呈突起,该第一电路板32的第二表面可以设置与该中心部分901相对应的凹槽;或者,所述中心部分901可以呈凹陷,该第一电路板32的第二表面可以设置与该中心部分901相对应的突起;或者,该中心部分901与该第一电路板32的第二表面均为平面,本申请实施例不以此为限。
该实施例中,通过设置柔性电路板90中的边缘部分902与壳体的底面固定,以及设置中心部分与第一电路板32固定,既保证了柔性电路板90与第一电路板32的电性连接,又保证了柔性电路板90的连接可靠性;并且通过柔性电路板90的连接部分903不固定,连接部分903既不与第一电路板32连接,也不与壳体底面连接,这样柔性电路板90一方面提供电性连同的作用,另一方面提供柔性电路板90跟随成像组件30移动的空间,保证在成像组件30沿光轴方向移动时,该柔性电路板90可以灵活的跟随该成像组件30沿光轴方向移动,并避免破坏柔性电路板90与第一电路板32和壳体底面之间的固定连接。
其中,中心部分901可以通过胶水粘接等方式实现与的第一电路板32的电性连接和结构连接。边缘部分902可以通过胶水粘接等方式实现与的壳体底面的结构连接。
可选地,所述连接部分903的走线长度大于第一位置到第二位置的距离;
其中,所述第一位置是所述中心部分901上连接于所述连接部分903的位置,所述第二位置是所述边缘部分902上连接于所述连接部分903的位置。
例如:连接部分903可以呈U型、S型或不规则曲线型等,这样通过连接部分903延长了从中心部分901连接到边缘部分902的走线长度,实现提供柔性电路板90跟随成像组件30移动的空间。
可选地,该连接部分903的数量可以为4个,可以分别位于边缘部分902的四个边角。一个连接部分903的一端连接于中心部分901上的第一边(该第一边可以是靠近柔性电路板90上的连接器91的一端,也可以是远离柔性电路板90上的连接器91的一端),另一端连接于边缘部分902的第一边角(在该第一边是靠近柔性电路板90上的连接器91的一端的情况下,该第一边角为靠近柔性电路板90上的连接器91的一端的一边角;在该第一边是远离柔性电路板90上的连接器91的一端的情况下,该第一边角为远离柔性电路板90上的连接器91的一端的一边角)。这样,通过多向扩展的柔性电路板结构,有利于降低其阻力,降低驱动力需求,进而可降低功耗。
可选地,所述壳体10包括:壳体本体11和底板12,如该底板12可以是钢板。
所述壳体本体11设有第一开口和第二开口,所述镜头组件20设置于所述第一开口处,所述成像组件30和所述驱动组件40均设置于所述壳体本体11的内部;所述底板12设置于所述第二开口处,且所述边缘部分902与所述底板12连接;其中,第一开口和第二开口相背设置。
可选地,该镜头组件20可以通过螺纹、点胶、卡扣等方式与该壳体本体11进行组合,并确保相对位置稳定。底板12可以通过点胶、焊接、卡扣等方式与壳体本体11连接,起到保护摄像模组内部结构的作用。
上述摄像模组的对焦过程如下:
在第一磁性驱动件41为电磁体(即线圈),第二磁性驱动件42为磁铁的情况下,磁铁吸附第一磁吸板60,并将整个成像组件30拉向磁铁的一侧,同时在磁铁两侧有滑动轨道,用于布置滚珠80。此时成像组件30紧密贴附在滑动轨道的滚珠上,并可以沿光轴方向运动。
当第一磁性驱动件41通电,即线圈通电时,通电线圈在磁铁的磁场下产 生安培力,推动成像组件30倚靠滑动轨道沿光轴方向运动。此时柔性电路板90的中心部分901随着成像组件30中的第一电路板32沿光轴方向运动,柔性电路板90的连接部分903发生形变,同时由于柔性电路板90的边缘部分902与底板12固定而保持不动,从而实现成像组件30中的成像芯片33可以沿光轴方向靠近镜头组件20移动或远离镜头组件20移动,即实现对焦过程。
可选地,可以通过控制线圈中通入不同方向的电流,实现成像组件30可以沿着光轴方向靠近镜头组件20移动或远离镜头组件20移动;以及通过控制线圈中通入不同大小的电流,实现成像组件30可以沿光轴方向以不同速度移动,从而满足不同的对焦需求。
如图12和图13所示,本发明实施例还提供了一种摄像模组,包括:壳体10、镜头组件20、成像组件30、驱动组件40和滑轨结构;
其中,所述镜头组件20固定于所述壳体10上;所述成像组件30与所述驱动组件40连接,且所述成像组件30和所述驱动组件40均设置于所述壳体10的内部,且所述成像组件30位于所述镜头组件20的光轴方向上;所述滑轨结构位于所述成像组件30与所述壳体10之间,所述滑轨结构的滑动方向与所述光轴方向相同。
所述驱动组件40驱动所述成像组件30通过所述滑轨结构沿所述光轴方向靠近或远离所述镜头组件20移动。
可选地,壳体10用于固定镜头组件20,并对其内部的成像组件30、驱动组件40等起到保护作用。壳体10可以包括壳体本体11和底板12。
可选地,镜头组件20包括将光线汇聚在成像组件30上的透镜,其中透镜的数量可以是一个或多个,具体可以根据所需成像效果设置,本申请实施例不以此为限。
可选地,成像组件30设置在镜头组件20的光轴方向上,使得成像组件30可以将透过镜头组件20的光信号转换为电信号,以实现成像。
可选地,驱动组件40可以产生驱动力,以驱动成像组件30沿所述光轴方向靠近所述镜头组件20移动,或驱动成像组件30沿所述光轴方向远离所述镜头组件20移动。
上述方案中,通过将镜头组件20固定在壳体10上,以及将成像组件30 和驱动组件40设置在壳体10的内部,并在壳体10与成像组件30之间设置滑轨结构,以通过驱动组件40驱动成像组件30沿所述光轴方向靠近所述镜头组件20移动,或远离所述镜头组件20移动,从而调整镜头组件20与成像组件30在光轴方向上的距离,即实现摄像模组的对焦功能。该方案在实现摄像模组的对焦功能时避免了镜头组件20移动,可以避免由于镜头组件20重量的增加而造成驱动组件40的功耗增加,并且通过滑轨结构提供了成像组件30的移动方向,还有利于减小成像组件移动时的阻力,从而在较大程度上降低了摄像模组在对焦过程中的功耗。
此外,本申请实施例中的摄像模组,由于镜头组件20固定在壳体10上,因此该摄像模组的成像组件30(如成像组件30中选择大底芯片)可以搭载大规格镜头(如通过增加透镜的数量提高成像效果)。并且由于镜头组件20固定在壳体10上,可以减少丝印开窗,搭载该摄像模组的电子设备可以避免预留摄像模组与屏幕或电池后盖上用于设置防尘泡棉的容置空间,镜头组件20可以直接接触防尘泡棉,提升了防尘效果,也有利于整机的轻薄化设计,并且还可以避免由于镜头组件20移动造成的异响,降低镜头组件20撞击电子设备内部结构风险,提高镜头组件20的可靠性。特别的,对于超广角摄像模组而言,可以更大程度地遮挡摄像模组中壳体以及镜头载体之间的间隙,提升整机的精致度。
其中,所述成像组件30包括:承载支架31、第一电路板32和成像芯片33;所述第一磁性驱动件41位于所述承载支架31的第一侧面;所述第一电路板32的第一表面与所述承载支架31的底面连接,所述成像芯片33设置于所述第一表面上;其中,所述第一侧面与所述底面相邻设置。
可选地,成像芯片33用于将透过镜头组件20的光信号转换为电信号,以实现成像。成像芯片33可以焊接在所述第一电路板32上,如采用锡焊的方式将成像芯片33焊接在第一电路板32上,以与第一电路板32上的走线(或其他元器件)实现电连接。
可选地,承载支架31的可以为塑胶支架,呈框形结构;如承载支架31可以包括:围框本体311,以及设置于围框本体311的顶面上的突起结构312。其中,该突起结构312可以围绕所述围框本体311的部分围框设置,具体可 满足实现成像组件30相对于镜头组件20的移动即可。
可选地,第一电路板32可以包括中心部和边缘部,该边缘部包围中心部设置。所述边缘部与所述围框本体311的底面(该底面与上述顶面相对设置)连接,所述中心部对应该围框本体311的中心镂空区域,且该成像芯片33设置于所述第一电路板32的第一表面上且位于所述中心部,这样透过镜头组件20的光信号可以穿过该中心镂空区域投射到该成像芯片33上,从而保证成像芯片33的成像效果。
可选地,该中心部的第一表面(即第一电路板32的第一表面)可以设有凹腔,所述成像芯片33固定在所述凹腔内,所述凹腔内还可以设置电容、电阻、寄存器等电子元件,本申请实施例不以此为限。
其中,所述承载支架31的底面(即围框本体311的底面)为远离(即背向)所述镜头组件20的一面,所述承载支架31的顶面(即围框本体311的顶面)为靠近(即朝向)所述镜头组件20的一面。这样在承载支架31的底面设置该第一电路板32,相对于在承载支架31的顶面设置第一电路板32的方式,可以保证在摄像模组具有相同厚度的情况下,成像组件30具有更大的移动空间,从而可以保证摄像模组具有更大的调焦范围,并且碰撞位置与成像芯片33之间具有更远的距离,加长了碰撞点与成像芯片33的距离,具有更有效的防尘结构,并且还便于摄像模组中电路板的设置。
该实施例中,承载支架31、第一电路板32和成像芯片33可以固定为一整体(如可以通过点胶等方式固定为一个整体),以保证结构的稳定性。通过第一磁性驱动件41和第二磁性驱动件42之间的磁性驱动力驱动承载支架31移动,以使得承载支架31带动所述成像芯片33沿所述光轴方向靠近所述镜头组件20移动,或远离所述镜头组件20移动。
其中,所述成像组件30还包括:红外滤光片34,所述红外滤光片34设置于所述承载支架31与所述成像芯片33之间。
该实施例中,红外滤光片34用于截止红外光通过,以保证摄像模组具有更好的成像效果。
其中,所述驱动组件40包括:第一磁性驱动件41和第二磁性驱动件42;所述第一磁性驱动件41件设置于所述成像组件30的侧面(如该第一磁性驱 动件41件可以设置于所述承载支架31的第一侧面),所述第二磁性驱动件42设置于所述壳体10的内壁,所述第一磁性驱动件41与所述第二磁性驱动件42相对设置。其中,所述第一磁性驱动件41与所述第二磁性驱动件42之间的磁性驱动力,驱动所述承载支架31带动所述成像组件30沿所述光轴方向靠近或远离所述镜头组件20移动。
该实施例中,通过将第一磁性驱动件41和第二磁性驱动件42位于成像组件30的侧面,可以减少由于第一磁性驱动件41和第二磁性驱动件42在光轴方向上所占用的空间,从而可以在保证成像组件30与镜头组件20之间可调距离满足对焦需求的情况下,降低摄像模组的整机厚度。
可选地,所述第一磁性驱动件41为电磁体,所述第二磁性驱动件42为磁铁;磁铁与电磁体可以构成驱动系统;该磁铁可以通过点胶的方式固定在壳体的内表面,用于提供磁场,并配合电磁体产生推力驱动成像组件30移动,即电磁体在通电的情况下产生磁场,并在永磁体的磁场作用下产生驱动力,从而可以驱动成像组件30沿所述光轴方向靠近所述镜头组件20移动,或远离所述镜头组件20移动。并且在第一磁性驱动件41为电磁体,第二磁性驱动件42为磁铁的情况下,即磁体相对壳体10是固定的,可减小空间占用,并且由于电磁体的重量轻,通过设置电磁体跟随成像组件30移动,可进一步降低功耗。
其中,所述摄像模组还包括:驱动芯片50,所述驱动芯片50与所述电磁体电连接;如该驱动芯片50即与所述第一磁性驱动件41连接。可选地,该驱动芯片50设置于所述承载支架31的第一侧面。
如图14所示,通过将驱动芯片50和电磁体均设置在承载支架31的第一侧面的方式,相较于上述方案可以减少承载支架31上用于固定线圈的连接端子的突起部,以及减少承载支架31上用于设置驱动芯片的开槽,降低了承载支架31的加工难度。同时在所述驱动芯片50设置于所述第一侧面的情况下,所述红外滤光片34为矩形,即通过将驱动芯片50和电磁体均设置在承载支架31的第一侧面的方式,可以取消了承载支架31上用于固定线圈的连接端子的突起部设计,还可以进一步取消红外滤光片34上倒角的设计,进一步简化了加工工艺。
可选地,在所述第一磁性驱动件41为所述电磁体,且所述驱动芯片50设置于所述第一侧面的情况下,所述摄像模组还包括:第二电路板110。
所述驱动芯片50和所述电磁体设置于所述第二电路板110的第一表面,所述第二电路板110的第二表面与所述承载支架31的第一侧面连接;其中,所述第一表面与所述第二表面相背设置。
该实施例中,所述电磁体(即线圈)和所述驱动芯片50被固定在第二电路板110的一侧,且具有电连接属性,保证驱动芯片50可以为电磁体提供电能,以驱动该电磁体产生磁场。
如图14和图15所示,承载支架31上设有用于缠绕线圈的第一突起部314,所述第二电路板110上设有避让该第一突起部314的开孔,以保证该第二电路板110的第一表面可以贴合在承载支架31上,且设置在该第二电路板110的第二表面上的线圈可以缠绕在第一突起部314上。
可选地,所述摄像模组还包括:第二磁吸板100;所述第二磁吸板100设置于所述承载支架31的第一侧面,且所述承载支架31位于所述第二电路板110与所述第二磁吸板100之间。
其中,该第二磁吸板100可以是能够被第二磁性驱动件42的磁力吸附的结构,如该第二磁吸板100可以是钢板、轭铁(或称为磁轭)板等,本申请实施例不以此为限。
该实施例中,线圈位于磁铁与第二磁吸板100之间,由磁铁与第二磁吸板100构成磁回路,具有聚磁和提升线圈推力的作用。并且磁铁对第二磁吸板100产生的吸附力,可以保证成像组件30在壳体内部的稳定性,以及由于第二磁吸板100固定在承载支架31的内侧,具有更好的支撑承载支架31的作用。
可选地,所述驱动芯片50还可以包括位置反馈元件,所述位置反馈元件用于采集所述成像芯片33的位置信息。
该实施例中,用于位置信息反馈的位置反馈元件集成在用于驱动电磁体的驱动芯片50内,可以避免用于位置反馈的位置反馈元件和用于驱动电磁体的驱动芯片50独立设置时,可能存在的磁干扰问题。此外由于本方案中驱动芯片50设置在线圈外侧,具有较强的抗干扰能力,且靠近磁铁,具有更好的 位置反馈精度。
如图8和图9所示,所述摄像模组还包括:支架70,所述支架70固定于所述壳体的内壁(也即壳体本体11的内壁),且所述第二磁性驱动件42位于所述支架70与所述壳体之间(也即所述第二磁性驱动件42位于所述支架70与所述壳体本体11之间)。
可选地,该支架70可以通过点胶的方式固定在壳体本体11的内壁表面,并且该支架70还可以通过限位结构将第二磁性驱动件42固定在壳体本体11的内壁上,确保组装第二磁性驱动件42时位置一致性较好。当然,为了保证第二磁性驱动件42的固定可靠性,该第二磁性驱动件42与所述壳体本体11之间也可以通过点胶的方式进一步固定。
可选地,所述滑轨结构包括:多个滚珠80、设置于所述承载支架31的第一侧面上的至少一个第一凹槽317、设置于所述支架70上的至少一个第二凹槽71。
其中,所述至少一个第一凹槽317与所述至少一个第二凹槽71一一对应地设置,且一个所述第一凹槽317与一个所述第二凹槽71形成一容置空间,每个所述容置空间内均设置有所述滚珠80。该滚珠具有支撑和间隔承载支架31和支架70的作用,并且还提供了承载支架31和支架70之间的滑动作用以降低滑动阻力,从而保证承载支架31在所述第一磁性驱动件41与所述第二磁性驱动件42之间的磁性驱动力的作用下可以相对于支架70有效地滑动,并且有利于降低损耗。
例如:第一凹槽317的数量为2个,相应第二凹槽71的数量也为2个;这样由2个第一凹槽317和2个第二凹槽71可以构成2个容置空间,即用于容纳滚珠80的滑动轨道。可选地,这两个滑动轨道的其中一个可以靠近承载支架31的第二侧面设置(即对应第二突起部315设置),另一个滑动轨道可以靠近承载支架31的第三侧面设置(即对应第三突起部316设置)。
如图10、图13和图16所示,所述摄像模组还包括:柔性电路板90,所述柔性电路板90的第一部分位于所述壳体内,并与所述第一电路板32电连接;所述柔性电路板90的第二部分位于所述壳体外。
这样,通过柔性电路板90的第一部分与第一电路板32连接,第二部分 设置在壳体外,可以与外部设备(如电子设备的主板等)连接,即通过柔性电路板90可以实现连接电子设备主板和摄像模组内部的第一电路板32。
该柔性电路板90的第二部分上可以设有连接器91,该连接器91可以用于与电子设备的主板连接,如该连接器可以是板对板(BTB)连接器,从而柔性电路板可以通过该BTB连接器直接实现与主板的连接。
可选地,所述柔性电路板90的第一部分包括:中心部分901、边缘部分902和至少一个连接部分903;
所述中心部分901与所述成像组件30的第一表面电连接;所述第一表面是背向所述镜头组件20设置的一表面;所述边缘部分902包围所述中心部分901设置,且所述边缘部分902与所述壳体的底面连接;所述壳体的底面是远离所述镜头组件20的一面;所述连接部分903连接于所述中心部分901与所述边缘部分902。
可选地,所述中心部分901可以呈突起,该第一电路板32的第二表面可以设置与该中心部分901相对应的凹槽;或者,所述中心部分901可以呈凹陷,该第一电路板32的第二表面可以设置与该中心部分901相对应的突起;或者,该中心部分901与该第一电路板32的第二表面均为平面,本申请实施例不以此为限。
该实施例中,通过设置柔性电路板90中的边缘部分902与壳体的底面固定,以及设置中心部分与第一电路板32固定,既保证了柔性电路板90与第一电路板32的电性连接,又保证了柔性电路板90的连接可靠性;并且通过柔性电路板90的连接部分903不固定,连接部分903既不与第一电路板32连接,也不与壳体底面连接,这样柔性电路板90一方面提供电性连同的作用,另一方面提供柔性电路板90跟随成像组件30移动的空间,保证在成像组件30沿光轴方向移动时,该柔性电路板90可以灵活的跟随该成像组件30沿光轴方向移动,并避免破坏柔性电路板90与第一电路板32和壳体底面之间的固定连接。
其中,中心部分901可以通过胶水粘接等方式实现与的第一电路板32的电性连接和结构连接。边缘部分902可以通过胶水粘接等方式实现与的壳体底面的结构连接。
可选地,所述连接部分903的走线长度大于第一位置到第二位置的距离;
其中,所述第一位置是所述中心部分901上连接于所述连接部分903的位置,所述第二位置是所述边缘部分902上连接于所述连接部分903的位置。
例如:连接部分903可以呈U型、S型或不规则曲线型等,这样通过连接部分903延长了从中心部分901连接到边缘部分902的走线长度,实现提供柔性电路板90跟随成像组件30移动的空间。
可选地,该连接部分903的数量可以为4个,可以分别位于边缘部分902的四个边角。一个连接部分903的一端连接于中心部分901上的第一边(该第一边可以是靠近柔性电路板90上的连接器91的一端,也可以是远离柔性电路板90上的连接器91的一端),另一端连接于边缘部分902的第一边角(在该第一边是靠近柔性电路板90上的连接器91的一端的情况下,该第一边角为靠近柔性电路板90上的连接器91的一端的一边角;在该第一边是远离柔性电路板90上的连接器91的一端的情况下,该第一边角为远离柔性电路板90上的连接器91的一端的一边角)。这样,通过多向扩展的柔性电路板结构,有利于降低其阻力,降低驱动力需求,进而可降低功耗。
可选地,所述壳体10包括:壳体本体11和底板12,如该底板12可以是钢板。
所述壳体本体11设有第一开口和第二开口,所述镜头组件20设置于所述第一开口处,所述成像组件30和所述驱动组件40均设置于所述壳体本体11的内部;所述底板12设置于所述第二开口处,且所述边缘部分902与所述底板12连接;其中,第一开口和第二开口相背设置。
可选地,该镜头组件20可以通过螺纹、点胶、卡扣等方式与该壳体本体11进行组合,并确保相对位置稳定。底板12可以通过点胶、焊接、卡扣等方式与壳体本体11连接,起到保护摄像模组内部结构的作用。
具体的该实施例中摄像模组的对焦过程可参见上述实施例,为避免重复,这里不再赘述。
本申请实施例,针对镜头重量较大的高像素的摄像模组,采用驱动成像芯片实现对焦的方式,可以极大的减小对焦时对推力的要求,有利于降低功耗。此外,由于镜头组件相对于壳体是固定的,可以规避镜头组件在非拍照 状态下撞击壳体,避免产生异响,同时摄像模组可以组成一个封闭的腔体,避免了灰尘进入摄像模组的内部,减少摄像模组固有灰尘在摄像模组自动对焦过程中落到成像芯片表面的几率,从而提升摄像头品质。并且在外壳为铁壳时,该铁壳可以和底面钢板连接形成相对封闭的电磁屏蔽结构,可以提升摄像模组的抗电磁干扰(Electromagnetic Interference,EMI)效果,可以降低摄像模组与电子设备中天线模组的相互干扰,节约摄像模组在整机装配过程中为解决EMI问题所付出的辅料及相关成本。
本申请实施例还可以将驱动成像芯片实现对焦的方式与驱动镜头组件对焦技术相结合,可以增加光学尺寸移动量,可以达到超微距对焦。还可以结合连续变焦的镜头组件,实现一种将连续变焦和自动对焦拆分为两个动件实现,可以降低现有连续变焦模组马达的实现难度。
本发明实施例还提供了一种电子设备,包括如上所述的摄像模组,并能达到上述摄像模组相同的技术效果,为避免重复,这里不再赘述。如电子设备可以是手机、平板等,本申请实施例不以此为限。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终 端设备中还存在另外的相同要素。
以上所述的是本申请的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本申请所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本申请的保护范围内。

Claims (18)

  1. 一种摄像模组,包括:
    壳体;
    镜头组件,所述镜头组件固定于所述壳体上;
    成像组件,所述成像组件设置于所述壳体的内部,且位于所述镜头组件的光轴方向上;
    滑轨结构,所述滑轨结构位于所述成像组件与所述壳体之间,所述滑轨结构的滑动方向与所述光轴方向相同;
    第一磁性驱动件和第二磁性驱动件,所述第一磁性驱动件设置于所述成像组件的侧面,所述第二磁性驱动件设置于所述壳体的内壁;所述第一磁性驱动件与所述第二磁性驱动件相对设置;
    其中,所述第一磁性驱动件与所述第二磁性驱动件之间的磁性驱动力,驱动所述成像组件通过所述滑轨结构沿所述光轴方向靠近或远离所述镜头组件移动。
  2. 根据权利要求1所述的摄像模组,其中,所述摄像模组还包括:
    柔性电路板,所述柔性电路板的第一部分位于所述壳体内,并与所述成像组件电连接;所述柔性电路板的第二部分位于所述壳体外。
  3. 根据权利要求2所述的摄像模组,其中,所述柔性电路板的第一部分包括:
    中心部分,所述中心部分与所述成像组件的第一表面电连接;所述第一表面是背向所述镜头组件设置的一表面;
    边缘部分,所述边缘部分包围所述中心部分设置,且所述边缘部分与所述壳体的底面连接;所述壳体的底面是远离所述镜头组件的一面;
    至少一个连接部分,所述连接部分连接于所述中心部分与所述边缘部分。
  4. 根据权利要求3所述的摄像模组,其中,所述连接部分的走线长度大于第一位置到第二位置的距离;
    其中,所述第一位置是所述中心部分上连接于所述连接部分的位置,所述第二位置是所述边缘部分上连接于所述连接部分的位置。
  5. 根据权利要求1所述的摄像模组,其中,所述成像组件包括:
    承载支架,所述第一磁性驱动件设置于所述承载支架的第一侧面;
    第一电路板和成像芯片,所述第一电路板的第一表面与所述承载支架的底面连接,所述成像芯片设置于所述第一表面上;
    其中,所述第一侧面与所述底面相邻设置。
  6. 根据权利要求5所述的摄像模组,其中,所述摄像模组还包括:
    支架,所述支架固定于所述壳体的内壁,且所述第二磁性驱动件位于所述支架与所述壳体之间。
  7. 根据权利要求6所述的摄像模组,其中,所述滑轨结构包括:
    多个滚珠;
    设置于所述承载支架的第一侧面上的至少一个第一凹槽;
    设置于所述支架上的至少一个第二凹槽;
    其中,所述至少一个第一凹槽与所述至少一个第二凹槽一一对应地设置,且一个所述第一凹槽与一个所述第二凹槽形成一容置空间,每个所述容置空间内均设置有所述滚珠。
  8. 根据权利要求5所述的摄像模组,其中,所述第一磁性驱动件为电磁体和磁铁中的一个,所述第二磁性驱动件为所述电磁体和所述磁铁中的另一个。
  9. 根据权利要求8所述的摄像模组,其中,所述摄像模组还包括:
    驱动芯片,所述驱动芯片与所述电磁体电连接;
    其中,所述驱动芯片设置于所述第一电路板上,或者所述驱动芯片设置于所述第一侧面。
  10. 根据权利要求9所述的摄像模组,其中,所述成像组件还包括:
    红外滤光片,所述红外滤光片设置于所述承载支架与所述成像芯片之间;
    其中,在所述驱动芯片设置于所述第一电路板上的情况下,所述红外滤 光片上对应于所述电磁体的第一连接端的位置设有第一倒角,所述红外滤光片上对应于所述电磁体的第二连接端的位置设有第二倒角;在所述驱动芯片设置于所述第一侧面的情况下,所述红外滤光片为矩形。
  11. 根据权利要求9所述的摄像模组,其中,所述驱动芯片具有位置反馈元件,所述位置反馈元件用于采集所述成像芯片的位置信息。
  12. 根据权利要求9所述的摄像模组,其中,在所述驱动芯片设置于所述第一电路板上的情况下,所述承载支架的第一侧面设有缺口;
    所述驱动芯片位于所述缺口内,且所述驱动芯片突出于所述第一侧面设置。
  13. 根据权利要求9所述的摄像模组,其中,在所述第一磁性驱动件为所述电磁体,且所述驱动芯片设置于所述第一电路板上的情况下,所述摄像模组还包括:第一磁吸板;
    所述第一磁吸板设置于所述承载支架的第一侧面,且所述第一磁吸板位于所述第一磁性驱动件与所述承载支架之间。
  14. 根据权利要求9所述的摄像模组,其中,在所述第一磁性驱动件为所述电磁体,且所述驱动芯片设置于所述第一侧面的情况下,所述摄像模组还包括:第二电路板;
    所述驱动芯片和所述电磁体设置于所述第二电路板的第一表面,所述第二电路板的第二表面与所述承载支架的第一侧面连接;
    其中,所述第一表面与所述第二表面相背设置。
  15. 根据权利要求14所述的摄像模组,其中,所述摄像模组还包括:第二磁吸板;
    所述第二磁吸板设置于所述承载支架的第一侧面,且所述承载支架位于所述第二电路板与所述第二磁吸板之间。
  16. 根据权利要求9所述的摄像模组,其中,在所述第一磁性驱动件为所述电磁体的情况下,所述第一磁性驱动件包括:线圈;
    所述承载支架的第一侧面设有第一突起部,所述线圈缠绕于所述第一突起部上。
  17. 根据权利要求16所述的摄像模组,其中,在所述驱动芯片设置于所 述第一电路板上的情况下,所述承载支架的第一侧面还设有第二突起部和第三突起部;
    所述第二突起部靠近第二侧面设置,所述线圈的第一连接端设置于所述第二突起部上,并与所述驱动芯片电连接;其中,所述第二侧面与所述第一侧面相邻设置;
    所述第三突起部靠近第三侧面设置,所述线圈的第二连接端设置于所述第三突起部上,并与所述驱动芯片电连接;其中,所述第三侧面与所述第一侧面相邻设置。
  18. 一种电子设备,包括如权利要求1至17中任一项所述的摄像模组。
PCT/CN2022/105707 2021-07-20 2022-07-14 摄像模组及电子设备 WO2023001055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110820140.3 2021-07-20
CN202110820140.3A CN113411484B (zh) 2021-07-20 2021-07-20 摄像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2023001055A1 true WO2023001055A1 (zh) 2023-01-26

Family

ID=77687002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105707 WO2023001055A1 (zh) 2021-07-20 2022-07-14 摄像模组及电子设备

Country Status (2)

Country Link
CN (1) CN113411484B (zh)
WO (1) WO2023001055A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411484B (zh) * 2021-07-20 2022-12-23 维沃移动通信有限公司 摄像模组及电子设备
CN115940566A (zh) * 2021-09-18 2023-04-07 格科微电子(上海)有限公司 摄像头模组用的锁止结构和摄像头模组
CN113905167B (zh) * 2021-10-15 2024-02-27 维沃移动通信有限公司 摄像头模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116594A (ja) * 2006-11-02 2008-05-22 Citizen Electronics Co Ltd 撮像装置及び撮像装置の製造方法
CN101639606A (zh) * 2008-07-30 2010-02-03 索尼株式会社 光学调焦装置
CN110650281A (zh) * 2019-10-30 2020-01-03 维沃移动通信(杭州)有限公司 摄像模组及电子设备
CN111147701A (zh) * 2018-11-02 2020-05-12 北京小米移动软件有限公司 摄像模组、对焦结构及电子设备
CN112822350A (zh) * 2020-12-25 2021-05-18 维沃移动通信有限公司 电子设备及摄像模组
CN113014788A (zh) * 2021-04-29 2021-06-22 维沃移动通信有限公司 摄像头模组和电子设备
CN113411484A (zh) * 2021-07-20 2021-09-17 维沃移动通信有限公司 摄像模组及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862358B (zh) * 2005-05-11 2012-03-21 华移联科(沈阳)技术有限公司 一种自动调焦装置
CN108174077A (zh) * 2018-03-14 2018-06-15 欧菲影像技术(广州)有限公司 一体式摄像模组
CN210323537U (zh) * 2019-06-24 2020-04-14 南昌欧菲精密光学制品有限公司 镜头模组及移动终端
CN110445968B (zh) * 2019-08-15 2020-11-03 珠海格力电器股份有限公司 一种变焦摄像头模组及移动终端
CN112969017B (zh) * 2021-02-10 2023-02-24 维沃移动通信有限公司 摄像头模组及电子设备
CN113014763B (zh) * 2021-02-20 2022-12-16 维沃移动通信有限公司 摄像模组和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116594A (ja) * 2006-11-02 2008-05-22 Citizen Electronics Co Ltd 撮像装置及び撮像装置の製造方法
CN101639606A (zh) * 2008-07-30 2010-02-03 索尼株式会社 光学调焦装置
CN111147701A (zh) * 2018-11-02 2020-05-12 北京小米移动软件有限公司 摄像模组、对焦结构及电子设备
CN110650281A (zh) * 2019-10-30 2020-01-03 维沃移动通信(杭州)有限公司 摄像模组及电子设备
CN112822350A (zh) * 2020-12-25 2021-05-18 维沃移动通信有限公司 电子设备及摄像模组
CN113014788A (zh) * 2021-04-29 2021-06-22 维沃移动通信有限公司 摄像头模组和电子设备
CN113411484A (zh) * 2021-07-20 2021-09-17 维沃移动通信有限公司 摄像模组及电子设备

Also Published As

Publication number Publication date
CN113411484B (zh) 2022-12-23
CN113411484A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2023001055A1 (zh) 摄像模组及电子设备
CN107608052B (zh) 镜头驱动模块
US11874520B2 (en) Optical element driving module
CN209803439U (zh) 驱动机构
KR102338925B1 (ko) 카메라 모듈
CN109477998B (zh) 双相机模块和光学装置
CN101562388B (zh) 音圈马达
CN110058379B (zh) 镜头驱动装置以及潜望式镜头机构
CN115047688B (zh) 透镜驱动装置、相机模块和光学仪器
KR102586187B1 (ko) 렌즈구동장치 및 이를 포함하는 카메라장치
KR102608087B1 (ko) 렌즈 구동 장치, 카메라 모듈, 및 카메라 탑재 장치
CN110989127A (zh) 光学变焦马达、摄像装置及移动终端
US20240045171A1 (en) Optical system
CN210038301U (zh) 镜头驱动装置以及潜望式镜头机构
CN114460709A (zh) 用于摄像模组的驱动装置和摄像模组
CN114630017A (zh) 驱动装置和带有驱动装置的摄像模组
KR20230104567A (ko) 카메라 모듈 및 광학기기
CN114137685A (zh) 镜头驱动装置
CN114624849A (zh) 摄像模组及其驱动装置
CN211123441U (zh) 光学变焦马达、摄像装置及移动终端
CN210038302U (zh) 用于潜望式镜头驱动装置的载体
KR102662734B1 (ko) 렌즈 구동 유닛, 카메라 모듈 및 광학기기
CN117270147A (zh) 镜头驱动装置
KR102490115B1 (ko) 카메라 모듈 및 광학기기
CN106547068B (zh) 相机模块

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE