WO2023000595A1 - 一种基于曲面屏的相位偏折测量方法、系统及终端 - Google Patents

一种基于曲面屏的相位偏折测量方法、系统及终端 Download PDF

Info

Publication number
WO2023000595A1
WO2023000595A1 PCT/CN2021/138554 CN2021138554W WO2023000595A1 WO 2023000595 A1 WO2023000595 A1 WO 2023000595A1 CN 2021138554 W CN2021138554 W CN 2021138554W WO 2023000595 A1 WO2023000595 A1 WO 2023000595A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
curved display
pose relationship
display screen
image collector
Prior art date
Application number
PCT/CN2021/138554
Other languages
English (en)
French (fr)
Inventor
宋展
韩浩
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023000595A1 publication Critical patent/WO2023000595A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/04Optical benches therefor

Definitions

  • the present application belongs to the technical field of optical measurement, and in particular relates to a phase deflection measurement method, system and terminal based on a curved screen.
  • Non-contact, high-precision measurement of specular reflective surfaces has become an important scientific issue in the field of 3D optical measurement.
  • the diffuse reflection structured light measurement method is no longer applicable because the characteristic information of the measured surface cannot be obtained. Due to its simple principle, low cost, large dynamic measurement range, and fast full-field measurement, the phase deflection technique is more widely used in the topography measurement of the surface of highly reflective objects.
  • the measurement effect is the best for relatively flat and highly reflective objects, but when the highly reflective object to be tested has a large curvature, it is affected by the camera during the image acquisition process of the object to be tested. Due to the influence of the large curvature surface in the measured object, the image information collected by the camera is too little or missing, so that the complete phase information of the object surface cannot be obtained, which affects the reconstruction of the three-dimensional shape of the highly reflective object to be measured.
  • the embodiment of the present application provides a phase deflection measurement method, system, and terminal based on a curved screen to solve the problem that the existing phase deflection measurement system cannot obtain complete phase information on the surface of an object with a large curvature, which affects the height of the object to be measured.
  • the problem of 3D shape reconstruction of reflective objects is a problem that is not limited to, but not limited to, but not limited to, but not limited to, but not limited to solve the problem that the existing phase deflection measurement system cannot obtain complete phase information on the surface of an object with a large curvature, which affects the height of the object to be measured.
  • the first aspect of the embodiments of the present application provides a phase deflection measurement method based on a curved screen, which is applied to a phase deflection measurement system.
  • the phase deflection measurement system includes: a curved display screen and an image collector, and the curved screen
  • the display surface of the display screen faces the position of the object to be measured
  • the phase deflection measurement method includes:
  • phase shift fringe patterns form a first virtual image on the surface of the object to be measured
  • controlling the image collector to collect images of the object to be measured, and respectively obtaining first virtual image images corresponding to each of the phase shift fringe patterns
  • phase deflection technique is used to reconstruct the three-dimensional surface shape of the object to be measured.
  • the second aspect of the embodiment of the present application provides a phase deflection measurement system based on a curved screen, including: a curved screen and an image collector, the display surface of the curved screen faces the position of the object to be measured; the The phase deflection measurement system also includes:
  • a display module configured to sequentially display a set number of phase shift fringe patterns on the curved display screen, and the phase shift fringe patterns form a first virtual image on the surface of the object to be measured;
  • An image acquisition module configured to control the image acquisition device to acquire images of the object to be measured, and respectively obtain first virtual image images corresponding to each of the phase shift fringe patterns
  • a three-dimensional surface reconstruction module configured to perform a three-dimensional surface reconstruction on the object to be measured based on the relative pose relationship between the curved display screen and the image collector and the first virtual image image using phase deflection reconstruction.
  • the third aspect of the embodiments of the present application provides a terminal, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the The steps of the method as described in the first aspect.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a fifth aspect of the present application provides a computer program product, which, when running on a terminal, causes the terminal to execute the steps of the method described in the first aspect above.
  • the flat display is replaced by a curved display on the basis of the traditional phase deflection measurement system.
  • the irradiation range of the display with the same radial size is expanded and the For the measurement area and measurement angle of the measured object, ensure that the phase deflection measurement system can realize the acquisition of complete phase information on the surface of objects with large curvature, and improve the reconstruction effect of the three-dimensional shape of highly reflective objects.
  • Fig. 1 is a structural schematic diagram 1 of the phase deflection measurement system provided in the embodiment of the present application;
  • Fig. 2 is a schematic diagram of the advantages of the radiation range of the curved display screen provided by the embodiment of the present application;
  • Fig. 3 is a flow chart 1 of a method for measuring phase deflection based on a curved screen provided by an embodiment of the present application;
  • Fig. 4 is the second flow chart of the phase deflection measurement method based on the curved screen provided by the embodiment of the present application;
  • Fig. 5 is a schematic diagram of a cylindrical coordinate system of a curved display screen provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram II of the phase deflection measurement system provided by the embodiment of the present application.
  • Fig. 7 is a structural diagram of a calibration device for a pose relationship in a phase deflection measurement system provided by an embodiment of the present application.
  • FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present application.
  • the term “if” may be construed as “when” or “once” or “in response to determining” or “in response to detecting” depending on the context .
  • the phrase “if determined” or “if [the described condition or event] is detected” may be construed, depending on the context, to mean “once determined” or “in response to the determination” or “once detected [the described condition or event] ]” or “in response to detection of [described condition or event]”.
  • the terminals described in the embodiments of the present application include but are not limited to other portable devices such as mobile phones, laptop computers or tablet computers with touch-sensitive surfaces (eg, touch screen displays and/or touch pads). It should also be appreciated that in some embodiments, the device is not a portable communication device, but a desktop computer with a touch-sensitive surface (eg, a touchscreen display and/or a touchpad).
  • a terminal including a display and a touch-sensitive surface is described.
  • a terminal may include one or more other physical user interface devices such as a physical keyboard, mouse and/or joystick.
  • the terminal supports various applications such as one or more of the following: drawing application, presentation application, word processing application, website creation application, disk burning application, spreadsheet application, gaming application, telephony application programs, video conferencing applications, email applications, instant messaging applications, exercise support applications, photo management applications, digital camera applications, digital video camera applications, web browsing applications, digital music player applications, and and/or digital video player applications.
  • applications such as one or more of the following: drawing application, presentation application, word processing application, website creation application, disk burning application, spreadsheet application, gaming application, telephony application programs, video conferencing applications, email applications, instant messaging applications, exercise support applications, photo management applications, digital camera applications, digital video camera applications, web browsing applications, digital music player applications, and and/or digital video player applications.
  • Various applications that can be executed on the terminal can use at least one common physical user interface device, such as a touch-sensitive surface.
  • a touch-sensitive surface One or more functions of the touch-sensitive surface and corresponding information displayed on the terminal may be adjusted and/or changed between applications and/or within the respective applications.
  • the common physical architecture eg, touch-sensitive surface
  • the terminal can support various applications with a user interface that is intuitive and transparent to the user.
  • the embodiment of the present application proposes a phase deflection measurement method based on a curved screen, which is applied to a phase deflection measurement system with a curved display screen. position, and use the image collector to collect images of objects within the field of view, so that during the execution of the phase deflection measurement method, the curved display screen is used to display the phase shift fringe pattern, with a larger irradiation range and irradiation angle A virtual image is formed on the surface of the measured object.
  • the image acquisition device is used to collect the virtual image formed on the surface of the measured object, the complete phase information of the surface of the object with a large curvature can be obtained, and the reconstruction of the three-dimensional shape of the highly reflective object can be improved. Effect.
  • phase deflection measurement method based on the curved screen provided in the embodiment of the present application is applied to the phase deflection measurement system shown in FIG. 1 .
  • the phase deflection measurement system includes: a curved display screen and an image collector, and the display surface of the curved display screen faces the position of the object to be measured.
  • the phase deflection measurement system replaces the flat display screen with a curved display screen on the basis of the traditional phase deflection measurement system.
  • the setting of the curved display screen will expand the size of the display screen under the same radial size.
  • the irradiation range expands the measurement area and measurement angle of the measured object.
  • the curved display screen can be a spherical screen or even a free-form surface screen, and the screen is customized for a specific measurement object to meet its measurement needs.
  • the number of image collectors is not limited to a specific number, and can be set to one or two, or multiple image collectors can be set to realize the measurement of more complex reflective surfaces.
  • the image collector is used for image acquisition of objects within the field of view, and the image collector can be a camera or a video camera, specifically a CCD (charge coupled device, charge coupled device) camera.
  • CCD charge coupled device, charge coupled device
  • the position of the object to be measured is a preset position, specifically a fixed position, or an adjustable position used to cooperate with the camera to realize the acquisition of multi-phase images.
  • the measured objects placed in the positions where the measured objects are located are different objects in different application stages. Specifically, in the calibration stage of the phase deflection measurement system, a plane mirror is placed at the position of the object to be measured.
  • the plane mirror is used to imitate the light reflection propagation of the highly reflective object in an ideal state.
  • the calibration image is displayed on the curved display screen, the virtual image of the image appears in the plane mirror.
  • the image collector can collect the virtual image of the curved screen reflected by the mirror surface, and then shoot and save it to realize the calibration of the pose relationship between the curved display screen and the image collector in the phase deflection measurement system in the subsequent processing, so that the pose relationship can be calibrated
  • the completed phase deflection measurement system can perform three-dimensional shape measurement on flat or uneven highly reflective objects to be measured.
  • the object to be measured is placed at the measurement position, and the phase deflection measurement system that has been calibrated is used to implement the measurement of the object to be measured and the three-dimensional surface reconstruction process.
  • phase deflection measurement method based on the curved screen will be described below in conjunction with different application stages of the phase deflection measurement system.
  • FIG. 3 is a flowchart 1 of a phase deflection measurement method based on a curved screen provided in an embodiment of the present application.
  • the phase deflection measurement method based on the curved screen includes the following steps:
  • Step 301 sequentially display a set number of phase shift fringe patterns on the curved display screen.
  • phase shift fringe pattern forms a first virtual image on the surface of the object to be measured.
  • the set number of phase shift fringe patterns can be set according to the actual phase deflection measurement requirements, such as three, five, six, etc., subject to the ability to realize image phase decoding based on the sequentially displayed phase shift fringe patterns .
  • the phase shift fringe pattern may be a sinusoidal fringe pattern in a specific application, specifically a standard sinusoidal circular fringe pattern.
  • the phase shift fringe pattern forms a virtual image on the surface of the object to be measured, and when projected onto the surface of the object to be measured, the phase shift fringe pattern is affected by the three-dimensional surface of the object to be measured to produce fringe deformation, so that the image collector can better capture the structure of the object to be measured information.
  • phase shift fringe pattern when displaying the phase shift fringe pattern on the curved display screen, it is executed by sequentially displaying multiple phase shift fringe patterns, and the texture structures of the multiple phase shift fringe patterns may be inconsistent.
  • computer coding can be used to generate a set number of pictures of multi-frequency phase-shifted sinusoidal stripes in the horizontal and vertical directions, and let them be displayed on the curved screen in sequence.
  • the object to be tested is a highly reflective object, specifically a highly reflective object with an outer surface with a large curvature, such as a curved screen of a mobile phone or a special form of automobile glass.
  • the display surface of the curved display screen faces the position of the object to be measured.
  • the displayed image can form a virtual image on the surface of the object to be measured with a larger irradiation range and irradiation angle. Expand the measurement area and measurement angle of the object to be measured to meet the surface measurement requirements of objects with large curvature.
  • Step 302 controlling the image collector to collect images of the object to be measured to obtain first virtual image images corresponding to each phase shift fringe pattern.
  • the image collector collects the image of the object to be measured to obtain a virtual image
  • the image collector collects a virtual image every time a phase-shifted fringe image is displayed on the curved display screen.
  • the acquired first virtual image is consistent with the number of displayed phase shift fringe patterns.
  • the virtual image captured by the image collector includes a virtual image that is deformed after being modulated by the object to be measured. Therefore, the virtual image collected by the image collector is a modulated image.
  • Step 303 based on the relative pose relationship between the curved display screen and the image collector and the first virtual image, perform three-dimensional surface reconstruction of the object to be measured by phase deflection.
  • the principle of phase deflection technique is to determine the gradient information of the mirror surface of the measured object according to the phase information, and determine the three-dimensional surface shape of the measured object through gradient integration or interpolation.
  • the specific application process of the phase deflection technique includes:
  • the image collector captures the virtual image of the stripes on the surface of the object to be measured on the curved display screen through the mirror reflection of the object to be measured.
  • Relative pose relationship unify the coordinates of virtual image pixels and screen display image pixels into the same coordinate system, obtain the surface gradient distribution data of the measured object through the fringe reflection method, and then according to the distance between the virtual image image and the screen display image Determine the three-dimensional surface shape of the measured object by gradient integration or interpolation.
  • the image collector can collect virtual images of the object to be measured from more angles and in a larger range, so it can obtain as many complete images of the surface of the object to be measured as possible. Phase information improves the reconstruction effect of the three-dimensional shape of highly reflective objects.
  • the flat display screen is replaced with a curved display screen.
  • the measurement area and measurement angle of the measured object ensure that the phase deflection measurement system can realize the acquisition of complete phase information on the surface of objects with large curvature, and improve the reconstruction effect of the three-dimensional shape of highly reflective objects.
  • Embodiments of the present application also provide different implementations of the phase deflection measurement method based on the curved screen.
  • FIG. 4 is a second flow chart of a method for measuring phase deflection based on a curved screen provided in an embodiment of the present application.
  • the phase deflection measurement method based on the curved screen includes:
  • Step 401 displaying a calibration image with marker points on a curved display screen.
  • This process corresponds to the calibration phase of the phase deflection measurement system, and in this calibration phase, the determination of the relative pose relationship between the curved display screen and the image collector is realized.
  • the calibration image forms a second virtual image on the surface of the plane mirror, and the plane mirror is arranged at the position of the object to be measured.
  • the calibration image is, for example, a classic checkerboard image, or other calibration images with marker points.
  • the calibration image can be programmed to generate a pattern with marker points adapted to the resolution of the screen, so that it can be displayed on the curved display in a full-screen manner.
  • Step 402 based on the pixel coordinates of the marker points in the calibration image, convert to obtain the first position coordinates of the marker points in the calibration image under the cylindrical coordinate system of the curved display screen, and based on the first position coordinates, map to obtain the marker in the second virtual image The second position coordinates of the point.
  • the three-dimensional space coordinates are specifically based on the cylindrical coordinate system constructed by the curved display screen. coordinate system, so that when the calibration image is projected into the plane mirror, the coordinate information can be transmitted based on the coordinate points of the calibration image in the cylindrical coordinate system, so that the spatial coordinates of the marker points in the calibration image can be transmitted to the surface
  • the curved surface information of the display ensures that the pose relationship between the camera and the curved display can be accurately obtained in the end.
  • the calibration image when projected from the curved display screen to the plane mirror, it has a larger irradiation range, and the calibration image with marker points also has a correspondingly larger coverage area in the virtual image in the plane mirror.
  • the second virtual image also has corresponding marker points, which can be obtained by converting the first position coordinates of the marker points in the calibration image in the cylindrical coordinate system through the principle of mirror imaging.
  • the first position coordinates of the marker points in the calibration image in the cylindrical coordinate system of the curved display are obtained through conversion, and based on the first position coordinates , mapped to obtain the second position coordinates of the marker points in the second virtual image, including:
  • r is the curvature radius of the curved display
  • w is the horizontal pixel value of the curved display
  • pp is the pixel pitch in the curved display
  • the second position coordinates of the marker points in the second virtual image can be obtained by mapping based on the first position coordinates through the mirror imaging principle. (x s ,y s ,-z s ).
  • the x-axis and y-axis coordinates between the second position coordinate and the first position coordinate are the same, and the z-axis coordinate values are opposite.
  • Step 403 controlling the image collector to collect images of the plane mirror covered with the calibration plate to obtain an image of the calibration plate, and to collect images of the plane mirror not covered with the calibration plate to obtain a second virtual image corresponding to the second virtual image.
  • the calibration board may specifically be a marking board with black and white checkerboard patterns.
  • the image collector collects the image of the plane mirror to obtain the image of the calibration plate. Based on the calibration plate image, the position information of the plane mirror itself is obtained to establish the relationship between the image collector and the plane mirror. pose relationship, and when the plane mirror is covered with a calibration plate, the image collector collects images of the plane mirror at this time, and what is obtained is the image of the virtual image corresponding to the calibration image in the plane mirror and the curved display screen, based on the acquired virtual image The image is used to obtain the spatial position information of the virtual curved display screen (that is, the virtual image of the curved display screen mapped in the flat mirror).
  • the image collector can collect the virtual image of the curved screen reflected by the mirror surface of the plane mirror.
  • Step 404 based on the second position coordinates and the imaging principle of the image collector, combined with the second virtual image image, calculate the first pose relationship between the image collector and the second virtual image, and based on the calibration board image and the image collector's According to the imaging principle, the second pose relationship between the image collector and the plane mirror is obtained.
  • the imaging principle of the image collector is usually the principle of pinhole imaging, based on the second position coordinates of the mark point in the calibration image in the virtual image (that is, the virtual image of the curved display screen) in the plane mirror, and the image collector takes an image of the virtual image in the plane mirror
  • the acquired virtual image can be analyzed to obtain the pose relationship between the image collector and the virtual image in the plane mirror by using the propagation principle of light in the pinhole imaging process.
  • the pose relationship between the image collector and the virtual image in the plane mirror can be obtained by analyzing the principle of light propagation in the pinhole imaging process.
  • the first pose relationship between the image collector and the second virtual image is calculated, including:
  • a nonlinear optimization objective function is established, and the internal reference matrix K 1 and the distortion D 1 of the image collector are obtained by solving, as well as the first translation matrix between the image collector and the second virtual image and the first rotation matrix
  • P is the second virtual image, is the imaging function of the image collector, Q' is the second position coordinates;
  • the process of establishing a nonlinear optimization objective function based on the imaging model of the image collector and solving it can be realized by using Zhang Zhengyou's calibration algorithm. After solving, the internal parameters of the image collector and the external parameters of the pose relationship with the virtual image in the plane mirror can be obtained at the same time.
  • a translation matrix and a rotation matrix are used to indicate the pose relationship between two objects.
  • the second pose relationship between the image collector and the plane mirror it can be based on the calibration plate image, using the PnP (pespective-n-point, angle-n-point) algorithm to obtain the image collector and the plane mirror The second pose relationship between .
  • PnP pespective-n-point, angle-n-point
  • Step 405 based on the first pose relationship and the second pose relationship, combined with the principle of mirror reflection, calculate the pose relationship between the image collector and the curved display screen.
  • the image collector and the curved surface display The pose relationship between the screens.
  • the first pose relationship includes a first rotation matrix and a first translation matrix
  • the second pose relationship includes a second rotation matrix and a second translation matrix. That is, a translation matrix and a rotation matrix are employed to indicate the pose relationship between two objects.
  • the relative pose relationship between the image collector and the curved display is calculated, including:
  • the third rotation matrix and the third translation matrix between the image collector and the curved display are calculated through the following relationship:
  • the pose relationship between the image collector and the curved display screen is obtained.
  • the normal vector of the plane mirror and the distance between the plane mirror and the image collector are calculated through the mirror reflection principle, and then on this basis, the Householder transformation is adopted, and the corresponding Relational formula, calculate the third rotation matrix and the third translation matrix between the image collector and the curved display, and use the third rotation matrix and the third translation matrix as the pose relationship between the image collector and the curved display .
  • the first image collector when there are at least two image collectors in the phase deflection measurement system, as shown in FIG. 6 , wherein the first image collector (camera 1) is included in the image collector and the second image collector (camera 2), the first image collector and the second image collector have a common field of view, and the position of the object to be measured is within the common field of view.
  • the execution actions defined in steps 403, 404 and 405 need to be executed for each image collector, so that the final calculation can be The relative pose relationship between each image collector and the curved display.
  • the image collector includes the first image collector and the second image collector, based on the first pose relationship and the second pose relationship, combined with the principle of mirror reflection, the distance between the image collector and the curved display screen is calculated After the relative pose relationship among them, it also includes:
  • the relationship between the first image collector and the second image collector is converted to The relative pose relationship between them.
  • the pose relationship between the two image collectors is converted. So far, the pose relationship between the first image collector and the curved display, the pose relationship between the second image collector and the curved display, and the relationship between the first image collector and the second image collector can be respectively obtained. It realizes the calibration of all pose relationships in the phase deflection measurement system, and further assists the phase deflection measurement system to perform effective three-dimensional reconstruction of the measured object in the subsequent stage.
  • This scheme uses a curved display screen to replace the commonly used flat display screen, describes the pixel position on the curved screen by defining a cylindrical coordinate system, and calibrates the relationship between it and the two image collectors, reducing the curvature of the measurement object and
  • the limitation of the measurement range and the further combination of stereoscopic perspective fusion ensure that the phase deflection measurement system can obtain more complete appearance reconstruction results when measuring highly reflective objects with large curvature.
  • Step 406 sequentially display a set number of phase shift fringe patterns on the curved display screen.
  • the phase shift fringe pattern forms a first virtual image on the surface of the object to be measured.
  • step 301 The specific implementation process of this step is the same as the implementation process of step 301 in the foregoing embodiment, and will not be repeated here.
  • Step 407 controlling the image collector to collect images of the object to be measured, and obtaining first virtual image images corresponding to each phase-shifted fringe pattern.
  • Step 408 based on the relative pose relationship between the curved display screen and the image collector and the first virtual image, perform phase deflection technique to reconstruct the three-dimensional surface shape of the object to be measured.
  • step 303 The specific implementation process of this step is the same as the implementation process of step 303 in the foregoing embodiment, and will not be repeated here.
  • the flat display screen is replaced with a curved display screen.
  • the irradiation range of the display screen under the same radial size is expanded, and the detection of the object under test is expanded.
  • the pixel coordinates of the marker points in the image calibrated on the screen are transformed into the cylindrical coordinate system of the curved display screen, and the coordinates of the marker points of the corresponding virtual image in the plane mirror are obtained, and combined with the camera’s image of the plane mirror.
  • the image acquisition operation realizes the determination of the pose relationship between the camera and the curved display screen in the phase deflection measurement system of this application, ensures that the phase deflection measurement system can realize the acquisition of complete phase information on the surface of objects with large curvature, and improves the The reconstruction effect of the three-dimensional shape of the reflection object.
  • FIG. 7 is a structural diagram of a phase deflection measurement system based on a curved screen provided by an embodiment of the present application. For convenience of description, only parts related to the embodiment of the present application are shown.
  • the phase deflection measurement system includes: a curved display screen and an image collector, the display surface of the curved display screen faces the position of the object to be measured; the phase deflection measurement system 700 also includes:
  • a display module 701 configured to sequentially display a set number of phase shift fringe patterns on the curved display screen, and the phase shift fringe patterns form a first virtual image on the surface of the object to be measured;
  • An image acquisition module 702 configured to control the image acquisition device to acquire images of the object to be measured, and respectively obtain first virtual image images corresponding to each of the phase shift fringe patterns;
  • a three-dimensional surface reconstruction module 703, configured to perform a three-dimensional surface reconstruction of the object to be measured based on the relative pose relationship between the curved display screen and the image collector and the first virtual image image using phase deflection. type reconstruction.
  • the system also includes:
  • a calibration image with marker points is displayed on the curved display screen, the calibration image forms a second virtual image on the surface of a plane mirror, and the plane mirror is arranged at the position of the object to be measured;
  • controlling the image collector to collect the image of the plane mirror covered with the calibration plate to obtain the image of the calibration plate, and to collect the image of the plane mirror not covered with the calibration plate to obtain the first image corresponding to the second virtual image Two virtual images;
  • the relative pose relationship between the image collector and the curved display screen is calculated.
  • the calibration module is specifically used for:
  • r is the radius of curvature of the curved display
  • w is the horizontal pixel value of the curved display
  • pp is the pixel pitch in the curved display, is the angle between the projection line on the plane XOZ and the X-axis of the line between the marker point and the origin of the cylindrical coordinate system
  • the second position coordinates of the marker points in the second virtual image are mapped to (x s , y s , -z s ).
  • the calibration module is specifically used for:
  • a nonlinear optimization objective function is established, and the internal reference matrix K 1 and the distortion D 1 of the image collector are obtained by solving, as well as the first distance between the image collector and the second virtual image.
  • P is the second virtual image, is the imaging function of the image collector, and Q' is the coordinate of the second position;
  • the first pose relationship is obtained based on the first rotation matrix and the first translation matrix.
  • the first pose relationship includes a first rotation matrix and a first translation matrix
  • the second pose relationship includes a second rotation matrix and a second translation matrix
  • the calibration module is specifically used for :
  • the third rotation matrix and the third rotation matrix between the image collector and the curved display screen are calculated through the following relational formula Translation matrix:
  • the pose relationship between the image collector and the curved display screen is obtained.
  • the image collector includes a first image collector and a second image collector, the first image collector and the second image collector have a common field of view, and the position of the object to be measured is within the public field of view.
  • the calibration module is also used for:
  • the first image collector and the second image collector Based on the relative pose relationship between the first image collector and the curved display screen, and the relative pose relationship between the second image collector and the curved display screen, the first The relative pose relationship between the image collector and the second image collector.
  • the phase deflection measurement system based on the curved screen provided in the embodiment of the present application can realize the various processes of the above-mentioned embodiment of the phase deflection measurement method based on the curved screen, and can achieve the same technical effect. In order to avoid repetition, it will not be repeated here. .
  • FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present application. As shown in this figure, the terminal 8 of this embodiment includes: at least one processor 80 (only one is shown in FIG. A running computer program 82, when the processor 80 executes the computer program 82, implements the steps in any of the above method embodiments.
  • the terminal 8 may be a computing device such as a desktop computer, a notebook, a palmtop computer, or a cloud server.
  • the terminal 8 may include, but not limited to, a processor 80 and a memory 81 .
  • FIG. 8 is only an example of the terminal 8 and does not constitute a limitation to the terminal 8. It may include more or less components than those shown in the illustration, or combine certain components, or different components, such as
  • the terminal may also include an input and output device, a network access device, a bus, and the like.
  • the processor 80 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the storage 81 may be an internal storage unit of the terminal 8 , such as a hard disk or memory of the terminal 8 .
  • the memory 81 can also be an external storage device of the terminal 8, such as a plug-in hard disk equipped on the terminal 8, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, Flash card (Flash Card), etc. Further, the memory 81 may also include both an internal storage unit of the terminal 8 and an external storage device.
  • the memory 81 is used to store the computer program and other programs and data required by the terminal.
  • the memory 81 can also be used to temporarily store data that has been output or will be output.
  • the disclosed device/terminal and method may be implemented in other ways.
  • the device/terminal embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes in the methods of the above embodiments in the present application can also be completed by instructing related hardware through computer programs.
  • the computer programs can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps in the above-mentioned various method embodiments can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunication signal and software distribution medium, etc.
  • This application implements all or part of the processes in the methods of the above-mentioned embodiments, and may also be realized by a computer program product.
  • the steps in the above-mentioned method embodiments can be realized when the terminal is executed. .

Abstract

一种基于曲面屏的相位偏折测量方法、系统及终端,其中方法包括:在曲面显示屏上对设定数量的相移条纹图进行依次显示(S301),控制图像采集器对待测物体进行图像采集,分别得到与每一相移条纹图对应的第一虚像图像(S302),基于曲面显示屏与图像采集器之间的相对位姿关系和第一虚像图像,采用相位偏折术对待测物体进行三维面型重建(S303)。该方法能够实现对曲率较大的物体表面完整相位信息的获取,提升高反射物体三维形貌的重建效果。

Description

一种基于曲面屏的相位偏折测量方法、系统及终端 技术领域
本申请属于光学测量技术领域,尤其涉及一种基于曲面屏的相位偏折测量方法、系统及终端。
背景技术
镜面反射表面的非接触、高精度测量已经成为三维光学测量领域的重要科学问题。漫反射结构光测量方法由于无法获得被测表面的特征信息而不再适用。相位偏折术以其原理简单、成本低、动态测量范围大、全场测量快速等优点,被更广泛地应用于高反射物体表面的形貌测量中来。
现有的相位偏折术应用中,对于较为平整的高反射物体的测量效果最佳,而当待测试的高反射物体具有较大曲率时,在通过相机对待测物体进行图像采集过程中,受被测物体中大曲率表面影响,导致相机采集到的镜像信息过少或者缺失,从而无法获取物体表面的完整相位信息,影响对待测高反射物体三维形貌的重建。
发明内容
本申请实施例提供了一种基于曲面屏的相位偏折测量方法、系统及终端,以解决现有的相位偏折测量系统无法获取到曲率较大的物体表面的完整相位信息,影响待测高反射物体三维形貌重建的问题。
本申请实施例的第一方面提供了一种基于曲面屏的相位偏折测量方法,应用于相位偏折测量系统,所述相位偏折测量系统包括:曲面显示屏及图像采集器,所述曲面显示屏的显示面朝向待测物体所处位置,所述相位偏折测量方法包括:
在所述曲面显示屏上对设定数量的相移条纹图进行依次显示,所述相移条纹图在所述待测物体表面形成第一虚像;
控制所述图像采集器对所述待测物体进行图像采集,分别得到与每一所述相移条纹图对应的第一虚像图像;
基于所述曲面显示屏与所述图像采集器之间的相对位姿关系和所述第一虚像图像,采用相位偏折术对所述待测物体进行三维面型重建。
本申请实施例的第二方面提供了一种基于曲面屏的相位偏折测量系统,包括:曲面显示屏及图像采集器,所述曲面显示屏的显示面朝向待测物体所处位置;所述相位偏折测量系统还包括:
显示模块,用于在所述曲面显示屏上对设定数量的相移条纹图进行依次显示,所述相移条纹图在所述待测物体表面形成第一虚像;
图像采集模块,用于控制所述图像采集器对所述待测物体进行图像采集,分别得到与每一所述相移条纹图对应的第一虚像图像;
三维面型重建模块,用于基于所述曲面显示屏与所述图像采集器之间的相对位姿关系和所述第一虚像图像,采用相位偏折术对所述待测物体进行三维面型重建。
本申请实施例的第三方面提供了一种终端,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述方法的步骤。
本申请实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述方法的步骤。
本申请的第五方面提供了一种计算机程序产品,当所述计算机程序产品在终端上运行时,使得所述终端执行上述第一方面所述方法的步骤。
由上可见,本申请实施例中,在传统相位偏折测量系统基础上将平面显示屏替换为曲面显示屏,通过曲面显示屏的设置,扩大同样径向尺寸下显示屏的辐照范围,扩展对被测物的测量面积及测量角度,确保该相位偏折测量系统能够实现对曲率较大的物体表面完整相位信息的获取,提升高反射物体三维形貌的重建效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例中提供的相位偏折测量系统的结构示意图一;
图2是本申请实施例提供的曲面显示屏的辐射范围优势示意图;
图3是本申请实施例提供的基于曲面屏的相位偏折测量方法的流程图一;
图4是本申请实施例提供的基于曲面屏的相位偏折测量方法的流程图二;
图5是本申请实施例提供的曲面显示屏的柱坐标系示意图;
图6是本申请实施例提供的相位偏折测量系统的结构示意图二;
图7是本申请实施例提供的相位偏折测量系统中位姿关系的标定装置的结构图;
图8是本申请实施例提供的一种终端的结构图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类 似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
具体实现中,本申请实施例中描述的终端包括但不限于诸如具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的移动电话、膝上型计算机或平板计算机之类的其它便携式设备。还应当理解的是,在某些实施例中,所述设备并非便携式通信设备,而是具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的台式计算机。
在接下来的讨论中,描述了包括显示器和触摸敏感表面的终端。然而,应当理解的是,终端可以包括诸如物理键盘、鼠标和/或控制杆的一个或多个其它物理用户接口设备。
终端支持各种应用程序,例如以下中的一个或多个:绘图应用程序、演示应用程序、文字处理应用程序、网站创建应用程序、盘刻录应用程序、电子表格应用程序、游戏应用程序、电话应用程序、视频会议应用程序、电子邮件应用程序、即时消息收发应用程序、锻炼支持应用程序、照片管理应用程序、数码相机应用程序、数字摄影机应用程序、web浏览应用程序、数字音乐播放器应用程序和/或数字视频播放器应用程序。
可以在终端上执行的各种应用程序可以使用诸如触摸敏感表面的至少一个公共物理用户接口设备。可以在应用程序之间和/或相应应用程序内调整和/或改变触摸敏感表面的一个或多个功能以及终端上显示的相应信息。这样,终端的公共物理架构(例如,触摸敏感表面)可以支持具有对用户而言直观且透明的用户界面的各种应用程序。
应理解,本实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例提出一种基于曲面屏来实现的相位偏折测量方法,该方法应用于具有曲面显示屏的相位偏折测量系统中,该相位偏折测量系统中曲面显示屏朝向待测物体所处位置,并通过图像采集器对视野范围内的物体进行图像采集,以在相位偏折测量方法执行过程中,利用曲面显示屏显示相移条纹图,以更大的辐照范围及辐照角度在被测物体表面形成虚像,在通过图像采集器对被测物体表面所成的虚像进行图像采集时,实现对曲率较大的物体表面完整相位信息的获取,提升高反射物体三维形貌的重建效果。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
本申请实施例中提供的基于曲面屏的相位偏折测量方法,应用于如图1所示的相位偏折测量系统中。
具体地,结合图1所示,该相位偏折测量系统包括:曲面显示屏及图像采集器,曲面显示屏的显示面朝向待测物体所处位置。
该相位偏折测量系统是在传统相位偏折测量系统基础上将平面显示屏替换为曲面显示屏,结合图2所示,通过曲面显示屏的设置,将会扩大同样径向尺寸下显示屏的辐照范围,扩展对被测物的测量面积及测量角度。
其中,曲面显示屏可以是球面屏甚至是自由曲面屏,针对特定的测量对象进行屏幕定制以适应其测量需求。其中,图像采集器不受限于具体数量,可以设置为一个或者是两个,也可以设置多个图像采集器以实现更复杂反光面的测量。
图像采集器用于对视野范围内的物体进行图像采集,该图像采集器可以是相 机或摄像机,具体可以是CCD(charge coupled device,电荷耦合器件)相机。
其中,待测物体所处位置为预先设置的位置,具体可以是一个固定位置,或者是一个可调变的位置用于配合相机实现多相位图像的采集。
待测物体所处位置中放置的被测对象在不同应用阶段为不同的物体。具体地,在相位偏折测量系统的标定阶段中,该待测物体所处位置放置的为一平面镜。
将平面镜放置在待测物体所处位置,该平面镜用于仿照理想状态下高反射物体的光反射传播,当曲面显示屏中显示标定图像时,该平面镜中出现该图像的虚像,通过镜面反射,图像采集器可以采集到镜面反射的曲面屏虚像,然后拍摄保存以能够在后续处理中实现对相位偏折测量系统中曲面显示屏与图像采集器之间位姿关系的标定,使位姿关系标定好之后的相位偏折测量系统能够对平整或不平整的待测高反射物体进行三维形貌测量。
而在相位偏折测量系统的使用阶段中,将待测物体放置在该测量位置,利用已经标定好的相位偏折测量系统,实施对待测物体的测量及三维面型重建处理过程。
下面将结合相位偏折测量系统的不同应用阶段对基于曲面屏的相位偏折测量方法进行说明。
参见图3,图3是本申请实施例提供的基于曲面屏的相位偏折测量方法的流程图一。如图3所示,该基于曲面屏的相位偏折测量方法,包括以下步骤:
步骤301,在曲面显示屏上对设定数量的相移条纹图进行依次显示。
该过程对应于相位偏折测量系统的测量阶段。每一相移条纹图在待测物体表面均形成第一虚像。
相移条纹图的设定数量可以根据实际的相位偏折测量需求进行设置,例如设 置为三张、五张、六张等等,以能够基于依次显示的相移条纹图实现图像相位解码为准。
该相移条纹图在具体应用中可以是正弦条纹图,具体为标准正弦环形条纹图。该相移条纹图在待测物体表面形成虚像,相移条纹图在投射至待测物体表面时受待测物体三维表面影响以产生条纹形变,使图像采集器更好地捕捉待测物体的结构信息。
在一个实施方式中,曲面显示屏上显示相移条纹图时,采用对多张相移条纹图进行依次显示的方式来执行,该多张相移条纹图的纹理结构可以是不相一致的。
在具体实施时,可以是用计算机编码产生设定数量张水平及竖直方向的多频相移正弦条纹的图片,并让其依次显示在曲面屏上。
该待测物体为高反光物体,具体为具有曲率较大的外表面的高反光物体,例如手机曲面屏或者特殊形态的汽车玻璃等。
该曲面显示屏的显示面朝向待测物体所处位置,当显示有相移条纹图时,则能够以更大的辐照范围及辐照角度使所显示图像在待测物体表面形成虚像画面,扩展对待测物体的测量面积及测量角度,满足大曲率物体的面型测量需求。
步骤302,控制图像采集器对待测物体进行图像采集,分别得到与每一相移条纹图对应的第一虚像图像。
在图像采集器对待测物体进行图像采集得到虚像图像时,曲面显示屏每显示一张相移条纹图,则图像采集器采集一次虚像图像。
因此,采集得到的该第一虚像图像与显示的相移条纹图的数量相一致。
对应地,此时图像采集器采集到的虚像图像中包括的是受待测物体调制后发生形变的虚像。因此图像采集器采集到的虚像图像为一调制图像。
步骤303,基于曲面显示屏与图像采集器之间的相对位姿关系及第一虚像图像,采用相位偏折术对待测物体进行三维面型重建。
相位偏折术的原理是根据相位信息确定被测物体镜面表面的梯度信息,通过梯度积分或插值等方法确定被测物体的三维面型。
在利用图像采集器采集得到一组第一虚像图像之后,对相位偏折术的具体应用过程包括:
利用第一虚拟图像及曲面显示屏上显示的相移条纹图,进行对应点匹配,具体利用多频外差原理解码寻找虚像图像像素点与曲面屏上与之对应的像素点,实现对应点匹配,在一个具体应用过程中,图像采集器通过待测物体的镜面反射拍摄到曲面显示屏上条纹在待测物体表面的虚像,在此过程中,如果待测物表面不平整,图像采集器所捕获的条纹图就会产生形变,所以待测物表面的面形就决定了拍摄的图像,通过相移解码拍摄图像即可找到该拍摄图像像素点和曲面显示屏上像素点对应的匹配关系;随后进行梯度计算机重建,具体为在完成了相机成像图像像素点与曲面屏显示图像像素点的对应性之后,即可利用相位偏折测量系统已标定好的曲面显示屏与图像采集器之间的相对位姿关系,将虚像图像像素点和屏幕显示图像像素点的坐标统一到同一个坐标系下,通过条纹反射法获取被测物体的面型梯度分布数据,随后根据虚像图像和屏幕显示图像间的关系通过梯度积分或插值等方法确定被测物体的三维面型。
在对待测物体进行三维面型重建的过程中,图像采集器能够从更多角度和更大范围上对被测物体进行虚像图像采集,因此能够实现尽可能多地获取到被测物体表面的完整相位信息,提升高反射物体三维形貌的重建效果。
由此,本申请实施例中,在传统相位偏折测量系统基础上将平面显示屏替换 为曲面显示屏,通过曲面显示屏的设置,扩大同样径向尺寸下显示屏的辐照范围,扩展对被测物的测量面积及测量角度,确保该相位偏折测量系统能够实现对曲率较大的物体表面完整相位信息的获取,提升高反射物体三维形貌的重建效果。
本申请实施例中还提供了基于曲面屏的相位偏折测量方法的不同实施方式。
参见图4,图4是本申请实施例提供的基于曲面屏的相位偏折测量方法的流程图二。结合图4所示,该基于曲面屏的相位偏折测量方法,包括:
步骤401,在曲面显示屏上显示带有标志点的标定图像。
该过程对应于相位偏折测量系统的标定阶段,在该标定阶段中,实现对曲面显示屏与图像采集器之间的相对位姿关系的确定。标定图像在平面镜表面形成第二虚像,平面镜设置在待测物体所处位置。
具体地,标定图像例如为经典的棋盘格图像,或者是其他具有标志点的标定图像。
该标定图像具体可以是通过程序设计产生适应于屏幕分辨率大小的带有标志点的图案,让其以全屏显示的方式在曲面显示屏上进行显示。
步骤402,基于标志点在标定图像中的像素坐标,转换得到标定图像中标志点在曲面显示屏的柱坐标系下的第一位置坐标,并基于第一位置坐标,映射得到第二虚像中标志点的第二位置坐标。
将标定图像中的像素坐标向三维空间坐标中进行转换,该三维空间坐标具体是基于曲面显示屏构建出的柱坐标系,通过将标定图像中的标志点像素点对应匹配至曲面显示屏的柱坐标系下,以使该标定图像投射至平面镜中时,能够基于该柱坐标系下的标定图像坐标点进行坐标信息传递,以能够通过标定图像中标志点的柱坐标系下空间坐标传递出曲面显示屏的曲面信息,确保最终能够准确求得相 机与曲面显示屏之间的位姿关系。
其中,标定图像从曲面显示屏上向平面镜上投射时,具有更大的辐照范围,该具有标志点的标定图像在平面镜中的虚像中也会对应具有更大的覆盖面积。
该第二虚像中也会对应存在标志点,通过镜面成像原理,可以由标定图像中标志点在柱坐标系下的第一位置坐标进行转换得到。
具体地,作为可选的实施方式,该基于标志点在标定图像中的像素坐标,转换得到标定图像中标志点在曲面显示屏的柱坐标系下的第一位置坐标,并基于第一位置坐标,映射得到第二虚像中标志点的第二位置坐标,包括:
基于标志点在标定图像中的像素坐标(S px,S py),通过坐标转换关系式,得到标定图像中标志点在曲面显示屏的柱坐标系下的第一位置坐标(x s,y s,z s):
Figure PCTCN2021138554-appb-000001
其中
Figure PCTCN2021138554-appb-000002
其中,结合图5所示,r为曲面显示屏的曲率半径,w为曲面显示屏的横向像素点数值,pp为曲面显示屏中的像素点距,
Figure PCTCN2021138554-appb-000003
为标志点与柱坐标系的原点间连线在平面XOZ上的投影线与X轴的夹角;
在得到标定图像中标志点在曲面显示屏的柱坐标系下的第一位置坐标之后,即可通过镜面成像原理,基于第一位置坐标,映射得到第二虚像中标志点的第二位置坐标为(x s,y s,-z s)。
该第二位置坐标与第一位置坐标之间x轴、y轴坐标相同,z轴坐标值相反。
步骤403,控制图像采集器对覆盖有标定板的平面镜进行图像采集,得到标定板图像,并对未覆盖标定板的平面镜进行图像采集,得到与第二虚像对应的第二虚像图像。
其中,该标定板可以具体是一种具有黑白棋盘格的标记板。当在平面镜上覆盖标定板之后,此时图像采集器对平面镜进行图像采集,得到的是标定板图像,基于该标定板图像去获取平面镜自身的位置信息,以建立起图像采集器与平面镜之间的位姿关系,而当平面镜上为覆盖标定板时,则此时图像采集器对平面镜进行图像采集,得到的是平面镜中与曲面显示屏中标定图像所对应虚像的图像,基于采集到的虚像图像去获取虚拟曲面显示屏(即平面镜中映射出的曲面显示屏的虚像)的空间位置信息。
其中,图像采集器可以采集到平面镜镜面反射的曲面屏虚像,在对虚像图像及标定板图像进行采集过程中,可以选择多次改变平面镜的姿态,以保存下多组采集图像,记录更多相位信息。
步骤404,基于第二位置坐标及图像采集器的成像原理,结合第二虚像图像,计算得到图像采集器与第二虚像之间的第一位姿关系,并基于标定板图像及图像采集器的成像原理,得到图像采集器与平面镜之间的第二位姿关系。
图像采集器的成像原理通常为小孔成像原理,基于标定图像中标志点在平面镜中虚像(也即为曲面显示屏的虚像)的第二位置坐标,及图像采集器对该平面镜中虚像进行图像采集得到的虚像图像,利用光线在小孔成像过程中的传播原理,可以解析得到图像采集器与平面镜中虚像之间的位姿关系。同样道理地,也可以基于图像采集器对平面镜进行图像采集得到的标定板图像,利用光线在小孔成像过程中的传播原理,解析得到图像采集器与平面镜中虚像之间的位姿关系。
作为一可选的实施方式,基于第二位置坐标及图像采集器的成像原理,结合第二虚像图像,计算得到图像采集器与第二虚像之间的第一位姿关系,包括:
根据图像采集器的成像模型建立非线性优化目标函数,求解得到图像采集器 的内参矩阵K 1及畸变D 1,以及图像采集器与第二虚像之间的第一平移矩阵
Figure PCTCN2021138554-appb-000004
和第一旋转矩阵
Figure PCTCN2021138554-appb-000005
Figure PCTCN2021138554-appb-000006
其中,P为第二虚像图像,
Figure PCTCN2021138554-appb-000007
为图像采集器的成像函数,Q’为第二位置坐标;
基于第一旋转矩阵及第一平移矩阵,得到第一位姿关系。
结合图1所示,对于图像采集器,假设曲面显示屏上面的标志点记为Q,在平面镜中对应的虚拟像点记为Q’,虚拟像点在图像采集器中的成像记为P。Q和Q’对于相同的像素坐标均为(S px,S py),Q和Q’的三维空间坐标中z轴方向上的数值正负相反。
在根据图像采集器的成像模型建立非线性优化目标函数并对其求解的过程,可以是采用张正友标定算法来实现。求解之后,可以同时得到图像采集器的内参及与平面镜中虚像之间位姿关系的外参。本实施例中,是用平移矩阵和旋转矩阵来指示两个对象之间的位姿关系。
进一步地,在计算得到图像采集器与平面镜之间的第二位姿关系时,可以是基于标定板图像,采用PnP(pespective-n-point,角度-n-点)算法得到图像采集器与平面镜之间的第二位姿关系。
步骤405,基于第一位姿关系及第二位姿关系,结合镜面反射原理,计算得到图像采集器与曲面显示屏之间的位姿关系。
在得到图像采集器与平面镜中虚像的位姿关系、图像采集器与平面镜之间的位姿关系后,由于镜面会有反射成像这一属性,基于该镜面属性,转换得到图像采集器与曲面显示屏之间的位姿关系。
其中,该第一位姿关系中包括第一旋转矩阵及第一平移矩阵,第二位姿关系中包括第二旋转矩阵及第二平移矩阵。即,采用平移矩阵和旋转矩阵来指示两个对象之间的位姿关系。
作为一可选的实施方式,该基于第一位姿关系及第二位姿关系,结合镜面反射原理,计算得到图像采集器与曲面显示屏之间的相对位姿关系,包括:
基于第一位姿关系及第二位姿关系,结合镜面反射原理,通过如下关系式,计算得到图像采集器与曲面显示屏之间的第三旋转矩阵及第三平移矩阵:
Figure PCTCN2021138554-appb-000008
其中,I 3为单位矩阵,e 3=[0 0 1] T,n c为平面镜的法向量,
Figure PCTCN2021138554-appb-000009
为平面镜与图像采集器之间的距离,
Figure PCTCN2021138554-appb-000010
为第一旋转矩阵,
Figure PCTCN2021138554-appb-000011
为第一平移矩阵,
Figure PCTCN2021138554-appb-000012
为第三旋转矩阵,
Figure PCTCN2021138554-appb-000013
为第三平移矩阵;
其中,
Figure PCTCN2021138554-appb-000014
Figure PCTCN2021138554-appb-000015
为第二旋转矩阵,
Figure PCTCN2021138554-appb-000016
为第二平移矩阵;
基于第三旋转矩阵及第三平移矩阵,得到图像采集器与曲面显示屏之间的位姿关系。
即,基于第二旋转矩阵及第二平移矩阵,通过镜面反射原理,计算得到平面镜的法向量及平面镜与图像采集器之间的距离,再在此基础上,采用Householder变换,通过与之对应的关系式,计算得到图像采集器与曲面显示屏之间的第三旋转矩阵及第三平移矩阵,将该第三旋转矩阵及第三平移矩阵作为图像采集器与曲面显示屏之间的位姿关系。
进一步地,作为一可选的实施方式,当相位偏折测量系统中的图像采集器为 至少两个时,结合图6所示,其中,图像采集器中包括第一图像采集器(相机1)及第二图像采集器(相机2),第一图像采集器与第二图像采集器具有公共视野范围,待测物体所处位置位于公共视野范围内。
需要特别说明的是,当图像采集器包括第一图像采集器及第二图像采集器时,对每一图像采集器均需执行步骤403、404及405中所限定的执行动作,使最终计算得到每一图像采集器与曲面显示屏之间的相对位姿关系。
对应地,当图像采集器包括第一图像采集器及第二图像采集器时,在基于第一位姿关系及第二位姿关系,结合镜面反射原理,计算得到图像采集器与曲面显示屏之间的相对位姿关系之后,还包括:
基于第一图像采集器与曲面显示屏之间的相对位姿关系,及第二图像采集器与曲面显示屏之间的相对位姿关系,转换得到第一图像采集器与第二图像采集器之间的相对位姿关系。
该步骤,基于两个图像采集器与同一物体之间的位姿关系,转换得到该两个图像采集器之间的位姿关系。至此,可以分别得到第一图像采集器与曲面显示屏之间的位姿关系、第二图像采集器与曲面显示屏之间的位姿关系及第一图像采集器与第二图像采集器之间的位姿关系,实现对相位偏折测量系统中所有位姿关系的标定,更进一步辅助相位偏折测量系统在后续阶段对被测物体进行有效三维重建。
该方案利用曲面显示屏屏替代常用的平面显示屏,通过定义柱面坐标系描述曲面屏上的像素点位置,标定其与两个图像采集器之间的关系,降低了对测量对象的曲率以及测量范围的限制,并进一步结合立体视角融合确保相位偏折测量系统测量曲率较大的高反射物体时,能得到更加完整的样貌重建结果。
步骤406,在曲面显示屏上对设定数量的相移条纹图进行依次显示。
该相移条纹图在待测物体表面形成第一虚像。
该步骤的具体实现过程与前述实施例中步骤301的实现过程相同,此处不再赘述。
步骤407,控制图像采集器对待测物体进行图像采集,分别得到与每一相移条纹图对应的第一虚像图像。
该步骤的具体实现过程与前述实施例中步骤302的实现过程相同,此处不再赘述。
步骤408,基于曲面显示屏与图像采集器之间的相对位姿关系和第一虚像图像,采用相位偏折术对所述待测物体进行三维面型重建。
该步骤的具体实现过程与前述实施例中步骤303的实现过程相同,此处不再赘述。
本申请实施例中,在传统相位偏折测量系统基础上将平面显示屏替换为曲面显示屏,通过曲面显示屏的设置,扩大同样径向尺寸下显示屏的辐照范围,扩展对被测物的测量面积及测量角度,同时将屏幕所标定图像中的标志点像素坐标转化至曲面显示屏的柱坐标系下,并得到平面镜中与之对应的虚像的标志点坐标,并结合相机对平面镜的图像采集操作,实现对本申请相位偏折测量系统中相机与曲面显示屏之间位姿关系的确定,确保该相位偏折测量系统能够实现对曲率较大的物体表面完整相位信息的获取,提升高反射物体三维形貌的重建效果。
参见图7,图7是本申请实施例提供的一种基于曲面屏的相位偏折测量系统的结构图,为了便于说明,仅示出了与本申请实施例相关的部分。
该相位偏折测量系统包括:曲面显示屏及图像采集器,曲面显示屏的显示面 朝向待测物体所处位置;该相位偏折测量系统700还包括:
显示模块701,用于在所述曲面显示屏上对设定数量的相移条纹图进行依次显示,所述相移条纹图在所述待测物体表面形成第一虚像;
图像采集模块702,用于控制所述图像采集器对所述待测物体进行图像采集,分别得到与每一所述相移条纹图对应的第一虚像图像;
三维面型重建模块703,用于基于所述曲面显示屏与所述图像采集器之间的相对位姿关系和所述第一虚像图像,采用相位偏折术对所述待测物体进行三维面型重建。
该系统还包括:
标定模块,用于:
在所述曲面显示屏上显示带有标志点的标定图像,所述标定图像在平面镜表面形成第二虚像,所述平面镜设置在所述待测物体所处位置;
基于所述标志点在所述标定图像中的像素坐标,转换得到所述标定图像中所述标志点在所述曲面显示屏的柱坐标系下的第一位置坐标,并基于所述第一位置坐标,映射得到所述第二虚像中所述标志点的第二位置坐标;
控制所述图像采集器对覆盖有标定板的所述平面镜进行图像采集,得到标定板图像,并对未覆盖所述标定板的所述平面镜进行图像采集,得到与所述第二虚像对应的第二虚像图像;
基于所述第二位置坐标及所述图像采集器的成像原理,结合所述第二虚像图像,计算得到所述图像采集器与所述第二虚像之间的第一位姿关系,并基于所述标定板图像及所述图像采集器的成像原理,得到所述图像采集器与所述平面镜之间的第二位姿关系;
基于所述第一位姿关系及所述第二位姿关系,结合镜面反射原理,计算得到所述图像采集器与所述曲面显示屏之间的相对位姿关系。
其中,该标定模块,具体用于:
基于所述标志点在所述标定图像中的像素坐标(S px,S py),通过坐标转换关系式,得到所述标定图像中所述标志点在所述曲面显示屏的柱坐标系下的第一位置坐标(x s,y s,z s):
Figure PCTCN2021138554-appb-000017
其中
Figure PCTCN2021138554-appb-000018
其中,r为所述曲面显示屏的曲率半径,w为所述曲面显示屏的横向像素点数值,pp为所述曲面显示屏中的像素点距,
Figure PCTCN2021138554-appb-000019
为所述标志点与所述柱坐标系的原点间连线在平面XOZ上的投影线与X轴的夹角;
基于所述第一位置坐标,映射得到所述第二虚像中所述标志点的第二位置坐标为(x s,y s,-z s)。
其中,该标定模块,具体用于:
根据所述图像采集器的成像模型建立非线性优化目标函数,求解得到所述图像采集器的内参矩阵K 1及畸变D 1,以及所述图像采集器与所述第二虚像之间的第一平移矩阵
Figure PCTCN2021138554-appb-000020
和第一旋转矩阵
Figure PCTCN2021138554-appb-000021
Figure PCTCN2021138554-appb-000022
其中,P为所述第二虚像图像,
Figure PCTCN2021138554-appb-000023
为所述图像采集器的成像函数,Q’为所述第二位置坐标;
基于所述第一旋转矩阵及所述第一平移矩阵,得到所述第一位姿关系。
其中,所述第一位姿关系中包括第一旋转矩阵及第一平移矩阵,所述第二位 姿关系中包括第二旋转矩阵及第二平移矩阵;对应地,该标定模块,具体用于:
基于所述第一位姿关系及所述第二位姿关系,结合镜面反射原理,通过如下关系式,计算得到所述图像采集器与所述曲面显示屏之间的第三旋转矩阵及第三平移矩阵:
Figure PCTCN2021138554-appb-000024
其中,I 3为单位矩阵,e 3=[0 0 1] T,n c为所述平面镜的法向量,
Figure PCTCN2021138554-appb-000025
为所述平面镜与所述图像采集器之间的距离,
Figure PCTCN2021138554-appb-000026
为所述第一旋转矩阵,
Figure PCTCN2021138554-appb-000027
为所述第一平移矩阵,
Figure PCTCN2021138554-appb-000028
为所述第三旋转矩阵,
Figure PCTCN2021138554-appb-000029
为所述第三平移矩阵;
其中,
Figure PCTCN2021138554-appb-000030
Figure PCTCN2021138554-appb-000031
为所述第二旋转矩阵,
Figure PCTCN2021138554-appb-000032
为所述第二平移矩阵;
基于所述第三旋转矩阵及所述第三平移矩阵,得到图像采集器与曲面显示屏之间的位姿关系。
进一步地,所述图像采集器中包括第一图像采集器及第二图像采集器,所述第一图像采集器与所述第二图像采集器具有公共视野范围,所述待测物体所处位置位于所述公共视野范围内。
其中,该标定模块,还用于:
基于所述第一图像采集器与所述曲面显示屏之间的相对位姿关系,及所述第二图像采集器与所述曲面显示屏之间的相对位姿关系,转换得到所述第一图像采集器与所述第二图像采集器之间的相对位姿关系。
本申请实施例提供的基于曲面屏的相位偏折测量系统能够实现上述基于曲 面屏的相位偏折测量方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图8是本申请实施例提供的一种终端的结构图。如该图所示,该实施例的终端8包括:至少一个处理器80(图8中仅示出一个)、存储器81以及存储在所述存储器81中并可在所述至少一个处理器80上运行的计算机程序82,所述处理器80执行所述计算机程序82时实现上述任意各个方法实施例中的步骤。
所述终端8可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端8可包括,但不仅限于,处理器80、存储器81。本领域技术人员可以理解,图8仅仅是终端8的示例,并不构成对终端8的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端还可以包括输入输出设备、网络接入设备、总线等。
所述处理器80可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器81可以是所述终端8的内部存储单元,例如终端8的硬盘或内存。所述存储器81也可以是所述终端8的外部存储设备,例如所述终端8上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器81还可以既包括所述终端8的内部存储单元也包括外部存储设备。所述存储器81用于存储所述计算 机程序以及所述终端所需的其他程序和数据。所述存储器81还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些 特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践 的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序产品来实现,当计算机程序产品在终端上运行时,使得所述终端执行时实现可实现上述各个方法实施例中的步骤。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种基于曲面屏的相位偏折测量方法,应用于相位偏折测量系统,其特征在于,所述相位偏折测量系统包括:曲面显示屏及图像采集器,所述曲面显示屏的显示面朝向待测物体所处位置,所述相位偏折测量方法包括:
    在所述曲面显示屏上对设定数量的相移条纹图进行依次显示,所述相移条纹图在所述待测物体表面形成第一虚像;
    控制所述图像采集器对所述待测物体进行图像采集,分别得到与每一所述相移条纹图对应的第一虚像图像;
    基于所述曲面显示屏与所述图像采集器之间的相对位姿关系和所述第一虚像图像,采用相位偏折术对所述待测物体进行三维面型重建。
  2. 根据权利要求1所述的相位偏折测量方法,其特征在于,所述相对位姿关系的确定方式包括:
    在所述曲面显示屏上显示带有标志点的标定图像,所述标定图像在平面镜表面形成第二虚像,所述平面镜设置在所述待测物体所处位置;
    基于所述标志点在所述标定图像中的像素坐标,转换得到所述标定图像中所述标志点在所述曲面显示屏的柱坐标系下的第一位置坐标,并基于所述第一位置坐标,映射得到所述第二虚像中所述标志点的第二位置坐标;
    控制所述图像采集器对覆盖有标定板的所述平面镜进行图像采集,得到标定板图像,并对未覆盖所述标定板的所述平面镜进行图像采集,得到与所述第二虚像对应的第二虚像图像;
    基于所述第二位置坐标及所述图像采集器的成像原理,结合所述第二虚像图 像,计算得到所述图像采集器与所述第二虚像之间的第一位姿关系,并基于所述标定板图像及所述图像采集器的成像原理,得到所述图像采集器与所述平面镜之间的第二位姿关系;
    基于所述第一位姿关系及所述第二位姿关系,结合镜面反射原理,计算得到所述图像采集器与所述曲面显示屏之间的相对位姿关系。
  3. 根据权利要求2所述的相位偏折测量方法,其特征在于,所述基于所述标志点在所述标定图像中的像素坐标,转换得到所述标定图像中所述标志点在所述曲面显示屏的柱坐标系下的第一位置坐标,并基于所述第一位置坐标,映射得到所述第二虚像中所述标志点的第二位置坐标,包括:
    基于所述标志点在所述标定图像中的像素坐标(S px,S py),通过坐标转换关系式,得到所述标定图像中所述标志点在所述曲面显示屏的柱坐标系下的第一位置坐标(x s,y s,z s):
    Figure PCTCN2021138554-appb-100001
    其中,r为所述曲面显示屏的曲率半径,w为所述曲面显示屏的横向像素点数值,pp为所述曲面显示屏中的像素点距,
    Figure PCTCN2021138554-appb-100002
    为所述标志点与所述柱坐标系的原点间连线在平面XOZ上的投影线与X轴的夹角;
    基于所述第一位置坐标,映射得到所述第二虚像中所述标志点的第二位置坐标为(x s,y s,-z s)。
  4. 根据权利要求2所述的相位偏折测量方法,其特征在于,所述基于所述第二位置坐标及所述图像采集器的成像原理,结合所述第二虚像图像,计算得到所述图像采集器与所述第二虚像之间的第一位姿关系,包括:
    根据所述图像采集器的成像模型建立非线性优化目标函数,求解得到所述图像采集器的内参矩阵K 1及畸变D 1,以及所述图像采集器与所述第二虚像之间的第一平移矩阵
    Figure PCTCN2021138554-appb-100003
    和第一旋转矩阵
    Figure PCTCN2021138554-appb-100004
    Figure PCTCN2021138554-appb-100005
    其中,P为所述第二虚像图像,
    Figure PCTCN2021138554-appb-100006
    为所述图像采集器的成像函数,Q’为所述第二位置坐标;
    基于所述第一旋转矩阵及所述第一平移矩阵,得到所述第一位姿关系。
  5. 根据权利要求2所述的相位偏折测量方法,其特征在于,所述第一位姿关系中包括第一旋转矩阵及第一平移矩阵,所述第二位姿关系中包括第二旋转矩阵及第二平移矩阵;所述基于所述第一位姿关系及所述第二位姿关系,结合镜面反射原理,计算得到所述图像采集器与所述曲面显示屏之间的相对位姿关系,包括:
    基于所述第一位姿关系及所述第二位姿关系,结合镜面反射原理,通过如下关系式,计算得到所述图像采集器与所述曲面显示屏之间的第三旋转矩阵及第三平移矩阵:
    Figure PCTCN2021138554-appb-100007
    其中,I 3为单位矩阵,e 3=[0 0 1] T,n c为所述平面镜的法向量,
    Figure PCTCN2021138554-appb-100008
    为所述平面镜与所述图像采集器之间的距离,
    Figure PCTCN2021138554-appb-100009
    为所述第一旋转矩阵,
    Figure PCTCN2021138554-appb-100010
    为所述第一平移矩阵,
    Figure PCTCN2021138554-appb-100011
    为所述第三旋转矩阵,
    Figure PCTCN2021138554-appb-100012
    为所述第三平移矩阵;
    其中,
    Figure PCTCN2021138554-appb-100013
    为所述第二旋转矩阵,
    Figure PCTCN2021138554-appb-100014
    为所述第二平移矩阵;
    基于所述第三旋转矩阵及所述第三平移矩阵,得到所述图像采集器与所述曲面显示屏之间的位姿关系。
  6. 根据权利要求2所述的相位偏折测量方法,其特征在于,所述图像采集器中包括第一图像采集器及第二图像采集器,所述第一图像采集器与所述第二图像采集器具有公共视野范围,所述待测物体所处位置位于所述公共视野范围内。
  7. 根据权利要求6所述的相位偏折测量方法,其特征在于,所述基于所述第一位姿关系及所述第二位姿关系,结合镜面反射原理,计算得到所述图像采集器与所述曲面显示屏之间的相对位姿关系之后,还包括:
    基于所述第一图像采集器与所述曲面显示屏之间的相对位姿关系,及所述第二图像采集器与所述曲面显示屏之间的相对位姿关系,转换得到所述第一图像采集器与所述第二图像采集器之间的相对位姿关系。
  8. 一种基于曲面屏的相位偏折测量系统,其特征在于,包括:曲面显示屏及图像采集器,所述曲面显示屏的显示面朝向待测物体所处位置;所述相位偏折测量系统还包括:
    显示模块,用于在所述曲面显示屏上对设定数量的相移条纹图进行依次显示,所述相移条纹图在所述待测物体表面形成第一虚像;
    图像采集模块,用于控制所述图像采集器对所述待测物体进行图像采集,分别得到与每一所述相移条纹图对应的第一虚像图像;
    三维面型重建模块,用于基于所述曲面显示屏与所述图像采集器之间的相对 位姿关系和所述第一虚像图像,采用相位偏折术对所述待测物体进行三维面型重建。
  9. 一种终端,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述方法的步骤。
PCT/CN2021/138554 2021-07-19 2021-12-15 一种基于曲面屏的相位偏折测量方法、系统及终端 WO2023000595A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110812317.5A CN113654765B (zh) 2021-07-19 2021-07-19 一种基于曲面屏的相位偏折测量方法、系统及终端
CN202110812317.5 2021-07-19

Publications (1)

Publication Number Publication Date
WO2023000595A1 true WO2023000595A1 (zh) 2023-01-26

Family

ID=78477471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138554 WO2023000595A1 (zh) 2021-07-19 2021-12-15 一种基于曲面屏的相位偏折测量方法、系统及终端

Country Status (2)

Country Link
CN (1) CN113654765B (zh)
WO (1) WO2023000595A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116883517A (zh) * 2023-09-07 2023-10-13 华东交通大学 基于平面镜的无重叠视场的相机参数标定方法
CN116958410A (zh) * 2023-06-15 2023-10-27 湖南视比特机器人有限公司 一种基于相位偏折术的3d相机虚拟环境平台仿真方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654765B (zh) * 2021-07-19 2023-05-05 中国科学院深圳先进技术研究院 一种基于曲面屏的相位偏折测量方法、系统及终端
CN114279360B (zh) * 2021-12-27 2023-08-11 天津大学 基于远心成像系统的多目相位偏折测量方法及装置
CN114322838B (zh) * 2021-12-30 2023-03-31 天津大学 一种小重合视场多目相位偏折测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080186415A1 (en) * 2006-06-16 2008-08-07 Alphacurve, Inc. Curved screen display system and method
CN104111036A (zh) * 2013-04-18 2014-10-22 中国科学院沈阳自动化研究所 一种基于双目视觉的镜面物体测量装置及方法
CN105387819A (zh) * 2015-12-27 2016-03-09 河北工业大学 基于条纹反射法的反光物体三维形貌测量方法及装置
CN112082508A (zh) * 2020-08-10 2020-12-15 中国科学院深圳先进技术研究院 反光物体的三维测量方法、装置及终端设备
CN112082512A (zh) * 2020-09-08 2020-12-15 深圳广成创新技术有限公司 一种相位测量偏折术的标定优化方法、装置及计算机设备
CN113029040A (zh) * 2021-02-26 2021-06-25 中国科学院深圳先进技术研究院 一种偏振相位偏折测量方法和装置
CN113654765A (zh) * 2021-07-19 2021-11-16 中国科学院深圳先进技术研究院 一种基于曲面屏的相位偏折测量方法、系统及终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112255758B (zh) * 2020-10-30 2022-07-12 复旦大学 一种偏折测量中实现屏幕和工件同时对焦的装置和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080186415A1 (en) * 2006-06-16 2008-08-07 Alphacurve, Inc. Curved screen display system and method
CN104111036A (zh) * 2013-04-18 2014-10-22 中国科学院沈阳自动化研究所 一种基于双目视觉的镜面物体测量装置及方法
CN105387819A (zh) * 2015-12-27 2016-03-09 河北工业大学 基于条纹反射法的反光物体三维形貌测量方法及装置
CN112082508A (zh) * 2020-08-10 2020-12-15 中国科学院深圳先进技术研究院 反光物体的三维测量方法、装置及终端设备
CN112082512A (zh) * 2020-09-08 2020-12-15 深圳广成创新技术有限公司 一种相位测量偏折术的标定优化方法、装置及计算机设备
CN113029040A (zh) * 2021-02-26 2021-06-25 中国科学院深圳先进技术研究院 一种偏振相位偏折测量方法和装置
CN113654765A (zh) * 2021-07-19 2021-11-16 中国科学院深圳先进技术研究院 一种基于曲面屏的相位偏折测量方法、系统及终端

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116958410A (zh) * 2023-06-15 2023-10-27 湖南视比特机器人有限公司 一种基于相位偏折术的3d相机虚拟环境平台仿真方法
CN116883517A (zh) * 2023-09-07 2023-10-13 华东交通大学 基于平面镜的无重叠视场的相机参数标定方法
CN116883517B (zh) * 2023-09-07 2023-11-10 华东交通大学 基于平面镜的无重叠视场的相机参数标定方法

Also Published As

Publication number Publication date
CN113654765A (zh) 2021-11-16
CN113654765B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
WO2023000595A1 (zh) 一种基于曲面屏的相位偏折测量方法、系统及终端
WO2020207191A1 (zh) 虚拟物体被遮挡的区域确定方法、装置及终端设备
US10008005B2 (en) Measurement system and method for measuring multi-dimensions
US11042973B2 (en) Method and device for three-dimensional reconstruction
WO2022021680A1 (zh) 融合结构光和光度学的三维对象重建方法及终端设备
US20190096092A1 (en) Method and device for calibration
CN112082512A (zh) 一种相位测量偏折术的标定优化方法、装置及计算机设备
JP2000516360A (ja) 三次元物体モデル化装置及び方法
CN113793387A (zh) 单目散斑结构光系统的标定方法、装置及终端
CN110675440B (zh) 三维深度数据的置信度评估方法、装置和计算机设备
US20180165821A1 (en) Devices, systems, and methods for reconstructing the three-dimensional shapes of objects
JP2015233266A (ja) 画像処理システム、情報処理装置、プログラム
CN110398215A (zh) 图像处理装置和方法,系统,物品制造方法,存储介质
CN113643414A (zh) 一种三维图像生成方法、装置、电子设备及存储介质
CN111553985A (zh) 邻图配对式的欧式三维重建方法及装置
CN107958236B (zh) 人脸识别样本图像的生成方法及终端
CN113191963B (zh) 一种无需附加操作的投影仪残余畸变全场标定方法及装置
Fan et al. Near-field photometric stereo using a ring-light imaging device
Francken et al. Screen-camera calibration using gray codes
Wu et al. The camera calibration of binocular vision measurement based on OpenCV
Palka et al. 3D object digitization devices in manufacturing engineering applications and services
CN112652056A (zh) 一种3d信息展示方法及装置
CN113177988A (zh) 一种球幕相机与激光的标定方法、装置、设备及存储介质
CN112634439A (zh) 一种3d信息展示方法及装置
Perdigoto et al. Estimation of mirror shape and extrinsic parameters in axial non-central catadioptric systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE