WO2023000837A1 - Norme d'évaluation de type roche de recouvrement des chambres profondes, et procédé de conception de reformation d'épaississement pour substratum mince - Google Patents

Norme d'évaluation de type roche de recouvrement des chambres profondes, et procédé de conception de reformation d'épaississement pour substratum mince Download PDF

Info

Publication number
WO2023000837A1
WO2023000837A1 PCT/CN2022/096738 CN2022096738W WO2023000837A1 WO 2023000837 A1 WO2023000837 A1 WO 2023000837A1 CN 2022096738 W CN2022096738 W CN 2022096738W WO 2023000837 A1 WO2023000837 A1 WO 2023000837A1
Authority
WO
WIPO (PCT)
Prior art keywords
bedrock
arch
thickness
thickening
grouting
Prior art date
Application number
PCT/CN2022/096738
Other languages
English (en)
Chinese (zh)
Inventor
张广超
陶广哲
李友
左昊
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to JP2022561012A priority Critical patent/JP2023535664A/ja
Publication of WO2023000837A1 publication Critical patent/WO2023000837A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability

Definitions

  • the invention relates to the field of mine pressure and strata control, in particular to the evaluation standard for overlying rock types in deep buried stopes and the design method for thickening and transforming thin bedrock.
  • this patent proposes an evaluation standard for the overlying strata type of the deep buried stope and a design method for thickening and reforming the thin bedrock.
  • the design plan for thickening and reconstruction of bedrock is proposed, including the length and thickness of the design area for thickening and reconstruction; finally, the design method for thickening and reconstruction of thin bedrock is proposed, including drilling layout and parameters, grouting materials, grouting Pressure, grouting time, process, labor organization, etc.
  • the first step is the evaluation standard of overlying rock type in deep buried stope
  • Step 1.1 Determine the critical arch thickness at which the bedrock stress arch remains stable
  • D arch is the thickness of the stress arch
  • H arch is the height of the stress arch
  • l arch is the span of the stress arch
  • q(x) is the uniform load of the overlying rock layer on the bedrock
  • included angle is the vertical stress on the arch foot
  • T is the horizontal stress on the arch foot
  • the expressions of R and T are:
  • the stress arch height H arch is taken as the height from the coal seam to the key layer;
  • the stress arch span l arch is taken as the periodic pressure step distance; ⁇ 0.7) times the cycle to press the step distance; ⁇ is 5 ⁇ 10° according to the empirical value;
  • Step 1.2 Determine the critical bedrock thickness capable of forming a stress arch
  • critical bedrock thickness The minimum thickness that can form a stable stress arch in the bedrock is called the critical bedrock thickness, and its expression is as follows:
  • ⁇ H min is the critical bedrock thickness that can form a stress arch
  • D arch is the critical arch thickness
  • ⁇ H c is the height of the caving zone
  • ⁇ H L is the height of the fracture zone
  • the stopes are classified into ultra-thin bedrock, thin bedrock and normal bedrock based on the relative relationship between the overburden collapse zone height ⁇ Hc, fissure zone height ⁇ H f , stress arch thickness D arch and bedrock thickness ⁇ h rock; according to the degree of mine pressure in the stope under the occurrence conditions of ultra-thin bedrock, thin bedrock and normal bedrock, it is necessary to thicken the ultra-thin bedrock and thin bedrock strata;
  • the second step is the ultra-thin bedrock and thin bedrock area thickening reconstruction design scheme
  • Step 2.1) Determine the ultra-thin bedrock and thin bedrock thickening reconstruction area and design size
  • Step 2.1.1 Using multiple boreholes to carry out geological exploration on the surface to obtain rock formation columnar diagrams in different regions;
  • Step 2.1.2 According to the change of bedrock thickness, the area where the bedrock thickness is less than ⁇ H min is determined as the design area for thickening reconstruction.
  • Step 2.1.3 Determine the design strike length w and dip length l of the thickening and reconstruction area, w is the extension length of the thin bedrock area along the coal seam strike, and l is the dip length of the working face.
  • Step 2.1.4 Determine the thickness D of the design area for thickening and reconstruction as:
  • D is the thickness of the thickening design reconstruction area
  • ⁇ H min is the critical bedrock thickness that can form stress arch
  • ⁇ H is the actual bedrock thickness
  • Step 2.2 Ultra-thin bedrock and thin bedrock area thickening reconstruction construction plan
  • Step 2.2.1 Excavate the grouting roadway along the coal seam direction
  • Step 2.2.2 Layout the grouting pipeline
  • Adopt multi-horizontal inclined top synchronous grouting scheme Adopt multi-horizontal inclined top synchronous grouting scheme.
  • hydraulic drilling rigs are used to drill inclined holes from the floor of the grouting roadway, and the angle between the inclined holes and the horizontal plane is adopted.
  • the vertical height is 1.5D
  • the distance between adjacent drilling holes along the working face is 50-80m
  • the diameter of inclined drilling holes is 56-80mm;
  • the inclined boreholes are divided into multiple horizontal planes from bottom to top, and the adjacent horizontal and vertical distances are d, 4m ⁇ d ⁇ 6m;
  • the length of the horizontal drilling is determined to be 1/4, and the diameter of the drilling is 56-80mm.
  • Step 2.2.3 Determination of grouting material and grouting amount
  • the formula for calculating the grouting quantity Q is:
  • is the grouting loss coefficient
  • V is the grouting volume
  • is the crack rate
  • is the grout filling rate
  • m is the grouting stone rate
  • the expression of the grouting volume V is:
  • V lwD (8)
  • l is the inclined length of the design area for thickening and reconstruction
  • w is the strike length of the design area for thickening and reconstruction
  • D is the thickness of the design area for thickening and reconstruction of thin bedrock
  • the formula for calculating the grouting time T is:
  • T is the time of grouting
  • Q is the total amount of grouting
  • c is the amount of grouting per hour
  • n is the number of grouting levels
  • the third step is ultra-thin bedrock and thin bedrock area thickening reconstruction grouting method
  • the present invention proposes a critical arch thickness expression for stable stress arch in bedrock, determines the critical bedrock thickness expression for bed rock to form a stable stress arch, and forms a deep
  • the overburden type evaluation standard for buried stopes makes up for the gap in the overlying rock structure type evaluation standard for deep burial, thick unconsolidated layers, and significant changes in bedrock thickness.
  • the present invention realizes the quantitative and accurate quantification and accuracy of the design area dimensions for thin bedrock reconstruction in engineering practice: strike length, dip length, and thickness
  • the computerized calculation improves the feasibility of implementing the bedrock reconstruction plan.
  • the grouting transformation technology can effectively avoid accidents of coal and rock roof fall and slabs at the end of the stope under the conditions of ultra-thin bedrock and thin bedrock stratum, improve the stability of the surrounding rock of the stope, reduce the cost of accident treatment, and ensure the normal mining of coal .
  • Figure 1 is a schematic diagram of the pressure arch structure.
  • Figure 2a is a front view of the location of the thin bedrock thickening area.
  • Fig. 2b is a sectional view along line A-A of Fig. 3a.
  • Fig. 2c is a B-B sectional view of Fig. 3a.
  • Fig. 3a is the inclined geological profile of the 3301 working face of a certain mine in Example 1.
  • Fig. 3b is a histogram of drill holes in the ABCD area of the 3301 working face of a certain mine in Example 1.
  • Fig. 4a is a perspective view of the multi-horizontal inclined top synchronous grouting scheme in Embodiment 1.
  • Fig. 4b is a perspective view of a single grouting pipeline in Embodiment 1.
  • Fig. 4c is a front plan view of a single grouting pipeline in Embodiment 1.
  • Fig. 4d is a top plan view of a single grouting pipeline in Embodiment 1.
  • the stress arch structure is shown in Figure 1.
  • the first step is the evaluation standard of overlying rock type in deep buried stope
  • Step 1.1 Determine the critical arch thickness at which the bedrock stress arch remains stable
  • Step 1.2 Determine the critical bedrock thickness capable of forming a stress arch
  • the coal seam overlying rock of the 3301 working face belongs to the weak rock formation, and the height of the caving zone, the fracture zone and the critical thickness of the stress arch can be obtained by looking up the empirical formula in Table 1:
  • the overburden of the 3301 working face is classified as follows:
  • bedrock thickness is less than 10.78m, it is defined as ultra-thin bedrock
  • bedrock thickness is greater than 10.78m and less than 47.2m, it is defined as thin bedrock
  • Step 2 Design method for thickening reconstruction of thin bedrock area
  • Step 2.1 Determine the thickened reconstruction area and design size
  • Step 2.1.1 The inclined geological profile of the 3301 working face obtained from the geological survey from the cutting hole to the production stop line, as shown in Figure 3a; and the drilling histogram in the ABCD area, as shown in Figure 3b.
  • the structural diagram of the thin bedrock thickened area is shown in Figure 2a-2c.
  • Step 2.1.4 Determine the thickness of the design area for thickening and reconstruction
  • Step 2.2 Design and construction plan for thickening reconstruction of thin bedrock area
  • Step 2.2.1 excavate the grouting roadway
  • a grouting roadway is excavated along the coal seam.
  • the cross-sectional size of the roadway is 3m high ⁇ 4m wide;
  • Step 2.2.2 Arrange the grouting pipeline (as shown in Figure 4a, 4, 4c, 4d)
  • the multi-horizontal inclined top grouting scheme is adopted, and inclined drilling holes are added in the grouting roadway to the bottom plate.
  • the angle between the inclined drilling holes and the horizontal plane is 30°, and the vertical height is 18.3m.
  • the direction of adjacent drilling holes along the direction of the working face The spacing is 60m, and the diameter of the inclined borehole is 65mm; in the thin bedrock thickening reconstruction design area, the inclined borehole is divided into two horizontal planes from bottom to top, and the vertical distance between adjacent horizontal planes is 5m.
  • the horizontal drilling length is determined to be 25m and the diameter of the drilling hole is 65mm according to the size of the working face.
  • Step 2.2.3 Determination of grouting material and grouting amount
  • Root is the result of on-site investigation.
  • the fracture rate of the loose layer in the 3301 working face is 60%, which belongs to the rock layer with medium fracture rate.
  • the grouting material is a mixture of group A and B materials, of which group A is composed of sulfate cement, and group B is composed of Divided into lime and gypsum, the ratio is 1.3:1.
  • step 2.1 the size of the design area for thin bedrock reconstruction is calculated, and the data are substituted into formulas (7), (8), and (9) to obtain:
  • the third step is the grouting method for thickening and reforming the thin bedrock area
  • the design of thin bedrock thickening reconstruction is completed before coal seam mining in this area.
  • the first grouting hole is located directly above the starting position of the thin bedrock thickening reconstruction design area.
  • hydraulic drilling rigs and self-grouting roadways are used Drill the inclined grouting holes upward on the bottom plate, and after reaching point A1 on the first horizontal plane, take point A1 as the center point, and drill holes A11 , A12 , A13 , A14 in the horizontal circumferential direction around it; use high-pressure pump to Grouting in the horizontal borehole at the first level, the grouting time is 23.6 hours.
  • the grouting time is 23.6 hours, and stand still for 5-7 hours, and complete all the drilling and grouting operations in the entire working face according to the above steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

Norme d'évaluation de type roche de recouvrement de chambres profondes et procédé de conception de reformation d'épaississement pour un substratum mince. Premièrement, sur la base du principe de la formation de l'arche de contrainte, une épaisseur critique à laquelle une arche de contrainte stable peut être formée dans un substratum est déterminée, puis une norme d'évaluation de type roche de recouvrement de chambres profondes est établie, de telle sorte que la lacune en termes de normes d'évaluation pour des types de structures rocheuses de recouvrement dans des conditions de strate profonde, de couche meuble épaisse et d'épaisseur de substratum considérablement variées est comblée. Sur la base des normes, l'invention concerne une solution de conception de reformation d'épaississement de substratum pour des conditions de strate de substratum ultra-mince et de strate de substratum mince, qui comprend la longueur, l'épaisseur, etc. d'une zone soumise à une conception de reformation d'épaississement; et enfin, l'invention concerne un procédé de conception de reformation d'épaississement de substratum mince, et une solution d'injection de coulis à l'avant d'un somment incliné à plans multiples et un procédé de construction; et des paramètres tels qu'une configuration de forage et un matériau d'injection de coulis sont conçus, de telle sorte que la commande active d'un accident de catastrophe de recouvrement peut être obtenue, et un accident de catastrophe provoqué par une mesure de commande de recouvrement passive précédente est évité.
PCT/CN2022/096738 2021-07-22 2022-06-02 Norme d'évaluation de type roche de recouvrement des chambres profondes, et procédé de conception de reformation d'épaississement pour substratum mince WO2023000837A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022561012A JP2023535664A (ja) 2021-07-22 2022-06-02 深部埋没採掘場における上層土のタイプ評価基準及び薄い岩盤の増厚改造の設計方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110829865.9 2021-07-22
CN202110829865.9A CN113569401B (zh) 2021-07-22 2021-07-22 深埋采场覆岩类型评价标准及薄基岩加厚改造设计方法

Publications (1)

Publication Number Publication Date
WO2023000837A1 true WO2023000837A1 (fr) 2023-01-26

Family

ID=78166205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096738 WO2023000837A1 (fr) 2021-07-22 2022-06-02 Norme d'évaluation de type roche de recouvrement des chambres profondes, et procédé de conception de reformation d'épaississement pour substratum mince

Country Status (3)

Country Link
JP (1) JP2023535664A (fr)
CN (1) CN113569401B (fr)
WO (1) WO2023000837A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116380188A (zh) * 2023-05-19 2023-07-04 山东科技大学 一种采空区地下水库有效储水量测量方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113569401B (zh) * 2021-07-22 2022-09-20 山东科技大学 深埋采场覆岩类型评价标准及薄基岩加厚改造设计方法
CN115758046B (zh) * 2022-11-14 2023-05-12 北京低碳清洁能源研究院 工作面极限开采宽度计算方法、可读存储介质及电子设备
CN116044399B (zh) * 2023-01-06 2023-09-15 山东科技大学 一种基于岩层骨架重构抑制松散层运移控灾方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070759A (zh) * 2007-05-04 2007-11-14 中国矿业大学 一种薄基岩浅埋煤层保水开采适用条件分类方法
US20100042381A1 (en) * 2008-08-18 2010-02-18 Jennmar Corporation Stress, Geologic, and Support Analysis Methodology for Underground Openings
CN102926770A (zh) * 2012-11-08 2013-02-13 中国神华能源股份有限公司 薄基岩、厚松散砂层富水区域井下疏水注浆工艺
CN110555277A (zh) * 2019-09-09 2019-12-10 山东科技大学 一种松散含水层下开采水砂突危险性评价方法
CN113569401A (zh) * 2021-07-22 2021-10-29 山东科技大学 深埋采场覆岩类型评价标准及薄基岩加厚改造设计方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4531783A (en) * 1981-10-26 1985-07-30 Occidental Oil Shale, Inc. Stability control in underground workings adjacent an in situ oil shale retort
CN104074541A (zh) * 2014-06-25 2014-10-01 中国矿业大学 一种水体下固体充填开采设计方法
CN107083961B (zh) * 2017-05-10 2019-04-26 中国矿业大学 基于压裂圈的强地压巷道应力转移方法
CN108150171A (zh) * 2018-01-08 2018-06-12 河南理工大学 一种大埋深薄基岩区厚煤层综放开采压架突水防治方法
CN109359391B (zh) * 2018-10-19 2023-04-07 中国地质大学(武汉) 一种基于离散单元法的覆盖型岩溶塌陷灾变演化模拟方法
CN110765642B (zh) * 2019-11-05 2023-04-07 中煤能源研究院有限责任公司 一种煤层、采区或工作面顶板岩层结构的分带评价方法
CN111535297A (zh) * 2020-05-19 2020-08-14 河北建设勘察研究院有限公司 一种填料注浆充填基岩层地下空洞的方法以及一种水力充填装置
CN112446143B (zh) * 2020-11-17 2022-06-21 山东科技大学 一种厚松散层薄基岩下条带充填开采参数设计方法
CN112431597A (zh) * 2020-12-22 2021-03-02 中铁五局集团成都工程有限责任公司 一种单斜构造顺层偏压软岩大变形隧道单工序施工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070759A (zh) * 2007-05-04 2007-11-14 中国矿业大学 一种薄基岩浅埋煤层保水开采适用条件分类方法
US20100042381A1 (en) * 2008-08-18 2010-02-18 Jennmar Corporation Stress, Geologic, and Support Analysis Methodology for Underground Openings
CN102926770A (zh) * 2012-11-08 2013-02-13 中国神华能源股份有限公司 薄基岩、厚松散砂层富水区域井下疏水注浆工艺
CN110555277A (zh) * 2019-09-09 2019-12-10 山东科技大学 一种松散含水层下开采水砂突危险性评价方法
CN113569401A (zh) * 2021-07-22 2021-10-29 山东科技大学 深埋采场覆岩类型评价标准及薄基岩加厚改造设计方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116380188A (zh) * 2023-05-19 2023-07-04 山东科技大学 一种采空区地下水库有效储水量测量方法
CN116380188B (zh) * 2023-05-19 2023-11-03 山东科技大学 一种采空区地下水库有效储水量测量方法

Also Published As

Publication number Publication date
JP2023535664A (ja) 2023-08-21
CN113569401A (zh) 2021-10-29
CN113569401B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2023000837A1 (fr) Norme d'évaluation de type roche de recouvrement des chambres profondes, et procédé de conception de reformation d'épaississement pour substratum mince
Ning et al. Mechanical mechanism of overlying strata breaking and development of fractured zone during close-distance coal seam group mining
CN111750822B (zh) 一种采煤诱发的覆岩与地表沉陷协同动态预测方法
Jiang et al. Observe the temporal evolution of deep tunnel's 3D deformation by 3D laser scanning in the Jinchuan No. 2 Mine
CN101761346B (zh) 一种变质岩承压水隧道的施工方法
CN105971606B (zh) 一种巨厚煤层长壁工作面开采方法
CN103902780B (zh) 固体充填采煤地表变形预计方法
CN106014423B (zh) 一种近距离煤层巷道的开挖及支护方法
WO2023000920A1 (fr) Procédé de soulagement de la pression de mine en gradins sur la base d'un principe de reconstruction de couche clé
CN106150546B (zh) 一种根据地表沉陷特征进行采空区部分充填的方法
CN104018849B (zh) 一种基于冒落拱矢高确定的回采巷道支护方法
Chen et al. Recent advances in high slope reinforcement in China: Case studies
Kang et al. Safe mining technology of undersea metal mine
CN106150545B (zh) 一种根据顶板垮落特征进行采空区部分充填的方法
CN105971630B (zh) 一种近距离煤层巷道顶板冒落防治方法
Liu et al. Characteristics analysis of roof overburden fracture in thick coal seam in deep mining and engineering application of super high water material in backfill mining
Xu et al. Overburden migration and failure characteristics in mining shallow buried coal seam with thick loose layer
Huang et al. Key stratum structure and support working resistance of longwall face with large mining height in the shallow coal seams, China
Shang et al. The drainage horizon determination of high directional long borehole and gas control effect analysis
Xu et al. Evolution regularity and control technology of coal face rupture induced by the movement of overlying strata under the influence of mining
Xue et al. Numerical investigation on overburden migration behaviors in stope under thick magmatic rocks
Zhang et al. Evolution law of coal seam abutment pressure under the influence of shallow buried complex strata: a case study
Xiong et al. Study on the support capacity determination and movement law of overlying strata in a thin-bedrock large-cutting-height longwall panel
Hua et al. Three-dimensional physical simulation and control technology of roof movement characteristics in non-pillar gob-side entry retaining by roof cutting
Liu et al. Deformation rules for surrounding rock in directional weakening of end roofs of thin bedrocks and ultrathick seams

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022561012

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE