WO2023000767A1 - 局域网通信方法、装置、终端、电子设备和存储介质 - Google Patents

局域网通信方法、装置、终端、电子设备和存储介质 Download PDF

Info

Publication number
WO2023000767A1
WO2023000767A1 PCT/CN2022/091526 CN2022091526W WO2023000767A1 WO 2023000767 A1 WO2023000767 A1 WO 2023000767A1 CN 2022091526 W CN2022091526 W CN 2022091526W WO 2023000767 A1 WO2023000767 A1 WO 2023000767A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethernet
terminal
message
service request
local area
Prior art date
Application number
PCT/CN2022/091526
Other languages
English (en)
French (fr)
Inventor
唐海涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023000767A1 publication Critical patent/WO2023000767A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the embodiments of the present application relate to the technical field of mobile communications, and in particular to a local area network communication method, device, terminal, electronic equipment, and storage medium.
  • FIG. 1 is a schematic diagram of the overall architecture of the fifth generation communication system (5G).
  • the standard protocol stipulates that the architecture mainly includes: AMF (Access Management Function, access management function network element), SMF (Session Management Function, session management function network element), UPF (User Plane Function, user plane function network element), UDM (Unified Data Management, unified data management network element), PCF (Policy Control Function, policy control function network element), AF (Application Function, application function network element), NSSF (Network SliceSelection Function, network slice selection function network element), AUSF (Authentication Server Function, authentication server function), UE (User Equipment, user equipment), RAN (Radio Access Network, wireless access network), DN (Data Network, data network), where the connection of the user plane is UE To the RAN, then to the UPF, and then to the DN; the connection of the control plane is from the
  • 5G LAN Local Area Network, local area network
  • 5G LAN service allows a limited group of UEs to communicate with each other, this group is called VN (Virtual Network Group, virtual network group).
  • IP PDU Session type IP type protocol data session
  • Ethernet PDU Session type Ethernet type protocol data session
  • the embodiment of the present application proposes a local area network communication method, device, electronic equipment, and storage medium, at least to a certain extent: based on the existing communication protocol, providing a method for accessing the 5G local area network for terminals that do not support Ethernet access to the 5G local area network , and complete the service deployment in the 5G local area network.
  • An embodiment of the present application provides a local area network communication method, including: obtaining a service request of a first terminal, and the service request includes Ethernet service request information of a second terminal; wherein, the first terminal is a terminal that supports 5G local area network IP services, and the second The terminal is at least one Ethernet terminal connected to the first terminal; according to the service request, obtain the data forwarding rule of the Ethernet message in response to the service request; send the data forwarding rule to each node on the transmission path of the Ethernet message; The Ethernet packet is IP-encapsulated and forwarded until it is sent to the first terminal, so that the first terminal sends the decapsulated Ethernet packet to the second terminal.
  • the embodiment of the present application also provides a local area network communication method, including: obtaining the message to be transmitted; performing IP encapsulation on the Ethernet message in the message according to the Ethernet service response information in the message; sent to the target node.
  • the embodiment of the present application also proposes a local area network communication method, including: receiving an Ethernet service request from an Ethernet device, and performing IP encapsulation on the service request; sending the encapsulated service request, and receiving a response message corresponding to the service request; releasing the response message IP encapsulation of the message, and send the Ethernet message in the response message to the Ethernet device.
  • the embodiment of the present application also proposes a local area network communication device, including: a detection module to obtain the service request of the first terminal, and the service request includes the Ethernet service request information of the second terminal; wherein, the first terminal is a 5G local area network IP service Terminal, the second terminal is at least one Ethernet terminal connected to the first terminal; the acquisition module is used to obtain the data forwarding rules of the Ethernet message in response to the service request according to the service request; the forwarding module is used to send the data forwarding rules to the Ethernet Each node on the transmission path of the message; for each node to perform IP encapsulation and forwarding on the Ethernet message until it is sent to the first terminal, and for the first terminal to send the decapsulated Ethernet message to the second terminal.
  • a detection module to obtain the service request of the first terminal, and the service request includes the Ethernet service request information of the second terminal
  • the first terminal is a 5G local area network IP service Terminal
  • the second terminal is at least one Ethernet terminal connected to the first terminal
  • the acquisition module is used to obtain the data
  • the embodiment of the present application also proposes a local area network communication device, including: a receiving module, used to obtain the message to be transmitted; a processing module, used to process the Ethernet message in the message according to the Ethernet service response information in the message Perform IP encapsulation; forwarding module, used to send the encapsulated Ethernet message to the target node.
  • the embodiment of the present application also proposes a terminal, including: a receiving module, used to receive an Ethernet service request from an Ethernet device, and perform IP encapsulation on the service request; a communication module, used to send the encapsulated service request, and receive the corresponding service request the response message; the forwarding module is used to release the IP encapsulation of the response message, and send the Ethernet message in the response message to the Ethernet device.
  • the embodiment of the present application also provides an electronic device, which includes: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores instructions that can be executed by the at least one processor, and the instructions are executed by at least one processor. Executed by a processor, so that at least one processor can execute the above local area network communication method.
  • the embodiment of the present application also proposes a computer-readable storage medium storing a computer program, and implementing the above local area network communication method when the computer program is executed by a processor.
  • FIG. 1 is a schematic diagram of the overall architecture of the fifth generation communication system (5G) in the background technology of the present application;
  • FIG. 2 is a schematic diagram of a 5G communication system architecture implemented by a local area network communication method in an embodiment of the present application
  • Fig. 3 is the flowchart of the local area network communication method in the embodiment of the present application.
  • Fig. 4 is a schematic diagram of the 5G local area network Ethernet IP service deployment process in the embodiment of the present application.
  • FIG. 5 is a flowchart of a local area network communication method in another embodiment of the present application.
  • FIG. 6 is a flowchart of a local area network communication method in another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a local area network communication device in another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a local area network communication device in another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a terminal structure in another embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of an electronic device in another embodiment of the present application.
  • the embodiment of the present application provides a local area network communication method, the method includes the following steps: obtain the service request of the first terminal, the service request includes the Ethernet service request information of the second terminal; wherein, the first terminal supports For the terminal of the 5G LAN IP service, the second terminal is at least one Ethernet terminal connected to the first terminal; according to the service request, obtain the data forwarding rule of the Ethernet message in response to the service request; send the data forwarding rule to the transmission path of the Ethernet message each node on the network; for each node to perform IP encapsulation and forwarding of the Ethernet message until it is sent to the first terminal, and for the first terminal to send the unencapsulated Ethernet message to the second terminal.
  • the LAN communication method obtaineds the 5G LAN Ethernet service request information contained in the first terminal service request, and connects the Ethernet terminal to the first terminal that supports 5G LAN IP type services.
  • the terminal realizes the 5G local area network access of the Ethernet device and the sending of the service request; by sending the data forwarding rules determined according to the Ethernet service request information in the first terminal service request to each node, for each node to report to the Ethernet according to the data forwarding rules
  • the packet is encapsulated and forwarded until the first terminal sends the unencapsulated Ethernet packet to the Ethernet terminal, so that the Ethernet terminal that cannot access the 5G LAN realizes the service deployment and interaction of the 5G LAN, and avoids the need for 5G service deployment.
  • the huge time and resource costs brought about by large-scale chip upgrades or equipment replacements have greatly accelerated the progress of 5G service deployment.
  • FIG. 2 is a schematic diagram of a communication architecture in the embodiment of the present application.
  • Ethernet device 1 and Ethernet device 2 are connected to user equipment 1 that supports 5G LAN IP type access
  • Ethernet device 3 and Ethernet device 4 are connected to user equipment 2 that supports 5G LAN IP type access
  • user equipment 1 and user equipment 2 are connected to wireless access network element 1 and wireless access network element 2 respectively through the user plane function Network element 1 and user plane function network element 2
  • user equipment 1 and wireless access network element 1 are connected to access management network element
  • session management network element and policy control network element unified data management network element
  • access management network element NE and user plane functional network elements 1 and 2 are connected respectively
  • the policy control network element is connected with the application function network element
  • the user plane management network element 1 and 2 are connected with data network 1 and 2 respectively.
  • Fig. 3 is a flow chart of a local area network communication method provided by an embodiment of the present application.
  • the local area network communication method is applied to a network element device responsible for service processing and data processing rule control in a 5G local area network, and the first terminal may support Terminals of 5G local area network services, such as mobile phones, computers and other electronic equipment, the second terminal can be ordinary L2 layer terminal equipment or industrialized terminals and other equipment, and the local area network communication method specifically includes the following steps:
  • Step 301 acquire a service request of a first terminal.
  • the SMF (session management network element) in the 5G core network obtains the service request of the first terminal through the AMF (access management network element), and the service request includes the Ethernet service request information of the second terminal; wherein, the first The terminal is a terminal supporting 5G local area network IP services, and the second terminal is at least one Ethernet terminal connected to the first terminal.
  • the Ethernet terminal as the second terminal is connected to the computer as the first terminal.
  • the Ethernet terminal sends an Ethernet service request containing service information to the computer, and the computer receives the Ethernet terminal.
  • IP encapsulation is performed on the service request information of the Ethernet terminal, so that the Ethernet service request can be transmitted and processed in the 5G LAN through the packet of the IP type connected computer, and then the computer according to the encapsulated Ethernet service request,
  • IP PDU Session Establishment Request message IP type PDU session establishment request message
  • AMF receives the service request from the computer including the Ethernet service request, and sends the obtained service request to the
  • the SMF is used to enable the SMF to obtain the service request of the first terminal.
  • Step 302 according to the service request, obtain the data forwarding rule of the Ethernet packet responding to the service request.
  • the SMF obtains the data forwarding rule of the Ethernet packet responding to the service request according to the service request.
  • the SMF after receiving the session creation request message from the AMF for the service request of the first terminal, the SMF analyzes the service request of the first terminal corresponding to the session creation request according to the service processing rules stipulated in the protocol to determine the service
  • the type of the request is an Ethernet service request, and then according to the Ethernet service information contained in the Ethernet service request, the data forwarding rule of the Ethernet packet responding to the Ethernet service request is determined.
  • the session creation request message sent by the AMF to the SMF is that after the AMF receives the service request from the first terminal, it first determines the service type corresponding to the service request based on the detection and identification of the service information contained in the service request, and then according to the local After configuring or signing data on UDM (Unified Data Management Network Element), obtaining the VN group information to which the first terminal belongs, and finally selecting an appropriate SMF to serve the session corresponding to the service request of the first terminal, according to the current
  • UDM Unified Data Management Network Element
  • the SMF receives the session creation request from the AMF. After determining that the session request corresponds to a new PDU session, the SMF interacts with the UDM to obtain the session signing data corresponding to the first terminal that initiates the new session service request. These data can include Ethernet over IP 5G LAN session (5G LAN session of Ethernet IP), after SMF obtains the subscription data, it returns a session establishment response to AMF. Then the SMF detects whether the configuration of the PCF (policy control function network element) has been completed, and interacts with the PCF to obtain the PCC control strategy (policy control and charging) after the configuration is completed.
  • PCF policy control function network element
  • the PCC control strategy may include information such as AMBR (Aggregate Maximum Bit Rate), 5QI (Data Forwarding Identity), ARP (Allocation and Reservation Priority), and then SMF according to the IP address of the first terminal and the service capability of the 5G LAN.
  • Select UPF User Plane Function Network Element
  • the SMF After the SMF selects the UPF that supports the new session, it sends a N4Session Establishment Request (N4 session establishment request) to the selected UPF, and carries the Ethernet over IP 5G LAN indication in the session establishment request.
  • N4Session Establishment Request N4 session establishment request
  • the UPF After receiving the session establishment request from the SMF, the UPF , according to the instructions of SMF, complete the user access in the Ethernet over IP 5G LAN group, and reply the response message of session establishment to SMF.
  • SMF sends N4 group-level session establishment request to UPF, and carries Ethernet over IP 5G LAN instructions and group-level forwarding rules, and UPF will Indicate and forward rules, complete N4 group-level session access, and feed back the response message of group-level session establishment to the SMF.
  • the SMF After receiving the response message of session establishment, the SMF sends a Namf_Communication_N1N2 Message Transfer message to the AMF, and sends the information such as the IP address of the first terminal, tunnel information, and control policies for the first terminal obtained by the SMF to the RAN (wireless access network) through the AMF.
  • the SMF then obtains the information of the newly created N3 tunnel from the AMF, and sends the information of the N3 tunnel to the UPF, For the UPF to update the tunnel information stored by itself, after receiving the response of the successful session update fed back by the UPF, the SMF feeds back the Nsmf_PDUSession_UpdateSMContext Response response message to the AMF, and the SMF generates the service according to the transmission tunnel, service type and processing method of the new session for the service request Request the corresponding data forwarding rules.
  • the data forwarding rule is generated according to the configuration data corresponding to the first terminal.
  • the configuration data corresponding to the first terminal includes any of the following: local configuration information, subscription data in unified data management, and application function indication information.
  • the SMF can directly acquire the configuration information corresponding to the first terminal locally, or read the subscription information corresponding to the first terminal in the UDM, or directly determine the configuration data of the first terminal according to the application function instruction.
  • the SMF determines the data forwarding rules of the Ethernet message, it can select the transmission node according to the performance of each node, so as to form the optimal forwarding path of the Ethernet message and ensure the efficiency and stability of business processing.
  • Step 303 sending the data forwarding rule to each node on the transmission path of the Ethernet message.
  • the SMF sends the data forwarding rule to each node on the transmission path of the Ethernet message for each node to communicate with the Ethernet message.
  • the message is encapsulated and forwarded by IP until it is sent to the first terminal, so that the first terminal can send the decapsulated Ethernet message to the second terminal.
  • the SMF sends the generated data forwarding rules to the UPF through the N4 interface, so that when the UPF receives a message containing the Ethernet service response information, it performs IP encapsulation on the Ethernet message to be transmitted according to the received data forwarding rule. and forwarding, until the encapsulated Ethernet message is sent to the first terminal, for the first terminal to strip off the IP encapsulation after receiving the encapsulated Ethernet message, and send the unencapsulated Ethernet message to the downlink Ethernet device .
  • the application function instructs the network element to send a message to the NEF (network capability reorganization, collection, analysis) network element, Update the service of the first terminal to Ethernet over IP 5G LAN service.
  • NEF network capability reorganization, collection, analysis
  • the SMF updates the user service type and regenerates the Ethernet over IP 5G LAN data forwarding Rules, and the updated data forwarding rules are sent to each node for each node to update the processing method of the Ethernet packet corresponding to the Ethernet service request, so as to realize the deployment of Ethernet over IP 5G LAN services.
  • each node on the transmission path of the Ethernet message includes: a storage node of the Ethernet message and a forwarding node of the Ethernet message; the method also includes: sending a message generation instruction to the storage node, and the message generation instruction is used for Instruct the storage node to generate an Ethernet packet in response to the service request, and perform IP encapsulation and forwarding on the Ethernet packet.
  • the SMF determines the storage node of the message corresponding to the service request according to the Ethernet service request, it sends a message generation instruction and data forwarding rules to the storage node, so that the storage node will wait for the transmission after receiving the message generation instruction of the SMF.
  • the packet is converted into an Ethernet packet, encapsulated with an IP tunnel outside the Ethernet packet, and forwarded to the next forwarding node on the transmission path of the Ethernet packet.
  • the storage node includes: a DN-side device, another terminal under the same UPF, and another terminal under a different UPF.
  • the Ethernet message transmission process is as follows: the second terminal connected to the first terminal accesses the DN side device through UPF to obtain a message, the message format is Ethernet over IP, and the destination MAC address of the Ethernet message is the device on the DN side.
  • the first terminal receives the Ethernet service request of the second terminal (Ethernet terminal), encapsulates the Ethernet service request information, encapsulates a layer of N3 GTPU (packet packet encapsulation) tunnel outside the Ethernet over IP data, and passes through the N3 tunnel The encapsulated data is transmitted to the UPF node.
  • the UPF node After receiving the data, the UPF node strips the GTPU tunnel, determines that the user information is an Ethernet over IP 5G LAN user, and then strips off the IP tunnel, and performs N6-based according to Ethernet 5G LAN Forwarding; the device on the DN side triggers the Ethernet service whose destination MAC is the second terminal connected to the first terminal, UPF receives and processes it according to Ethernet 5G LAN N6-based, and according to the instructions of Ethernet over IP 5G LAN, transmits the Ethernet data (Ether message) After encapsulating the IP tunnel, N3 GTPU processing is performed, and the encapsulated Ethernet packet is transmitted to the first terminal for the first terminal to deencapsulate the Ethernet packet, and transmit the Ethernet packet to the second terminal connected below.
  • N3 GTPU processing After encapsulating the IP tunnel, N3 GTPU processing is performed, and the encapsulated Ethernet packet is transmitted to the first terminal for the first terminal to deencapsulate the Ethernet packet, and transmit the Ethernet packet to the second terminal connected below.
  • the Ethernet packet transmission process is as follows: the second terminal 1 connected to the first terminal 1 accesses the second terminal connected to the first terminal 2 connected to the UPF through UPF 2.
  • the message format is Ethernet over IP, and the destination MAC address of the Ethernet message is the second terminal 2.
  • the UPF node After receiving the service request from the first terminal 1, the UPF node strips the GTPU tunnel and determines that the user information is Ethernet over IP 5G LAN users, and then peel off the IP tunnel, perform local switch (local forwarding) processing according to Ethernet 5G LAN, encapsulate the IP tunnel outside the Ethernet packet, and then perform N3 GTPU tunnel processing for subsequent transmission of UPF to bear in the GTPU tunnel Ethernet over IP user data (Ethernet message) to the first terminal 2, for the first terminal 2 to remove the IP encapsulation of the Ethernet message, and transmit the Ethernet message to the second terminal 2 that is connected to the lower end, and download the Ethernet message from the first terminal 2
  • the connected second terminal 2 transmits the Ethernet packet corresponding to the service request of the second terminal 1 to the second terminal 1, the mirroring method is used to return the Ethernet message, which will not be repeated here.
  • the Ethernet packet transmission process is as follows: the second terminal 1 connected to the first terminal 1 accesses the second terminal connected to the first terminal 2 under UPF2 through UPF1.
  • Terminal 2 the data format in the N3 tunnel corresponding to the first terminal 1 is Ethernet over IP, and the destination MAC address of the Ethernet packet is the second terminal 2.
  • UPF1 strips off the N3 GTPU tunnel, it is judged as an Ethernet over IP 5G LAN user based on user information , peel off the IP tunnel of the service request, perform N19-based processing according to Ethernet 5G LAN, encapsulate the N19 tunnel and send it to UPF2, UPF2 strips off the N19 GTPU tunnel, and then performs receiving and forwarding processing according to Ethernet 5G LAN N19-based, and encapsulates it outside the Ethernet packet
  • N3 GTPU processing is carried out for the subsequent UPF2 to send the Ethernet over IP user data (Ether packet) carried in the GTPU tunnel to the first terminal 2, for the first terminal 2 to remove the IP encapsulation of the Ethernet packet, and convert the Ethernet packet
  • the second terminal 2 connected to the first terminal 2 transmits the Ethernet packet corresponding to the service request of the second terminal 1 to the second terminal 1, it transmits back in a mirrored manner. I won't repeat them here.
  • the SMF According to the Ethernet service request of the first terminal, the SMF generates in the 5G local area network a data forwarding rule corresponding to the Ethernet message corresponding to the Ethernet service request, and sends the data forwarding rule to each node of the Ethernet message transmission path, so that each node completes
  • the flowchart of Ethernet over IP 5G LAN service deployment in 5G local area network is shown in Figure 4. The specific implementation process has been discussed above and will not be repeated here.
  • FIG. 5 is a flow chart of the local area network communication method provided by an embodiment of the present application, specifically comprising the following steps:
  • Step 501 obtain the message to be transmitted.
  • the data processing node in the 5G local area network obtains the message to be transmitted according to the received service instruction.
  • the data processing node includes a storage node and a forwarding node of the Ethernet message in response to the Ethernet service request.
  • the data processing node is the forwarding node UPF of the Ethernet message.
  • the UPF obtains the data forwarding rules, and performs IP encapsulation on the Ethernet message in the message, including: according to the data forwarding rule Perform IP encapsulation on the Ethernet packets in the packets. That is, the UPF first obtains the data forwarding rules issued by the SMF. After receiving the packets to be transmitted, it detects whether the packets to be transmitted contain Ethernet service response information according to the data forwarding rules. If the Ethernet service response information is detected, then When subsequently encapsulating and forwarding the message, IP encapsulation is performed on the Ethernet message in the message according to the pre-acquired data forwarding rules.
  • Each data processing node encapsulates and forwards the Ethernet message according to the pre-acquired data forwarding rules to realize the deployment of Ethernet over IP 5G LAN services on each node, so that each data processing node on the transmission path of the Ethernet message can process the Ethernet service Encapsulation and forwarding of detection, identification and response packets to ensure that Ethernet terminals can obtain the required Ethernet packets.
  • Step 502 Encapsulate the Ethernet message in the message according to the Ethernet service response information in the message.
  • the UPF After the UPF detects that there is an Ethernet service response information in the packet to be transmitted, it decapsulates the obtained packet according to the pre-acquired data forwarding rules, and strips the IP type tunnel encapsulated outside the Ethernet packet. , and according to the data transmission path of the Ethernet message, determine the transmission tunnel that the Ethernet message needs to pass through in the next step, and re-encapsulate the corresponding IP tunnel for the Ethernet message according to the tunnel information.
  • Step 503 sending the encapsulated Ethernet message to the target node.
  • the data processing node After the data processing node encapsulates the Ethernet message to be transmitted according to the Ethernet service information, it sends the encapsulated message data to the target node, wherein the target node can be determined according to the data transmission path of the Ethernet message, and the target node Nodes include but are not limited to the first terminal accessing the 5G local area network or other data processing nodes.
  • the data processing node is UPF
  • the target node is the first terminal connected to the 5G network.
  • the UPF encapsulates the IP tunnel outside the Ethernet data (Ether packet) and performs N3GTPU processing
  • the Ethernet packet is transmitted through the N3 tunnel. transmitted to the first terminal, for the first terminal to decapsulate the IP packet of the Ethernet packet, and send the decapsulated Ethernet packet to the Ethernet terminal.
  • FIG. 6 shows the local area network communication in an embodiment of the present application
  • the flow chart of method specifically comprises the following steps:
  • Step 601 receiving an Ethernet service request, and performing IP encapsulation on the service request.
  • the first terminal supporting 5G local area network services is connected to the Ethernet terminal, the first terminal receives the service request from the Ethernet terminal, and performs IP encapsulation on the service request, so that the service request of the Ethernet terminal can enter the 5G local area network.
  • Step 602 sending the encapsulated service request, and receiving a response packet corresponding to the service request.
  • the first terminal after encapsulating the Ethernet service request received by the downlink Ethernet terminal, the first terminal sends the encapsulated Ethernet service request to the 5G core network for processing, and then receives a response from the 5G core network in response to the Ethernet service request message.
  • step 603 the IP encapsulation of the reply message is released, and the Ethernet message in the reply message is sent to the Ethernet terminal.
  • the first terminal releases the IP encapsulation of the reply message, and sends the Ethernet message in the reply message to the Ethernet terminal, for the downlink Ethernet terminal to obtain the required Ethernet packets to realize business processing on the Ethernet terminal in the 5G local area network.
  • FIG. 7 Another aspect of the embodiment of the present application relates to a local area network communication device, referring to FIG. 7 , including:
  • the detection module 701 is configured to obtain a service request of the first terminal, and the service request includes the Ethernet service request information of the second terminal; wherein, the first terminal is a terminal supporting 5G local area network IP services, and the second terminal is at least one connected to the first terminal.
  • An ethernet terminal is configured to obtain a service request of the first terminal, and the service request includes the Ethernet service request information of the second terminal; wherein, the first terminal is a terminal supporting 5G local area network IP services, and the second terminal is at least one connected to the first terminal.
  • An ethernet terminal is configured to obtain a service request of the first terminal, and the service request includes the Ethernet service request information of the second terminal;
  • the acquiring module 702 is configured to acquire, according to the service request, the data forwarding rule of the Ethernet packet responding to the service request.
  • the forwarding module 703 is used to send the data forwarding rules to each node on the transmission path of the Ethernet message; for each node to perform IP encapsulation and forwarding of the Ethernet message until it is sent to the first terminal, and for the first terminal to decapsulate The subsequent Ethernet packets are sent to the second terminal.
  • this embodiment is an apparatus embodiment corresponding to the method embodiment, and this embodiment can be implemented in cooperation with the method embodiment.
  • the relevant technical details mentioned in the method embodiments are still valid in this embodiment, and will not be repeated here in order to reduce repetition.
  • the related technical details mentioned in this embodiment can also be applied in the method embodiment.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • FIG. 8 Another aspect of the embodiment of the present application provides a local area network communication device, referring to FIG. 8 , including:
  • the receiving module 801 is configured to obtain the message to be transmitted.
  • the processing module 802 is configured to perform IP encapsulation on the Ethernet message in the message according to the Ethernet service response information in the message.
  • the forwarding module 803 is configured to send the encapsulated Ethernet message to the target node.
  • this embodiment is an apparatus embodiment corresponding to the method embodiment, and this embodiment can be implemented in cooperation with the method embodiment.
  • the relevant technical details mentioned in the method embodiments are still valid in this embodiment, and will not be repeated here in order to reduce repetition.
  • the related technical details mentioned in this embodiment can also be applied in the method embodiment.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • FIG. 9 Another aspect of the embodiment of the present application also provides a terminal, referring to FIG. 9 , including:
  • the receiving module 901 is configured to receive an Ethernet service request from an Ethernet device, and perform IP encapsulation on the service request.
  • the communication module 902 is configured to send an encapsulated service request and receive a response message corresponding to the service request.
  • the forwarding module 903 is configured to remove the IP encapsulation of the response message, and send the Ethernet message in the response message to the Ethernet device.
  • this embodiment is an apparatus embodiment corresponding to the method embodiment, and this embodiment can be implemented in cooperation with the method embodiment.
  • the relevant technical details mentioned in the method embodiments are still valid in this embodiment, and will not be repeated here in order to reduce repetition.
  • the related technical details mentioned in this embodiment can also be applied in the method embodiment.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problems proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • FIG. 10 Another aspect of the embodiment of the present application provides an electronic device, referring to FIG. 10 , including: at least one processor 1001; and a memory 1002 communicatively connected to at least one processor 1001; Instructions executed by at least one processor 1001, the instructions are executed by at least one processor 1001, so that at least one processor 1001 can execute the local area network communication method described in any one of the above method embodiments.
  • the memory 1002 and the processor 1001 are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors 1001 and various circuits of the memory 1002 together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor 1001 is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor 1001 .
  • the processor 1001 is responsible for managing the bus and general processing, and may also provide various functions including timing, peripheral interface, voltage regulation, power management and other control functions. And the memory 1002 can be used for data used by the memory 1001 when performing operations.
  • Embodiments of the present application also provide a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor. That is, those skilled in the art can understand that all or part of the steps in the method of the above-mentioned embodiments can be completed by instructing related hardware through a program, the program is stored in a storage medium, and includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种局域网通信方法、装置、终端、电子设备和存储介质,局域网通信方法包括:获取第一终端的业务请求,业务请求包括第二终端的以太业务请求信息;其中,第一终端为支持5G局域网IP业务的终端,第二终端为第一终端连接的至少一个以太终端;根据业务请求,获取响应业务请求的以太报文的数据转发规则;将数据转发规则发送给以太报文的传输路径上的各节点;供各节点对以太报文进行IP封装和转发,直至发送到第一终端,供第一终端将解除封装后的以太报文发送给第二终端。

Description

局域网通信方法、装置、终端、电子设备和存储介质
相关申请的交叉引用
本申请基于申请号为202110839114.5、申请日为2021年7月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及移动通信技术领域,特别涉及一种局域网通信方法、装置、终端、电子设备和存储介质。
背景技术
5G局域网通信技术是一项十分重要的新通信技术,具备更快的传输速率、支持更多种无线移动通信工程,图1是第五代通信系统(5G)的总体架构示意图,根据5G通信的标准协议规定,架构中主要包括:AMF(Access Management Function,接入管理功能网元)、SMF(Session Management Function,会话管理功能网元),UPF(User Plane Function,用户面功能网元),UDM(Unified Data Management,统一数据管理网元),PCF(Policy Control Function,策略控制功能网元),AF(Application Function,应用功能网元),NSSF(Network SliceSelection Function,网络切片选择功能网元),AUSF(Authentication Server Function,鉴权服务器功能),UE(User Equipment,用户设备),RAN(Radio Access Network,无线接入网),DN(Data Network,数据网络),其中,用户面的连接为UE到RAN,然后到UPF,再接入DN;控制面的连接为UE到AMF,再到SMF。5G LAN(Local Area Network,局域网),是使用5G系统来支持5G LAN类型服务的开展。5G LAN服务允许有限的一组UE在彼此之间进行通信,这个群组称之为VN(Virtual Network Group,虚拟网络群组)。
但是,现行的5G LAN的通信协议中,仅支持为IP PDU Session type(IP类型协议数据会话)和Ethernet PDU Session type(以太类型协议数据会话)接入提供5G LAN服务,而当前市场中,很多5G终端受限于升级成本或者自身芯片支持能力的限制,不具备以太接入5G LAN的能力,因此,限制了这些终端使用5G LAN的资源,无法为这些终端提供5G LAN服务。
发明内容
本申请实施例提出一种局域网通信方法、装置、电子设备和存储介质,至少在一定程度上实现:基于现有的通信协议,为不支持以太接入5G局域网的终端提供接入5G局域网的方法,并完成在5G局域网中的业务部署。
本申请实施例提供了一种局域网通信方法,包括:获取第一终端的业务请求,业务请求包括第二终端的以太业务请求信息;其中,第一终端为支持5G局域网IP业务的终端,第二终端为第一终端连接的至少一个以太终端;根据业务请求,获取响应业务请求的以太报文的数据转发规则;将数据转发规则发送给以太报文的传输路径上的各节点;供各节点对以太报文进行IP封装和转发,直至发送到第一终端,供第一终端将解除封装后的以太报文发送给 第二终端。
本申请实施例还提供了一种局域网通信方法,包括:获取待传输的报文;根据报文中的以太业务响应信息,对报文中的以太报文进行IP封装;将封装后的以太报文发送给目标节点。
本申请实施例还提出了一种局域网通信方法,包括:接收来自以太设备的以太业务请求,对业务请求进行IP封装;发送封装后的业务请求,接收业务请求对应的应答报文;解除应答报文的IP封装,将应答报文中的以太报文发送给以太设备。
本申请实施例还提出了一种局域网通信装置,包括:检测模块,获取第一终端的业务请求,业务请求包括第二终端的以太业务请求信息;其中,第一终端为支持5G局域网IP业务的终端,第二终端为第一终端连接的至少一个以太终端;获取模块,用于根据业务请求,获取响应业务请求的以太报文的数据转发规则;转发模块,用于将数据转发规则发送给以太报文的传输路径上的各节点;供各节点对以太报文进行IP封装和转发,直至发送到第一终端,供第一终端将解除封装后的以太报文发送给第二终端。
本申请实施例还提出了一种局域网通信装置,包括:接收模块,用于获取待传输的报文;处理模块,用于根据报文中的以太业务响应信息,对报文中的以太报文进行IP封装;转发模块,用于将封装后的以太报文发送给目标节点。
本申请实施例还提出了一种终端,包括:接收模块,用于接收来自以太设备的以太业务请求,对业务请求进行IP封装;通信模块,用于发送封装后的业务请求,接收业务请求对应的应答报文;转发模块,用于解除应答报文的IP封装,将应答报文中的以太报文发送给以太设备。
本申请实施例还提出了一种电子设备,设备包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行如上的局域网通信方法。
本申请实施例还提出了计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现如上的局域网通信方法。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行说明,这些说明并不构成对实施例的限定。
图1是本申请背景技术中的第五代通信系统(5G)的总体架构示意图;
图2是本申请实施例中的局域网通信方法实施的5G通信系统架构示意图;
图3是本申请实施例中的局域网通信方法的流程图;
图4是本申请实施例中的5G局域网以太IP业务部署流程示意图;
图5是本申请另一实施例中的局域网通信方法流程图;
图6是本申请另一实施例中的局域网通信方法流程图;
图7是本申请另一实施例中的局域网通信装置的结构示意图;
图8是本申请另一实施例中的局域网通信装置的结构示意图;
图9是本申请另一实施例中的终端结构示意;
图10是本申请另一实施例中的电子设备的结构示意图。
具体实施方式
由背景技术可知,在现行的5G局域网通信协议中,能够支持的接入方式只有IP类型数据会话接入和以太类型数据会话接入,而当前市场上很多5G以太终端受到自身芯片功能的限制,无法实现对5G局域网的接入,而为了满足接入5G局域网而进行芯片升级或者设备更换很耗费资源和时间成本,因此,如何为不支持5G局域网接入的设备提供高效便利的5G局域网业务部署是一个迫切的技术问题。
为了解决上述问题,本申请的实施例提供了一种局域网通信方法,方法包括以下步骤:获取第一终端的业务请求,业务请求包括第二终端的以太业务请求信息;其中,第一终端为支持5G局域网IP业务的终端,第二终端为第一终端连接的至少一个以太终端;根据业务请求,获取响应业务请求的以太报文的数据转发规则;将数据转发规则发送给以太报文的传输路径上的各节点;供各节点对以太报文进行IP封装和转发,直至发送到第一终端,供第一终端将解除封装后的以太报文发送给第二终端。
本申请实施例提供的局域网通信方法,获取第一终端业务请求中包含的5G局域网以太业务请求信息,通过将以太终端下挂在支持5G局域网IP类型业务的第一终端下,利用连接的第一终端实现以太设备的5G局域网接入和业务请求的发送;通过将根据第一终端业务请求中的以太业务请求信息确定的数据转发规则下发给各节点,供各节点按照数据转发规则对以太报文进行封装和转发,直至第一终端将解除封装后的以太报文发送给以太终端,使原本无法接入5G局域网的以太终端实现了5G局域网的业务部署和交互,避免了5G业务部署需要进行大规模芯片升级或者设备更换带来的巨大时间和资源成本,极大的加快了5G业务部署的进度。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
下面将对结合具体的实施例的对本申请记载的局域网通信方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
本申请实施例的第一方面提供一种局域网通信方法,图2为本申请实施例中的一种通信架构的示意图,以太设备1、以太设备2连接支持5G局域网IP类型接入的用户设备1,以太设备3、以太设备4连接支持5G局域网IP类型接入的用户设备2,用户设备1、用户设备2再分别通过与无线接入网元1和无线接入网元2的连接用户面功能网元1和用户面功能网元2,用户设备1和无线接入网元1再与接入管理网元连接,会话管理网元与策略控制网元、统一数据管理网元、接入管理网元以及用户面功能网元1和2分别连接,策略控制网元再与应用功能网元连接,用户面管理网元1和2分别与数据网络1和2进行连接,其中,不同网元间的传输通道Nn是现行5G通信协议所规定的。图3为本申请一实施例提供的局域网通信方法的流程图,在一些实施例中,局域网通信方法应用于5G局域网中负责业务处理和数据处理规则控制的网元设备,第一终端可以是支持5G局域网业务的终端,例如手机、 电脑等电子设备,第二终端可以是普通的L2层终端设备或者工业化终端等设备,局域网通信方法具体包括以下步骤:
步骤301,获取第一终端的业务请求。
具体地说,5G核心网中的SMF(会话管理网元)通过AMF(接入管理网元),获取第一终端的业务请求,业务请求包括第二终端的以太业务请求信息;其中,第一终端为支持5G局域网IP业务的终端,第二终端为第一终端连接的至少一个以太终端。
在一个例子中,作为第二终端的以太终端与作为第一终端的电脑相连接,在以太终端出现业务需求时,以太终端向电脑发送包含有业务信息的以太业务请求,电脑在接收到以太终端的以太业务请求后,对以太终端的业务请求信息进行IP封装,使得以太业务请求能够通过IP类型接入的电脑的报文在5G局域网进行传输和处理,然后电脑根据封装后的以太业务请求,向5G局域网中的AMF发起IP PDU Session Establishment Request消息(IP类型的PDU会话建立请求消息),AMF接收来自电脑发出的包含以太业务请求的业务请求,并将获取到的业务请求发送给进行会话管理的SMF,使SMF获取到第一终端的业务请求。
步骤302,根据业务请求,获取响应业务请求的以太报文的数据转发规则。
具体地说,SMF在获取到来自第一终端的业务请求后,根据业务请求,获取响应业务请求的以太报文的数据转发规则。
在一个例子中,SMF在接收到来自AMF针对第一终端的业务请求发起的会话创建请求消息后,根据协议规定的业务处理规则对会话创建请求对应的第一终端的业务请求进行分析确定出业务请求的类型为以太业务请求,进而根据以太业务请求中包含的以太业务信息,确定出响应以太业务请求的以太报文的数据转发规则。其中,AMF向SMF发送的会话创建请求消息是AMF接收到第一终端的业务请求后,先根据对业务请求中包含的业务信息的检测和识别,确定出业务请求对应的业务类型,再根据本地配置或者UDM(统一数据管理网元)上的签约数据,获取到第一终端所属的VN群组信息,最终选择适当的SMF为第一终端的本次业务请求对应的会话进行服务后,根据现行的通信协议向选定的SMF发送的Nsmf_PDU Session_CreateSMContext Request会话创建消息。
SMF接收AMF的会话创建请求,在判定会话请求对应新建的PDU会话后,SMF与UDM进行交互,获取发起新建会话业务请求的第一终端对应的会话签约数据,其中,这些数据可以包括Ethernet over IP 5G LAN会话(以太IP的5G局域网会话),SMF在获取到签约数据后,向AMF返回会话建立的响应。然后SMF检测是否已经完成PCF(策略控制功能网元)的配置,在配置完成后,与PCF进行交互,获取PCC控制策略(策略控制与计费)。其中,PCC控制策略可以包括AMBR(聚合最大比特率)、5QI(数据转发标识)、ARP(分配和保留优先权)等信息,然后SMF根据第一终端的IP地址以及5G局域网业务能力,在5G局域网中选取UPF(用户面功能网元)进行对新建的会话提供服务支持,并分配好第一终端IP地址对应的计费规则和控制策略等。SMF在选取好支持新建会话的UPF后,向选取的UPF发送N4Session Establisment Request(N4会话建立请求),并在会话建立请求中携带Ethernet over IP 5G LAN指示,UPF在接收到SMF的会话建立请求后,根据SMF的指示,完成Ethernet over IP 5G LAN组内用户接入,并向SMF回复会话建立的响应消息。
另外,当业务请求对应的报文数据需要基于N6或N19进行转发时,SMF向UPF发送N4组级会话建立请求,并且携带Ethernet over IP 5G LAN指示和组级转发规则,UPF会根据 接收到的指示和转发规则,完成N4组级会话接入,并向SMF反馈组级会话建立的响应消息。
SMF接收到会话建立的响应消息后,向AMF发送Namf_Communication_N1N2 Message Transfer消息,将SMF获取到的第一终端的IP地址、隧道信息、针对第一终端的控制策略等信息通过AMF发送给RAN(无线接入网元)和第一终端(用户设备),供第一终端和RAN直接建立数据传输的N3隧道,SMF然后从AMF处获取新建的N3隧道的信息,并将N3隧道的信息发送给UPF,供UPF更新自身存储的隧道信息,在接收到UPF反馈的会话更新成功的响应后,SMF向AMF反馈Nsmf_PDUSession_UpdateSMContext Response响应消息,SMF根据为业务请求新建会话的传输隧道、业务类型和处理方法,生成业务请求对应的数据转发规则。
在另一个例子中,SMF根据第一终端的业务请求获取待传输的以太报文和数据转发规则时,数据转发规则根据第一终端对应的配置数据生成。通过根据第一终端的配置信息为特定的业务生成对应的数据转发规则,保证以太终端能够利用第一终端准确的获取到目标以太报文。
在另一个例子中,第一终端对应的配置数据,包括以下任一:本地配置信息、统一数据管理中的签约数据、应用功能指示信息。SMF可以直接在本地获取第一终端对应的配置信息,或者在UDM中读取第一终端对应的签约信息,或者直接根据应用功能指示确定第一终端的配置数据。通过将数据转发规则设置为多种生成方式生成,尽可能保证能够成功为第一终端的以太业务生成对应的数据转发规则,最大限度提升数据转发规则生成的成功率,进而保证以太终端在5G局域网中业务处理的成功概率。
另外,SMF根据确定以太报文的数据转发规则时,可以通过根据各节点的性能择优选取传输节点,从而形成以太报文的最优转发路径,保证业务处理的效率和稳定性。
步骤303,将数据转发规则发送给以太报文的传输路径上的各节点。
具体地说,SMF根据第一终端的业务请求,生成响应业务请求的以太报文的数据转发规则后,SMF将数据转发规则发送给以太报文的传输路径上的各节点,供各节点对以太报文进行IP封装和转发,直至发送到第一终端,供第一终端将解除封装后的以太报文发送给第二终端。
在一个例子中,SMF将生成的数据转发规则通过N4口下发到UPF,供UPF在接收到包含以太业务响应信息的报文时,根据接收到数据转发规则对待传输的以太报文进行IP封装和转发,直到封装后的以太报文发送到第一终端,供第一终端在接收到封装的以太报文后,将IP封装剥除,并将解除封装以太报文发送给下挂的以太设备。
另外,当SMF是根据应用功能指示确定第一终端的配置数据时,在SMF向AMF发送Nsmf_PDUSession_UpdateSMContext Response响应消息后,应用功能指示网元向NEF(网络能力重组、搜集、分析)网元发送消息,将第一终端的业务更新为Ethernet over IP 5G LAN业务,NEF反馈更新成功后,通知SMF用户业务类型为Ethernet over IP 5G LAN,SMF对用户业务类型进行更新,重新生成Ethernet over IP 5G LAN数据转发规则,并将更新后的数据转发规则下发给各节点,供各节点对以太业务请求对应的以太报文进行处理方式的更新,从而实现Ethernet over IP 5G LAN业务的部署。
在另一个例子中,以太报文传输路径上的各节点包括:以太报文的存储节点和以太报文的转发节点;方法还包括:向存储节点发送报文生成指令,报文生成指令用于指示存储节点生成响应业务请求的以太报文,并对以太报文进行IP封装和转发。SMF通过根据以太业务 请求确定出业务请求对应的报文的存储节点后,向存储节点下发报文生成指令和数据转发规则,使得存储节点在接收到SMF的报文生成指令后,将待传输的报文转换为以太报文,并在以太报文外封装上IP隧道,转发到以太报文传输路径上的下一转发节点。
存储节点包括:DN侧设备、同一UPF下的另一终端、不同UPF下的另一终端。
当存储节点为DN侧设备时,以太报文传输流程如下:第一终端下挂的第二终端通过UPF访问DN侧设备获取报文,报文格式为Ethernet over IP,以太报文的目的MAC地址是DN侧的装置。第一终端接收下挂的第二终端(以太终端)的以太业务请求,并对以太业务请求信息进行封装,在Ethernet over IP数据外封装一层N3 GTPU(分组报文封装)隧道,通过N3隧道将封装后的数据传输到UPF节点,UPF节点在接收到数据后,剥除GTPU隧道,判断出用户信息为Ethernet over IP 5G LAN用户,然后再剥掉IP隧道,按照Ethernet 5G LAN进行N6-based转发;DN侧装置触发目的MAC为第一终端下挂的第二终端的以太业务,UPF按照Ethernet 5G LAN N6-based接收进行处理,根据Ethernet over IP 5G LAN指示,在Ethernet数据(以太报文)外封装IP隧道后进行N3 GTPU处理,并将封装后的以太报文传输到第一终端,供第一终端解除以太报文的IP封装,将以太报文传输给下挂的第二终端。
当存储节点为同一UPF下的另一终端时,以太报文传输流程如下:第一终端1下挂的第二终端1通过UPF访问同样与UPF相连接的第一终端2下挂的第二终端2,报文格式为Ethernet over IP,以太报文的目的MAC地址是第二终端2,UPF节点在接收到来自第一终端1的业务请求后,剥除GTPU隧道,判断出用户信息为Ethernet over IP 5G LAN用户,然后再剥掉IP隧道,按照Ethernet 5G LAN进行local switch(本地转发)处理,在以太报文外封装IP隧道后,再进行N3 GTPU隧道处理,供UPF后续发送承载于GTPU隧道的Ethernet over IP用户数据(以太报文)给第一终端2,供第一终端2解除以太报文的IP封装,将以太报文传输给下挂的第二终端2,从第一终端2下挂的第二终端2将第二终端1业务请求对应的以太报文传输给第二终端1时,采取镜像的方式进行回传,在此就不再赘述。
当存储节点为不同一UPF下的另一终端时,以太报文传输流程如下:第一终端1下挂的第二终端1通过UPF1访问接入在UPF2下的第一终端2下挂的第二终端2,对应第一终端1的N3隧道内数据格式为Ethernet over IP,以太报文的目的MAC地址是第二终端2,UPF1剥掉N3 GTPU隧道后根据用户信息判断为Ethernet over IP 5G LAN用户,剥掉业务请求的IP隧道,按照Ethernet 5G LAN进行N19-based处理,封装N19隧道发送到UPF2,UPF2剥掉N19 GTPU隧道后按照Ethernet 5G LAN N19-based接收转发处理,在以太报文外封装IP隧道后进行N3 GTPU处理,供后续UPF2发送承载于GTPU隧道的Ethernet over IP用户数据(以太报文)给第一终端2,供第一终端2解除以太报文的IP封装,将以太报文传输给下挂的第二终端2,从第一终端2下挂的第二终端2将第二终端1业务请求对应的以太报文传输给第二终端1时,采取镜像的方式进行回传,在此就不再赘述。
SMF根据第一终端的以太业务请求,在5G局域网中生成响应以太业务请求对应的以太报文的数据转发规则,并将数据转发规则下发到以太报文传输路径的各节点,使得各节点完成在5G局域网中的Ethernet over IP 5G LAN业务部署的流程示意图如图4所示,具体的实现过程已经在上面进行了论述,在此就不再一一赘述。
本申请实施例的另一方面提供了一种局域网通信方法,图5为本申请一实施例提供的局 域网通信方法的流程图,具体包括以下步骤:
步骤501,获取待传输的报文。
具体地说,5G局域网中的数据处理节点在接到业务指示后,根据接收到的业务指示,获取待传输的报文。其中,数据处理节点包括响应以太业务请求的以太报文的存储节点和转发节点。
在一个例子中,数据处理节点为以太报文的转发节点UPF,UPF在获取待传输的报文前,获取数据转发规则,对报文中的以太报文进行IP封装,包括:根据数据转发规则对报文中的以太报文进行IP封装。即UPF先获取SMF下发的数据转发规则,在接收到待传输的报文后,根据数据转发规则,对待传输报文中是否含有以太业务响应信息进行检测,若检测到以太业务响应信息,则后续对报文进行封装和转发时,先按照预先获取的数据转发规则对报文中的以太报文进行IP封装。通过各数据处理节点根据预先获取的数据转发规则对以太报文进行封装和转发,实现在各节点的Ethernet over IP 5G LAN业务部署,使得以太报文传输路径上的各数据处理节点能够对以太业务进行检测识别和响应的报文封装转发,保证以太终端能够获取到需要的以太报文。
步骤502,根据报文中的以太业务响应信息,对报文中的以太报文进行封装。
具体地说,UPF在检测到待传输报文中存在以太业务响应信息后,根据预先获取的数据转发规则,对获取到的报文进行解封装,将以太报文外封装的IP类型隧道剥除,并根据以太报文的数据传输路径,确定以太报文下一步需要经过的传输隧道,根据隧道信息为以太报文重新封装上相应的IP隧道。
步骤503,将封装后的以太报文发送给目标节点。
具体地说,数据处理节点在根据以太业务信息对待传输的以太报文进行封装后,将封装后的报文数据发送给目标节点,其中,目标节点可以根据以太报文的数据传输路径确定,目标节点包括但不限于是接入5G局域网的第一终端或者其他数据处理节点。
在一个例子中,数据处理节点是UPF,目标节点是接入5G网络的第一终端,则UPF在Ethernet数据(以太报文)外封装IP隧道并进行N3GTPU处理后,通过N3隧道将以太报文传输到第一终端,供第一终端解除以太报文的IP封装,并将解除封装后的以太报文发送给以太终端。
本申请实施例的另一方面提供了一种局域网通信方法,可以应用在支持5G局域网的移动终端中,包括但不限于电脑、手机等电子设备,图6是本申请一实施例中的局域网通信方法的流程图,具体包括以下步骤:
步骤601,接收以太业务请求,对业务请求进行IP封装。
具体地说,支持5G局域网业务的第一终端与以太终端相连接,第一终端接收来自以太终端的业务请求,对业务请求进行IP封装,使得以太终端的业务请求能够进入5G局域网中。其中,第一终端连接的以太终端至少是1个。
步骤602,发送封装后的业务请求,接收业务请求对应的应答报文。
具体地说,第一终端接收到的下挂以太终端的以太业务请求进行封装后,将封装后的以太业务请求发送到5G核心网中进行处理,然后接收来自5G核心网响应以太业务请求的应答报文。
步骤603,解除应答报文的IP封装,将应答报文中的以太报文发送给以太终端。
具体地说,第一终端在接收到响应以太业务请求的应答报文后,解除应答报文的IP封装,将应答报文中的以太报文发送以太终端,供下挂的以太终端获取到需要的以太报文,实现在以太终端在5G局域网中的业务处理。
本申请实施例的另一方面涉及一种局域网通信装置,参考图7,包括:
检测模块701,用于获取第一终端的业务请求,业务请求包括第二终端的以太业务请求信息;其中,第一终端为支持5G局域网IP业务的终端,第二终端为第一终端连接的至少一个以太终端。
获取模块702,用于根据业务请求,获取响应业务请求的以太报文的数据转发规则。
转发模块703,用于将数据转发规则发送给以太报文的传输路径上的各节点;供各节点对以太报文进行IP封装和转发,直至发送到第一终端,供第一终端将解除封装后的以太报文发送给第二终端。
不难发现,本实施例为与方法实施例相对应的装置实施例,本实施例可与方法实施例互相配合实施。方法实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在方法实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请实施例的另一方面提供了一种局域网通信装置,参考图8,包括:
接收模块801,用于获取待传输的报文。
处理模块802,用于根据报文中的以太业务响应信息,对报文中的以太报文进行IP封装。
转发模块803,用于将封装后的以太报文发送给目标节点。
不难发现,本实施例为与方法实施例相对应的装置实施例,本实施例可与方法实施例互相配合实施。方法实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在方法实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请实施例的另一方面还提供了一种终端,参考图9,包括:
接收模块901,用于接收来自以太设备的以太业务请求,对业务请求进行IP封装。
通信模块902,用于发送封装后的业务请求,接收业务请求对应的应答报文。
转发模块903,用于解除应答报文的IP封装,将应答报文中的以太报文发送给以太设备。
不难发现,本实施例为与方法实施例相对应的装置实施例,本实施例可与方法实施例互相配合实施。方法实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在方法实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术 问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请实施例的另一方面还提供了一种电子设备,参考图10,包括:至少一个处理器1001;以及,与至少一个处理器1001通信连接的存储器1002;其中,存储器1002存储有可被至少一个处理器1001执行的指令,指令被至少一个处理器1001执行,以使至少一个处理器1001能够执行上述任一方法实施例所描述的局域网通信方法。
其中,存储器1002和处理器1001采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器1001和存储器1002的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1001处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传输给处理器1001。
处理器1001负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1002可以被用于存储器1001在执行操作时所使用的数据。
本申请的实施方式还提供了一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的方案和范围。

Claims (12)

  1. 一种局域网通信方法,包括:
    获取第一终端的业务请求,所述业务请求包括第二终端的以太业务请求信息;其中,所述第一终端为支持5G局域网IP业务的终端,所述第二终端为所述第一终端连接的至少一个以太终端;
    根据所述业务请求,获取响应所述业务请求的以太报文的数据转发规则;
    将所述数据转发规则发送给所述以太报文的传输路径上的各节点;供所述各节点对所述以太报文进行IP封装和转发,直至发送到所述第一终端,供所述第一终端将解除封装后的所述以太报文发送给所述第二终端。
  2. 根据权利要求1所述的5G局域网通信方法,其中,所述根据所述业务请求,获取待传输的以太报文和所述以太报文的数据转发规则;包括:
    所述数据转发规则根据所述第一终端对应的配置数据生成。
  3. 根据权利要求2所述的5G局域网通信方法,其中,所述第一终端对应的配置数据,包括以下任一:
    本地配置信息、统一数据管理中的签约数据、应用功能指示信息。
  4. 根据权利要求1所述的5G局域网通信方法,其中,所述各节点包括:
    所述以太报文的存储节点和所述以太报文的转发节点;
    所述方法还包括:
    向所述存储节点发送报文生成指令,所述报文生成指令用于指示所述存储节点生成响应所述业务请求的以太报文,并对所述以太报文进行IP封装和转发。
  5. 一种局域网通信方法,包括:
    获取待传输的报文;
    根据所述报文中的以太业务响应信息,对所述报文中的以太报文进行IP封装;
    将封装后的所述以太报文发送给目标节点。
  6. 根据权利要求5所述的局域网通信方法,其中,在获取待传输的报文前,还包括:
    获取数据转发规则;
    所述对所述报文中的以太报文进行IP封装,包括:
    根据所述数据转发规则对所述报文中的以太报文进行IP封装。
  7. 一种局域网通信方法,包括:
    接收来以太设备的以太业务请求,对所述业务请求进行IP封装;
    发送封装后的所述业务请求,接收所述业务请求对应的应答报文;
    解除所述应答报文的IP封装,将所述应答报文中的以太报文发送给所述以太设备。
  8. 一种局域网通信装置,包括:
    检测模块,用于获取第一终端的业务请求,所述业务请求包括第二终端的以太业务请求信息;其中,所述第一终端为支持5G局域网IP业务的终端,所述第二终端为所述第一终端连接的至少一个以太终端;
    获取模块,用于根据所述业务请求,获取响应所述业务请求的以太报文的数据转发规则;
    转发模块,用于将所述数据转发规则发送给所述以太报文的传输路径上的各节点;供所述各节点对所述以太报文进行IP封装和转发,直至发送到所述第一终端,供所述第一终端 将解除封装后的所述以太报文发送给所述第二终端。
  9. 一种局域网通信装置,包括:
    接收模块,用于获取待传输的报文;
    处理模块,用于根据所述报文中的以太业务响应信息,对所述报文中的以太报文进行IP封装;
    转发模块,用于将封装后的所述以太报文发送给目标节点。
  10. 一种终端,包括:
    接收模块,用于接收来自以太设备的以太业务请求,对所述业务请求进行IP封装;
    通信模块,用于发送封装后的所述业务请求,接收所述业务请求对应的应答报文;
    转发模块,用于解除所述应答报文的IP封装,将所述应答报文中的以太报文发送给所述以太设备。
  11. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至4中任一项所述的局域网通信方法,或权利要求5和6中任一项所述的局域网通信方法,或权利要求7所述的局域网通信方法。
  12. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至4中任一项所述的局域网通信方法,或权利要求5和6任一项所述的局域网通信方法,或权利要求7所述的局域网通信方法。
PCT/CN2022/091526 2021-07-23 2022-05-07 局域网通信方法、装置、终端、电子设备和存储介质 WO2023000767A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110839114.5A CN115696490A (zh) 2021-07-23 2021-07-23 局域网通信方法、装置、终端、电子设备和存储介质
CN202110839114.5 2021-07-23

Publications (1)

Publication Number Publication Date
WO2023000767A1 true WO2023000767A1 (zh) 2023-01-26

Family

ID=84978913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091526 WO2023000767A1 (zh) 2021-07-23 2022-05-07 局域网通信方法、装置、终端、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN115696490A (zh)
WO (1) WO2023000767A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553646A (zh) * 2003-05-27 2004-12-08 华为技术有限公司 一种互联网上传送以太网报文的方法
CN102316030A (zh) * 2011-09-01 2012-01-11 杭州华三通信技术有限公司 一种实现数据中心二层互联的方法和装置
CN103650427A (zh) * 2011-07-08 2014-03-19 阿尔卡特朗讯公司 用于在互联网协议网络上路由以太网分组的集中式系统
US20180278523A1 (en) * 2017-03-23 2018-09-27 Google Llc Gigabit Router
CN109672708A (zh) * 2017-10-16 2019-04-23 华为技术有限公司 通信方法及装置、系统
CN110166414A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种通信方法、装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553646A (zh) * 2003-05-27 2004-12-08 华为技术有限公司 一种互联网上传送以太网报文的方法
CN103650427A (zh) * 2011-07-08 2014-03-19 阿尔卡特朗讯公司 用于在互联网协议网络上路由以太网分组的集中式系统
CN102316030A (zh) * 2011-09-01 2012-01-11 杭州华三通信技术有限公司 一种实现数据中心二层互联的方法和装置
US20180278523A1 (en) * 2017-03-23 2018-09-27 Google Llc Gigabit Router
CN109672708A (zh) * 2017-10-16 2019-04-23 华为技术有限公司 通信方法及装置、系统
CN110166414A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种通信方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT, LG ELECTRONICS, SAMSUNG, QUALCOMM INCORPORATED, ERICSSON: "KI #3, Sol #6: Update to clarify non-IP and LI aspects", 3GPP DRAFT; S2-2004715, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. E e-meeting; 20200601 - 20200612, 15 June 2020 (2020-06-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051899011 *
MEDIATEK INC.: "Clarification to PDU Session Types: MTU", 3GPP DRAFT; S2-185047 CR 23.501 MTU ETHERNET, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Newport Beach, CA, USA; 20180528 - 20180601, 27 May 2018 (2018-05-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051448552 *

Also Published As

Publication number Publication date
CN115696490A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US11463280B2 (en) Communication method and device
JP7183416B2 (ja) 時間依存ネットワーキング通信方法及び装置
US20210274418A1 (en) Information Transmission Method and Apparatus
US11750453B2 (en) Network slice configuration method, apparatus, and system
KR102210296B1 (ko) 핸드오버 시나리오에서의 QoS 파라미터 처리 방법 및 기기
US20200351804A1 (en) Apparatus and method for supporting burst arrival time reference clock based on time-sensitive communication assistance information in wireless communication network
WO2019157855A1 (zh) 一种处理服务质量QoS参数的方法、网元、系统及存储介质
CN112449315A (zh) 一种网络切片的管理方法及相关装置
CN115244966A (zh) 无线通信系统中支持upf事件开放服务的装置和方法
WO2018233451A1 (zh) 通信方法、装置和系统
WO2010088835A1 (zh) 实现本地交换的方法及系统
WO2022052875A1 (zh) 终端跨区域通信方法、网元设备及存储介质
US20230156833A1 (en) Packet Forwarding Method, Apparatus, and System
WO2021097858A1 (zh) 一种通信方法及装置
WO2015018232A1 (zh) 设备到设备连接管理方法、装置及基站
US20220330294A1 (en) Communication method, apparatus, and system
US20230275872A1 (en) Communication method and apparatus, and computer-readable storage medium
CN110769500A (zh) 一种通信方法及装置
US20220263879A1 (en) Multicast session establishment method and network device
WO2023000767A1 (zh) 局域网通信方法、装置、终端、电子设备和存储介质
US20220182910A1 (en) Data Processing Method, Apparatus, And System
WO2018054336A1 (zh) 消息的发送方法和装置
WO2021138784A1 (zh) 一种接入网络的方法、装置及系统
WO2023071634A1 (zh) 一种通信方法及装置
US20240007330A1 (en) Device and method for constructing virtual enterprise network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22844934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE