WO2023000542A1 - 一种摩擦纳米发电机及风速风向自驱动感知装置 - Google Patents

一种摩擦纳米发电机及风速风向自驱动感知装置 Download PDF

Info

Publication number
WO2023000542A1
WO2023000542A1 PCT/CN2021/128194 CN2021128194W WO2023000542A1 WO 2023000542 A1 WO2023000542 A1 WO 2023000542A1 CN 2021128194 W CN2021128194 W CN 2021128194W WO 2023000542 A1 WO2023000542 A1 WO 2023000542A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
hydroxyethyl cellulose
wind speed
cabin
nanogenerator
Prior art date
Application number
PCT/CN2021/128194
Other languages
English (en)
French (fr)
Inventor
应义斌
代淑芬
李逊甲
平建峰
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110820357.4A external-priority patent/CN113644839B/zh
Priority claimed from CN202110820366.3A external-priority patent/CN113794396B/zh
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US17/924,121 priority Critical patent/US20240219418A1/en
Publication of WO2023000542A1 publication Critical patent/WO2023000542A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/08Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/06Other wind motors the wind-engaging parts swinging to-and-fro and not rotating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the invention relates to a friction nanogenerator and a wind speed and direction self-driven sensing device, in particular to a friction nanogenerator with a slit effect for efficiently collecting wind energy and a wind speed and wind direction self-driving sensing device formed thereof.
  • wind can spread plant pollen and seeds, which is beneficial to plant growth and reproduction.
  • the wind accelerates the rebalancing of oxygen and carbon dioxide concentrations in the air, enhancing crop respiration and photosynthesis.
  • some adverse effects of wind on agriculture such as the spread of pathogens and plant diseases, soil erosion, and damage to crops, have caused huge agricultural production and economic losses worldwide. Therefore, in the process of planting crops, the wind speed and direction in the farmland should be monitored around the clock to prevent large-scale agricultural disasters.
  • Wind energy resources are abundant, renewable, and widely distributed, and play an important role in global green energy.
  • wind turbine technology has been extensively researched, many large wind farms have been built.
  • a single wind turbine operating under optimal conditions can generate megawatts of power, but these machines are only effective when wind speeds exceed 3m/s.
  • the wind available in the environment is a low speed airflow, below the threshold speed of the turbine.
  • the ubiquitous ambient wind energy can serve as an effective micro-energy source for current small portable electronic devices and the Internet of Things.
  • Some of the energy is wasted because traditional turbines cannot efficiently harvest the energy from the breeze.
  • it is widely believed that energy harvesting from light winds is limited, which may be due to the suboptimal working efficiency of these conventional energy harvesting devices in low-speed winds. Therefore, there is an urgent need for a device with high efficiency in low-speed wind, which proposes an important method for current breeze energy harvesting.
  • TENG triboelectric nanogenerators
  • TENG can efficiently convert micro-energy in the environment into electrical output, especially low-frequency energy sources such as wind energy, raindrop energy, and water wave energy.
  • Many TENGs targeting wind energy harvesting have been reported, in which various novel architectures and materials are applied.
  • these reports focus on harvesting wind energy at high speeds greater than 5m/s, and light wind energy harvesting with these devices is not feasible because the minimum operating speed threshold for these devices is still quite high.
  • Harvesting Energy From the low-frequency excitation of mild wind, the material and structure of the entire device need to be systematically optimized to obtain frequency-doubling output. Therefore, it is necessary to systematically optimize the material and structure of the existing TENG to achieve low wind speed wind energy harvesting in the environment.
  • the present invention provides a triboelectric nanogenerator (SE -TENG), the designed SE-TENG can realize the perception of wind speed in the range of 0.5-10m/s, showing the superiority of SE-TENG in low wind speed energy harvesting.
  • SE -TENG triboelectric nanogenerator
  • the SE-TENG of the present invention has a relatively wide sensing range, can collect wind energy as low as 0.5m/s, and can be used as a frictional nanogenerator in an agricultural environment, which solves the technical problem that traditional wind speed sensors need external energy supply equipment, and is suitable for TENG-based Self-propelled wind speed sensing in agricultural environments is of great importance.
  • the present invention also provides a wind speed and wind direction self-driven sensing device in an agricultural environment, which solves the technical problem that traditional wind speed and wind direction sensors require external energy supply equipment, and is of great significance to the self-driven wind speed and wind direction sensing in an agricultural environment based on TENG.
  • Each triboelectric nanogenerator comprises an air cabin, a triboelectric layer and a hydroxyethyl cellulose membrane, the air cabin has an inlet port and an outlet port, and a layer is fixedly adhered to the upper surface and the lower surface of the inner wall of the air cabin respectively.
  • the electronic layer is rubbed, and the wind cabin is provided with a horizontally arranged support bar perpendicular to the wind direction in the middle near the inlet end.
  • One end of the hydroxyethyl cellulose membrane is fixed and adhered to the support bar, and the other end extends freely toward the outlet end.
  • the inlet end of the air cabin is connected with a trumpet-shaped pipe, and the outlet end of the wind chamber is connected with a curved upward pipe.
  • the entrance of the cabin is designed as a bell mouth to facilitate the entry of wind energy.
  • the middle part of the cabin is narrowed relative to the entrance.
  • the slit effect can be used to increase the wind speed in the working area of SE-TENG and improve the sensitivity of wind speed detection.
  • the described triboelectric layer is made of polytetrafluoroethylene (Teflon), polydimethylsiloxane (PDMS), polyimide (Kapton), polyvinyl chloride (PVC), silicone rubber (Ecoflex), poly One of materials such as lactic acid (PLA).
  • a layer of conductive material is adhered or plated between the friction layer and the inner wall of the wind cabin as an electrode.
  • the conductive material is one of indium tin oxide film (ITO), silver nanowire, copper, aluminum and other conductive materials.
  • ITO indium tin oxide film
  • Lead wires from the upper and lower electrodes are connected to two pins of the AC terminal of the rectifier bridge, and the other two pins of the rectifier bridge are connected to external power receiving equipment to form a complete frictional nanogenerator.
  • the plasticizer is composed of glucose and urea. Glucose and urea work together simultaneously.
  • step (2) specifically: weigh 1-5g of hydroxyethyl cellulose, 0.3-1.5g of glucose and 0.1-0.5g of urea into 100mL of deionized water, stir and heat in a water bath at 50°C for 60min, and The obtained solution was degassed by centrifugation at 10,000 r/min for 5 minutes, then poured into a petri dish and baked for 6-12 hours, and finally equilibrated at 30-80% air humidity for 3 hours to obtain a hydroxyethyl cellulose film.
  • the mass ratio of described hydroxyethyl cellulose, glucose, urea and water is 8:3:1:200, and optimal proportion is to add 4g hydroxyethyl cellulose, 1.5g glucose, 0.5g urea, the hydroxyethyl cellulose film prepared by the invention has the characteristics of flexibility, transparency and stretchability.
  • the SE-TENG of the present invention utilizes the stretchable hydroxyethyl cellulose membrane and the slit effect of the pipe, which can effectively achieve frequency-doubling vibration under gentle airflow driving.
  • the designed SE-TENG can realize wind speed perception in the range of 0.5-10m/s, indicating the superiority of SE-TENG in low wind speed energy harvesting.
  • the present invention implements an effective strategy to collect the ubiquitous but usually neglected low-speed airflow and mild intermittent wind sources, which can be used as an effective supplement to the current micro-energy structure.
  • a self-driven sensing device for wind speed and direction is a self-driven sensing device for wind speed and direction:
  • the wind speed and direction self-driven sensing device includes at least one frictional nanometer generator and an electrometer digital acquisition board, and the friction nanometer generator is arranged on the electrometer digital acquisition board;
  • Each triboelectric nanogenerator comprises an air cabin, a triboelectric layer and a hydroxyethyl cellulose membrane, the air cabin has an inlet port and an outlet port, and a layer is fixedly adhered to the upper surface and the lower surface of the inner wall of the air cabin respectively.
  • the electronic layer is rubbed, and the wind cabin is provided with a horizontally arranged support bar perpendicular to the wind direction in the middle near the inlet end.
  • One end of the hydroxyethyl cellulose membrane is fixed and adhered to the support bar, and the other end extends freely toward the outlet end.
  • the eight friction nanogenerators There are eight friction nanogenerators, and the eight friction nanogenerators are fixed on the circumference of a ring at a radial interval of 45°.
  • the eight friction nanogenerators are all connected to the electrometer digital acquisition board, and the electrostatic The meter digital acquisition board collects and processes the electrical signal generated by the triboelectric nanogenerator and transmits it wirelessly to the mobile terminal through Bluetooth in real time.
  • the inlet end of the air cabin is connected with a trumpet-shaped pipe, and the outlet end of the wind chamber is connected with a curved upward pipe.
  • the described triboelectric layer is made of polytetrafluoroethylene (Teflon), polydimethylsiloxane (PDMS), polyimide (Kapton), polyvinyl chloride (PVC), silicone rubber (Ecoflex), poly One of materials such as lactic acid (PLA).
  • a layer of conductive material is adhered or plated between the friction layer and the inner wall of the wind cabin as an electrode.
  • the conductive material is one of indium tin oxide film (ITO), silver nanowire, copper, aluminum and other conductive materials.
  • ITO indium tin oxide film
  • Eight friction nanogenerators are distributed on the circumference of the ring along the radial interval of 45° at a central angle, and cooperate with the electrometer digital acquisition board to form a wind speed and wind direction self-driven sensing system.
  • the plasticizer is composed of glucose and urea. Glucose and urea work together simultaneously.
  • step (2) specifically: weigh 1-5g of hydroxyethyl cellulose, 0.3-1.5g of glucose and 0.1-0.5g of urea into 100mL of deionized water, stir and heat in a water bath at 50°C for 60min, and The obtained solution was degassed by centrifugation at 10,000 r/min for 5 minutes, then poured into a petri dish and baked for 6-12 hours, and finally equilibrated at 30-80% air humidity for 3 hours to obtain a hydroxyethyl cellulose film.
  • the mass ratio of described hydroxyethyl cellulose, glucose, urea and water is 8:3:1:200, and optimal proportion is to add 4g hydroxyethyl cellulose, 1.5g glucose, 0.5g urea, the hydroxyethyl cellulose film prepared by the invention has the characteristics of flexibility, transparency and stretchability.
  • the present invention has the characteristics of high sensitivity, high effect range, simple preparation, and can maintain stable work for a long time, and is a good substitute for effective collection of weak wind energy in the environment.
  • SE-TENG exploits the stretchable hydroxyethyl cellulose membrane and the slit effect of the pipe, which can effectively achieve frequency-doubling vibration under mild airflow actuation.
  • the designed SE-TENG can realize wind speed perception in the range of 0.5-10m/s, indicating the superiority of SE-TENG in low wind speed energy harvesting.
  • the wind speed sensing device in the prior art can only sense the wind speed in a certain direction, but the present invention can sense not only the wind speed in any direction but also the wind direction by assembling a plurality of wind cabins into a system.
  • the present invention designs an electrometer data acquisition board matched with the wind speed and wind direction self-driven sensing device for data acquisition and processing, and wirelessly transmits information to the mobile phone in real time through Bluetooth. Users can obtain wind speed and wind direction information in real time, and make timely adjustments to agricultural production.
  • the electric energy generated by the wind speed and direction self-driven sensing device during the wind speed sensing process is also collected to drive agricultural sensors.
  • the new agricultural wind speed and wind direction self-driven sensing device OWEH based on the frictional nanogenerator SE-TENG of the present invention can not only be used for wind speed and wind direction sensing, but also can be used as a sustainable power source for wireless sensors, providing reliable information for the construction of intelligent agriculture. Base.
  • Fig. 1 is a schematic diagram of the structure of the triboelectric nanogenerator SE-TENG designed in the present invention.
  • Figure 2 is a diagram of the cycle stability test results of SE-TENG.
  • Figure 3 shows the relationship between the output voltage signal of SE-TENG and the thickness of the PDMS electron-absorbing layer.
  • Figure 4 is a graph showing the relationship between the output voltage signal of SE-TENG and the thickness of the electron-donating layer HEC film.
  • Figure 5 is a highly optimized schematic diagram of the SE-TENG pipeline.
  • Figure 6 is a schematic diagram of the length optimization of the SE-TENG pipeline.
  • Figure 7 is a schematic diagram of the length optimization of the HEC membrane in the SE-TENG.
  • Figure 8 is a schematic diagram of the specific dimensions of the SE-TENG designed in the present invention.
  • Fig. 9 is a wind speed and direction self-driven sensing device composed of eight frictional nano-generators SE-TENG designed by the present invention.
  • Fig. 10 is a diagram of voltage results generated by any wind cabin of the self-driven wind speed and direction sensing device designed in the present invention under different wind speeds.
  • Fig. 11 is a graph showing the current results generated by any wind cabin of the self-driven wind speed and direction sensing device designed in the present invention under different wind speeds.
  • Fig. 12 is a linear fitting relationship between wind speed and voltage of any wind cabin of the wind speed and wind direction self-driven sensing device designed in the present invention.
  • Fig. 13 is a schematic diagram of the wind speed and direction self-driven sensing device S-direction wind cabin wind direction sensing designed by the present invention.
  • the triboelectric nanogenerator is a triboelectric nanogenerator (SE-TENG) based on slit effect and hydroxyethyl cellulose membrane.
  • SE-TENG triboelectric nanogenerator
  • Each triboelectric nanogenerator includes an air cabin, a triboelectric layer, and a hydroxyethyl cellulose membrane.
  • the air cabin has an inlet port and an outlet port, and the connection line between the inlet port and the outlet port of the air cabin is parallel to, facing The wind direction is arranged, the inlet end of the wind cabin is connected with a trumpet-shaped pipe, and the outlet end of the air cabin is connected with a curved upward pipe.
  • the upper surface and the lower surface of the inner wall of the air cabin are respectively fixed and adhered with a layer of frictional electron layers, and the upper and lower layers of frictional electron layers are arranged in parallel.
  • Support bar one end of the hydroxyethyl cellulose film is fixed and adhered to the support bar, and the other end is freely extended to the outlet end, so that the electronic layer and the inner wall of the wind cabin are adhered or plated with a layer of conductive material as an electrode;
  • the base cellulose film is used as the triboelectron donating layer, which is adhered in the middle of the air cabin.
  • the distance between the upper and lower layers of friction is greater than the thickness of the hydroxyethyl cellulose film, and the hydroxyethyl cellulose film vibrates and reciprocates in the gap between the upper and lower layers of friction and the electron layers are beaten by the wind.
  • Contacting and rubbing the electronic layer is like a piece of cloth being moved by the wind, so the hydroxyethyl cellulose film and the frictional electronic layer move in relative translation, and the contact movement realizes triboelectric nano-power generation, and outputs electric energy in the frictional electronic layer.
  • the triboelectric nanogenerator of the present invention has four working modes, vertical contact-separation mode, horizontal sliding mode, single electrode mode and independent layer mode. All four modes work.
  • the positions of the rubbed electron layer and the hydroxyethyl cellulose film are replaced each other, that is, the rubbed electron layer adheres to the support bar of the wind cabin, and the hydroxyethyl cellulose film adheres to the upper and lower sides of the inner wall of the wind cabin.
  • the wind cabin of the frictional nanogenerator can be prepared by 3D printing.
  • the horn-shaped pipe at the entrance of the wind cabin has a large diameter and a relatively narrow interior. In this way, the tiny wind can be amplified by the slit effect to achieve high-sensitivity perception of wind speed .
  • the hydroxyethyl cellulose membrane is fixed in the middle of the air cabin by one side, and the other side is free.
  • the inner wall of the air cabin is pasted with PDMS film and ITO electrodes, and two wires are drawn from the upper and lower electrodes.
  • the size of the working area inside the wind cabin is 7cm ⁇ 5cm ⁇ 1cm.
  • the thickness of both the HEC and PDMS membranes used was 100 ⁇ m.
  • the electrical signal generated by the frictional nanogenerator is correlated with the wind speed, and the wind speed is perceived through the strength of the electrical signal generated by the frictional nanogenerator.
  • multiple frictional nanogenerators can be arranged at intervals on the same ring circumference, and at the same time, multiple frictional nanogenerators arranged along the circumference can be sensed in different directions and orientations, and the electric power of multiple frictional nanogenerators can be integrated. The signal strength is sensed to obtain the wind direction.
  • the invention prepares the hydroxyethyl cellulose membrane by casting method to construct the triboelectric nanogenerator, and the hydroxyethyl cellulose membrane can be cut into any desired shape.
  • the preparation process of the triboelectric nanogenerator of the present invention is as follows:
  • step (2) specifically: weigh 4g of hydroxyethyl cellulose, 1.5g of glucose and 0.5g of urea into 100mL of deionized water, stir and heat in a water bath at 50°C for 60min, and place the obtained solution at 10000r/min Centrifuge and degas for 5 minutes under certain conditions, then pour into a petri dish and dry for 12 hours, and finally equilibrate for 3 hours at 50% air humidity to obtain a hydroxyethyl cellulose film.
  • the working principle of the friction nanogenerator of the present invention is:
  • the hydroxyethyl cellulose membrane is separated from the PDMS contact by the wind-driven vibration, converting the wind energy into electrical energy.
  • the weak wind signal can be amplified so that the triboelectric nanogenerator has ultra-high sensitivity to external stimuli, and the speed is as low as 0.5 m/s.
  • the wind in the farmland will cause the HEC membrane in the cavity in the corresponding direction to vibrate, and the induced electrical signal can be obtained from the upper and lower electrodes of the cavity.
  • the external power receiving equipment adopts LED lamps.
  • an induced voltage will be generated in the wind cabin where the wind blows, and the LED lights will be driven to light up, pointing to the direction the wind blows.
  • the wind speed can be known by analyzing the generated electrical signal, so as to realize the perception of wind vector information.
  • the aforementioned triboelectric nanogenerator HEC-TENG was used for wind energy sensing. Use the blower device to blow air at the entrance of a certain air cabin. Driven by the wind, the HEC membrane will vibrate and separate from the PDMS membrane to form an induced potential.
  • the electrical signal results of different wind speeds are shown in Figure 4, through Figure 4. It can be seen that the generated electrical voltage signal is positively correlated with the wind speed, indicating that the triboelectric nanogenerator can be used for wind energy perception.
  • the present invention has the characteristics of high sensitivity, high effect range, simple preparation, and can maintain stable work for a long time. It is a good substitute for traditional agricultural wind speed sensing and energy supply systems. It can be used not only for wind speed sensing, but also as a sustainable power source for wireless sensors, providing a reliable foundation for building smart agriculture.
  • Example 2 Place the PDMS and HEC membranes in SE-TENG on a linear motor, and realize the contact separation of PDMS and HEC membranes under the traction of the linear motor. From the experimental results, it can be seen that the output voltage signal can be stabilized within 1000s The output shows that SE-TENG can work stably. (corresponding to Figure 2)
  • Example 3 the thickness of the PDMS film in the SE-TENG was changed to 25, 50, 100, 200, and 300 ⁇ m, respectively, and the voltage signal output of the SE-TENG prepared with PDMS with different thicknesses was tested at a wind speed of 5 m/s. It can be seen from the figure that the output voltage signal is the largest when the PDMS thickness is 100 ⁇ m (corresponding to Figure 3).
  • Example 4 is to change the thickness of the HEC film in the SE-TENG to 50, 100, 150, 200, and 250 ⁇ m, respectively, and test the voltage signal output of the SE-TENG prepared with HEC films of different thicknesses at a wind speed of 5 m/s. It can be seen from the figure that the output voltage signal is the largest when the thickness of the HEC film is 100 ⁇ m (corresponding to Figure 4).
  • Example 5 is a highly optimized SE-TENG pipeline. Prepare pipes with heights of 5, 10, 15, 20, 25, and 30mm by 3D printing, and test the electrical signal output of SE-TENG with different pipe heights at a wind speed of 5m/s. It can be seen that when the pipe height is 10mm The electrical signal output is the largest (corresponding to Figure 5).
  • Embodiment 6 is the length optimization of the SE-TENG pipeline. Prepare pipes with lengths of 40, 50, 60, 70, and 80mm by 3D printing, and test the electrical signal output of SE-TENG of different pipes at a wind speed of 5m/s. It can be seen that the electrical signal when the pipe height is 70mm The output is maximum (corresponding to Figure 6).
  • Example 7 optimizes the length of the HEC membrane in SE-TENG.
  • HEC membranes with a width of 4.5mm, a thickness of 100 ⁇ m, and a length of 10, 20, 30, 40, 50, 60, and 70mm were prepared by casting method, and SE-TENG with HEC membranes of different lengths was tested at a wind speed of 5m/s It can be seen that the electrical signal output is the largest when the length of the HEC film is 60 mm (corresponding to Figure 7).
  • the wind speed and direction self-driven sensing device OWEH includes at least one friction nano-generator (SE-TENG) with slit effect and an electrometer digital acquisition board, and the friction nano-generator is arranged on the electrometer digital acquisition board.
  • SE-TENG friction nano-generator
  • the triboelectric nanogenerator is a triboelectric nanogenerator (SE-TENG) based on hydroxyethyl cellulose membrane (HEC) and utilizing the slit effect to amplify wind speed.
  • SE-TENG triboelectric nanogenerator
  • HEC hydroxyethyl cellulose membrane
  • Each triboelectric nanogenerator includes an air cabin, a triboelectric layer, and a hydroxyethyl cellulose membrane.
  • the air cabin has an inlet port and an outlet port, and the connection line between the inlet port and the outlet port of the air cabin is parallel to, facing The wind direction is arranged, the inlet end of the wind cabin is connected with a trumpet-shaped pipe, and the outlet end of the air cabin is connected with a curved upward pipe.
  • the upper surface and the lower surface of the inner wall of the air cabin are respectively fixed and adhered with a layer of frictional electron layers, and the upper and lower layers of frictional electron layers are arranged in parallel.
  • Support bar one end of the hydroxyethyl cellulose film is fixed and adhered to the support bar, and the other end is freely extended to the outlet end, so that the electronic layer and the inner wall of the wind cabin are adhered or plated with a layer of conductive material as an electrode;
  • the base cellulose film is used as the triboelectron donating layer, which is adhered in the middle of the air cabin.
  • the distance between the upper and lower layers of friction is greater than the thickness of the hydroxyethyl cellulose film, and the hydroxyethyl cellulose film vibrates and reciprocates in the gap between the upper and lower layers of friction and the electron layers are beaten by the wind.
  • Contacting and rubbing the electronic layer is like a piece of cloth being moved by the wind, so the hydroxyethyl cellulose film and the frictional electronic layer move in relative translation, and the contact movement realizes triboelectric nano-power generation, and outputs electric energy in the frictional electronic layer.
  • the triboelectric nanogenerator of the present invention has four working modes, vertical contact-separation mode, horizontal sliding mode, single electrode mode and independent layer mode. All four modes work.
  • the positions of the rubbed electron layer and the hydroxyethyl cellulose film are replaced with each other, that is, the rubbed electron layer adheres to the support bar of the wind cabin, and the hydroxyethyl cellulose film adheres to the upper and lower sides of the inner wall of the wind cabin.
  • the digital acquisition board collects and processes the electrical signal generated by the friction nanogenerator through the electrometer digital acquisition board and transmits it wirelessly to the mobile phone terminal through Bluetooth in real time.
  • a card slot is provided on the outer peripheral surface of the ring, and the card slot is used for installing the friction nanometer generator.
  • the wind cabin of the wind speed and direction self-driven sensing device can be prepared by 3D printing.
  • the trumpet-shaped pipe at the entrance of the wind cabin has a large diameter and a relatively narrow interior. In this way, the tiny wind can be amplified by the slit effect, and the wind speed and direction can be realized. High sensitivity perception.
  • the hydroxyethyl cellulose membrane is fixed in the middle of the air cabin by one side, and the other side is free.
  • the inner wall of the air cabin is pasted with PDMS film and ITO electrodes, and two wires are drawn from the upper and lower electrodes.
  • the size of the working area inside the wind cabin is 7cm ⁇ 5cm ⁇ 1cm.
  • the thickness of both the HEC and PDMS membranes used was 100 ⁇ m.
  • the electrical signal generated by the frictional nanogenerator is correlated with the wind speed, and the wind speed is perceived through the strength of the electrical signal generated by the frictional nanogenerator.
  • multiple frictional nanogenerators arranged along the circumference sense in different orientations and orientations, and the wind direction is obtained by synthesizing the electrical signal strength sensing of multiple frictional nanogenerators.
  • the invention prepares the hydroxyethyl cellulose membrane by casting method to construct the triboelectric nanogenerator, and the hydroxyethyl cellulose membrane can be cut into any desired shape.
  • the preparation process of the wind speed and wind direction self-driven sensing device of the present invention is as follows:
  • step (2) specifically: weigh 4g of hydroxyethyl cellulose, 1.5g of glucose and 0.5g of urea into 100mL of deionized water, stir and heat in a water bath at 50°C for 60min, and place the obtained solution at 10000r/min Centrifuge and degas for 5 minutes under certain conditions, then pour into a petri dish and dry for 12 hours, and finally equilibrate for 3 hours at 50% air humidity to obtain a hydroxyethyl cellulose film.
  • Eight friction nanogenerators are distributed on the circumference of the ring along the radial interval of 45° at a central angle, and cooperate with the electrometer digital acquisition board to form a wind speed and wind direction self-driven sensing system.
  • the working principle of the wind speed and wind direction self-driven sensing device of the present invention is:
  • the hydroxyethyl cellulose membrane is separated from the PDMS contact by the wind-driven vibration, converting the wind energy into electrical energy.
  • the weak wind signal can be amplified, so that the wind speed and direction self-driven sensing device has ultra-high sensitivity to external stimuli, and the speed is as low as 0.5 m/s.
  • the wind in the farmland will cause the HEC membrane in the cavity in the corresponding direction to vibrate, and the induced electrical signal can be obtained from the upper and lower electrodes of the cavity.
  • Eight self-driven sensing devices for wind speed and direction at intervals of 45° are fixed radially on the ring through slots, forming a self-driven sensing device for wind speed and direction used in agricultural environments.
  • the electric energy generated by the wind speed and direction self-driven sensing device during the wind speed sensing process can also be used to drive agricultural sensors.
  • the external power receiving equipment adopts LED lamps.
  • an induced voltage will be generated in the wind cabin where the wind blows, and the LED lights will be driven to light up, pointing to the direction the wind blows.
  • the wind speed and direction can be known, so as to realize the perception of wind vector information.
  • the aforementioned triboelectric nanogenerator HEC-TENG was used for wind energy sensing.
  • the electrical signal results of different wind speeds are shown in Figure 10, Figure 11 and Figure 12 It can be seen that the generated electrical voltage signal and current signal are positively correlated with the wind speed, indicating that the wind speed and direction self-driven sensing device can be used for wind energy sensing.
  • Figure 12 shows the linear fitting relationship between wind speed and voltage.
  • the wind speed can be calculated according to the obtained voltage, which shows that the wind speed and direction self-driven sensing device can be used for wind energy sensing.
  • the invention has the characteristics of high sensitivity, high effect range, simple preparation, and can maintain stable work for a long time. It is a good substitute for the traditional agricultural wind speed and direction sensing and energy supply system. It can be used not only for wind speed and direction sensing, but also as a sustainable power source for wireless sensors, providing a reliable foundation for building smart agriculture.
  • Fig. 13 is a schematic diagram of wind direction perception in the S direction.
  • the HEC film in the SE-TENG in the S direction will beat the PDMS film up and down, generating electric energy to light up the LED lights in this direction.
  • the direction of the LED lighting is the direction of the wind blowing, realizing the perception of the wind direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种摩擦纳米发电机及风速风向自驱动感知装置。包括了具有狭缝效应的风舱、摩擦得电子层和羟乙基纤维素膜,风舱具有入口端和出口端,风舱的内壁上侧表面和下侧表面分别固定粘附有一层电极和摩擦得电子层,风舱在靠近入口端的中间设有一个水平布置的、垂直于风向的支撑条,羟乙基纤维素膜的一端固定粘附在支撑条上,另一端向出口端自由延伸;感知装置包括多个摩擦纳米发电机,沿径向间隔圆心角45°地固定在圆环的圆周上,均连接到静电计数字采集板。本发明具有灵敏度高、效应范围高、制备简单的特性,且能保持长时间稳定工作,利用狭缝效应可以实现低风速的感知,能用于风速传感和风能收集,为农业传感器供能。

Description

一种摩擦纳米发电机及风速风向自驱动感知装置 技术领域
本发明涉及了一种摩擦纳米发电机以及风速风向自驱动感知装置,尤其涉及一种具有狭缝效应高效收集风能的摩擦纳米发电机及其构成的风速风向自驱动感知装置。
背景技术
作为农业生产最关键的环境因素之一,风能够传播植物花粉和种子,有利于植物的生长和繁殖。此外,风加速了空气中氧气和二氧化碳浓度的再平衡,增强了作物的呼吸和光合作用。然而,风对农业的一些不利影响,如病原体和植物病害的传播、水土流失、农作物的破坏等,在世界范围内造成了巨大的农业生产和经济损失。因此,在种植农作物的过程中,应全天候监测农田内的风速和风向,以防发生大规模的农业灾害。此外,通过获取准确的风信息,可以动态制定适宜的农业种植方案,提高产量。
风能资源丰富、可再生、分布广泛,在全球绿色能源中发挥着重要作用。由于风力涡轮机技术得到广泛研究,许多大型风电场建成。在优化条件下运行的单个风力涡轮机可以产生兆瓦的功率,但是这些机器只有在风速超过3m/s时才有效。然而,环境中可用的风是低速气流,低于涡轮机的阈值速度。无处不在的环境风能可以作为当前小型便携式电子设备和物联网的有效微能源。由于传统涡轮机无法有效地收集微风能量,部分能量被白白浪费了。同时,人们普遍认为对微风能量的收集是有限的,这可能是由于这些传统的能量收集装置在低速风下的工作效率不理想。因此,迫切需要一种在低速风下具有高效工作的装置,为目前的微风能量收集提出一种重要的方法。
并且,传统的风速风向传感器的存在一些问题,如能耗大、体积大、精度低、稳定性差,限制了它们在农业中的广泛应用。特别是,通过传统的传感器对农业环境参数进行实时监测需要持续的电力供应,而在复杂的农田中铺设电力供应管道是一个挑战。作为替代,电池通常被用作农业传感器的临时电源。然而,电池需要定期更换或充电,这可能造成维护困难,并对农业环境中的土壤和水造成严重污染。因此,设计基于可降解和生态友好材料的自供电风速和风向传感器,以实现不需要外界供能的可以持续工作的智慧监测农业系统十分 有必要。
最近,摩擦纳米发电机(TENG)的发明提供了一种前所未有风能收集方法。TENG可以有效地将环境中的微能量转化为电能输出,特别是低机械频率的能源,如风能、雨滴能和水波能。许多针对风能收集的TENG已被报道,其中应用了各种新颖的架构和材料。然而,这些报告的重点是收集大于5m/s的高速风能,并且这些设备的微风能量收集是不可行的,因为这些设备的最低运行速度阈值仍然相当高。收集能量从温和风的低频激励来看,整个设备的材料和结构需要系统地优化以获得倍频输出。因此需要对现有的TENG进行材料和结构的系统优化,以实现对环境中的低风速风能收集。
并且,在开发用于农业环境的自驱动风速和风向感知的方面的研究工作很少,因此现有技术缺少了一种农业环境中的自驱动风速风向感知装置和处理方式。
发明内容
为了解决背景技术中存在的问题和填补空白,本发明所提供了一种利用狭缝效应和可拉伸羟乙基纤维素膜的倍频振动实现低风速风能高效收集的摩擦纳米发电机(SE-TENG),所设计的SE-TENG可以实现0.5-10m/s范围内风速的感知,表明SE-TENG在低风速能量收集方面的优越性。
本发明SE-TENG的感知范围比较广,可以收集低至0.5m/s的风能,可用于作为农业环境中摩擦纳米发电机,解决了传统风速传感器需要外接供能设备技术问题,对基于TENG的农业环境中的自驱动风速感知具有重要的意义。
本发明还提供了一种农业环境中风速风向自驱动感知装置,解决了传统风速风向传感器需要外接供能设备技术问题,对基于TENG的农业环境中的自驱动风速风向感知具有重要的意义。
本发明采用的技术方案是:
一、一种具有狭缝效应的摩擦纳米发电机:
每个摩擦纳米发电机是包括了风舱、摩擦得电子层和羟乙基纤维素膜,风舱具有入口端和出口端,风舱的内壁上侧表面和下侧表面分别固定粘附有一层摩擦得电子层,风舱在靠近入口端的中间设有一个水平布置的、垂直于风向的支撑条,羟乙基纤维素膜的一端固定粘附在支撑条上,另一端向出口端自由延伸。
所述的风舱的入口端连接一个喇叭形状管道,风舱的出口端连接有一个弯曲向上的管道。舱体的入口端设计成喇叭口,便于风能的进入,舱体中间部分 相对于入口端变窄,可以利用狭缝效应使SE-TENG的工作区间风速变大,提高风速检测的灵敏度。
所述的摩擦得电子层采用采用聚四氟乙烯(Teflon)、聚二甲基硅氧烷(PDMS)、聚酰亚胺(Kapton)、聚氯乙烯(PVC)、硅橡胶(Ecoflex)、聚乳酸(PLA)等材料中的一种。
所述的摩擦得电子层和风舱内壁之间粘附或镀上一层导电材料作为电极。
所述的导电材料采用氧化铟锡膜(ITO)、银纳米线、铜、铝等导电材料种的一种。
二、一种摩擦纳米发电机的制备方法:
(1)通过3D打印加工出风舱;
(2)制备羟乙基纤维素薄膜:将纤维粉末加入到水或乙醇水溶液中,然后添加增塑剂,经过水浴加热使溶液混合均匀,然后蒸发溶剂干燥得到羟乙基纤维素膜;
(3)将羟乙基纤维素膜一端固定在风舱的支撑条上,在风舱内壁的上侧表面和下侧表面上先各粘附一层导电材料作为电极,在电极外再粘附一层摩擦得电子材料,且摩擦得电子材料完全覆盖住电极;
(4)从上下电极各引出导线接到整流桥交流端的两个引脚上,整流桥另一两个引脚与外部接收电能设备连接,组成一个完整的摩擦纳米发电机。
所述的增塑剂是由葡萄糖和尿素混合构成。葡萄糖和尿素同时共同起作用。
所述步骤(2)中,具体为:称取1-5g羟乙基纤维素、0.3-1.5g葡萄糖和0.1-0.5g尿素加入到100mL去离子水中,经过50℃的水浴搅拌加热60min,将得到的溶液在10000r/min的条件下离心脱气5min,之后倒入到培养皿中烘6-12h,最后在30-80%的空气湿度下平衡3h得到羟乙基纤维素膜。
所述的羟乙基纤维素、葡萄糖、尿素和水的质量比是8:3:1:200,最优配比为在100mL中的去离子水中加入4g羟乙基纤维素、1.5g葡萄糖、0.5g尿素,采用本发明制备的羟乙基纤维素膜具有柔性、透明、可拉伸的特点。
与之前报道的用于风能收集的发电机不同,本发明的SE-TENG利用可拉伸的羟乙基纤维素膜和管道的狭缝效应,在温和的气流驱动可以有效实现倍频振动。所设计的SE-TENG可以实现0.5-10m/s范围内风速的感知,表明SE-TENG在低风速能量收集方面的优越性。本发明实现了一种有效的策略来收集无处不在但通常被忽视的低速气流和温和的间歇性风源,可以作为当前微能源结构的有效补充。
三、一种风速风向自驱动感知装置:
所述风速风向自驱动感知装置包括至少一个摩擦纳米发电机和静电计数字采集板,摩擦纳米发电机布置在静电计数字采集板上;
每个摩擦纳米发电机是包括了风舱、摩擦得电子层和羟乙基纤维素膜,风舱具有入口端和出口端,风舱的内壁上侧表面和下侧表面分别固定粘附有一层摩擦得电子层,风舱在靠近入口端的中间设有一个水平布置的、垂直于风向的支撑条,羟乙基纤维素膜的一端固定粘附在支撑条上,另一端向出口端自由延伸。
设置有八个摩擦纳米发电机,八个摩擦纳米发电机沿径向间隔圆心角45°地固定在一个圆环的圆周上,八个摩擦纳米发电机均连接到静电计数字采集板,通过静电计数字采集板采集和处理摩擦纳米发电机所产生的电信号并通过蓝牙实时无线传输到手机端。
所述的风舱的入口端连接一个喇叭形状管道,风舱的出口端连接有一个弯曲向上的管道。
所述的摩擦得电子层采用采用聚四氟乙烯(Teflon)、聚二甲基硅氧烷(PDMS)、聚酰亚胺(Kapton)、聚氯乙烯(PVC)、硅橡胶(Ecoflex)、聚乳酸(PLA)等材料中的一种。
所述的摩擦得电子层和风舱内壁之间粘附或镀上一层导电材料作为电极。
所述的导电材料采用氧化铟锡膜(ITO)、银纳米线、铜、铝等导电材料种的一种。
四、一种风速风向自驱动感知装置的制备方法:
(1)通过3D打印加工出风舱;
(2)制备羟乙基纤维素薄膜:将纤维粉末加入到水或乙醇水溶液中,然后添加增塑剂,经过水浴加热使溶液混合均匀,然后蒸发溶剂干燥得到羟乙基纤维素膜;
(3)将羟乙基纤维素膜一端固定在风舱的支撑条上,在风舱内壁的上侧表面和下侧表面上先各粘附一层导电材料作为电极,在电极外再粘附一层摩擦得电子材料,且摩擦得电子材料完全覆盖住电极;
(4)从上下电极各引出导线接到整流桥交流端的两个引脚上,整流桥另一两个引脚与外部接收电能设备连接,组成一个完整的摩擦纳米发电机;
(5)八个摩擦纳米发电机沿径向间隔圆心角45°分布在圆环的圆周上,并和静电计数字采集板配合构成一个风速风向自驱动感知系统。
所述的增塑剂是由葡萄糖和尿素混合构成。葡萄糖和尿素同时共同起作用。
所述步骤(2)中,具体为:称取1-5g羟乙基纤维素、0.3-1.5g葡萄糖和 0.1-0.5g尿素加入到100mL去离子水中,经过50℃的水浴搅拌加热60min,将得到的溶液在10000r/min的条件下离心脱气5min,之后倒入到培养皿中烘6-12h,最后在30-80%的空气湿度下平衡3h得到羟乙基纤维素膜。
所述的羟乙基纤维素、葡萄糖、尿素和水的质量比是8:3:1:200,最优配比为在100mL中的去离子水中加入4g羟乙基纤维素、1.5g葡萄糖、0.5g尿素,采用本发明制备的羟乙基纤维素膜具有柔性、透明、可拉伸的特点。
本发明与现有技术相比:本发明具有灵敏度高、效应范围高、制备简单的特性,且能保持长时间稳定工作,是环境中微弱风能的有效收集的良好替代品。
现有技术报告的摩擦纳米发电机的重点是收集大于5m/s的高速风能,并且这些设备的微风能量收集是不可行的,因为这些设备的最低运行速度阈值仍然相当高。收集能量从温和风的低频激励来看,整个设备的材料和结构需要系统地优化以获得倍频输出。因此需要对现有的TENG进行材料和结构的系统优化,以实现对环境中的低风速风能收集。
与之前报道的用于风能收集的发电机不同,SE-TENG利用可拉伸的羟乙基纤维素膜和管道的狭缝效应,在温和的气流驱动可以有效实现倍频振动。所设计的SE-TENG可以实现0.5-10m/s范围内风速的感知,表明SE-TENG在低风速能量收集方面的优越性。
现有技术中的风速感知装置仅能感知某一方向的风速大小,而本发明通过将多个风舱组装成一个系统,不仅能感知任意方向的风速,还能感知风向。此外,本发明设计了与风速风向自驱动感知装置配套的静电计数据采集板用于数据的采集和处理并通过蓝牙将信息无线实时地传输到手机端。用户可以实时获得风速和风向信息,对农业生产进行及时调整。此外,风速风向自驱动感知装置在风速感应过程中产生的电能也被收集起来用于驱动农业传感器。
本发明的基于摩擦纳米发电机SE-TENG的新型农业风速风向自驱动感知装置OWEH,它不仅可以用于风速和风向传感,还可以作为无线传感器的可持续电源,为构建智能农业提供可靠的基础。
附图说明
图1为本发明中所设计的摩擦纳米发电机SE-TENG结构示意图。
图2为SE-TENG的循环稳定性测试结果图。在图3为SE-TENG的输出电压信号大小与夺电子层PDMS厚度的关系。
图4为SE-TENG的输出电压信号大小与给电子层HEC膜厚度的关系结果图。
图5为SE-TENG管道的高度优化示意图。
图6为SE-TENG管道的长度优化示意图。
图7为SE-TENG内HEC膜的长度优化示意图。
图8为本发明设计的SE-TENG的具体尺寸示意图。
图9为本发明设计的由八个摩擦纳米发电机SE-TENG组成的风速风向自驱动感知装置。
图10为本发明所设计的风速风向自驱动感知装置的任一风舱在不同风速下产生的电压结果图。
图11是本发明所设计的风速风向自驱动感知装置的任一风舱在不同风速下产生的电流结果图。
图12是本发明所设计的风速风向自驱动感知装置的任一风舱风速和电压的线性拟合关系。
图13是本发明所设计的风速风向自驱动感知装置S方向风舱风向感知的示意图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
如图1和图8所示,摩擦纳米发电机为基于狭缝效应和羟乙基纤维素膜的摩擦纳米发电机(SE-TENG)。每个摩擦纳米发电机是包括了风舱、摩擦得电子层和羟乙基纤维素膜,风舱具有入口端和出口端,风舱的入口端和出口端之间的连线平行于、朝向风向布置,风舱的入口端连接一个喇叭形状管道,风舱的出口端连接有一个弯曲向上的管道。
风舱的内壁上侧表面和下侧表面分别固定粘附有一层摩擦得电子层,上下两层摩擦得电子层平行布置,风舱在靠近入口端的中间设有一个水平布置的、垂直于风向的支撑条,羟乙基纤维素膜的一端固定粘附在支撑条上,另一端向出口端自由延伸,摩擦得电子层和风舱内壁之间粘附或镀上一层导电材料作为电极;羟乙基纤维素膜作为摩擦给电子层,摩擦给电子层粘附在风舱中间。
上下两层摩擦得电子层之间的间距大于羟乙基纤维素膜的厚度,羟乙基纤维素膜在上下两层摩擦得电子层之间的间隙中随风被风拍打而振动摆动并往复接触摩擦得电子层,如同一块布被风吹地运动,这样羟乙基纤维素膜和摩擦得电子层相对平移运动,和接触运动,实现了摩擦纳米发电,在摩擦得电子层输出电能。
本发明的摩擦纳米发电机有四种工作模式,垂直接触-分离模式、水平滑动模式、单电极模式和独立层模式。这四种模式均可工作。
或者摩擦得电子层和羟乙基纤维素膜位置相互替换,即摩擦得电子层粘附 在风舱的支撑条上,羟乙基纤维素膜粘附在风舱内壁上下侧。
具体实施中,可通过3D打印制备摩擦纳米发电机的风舱,风舱入口处的喇叭形状管道口径大,内部比较狭小,这样可以利用狭缝效应将微小的风放大,实现风速的高灵敏度感知。羟乙基纤维素膜通过一侧固定在风舱的中间,另一侧时自由的。风舱的内壁上下均贴有PDMS膜和ITO电极,并且从上下电极上引出两根导线。
如图8所示,风舱内部工作区域的尺寸时7cm×5cm×1cm。所用的HEC和PDMS膜的厚度都是100μm。
本发明中,摩擦纳米发电机所产生的电信号和风速大小具有相关性,通过摩擦纳米发电机所产生的电信号强弱感知风速大小,摩擦纳米发电机所产生的电信号强度越强,风速则越大。
具体实施还可以通过多个摩擦纳米发电机在同一圆环圆周上间隔布置,同时通过沿圆周布置的多个摩擦纳米发电机在不同的方位和朝向进行感知,综合多个摩擦纳米发电机的电信号强弱感知获得风向。
本发明通过浇铸法制备羟乙基纤维素膜用于构建摩擦纳米发电机,羟乙基纤维素膜可以剪成所需要的任意形状。
本发明的摩擦纳米发电机的制备过程如下:
(1)通过3D打印加工出风舱;
(2)制备羟乙基纤维素薄膜作为摩擦给电子材料:将纤维粉末加入到水或乙醇水溶液中,然后添加增塑剂,经过水浴加热使溶液混合均匀,然后蒸发溶剂干燥得到质地均匀、具有良好透明度的羟乙基纤维素膜;
步骤(2)中,具体为:称取4g羟乙基纤维素、1.5g葡萄糖和0.5g尿素加入到100mL去离子水中,经过50℃的水浴搅拌加热60min,将得到的溶液在10000r/min的条件下离心脱气5min,之后倒入到培养皿中烘12h,最后在50%的空气湿度下平衡3h得到羟乙基纤维素膜。
(3)将羟乙基纤维素膜一端固定在风舱的支撑条上,在风舱内壁的上侧表面和下侧表面上先各粘附一层导电材料作为电极,在电极外再粘附一层摩擦得电子材料,且摩擦得电子材料完全覆盖住电极;
(4)从上下电极各引出导线接到整流桥交流端的两个引脚上,整流桥另一两个引脚与外部接收电能设备连接,组成一个完整的摩擦纳米发电机;
本发明摩擦纳米发电机的工作原理是:
当刮风时,羟乙基纤维素膜在风的驱动振动与PDMS接触分离,将风能转化为电能。此外,由于腔体的狭缝效应可以将微弱的风信号放大使摩擦纳米发 电机对外部刺激具有超高的敏感性,速度低至0.5米/秒。农田中的风会引起相应方向腔体中的HEC膜的振动,从腔体的上下电极可以得到感应电信号。
具体实施中,外部接收电能设备采用LED灯。当刮风时,风吹向的风舱内会产生感应电压,驱动LED灯亮起来,指向风吹来的方向。通过分析产生的电信号可以得知风速,从而实现风矢量信息的感知。
将上述摩擦纳米发电机HEC-TENG用于风能感知。用鼓风装置对着某一风舱入口处吹风,HEC膜在风的驱动下会振动与PDMS膜接触分离形成感应电势,不同风速的感知的电信号结果如图4所示,通过图4可以看出所产生的电电压信号与风速大小正相关,说明摩擦纳米发电机可以用于风能感知。
由此实施可见,本发明具有灵敏度高、效应范围高、制备简单的特性,且能保持长时间稳定工作,是传统农业风速感知和供能系统的良好替代品。它不仅可以用于风速传感,还可以作为无线传感器的可持续电源,为构建智能农业提供可靠的基础。
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。
实施例2将SE-TENG中的PDMS和HEC膜置于线性电机上,在线性电机的牵引下实现PDMS和HEC膜的接触分离,从实验结果可以看出输出的电压信号在1000s内可以实现稳定输出,说明SE-TENG可以稳定工作。(对应图2)
实施例3为改变SE-TENG内的PDMS膜厚度分别为25,50,100,200,300μm,测试用不同厚度PDMS制备的SE-TENG在5m/s风速下的电压信号输出。从图中可以看出,PDMS厚度为100μm时输出的电压信号最大(对应图3)。
实施例4为为改变SE-TENG内的HEC膜厚度分别为50,100,150,200,250μm,测试用不同厚度HEC膜制备的SE-TENG在5m/s风速下的电压信号输出。从图中可以看出,HEC膜厚度为100μm时输出的电压信号最大(对应图4)。
实施例5为SE-TENG管道的高度优化。通过3D打印制备高度分别为5,10,15,20,25,30mm的管道,测试在5m/s的风速下具有不同管道高度的SE-TENG的电信号输出,可以看出管道高度为10mm时的电信号输出最大(对应图5)。
实施例6为SE-TENG管道的长度优化。通过3D打印制备长度分别为40,50,60,70,80mm的管道,测试在5m/s的风速下不同管道的SE-TENG的电信号输出,可以看出管道高度长度为70mm时的电信号输出最大(对应图6)。
实施例7为SE-TENG内HEC膜的长度优化。通过浇筑法制备宽度为4.5mm,厚度为100μm,长度分别为10,20,30,40,50,60,70mm的HEC膜,测试在5m/s的风速下具有不同长度HEC膜的SE-TENG的电信号输出,可以看出HEC膜长度为60mm时的电信号输出最大(对应图7)。
风速风向自驱动感知装置OWEH包括至少一个具有狭缝效应的摩擦纳米发电机(SE-TENG)和静电计数字采集板,摩擦纳米发电机布置在静电计数字采集板布置在上。
如图1和图8所示,摩擦纳米发电机为基于羟乙基纤维素膜(HEC)且利用狭缝效应实现风速放大的摩擦纳米发电机(SE-TENG)。每个摩擦纳米发电机是包括了风舱、摩擦得电子层和羟乙基纤维素膜,风舱具有入口端和出口端,风舱的入口端和出口端之间的连线平行于、朝向风向布置,风舱的入口端连接一个喇叭形状管道,风舱的出口端连接有一个弯曲向上的管道。
风舱的内壁上侧表面和下侧表面分别固定粘附有一层摩擦得电子层,上下两层摩擦得电子层平行布置,风舱在靠近入口端的中间设有一个水平布置的、垂直于风向的支撑条,羟乙基纤维素膜的一端固定粘附在支撑条上,另一端向出口端自由延伸,摩擦得电子层和风舱内壁之间粘附或镀上一层导电材料作为电极;羟乙基纤维素膜作为摩擦给电子层,摩擦给电子层粘附在风舱中间。
上下两层摩擦得电子层之间的间距大于羟乙基纤维素膜的厚度,羟乙基纤维素膜在上下两层摩擦得电子层之间的间隙中随风被风拍打而振动摆动并往复接触摩擦得电子层,如同一块布被风吹地运动,这样羟乙基纤维素膜和摩擦得电子层相对平移运动,和接触运动,实现了摩擦纳米发电,在摩擦得电子层输出电能。
本发明的摩擦纳米发电机有四种工作模式,垂直接触-分离模式、水平滑动模式、单电极模式和独立层模式。这四种模式均可工作。
或者摩擦得电子层和羟乙基纤维素膜位置相互替换,即摩擦得电子层粘附在风舱的支撑条上,羟乙基纤维素膜粘附在风舱内壁上下侧。
如图9所示,设置有八个摩擦纳米发电机,八个摩擦纳米发电机沿径向间隔圆心角45°地固定在一个圆环的圆周上,八个摩擦纳米发电机均连接到静电计数字采集板,通过静电计数字采集板采集和处理摩擦纳米发电机所产生的电信号并通过蓝牙实时无线传输到手机端。圆环的外周面开设卡槽,卡槽用于安装摩擦纳米发电机。
具体实施中,可通过3D打印制备风速风向自驱动感知装置的风舱,风舱入口处的喇叭形状管道口径大,内部比较狭小,这样可以利用狭缝效应将微小的 风放大,实现风速风向的高灵敏度感知。羟乙基纤维素膜通过一侧固定在风舱的中间,另一侧时自由的。风舱的内壁上下均贴有PDMS膜和ITO电极,并且从上下电极上引出两根导线。
风舱内部工作区域的尺寸时7cm×5cm×1cm。所用的HEC和PDMS膜的厚度都是100μm。
本发明中,摩擦纳米发电机所产生的电信号和风速大小具有相关性,通过摩擦纳米发电机所产生的电信号强弱感知风速大小,摩擦纳米发电机所产生的电信号强度越强,风速则越大。
同时通过沿圆周布置的多个摩擦纳米发电机在不同的方位和朝向进行感知,综合多个摩擦纳米发电机的电信号强弱感知获得风向。
本发明通过浇铸法制备羟乙基纤维素膜用于构建摩擦纳米发电机,羟乙基纤维素膜可以剪成所需要的任意形状。
本发明的风速风向自驱动感知装置的制备过程如下:
(1)通过3D打印加工出风舱;
(2)制备羟乙基纤维素薄膜作为摩擦给电子材料:将纤维粉末加入到水或乙醇水溶液中,然后添加增塑剂,经过水浴加热使溶液混合均匀,然后蒸发溶剂干燥得到质地均匀、具有良好透明度的羟乙基纤维素膜;
步骤(2)中,具体为:称取4g羟乙基纤维素、1.5g葡萄糖和0.5g尿素加入到100mL去离子水中,经过50℃的水浴搅拌加热60min,将得到的溶液在10000r/min的条件下离心脱气5min,之后倒入到培养皿中烘12h,最后在50%的空气湿度下平衡3h得到羟乙基纤维素膜。
(3)将羟乙基纤维素膜一端固定在风舱的支撑条上,在风舱内壁的上侧表面和下侧表面上先各粘附一层导电材料作为电极,在电极外再粘附一层摩擦得电子材料,且摩擦得电子材料完全覆盖住电极;
(4)从上下电极各引出导线接到整流桥交流端的两个引脚上,整流桥另一两个引脚与外部接收电能设备连接,组成一个完整的摩擦纳米发电机;
(5)八个摩擦纳米发电机沿径向间隔圆心角45°分布在圆环的圆周上,并和静电计数字采集板配合构成一个风速风向自驱动感知系统。
本发明风速风向自驱动感知装置的工作原理是:
当刮风时,羟乙基纤维素膜在风的驱动振动与PDMS接触分离,将风能转化为电能。此外,由于腔体的狭缝效应可以将微弱的风信号放大使风速风向自驱动感知装置对外部刺激具有超高的敏感性,速度低至0.5米/秒。农田中的风会引起相应方向腔体中的HEC膜的振动,从腔体的上下电极可以得到感应电信 号。
八个相隔45°的风速风向自驱动感知装置沿径向通过卡槽固定在圆环上,构成一个用于农业环境的风速风向自驱动感知装置。通过静电计数据采集(DAQ)板收集和分析风速风向自驱动感知装置的输出信号并通过蓝牙将信息无线传输到手机上,可以实时获得风速和风向信息,对农业生产进行及时调整。此外,风速风向自驱动感知装置在风速感应过程中产生的电能也可用于驱动农业传感器。
具体实施中,外部接收电能设备采用LED灯。当刮风时,风吹向的风舱内会产生感应电压,驱动LED灯亮起来,指向风吹来的方向。通过分析产生的电信号可以得知风速和风向,从而实现风矢量信息的感知。
将上述摩擦纳米发电机HEC-TENG用于风能感知。用鼓风装置对着某一风舱入口处吹风,HEC膜在风的驱动下会振动与PDMS膜接触分离形成感应电势,不同风速的感知的电信号结果如图10、图11和图12所示,可以看出所产生的电电压信号、电流信号均与风速大小正相关,说明风速风向自驱动感知装置可以用于风能感知。
图12是风速和电压的线性拟合关系,可以根据得到的电压大小计算出风速大小,说明风速风向自驱动感知装置可以用于风能感知。
由此实施可见,本发明具有灵敏度高、效应范围高、制备简单的特性,且能保持长时间稳定工作,是传统农业风速风向感知和供能系统的良好替代品。它不仅可以用于风速和风向传感,还可以作为无线传感器的可持续电源,为构建智能农业提供可靠的基础。
图13是S方向风向感知的示意图。当有风从S方向吹来时,引起S方向SE-TENG内的HEC膜上下拍打PDMS膜,产生电能使得该方向的LED灯被点亮。LED亮灯的方向即为风吹来的方向,实现风向的感知。
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种具有狭缝效应的摩擦纳米发电机,其特征在于:
    每个摩擦纳米发电机是包括了风舱、摩擦得电子层和羟乙基纤维素膜,风舱具有入口端和出口端,风舱的内壁上侧表面和下侧表面分别固定粘附有一层摩擦得电子层,风舱在靠近入口端的中间设有一个水平布置的、垂直于风向的支撑条,羟乙基纤维素膜的一端固定粘附在支撑条上,另一端向出口端自由延伸。
  2. 根据权利要求1所述的一种具有狭缝效应的摩擦纳米发电机,其特征在于:所述的风舱的入口端连接一个喇叭形状管道,风舱的出口端连接有一个弯曲向上的管道。
  3. 根据权利要求1所述的一种具有狭缝效应的摩擦纳米发电机,其特征在于:所述的摩擦得电子层采用采用聚四氟乙烯(Teflon)、聚二甲基硅氧烷(PDMS)、聚酰亚胺(Kapton)、聚氯乙烯(PVC)、硅橡胶(Ecoflex)、聚乳酸(PLA)等材料中的一种。
  4. 根据权利要求1所述的一种具有狭缝效应的摩擦纳米发电机,其特征在于:所述的摩擦得电子层和风舱内壁之间粘附或镀上一层导电材料作为电极。
  5. 根据权利要求4所述的一种具有狭缝效应的摩擦纳米发电机,其特征在于:所述的导电材料采用氧化铟锡膜(ITO)、银纳米线、铜、铝等导电材料种的一种。
  6. 根据权利要求1-5任一所述摩擦纳米发电机的制备方法,其特征在于:
    (1)通过3D打印加工出风舱;
    (2)制备羟乙基纤维素薄膜:将纤维粉末加入到水或乙醇水溶液中,然后添加增塑剂,经过水浴加热使溶液混合均匀,然后蒸发溶剂干燥得到羟乙基纤维素膜;
    (3)将羟乙基纤维素膜一端固定在风舱的支撑条上,在风舱内壁的上侧表面和下侧表面上先各粘附一层导电材料作为电极,在电极外再粘附一层摩擦得电子材料,且摩擦得电子材料完全覆盖住电极;
    (4)从上下电极各引出导线接到整流桥交流端的两个引脚上,整流桥另一两个引脚与外部接收电能设备连接,组成一个完整的摩擦纳米发电机。
  7. 根据权利要求6所述摩擦纳米发电机的制备方法,其特征在于:
    所述的增塑剂是由葡萄糖和尿素混合构成。
  8. 根据权利要求7所述摩擦纳米发电机的制备方法,其特征在于:
    所述步骤(2)中,具体为:称取1-5g羟乙基纤维素、0.3-1.5g葡萄糖和0.1-0.5g尿素加入到100mL去离子水中,经过50℃的水浴搅拌加热60min,将得到的溶液在10000r/min的条件下离心脱气5min,之后倒入到培养皿中烘6-12h,最后在30-80%的空气湿度下平衡3h得到羟乙基纤维素膜。
  9. 一种风速风向自驱动感知装置,其特征在于:
    所述风速风向自驱动感知装置包括至少一个权利要求1-5任一所述摩擦纳米发电机和静电计数字采集板,摩擦纳米发电机布置在静电计数字采集板上。
  10. 根据权利要求9所述的一种风速风向自驱动感知装置,其特征在于:
    设置有多个摩擦纳米发电机,多个摩擦纳米发电机沿径向间隔圆心角45°地固定在一个圆环的圆周上,多个摩擦纳米发电机均连接到静电计数字采集板,通过静电计数字采集板采集和处理摩擦纳米发电机所产生的电信号并通过蓝牙实时无线传输到手机端。
  11. 根据权利要求9-10任一所述的风速风向自驱动感知装置的制备方法,其特征在于:
    (1)通过3D打印加工出风舱;
    (2)制备羟乙基纤维素薄膜:将纤维粉末加入到水或乙醇水溶液中,然后添加增塑剂,经过水浴加热使溶液混合均匀,然后蒸发溶剂干燥得到羟乙基纤维素膜;
    (3)将羟乙基纤维素膜一端固定在风舱的支撑条上,在风舱内壁的上侧表面和下侧表面上先各粘附一层导电材料作为电极,在电极外再粘附一层摩擦得电子材料,且摩擦得电子材料完全覆盖住电极;
    (4)从上下电极各引出导线接到整流桥交流端的两个引脚上,整流桥另一两个引脚与外部接收电能设备连接,组成一个完整的摩擦纳米发电机;
    (5)八个摩擦纳米发电机沿径向间隔圆心角45°分布在圆环的圆周上,并和静电计数字采集板配合构成一个风速风向自驱动感知系统。
  12. 根据权利要求11所述的风速风向自驱动感知装置的制备方法,其特征在于:所述的增塑剂是由葡萄糖和尿素混合构成。
  13. 根据权利要求11所述的风速风向自驱动感知装置的制备方法,其特征在于:所述步骤(2)中,具体为:称取1-5g羟乙基纤维素、0.3-1.5g葡萄糖和0.1-0.5g尿素加入到100mL去离子水中,经过50℃的水浴搅拌加热60min,将得到的溶液在10000r/min的条件下离心脱气5min,之后倒入到培养皿中烘6-12h,最后在30-80%的空气湿度下平衡3h得到羟乙基纤维素膜。
PCT/CN2021/128194 2021-07-20 2021-11-02 一种摩擦纳米发电机及风速风向自驱动感知装置 WO2023000542A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/924,121 US20240219418A1 (en) 2021-07-20 2021-11-02 Triboelectric nanogenerator (teng) and self-driven wind speed and wind direction sensing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110820357.4A CN113644839B (zh) 2021-07-20 2021-07-20 一种风速风向自驱动感知装置
CN202110820366.3 2021-07-20
CN202110820366.3A CN113794396B (zh) 2021-07-20 2021-07-20 一种具有狭缝效应高效收集风能的摩擦纳米发电机
CN202110820357.4 2021-07-20

Publications (1)

Publication Number Publication Date
WO2023000542A1 true WO2023000542A1 (zh) 2023-01-26

Family

ID=84980462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128194 WO2023000542A1 (zh) 2021-07-20 2021-11-02 一种摩擦纳米发电机及风速风向自驱动感知装置

Country Status (2)

Country Link
US (1) US20240219418A1 (zh)
WO (1) WO2023000542A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117825642A (zh) * 2024-03-06 2024-04-05 太原理工大学 基于风能摩擦纳米发电的矿用气体浓度监测装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160344308A1 (en) * 2015-05-19 2016-11-24 Georgia Tech Research Corporation Triboelectric Nanogenerator for Harvesting Broadband Kinetic Impact Energy
CN109420246A (zh) * 2017-08-31 2019-03-05 北京纳米能源与系统研究所 可控药物释放的集成微针贴片和方法
CN110729916A (zh) * 2019-10-21 2020-01-24 北京纳米能源与系统研究所 摩擦纳米发电机及自驱动应变传感器及其应用
CN111765995A (zh) * 2020-07-06 2020-10-13 东华大学 一种自驱动抗菌型柔性电子皮肤及其制备方法
CN113067495A (zh) * 2021-04-28 2021-07-02 重庆大学 基于钝体绕流效应的微风能量收集摩擦纳米发电机及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160344308A1 (en) * 2015-05-19 2016-11-24 Georgia Tech Research Corporation Triboelectric Nanogenerator for Harvesting Broadband Kinetic Impact Energy
CN109420246A (zh) * 2017-08-31 2019-03-05 北京纳米能源与系统研究所 可控药物释放的集成微针贴片和方法
CN110729916A (zh) * 2019-10-21 2020-01-24 北京纳米能源与系统研究所 摩擦纳米发电机及自驱动应变传感器及其应用
CN111765995A (zh) * 2020-07-06 2020-10-13 东华大学 一种自驱动抗菌型柔性电子皮肤及其制备方法
CN113067495A (zh) * 2021-04-28 2021-07-02 重庆大学 基于钝体绕流效应的微风能量收集摩擦纳米发电机及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117825642A (zh) * 2024-03-06 2024-04-05 太原理工大学 基于风能摩擦纳米发电的矿用气体浓度监测装置及方法
CN117825642B (zh) * 2024-03-06 2024-04-30 太原理工大学 基于风能摩擦纳米发电的矿用气体浓度监测装置及方法

Also Published As

Publication number Publication date
US20240219418A1 (en) 2024-07-04

Similar Documents

Publication Publication Date Title
Liu et al. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters
Rahman et al. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system
He et al. A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring
Ye et al. A triboelectric–electromagnetic hybrid nanogenerator with broadband working range for wind energy harvesting and a self-powered wind speed sensor
Ren et al. Strategies for effectively harvesting wind energy based on triboelectric nanogenerators
Fu et al. Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification
Dai et al. Omnidirectional wind energy harvester for self-powered agro-environmental information sensing
CN109682989B (zh) 基于摩擦纳米发电机的自驱动农业物联网风速传感器
Cheng et al. Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy
Fang et al. A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications
CN109687756B (zh) 一种适合在高湿度环境中使用的基于生物膜材料的摩擦纳米发电机及其制备方法与应用
CN113794396B (zh) 一种具有狭缝效应高效收集风能的摩擦纳米发电机
Zhao et al. Calliopsis structure-based triboelectric nanogenerator for harvesting wind energy and self-powerd wind speed/direction sensor
WO2021052072A1 (zh) 农业环境能量收集的一体式柔性自充电电源及制备方法
Rahman et al. Ultra-robust and broadband rotary hybridized nanogenerator for self-sustained smart-farming applications
CN105587461B (zh) 气流发生装置以及风力发电系统
WO2023000542A1 (zh) 一种摩擦纳米发电机及风速风向自驱动感知装置
Zhu et al. Double-blade structured triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting
Zhang et al. Irregular wind energy harvesting by a turbine vent triboelectric nanogenerator and its application in a self-powered on-site industrial monitoring system
Delgado-Alvarado et al. Recent progress of nanogenerators for green energy harvesting: Performance, applications, and challenges
Shi et al. Progress in recent research on the design and use of triboelectric nanogenerators for harvesting wind energy
An et al. Advances and prospects of triboelectric nanogenerator for self-powered system
Men et al. Cotton-assisted dual rotor-stator triboelectric nanogenerator for real-time monitoring of crop growth environment
Dai et al. Triboelectric nanogenerators for smart agriculture
Cho et al. Physical intelligence-based working mode adaptable triboelectric nanogenerator for effective wind energy harvesting in broad range

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17924121

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE