WO2023000346A1 - 干燥设备、控制方法 - Google Patents

干燥设备、控制方法 Download PDF

Info

Publication number
WO2023000346A1
WO2023000346A1 PCT/CN2021/108294 CN2021108294W WO2023000346A1 WO 2023000346 A1 WO2023000346 A1 WO 2023000346A1 CN 2021108294 W CN2021108294 W CN 2021108294W WO 2023000346 A1 WO2023000346 A1 WO 2023000346A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
signal
radiation source
radiation
drying equipment
Prior art date
Application number
PCT/CN2021/108294
Other languages
English (en)
French (fr)
Inventor
徐兴旺
田杰
Original Assignee
深圳汝原科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳汝原科技有限公司 filed Critical 深圳汝原科技有限公司
Priority to PCT/CN2021/108294 priority Critical patent/WO2023000346A1/zh
Priority to CN202180051964.7A priority patent/CN116209372A/zh
Publication of WO2023000346A1 publication Critical patent/WO2023000346A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • A45D20/12Details thereof or accessories therefor, e.g. nozzles, stands

Definitions

  • the application relates to the field of electrical equipment, in particular to a drying equipment and a control method.
  • wireless hair dryers are easy to carry and easy to use, which greatly expands the usage scenarios of hair dryers (for example, users carry them with them), but they are also prone to problems such as false touches, failure to shut down, and short circuits, making wireless hair dryers
  • the hair dryer continues to operate without the user's awareness to generate a large amount of heat and cause risks such as fire, making safety low.
  • Embodiments of the present application provide a drying device and a control method.
  • drying equipment includes:
  • an operating component configured to control the conduction between the power supply and the radiation source
  • a locking unit for putting the drying device into a safe mode
  • the radiation source In the safe mode, the radiation source is disconnected from the power source and does not respond to the operating components.
  • drying equipment includes:
  • An operating component which controls the conduction between the power supply and the radiation source after being operated
  • An attitude detection unit configured to detect the attitude information and the corresponding time of the drying equipment, and output an attitude signal
  • a main control unit configured to receive the attitude signal and adjust the power of the radiation source.
  • a control method provided in an embodiment of the present application is used for drying equipment, the drying equipment includes a power supply, a radiation source, an operating component, and a locking unit, the radiation source is electrically connected to the power supply, and the operating component is used to control the power supply conduction with the radiation source,
  • control methods include:
  • the drying equipment When the radiation source is not connected to the power supply, the drying equipment enters a safe mode
  • the radiation source In the safe mode, the radiation source is disconnected from the power source and does not respond to the operating components.
  • a control method provided in an embodiment of the present application is used for drying equipment, the drying equipment includes a power supply, a radiation source, an operating component, an attitude detection unit and a main control unit, the radiation source is electrically connected to the power supply, and the control Methods include:
  • the connection between the radiation source and the power supply is disconnected, so as to avoid the continuous operation of the drying equipment caused by accidental touch, failure to shut down the machine, and short circuit.
  • Fig. 1-Fig. 2 is the module structure schematic diagram of the drying equipment of the embodiment of the present application.
  • Fig. 3 is the structural representation of the drying equipment of the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a push assembly according to an embodiment of the present application.
  • Fig. 5 is a schematic structural view of a drying device according to an embodiment of the present application.
  • Fig. 6 is an enlarged view of part X of Fig. 5;
  • FIGS. 7-12 are schematic diagrams of the module structure of the drying equipment according to the embodiment of the present application.
  • FIG. 13-14 are schematic structural views of the air outlet duct in the embodiment of the present application.
  • 15-23 are schematic diagrams of the module structure of the drying equipment in the embodiment of the present application.
  • Power supply 10 radiation source 20, operating component 30, locking unit 40, grip part 50, power management unit 60, posture detection unit 70, motor 80, main control unit 90;
  • Operation piece 31 operation signal sensor 32, capacitive button 34, mechanical button 35, protection structure 36, lock switch 41, first position 42, second position 43, housing 44, chute 45, identification structure 46, start button 51 , a power switch 61, a discharge switch 62, a power switch 63, an air outlet duct 81, a temperature measuring element 82, a heating element 84, a power chip 91, and a timing unit 92.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two elements or the interaction relationship between two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • a drying device 100 provided in an embodiment of the present application includes a power source 10 , a radiation source 20 , an operating component 30 and a locking unit 40 .
  • the radiation source 20 is electrically connected to the power source 10 .
  • the operating component 30 is used to control the power supply 10 to be connected to the radiation source 20 .
  • the locking unit 40 is used to put the drying device 100 into a safe mode. In safe mode, radiation source 20 is disconnected from power supply 10 and does not respond to operating component 30 . It is easy to understand that although the operation component 30 can control the power supply 10 and the radiation source 20 to switch from the non-conduction state to the conduction state, in the safe mode, the operation component 30 cannot realize its control function.
  • the drying device 100 includes at least two modes: in the non-safe mode, even if the power supply 10 and the radiation source 20 are in a non-conductive state, the two can be controlled to conduct each other through the operating component 30; in the safe mode, the power supply 10 and the radiation source 20 The radiation source 20 is in a non-conducting state, and the operating component 30 cannot control the mutual conduction of the two.
  • the radiation source 20 may radiate visible light, infrared light of a preset frequency band, or a combination of visible light and infrared light. In some embodiments, the radiation source 20 transmits energy (such as heat energy) to the outside through the radiated light, so that the surrounding target objects (such as hair, human body parts, fibers, etc.) can be heated up after receiving the radiated energy to achieve the effect of drying .
  • the drying device 100 may be a blower, and the radiated energy cooperates with the airflow to accelerate the drying efficiency of the target object.
  • the power supply 10 can supply power to the radiation source 20 by operating the operation component 30 to control the conduction between the power supply 10 and the radiation source 20 .
  • the actual function of the operating component 30 can be understood as a switch on a general electrical device, which enables the drying device 100 to be switched between off and on for normal use after operation.
  • the unresponsive operation component 30 in the safe mode may be that the drying device 100 as a whole does not respond to the operation component 30, that is to say, the operation component 30 cannot control the drying device 100.
  • the unresponsive operation component 30 in the safe mode may be that the radiation source 20 does not respond to the operation component 30 , which means that the operation component 30 cannot control the radiation source 20 .
  • the connection between the radiation source 20 and the power source 10 in the above-mentioned drying device 100 remains disconnected continuously and does not respond to the operating assembly 30 .
  • the drying device 100 only responds to the locking unit 40, which can avoid the accidental opening of the drying device 100 due to abnormal conditions such as the operation component 30 being touched by mistake, not shutting down, and the circuit short circuit, thereby avoiding easy access around the drying device 100.
  • Combustible objects continue to receive energy from the radiation source 20 to heat up and even catch fire.
  • the drying device 100 in this embodiment uses the radiation source 20 to radiate energy to the outside. If it is opened by mistake, for example, after the drying device 100 is placed or stored by the user, the drying device 100 collides with the surrounding objects, causing the operation component 30 to be accidentally touched. , or the drying equipment 100 is short-circuited due to some special circumstances, so that the power supply 10 and the radiation source 20 are connected to each other, and the radiation source 20 will continue to transmit energy outward through radiation, causing the surrounding objects to accumulate the energy brought by the radiation and heat up.
  • drying device 100 For some objects with low ignition point, it is very easy to spontaneously ignite due to the above reasons, and further lead to the occurrence of fire. In some other embodiments, if the drying device 100 is accidentally touched by minors (such as children) or animals, it will bring potential safety hazards to them.
  • the drying equipment 100 of the present application by setting the locking unit 40, the drying equipment 100 can enter the safe mode, thereby keeping the power supply 10 and the radiation source 20 disconnected, and the drying equipment 100 cannot perform operations on the operating components 30. response. In this way, even if the above-mentioned abnormal situation occurs in the drying equipment 100, the drying equipment 100 will not be accidentally opened because it cannot respond to the operation component 30, thereby avoiding disasters and improving the safety of the drying equipment 100 itself.
  • the locking unit 40 can ensure that the drying device 100 is kept closed to the greatest extent.
  • the user stores the drying device 100, needs to carry the drying device 100 when traveling, or places the drying device 100 in a place where there are minors or pets, he only needs to operate the locking unit 40 so that the drying device 100 is in the safe mode to prevent it from drying out. was turned on by mistake. In this way, the user can safely store, carry or place the drying device 100 .
  • the power source 10 may be a battery installed on the drying device 100, or may be a power supply facility requiring wired connection, and the drying device 100 is connected to the power supply facility through a preset power line.
  • the operation component 30 is operated to output an operation signal.
  • the drying device 100 remains in the shutdown state.
  • the power source 10 is connected to the radiation source 20 to start the drying device 100 .
  • the assembly 30 unlocks the safety of the drying device 100 .
  • the drying device 100 is not in the safe mode, and the operation component 30 outputs an operation signal.
  • the operation signal does not meet the preset condition, it can be confirmed that the operation component 30 may be accidentally touched, so that the drying device 100 remains in the shutdown state.
  • the operation signal satisfies the preset condition, it can be confirmed that the user has operated the operation component 30 correctly, so that the power supply 10 is connected to the radiation source 20, so that the drying device 100 is turned on, and the radiation source 20 starts to generate radiation.
  • the operation component 30 itself also has the function of preventing false touches. Even if the drying device 100 is not in the safe mode, the operation component 30 itself can eliminate the risk of false touches to a certain extent through the judgment of the preset conditions, and further improve safety. .
  • the operating component 30 is capable of generating multiple operating signals. When the number of received operation signals is less than the preset number, the operation signal does not meet the preset condition, and when the number of received operation signals is the preset number, the operation signal meets the preset condition. In some implementations, the operating component 30 can also generate a special signal combination, and determine whether the preset condition is met according to whether each signal in the signal combination meets the preset threshold range. For example, when the combination of the body angle and motion amplitude signal of the drying device 100 is within a certain angle range close to the vertical direction, and the motion range meets the handheld state, it is judged that the preset condition is met, and then the drying device 100 is turned on to available to users.
  • a number of operation signals will be generated. It can be understood that when the operating component 30 is accidentally touched or operated incorrectly, it often only generates a small amount of operating signals. When the number of received operation signals is less than a preset number, it may be determined that the operation signals do not satisfy a preset condition.
  • the number of received operation signals is the preset number, it can be determined that the operation signals satisfy the preset condition, and the operation component 30 is correctly operated by the user.
  • the power supply 10 and the radiation source 20 are connected, and the drying device 100 radiates to the outside through the radiation source 20 .
  • the operating component 30 includes a plurality of operating elements 31 and an identification unit 311 .
  • Each operating element 31 is used to output an operating signal.
  • the recognition unit 311 is used for receiving the operation signal, and turning on the power supply 10 and the radiation source 20 to turn on the drying device 100 when the preset condition is met.
  • the operating assembly 30 is not limited to an assembly including a plurality of operating elements 31 and an identification assembly 311.
  • the operating assembly 30 may also be an assembly including a conventional mechanical switch and related circuits. The position of the mechanical switch is judged by the contacts on the top, which is used as a preset condition for controlling the conduction between the power supply 10 and the radiation source 20 .
  • the drying device 100 further includes a main control unit 90 .
  • the recognition unit 311 can send the received operation signal to the main control unit 90, so that the main control unit 90 determines whether the received operation signal meets the preset condition, and when the received operation signal After the preset condition is satisfied, the drying device 100 is controlled to turn on the connection between the power supply 10 and the radiation source 20, so that the drying device 100 is turned on.
  • the main control unit 90 can determine to keep the connection between the power source 10 and the radiation source 20 disconnected by sending a relevant signal to the main control unit 90 so that the drying device 100 enters the safe mode, or it can directly The connection between the control power source 10 and the radiation source 20 is broken so that the drying device 100 enters a safe mode.
  • the plurality of operating elements 31 can be independent of each other to generate a plurality of operating signals, and each operating element 31 needs to be operated separately to output the operating signals independently.
  • multiple operating elements 31 can be set in a certain degree of linkage, and the user only needs one correct operation action to operate all operating elements 31 at the same time to generate corresponding operating signals, which is more ergonomic. , in order to reduce the user's learning cost.
  • the number of operating elements 31 is two, and the preset number is two.
  • the recognition unit 311 can receive the operation signals respectively generated from the synchronous operation of the two operation parts 31 . In this way, the number of received operation signals is two, which meets the preset condition.
  • the number of operating elements 31 may be three, four or more, and when the user operates the operating component 30, all operating elements 31 may be is operated so that the recognition unit 311 receives a corresponding operation signal.
  • one of the plurality of operation members 31 may be operated to generate at least one operation signal.
  • the number of operation signals generated by the operation of one operation member 31 can be determined by operating the operation member 31 .
  • the drying device 100 includes a handle 50 .
  • the plurality of operating elements 31 include an operating signal sensor 32 and a start button 51 .
  • the operation signal sensor 32 is disposed on the grip portion 50 for sensing human body capacitance and outputting an operation signal.
  • the power-on button 51 is used to output an operation signal after being pressed.
  • the operation signal of the operation signal sensor 32 can be set to be generated when the detected human body capacitance is within a preset capacitance interval; the operation signal of the power button 51 can be set to be generated after a certain time is pressed.
  • the operation signal sensor 32 can detect the gripping pressure when the user grips the grip part 50 to determine to generate a corresponding operation signal.
  • the action of picking up the drying device 100 includes holding the grip part 50 of the drying device 100, so that the operation signal sensor 32 disposed on the grip part 50 detects The gripping pressure on the gripping part 50 is used to output the operation signal.
  • the power-on button 51 outputs an operation signal after detecting that it is pressed.
  • the operation component 30 generates an operation signal corresponding to the operation signal sensor 32 and an operation signal corresponding to the operation signal of the power button 51 when the human body operates once (operating the power-on button 51 when holding the grip portion 50 ).
  • the operation signal of the operation signal sensor 32 can be set to be generated when the grip pressure is in a preset pressure range; the operation signal of the power button 51 can be set to be generated after a certain time is pressed.
  • the operation signal sensor 32 can generate an operation signal
  • the power-on button 51 can also generate an operation signal, and when the preset number is two, when both of them successfully output the operation signal, it can be determined that they meet the requirements. Under preset conditions, the power source 10 and the radiation source 20 are turned on to start the drying device 100 .
  • the operation signal sensor 32 can simultaneously sense the human body capacitance and the grip pressure, and output an operation signal only when the two kinds of information meet the conditions.
  • the specific principle is similar or the same as that of the above-mentioned embodiment. I won't go into details here.
  • the plurality of operating elements 31 include capacitive buttons 34 and mechanical buttons 35 .
  • the capacitive key 34 is arranged on the surface of the mechanical key 35 and moves along with the mechanical key 35 .
  • the capacitive key 34 is used to generate a touch signal when touched.
  • the mechanical key 35 is used to generate a pressing signal when pressed.
  • the capacitive key 34 is arranged on the surface of the mechanical key 35, and the user will directly touch the capacitive key 34 when pressing the mechanical key 35, and make the capacitive key 34 follow the pressing of the mechanical key 35. direction, so that the user can touch the capacitive button 34 and press the mechanical button 35 with one operation action (press the button).
  • the capacitive button 34 when the capacitive button 34 is touched by the user, the size of the touch capacitance will be detected, and a touch signal will be generated when the touch capacitance meets the preset capacitance range.
  • the numerical range interval of the capacitance generated when the user touches the capacitive button 34 is determined experimentally, and this interval is used as the above-mentioned capacitance interval.
  • two corresponding contacts can be provided under the mechanical button 35, and the two contacts are configured to conduct when the mechanical button 35 is fully pressed, and generate a pressing signal; further, The pressing signal may be generated after the contact is pressed for a time longer than or equal to a preset time.
  • the pressing force or the displacement distance of the mechanical key 35 is detected, and a pressing signal is generated when the predetermined value is met.
  • a pressing signal may be generated when the mechanical key 35 is pressed to a preset position.
  • the operating element 31 may be provided with a corresponding sensor, and when the operating element 31 is operated, the corresponding sensor may detect the operation performed on the operating element 31 to generate a corresponding operating signal.
  • the operating member 31 will generate a data signal when it is operated, so that the data signal can be received by the preset sensor of the drying equipment 100 to detect whether the corresponding requirement is met, and if it is satisfied, the corresponding operation will be output Signal.
  • the capacitive button 34 and the mechanical button 35 will be operated simultaneously to generate a touch signal and a press signal respectively.
  • the operation signal may correspondingly include a touch signal and a press signal, that is, the touch signal constitutes an operation signal, and the press signal constitutes another operation signal.
  • the preset number of corresponding operation signals is two.
  • the preset conditions of the recognition unit 311 may only include the touch signal and the press signal itself, and the simultaneous presence of the two means that the current operation of the drying device 100 is judged as a normal operation, rather than the number of operation signals. in accordance with.
  • the capacitive button 34 when the drying device 100 collides with other objects, even if the mechanical button 35 collides with other objects or is pressed to generate a pressing signal, the capacitive button 34 does not detect The corresponding user touches the capacitor, so that the capacitive button 34 cannot generate a touch signal, so that the above-mentioned collision will not cause the drying device 100 to be turned on by mistake.
  • the surface of the human body slightly touches the capacitive key 34 of the drying device 100 to generate a touch signal, but the mechanical key 35 does not meet the preset conditions and cannot generate a corresponding press signal, and then So that the above-mentioned touch will not cause the drying device 100 to be turned on by accidental touch. Therefore, the operation component 30 composed of the mechanical button 35 and the capacitive button 34 can ensure that the drying device 100 is turned on only when the user touches the capacitive button 34 and presses the mechanical button 35 to a preset condition.
  • the drying apparatus 100 includes a protective structure 36 .
  • the capacitive key 34 is disposed between the protection structure 36 and the mechanical key 35 . The user touches the capacitive key 34 through the protective structure 36 .
  • the protective structure 36 can also prevent the surface of the capacitive button 34 from being worn or damaged by bumps, thereby preventing the user from being unable to touch due to the inability to detect the touch capacitance. Boot problem.
  • the protective structure 36 can be made of resin or silicone. When the user operates the operation component 30 or the operation component 30 is accidentally touched, the protective structure 36 protects the capacitive key 34 to prevent the capacitive key 34 from being damaged due to multiple operations or false touches, and can make the capacitive key 34 When operated by the user, it will not directly touch the human body, thereby reducing the sensitivity of the capacitive button 34 to the capacitance of external objects (such as the human body).
  • the protective structure 36, the capacitive key 34, and the mechanical key 35 are integrated to form the actual power-on key, that is, the key actually pressed by the user when the power is turned on.
  • the protective structure 36 can be set as an arc surface according to ergonomics, increasing Touch bumps, etc., provide a certain touch feedback, so that the user can judge that the power button has been touched only by the touch of the finger.
  • the locking unit 40 includes a locking switch 41 .
  • the locking switch 41 is movably disposed on the surface of the drying device 100 .
  • Lockout switch 41 has a first position 42 and a second position 43 . When the lock switch 41 is moved to the first position 42, the lock unit 40 enters the safe mode. When the lock switch 41 is actuated to the second position 43 , the safety mode is exited. It is easy to understand that the locking switch 41 can be realized by various mature electrical switches in the prior art, when it is switched from the second position 43 to the first position 42, it is equivalent to the operation of entering the safe mode, otherwise it is exiting The operation in safe mode and the specific electrical structure are not the focus of this embodiment.
  • the user can conveniently and quickly confirm whether the drying device 100 is currently in the safe mode by observing the position of the locking switch 41 .
  • the drying device 100 will enter the safe mode when the lock switch 41 is at the first position 42, and will exit the safe mode when the lock switch 41 is at the second position 43, for the user, the user can simply operate the lock switch 41 to enter or exit the safety mode, and by observing the position of the lock switch 41 before use, it is also possible to quickly determine whether the drying device 100 is currently in the safety mode without additional operations.
  • the drying device 100 includes a housing 44 .
  • the casing 44 is provided with a sliding slot 45 .
  • the locking switch 41 is slidably mounted on the sliding slot 45 .
  • the first position 42 and the second position 43 are located in the slide groove 45 .
  • the lock switch 41 is provided with an identification structure 46 for identifying the current position of the lock switch 41 .
  • the locking switch 41 can be moved by sliding along the sliding groove 45, and when the locking switch 41 slides to the first position 42, the identification structure 46 on the locking switch 41 shows that the locking switch 41 is currently at the first position 42 , and when the locking switch 41 slides to the second position 43 , the identification structure 46 on the locking switch 41 indicates that the locking switch 41 is currently at the second position 43 . That is to say, through the marking structure 46 on the locking switch 41 , the position of the locking switch 41 can be correspondingly determined. In a more specific manner, an indicator light can be set on the lock switch 41 to form an identification structure 46.
  • the indicator light is red to indicate that it is currently in a safe mode, and the lock switch 41 moves to the first position 42.
  • the indicator light goes out, indicating that it is currently in a non-safe mode, and it can be turned on and used normally.
  • the movable space of the locking switch 41 can be limited to the first position 42 and the second position 43, and through the relevant mechanical limit structure, the locking switch 41 only includes the first position in the sliding stop position. position 42 and second position 43, so that the drying device 100 is in the safe mode or exits the safe mode, which is conducive to the user's confirmation of the current position of the locking switch 41, and prevents the locking switch 41 from being located other than the first position 42 and the second position 43 other positions, making the user doubt whether the drying device 100 is currently in the safe mode.
  • the identification structure 46 can be provided on the sliding slot 45, and when the locking switch 41 slides to the corresponding position, the current location of the locking switch 41 can be determined through the identification structure 46 at the position of the locking switch 41. Whether the location is the first location 42 or the second location 43 .
  • the identification structure 46 can be set on both the lock switch 41 and the chute 45, or on the housing 44 adjacent to the chute 45. The specific principle is the same as that of the above-mentioned embodiment. The principles are similar or the same, and will not be repeated here.
  • the marking structure 46 includes a color marking disposed at the second location 43 .
  • the color identification of the second position 43 is exposed.
  • the color identification located at the second position 43 will be exposed;
  • the color mark will cover and hide the lock switch 41, so that the first position 42 and the second position 43 of the lock switch 41 can be distinguished by observing whether there is an exposed color mark, so as to distinguish the position of the lock switch 41.
  • the color identification can be displayed as a single color such as red, blue, green, yellow, etc., or as a combination of mixed and matched colors, which should be selected according to the specific situation, or calibrated through actual tests.
  • the identification structure 46 may include a graphic identification, the graphic identification is set at the second position 43 , and the graphic identification at the second position 43 is exposed when the locking switch 41 is located at the first position 42 .
  • graphic identification it can be displayed as geometric figures, text graphics, digital graphics, etc., and can be displayed as a combination of different types of graphics. It should be selected according to the specific situation, or calibrated through actual tests.
  • the identification structure 46 is displayed in the sliding groove 45 corresponding to the second position 43, so that it can be determined that the locking switch 41 is currently at the first position 42, Wherein, the identification structure 46 is a red color identification.
  • the identification structure 46 may include a color identification and a graphic identification, the color identification and graphic identification are set at the second position 43, and the color identification and graphic identification of the second position 43 when the locking switch 41 is located at the first position 42 Exposure, for color identification and graphic identification, can be displayed as a simple combination of a color identification and a graphic identification in space, can be displayed as a graphic identification with the color of the corresponding color identification, can be displayed as a The specific principle of the color identification of the graphics is similar or the same as that of the above-mentioned embodiment, and will not be repeated here.
  • the drying device 100 includes a power management unit 60 and a power switch 61 .
  • the power switch 61 is disposed between the power source 10 and the radiation source 20 .
  • the power management unit 60 is used for generating a first enabling signal and a second enabling signal after the locking unit 40 is operated.
  • the power switch 61 is used to control whether the power supply 10 and the radiation source 20 can be connected according to the first enable signal and the second enable signal, so that the drying device 100 enters or exits the safe mode.
  • the first enable signal and the second enable signal control the conduction between the power supply 10 and the radiation source 20
  • the operating component 30 can respond to the conduction between the control power supply 10 and the radiation source 20, and the drying device 100 exits the safe mode .
  • the first enabling signal and the second enabling signal control the non-conduction between the power supply 10 and the radiation source 20
  • the power supply 10 and the radiation source 20 are disconnected and non-conductive, and the drying device 100 enters the safe mode.
  • the power management unit 60 will correspondingly generate a first enable signal and a second enable signal, and through the first enable signal and the second enable signal Judging whether the drying equipment 100 enters or exits the safe mode, in other words, for the operation of the locking unit 40, no matter whether the operation enters the safe mode or the operation exits the safe mode, the power management unit 60 coupled to it will generate the first enabling signal and the second Two enabling signals, but when entering the safe mode and exiting the safe mode, the first enabling signal and the second enabling signal generated by the power management unit 60 have different level states.
  • the specific judgment logic is that only when the level state of the first enabling signal is the first level state and the level state of the second enabling signal is the second level state, the drying device 100 can exit the safe mode, to avoid Due to a hardware failure, the first enable signal or the second enable signal generates a wrong level state, thereby avoiding the potential safety hazard caused by the wrong level state causing the drying device 100 to exit the safe mode unexpectedly, and improving the robustness. sex.
  • the power switch 61 may be a MOS transistor.
  • the drying device 100 when the first enable signal is in the third level state and/or the second enable signal is in the fourth level state, the drying device 100 remains in the safe mode, and the first level state is the same as the second level state.
  • the three-level states are different, and the second-level state is different from the fourth-level state. It is easy to understand that since the first enable signal includes a first level state and a third level state, and the second enable signal includes a second level state and a fourth level state, the first enable signal and the second There are four combinations of level states of the enable signal.
  • the drying equipment 100 exits the safe mode only when the first enabling signal is in the first level state and the second enabling signal is in the second level state , that is, it can be turned on normally. In the other three level state combinations, the drying device 100 remains in the safe mode and cannot be turned on. In other words, even if the power management unit 60 or other related circuit structures fail, causing the output of the first enable signal and the second enable signal to be confused, the drying device 100 only has a 25% probability of exiting the safe mode, and there is still a 75% probability of exiting the safe mode. The probability remains in safe mode, thereby increasing the safety and robustness of the drying device 100 itself.
  • the first level state is high
  • the second level state is low
  • the third level state is low
  • the fourth level state is high. That is to say, only when the level state of the first enable signal is high and the level state of the second enable signal is low, will the drying device 100 be able to exit the safe mode, so that the user can conduct the The power supply 10 and the radiation source 20 are used to turn on the drying device 100 .
  • the drying device 100 When the level state of the first enabling signal is low, or the level state of the second enabling signal is high, or the level state of the first enabling signal is low, and the level state of the second enabling signal is high , then it can be determined that there may be a level state of one of the first enabling signal or the second enabling signal being wrongly generated, the drying device 100 remains in the safe mode, and the connection between the power supply 10 and the radiation source 20 remains disconnected. To avoid the drying equipment 100 being turned on by mistake.
  • a logic circuit structure is connected between the power management unit 60 and the power switch 61, and the power management unit 60 transmits the first enable signal and the second enable signal to the logic circuit structure, so that The logic circuit structure can make a logical judgment on the first enable signal and the second enable signal, thereby obtaining the enable signal, and transmitting the enable signal to the power switch 61, and the power switch 61 controls the power supply 10 and the radiation according to the enable signal. Whether the source 20 can be conducted.
  • the power switch 61 can determine whether to turn on or cut off the connection between the power supply 10 and the radiation source 20 according to the level state of the enable signal. In one embodiment, when the level state of the first enable signal is high and the level state of the second enable signal is low, the level state of the obtained enable signal is high, and in other cases, The level state of the enabling signal is low, so the drying device 100 can be controlled to enter or exit the safe mode through the level state of the enabling signal.
  • the first level state and the second level state, the third level state and the fourth level state may be determined according to specific situations.
  • the first level state is low, the second level state is high, the third level state is high, and the fourth level state is low. Only when the level state of the first enabling signal is low and the level state of the second enabling signal is high, will the drying device 100 be able to exit the safe mode.
  • the level state of the first enabling signal is high, or the level state of the second enabling signal is low, or the level state of the first enabling signal is high, and the level state of the second enabling signal is low , the drying device 100 remains in the safe mode.
  • the drying device 100 includes a discharge switch 62 for coupling the locking unit 40 .
  • the drying device 100 can disconnect the circuit in which the power supply 10 discharges to the radiation source 20 through the discharge switch 62 , so that the discharge switch 62 can control the power supply 10 to stop discharging.
  • the aforementioned operating component 30 when the aforementioned operating component 30 is operated, it controls the conduction between the power supply 10 and the radiation source 20 , that is, the operating component 30 as an electrical component also needs power supply.
  • the non-safety mode even if the drying device 100 is turned off, in order to respond to the operation of the operation component 30 , it is necessary to maintain the discharge of the power supply 10 and supply power to the operation component 30 .
  • the discharge switch 62 may be a MOS transistor.
  • the power switch 61 includes a power switch 63 for coupling the locking unit 40 .
  • the power management unit 60 may control the power supply switch 63 to disconnect the circuit in which the power supply 10 supplies power to the radiation source 20 , so that the power supply 10 stops supplying power to the radiation source 20 .
  • the aforementioned operating component 30 when the aforementioned operating component 30 is operated, it controls the conduction between the power supply 10 and the radiation source 20 , that is, the operating component 30 as an electrical component also needs power supply.
  • the non-safety mode even if the drying device 100 is turned off, in order to respond to the operation of the operation component 30 , it is necessary to maintain the discharge of the power supply 10 and supply power to the operation component 30 .
  • the safe mode since the power supply switch 63 directly disconnects the discharge circuit of the power supply 10, that is, when the control power supply 10 and the radiation source 20 are disconnected, the operating component 30 and the power supply 10 are also disconnected, thereby realizing a safe operation. Mode does not respond to the purpose of operating component 30.
  • the discharge switch 62 and the power supply switch 63 can also be set in the circuit at the same time, that is, the discharge end of the power supply 10 and the power consumption end of the radiation source 20 are disconnected at the same time, and the double protection ensures power failure and improves safety. sex.
  • the power supply switch 63 may be a MOS transistor.
  • the drying device 100 includes a posture detection unit 70 and a main control unit (not shown), wherein the posture detection unit 70 is used to detect the posture information of the drying device 100 and the corresponding time, and Output attitude signal.
  • the main control unit receives the attitude signal and adjusts the power of the radiation source 20 . That is to say, by determining the posture information of the drying device 100 and the time corresponding to the posture information, the power of the radiation source 20 can be adjusted accordingly, thereby improving the applicability and user experience of the drying device 100 .
  • the posture of the drying device 100 can be a large-scale movement, a small-scale movement, keeping still, etc. Different postures correspond to different posture information, and the specific implementation process is detailed below.
  • the posture detection unit 70 may include at least one of a position sensor, a distance sensor, a state sensor, and a vision sensor.
  • the attitude detection unit 70 includes a position sensor, such as an IMU, which can detect the inertia of the drying equipment 100, and determine the attitude information of the drying equipment 100 according to the detected inertia of the drying equipment 100.
  • the attitude detection unit 70 includes a distance sensor, such as ultrasonic wave, infrared, etc., the distance sensor can detect the distance between the drying equipment 100 and the surrounding objects, and the distance between the drying equipment 100 and the surrounding objects is detected. When it remains unchanged, it can be determined that the drying equipment 100 is in a static posture. When a dynamic change in the distance between the drying equipment 100 and surrounding objects is detected, the specific posture information of the drying equipment 100 in motion can be determined according to the distance change value.
  • the posture detection unit 70 includes a state sensor, such as an altimeter, a barometer, a magnetometer, etc., the state sensor can detect the current state of the drying equipment 100, and when it is detected that the current state of the drying equipment 100 remains unchanged, It can be determined that the drying apparatus 100 is in a rest posture.
  • the posture detection unit 70 includes a visual sensor, such as binocular, monocular, etc., the visual sensor can collect image information around the drying equipment 100, and when it is detected that the image information around the drying equipment 100 remains unchanged, It can be determined that the drying apparatus 100 is in a rest posture.
  • the attitude detection unit 70 outputs a first attitude signal when it detects that the attitude information of the drying device 100 meets the first range, and the main control unit 90 controls the radiation source 20 to emit the first radiation according to the first attitude signal. Power running.
  • the attitude detection unit 70 will output the first attitude signal, and the main control unit 90 according to The first attitude signal controls the radiation source 20 to operate with the first radiation power, so that the drying device 100 can work normally.
  • the first range may correspond to the shaking amplitude of the drying device 100 performing relatively strong movements. It is easy to understand that since the drying device 100 radiates energy to the external object through the radiation source 20, it will be heated and dried after the radiation lasts for a period of time, but it is difficult for the drying device 100 to continuously aim at the same surface of the external object during relatively violent movements. In order to ensure its working efficiency, in this state, the radiation source 20 normally operates with the first radiation power with a relatively large value.
  • the posture detection unit 70 outputs a second posture signal when the posture detection unit 70 satisfies the second range, and the second range is smaller than the first range.
  • the main control unit 90 controls the radiation source 20 to operate alternately at the second radiation power and the third radiation power according to the second attitude signal, or to switch to the fourth radiation power, wherein the second radiation power is greater than the third radiation power, and the fourth radiation power is greater than the third radiation power. Both the power and the third radiation power are smaller than the first radiation power.
  • the power of the radiation source 20 can be dynamically adjusted according to the current movement state of the drying device 100 .
  • the main control unit 90 controls the radiation source 20 to alternately operate at the second radiation power and the third radiation power, or switch to operate at the fourth radiation power, wherein both the third radiation power and the fourth radiation power are smaller than the first radiation power.
  • the second range may correspond to the range of movement when the shaking of the drying device 100 is moderate. Compared with the motion state corresponding to the first range, the range of motion corresponding to the second range is relatively moderate.
  • the drying device 100 may aim at the same part of the external object and continue to work for a long time. If the first radiation power is maintained In operation, the radiated energy may accumulate rapidly and cause the temperature of the external object to rise rapidly, causing danger. Therefore, in this state, switch to the second radiation power and the third radiation power to operate alternately, or maintain the operation at the fourth radiation power, which reduces the The radiation intensity of external objects improves the safety of the drying equipment 100 itself.
  • the posture detection unit detects that the drying device 100 is in a static posture, and outputs a third posture signal when the corresponding time reaches a first threshold.
  • the main control unit controls the radiation source to operate alternately with the second radiation power and the third radiation power according to the third attitude signal, the second radiation power is greater than the third radiation power, and the third radiation power is lower than the first radiation power.
  • the posture detection unit 70 when the drying equipment 100 is stationary, the posture detection unit 70 can detect the duration of the static state, and when the duration reaches the first threshold, the posture detection unit 70 will output a third posture signal, so that the main body
  • the control unit 90 controls the radiation source 20 to operate alternately with the second radiation power and the third radiation power lower than the first radiation power according to the third attitude signal, so that the output power of the radiation source 20 can be reduced, and the environment with a lower ignition point can be avoided.
  • the object catches fire when heated.
  • the main control unit 90 when responding to the third attitude signal, controls the radiation source 20 to alternately run at the second radiation power and the third radiation power for a certain period of time, and then switch to the fourth radiation power, the fourth radiation power It can be a low power, which is only used to indicate that the drying device 100 is still running, and the fourth radiation power can also be zero, that is, temporarily turn off the radiation source 20 .
  • the main control unit 90 controls the drying device 100 to enter the standby mode. In this mode, although the radiation source 20 is not working, the drying device 100 does not enter the shutdown state. After the change (for example, the user picks up the drying device 100 that has been put down), the radiation source 20 can be controlled to switch to the corresponding output power in response to the corresponding attitude signal immediately.
  • the second radiation power of the radiation source 20 under the second attitude signal and the second radiation power of the radiation source 20 under the third attitude signal may be the same or different.
  • the third radiation power of the radiation source 20 under the second attitude signal and the third radiation power of the radiation source 20 under the third attitude signal may be the same or different.
  • the posture detection unit 70 detects that the drying device 100 is in a static posture, and outputs a fourth posture signal when the corresponding time exceeds the first threshold and reaches the second threshold.
  • the main control unit 90 turns off the radiation source 20 according to the fourth attitude signal.
  • the posture detection unit 70 can detect the duration of the static state, and when the duration reaches a second threshold greater than the first threshold, the posture detection unit 70 will output a fourth attitude signal, so that the main control unit 90 turns off the radiation source 20 according to the fourth attitude signal, so as to prevent surrounding objects with lower ignition points from being heated and caught on fire.
  • first radiation power, the second radiation power, the third radiation power, and the fourth radiation power of the radiation source 20 may be the specific power value of the radiation source 20, or the power interval when the radiation source 20 is running, Each power range may overlap or may not overlap.
  • the user When the user picks up the drying device 100 and uses it, when the range of motion is large, that is, when drying a large area of an external object (for example, drying after the hair is soaked), the user will constantly move the drying device 100, and at this time, the radiation The source 20 is operated with a higher first radiation power.
  • the user's action range is small, that is, to dry a small area of the external object (such as only drying a specific part of the hair)
  • the output of the radiation source The power is switched from the first radiation power to the second radiation power and the third radiation power alternately, that is, the breathing state.
  • the drying device 100 When the user's use is interrupted and the drying device 100 is placed on the table or on the charging stand, the drying device 100 is in a static posture, and the radiation source 20 is in a breathing state (the second radiation power and the third radiation power alternate operation ) after running for a period of time, enter the standby mode (the output power of the radiation source 20 is zero, but the drying equipment 100 is not disconnected from the power supply) to prevent the placed drying equipment 100 from igniting low-flammability items such as towels.
  • the standby mode the user picks up the drying device 100 again for use, and the drying device 100 judges to switch the radiation source 20 to a corresponding output power according to its action.
  • the standby mode holding time exceeds the preset value (i.e.
  • the drying device 100 In order to avoid its energy consumption, the drying device 100 enters shutdown state. It can be seen from the above process that the drying device 100 can switch its own working state according to the user's operation action, so as to provide a more intelligent operation experience and have higher security.
  • the drying device 100 includes a motor 80 for generating wind flow.
  • the main control unit 90 receives the attitude signal and adjusts the power of the motor 80 .
  • the heat dissipation effect on surrounding objects can be improved, so as to avoid the problem that the energy radiated by the radiation source 20 gathers on external objects and causes heat generation.
  • the power of the motor 80 can be adjusted correspondingly.
  • the attitude signal is the first attitude signal
  • the power of the motor 80 is the first wind output power.
  • the attitude signal is the second attitude signal
  • the power of the motor 80 is the second wind power greater than the first wind power, that is, the output power of the blower fan 80 is increased in a state where the range of motion is moderate, so as to Increase the air volume against external objects to avoid rapid heating caused by heat accumulation.
  • the attitude signal is the third attitude signal, and the power of the motor 80 is the third wind power greater than the second wind power, that is, the output power of the motor 80 is further increased in a static state, so as to avoid leaving the motor 80 out of hand.
  • the drying apparatus 100 continues to operate to ignite the foreign objects.
  • the attitude signal is the fourth attitude signal, the power of the motor 80 is zero, and the motor 80 enters a standby or shutdown state.
  • the power of the motor 80 and the power of the radiation source 20 may match each other.
  • the radiation source 20 when the attitude signal is the first attitude signal, the radiation source 20 operates with the first radiation power, and the motor 80 operates with the first wind power; when the attitude signal is the second attitude signal, the radiation source 20 operates with the The fourth radiation power runs, the motor 80 runs with the second wind power, and when the attitude signal is the third attitude signal, the radiation source 20 runs alternately with the second radiation power and the third radiation power, and the motor 80 runs with the third wind power run.
  • a drying device 100 includes a motor 80 and a main control unit 90 .
  • the motor 80 is used to generate wind flow.
  • the main control unit 90 performs current sampling on the radiation source 20 and the motor 80, and when the current of the radiation source 20 exceeds the preset first current range, and/or the current of the motor 20 exceeds the preset second current range, the main control unit 90 The control unit 90 controls the drying equipment 100 to enter the shutdown state.
  • the control unit 90 is used to control the drying equipment 100 to enter the shutdown state when the motor 80 is abnormal.
  • the first current range corresponds to the current of the radiation source 20 when the drying device 100 is turned on.
  • the second current range corresponds to the current of the motor 80 when the drying device 100 is turned on.
  • the drying device 100 includes an air outlet duct 81 , a temperature measuring element 82 , a motor 80 for generating air flow, and a main control unit 90 .
  • the temperature measuring element 82 is arranged in the air outlet duct 81 .
  • the motor 80 is used to generate wind flow in the air outlet air duct 81 .
  • the motor 80 is electrically connected to the power source 10 .
  • the main control unit 90 is used to control the drying equipment 100 to enter a shutdown state when the temperature measuring element 82 detects that the temperature value exceeds a preset temperature range.
  • the preset range of the temperature measuring element 82 may be the temperature range of the motor 80 in normal operation determined in advance through experiments.
  • the motor 80 will eventually generate a stable air flow in the air outlet duct 81, and the temperature measuring element 82 receives radiation from the radiation source at the same time.
  • the temperature value detected by the temperature measuring device 82 will eventually stabilize after rising to the preset temperature range, and if the wind blows Due to an abnormality in the duct 81 (such as blockage of the air outlet or air inlet, or a decrease in the speed of the motor 80 caused by an electrical failure), the current heat dissipation rate cannot be maintained in the outlet air duct 81, and the temperature in the outlet air duct 81 is stable. The state is destroyed and begins to heat up.
  • the control unit 90 controls the drying equipment 100 to disconnect the connection between the power source 10 and the radiation source 20 , and the drying equipment 100 enters a shutdown state, so as to prevent the radiation source 20 from continuing to radiate heat.
  • the drying device 100 includes a heating element 84 disposed in the air outlet duct 81 .
  • the heating element 84 and the temperature measuring element 82 are arranged adjacent to each other at a preset distance.
  • the heating element 84 generates heat after the drying equipment 100 is turned on.
  • the temperature measuring element 82 detects that the temperature within the preset distance range exceeds the preset temperature range, the drying equipment 100 is off. Due to the limited space in the air outlet duct 81, the volume of the installed temperature measuring device 82 is limited, so that it can only receive less radiation from the radiation source 20, and the range of temperature changes is small, which easily affects the temperature measurement accuracy.
  • the temperature measured by the temperature measuring element 82 actually includes the heat emitted by the heating element 84 in addition to the radiation temperature rise, so that the temperature variation range is relatively large, and sufficient temperature measurement accuracy can be provided. . It is easy to understand that in this embodiment, the preset temperature range needs to be calibrated when the heating element 84 is disposed within the preset distance range.
  • the heating element 84 is connected to the power supply 10. After the drying device 100 is turned on, the temperature of the heating element 84 will increase due to the heating of the heating element 84, and will be in the normal working state of the drying device 100. maintained within the preset temperature range. When the air outlet duct 81 is abnormal, the temperature of the heating element 84 will start to increase, and will exceed the preset temperature range. Compared with the air flow in the air outlet duct 81, the temperature rise of the heating element 84 is more significant, so that the temperature measuring element 82 can clearly detect the temperature rise of the heating element 84, thereby achieving the effect of rapid temperature measurement.
  • the heating element 84 may be a thermistor.
  • the drying device 100 includes a main control unit 90 .
  • the main control unit 90 disconnects the power supply 10 from the radiation source 20, the main control unit 90 outputs the first logic control signal and the second logic control signal.
  • the first logic control signal is in the fifth level state and the second logic control signal is in the sixth level state, the power supply 10 is disconnected from the radiation source 20 .
  • the main control unit 90 when the main control unit 90 needs to disconnect the power source 10 from the radiation source 20 , it will correspondingly generate a first logic control signal and a second logic control signal.
  • the control unit 90 disconnects the connection between the power supply 10 and the radiation source 20, so as to avoid the level state of at least one of the first logic control signal and the second logic control signal being wrongly generated due to the failure of the actual hardware, thereby avoiding the wrong level.
  • the problem of system stability in which the state makes it impossible for the main control unit 90 to disconnect the connection of the power supply 10 and the radiation source 20 improves the robustness.
  • the drying device 100 includes a power management unit 60 .
  • the power management unit 60 When the power management unit 60 is used to disconnect the power supply 10 from the radiation source 20, the power management unit 60 outputs a third logic control signal and a fourth logic control signal.
  • the third logic control signal is in the seventh level state and the fourth logic control signal is in the eighth level state, the power supply 10 is disconnected from the radiation source 20 .
  • the power management unit 60 will correspondingly generate a third logic control signal and a fourth logic control signal when the connection between the power supply 10 and the radiation source 20 needs to be disconnected.
  • the management unit 60 disconnects the connection between the power supply 10 and the radiation source 20, so as to avoid incorrectly generating the level state of at least one of the third logic control signal and the fourth logic control signal due to a failure of the actual hardware, thereby avoiding a wrong level
  • the problem of system stability in which the state makes the power management unit 60 unable to disconnect the power supply 10 and the radiation source 20 improves robustness.
  • the drying device 100 includes a main control unit 90 and a power management unit 60 .
  • the main control unit 90 disconnects the power supply 10 from the radiation source 20
  • the main control unit 90 outputs the first logic control signal and the second logic control signal.
  • the power supply 10 is disconnected from the radiation source 20 .
  • the power management unit 60 is used to disconnect the power supply 10 from the radiation source 20, the power management unit 60 outputs a third logic control signal and a fourth logic control signal.
  • the power supply 10 is disconnected from the radiation source 20 . That is to say, both the disconnection of the power supply 10 and the radiation source 20 can be realized through the main control unit 90, and the disconnection of the power supply 10 and the radiation source 20 can also be realized through the power management unit 60, so that the main control unit can When one of the main control unit 90 and the power management unit 60 fails, the power supply 10 is disconnected from the radiation source 20 through the other one of the main control unit 90 and the power management unit 60 . In this way, the system robustness of the drying device 100 can be improved.
  • the drying device 100 when the first logic control signal is not in the fifth level state or the second logic control signal is not in the sixth level state, the drying device 100 remains in the safe mode. It is easy to understand that the first logic control The signal has the situation of being the fifth level state and not the fifth level state, the second logic control signal has the situation of being the sixth level state and not the sixth level state, the first logic control signal and the second logic control signal There are four combinations of signal level states. In order to reduce the probability that the failure causes the drying equipment 100 to exit the safe mode unexpectedly, if and only when the first logic control signal is in the fifth level state and the second logic control signal is in the sixth level state, the drying equipment 100 will exit the safety mode , that is, it can be turned on normally.
  • the drying device 100 remains in the safe mode and cannot be turned on. In other words, even if the power management unit 60 or other related circuit structures fail, causing the output of the first logic control signal and the second logic control signal to be confused, the drying device 100 has only a 25% probability of exiting the safe mode, and there is still a 75% probability of exiting the safe mode. The probability remains in safe mode, thereby increasing the safety and robustness of the drying device 100 itself.
  • the drying device 100 may further include a power switch 61
  • one of the third logic control signal and the fourth logic control signal may be the first enabling signal
  • the second The other one of the three logic control signals and the fourth logic control signal can be the second enable signal
  • the seventh level state can be the first level state
  • the eighth level state can be the second level state
  • the drying device 100 when the third logic control signal is not in the seventh level state or the fourth logic control signal is not in the eighth level state, the drying device 100 remains in the safe mode. It is easy to understand that the third logic control The signal has the seventh level state and is not the seventh level state, the fourth logic control signal has the eighth level state and is not the eighth level state, the third logic control signal and the fourth logic control signal There are four combinations of signal level states. In order to reduce the probability that the failure causes the drying equipment 100 to exit the safe mode unexpectedly, if and only when the third logic control signal is in the seventh level state and the fourth logic control signal is in the eighth level state, the drying equipment 100 will exit the safety mode , that is, it can be turned on normally.
  • the drying device 100 remains in the safe mode and cannot be turned on. In other words, even if the power management unit 60 or other related circuit structures fail, causing the output of the third logic control signal and the fourth logic control signal to be confused, the drying device 100 only has a 25% probability of exiting the safe mode, and there is still a 75% probability of exiting the safe mode. The probability remains in safe mode, thereby increasing the safety and robustness of the drying device 100 itself.
  • the main control unit 90 may disconnect the power switch 61 from the radiation source 20, so that the radiation source 20 is disconnected from the power supply 10. That is to say, the power management unit 60 can disconnect the power supply to the radiation source 20 from the power supply 10 side, and the main control unit 90 can disconnect the connection between the power consumption side and the power supply 10 .
  • the drying device 100 includes the power switch 61 .
  • the power supply 10 is connected to the radiation source 20 through a power chip 91 , and the power chip 91 can be disconnected to disconnect the power supply 10 from the radiation source 20 .
  • the power chip 91 is connected to the radiation source 20 , so that the power supply 10 is connected to the radiation source 20 through the power chip 91 .
  • the main control unit 90 can output the first logic control signal at the fifth level state, and output the second logic control signal at the sixth level state.
  • the control power chip 91 disconnects the connection between the power supply 10 and the radiation source 20 , so as to disconnect the connection between the power consumption side and the power supply 10 .
  • the drying device 100 further includes a timing unit 92 .
  • the timing unit 92 performs a timing operation on at least one of the power management unit 60 and the main control unit 90 with a reset duration.
  • the timing unit 92 is used to reset the timing operation.
  • the feedback operation when the power management unit 60 is in a normal working state, the feedback operation will be performed before the timing duration obtained by the timing unit 92 through the timing operation is greater than or equal to the reset duration, so that the timing unit 92 will confirm that the power management
  • the feedback operation performed by the unit 60 resets the timing operation to restart timing, like this, if the timing duration of the timing unit 92 is greater than or equal to the reset duration and the feedback operation performed by the power management unit 60 has not yet been received, it can be determined that the power management unit 60 is abnormal.
  • the feedback operation when the main control unit 90 is in the normal working state, the feedback operation will be performed before the timing duration obtained by the timing unit 92 through the timing operation is greater than or equal to the reset duration, so that the timing unit 92 will confirm that the main control unit 90 Reset the timing operation to restart timing during the feedback operation performed, like this, if the timing duration of the timing unit 92 is greater than or equal to the reset duration and has not yet received the feedback operation performed by the main control unit 90, it can be determined that the main control unit 90 is abnormal .
  • the timing unit 92 can respectively obtain the first timing duration and the second timing duration through a timing operation.
  • the power management unit 60 and the main control unit 90 When the power management unit 60 and the main control unit 90 are in a normal working state, the power management unit 60 will perform a feedback operation before the first timing duration is greater than or equal to the reset duration, and the main control unit 90 will perform a feedback operation before the second timing duration is greater than or equal to the reset duration.
  • the feedback operation is performed, so that the timing unit 92 resets the timing operation for the first timing period when the feedback operation performed by the power management unit 60 is confirmed, so as to restart timing for the first timing period, and the timing unit 92 is confirmed.
  • the timing operation is reset for the second timing duration, so as to restart timing for the second timing duration. If the first timing duration is greater than or equal to the reset duration, it can be determined that the power management unit 60 fails to perform the feedback operation in time, so it can be determined that the power management unit 60 is abnormal. If the second timing duration is greater than or equal to the reset duration, it can be determined that the main control unit 90 fails to perform the feedback operation in time, so it can be determined that the main control unit 90 is abnormal.
  • the timing unit 92 is used to control the power management unit 60 And/or the main control unit 90 performs a reset operation. After the reset operation is completed, the power management unit 60 and/or the main control unit 90 are used to disconnect the power supply 10 from the radiation source 20 .
  • the abnormal power management unit 60 and/or the main control unit 90 can be prevented from continuing to work and prone to risks.
  • the timing duration reaches the reset duration
  • the power management unit 60 does not perform a feedback operation
  • the timing unit 92 may be used to perform a reset operation on the power management unit 60 so that the power management unit 60 is reset. After the power management unit 60 completes the reset, it will disconnect the power supply 10 and the radiation source 20 and return to the shutdown state, so as to prevent the power management unit 60 from being abnormal again and make the drying device 100 uncontrollable.
  • the timing unit 92 may be used to perform a reset operation on the main control unit 90 so that the main control unit 90 is reset. After the main control unit 90 completes the reset, it will disconnect the connection between the power supply 10 and the radiation source 20, and return to the shutdown state, so as to prevent the main control unit 90 from being abnormal again and making the drying device 100 uncontrollable.
  • the timing unit 92 can be used to perform a reset operation on the power management unit 60 and the main control unit 90, so that the power management unit 60 and the main control unit 90 Both are reset, and after the timing unit 92 completes the reset operation, the connection between the power supply 10 and the radiation source 20 is disconnected through the power management unit 60 and the main control unit 90 .
  • a drying device 100 provided in the present application includes a power supply 10 , a radiation source 20 , an operating component 30 , an attitude detection unit 70 and a main control unit 90 .
  • the radiation source 20 is electrically connected to the power source 10 .
  • the power supply 10 is controlled to conduct with the radiation source 20 .
  • the attitude detection unit 70 is used to detect the attitude information of the drying device 100 and the corresponding time, and output an attitude signal.
  • the main control unit 90 is used for receiving the attitude signal and adjusting the power of the radiation source 20 .
  • the above-mentioned drying equipment 100 can adjust the power of the radiation source 20 according to the current different postures of the drying equipment 100, so as to avoid continuous operation of the drying equipment 100 due to accidental touch, failure to shut down, and short circuit of the line, thereby avoiding easy damage around the drying equipment 100.
  • Combustible objects are irradiated by the radiation source 20 and are heated and ignited.
  • the attitude detection unit 70 detects the attitude information and the corresponding time of the drying equipment 100 and outputs the attitude signal, so that the main control unit 90 adjusts the position according to the received attitude signal.
  • the power of the radiation source 20 enables the drying device 100 to adjust the output power of the radiation source 20 according to the current posture, so as to avoid the radiation source 20 continuously heating the surrounding objects and causing spontaneous combustion.
  • the radiation source 20 may radiate visible light, infrared light of a preset frequency band, or a combination of visible light and infrared light. In some embodiments, the radiation source 20 transmits energy (such as heat energy) to the outside through the radiated light, so that the surrounding target objects (such as hair, human body parts, fibers, etc.) can be heated up after receiving the radiated energy to achieve the effect of drying .
  • the drying device 100 may be a blower, and the radiated energy cooperates with the airflow to accelerate the drying efficiency of the target object.
  • the power supply 10 can supply power to the radiation source 20 by operating the operation component 30 to control the conduction between the power supply 10 and the radiation source 20 .
  • the actual function of the operating assembly 30 can be understood as a switch on a general electrical device, which enables the drying device 100 to be switched between off and on for normal use after operation.
  • the drying equipment 100 in this embodiment uses the radiation source 20 to radiate energy to the outside.
  • the radiation source 20 can continue to run.
  • the drying equipment 100 is in a static posture, because the radiation source 20 will Continuously transmitting energy outward through radiation, if the drying device 100 is placed at a location with objects around it, it may cause the surrounding objects to accumulate the energy brought by the radiation and heat up. For some objects with low ignition point, it is very easy to spontaneously ignite due to the above reasons, and further lead to the occurrence of fire.
  • the drying device 100 is accidentally touched by minors (such as children) or animals, it will bring potential safety hazards to them.
  • the drying equipment 100 of the present application by determining the current posture of the drying equipment 100, the output power of the radiation source 20 is correspondingly adjusted, and when it is confirmed that the user has not noticed that the drying equipment 100 is in the open state, it will be turned off.
  • the connection between the power supply 10 and the radiation source 20 further avoids disasters and improves the safety of the drying equipment 100 itself.
  • the power source 10 may be a battery installed on the drying device 100, or may be a power supply facility requiring wired connection, and the drying device 100 is connected to the power supply facility through a preset power line.
  • the posture detection unit 70 may include at least one of a position sensor, a distance sensor, a state sensor, and a vision sensor.
  • the attitude detection unit 70 includes a position sensor, such as an IMU, which can detect the inertia of the drying equipment 100, and determine the attitude information of the drying equipment 100 according to the detected inertia of the drying equipment 100.
  • the attitude detection unit 70 includes a distance sensor, such as ultrasonic wave, infrared, etc., the distance sensor can detect the distance between the drying equipment 100 and the surrounding objects, and the distance between the drying equipment 100 and the surrounding objects is detected. When it remains unchanged, it can be determined that the drying equipment 100 is in a static posture. When a dynamic change in the distance between the drying equipment 100 and surrounding objects is detected, the specific posture information of the drying equipment 100 in motion can be determined according to the distance change value.
  • the posture detection unit 70 includes a state sensor, such as an altimeter, a barometer, a magnetometer, etc., the state sensor can detect the current state of the drying equipment 100, and when it is detected that the current state of the drying equipment 100 remains unchanged, It can be determined that the drying apparatus 100 is in a rest posture.
  • the posture detection unit 70 includes a visual sensor, such as binocular, monocular, etc., the visual sensor can collect image information around the drying equipment 100, and when it is detected that the image information around the drying equipment 100 remains unchanged, It can be determined that the drying apparatus 100 is in a rest posture.
  • the attitude detection unit 70 outputs a first attitude signal when it detects that the attitude information of the drying device 100 satisfies the first range, and the main control unit 90 controls the radiation source 20 to emit the first radiation according to the first attitude signal. Power running.
  • the attitude detection unit 70 will output the first attitude signal, and the main control unit 90 according to The first attitude signal controls the radiation source 20 to operate with the first radiation power, so that the drying device 100 can work normally.
  • the first range may correspond to the shaking amplitude of the drying device 100 performing relatively strong movements. It is easy to understand that since the drying device 100 radiates energy to the external object through the radiation source 20, it will be heated and dried after the radiation lasts for a period of time, but it is difficult for the drying device 100 to continuously aim at the same surface of the external object during relatively violent movements. In order to ensure its working efficiency, in this state, the radiation source 20 normally operates with the first radiation power with a relatively large value.
  • the posture detection unit 70 outputs a second posture signal when the posture detection unit 70 satisfies the second range, and the second range is smaller than the first range.
  • the main control unit 90 controls the radiation source 20 to operate alternately at the second radiation power and the third radiation power according to the second attitude signal, or to switch to the fourth radiation power, wherein the second radiation power is greater than the third radiation power, and the fourth radiation power is greater than the third radiation power. Both the power and the third radiation power are smaller than the first radiation power.
  • the power of the radiation source 20 can be dynamically adjusted according to the current movement state of the drying device 100 .
  • the main control unit 90 controls the radiation source 20 to alternately operate at the second radiation power and the third radiation power, or switch to operate at the fourth radiation power, wherein both the third radiation power and the fourth radiation power are smaller than the first radiation power.
  • the second range may correspond to the range of movement when the shaking of the drying device 100 is moderate. Compared with the motion state corresponding to the first range, the range of motion corresponding to the second range is relatively moderate.
  • the drying device 100 may aim at the same part of the external object and continue to work for a long time. If the first radiation power is maintained In operation, the radiated energy may accumulate rapidly and cause the temperature of the external object to rise rapidly, causing danger. Therefore, in this state, switch to the second radiation power and the third radiation power to operate alternately, or maintain the operation at the fourth radiation power, which reduces the The radiation intensity of external objects improves the safety of the drying equipment 100 itself.
  • the posture detection unit 70 detects that the drying device 100 is in a static posture, and outputs a third posture signal when the corresponding time reaches the first threshold.
  • the main control unit 90 controls the radiation source 20 to operate alternately at the second radiation power and the third radiation power according to the third attitude signal, the second radiation power is greater than the third radiation power, and the third radiation power is lower than the first radiation power.
  • the posture detection unit 70 when the drying equipment 100 is stationary, the posture detection unit 70 can detect the duration of the static state, and when the duration reaches the first threshold, the posture detection unit 70 will output a third posture signal, so that the main body
  • the control unit 90 controls the radiation source 20 to operate alternately with the second radiation power and the third radiation power lower than the first radiation power according to the third attitude signal, so that the output power of the radiation source 20 can be reduced, and the environment with a lower ignition point can be avoided.
  • the object catches fire when heated.
  • the main control unit 90 when responding to the third attitude signal, controls the radiation source 20 to alternately run at the second radiation power and the third radiation power for a certain period of time, and then switch to the fourth radiation power, the fourth radiation power It can be a low power, which is only used to indicate that the drying device 100 is still running, and the fourth radiation power can also be zero, that is, temporarily turn off the radiation source 20 .
  • the main control unit 90 controls the drying device 100 to enter the standby mode. In this mode, although the radiation source 20 is not working, the drying device 100 does not enter the shutdown state. After the change (for example, the user picks up the drying device 100 that has been put down), the radiation source 20 can be controlled to switch to the corresponding output power in response to the corresponding attitude signal immediately.
  • the second radiation power of the radiation source 20 under the second attitude signal and the second radiation power of the radiation source 20 under the third attitude signal may be the same or different.
  • the third radiation power of the radiation source 20 under the second attitude signal and the third radiation power of the radiation source 20 under the third attitude signal may be the same or different.
  • the posture detection unit 70 detects that the drying device 100 is in a static posture, and outputs a fourth posture signal when the corresponding time exceeds the first threshold and reaches the second threshold.
  • the main control unit 90 turns off the radiation source 20 according to the fourth attitude signal.
  • the posture detection unit 70 can detect the duration of the static state, and when the duration reaches a second threshold greater than the first threshold, the posture detection unit 70 will output a fourth attitude signal, so that the main control unit 90 turns off the radiation source 20 according to the fourth attitude signal, so as to prevent surrounding objects with lower ignition points from being heated and caught on fire.
  • first radiation power, the second radiation power, the third radiation power, and the fourth radiation power of the radiation source 20 may be the specific power value of the radiation source 20, or the power interval when the radiation source 20 is running, Each power range may overlap or may not overlap.
  • the user When the user picks up the drying device 100 and uses it, when the range of motion is large, that is, when drying a large area of an external object (for example, drying after the hair is soaked), the user will constantly move the drying device 100, and at this time, the radiation The source 20 is operated with a higher first radiation power.
  • the user's action range is small, that is, to dry a small area of the external object (such as only drying a specific part of the hair)
  • the output of the radiation source The power is switched from the first radiation power to the second radiation power and the third radiation power alternately, that is, the breathing state.
  • the drying device 100 When the user's use is interrupted and the drying device 100 is placed on the table or on the charging stand, the drying device 100 is in a static posture, and the radiation source 20 is in a breathing state (the second radiation power and the third radiation power alternate operation ) after running for a period of time, enter the standby mode (the output power of the radiation source 20 is zero, but the drying equipment 100 is not powered off) to prevent the placed drying equipment 100 from igniting low-flammability items such as towels.
  • the standby mode the user picks up the drying device 100 again for use, and the drying device 100 judges to switch the radiation source 20 to a corresponding output power according to its action.
  • the standby mode holding time exceeds the preset value (i.e.
  • the drying device 100 In order to avoid its energy consumption, the drying device 100 enters shutdown state. It can be seen from the above process that the drying device 100 can switch its own working state according to the user's operation action, so as to provide a more intelligent operation experience and have higher security.
  • the drying device 100 includes a motor 80 for generating wind flow.
  • the main control unit 90 receives the attitude signal and adjusts the power of the motor 80 .
  • the power of the motor 80 can be adjusted correspondingly.
  • the attitude signal is the first attitude signal
  • the power of the motor 80 is the first wind output power.
  • the attitude signal is the second attitude signal
  • the power of the motor 80 is the second wind power greater than the first wind power.
  • the attitude signal is a third attitude signal
  • the power of the motor 80 is a third wind power greater than the second wind power.
  • the attitude signal is the fourth attitude signal, and the power of the motor 80 is zero. In this way, the cooling effect on surrounding objects can be improved.
  • the power of the motor 80 and the power of the radiation source 20 may match each other.
  • the radiation source 20 when the attitude signal is the first attitude signal, the radiation source 20 operates with the first radiation power, and the motor 80 operates with the first wind power; when the attitude signal is the second attitude signal, the radiation source 20 operates with the The fourth radiation power runs, the motor 80 runs with the second wind power, and when the attitude signal is the third attitude signal, the radiation source 20 runs alternately with the second radiation power and the third radiation power, and the motor 80 runs with the third wind power run.
  • the power management unit 60 can output the first enable signal and the second enable signal through two GPIO (General-purpose input/output) ports.
  • the enable signal is given to the logic gate circuit.
  • a control signal will be sent to the discharge switch 62, so that the discharge switch 62 is controlled according to the signal to control whether the power switch 61 can conduct the path between the power supply 10 and the radiation source 20, and control the discharge switch 62 to control whether the discharge switch 62 can conduct the path between the power supply 10 and the motor 80 according to the control signal.
  • the power switch 61 When the power switch 61 conducts the path between the power source 10 and the radiation source 20 and the motor 80 , the power switch 61 outputs battery power to the radiation source 20 and the motor 80 .
  • the power chip 91 connected to the radiation source 20 and the power chip 91 connected to the motor 80 are controlled by the main control unit 90 to conduct, the radiation source 20 and the motor 80 can be electrically connected to the power supply 10 respectively, so that the power supply 10 is connected to the radiation source 20 and Electric motor 80 provides power.
  • the main control unit 90 can generate a driving signal, so that the main control unit 90 conducts the path between the power supply 10 and the motor 80 through the power supply switch 63, so that the main control unit 90 controls the motor 80 to perform On and off.
  • the main control unit 90 can respectively sample the current of the radiation source 20 and the current of the motor 80, and when the current of the radiation source 20 is abnormal, the main control unit 90 will disconnect the path between the radiation source 20 and the power supply 10 , and disconnect the path between the motor 80 and the power supply 10 .
  • the temperature in the air outlet duct 81 can be detected, so that the temperature in the air outlet duct 81 can be determined.
  • the air outlet condition is used to obtain the wind speed measurement signal in the air outlet duct 81 , and the main control unit 90 can determine the heat dissipation status in the air outlet duct 81 after receiving the wind speed measurement signal.
  • the heating element 84 in the air outlet duct 81 of the drying equipment 100 when the drying equipment 100 is in the working state, the heating element 84 will be energized and generate heat, so that the temperature measuring element 82 can directly measure the temperature around the heating element 84.
  • the detection is beneficial to improve the efficiency of temperature measurement.
  • the drying equipment 100 includes a power supply 10, a radiation source 20, an operating component 30, and a locking unit 40.
  • the radiation source 20 is electrically connected to the power supply.
  • the operating component 30 is used to control the conduction between the power source 10 and the radiation source 20 .
  • Control methods include:
  • radiation source 20 is disconnected from power supply 10 and does not respond to operating component 30 .
  • the drying device 100 is controlled to enter a safe mode, in which the radiation source 20 is controlled to be disconnected from the power supply 10 and does not respond to the operating component 30 .
  • the drying device 100 includes a main control unit 90 .
  • the main control unit 90 is used to: identify whether the locking unit 40 is operated; when the locking unit 40 is operated, control whether the radiation source 20 and the power supply 10 are conductive.
  • the drying device 100 enters into a safe mode, and in the safe mode, the radiation source 20 is controlled to be disconnected from the power supply 10 and does not respond to the operating component 30 .
  • the drying device 100 exits the safe mode, and can respond to the operation component 30 to make the connection between the control power supply 10 and the radiation source 20 .
  • the above-mentioned drying equipment 100 when the connection between the radiation source 20 and the power supply 10 is disconnected and cannot be conducted, the drying equipment 100 enters a safe mode, so as to avoid the situation of continuous operation of the drying equipment 100 caused by accidental touch, failure to shut down, and short circuit. .
  • the operating assembly 30 includes an identification unit and a plurality of operating parts 31, each operating part 31 is used for outputting an operating signal, and the identifying unit is used for receiving the operating signal, controlling Methods include:
  • control power source 10 When the operation signal satisfies the preset condition, the control power source 10 is connected to the radiation source 20 to turn on the drying device 100 .
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the main control unit 90 is configured to: control the power supply 10 to conduct with the radiation source 20 to turn on the drying device 100 when the operation signal meets a preset condition.
  • the assembly 30 unlocks the safety of the drying device 100 .
  • control power supply 10 and the radiation source 20 are turned on to turn on the drying device 100, including:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the main control unit 90 is used to: when the number of received operation signals is less than the preset number, determine that the operation signal does not meet the preset condition; when the number of received operation signals is the preset number When , it is determined that the operation signal satisfies the preset condition.
  • the locking unit 40 includes a locking switch 41 movably arranged on the surface of the drying device 100,
  • controlling whether the radiation source 20 and the power supply 10 can be connected includes:
  • Control methods include:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the main control unit 90 is used to: when the lock switch 41 moves to the first position 42, control the radiation source 20 and the power supply 10 to be non-conductive; when the lock switch 41 moves to the second position 43, The radiation source 20 is controlled to be connected to the power supply 10 .
  • the locking switch 41 when the locking switch 41 moves to the first position 42, it can be determined that the drying device 100 needs to be controlled to enter the safe mode, so that the radiation source 20 and the power supply 10 are controlled to be non-conductive.
  • the locking switch 41 moves to the second position 43 , it can be determined that the drying device 100 needs to be controlled to exit the safe mode, so that the radiation source 20 and the power supply 10 can be controlled to be connected.
  • control method includes:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the main control unit 90 is used to: generate a first enabling signal and a second enabling signal after recognizing that the locking unit 40 is operated; , to control whether the power supply 10 and the radiation source 20 can be connected, so that the drying device 100 enters or exits the safe mode.
  • the first enable signal and the second enable signal control the conduction between the power supply 10 and the radiation source 20
  • the operating component 30 can respond to the conduction between the control power supply 10 and the radiation source 20, and the drying device 100 exits the safe mode .
  • the first enabling signal and the second enabling signal control the non-conduction between the power supply 10 and the radiation source 20
  • the power supply 10 and the radiation source 20 are disconnected and non-conductive, and the drying device 100 enters the safe mode.
  • the first enable signal includes a first level state and a third level state
  • the second enable signal includes a second level state and a fourth level state. According to the first enable signal and the second enable signal, control whether the power supply 10 and the radiation source 20 can be connected, so that the drying device 100 enters or exits the safe mode, including:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the main control unit 90 is configured to: control the power supply 10 and the radiation source when the received first enabling signal is in the first level state and the second enabling signal is in the second level state. 20 is turned on, so that the drying equipment 100 exits the safe mode; when receiving the first enabling signal and the second enabling signal in other states, the control power supply 10 and the radiation source 20 are turned off, so that the equipment enters the safe mode.
  • control method includes:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the attitude detection unit 70 is used to: detect the attitude information and the corresponding time of the drying device 100, and output an attitude signal;
  • the main control unit 90 is used to adjust the power of the radiation source 20 according to the attitude signal.
  • the attitude information and corresponding time of the drying equipment 100 are detected, and the attitude signal is output, including:
  • Adjust the power of the radiation source 20 according to the attitude signal including:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the attitude detection unit 70 is used to output the first attitude signal when it detects that the attitude information of the drying equipment meets the first range;
  • the main control unit 90 is used to control the radiation source 20 according to the first attitude signal Operates at a first radiant power.
  • the attitude information and the corresponding time of the drying equipment 100 are detected, and the attitude signal is output, including:
  • Adjust the power of the radiation source 20 according to the attitude signal including:
  • 062 Control the radiation source 20 to operate alternately at the second radiation power and the third radiation power according to the second attitude signal, or switch to the fourth radiation power, wherein the second radiation power is greater than the third radiation power, and the fourth radiation power and The third radiation powers are all smaller than the first radiation powers.
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the posture detection unit 70 is used to: output a second posture signal when it detects that the posture information of the drying equipment satisfies the second range, and the second range is smaller than the first range;
  • the main control unit 90 is used to: according to The second attitude signal controls the radiation source 20 to operate alternately with the second radiation power and the third radiation power, or switch to the fourth radiation power, wherein the second radiation power is greater than the third radiation power, and the fourth radiation power and the third radiation power The powers are all smaller than the first radiation power.
  • the attitude information and the corresponding time of the drying equipment 100 are detected, and the attitude signal is output, including:
  • Adjust the power of the radiation source 20 according to the attitude signal including:
  • 063 Control the radiation source 20 to operate alternately at the second radiation power and the third radiation power according to the third attitude signal, the second radiation power is greater than the third radiation power, and the third radiation power is lower than the first radiation power.
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the posture detection unit 70 is used to: output a third posture signal when it detects that the posture information of the drying equipment is still and the corresponding time reaches the first threshold;
  • the main control unit 90 is used to: according to the third The attitude signal controls the radiation source 20 to operate alternately with the second radiation power and the third radiation power, the second radiation power is greater than the third radiation power, and the third radiation power is lower than the first radiation power.
  • the attitude information and corresponding time of the drying equipment 100 are detected, and the attitude signal is output, including:
  • Adjust the power of the radiation source 20 according to the attitude signal including:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the posture detection unit 70 is used to: output a fourth posture signal when it detects that the posture information of the drying equipment is static, and the corresponding time exceeds the first threshold and reaches the second threshold; the main control unit 90 uses In: closing the radiation source 20 according to the fourth attitude signal.
  • the drying device 100 includes a motor 80 for generating wind flow; detecting the posture information and the corresponding time of the drying device 100, and outputting a posture signal, including:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the main control unit 90 is configured to: receive an attitude signal and adjust the power of the motor 80 .
  • the drying device 100 includes a motor 80, and the motor 80 is used to generate wind flow, and the control method includes:
  • 071 Perform current sampling on the radiation source 20 and the motor 80, and control the drying device 100 when the current of the radiation source 20 exceeds the preset first current range, and/or the current of the motor 80 exceeds the preset second current range Enter shutdown state.
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the main control unit 90 is used to: perform current sampling on the radiation source 20 and the motor 80, the current of the radiation source 20 exceeds the preset first current range, and/or the current of the motor 80 exceeds In the preset second current range, the drying device 100 is controlled to enter the shutdown state.
  • the drying equipment 100 includes an air outlet duct 81, a temperature measuring part 82 and a motor 80, the temperature measuring part 82 is arranged in the air outlet duct 81, and the motor 80 uses To generate wind flow in the air outlet duct 81, the motor 80 is electrically connected to the power supply 10; the control method includes:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the main control unit 90 is configured to control the drying device 100 to enter a shutdown state when the temperature measuring element 82 detects that the temperature in the air outlet duct 81 exceeds a preset temperature range.
  • the drying device 100 includes a heating element 84 arranged in the air outlet duct 81, the heating element 84 and the temperature measuring element 82 are adjacently arranged at a preset distance, and the heating element 84 After the drying device 100 is turned on, it generates heat, and when it is detected that the temperature value in the air outlet duct 81 exceeds the preset temperature range, the drying device 100 is controlled to enter the shutdown state, including:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the main control unit 90 is configured to control the drying device 100 to enter a shutdown state when the temperature measuring element 82 detects that the temperature value at a preset distance exceeds a preset temperature range.
  • control method includes:
  • the main control unit 90 preset by the drying equipment 100 outputs the first logic control signal and the second logic control signal, when the first logic control signal is in the fifth level state and the second logic control signal is in the sixth level state , the power source 10 is disconnected from the radiation source 20; and/or,
  • the power management unit 60 preset by the drying equipment 100 outputs the third logic control signal and the fourth logic control signal, when the third logic control signal is in the seventh level state and the fourth logic control signal is in the eighth level state , the connection between the power source 10 and the radiation source 20 is disconnected.
  • the drying device 100 may include a main control unit 90 and a power management unit 60 .
  • the main control unit 90 is used to: output the first logic control signal and the second logic control signal through the main control unit 90 preset by the drying device 100, when the first logic control signal is in the fifth level state and the second logic control signal is In the sixth level state, the connection between the power supply 10 and the radiation source 20 is disconnected.
  • the power management unit 60 is used to: output the third logic control signal and the fourth logic control signal through the preset power management unit 60 of the drying equipment 100, when the third logic control signal is at the seventh level state and the fourth logic control signal is at In the eighth level state, the connection between the power supply 10 and the radiation source 20 is disconnected.
  • the drying device 100 includes a timing unit 92, and the control method includes:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the timing unit 92 is used to: perform a timing operation on the main control unit 90 with a reset duration, and reset the timing operation when the feedback operation performed by the main control unit 90 is obtained within the reset duration; and/or,
  • the power management unit 60 performs a timing operation with a reset duration, and resets the timing operation when a feedback operation performed by the power management unit 60 is obtained within the reset duration.
  • control method includes:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the timing unit 92 is used for: in the timing operation, when the timing duration reaches the reset duration and the main control unit 90 does not perform a feedback operation, perform a reset operation on the main control unit 90, and use the The connection between the power supply 10 and the radiation source 20 is disconnected; and/or, in the timing operation, when the timing duration reaches the reset duration and the power management unit 60 does not perform a feedback operation, perform a reset operation on the power management unit 60, and after the reset operation is completed The power supply 10 is disconnected from the radiation source 20 .
  • the drying device 100 includes a power supply 10 , a radiation source 20 , an operating component 30 , an attitude detection unit 70 and a main control unit 90 .
  • the radiation source 20 is electrically connected to the power supply 10 .
  • Control methods include:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the main control unit 90 is used for: after the operation component 30 is operated, the control power supply 10 and the radiation source 20 are turned on;
  • the attitude detection unit 70 is used for: detecting the attitude information of the drying equipment 100 and the corresponding time, and output an attitude signal;
  • the main control unit 90 is used to: adjust the power of the radiation source 20 according to the attitude signal.
  • the above-mentioned drying equipment 100 can adjust the power of the radiation source 20 according to the current different postures of the drying equipment 100, so as to avoid continuous operation of the drying equipment 100 due to accidental touch, failure to shut down, and short circuit of the line, thereby avoiding easy damage around the drying equipment 100.
  • Combustible objects are irradiated by the radiation source 20 and are heated and ignited.
  • the attitude information and corresponding time of the drying equipment 100 are detected, and the attitude signal is output, including:
  • Adjust the power of the radiation source 20 according to the attitude signal including:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the posture detection unit 70 is used to output the first posture signal when it detects that the posture information of the drying equipment meets the first range;
  • the main control unit 90 is used to control the radiation source 20 according to the first posture signal Operates at a first radiant power.
  • the attitude information and corresponding time of the drying equipment 100 are detected, and the attitude signal is output, including:
  • Adjust the power of the radiation source 20 according to the attitude signal including:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the attitude detection unit 70 is used to: output a second attitude signal when it detects that the attitude information of the drying equipment satisfies the second range, and the second range is smaller than the first range;
  • the main control unit 90 is used to: according to The second attitude signal controls the radiation source 20 to operate alternately with the second radiation power and the third radiation power, or switch to the fourth radiation power, wherein the second radiation power is greater than the third radiation power, and the fourth radiation power and the third radiation power The powers are all smaller than the first radiation power.
  • the attitude information and corresponding time of the drying equipment 100 are detected, and the attitude signal is output, including:
  • Adjust the power of the radiation source 20 according to the attitude signal including:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the posture detection unit 70 is used to: output a third posture signal when it detects that the posture information of the drying equipment is still and the corresponding time reaches the first threshold;
  • the main control unit 90 is used to: according to the third The attitude signal controls the radiation source 20 to operate alternately with the second radiation power and the third radiation power, the second radiation power is greater than the third radiation power, and the third radiation power is lower than the first radiation power.
  • the attitude information and corresponding time of the drying equipment 100 are detected, and the attitude signal is output, including:
  • Adjust the power of the radiation source 20 according to the attitude signal including:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the posture detection unit 70 is used to output a fourth posture signal when it detects that the posture information of the drying equipment is still and the corresponding time exceeds the first threshold and reaches the second threshold;
  • the main control unit 90 is used to : Turn off the radiation source 20 according to the fourth attitude signal.
  • the drying device 100 includes a motor 80 for generating wind flow
  • the control method includes:
  • the charging method in the embodiment of the present application can be realized by the drying device 100 in the embodiment of the present application.
  • the main control unit 90 is configured to: receive an attitude signal and adjust the power of the motor 80 .

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

一种干燥设备(100)和控制方法。干燥设备(100)包括电源(10)、辐射源(20)、操作组件(30)和锁定单元(40)。辐射源(20)电连接电源(10)。操作组件(30)用于控制电源(10)与辐射源(20)导通。锁定单元(40)用于使干燥设备(100)进入安全模式。在安全模式中,辐射源(20)与电源(10)断开,且不响应操作组件(30)。

Description

干燥设备、控制方法 技术领域
本申请涉及电器设备领域,具体涉及一种干燥设备、控制方法。
背景技术
在相关技术中,无线吹风机具有便于携带、使用方便等特点,从而极大地拓展了吹风机的使用场景(如用户进行随身携带),但也容易出现误触、未关机、线路短路等问题,使得无线吹风机在用户未感知到时持续运行而产生大量的热量,并导致火灾等风险,使得安全性低。
发明内容
本申请实施方式提供一种干燥设备、控制方法。
本申请实施方式提供的一种干燥设备,所述干燥设备包括:
电源;
辐射源,所述辐射源电连接所述电源;
操作组件,用于控制所述电源与所述辐射源导通;
锁定单元,用于使所述干燥设备进入安全模式;
在所述安全模式中,所述辐射源与所述电源断开,且不响应所述操作组件。
本申请实施方式提供的一种干燥设备,所述干燥设备包括:
电源;
辐射源,所述辐射源电连接所述电源;
操作组件,被操作后控制所述电源与所述辐射源导通;
姿态检测单元,用于检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号;
主控单元,用于接收所述姿态信号并调整所述辐射源的功率。
本申请实施方式提供的一种控制方法,用于干燥设备,所述干燥设备包括电源、辐射源、操作组件、锁定单元,所述辐射源电连接所述电源,操作组件用于控制所述电源与所述辐射源导通,
所述控制方法包括:
识别所述锁定单元是否被操作;
在所述锁定单元被操作时,控制所述辐射源与所述电源是否可导通;
所述辐射源与所述电源不可导通时,所述干燥设备进入安全模式;
在所述安全模式中,所述辐射源与所述电源断开,且不响应所述操作组件。
本申请实施方式提供的一种控制方法,用于干燥设备,所述干燥设备包括电源、辐射源、操作组件、姿态检测单元和主控单元,所述辐射源电连接所述电源,所述控制方法包括:
在所述操作组件被操作后,控制所述电源与所述辐射源导通或断开;
在所述电源与所述辐射源导通时,检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号;
根据所述姿态信号调整所述辐射源的功率。
上述干燥设备和控制方法,在安全模式时,使辐射源与电源之间的连接断开,以避免误触、未关机、线路短路而导致干燥设备持续运行的情况。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1-图2是本申请实施方式的干燥设备的模块结构示意图;
图3是本申请实施方式的干燥设备的结构示意图;
图4是本申请实施方式的按动组件的结构示意图;
图5是本申请实施方式的干燥设备的结构示意图;
图6是图5的X部分的放大图;
图7-图12是本申请实施方式的干燥设备的模块结构示意图;
图13-图14是本申请实施方式的出风风道的结构示意图;
图15-图23是本申请实施方式的干燥设备的模块结构示意图;
图24-图47是本申请实施方式的控制方法的流程图。
主要元件符号说明:
干燥设备100;
电源10、辐射源20、操作组件30、锁定单元40、握持部50、电源管理单元60、姿态检测单元70、电机80、主控单元90;
操作件31、操作信号传感器32、电容按键34、机械按键35、保护结构36、锁定开关41、第一位置42、第二位置43、壳体44、滑槽45、标识结构46、开机按钮51、电源开关61、放电开关62、供电开关63、出风风道81、测温件82、发热件84、电源芯片91、计时单元92。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参考图1,本申请实施方式提供的一种干燥设备100,包括电源10、辐射源20、操作组件30和锁定单元40。辐射源20电连接电源10。操作组件30用于控制电源10与辐射源20导通。锁定单元40用于使干燥设备100进入安全模式。在安全模式中,辐射源20与电源10断开,且不响应操作组件30。容易理解的是,虽然操作组件30能够控制电源10与辐射源20从不导通的状态转换为导通的状态,但在安全模式中,操作组件30并不能实现其控制作用。换言之,干燥设备100包括至少两个模式:非安全模式时,即使电源10与辐射源20处于不导通状态,也可以通过操作组件30控制二者相互导通;在安全模式时,电源10与辐射源20处于不导通状态,操作组件30无法控制二者相互导通。
在一些实施方式中,辐射源20可以向外辐射可见光,可以是预设频段的红外光,也可以是可见光和红外光的组合。在一些实施方式中,辐射源20通过辐射的光向外传递能量(如热能),从而可使得周围的目标物体(如头发、人体部位、纤维等)接收辐射的能量后升温,达到干燥的效果。在一个实施方式中,干燥设备100可以为吹风机,辐射的能量与气流配合以加快目标物体的干燥效率。
可以理解,对于干燥设备100而言,可以通过对操作组件30进行操作以控制电源10和辐射源20之间的导通,从而使得电源10对辐射源20进行供电。换言之,操作组件30实际起到的作用可以理解为一般电器设备上的开关,在操作后使干燥设备100能够在关闭和打开正常使用之间切换。在一个更具体的实 时方式中,在安全模式中的不响应操作组件30可以为,干燥设备100整体对操作组件30不响应,也即相当于操作组件30无法对干燥设备100进行控制。在另一个更具体的实时方式中,在安全模式中的不响应操作组件30可以为,辐射源20对操作组件30不响应,也即相当于操作组件30无法对辐射源20进行控制。
在安全模式时,上述干燥设备100中的辐射源20与电源10之间的连接保持持续断开,并且不响应操作组件30。此模式下干燥设备100仅对锁定单元40响应,能够最大程度避免干燥设备100由于操作组件30被误触、未关机、线路短路等异常情况所导致的误开启,进而避免干燥设备100周围的易燃物体持续接收来自辐射源20的能量而受热升温甚至着火的情况。
在实际使用中,一般的电器设备,尤其是自身具有充电电池、易于携带的设备,往往会出现被误触开机等异常情况。本实施例中的干燥设备100采用辐射源20对外辐射能量,其如果被误开启,比如干燥设备100被用户放置或收纳后,干燥设备100与周围的物体发生碰撞而使得操作组件30被误触,或干燥设备100由于一些特殊情况产生线路短路使电源10和辐射源20相互导通,辐射源20会持续向外通过辐射传递能量,导致周围的物体积聚辐射所带来的能量而升温。对于一些低燃点的物体而言,极易由于上述原因而发生自燃,并进一步导致火灾的发生。在另一些实施例中,干燥设备100被未成年人(如儿童)或动物误触后,会对它们带来安全隐患。
因此,对于本申请的干燥设备100而言,通过设置锁定单元40可以使干燥设备100进入安全模式,进而保持电源10和辐射源20之间不导通,且干燥设备100无法对操作组件30进行响应。这样,即使干燥设备100产生了上述异常情况,也会由于干燥设备100无法响应操作组件30而不会被误开启,进而避免灾害的发生,提高干燥设备100自身的安全性。
换言之,锁定单元40能够最大程度的确保干燥设备100保持关闭。用户在收纳干燥设备100,旅行外出需要携带干燥设备100,或者放置在有未成年人或宠物出没的地点时,只需要对锁定单元40进行操作,使干燥设备100处于安全模式,即可防止其被误开启。如此,用户能够放心的收纳、携带或放置该干燥设备100。
此外,在其它的实施方式中,电源10可以是安装在干燥设备100上的电池,也可以是需要进行有线连接的供电设施,干燥设备100通过预设的电源线与供电设施连接。
请参考图1,在某些实施方式中,对操作组件30进行操作以输出操作信号。在操作信号未满足预设条件时,干燥设备100保持处于关机状态。在操作信号满足预设条件时,电源10与辐射源20导通以开启干燥设备100。
如此,以是否满足预设条件作为开启条件,可组合多组不同的条件作为预设条件,尽可能减少误触开机的可能性,确保只有用户在正确操作时才能够开机使用,进一步提高通过操作组件30开启干燥设备100的安全性。
具体地,干燥设备100未处于安全模式,操作组件30输出操作信号。在操作信号未满足预设条件时,则可以确认操作组件30具有被误触的可能,从而使得干燥设备100保持处于关机状态。在操作信号满足预设条件时,则可以确认为用户对操作组件30进行了正确操作,从而使得电源10与辐射源20导通,以使得干燥设备100开启、辐射源20开始产生辐射。换言之,操作组件30本身也具有防误触的功能,即使干燥设备100未处于安全模式中,操作组件30本身通过预设条件的判断,也能够排除一定程度的误触开机风险,进一步提高安全性。在某些实施方式中,操作组件30能够产生多个操作信号。在接收到的操作信号的数量小于预设数量时,操作信号未满足预设条件,在接收到的操作信号的数量为预设数量时,操作信号满足预设条件。在某些实施方式中,操作组件30也可以产生特殊的信号组合,根据信号组合中各信号是否符合预设阈值范围,判断是否满足预设条件。例如干燥设备100的机身角度和运动幅度信号组合,在机身角度为靠近竖直方向的一定角度范围内,且运动幅度符合手持状态时,判断符合预设条件,继而开启干燥设备100,以供用户使用。容易理解的是,在下文中,虽然以操作信号的数量作为判断,但是操作信号本身在产生时,依然可对其是否满足条件进行判断,满足预设条件时将其作为预设条件中的操作信号。
如此,可降低由于用户的错误操作而产生误开机的可能性。
具体地,在操作组件30被操作(包括误触、正确操作等)时,会产生若干数量的操作信号。可以理 解,由于操作组件30在被误触或者非正确操作时,其往往只会产生少量的操作信号。在接收到的操作信号的数量小于预设数量时,可确定操作信号未满足预设条件。
而在接收到的操作信号的数量为预设数量时,则可确定操作信号满足预设条件,操作组件30被用户正确操作。电源10和辐射源20被导通,干燥设备100通过辐射源20对外进行辐射。
请参考图2,在某些实施方式中,操作组件30包括多个操作件31和识别单元311。各操作件31用于输出操作信号。识别单元311用于接收操作信号,并在满足预设条件时导通电源10与辐射源20以开启干燥设备100。容易理解的是,操作组件30并不限定为包括多个操作件31和识别组件311的组件,在其他的实施方式中,操作组件30也可以为包括常规机械开关和相关电路的组件,通过电路上的触点判断机械开关的位置,作为控制电源10与辐射源20导通的预设条件。
另外,在图2所示的实施方式中,干燥设备100还包括主控单元90。具体地,这一个实施方式中,识别单元311可将接收到的操作信号发送给主控单元90,使得主控单元90确定接收到的操作信号是否满足预设条件,并在接收到的操作信号满足预设条件后,控制干燥设备100导通电源10和辐射源20之间的连接,使得干燥设备100开启。对于锁定单元40而言,可以通过向主控单元90发送相关的信号,使得主控单元90确定保持断开电源10和辐射源20之间的连接以使得干燥设备100进入安全模式,也可以直接控制电源10和辐射源20之间的连接断开以使得干燥设备100进入安全模式。
在某些实施方式中,多个操作件31可以相互独立,分别产生多个操作信号,需要对各个操作件31分别进行操作,以独立的输出操作信号。在某些实施例方式中,多个操作件31能够以一定程度联动的方式设置,用户只需要一次正确的操作动作,即可同时操作全部操作件31以产生对应的操作信号,更加符合人体工学,以降低用户的学习成本。
具体地,在一个实施方式中,操作件31的数量为两个,预设数量为两个。在用户对干燥设备100进行开机时,可通过识别单元311接收到从两个操作件31被同步操作而分别产生的操作信号。如此,接收到的操作信号的数量为两个,符合预设条件。
另外,对于操作件31的数量,在其它的实施方式中,操作件31的数量可以为三个、四个及四个以上,在用户对操作组件30进行操作时,可以使得所有的操作件31被操作以使得识别单元311接收到对应的操作信号。
此外,在另一些实施方式中,在用户对操作组件30进行操作时,可以使得多个操作件31的其中一个被操作以产生至少一个操作信号。一个操作件31被操作产生的操作信号的数量可以通过对操作件31的操作动作来确定。
请参考图3,在某些实施方式中,干燥设备100包括握持部50。多个操作件31包括操作信号传感器32和开机按钮51。操作信号传感器32设置于握持部50,用于感应人体电容,并输出操作信号。开机按钮51用于在被按下后输出操作信号。具体地,用户操作干燥设备100时,会对其握持部50进行持握以拿起干燥设备100,从而使得设置在握持部50的操作信号传感器32检测到位于握持部50的人体电容,在用户进一步对开机按钮51进行操作以开启干燥设备100时,开机按钮51检测到被按下后输出操作信号,从而使得操作组件30在人体一次操作动作(在对握持部50进行持握时操作开机按钮51)时使操作信号传感器32和开机按钮51分别输出操作信号,两个操作信号被识别单元311接收识别,判断符合预设条件后,电源10和辐射源20导通以开启干燥设备100。在某些实施方式中,操作信号传感器32的操作信号可以设置为在检测到的人体电容处于预设电容区间时产生;开机按钮51的操作信号可以设置为在按下一定时间后产生。
请再结合图3,在另一些实施方式中,操作信号传感器32可以检测用户对握持部50进行持握时的握持压力来确定产生对应的操作信号。具体地,在一个实施方式中,在用户操作干燥设备100时,拿起干燥设备100的动作包含持握干燥设备100的握持部50,从而使得设置在握持部50的操作信号传感器32检测到位于握持部50的持握压力,并输出操作信号。在用户进一步对开机按钮51进行操作以开启干燥设备100时,开机按钮51检测到被按下后输出操作信号。从而使得操作组件30在人体一次操作动作(在对握持部50进行持握时操作开机按钮51)时产生对应操作信号传感器32的操作信号和对应开机按钮51的操作信号。在某些实施方式中,操作信号传感器32的操作信号可以设置为在持握压力处于预设压力区间时产生; 开机按钮51的操作信号可以设置为在按下一定时间后产生。
在这样的一个实施方式中,操作信号传感器32可产生一个操作信号,开机按钮51也可产生一个操作信号,且预设数量为两个时,当二者均成功输出操作信号后即可确定符合预设条件,电源10和辐射源20被导通以开启干燥设备100。
在又一些实施方式中,操作信号传感器32可以同时感应人体电容和持握压力,仅在此两种信息都满足条件时才输出一个操作信号,具体原理和上述实施方式的原理类似或相同,在此便不做赘述。
请参考图4,在某些实施方式中,多个操作件31包括电容按键34和机械按键35。电容按键34设置在机械按键35的表面并跟随机械按键35进行活动。电容按键34在被触摸时用于产生触摸信号。机械按键35在被按压时用于产生按压信号。
具体地,在图示的实施方式中,电容按键34设置在机械按键35的表面,用户在通过按压机械按键35时会直接触摸到电容按键34,并使得电容按键34跟随机械按键35的按动方向进行活动,使得用户的一次操作动作(下压按键)就可以完成对电容按键34的触摸和对机械按键35的按压。其中,在一个实施方式中,电容按键34在被用户触摸时,会对触摸电容的大小进行检测,并会在触摸电容符合预设电容区间时产生触摸信号,容易理解的是,能够通过多次实验的方式确定用户在触摸电容按键34时产生电容的数值范围区间,并将该区间作为上述的电容区间。在一个实施方式中,可在机械按键35的下方设置对应的两个触点,并且将两个触点构造为在机械按键35被完全按下时导通,并产生按压信号;更进一步地,可以在触点被按压的时长大于等于预设时长后产生按压信号。在另一个实施方式中,机械按键35在被按压时对按压力度的大小或机械按键35被按下的位移距离进行检测,符合预设数值时产生按压信号。在又一个实施方式中,可在机械按键35被按压到预设位置时产生按压信号。
另外,在一些实施方式中,操作件31可以设置有相应的传感器,在操作件31操作时,可使得对应的传感器检测到对操作件31进行的操作,从而产生对应的操作信号。在另一些实施方式中,操作件31在被进行操作时会产生数据信号,从而可通过干燥设备100的预设的传感器来接收数据信号并检测是否满足对应的要求,如果满足则相应地输出操作信号。
可以理解,在上述基础上,在用户需要开启干燥设备100时,电容按键34和机械按键35会被同时操作,分别产生触摸信号和按压信号。操作信号可以对应地包括触摸信号和按压信号,也即触摸信号构成一操作信号,按压信号构成另一操作信号,对应操作信号的预设数量为两个,在同步接收到触摸信号和按压信号时,识别单元311即可确定当前操作为用户对干燥设备100的正常操作,从而导通电源10和辐射源20以开启干燥设备100。在其他的实施方式中,识别单元311的预设条件可以仅包括触摸信号和按压信号本身,二者同时存在即判断当前对干燥设备100的操作为正常操作,而不以操作信号的数量为判断依据。
藉由上述的机械按键35和电容按键34的组合方式,在干燥设备100与其它物体发生碰撞时,即使机械按键35与其它物体进行碰撞或者被压下而产生按压信号,但电容按键34未检测到对应的用户触摸电容,从而使得电容按键34无法产生触摸信号,进而使得上述的碰撞不会造成干燥设备100被误触开启。在另一个实施方式中,在人体表面(如手臂)轻微地碰触到干燥设备100的电容按键34而产生触摸信号,但机械按键35未达到预设的条件而无法相应地产生按压信号,进而使得上述的碰触不会造成干燥设备100被误触开启。因此,机械按键35和电容按键34组合构成的操作组件30能够确保干燥设备100仅在用户触摸电容按键34,且按压机械按键35到预设条件时才被开启。
请参考图4,在某些实施方式中,干燥设备100包括保护结构36。电容按键34设于保护结构36和机械按键35之间。用户通过保护结构36触摸电容按键34。
如此,可对电容按键34进行保护,并能够降低电容按键34对人体电容的敏感程度,保护结构36还能够避免电容按键34的表面被磨损或磕碰损坏,从而避免因无法检测触摸电容导致用户无法开机的问题。
具体地,在一些实施方式中,保护结构36可以由树脂、硅胶制成。在用户对操作组件30进行操作或操作组件30被误触时,保护结构36对电容按键34进行保护,避免电容按键34在受到多次的操作或误触而受损,并可使电容按键34在被用户操作时不会直接接触人体,从而降低电容按键34对外部物体的电容(如人体)的敏感程度。在某些实施方式中,保护结构36、电容按键34、机械按键35集成构成了实际的开机键,即用户开机操作时实际按压的按键,保护结构36可以根据人体工学设置为弧形面、增加触摸凹 凸纹等,提供一定的触摸反馈,使用户能仅凭手指触觉即可判断已经摸到了开机键。
请参考图5和图6,在某些实施方式中,锁定单元40包括锁定开关41。锁定开关41可活动地设置于干燥设备100的表面。锁定开关41具有第一位置42和第二位置43。在锁定开关41活动至第一位置42时,锁定单元40进入安全模式。在锁定开关41活动至第二位置43时,退出安全模式。容易理解的是,锁定开关41能够通过现有技术中成熟的各种电学开关实现,在其从第二位置43切换至第一位置42时,即相当于进入安全模式的操作,反之即为退出安全模式的操作,具体的电学结构非本实施例之重点。
如此,用户能够通过观察锁定开关41的位置,即可方便快速确认干燥设备100当前是否处于安全模式。
可以理解,由于干燥设备100在锁定开关41位于第一位置42时会进入安全模式,在锁定开关41位于第二位置43时则会退出安全模式,对于用户而言,可以简单地通过操作锁定开关41的位置来进入或退出安全模式,并且在使用前通过观察锁定开关41的位置也能快速的判断干燥设备100当前是否处于安全模式,而不需要进行额外的操作。
请参考图5和图6,在某些实施方式中,干燥设备100包括壳体44。壳体44上设有滑槽45。锁定开关41滑动安装于滑槽45。第一位置42、第二位置43位于滑槽45内。锁定开关41上设有标识锁定开关41当前所处位置的标识结构46。
如此,可使得锁定开关41的当前位置更为显眼和易于辨认。
具体地,在这样的一个实施方式中,锁定开关41可以通过沿滑槽45滑动的方式来进行活动,在锁定开关41滑动至第一位置42时,锁定开关41上的标识结构46显示锁定开关41当前位于第一位置42,在锁定开关41滑动至第二位置43时,锁定开关41上的标识结构46显示锁定开关41当前位于第二位置43。也就是说,通过锁定开关41上的标识结构46,可对应地确定锁定开关41所在的位置。在一个更具体的方式中,可以在锁定开关41上设置指示灯构成标识结构46,当锁定开关41移动至第一位置42时,指示灯为红色表示当前为安全模式,锁定开关41移动至第二位置43时指示灯熄灭,表示当前为非安全模式,可正常开机使用。
另外,在一个实施方式中,锁定开关41的活动空间可以仅限于第一位置42和第二位置43,并且通过相关的机械限位结构使得锁定开关41在滑动所处的停止位置仅包括第一位置42和第二位置43,从而使干燥设备100处于安全模式或退出安全模式,有利于用户对锁定开关41当前所在位置的确认,避免锁定开关41位于除第一位置42和第二位置43以外的其它位置,使得用户对干燥设备100当前是否处于安全模式产生疑惑。
此外,在这样的实施方式中,标识结构46可以设置在滑槽45上,在锁定开关41滑动至对应的位置时,可通过锁定开关41所在位置的标识结构46来确定锁定开关41当前所在的位置是第一位置42还是第二位置43。在其它的实施方式中,标识结构46可以既设置在锁定开关41上,又设置在滑槽45上,或者设置在壳体44上相邻滑槽45的位置上,具体原理和上述实施方式的原理类似或相同,在此便不做赘述。
在某些实施方式中,标识结构46包括设置在第二位置43的颜色标识。锁定开关41位于第一位置42时第二位置43的颜色标识外露。
如此,可通过颜色标识来确认锁定开关41是否处于第一位置42。
具体地,在一个实施方式中,在锁定开关41活动至第一位置42时,位于第二位置43的颜色标识会外露,在锁定开关41活动至第二位置43时,位于第二位置43的颜色标识会锁定开关41遮挡而隐藏,从而可通过观察是否存在外露的颜色标识以区分实现锁定开关41的第一位置42和第二位置43,以便于区分锁定开关41所在的位置。颜色标识可以显示为红色、蓝色、绿色、黄色等单种颜色,可以显示为多种颜色混合搭配的组合,应根据具体情况进行选择,或通过实际测试进行标定。
另外,在其它的实施方式中,标识结构46可包括图形标识,图形标识设置在第二位置43,锁定开关41位于第一位置42时第二位置43的图形标识外露。对于图形标识而言,可以显示为几何图形、文字图形、数字图形等,可以显示为不同类型的图形的组合,应根据具体情况进行选择,或通过实际测试进行标定。在图6所示的实施方式中,在锁定开关41位于第一位置42时,标识结构46显示在对应第二位置43的滑槽45内,从而可确定锁定开关41当前位于第一位置42,其中,标识结构46为红色的颜色标识。
此外,在一些实施方式中,标识结构46可包括颜色标识和图形标识,颜色标识和图形标识设置在第二位置43,锁定开关41位于第一位置42时第二位置43的颜色标识和图形标识外露,对于颜色标识和图形标识而言,可以显示为一个颜色标识和一个图形标识在空间是上的简单组合,可以显示为具有对应颜色标识的颜色的图形标识,可以显示为具有对应图形标识的图形的颜色标识,具体原理和上述实施方式的原理类似或相同,在此便不做赘述。
请参考图7,在某些实施方式中,干燥设备100包括电源管理单元60和电源开关61。电源开关61设置于电源10和辐射源20之间。电源管理单元60用于在锁定单元40被操作后产生第一使能信号和第二使能信号。电源开关61用于根据第一使能信号和第二使能信号控制电源10和辐射源20之间是否可导通,使干燥设备100进入或退出安全模式。当第一使能信号和第二使能信号控制电源10和辐射源20之间可导通时,能够响应操作组件30使控制电源10和辐射源20之间导通,干燥设备100退出安全模式。当第一使能信号和第二使能信号控制电源10和辐射源20之间不可导通时,电源10和辐射源20之间断开且不可导通,不响应操作组件30,干燥设备100进入安全模式。
如此,通过两个使能信号进行判断,可提高干燥设备100在安全模式下的鲁棒性。
具体地,在图示的实施方式中,在操作锁定单元40后,电源管理单元60会相应地产生第一使能信号和第二使能信号,通过第一使能信号和第二使能信号判断干燥设备100进入或退出安全模式,换言之,对于锁定单元40的操作动作,无论是操作进入安全模式,还是操作退出安全模式,与其耦合的电源管理单元60均会产生第一使能信号和第二使能信号,但是在进入安全模式和退出安全模式时,电源管理单元60所产生的第一使能信号和第二使能信号具有不同的电平状态。具体的判断逻辑为,仅在第一使能信号的电平状态为第一电平状态、第二使能信号的电平状态为第二电平状态时,干燥设备100才能退出安全模式,避免由于硬件发生故障而使第一使能信号或第二使能信号产生错误的电平状态,进而避免错误的电平状态使干燥设备100意外退出安全模式所带来的安全隐患,提高了鲁棒性。
另外,在一些实施方式中,电源开关61可以为MOS管。
在某些实施方式中,在第一使能信号是第三电平状态和/或第二使能信号是第四电平状态时,干燥设备100保持处于安全模式,第一电平状态与第三电平状态不同,第二电平状态与第四电平状态不同。容易理解的是,由于第一使能信号包括第一电平状态、第三电平状态,第二使能信号包括第二电平状态、第四电平状态,第一使能信号和第二使能信号的电平状态组合共有四种。为了降低故障导致干燥设备100意外退出安全模式的概率,当且仅当第一使能信号为第一电平状态、第二使能信号为第二电平状态时,干燥设备100才退出安全模式,也即能够正常开机使用。在其他三种电平状态组合中,干燥设备100均保持处于安全模式,无法被开机。换言之,即使电源管理单元60或者其他相关电路结构出现故障,导致第一使能信号和第二使能信号的输出混乱,干燥设备100也仅有25%的概率退出安全模式,仍有75%的概率保持在安全模式,从而提高干燥设备100自身的安全性和鲁棒性。
具体地,在一个实施方式中,第一电平状态为高,第二电平状态为低,第三电平状态为低,第四电平状态为高。也就是说,仅在第一使能信号的电平状态为高、第二使能信号的电平状态为低时,才会使得干燥设备100能够退出安全模式,从而用户能够通过正确操作导通电源10和辐射源20,以开启干燥设备100。在第一使能信号的电平状态为低,或第二使能信号的电平状态为高,或第一使能信号的电平状态为低、第二使能信号的电平状态为高时,则可确定可能存在第一使能信号或第二使能信号的其中一个的电平状态被错误地产生,干燥设备100保持处于安全模式,电源10和辐射源20之间的连接保持断开,以避免干燥设备100被误开启。
需要指出的是,在一些实施方式中,电源管理单元60和电源开关61之间连接有逻辑电路结构,电源管理单元60将第一使能信号和第二使能信号传输至逻辑电路结构,使得逻辑电路结构能对第一使能信号和第二使能信号进行逻辑判断,从而得到使能信号,并将使能信号传输至电源开关61,电源开关61根据使能信号来控制电源10和辐射源20之间是否可导通。
电源开关61可以根据使能信号的电平状态来确定导通或断开电源10和辐射源20之间的连接。在一个实施方式中,在第一使能信号的电平状态为高、第二使能信号的电平状态为低时,得到的使能信号的电平状态为高,而在其它情况下,使能信号的电平状态则为低,从而可通过使能信号的电平状态来控制干燥 设备100进入或退出安全模式。
另外,在其它的实施方式中,第一电平状态和第二电平状态,第三电平状态和第四电平状态,可根据具体情况来进行确定。在一个实施方式中,第一电平状态为低,第二电平状态为高,第三电平状态为高,第四电平状态为低。在第一使能信号的电平状态为低、第二使能信号的电平状态为高时,才会使得干燥设备100能够退出安全模式。在第一使能信号的电平状态为高,或第二使能信号的电平状态为低,或第一使能信号的电平状态为高、第二使能信号的电平状态为低时,干燥设备100保持处于安全模式。
请参考图8,在某些实施方式中,干燥设备100包括用于耦合锁定单元40的放电开关62。具体地,在安全模式中,干燥设备100可以通过放电开关62断开电源10向辐射源20进行放电的电路,从而使得放电开关62能够控制电源10停止放电。此外,前述的操作组件30被操作时控制电源10与辐射源20的导通,也即操作组件30作为电学元件同样需要供电。在非安全模式下,即使干燥设备100处于关机状态,为了响应操作组件30的操作,也需要保持电源10的放电,对操作组件30进行供电。在安全模式下,由于放电开关62直接断开了电源10的放电电路,即在控制电源10和辐射源20断开的同时,也实现了操作组件30和电源10断开,从而实现了在安全模式下不响应操作组件30的目的。
如此,可提高安全性。在一个实施方式中,放电开关62可以为MOS管。
请参考图9,在某些实施方式中,电源开关61包括用于耦合锁定单元40的供电开关63。具体地,在安全模式中,电源管理单元60可以控制供电开关63断开电源10向辐射源20进行供电的电路,以使得电源10停止向辐射源20供电。此外,前述的操作组件30被操作时控制电源10与辐射源20的导通,也即操作组件30作为电学元件同样需要供电。在非安全模式下,即使干燥设备100处于关机状态,为了响应操作组件30的操作,也需要保持电源10的放电,对操作组件30进行供电。在安全模式下,由于供电开关63直接断开了电源10的放电电路,即在控制电源10和辐射源20断开的同时,也实现了操作组件30和电源10断开,从而实现了在安全模式下不响应操作组件30的目的。在其他的实施方式中,也可以在电路中同时设置放电开关62和供电开关63,也即在电源10的放电端和辐射源20的用电端同时断开,双重保护确保断电,提高安全性。
如此,可提高安全性。在一个实施方式中,供电开关63可以为MOS管。
请参考图10,在某些实施方式中,干燥设备100包括姿态检测单元70和主控单元(图未示),其中姿态检测单元70用于检测干燥设备100的姿态信息和对应的时间,并输出姿态信号。主控单元接收姿态信号并调整辐射源20的功率。也就是说,通过确定干燥设备100的姿态信息和姿态信息所对应的时间,可以相应地调整辐射源20的功率,从而提高干燥设备100的适用性和用户体验。干燥设备100的姿态可以为较大幅度运动、较小幅度运动、保持静止等,不同的姿态对应不同的姿态信息,具体的实现过程详见下文。
在某些实施方式中,姿态检测单元70可以包括位置传感器、距离传感器、状态传感器、视觉传感器的至少一种。
具体地,在一个实施方式中,姿态检测单元70包括位置传感器,比如IMU,位置传感器可以检测干燥设备100的惯性,根据检测到干燥设备100的惯性,可确定干燥设备100的姿态信息。在另一个实施方式中,姿态检测单元70包括距离传感器,比如超声波、红外等,距离传感器可以检测干燥设备100与周边物体之间的距离,在检测到干燥设备100与周边物体之间的距离保持不变时,可确定干燥设备100处于静止姿态,在检测到干燥设备100与周边物体之间的距离动态变化时,可根据距离变化值确定干燥设备100运动中的具体姿态信息。在又一个实施方式中,姿态检测单元70包括状态传感器,比如高度计、气压计、磁力计等,状态传感器可以检测干燥设备100的当前状态,在检测到干燥设备100的当前状态保持不变时,可确定干燥设备100处于静止姿态。在再一个实施方式中,姿态检测单元70包括视觉传感器,比如双目、单目等,视觉传感器可以采集干燥设备100周围的图像信息,在检测到干燥设备100周围的图像信息保持不变时,可确定干燥设备100处于静止姿态。
请参考图10,在某些实施方式中,姿态检测单元70检测干燥设备100姿态信息满足第一范围时输出第一姿态信号,主控单元90根据第一姿态信号控制辐射源20以第一辐射功率运行。
如此,可确定干燥设备100被用户正常操作。
具体地,在干燥设备100姿态信息满足第一范围时,可确定干燥设备100处于较强烈的运动(例如一定范围内晃动)中,姿态检测单元70会输出第一姿态信号,主控单元90根据第一姿态信号控制辐射源20以第一辐射功率运行,以使干燥设备100进行正常工作。第一范围可以对应干燥设备100进行较强烈的运动的晃动幅度。容易理解的是,由于干燥设备100通过辐射源20对外部物体辐射能量,在辐射持续一段时间后实现将其加热干燥,而在较为剧烈的运动中干燥设备100难以持续对准外部物体的同一个部位,为了保证其工作效率,该状态下辐射源20以数值较大的第一辐射功率正常运行。
请参考图10,在某些实施方式中,姿态检测单元70满足第二范围时输出第二姿态信号,第二范围小于第一范围。主控单元90根据第二姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率,其中,第二辐射功率大于第三辐射功率,第四辐射功率和第三辐射功率均小于第一辐射功率。
如此,可根据干燥设备100的当前运动状态来动态调整辐射源20的功率。
具体地,在这样的一些实施方式中,在干燥设备100的晃动较缓和时,可确定姿态检测单元70满足第二范围,从而姿态检测单元70会输出第二姿态信号,使得主控单元90根据第二姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率运行,其中第三辐射功率和第四辐射功率均小于第一辐射功率。以降低辐射源20的输出功率。第二范围可以为对应干燥设备100晃动较缓和时的运动幅度。与第一范围对应的运动状态相比,第二范围对应的运动幅度较为缓和,在该状态下干燥设备100有可能对准外部物体的同一个部位持续工作较长时间,如果保持第一辐射功率运行,辐射的能量有可能迅速聚集而导致外部物体温度迅速上升,引发危险,因此在该状态下切换为第二辐射功率和第三辐射功率交替运行,或保持在第四辐射功率运行,减少了对外部物体的辐射强度,提高了干燥设备100自身的安全性。
请参考图10,在某些实施方式中,姿态检测单元检测干燥设备100处于静止姿态,且对应的时间达到第一阈值时输出第三姿态信号。主控单元根据第三姿态信号控制辐射源以第二辐射功率和第三辐射功率交替地运行,第二辐射功率大于第三辐射功率,第三辐射功率小于第一辐射功率。
如此,可避免干燥设备100在远离用户控制后持续工作所带来的潜在危险。
具体地,在这样的一些实施方式中,在干燥设备100静止时,可通过姿态检测单元70检测静止的时长,在时长达到第一阈值时,姿态检测单元70会输出第三姿态信号,使得主控单元90根据第三姿态信号控制辐射源20以第二辐射功率和小于第一辐射功率的第三辐射功率交替地运行,从而可降低辐射源20的输出功率,避免其周围具有较低燃点的物体受热着火。在其他的实施方式中,在响应第三姿态信号时,主控单元90控制辐射源20以第二辐射功率和第三辐射功率交替运行一定时间后,切换至第四辐射功率,第四辐射功率可以为较低的功率,仅用来标识干燥设备100当前仍在运行中,第四辐射功率也可以为零,也即暂时关闭辐射源20。在更具体的实施例中,暂时关闭辐射源20后,主控单元90控制干燥设备100进入待机模式,在该模式下虽然辐射源20没有工作,但是干燥设备100未进入关机状态,在姿态信号改变后(例如用户将放下的干燥设备100又拿起),能够立即响应对应的姿态信号,控制辐射源20切换至对应的输出功率。
另外,第二姿态信号下的辐射源20的第二辐射功率和第三姿态信号下的辐射源20的第二辐射功率,可以是相同的,也可以是不同的。第二姿态信号下的辐射源20的第三辐射功率和第三姿态信号下的辐射源20的第三辐射功率,可以是相同的,也可以是不同的。
请参考图10,在某些实施方式中,姿态检测单元70检测干燥设备100处于静止姿态,且对应的时间超过第一阈值达到第二阈值时输出第四姿态信号。主控单元90根据第四姿态信号关闭辐射源20。
如此,可避免干燥设备100远离用户控制的时间过长所带来的潜在危险。
具体地,在这样的一些实施方式中,在干燥设备100静止时,可通过姿态检测单元70检测静止的时长,在时长达到大于第一阈值的第二阈值时,姿态检测单元70会输出第四姿态信号,使得主控单元90根据第四姿态信号关闭辐射源20,避免周围具有较低燃点的物体受热着火。
另外,对于辐射源20的第一辐射功率、第二辐射功率、第三辐射功率、第四辐射功率,可以为辐射源20的具体功率值,也可以为辐射源20进行运行时的功率区间,每个功率区间之间可以是重叠的,也可 以是不重叠的。
上述的干燥设备100的姿态切换过程可通过下述的具体应用场景举例说明:
用户拿起干燥设备100使用时,在其动作幅度较大,也即对外部物体的较大面积进行干燥(例如在头发湿透后进行干燥)时,用户会不断移动干燥设备100,此时辐射源20以较大的第一辐射功率运行。当用户动作幅度较小时,也即对外部物体较小的面积进行干燥(例如只对头发的某个具体的部分进行干燥),为了避免温度迅速升高导致的危险,此时将辐射源的输出功率从第一辐射功率切换为第二辐射功率和第三辐射功率交替运行,也即呼吸状态。当用户的使用被打断,将干燥设备100随手放置在桌上或充电座上时,此时干燥设备100处于静止姿态,辐射源20在呼吸状态(第二辐射功率和第三辐射功率交替运行)运行一段时间后,进入待机模式(辐射源20的输出功率为零,但是干燥设备100未断开电源)以避免放置的干燥设备100点燃例如毛巾等低燃点物品。在待机模式下,用户再次拿起干燥设备100使用,干燥设备100根据其动作判断切换辐射源20到对应的输出功率。在待机模式保持时间超过预设值(即前述第二阈值),用户依然没有再次使用干燥设备100时,可以判断用户已经停止了干燥设备100的使用,为了避免其消耗能量,干燥设备100进入关机状态。从该上述过程中能够看出,干燥设备100能够实现根据用户的操作动作切换自身的工作状态,以提供更加智能化的操作体验,并且具有较高的安全性。
请参考图11,在某些实施方式中,干燥设备100包括用于产生风流的电机80。主控单元90接收姿态信号并调整电机80的功率。
如此,可提高对周围物体的散热效果,以避免辐射源20辐射的能量聚集在外部物体引起发热的问题。
具体地,根据主控单元90接收到的不同姿态信号,可对应调整电机80的功率。在一个实施方式中,姿态信号为第一姿态信号,电机80的功率为第一出风功率。在另一个实施方式中,姿态信号为第二姿态信号,电机80的功率为大于第一出风功率的第二出风功率,即在动作幅度较为缓和的状态下增加风机80输出功率,用以对外部物体增加风量,避免热量聚集导致的迅速升温。在又一个实施方式中,姿态信号为第三姿态信号,电机80的功率为大于第二出风功率的第三出风功率,即在静止状态下进一步提高电机80的输出功率,避免脱手放置的干燥设备100持续运行点燃外部物品。在再一个实施方式中,姿态信号为第四姿态信号,电机80的功率为零,进入待机或关机状态。
另外,在一些实施方式中,电机80的功率和辐射源20的功率可以相互匹配。在一个实施方式中,在姿态信号为第一姿态信号时,辐射源20以第一辐射功率运行,电机80以第一出风功率运行,在姿态信号为第二姿态信号时,辐射源20以第四辐射功率运行,电机80以第二出风功率运行,在姿态信号为第三姿态信号时,辐射源20以第二辐射功率和第三辐射功率交替运行,电机80以第三出风功率运行。
请参考图12,在某些实施方式中,干燥设备100包括电机80和主控单元90。电机80用于产生风流。主控单元90对辐射源20和电机80进行电流采样,在辐射源20的电流超过预设的第一电流范围,和/或,电机20的电流超过预设的第二电流范围时,通过主控单元90控制干燥设备100进入关机状态。
如此,可通过对辐射源20的电流进行检测以确定开启干燥设备100后的辐射源20是否发生异常,以及可通过对电机80的电流进行检测以确定开启干燥设备100后的电机80是否发生异常。
具体地,在电机80出现堵转、损坏时,电机80的电流会发生异常,因此通过对电机80的电流进行采样的方式来检测电机80的电流就可确定电机80是否出现异常,并通过主控单元90来控制干燥设备100在电机80异常时进入关机状态。在一个实施方式中,第一电流范围对应开启干燥设备100时的辐射源20的电流。在另一个实施方式中,第二电流范围对应开启干燥设备100时的电机80的电流。
请参考图13,在某些实施方式中,干燥设备100包括出风风道81、测温件82、用于产生风流的电机80和主控单元90。测温件82设置在出风风道81内。电机80用于在出风风道81内产生风流。电机80电连接电源10。主控单元90用于在测温件82检测到温度值超出预设温度范围时,控制干燥设备100进入关机状态。测温件82的预设范围可以为事先通过实验确定的电机80正常工作时的温度范围。
如此,可提高干燥设备100的安全性。
具体地,在一个实施方式中在开启干燥设备100后,若干燥设备100处于正常运行的状态,则电机80最终会在出风风道81内产生稳定的风流,测温件82同时接受辐射源20的辐射并且处于风流之中,其受到辐射升温和散热降温的动态影响,测温件82检测到的温度值会在上升到预设温度范围内之后最终会趋 于稳定,而若出风风道81由于发生异常(如出风口或进风口发生堵塞、电学故障导致电机80转速下降),会使得出风风道81内无法维持当前的散热速度,进而使得出风风道81内的温度稳态被破坏而开始升温。
在上述情况下,通过检测出风风道81内的温度值,在测温件82检测到温度值超过预设温度范围时,则可确定出风风道81已发生上述的异常,从而通过主控单元90控制干燥设备100来使得电源10和辐射源20之间的连接断开,干燥设备100进入关机状态,避免辐射源20继续辐射发热。
请参考图14,在某些实施方式中,干燥设备100包括设置在出风风道81内的发热件84。发热件84和测温件82以预设距离相邻设置,发热件84在开启干燥设备100后进行发热,测温件82检测到预设距离范围内的温度超出预设温度范围时,干燥设备100处于关机状态。由于出风风道81内的空间有限,所设置的测温件82体积受到限制,从而只能接受到辐射源20较少的辐射,温度变化幅度较小,容易影响测温精度。在设置了发热件84后,测温件82实际上测得的温度除了来自于辐射升温以外,还包括了发热件84发出的热量,使得其温度变化幅度较大,能够提供足够的测温精度。容易理解的是,在该实施方式中,预设温度范围需要在预设距离范围内设置有发热件84的情况下进行标定。
如此,可提高测温件82对出风风道81内温度进行检测的精度。
具体地,在一些实施方式中,发热件84连接电源10,在开启干燥设备100后,发热件84的温度会由于发热件84通电发热而增大,并会在干燥设备100处于正常工作的状态下维持在预设温度范围内。在出风风道81出现异常时,则发热件84的温度会开始增大,并会超过预设温度范围。由于相对于出风风道81内的风流而言,发热件84的升温较显著,使得测温件82能够明显地检测到发热件84的升温状况,从而可达到快速测温的效果。在一个实施方式中,发热件84可以为热敏电阻。
请参考图15,在某些实施方式中,干燥设备100包括主控单元90。在主控单元90断开电源10与辐射源20的连接时,主控单元90输出第一逻辑控制信号和第二逻辑控制信号。在第一逻辑控制信号为第五电平状态和第二逻辑控制信号为第六电平状态时,电源10与辐射源20的连接断开。
如此,可提高干燥设备100的系统鲁棒性。
具体地,在图示的实施方式中,主控单元90在需要断开电源10与辐射源20的连接时,会相应地产生第一逻辑控制信号和第二逻辑控制信号。通过确认第一逻辑控制信号和第二逻辑控制信号的电平状态,仅在第一逻辑控制信号为第五电平状态和第二逻辑控制信号为第六电平状态时,才能确认为通过主控单元90断开电源10与辐射源20的连接,避免由于实际硬件发生故障而错误地产生第一逻辑控制信号和第二逻辑控制信号的其中至少一个的电平状态,进而避免错误的电平状态使得主控单元90无法断开电源10和辐射源20的连接的系统稳定性的问题,提高了鲁棒性。
请参考图16,在某些实施方式中,干燥设备100包括电源管理单元60。在电源管理单元60用于断开电源10与辐射源20的连接时,电源管理单元60输出第三逻辑控制信号和第四逻辑控制信号。在第三逻辑控制信号为第七电平状态和第四逻辑控制信号为第八电平状态时,电源10与辐射源20的连接断开。
如此,可提高干燥设备100的系统鲁棒性。
具体地,在图示的实施方式中,电源管理单元60在需要断开电源10与辐射源20的连接时,会相应地产生第三逻辑控制信号和第四逻辑控制信号。通过确认第三逻辑控制信号和第四逻辑控制信号的电平状态,仅在第三逻辑控制信号为第七电平状态和第四逻辑控制信号为第八电平状态时,才能确认为通过电源管理单元60断开电源10与辐射源20的连接,避免由于实际硬件发生故障而错误地产生第三逻辑控制信号和第四逻辑控制信号的其中至少一个的电平状态,进而避免错误的电平状态使得电源管理单元60无法断开电源10和辐射源20的连接的系统稳定性的问题,提高了鲁棒性。
另外,在上述基础上,在其它的实施方式中,请结合图17,在某些实施方式中,干燥设备100包括主控单元90和电源管理单元60。在主控单元90断开电源10与辐射源20的连接时,主控单元90输出第一逻辑控制信号和第二逻辑控制信号。在第一逻辑控制信号为第五电平状态和第二逻辑控制信号为第六电平状态时,电源10与辐射源20的连接断开。在电源管理单元60用于断开电源10与辐射源20的连接时,电源管理单元60输出第三逻辑控制信号和第四逻辑控制信号。在第三逻辑控制信号为第七电平状态和第四逻辑控制信号为第八电平状态时,电源10与辐射源20的连接断开。也就是说,既可以通过主控单元90来实现断开电源10与辐射源20的连接,也可以通过电源管理单元60来实现断开电源10与辐射源20的 连接,从而可在主控单元90和电源管理单元60的其中一个由于发生故障时,通过主控单元90和电源管理单元60的另外一个来断开电源10与辐射源20的连接。如此,可提高干燥设备100的系统鲁棒性。
在某些实施方式中,在第一逻辑控制信号不是第五电平状态或第二逻辑控制信号不是第六电平状态时,干燥设备100保持处于安全模式,容易理解的是,第一逻辑控制信号具有是第五电平状态和不是第五电平状态的情况,第二逻辑控制信号具有是第六电平状态和不是第六电平状态的情况,第一逻辑控制信号和第二逻辑控制信号的电平状态组合共有四种。为了降低故障导致干燥设备100意外退出安全模式的概率,当且仅当第一逻辑控制信号为第五电平状态、第二逻辑控制信号为第六电平状态时,干燥设备100才退出安全模式,也即能够正常开机使用。在其他三种电平状态组合中,干燥设备100均保持处于安全模式,无法被开机。换言之,即使电源管理单元60或者其他相关电路结构出现故障,导致第一逻辑控制信号和第二逻辑控制信号的输出混乱,干燥设备100也仅有25%的概率退出安全模式,仍有75%的概率保持在安全模式,从而提高干燥设备100自身的安全性和鲁棒性。
此外,在这样的一些实施方式中,请结合图18,在干燥设备100还可包括电源开关61时,第三逻辑控制信号和第四逻辑控制信号的其中一个可以为第一使能信号,第三逻辑控制信号和第四逻辑控制信号的另外一个可以为第二使能信号,第七电平状态可以为第一电平状态,第八电平状态可以为第二电平状态,从而可使得电源管理单元60通过输出第一逻辑控制信号和第二逻辑控制信号来使得电源开关61断开电源10与辐射源20的连接。
在某些实施方式中,在第三逻辑控制信号不是第七电平状态或第四逻辑控制信号不是第八电平状态时,干燥设备100保持处于安全模式,容易理解的是,第三逻辑控制信号具有是第七电平状态和不是第七电平状态的情况,第四逻辑控制信号具有是第八电平状态和不是第八电平状态的情况,第三逻辑控制信号和第四逻辑控制信号的电平状态组合共有四种。为了降低故障导致干燥设备100意外退出安全模式的概率,当且仅当第三逻辑控制信号为第七电平状态、第四逻辑控制信号为第八电平状态时,干燥设备100才退出安全模式,也即能够正常开机使用。在其他三种电平状态组合中,干燥设备100均保持处于安全模式,无法被开机。换言之,即使电源管理单元60或者其他相关电路结构出现故障,导致第三逻辑控制信号和第四逻辑控制信号的输出混乱,干燥设备100也仅有25%的概率退出安全模式,仍有75%的概率保持在安全模式,从而提高干燥设备100自身的安全性和鲁棒性。
进一步地,在主控单元90断开电源10与辐射源20的连接时,主控单元90可以断开电源开关61和辐射源20之间的连接,从而使得辐射源20断开与电源10之间的连接,也就是说,电源管理单元60可以断开电源10侧对辐射源20的供电,主控单元90可以断开用电侧与电源10之间的连接。
为了方便理解,下列实施方式以干燥设备100包括电源开关61的情况进行说明。
请参考图19,在某些实施方式中,电源10通过电源芯片91连接辐射源20,电源芯片91能够断开以使电源10与辐射源20的连接断开。
如此,可直接断开用电侧。
具体地,在一个实施方式中,电源芯片91连接辐射源20,使得电源10通过电源芯片91来连接至辐射源20。在通过主控单元90来断开辐射源20与电源10的连接时,主控单元90可以在输出的第一逻辑控制信号为第五电平状态、输出的第二逻辑控制信号为第六电平状态的时候,控制电源芯片91断开电源10与辐射源20的连接,从而实现用电侧与电源10之间的连接断开。
请参考图20,在某些实施方式中,干燥设备100还包括计时单元92。计时单元92对电源管理单元60和主控单元90的至少一个以复位时长进行计时操作。在复位时长内获取电源管理单元60和主控单元90的至少一个执行的反馈操作时,计时单元92用于重置计时操作。
如此,可及时确定电源管理单元60和主控单元90的至少一个当前是否发生异常。
具体地,在一个实施方式中,在电源管理单元60处于正常工作状态时,会在计时单元92通过计时操作得到的计时时长大于等于复位时长之前执行反馈操作,使得计时单元92在确认到电源管理单元60执行的反馈操作时重置计时操作以重新开始计时,这样,若计时单元92的计时时长大于等于复位时长且仍然未接收到电源管理单元60执行的反馈操作,从而可确定电源管理单元60处于异常。
在另一个实施方式中,在主控单元90处于正常工作状态时,会在计时单元92通过计时操作得到的计 时时长大于等于复位时长之前执行反馈操作,使得计时单元92在确认到主控单元90执行的反馈操作时重置计时操作以重新开始计时,这样,若计时单元92的计时时长大于等于复位时长且仍然未接收到主控单元90执行的反馈操作,从而可确定主控单元90处于异常。
在又一个实施方式中,计时单元92可以通过计时操作分别得到第一计时时长和第二计时时长。在电源管理单元60和主控单元90处于正常工作状态时,电源管理单元60会对第一计时时长大于等于复位时长之前执行反馈操作,主控单元90会对第二计时时长大于等于复位时长之前执行反馈操作,使得计时单元92在确认到电源管理单元60执行的反馈操作时,对第一计时时长重置计时操作,以对第一计时时长重新开始计时,以及使得计时单元92在确认到主控单元90执行的反馈操作时,对第二计时时长重置计时操作,以对第二计时时长重新开始计时。若第一计时时长大于等于复位时长,则可确定电源管理单元60未能及时执行反馈操作,从而可确定电源管理单元60处于异常。若第二计时时长大于等于复位时长,则可确定主控单元90未能及时执行反馈操作,从而可确定主控单元90处于异常。
请参考图20,在某些实施方式中,在计时操作中,计时时长达到复位时长且电源管理单元60和/或主控单元90未执行反馈操作时,计时单元92用于对电源管理单元60和/或主控单元90执行复位操作。在完成复位操作后,电源管理单元60和/或主控单元90用于使电源10与辐射源20的连接断开。
如此,可避免处于异常的电源管理单元60和/或主控单元90继续进行工作而容易发生风险。
可以理解,计时时长达到复位时长时,电源管理单元60未执行反馈操作时,可确定电源管理单元60处于异常,若继续允许电源管理单元60进行工作,则容易带来隐患(如对接收到的信号进行了错误的处理,从而无法断开电源10与辐射源20的连接),而对于主控单元90而言,则同样有此风险。
在一个实施方式中,在电源管理单元60未执行反馈操作时,可通过计时单元92来对电源管理单元60执行复位操作,使得电源管理单元60进行复位。电源管理单元60在完成复位后,会断开电源10与辐射源20之间的连接,恢复到关机状态,避免电源管理单元60再次处于异常而使得干燥设备100处于不可控的状况。
在另一个实施方式中,在主控单元90未执行反馈操作时,可通过计时单元92来对主控单元90执行复位操作,使得主控单元90进行复位。主控单元90在完成复位后,会断开电源10与辐射源20之间的连接,恢复到关机状态,避免主控单元90再次处于异常而使得干燥设备100处于不可控的状况。
另外,在确认电源管理单元60和主控单元90均未执行反馈操作时,可通过计时单元92来对电源管理单元60和主控单元90执行复位操作,使得电源管理单元60和主控单元90均进行复位,并在计时单元92完成复位操作后,通过电源管理单元60和主控单元90断开电源10与辐射源20之间的连接。
请参考图21,本申请提供的一种干燥设备100,包括电源10、辐射源20、操作组件30、姿态检测单元70和主控单元90。辐射源20电连接电源10。操作组件30被操作后控制电源10与辐射源20导通。姿态检测单元70用于检测干燥设备100的姿态信息和对应的时间,并输出姿态信号。主控单元90用于接收姿态信号并调整辐射源20的功率。
上述干燥设备100,根据干燥设备100当前的不同姿态,可对应调整辐射源20的功率,避免干燥设备100由于误触、未关机、线路短路所导致的持续运行,进而避免干燥设备100周围的易燃物体被辐射源20照射而受热着火的情况。
具体地,在图21所示的实施方式中,通过姿态检测单元70来对干燥设备100的姿态信息和对应的时间进行检测并输出姿态信号,使得主控单元90根据接收到的姿态信号来调整辐射源20的功率,从而可使得干燥设备100能够根据当前的姿态来对应调节辐射源20的输出功率,避免辐射源20持续对周围物体加热而引起自燃。
在一些实施方式中,辐射源20可以向外辐射可见光,可以是预设频段的红外光,也可以是可见光和红外光的组合。在一些实施方式中,辐射源20通过辐射的光向外传递能量(如热能),从而可使得周围的目标物体(如头发、人体部位、纤维等)接收辐射的能量后升温,达到干燥的效果。在一个实施方式中,干燥设备100可以为吹风机,辐射的能量与气流配合以加快目标物体的干燥效率。
可以理解,对于干燥设备100而言,可以通过对操作组件30进行操作以控制电源10和辐射源20之间的导通,从而使得电源10对辐射源20进行供电。换言之,操作组件30实际起到的作用可以理解为一 般电器设备上的开关,在操作后使干燥设备100能够在关闭和打开正常使用之间切换。
在实际使用中,一般的电器设备,尤其是自身具有充电电池、易于携带的设备,往往会出现被误触开机等异常情况。本实施例中的干燥设备100采用辐射源20对外辐射能量,在干燥设备100处于不断运动的姿态时,可使得辐射源20继续运行,在干燥设备100处于静止的姿态时,由于辐射源20会持续向外通过辐射传递能量,若干燥设备100此时被放置在周围具有物体的位置时,可能会导致周围的物体积聚辐射所带来的能量而升温。对于一些低燃点的物体而言,极易由于上述原因而发生自燃,并进一步导致火灾的发生。在另一些实施例中,干燥设备100被未成年人(如儿童)或动物误触后,会对它们带来安全隐患。
因此,对于本申请的干燥设备100而言,通过确定干燥设备100当前的姿态状况,对应调整辐射源20的输出功率,并会在确认用户仍未注意到干燥设备100处于开启状态时,断开电源10和辐射源20之间的连接,进而避免灾害的发生,提高干燥设备100自身的安全性。
此外,在其它的实施方式中,电源10可以是安装在干燥设备100上的电池,也可以是需要进行有线连接的供电设施,干燥设备100通过预设的电源线与供电设施连接。
在某些实施方式中,姿态检测单元70可以包括位置传感器、距离传感器、状态传感器、视觉传感器的至少一种。
具体地,在一个实施方式中,姿态检测单元70包括位置传感器,比如IMU,位置传感器可以检测干燥设备100的惯性,根据检测到干燥设备100的惯性,可确定干燥设备100的姿态信息。在另一个实施方式中,姿态检测单元70包括距离传感器,比如超声波、红外等,距离传感器可以检测干燥设备100与周边物体之间的距离,在检测到干燥设备100与周边物体之间的距离保持不变时,可确定干燥设备100处于静止姿态,在检测到干燥设备100与周边物体之间的距离动态变化时,可根据距离变化值确定干燥设备100运动中的具体姿态信息。在又一个实施方式中,姿态检测单元70包括状态传感器,比如高度计、气压计、磁力计等,状态传感器可以检测干燥设备100的当前状态,在检测到干燥设备100的当前状态保持不变时,可确定干燥设备100处于静止姿态。在再一个实施方式中,姿态检测单元70包括视觉传感器,比如双目、单目等,视觉传感器可以采集干燥设备100周围的图像信息,在检测到干燥设备100周围的图像信息保持不变时,可确定干燥设备100处于静止姿态。
请参考图21,在某些实施方式中,姿态检测单元70检测干燥设备100姿态信息满足第一范围时输出第一姿态信号,主控单元90根据第一姿态信号控制辐射源20以第一辐射功率运行。
如此,可确定干燥设备100为正常运行。
具体地,在干燥设备100姿态信息满足第一范围时,可确定干燥设备100处于较强烈的运动(例如一定范围内晃动)中,姿态检测单元70会输出第一姿态信号,主控单元90根据第一姿态信号控制辐射源20以第一辐射功率运行,以使干燥设备100进行正常工作。第一范围可以对应干燥设备100进行较强烈的运动的晃动幅度。容易理解的是,由于干燥设备100通过辐射源20对外部物体辐射能量,在辐射持续一段时间后实现将其加热干燥,而在较为剧烈的运动中干燥设备100难以持续对准外部物体的同一个部位,为了保证其工作效率,该状态下辐射源20以数值较大的第一辐射功率正常运行。
请参考图21,在某些实施方式中,姿态检测单元70满足第二范围时输出第二姿态信号,第二范围小于第一范围。主控单元90根据第二姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率,其中,第二辐射功率大于第三辐射功率,第四辐射功率和第三辐射功率均小于第一辐射功率。
如此,可根据干燥设备100的当前运动状态来动态调整辐射源20的功率。
具体地,在这样的一些实施方式中,在干燥设备100的晃动较缓和时,可确定姿态检测单元70满足第二范围,从而姿态检测单元70会输出第二姿态信号,使得主控单元90根据第二姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率运行,其中第三辐射功率和第四辐射功率均小于第一辐射功率。以降低辐射源20的输出功率。第二范围可以为对应干燥设备100晃动较缓和时的运动幅度。与第一范围对应的运动状态相比,第二范围对应的运动幅度较为缓和,在该状态下干燥设备100有可能对准外部物体的同一个部位持续工作较长时间,如果保持第一辐射功率运行,辐射的能量有可能迅速聚集而导致外部物体温度迅速上升,引发危险,因此在该状态下切换为第二辐射功率和第三辐射 功率交替运行,或保持在第四辐射功率运行,减少了对外部物体的辐射强度,提高了干燥设备100自身的安全性。
请参考图21,在某些实施方式中,姿态检测单元70检测干燥设备100处于静止姿态,且对应的时间达到第一阈值时输出第三姿态信号。主控单元90根据第三姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,第二辐射功率大于第三辐射功率,第三辐射功率小于第一辐射功率。
如此,可避免干燥设备100在无人看管时持续运行的问题。
具体地,在这样的一些实施方式中,在干燥设备100静止时,可通过姿态检测单元70检测静止的时长,在时长达到第一阈值时,姿态检测单元70会输出第三姿态信号,使得主控单元90根据第三姿态信号控制辐射源20以第二辐射功率和小于第一辐射功率的第三辐射功率交替地运行,从而可降低辐射源20的输出功率,避免其周围具有较低燃点的物体受热着火。在其他的实施方式中,在响应第三姿态信号时,主控单元90控制辐射源20以第二辐射功率和第三辐射功率交替运行一定时间后,切换至第四辐射功率,第四辐射功率可以为较低的功率,仅用来标识干燥设备100当前仍在运行中,第四辐射功率也可以为零,也即暂时关闭辐射源20。在更具体的实施例中,暂时关闭辐射源20后,主控单元90控制干燥设备100进入待机模式,在该模式下虽然辐射源20没有工作,但是干燥设备100未进入关机状态,在姿态信号改变后(例如用户将放下的干燥设备100又拿起),能够立即响应对应的姿态信号,控制辐射源20切换至对应的输出功率。
另外,第二姿态信号下的辐射源20的第二辐射功率和第三姿态信号下的辐射源20的第二辐射功率,可以是相同的,也可以是不同的。第二姿态信号下的辐射源20的第三辐射功率和第三姿态信号下的辐射源20的第三辐射功率,可以是相同的,也可以是不同的。
请参考图21,在某些实施方式中,姿态检测单元70检测干燥设备100处于静止姿态,且对应的时间超过第一阈值达到第二阈值时输出第四姿态信号。主控单元90根据第四姿态信号关闭辐射源20。
如此,可避免干燥设备100远离用户控制的时间过长所带来的潜在危险。
具体地,在这样的一些实施方式中,在干燥设备100静止时,可通过姿态检测单元70检测静止的时长,在时长达到大于第一阈值的第二阈值时,姿态检测单元70会输出第四姿态信号,使得主控单元90根据第四姿态信号关闭辐射源20,避免周围具有较低燃点的物体受热着火。
另外,对于辐射源20的第一辐射功率、第二辐射功率、第三辐射功率、第四辐射功率,可以为辐射源20的具体功率值,也可以为辐射源20进行运行时的功率区间,每个功率区间之间可以是重叠的,也可以是不重叠的。
上述的干燥设备100的姿态切换过程可通过下述的具体应用场景举例说明:
用户拿起干燥设备100使用时,在其动作幅度较大,也即对外部物体的较大面积进行干燥(例如在头发湿透后进行干燥)时,用户会不断移动干燥设备100,此时辐射源20以较大的第一辐射功率运行。当用户动作幅度较小时,也即对外部物体较小的面积进行干燥(例如只对头发的某个具体的部分进行干燥),为了避免温度迅速升高导致的危险,此时将辐射源的输出功率从第一辐射功率切换为第二辐射功率和第三辐射功率交替运行,也即呼吸状态。当用户的使用被打断,将干燥设备100随手放置在桌上或充电座上时,此时干燥设备100处于静止姿态,辐射源20在呼吸状态(第二辐射功率和第三辐射功率交替运行)运行一段时间后,进入待机模式(辐射源20的输出功率为零,但是干燥设备100未断开电源)以避免放置的干燥设备100点燃例如毛巾等低燃点物品。在待机模式下,用户再次拿起干燥设备100使用,干燥设备100根据其动作判断切换辐射源20到对应的输出功率。在待机模式保持时间超过预设值(即前述第二阈值),用户依然没有再次使用干燥设备100时,可以判断用户已经停止了干燥设备100的使用,为了避免其消耗能量,干燥设备100进入关机状态。从该上述过程中能够看出,干燥设备100能够实现根据用户的操作动作切换自身的工作状态,以提供更加智能化的操作体验,并且具有较高的安全性。
请参考图22,在某些实施方式中,干燥设备100包括用于产生风流的电机80。主控单元90接收姿态信号并调整电机80的功率。具体地,根据主控单元90接收到的不同姿态信号,可对应调整电机80的功率。在一个实施方式中,姿态信号为第一姿态信号,电机80的功率为第一出风功率。在另一个实施方式中,姿态信号为第二姿态信号,电机80的功率为大于第一出风功率的第二出风功率。在又一个实施方式 中,姿态信号为第三姿态信号,电机80的功率为大于第二出风功率的第三出风功率。在再一个实施方式中,姿态信号为第四姿态信号,电机80的功率为零。如此,可提高对周围物体的散热效果。
另外,在一些实施方式中,电机80的功率和辐射源20的功率可以相互匹配。在一个实施方式中,在姿态信号为第一姿态信号时,辐射源20以第一辐射功率运行,电机80以第一出风功率运行,在姿态信号为第二姿态信号时,辐射源20以第四辐射功率运行,电机80以第二出风功率运行,在姿态信号为第三姿态信号时,辐射源20以第二辐射功率和第三辐射功率交替运行,电机80以第三出风功率运行。
另外,请参考图23,在图23所示的实施方式中,电源管理单元60可以通过两个GPIO(General-purpose input/output,通用型输入输出)端口来输出第一使能信号和第二使能信号给逻辑门电路,在第一使能信号为第一电平状态且第二使能信号为第二电平状态时,则会向放电开关62发送控制信号,使得放电开关62根据控制信号来控制电源开关61是否可导通电源10与辐射源20之间的通路,以及根据控制信号来控制放电开关62是否可导通电源10与电机80之间的通路。
在电源开关61导通电源10与辐射源20、电机80之间的通路时,电源开关61向辐射源20、电机80进行电池电源输出。在通过主控单元90控制连接辐射源20的电源芯片91和连接电机80的电源芯片91进行导通时,辐射源20和电机80可以分别电连接电源10,从而使得电源10对辐射源20和电机80进行供电。
在电源10对电机80进行供电时,可通过主控单元90产生驱动信号,使得主控单元90通过供电开关63导通电源10和电机80之间的通路,实现主控单元90控制电机80进行开启和关闭。
在上述基础上,主控单元90可以分别对辐射源20的电流和电机80的电流进行采样,在辐射源20电流异常时,主控单元90会断开辐射源20和电源10之间的通路,以及断开电机80和电源10之间的通路。
请再结合图14,具体地,通过在干燥设备100的出风风道81内设置测温件82,可对出风风道81内的温度进行检测,从而可确定出风风道81内的出风情况以得到出风风道81内的风速测量信号,主控单元90在接收到风速测量信号后,则可确定出风风道81内的散热状况。另外,通过在干燥设备100的出风风道81内设置发热件84,在干燥设备100处于工作状态下,发热件84会通电发热,从而可使得测温件82直接对发热件84周围的温度进行检测,有利于提高测温的效率。
请参考图1和图24,本申请实施方式提供的一种控制方法,用于干燥设备100,干燥设备100包括电源10、辐射源20、操作组件30、锁定单元40,辐射源20电连接电源10,操作组件30用于控制电源10与辐射源20导通。控制方法包括:
02:识别锁定单元40是否被操作;
03:在锁定单元40被操作时,控制辐射源20与电源10是否可导通;
04:辐射源20与电源10不可导通时,干燥设备100进入安全模式;
在安全模式中,辐射源20与电源10断开,且不响应操作组件30。
控制干燥设备100进入安全模式,在安全模式中,控制辐射源20与电源10断开,且不响应操作组件30。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图2,干燥设备100包括主控单元90。主控单元90用于:识别锁定单元40是否被操作;在锁定单元40被操作时,控制辐射源20与电源10是否可导通。在辐射源20与电源10不可导通时,干燥设备100进入安全模式,在安全模式中,控制辐射源20与电源10断开,且不响应操作组件30。相应地,在控制电源10和辐射源20之间可导通时,干燥设备100退出安全模式,能够响应操作组件30使控制电源10和辐射源20之间导通。
上述干燥设备100,在辐射源20与电源10之间的连接断开且不可导通时,干燥设备100进入安全模式,以避免误触、未关机、线路短路而导致干燥设备100持续运行的情况。
可以理解,上述实施方式的具体原理已在前述实施方式中进行了详细描述,在此便不再展开。另外,下列实施方式的具体原理可对应地参照前述的实施方式,从而可使得本领域的技术人员通过前后的实施方式来得到相应的技术效果。
请参考图3、图4和图25,在某些实施方式中,操作组件30包括识别单元和多个操作件31,各操作 件31用于输出操作信号,识别单元用于接收操作信号,控制方法包括:
01:在操作信号满足预设条件时,控制电源10与辐射源20导通以开启干燥设备100。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图2,主控单元90用于:在操作信号满足预设条件时,控制电源10与辐射源20导通以开启干燥设备100。
如此,以是否满足预设条件作为开启条件,可组合多组不同的条件作为预设条件,尽可能减少误触开机的可能性,确保只有用户在正确操作时才能够开机使用,进一步提高通过操作组件30开启干燥设备100的安全性。
请参考图26,在某些实施方式中,在操作信号满足预设条件时,控制电源10与辐射源20导通以开启干燥设备100,包括:
011:在接收到的操作信号的数量小于预设数量时,确定操作信号未满足预设条件;
012:在接收到的操作信号的数量为预设数量时,确定操作信号满足预设条件。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图2,主控单元90用于:在接收到的操作信号的数量小于预设数量时,确定操作信号未满足预设条件;在接收到的操作信号的数量为预设数量时,确定操作信号满足预设条件。
请参考图5和图27,在某些实施方式中,锁定单元40包括可活动地设置于干燥设备100表面的锁定开关41,
在锁定单元40被操作时,控制辐射源20与电源10是否可导通,包括:
031:在锁定开关41活动至第一位置42时,控制辐射源20与电源10不可导通;
控制方法包括:
032:在锁定开关41活动至第二位置43时,控制辐射源20与电源10可导通。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图2,主控单元90用于:在锁定开关41活动至第一位置42时,控制辐射源20与电源10不可导通;在锁定开关41活动至第二位置43时,控制辐射源20与电源10可导通。
具体地,在锁定开关41活动至第一位置42时,则可确定需要控制干燥设备100进入安全模式,从而会控制辐射源20与电源10不可导通。在锁定开关41活动至第二位置43时,则可确定需要控制干燥设备100退出安全模式,从而会控制辐射源20与电源10可导通。
请参考图28,在某些实施方式中,控制方法包括:
041:在识别到锁定单元40被操作后,产生第一使能信号和第二使能信号;
042:根据第一使能信号和第二使能信号,控制电源10和辐射源20之间是否可导通,使干燥设备100进入或退出安全模式。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图2,主控单元90用于:在识别到锁定单元40被操作后,产生第一使能信号和第二使能信号;根据第一使能信号和第二使能信号,控制电源10和辐射源20之间是否可导通,使干燥设备100进入或退出安全模式。当第一使能信号和第二使能信号控制电源10和辐射源20之间可导通时,能够响应操作组件30使控制电源10和辐射源20之间导通,干燥设备100退出安全模式。当第一使能信号和第二使能信号控制电源10和辐射源20之间不可导通时,电源10和辐射源20之间断开且不可导通,不响应操作组件30,干燥设备100进入安全模式。
请参考图29,在某些实施方式中,第一使能信号包括第一电平状态和第三电平状态,第二使能信号包括第二电平状态和第四电平状态。根据第一使能信号和第二使能信号,控制电源10和辐射源20之间是否可导通,使干燥设备100进入或退出安全模式,包括:
043:在接收到的第一使能信号为第一电平状态、第二使能信号为第二电平状态时,控制电源10和辐射源20可导通,以使得干燥设备100退出安全模式;
044:在接收到其他状态的第一使能信号、第二使能信号时,控制电源10和辐射源20断开且不可导通,以使得设备进入安全模式。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图2, 主控单元90用于:在接收到的第一使能信号为第一电平状态、第二使能信号为第二电平状态时,控制电源10和辐射源20导通,以使得干燥设备100退出安全模式;在接收到其他状态的第一使能信号、第二使能信号时,控制电源10和辐射源20断开,以使得设备进入安全模式。
请参考图30,控制方法包括:
05:检测干燥设备100的姿态信息和对应的时间,并输出姿态信号;
06:根据姿态信号调整辐射源20的功率。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图10,姿态检测单元70用于:检测干燥设备100的姿态信息和对应的时间,并输出姿态信号;主控单元90用于:根据姿态信号调整辐射源20的功率。
请参考图31,在某些实施方式中,检测干燥设备100的姿态信息和对应的时间,并输出姿态信号,包括:
051:在检测到干燥设备姿态信息满足第一范围时,输出第一姿态信号;
根据姿态信号调整辐射源20的功率,包括:
061:根据第一姿态信号控制辐射源20以第一辐射功率运行。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图10,姿态检测单元70用于:在检测到干燥设备姿态信息满足第一范围时,输出第一姿态信号;主控单元90用于:根据第一姿态信号控制辐射源20以第一辐射功率运行。
请参考图32,在某些实施方式中,检测干燥设备100的姿态信息和对应的时间,并输出姿态信号,包括:
052:在检测到干燥设备姿态信息满足第二范围时,输出第二姿态信号,第二范围小于第一范围;
根据姿态信号调整辐射源20的功率,包括:
062:根据第二姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率,其中,第二辐射功率大于第三辐射功率,第四辐射功率和第三辐射功率均小于第一辐射功率。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图10,姿态检测单元70用于:在检测到干燥设备姿态信息满足第二范围时,输出第二姿态信号,第二范围小于第一范围;主控单元90用于:根据第二姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率,其中,第二辐射功率大于第三辐射功率,第四辐射功率和第三辐射功率均小于第一辐射功率。
请参考图33,在某些实施方式中,检测干燥设备100的姿态信息和对应的时间,并输出姿态信号,包括:
053:在检测到干燥设备姿态信息为静止且对应的时间达到第一阈值时,输出第三姿态信号;
根据姿态信号调整辐射源20的功率,包括:
063:根据第三姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,第二辐射功率大于第三辐射功率,第三辐射功率小于第一辐射功率。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图10,姿态检测单元70用于:在检测到干燥设备姿态信息为静止且对应的时间达到第一阈值时,输出第三姿态信号;主控单元90用于:根据第三姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,第二辐射功率大于第三辐射功率,第三辐射功率小于第一辐射功率。
请参考图34,在某些实施方式中,检测干燥设备100的姿态信息和对应的时间,并输出姿态信号,包括:
054:在检测到干燥设备姿态信息为静止,且对应的时间超过第一阈值达到第二阈值时,输出第四姿态信号;
根据姿态信号调整辐射源20的功率,包括:
064:根据第四姿态信号关闭辐射源20。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图10, 姿态检测单元70用于:在检测到干燥设备姿态信息为静止,且对应的时间超过第一阈值达到第二阈值时,输出第四姿态信号;主控单元90用于:根据第四姿态信号关闭辐射源20。
请参考图35,在某些实施方式中,干燥设备100包括用于产生风流的电机80;检测干燥设备100的姿态信息和对应的时间,并输出姿态信号,包括:
055:接收姿态信号并调整电机80的功率。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图10,主控单元90用于:接收姿态信号并调整电机80的功率。
请参考图12和图36,在某些实施方式中,干燥设备100包括电机80,电机80用于产生风流,控制方法包括:
071:对辐射源20和电机80进行电流采样,在辐射源20的电流超过预设的第一电流范围,和/或,电机80的电流超过预设的第二电流范围时,控制干燥设备100进入关机状态。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图12,主控单元90用于:对辐射源20和电机80进行电流采样,在辐射源20的电流超过预设的第一电流范围,和/或,电机80的电流超过预设的第二电流范围时,控制干燥设备100进入关机状态。
请参考图13和图37,在在某些实施方式中,干燥设备100包括出风风道81、测温件82和电机80,测温件82设置在出风风道81内,电机80用于在出风风道81内产生风流,电机80电连接电源10;控制方法包括:
072:在测温件82检测到出风风道81内的温度值超出预设温度范围时,控制干燥设备100进入关机状态。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图13,主控单元90用于:在测温件82检测到出风风道81内的温度值超出预设温度范围时,控制干燥设备100进入关机状态。
请参考图14和图38,在某些实施方式中,干燥设备100包括设置在出风风道81内的发热件84,发热件84和测温件82以预设距离相邻设置,发热件84在干燥设备100开启后进行发热,在检测到出风风道81内的温度值超出预设温度范围时,控制干燥设备100进入关机状态,包括:
073:在测温件82检测到预设距离的温度值超出预设温度范围时,控制干燥设备100进入关机状态。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图14,主控单元90用于:在测温件82检测到预设距离的温度值超出预设温度范围时,控制干燥设备100进入关机状态。
请参考图15-图17、图39,在某些实施方式中,控制方法包括:
081:通过干燥设备100预设的主控单元90输出第一逻辑控制信号和第二逻辑控制信号,在第一逻辑控制信号为第五电平状态和第二逻辑控制信号为第六电平状态时,电源10与辐射源20的连接断开;和/或,
086:通过干燥设备100预设的电源管理单元60输出第三逻辑控制信号和第四逻辑控制信号,在第三逻辑控制信号为第七电平状态和第四逻辑控制信号为第八电平状态时,电源10与辐射源20的连接断开。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图15-图17,干燥设备100可包括主控单元90和电源管理单元60。主控单元90用于:通过干燥设备100预设的主控单元90输出第一逻辑控制信号和第二逻辑控制信号,在第一逻辑控制信号为第五电平状态和第二逻辑控制信号为第六电平状态时,电源10与辐射源20的连接断开。电源管理单元60用于:通过干燥设备100预设的电源管理单元60输出第三逻辑控制信号和第四逻辑控制信号,在第三逻辑控制信号为第七电平状态和第四逻辑控制信号为第八电平状态时,电源10与辐射源20的连接断开。
请参考图20和图40,在某些实施方式中,干燥设备100包括计时单元92,控制方法包括:
082:对主控单元90以复位时长进行计时操作,在复位时长内获取主控单元90执行的反馈操作时重置计时操作;和/或,
087:对电源管理单元60以复位时长进行计时操作,在复位时长内获取电源管理单元60执行的反馈 操作时重置计时操作。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图20,计时单元92用于:对主控单元90以复位时长进行计时操作,在复位时长内获取主控单元90执行的反馈操作时重置计时操作;和/或,对电源管理单元60以复位时长进行计时操作,在复位时长内获取电源管理单元60执行的反馈操作时重置计时操作。
请参考图20和图41,在某些实施方式中,控制方法包括:
083:在计时操作中,计时时长达到复位时长且主控单元90未执行反馈操作时,对主控单元90执行复位操作,在完成复位操作后使电源10与辐射源20的连接断开;和/或,
088:在计时操作中,计时时长达到复位时长且电源管理单元60未执行反馈操作时,对电源管理单元60执行复位操作,在完成复位操作后使电源10与辐射源20的连接断开。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图20,计时单元92用于:在计时操作中,计时时长达到复位时长且主控单元90未执行反馈操作时,对主控单元90执行复位操作,在完成复位操作后使电源10与辐射源20的连接断开;和/或,在计时操作中,计时时长达到复位时长且电源管理单元60未执行反馈操作时,对电源管理单元60执行复位操作,在完成复位操作后使电源10与辐射源20的连接断开。
请参考图42,本申请实施方式提供的一种干燥设备100,干燥设备100包括电源10、辐射源20、操作组件30、姿态检测单元70和主控单元90,辐射源20电连接电源10,控制方法包括:
091:在操作组件30被操作后,控制电源10与辐射源20导通或断开;
092:在电源10与辐射源20导通时,检测干燥设备100的姿态信息和对应的时间,并输出姿态信号;
093:根据姿态信号调整辐射源20的功率。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图20,主控单元90用于:在操作组件30被操作后,控制电源10与辐射源20导通;姿态检测单元70用于:检测干燥设备100的姿态信息和对应的时间,并输出姿态信号;主控单元90用于:根据姿态信号调整辐射源20的功率。
上述干燥设备100,根据干燥设备100当前的不同姿态,可对应调整辐射源20的功率,避免干燥设备100由于误触、未关机、线路短路所导致的持续运行,进而避免干燥设备100周围的易燃物体被辐射源20照射而受热着火的情况。
请参考图43,在某些实施方式中,检测干燥设备100的姿态信息和对应的时间,并输出姿态信号,包括:
0921:在检测到干燥设备姿态信息满足第一范围时,输出第一姿态信号;
根据姿态信号调整辐射源20的功率,包括:
0931:根据第一姿态信号控制辐射源20以第一辐射功率运行。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图20,姿态检测单元70用于:在检测到干燥设备姿态信息满足第一范围时,输出第一姿态信号;主控单元90用于:根据第一姿态信号控制辐射源20以第一辐射功率运行。
请参考图44,在某些实施方式中,检测干燥设备100的姿态信息和对应的时间,并输出姿态信号,包括:
0922:在检测到干燥设备姿态信息满足第二范围时,输出第二姿态信号,第二范围小于第一范围;
根据姿态信号调整辐射源20的功率,包括:
0932:根据第二姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率,其中,第二辐射功率大于第三辐射功率,第四辐射功率和第三辐射功率均小于第一辐射功率。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图20,姿态检测单元70用于:在检测到干燥设备姿态信息满足第二范围时,输出第二姿态信号,第二范围小于第一范围;主控单元90用于:根据第二姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率,其中,第二辐射功率大于第三辐射功率,第四辐射功率和第三辐射功率均小 于第一辐射功率。
请参考图45,在某些实施方式中,检测干燥设备100的姿态信息和对应的时间,并输出姿态信号,包括:
0923:在检测到干燥设备姿态信息为静止且对应的时间达到第一阈值时,输出第三姿态信号;
根据姿态信号调整辐射源20的功率,包括:
0933:根据第三姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,第二辐射功率大于第三辐射功率,第三辐射功率小于第一辐射功率。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图20,姿态检测单元70用于:在检测到干燥设备姿态信息为静止且对应的时间达到第一阈值时,输出第三姿态信号;主控单元90用于:根据第三姿态信号控制辐射源20以第二辐射功率和第三辐射功率交替地运行,第二辐射功率大于第三辐射功率,第三辐射功率小于第一辐射功率。
请参考图46,在某些实施方式中,检测干燥设备100的姿态信息和对应的时间,并输出姿态信号,包括:
0924:在检测到干燥设备姿态信息为静止且对应的时间超过第一阈值达到第二阈值时,输出第四姿态信号;
根据姿态信号调整辐射源20的功率,包括:
0934:根据第四姿态信号关闭辐射源20。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图20,姿态检测单元70用于:在检测到干燥设备姿态信息为静止且对应的时间超过第一阈值达到第二阈值时,输出第四姿态信号;主控单元90用于:根据第四姿态信号关闭辐射源20。
请参考图47,在某些实施方式中,干燥设备100包括用于产生风流的电机80,控制方法包括:
094:接收姿态信号并调整电机80的功率。
本申请实施方式的充电方法可以通过本申请实施方式的干燥设备100来实现。具体地,请结合图20,主控单元90用于:接收姿态信号并调整电机80的功率。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (66)

  1. 一种干燥设备,其特征在于,所述干燥设备包括:
    电源;
    辐射源,所述辐射源电连接所述电源;
    操作组件,用于控制所述电源与所述辐射源导通;
    锁定单元,用于使所述干燥设备进入安全模式;
    在所述安全模式中,所述辐射源与所述电源断开,且不响应所述操作组件。
  2. 根据权利要求1所述的干燥设备,其特征在于,所述操作组件包括:
    多个操作件,各所述操作件用于输出操作信号;
    识别单元,用于接收所述操作信号,满足预设条件时控制所述电源与所述辐射源导通以开启所述干燥设备。
  3. 根据权利要求2所述的干燥设备,其特征在于,所述识别单元用于在接收到的所述操作信号的数量小于预设数量时确定所述操作信号未满足所述预设条件,以及用于在接收到的所述操作信号的数量为所述预设数量时确定所述操作信号满足所述预设条件。
  4. 根据权利要求2所述的干燥设备,其特征在于,所述干燥设备包括握持部,所述多个操作件包括:
    操作信号传感器,设置于所述握持部并感应人体电容和/或握持压力,并用于输出所述操作信号;
    开机按钮,用于被按下后输出所述操作信号。
  5. 根据权利要求2所述的干燥设备,其特征在于,所述多个操作件包括:
    机械按键,用于被按下后输出所述操作信号;
    电容按键,设置在所述机械按键的表面并跟随所述机械按键进行活动,所述电容按键用于在被人体触摸时输出所述操作信号。
  6. 根据权利要求5所述的干燥设备,其特征在于,所述干燥设备包括保护结构,所述电容按键设置于所述保护结构和所述机械按键之间,所述人体通过所述保护结构触摸所述电容按键。
  7. 根据权利要求1所述的干燥设备,其特征在于,所述锁定单元包括可活动地设置于所述干燥设备表面的锁定开关,所述锁定开关活动至第一位置时进入所述安全模式,活动至第二位置时退出所述安全模式。
  8. 根据权利要求7所述的干燥设备,其特征在于,所述干燥设备包括壳体,所述壳体上设有滑槽,所述锁定开关滑动安装于所述滑槽,所述第一位置、所述第二位置位于所述滑槽内;所述锁定开关和/或所述滑槽上设有标识所述锁定开关当前所处位置的标识结构。
  9. 根据权利要求8所述的干燥设备,其特征在于,所述标识结构包括设置在所述第二位置的颜色标识和/或图形标识,所述锁定开关位于所述第一位置时所述第二位置的所述颜色标识和/或图形标识外露。
  10. 根据权利要求1所述的干燥设备,其特征在于,所述干燥设备包括:
    电源管理单元,用于识别所述锁定单元被操作后产生第一使能信号和第二使能信号;
    电源开关,用于根据所述第一使能信号和所述第二使能信号控制所述电源和所述辐射源之间是否可导通,使所述干燥设备进入或退出所述安全模式。
  11. 根据权利要求10所述的干燥设备,其特征在于,所述第一使能信号包括第一电平状态和第三电平状态,所述第二使能信号包括第二电平状态和第四电平状态,所述电源开关仅在接收到所述第一使能信号为第一电平状态且所述第二使能信号为第二电平状态时所述电源和所述辐射源可导通,所述干燥设备退出所述安全模式;所述电源开关接收到其他状态的所述第一使能信号、所述第二使能信号时,所述电源和所述辐射源断开且不可导通,所述设备进入所述安全模式。
  12. 根据权利要求1所述的干燥设备,其特征在于,所述干燥设备还包括放电开关,所述放电开关耦合于所述锁定单元,在所述安全模式中所述放电开关用于控制所述电源停止放电。
  13. 根据权利要求1所述的干燥设备,其特征在于,所述干燥设备还包括供电开关,所述供电开关耦合于所述锁定单元,在所述安全模式中所述供电开关用于控制所述电源停止向所述辐射源供电。
  14. 根据权利要求1或2所述的干燥设备,其特征在于,所述干燥设备包括:
    姿态检测单元,用于检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号;
    主控单元,用于接收所述姿态信号并调整所述辐射源的功率。
  15. 根据权利要求14所述的干燥设备,其特征在于,所述姿态检测单元包括以下至少一种:
    位置传感器、距离传感器、状态传感器、视觉传感器。
  16. 根据权利要求14所述的干燥设备,其特征在于,所述姿态检测单元检测所述干燥设备姿态信息满足第一范围时输出第一姿态信号,所述主控单元根据所述第一姿态信号控制所述辐射源以第一辐射功率运行。
  17. 根据权利要求16所述的干燥设备,其特征在于,所述姿态检测单元满足第二范围时输出第二姿态信号,所述第二范围小于所述第一范围;所述主控单元根据所述第二姿态信号控制所述辐射源以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率,其中,所述第二辐射功率大于所述第三辐射功率,所述第四辐射功率和所述第三辐射功率均小于所述第一辐射功率。
  18. 根据权利要求16所述的干燥设备,其特征在于,所述姿态检测单元检测所述干燥设备姿态信息为静止,且对应的时间达到第一阈值时输出第三姿态信号;
    所述主控单元根据所述第三姿态信号控制所述辐射源以第二辐射功率和第三辐射功率交替地运行,所述第二辐射功率大于所述第三辐射功率,所述第三辐射功率小于所述第一辐射功率。
  19. 根据权利要求18所述的干燥设备,其特征在于,所述姿态检测单元检测所述干燥设备姿态信息为静止,且对应的时间超过所述第一阈值达到第二阈值时输出第四姿态信号;
    所述主控单元根据所述第四姿态信号关闭所述辐射源。
  20. 根据权利要求14所述的干燥设备,其特征在于,所述干燥设备包括用于产生风流的电机,所述主控单元接收所述姿态信号并调整所述电机的功率。
  21. 根据权利要求1所述的干燥设备,其特征在于,所述干燥设备包括:
    电机,用于产生风流;
    主控单元,用于对所述辐射源和所述电机进行电流采样,在所述辐射源的电流超过预设的第一电流范围,和/或,所述电机的电流超过预设的第二电流范围时,通过所述主控单元控制所述干燥设备进入关机状态。
  22. 根据权利要求1所述的干燥设备,其特征在于,所述干燥设备包括:
    出风风道;
    测温件,设置在所述出风风道内;
    电机,用于在所述出风风道内产生风流,所述电机电连接所述电源,
    主控单元,用于在所述测温件检测到温度值超出预设温度范围时,控制所述干燥设备进入关机状态。
  23. 根据权利要求22所述的干燥设备,其特征在于,所述干燥设备包括设置在所述出风风道内的发热件,所述发热件和所述测温件以预设距离相邻设置,所述发热件在所述干燥设备开启后进行发热,所述测温件检测到所述预设距离的所述温度值超出预设温度范围时,所述干燥设备处于所述关机状态。
  24. 根据权利要求1或10所述的干燥设备,其特征在于,所述干燥设备包括:
    主控单元,在所述主控单元用于断开所述电源与所述辐射源的连接时,所述主控单元输出第一逻辑控制信号和第二逻辑控制信号,在所述第一逻辑控制信号为第五电平状态和所述第二逻辑控制信号为第六电平状态时,所述电源与所述辐射源的连接断开;和/或,
    电源管理单元,在所述电源管理单元用于断开所述电源与所述辐射源的连接时,所述电源管理单元输出第三逻辑控制信号和第四逻辑控制信号,在所述第三逻辑控制信号为第七电平状态和所述第四逻辑控制信号为第八电平状态时,所述电源与所述辐射源的连接断开。
  25. 根据权利要求24所述的干燥设备,其特征在于,所述干燥设备还包括计时单元,所述计时单元对所述电源管理单元和/或所述主控单元以复位时长进行计时操作,在所述复位时长内获取所述电源管理单元和/或所述主控单元执行的反馈操作时,所述计时单元用于重置所述计时操作。
  26. 根据权利要求25所述的干燥设备,其特征在于,在所述计时操作中,计时时长达到所述复位时长且所述电源管理单元和/或所述主控单元未执行所述反馈操作时,所述计时单元用于对所述电源管理单元和/或所述主控单元执行复位操作,在完成所述复位操作后,所述电源管理单元和/或所述主控单元用于使所述电源与所述辐射源的连接断开。
  27. 一种干燥设备,其特征在于,所述干燥设备包括:
    电源;
    辐射源,所述辐射源电连接所述电源;
    操作组件,被操作后控制所述电源与所述辐射源导通;
    姿态检测单元,用于检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号;
    主控单元,用于接收所述姿态信号并调整所述辐射源的功率。
  28. 根据权利要求27所述的干燥设备,其特征在于,所述姿态检测单元包括以下至少一种:
    位置传感器、距离传感器、状态传感器、视觉传感器。
  29. 根据权利要求27所述的干燥设备,其特征在于,所述姿态检测单元检测所述干燥设备姿态信息满足第一范围时输出第一姿态信号,所述主控单元根据所述第一姿态信号控制所述辐射源以第一辐射功率运行。
  30. 根据权利要求29所述的干燥设备,其特征在于,所述姿态检测单元满足第二范围时输出第二姿态信号,所述第二范围小于所述第一范围;所述主控单元根据所述第二姿态信号控制所述辐射源以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率,其中,所述第二辐射功率大于所述第三辐射功率,所述第四辐射功率和所述第三辐射功率均小于所述第一辐射功率。
  31. 根据权利要求29所述的干燥设备,其特征在于,所述姿态检测单元检测所述干燥设备姿态信息为静止,且对应的时间达到第一阈值时输出第三姿态信号;
    所述主控单元根据所述第三姿态信号控制所述辐射源以第二辐射功率和第三辐射功率交替地运行,所述第二辐射功率大于所述第三辐射功率,所述第三辐射功率小于所述第一辐射功率。
  32. 根据权利要求31所述的干燥设备,其特征在于,所述姿态检测单元检测所述干燥设备姿态信息为静止,且对应的时间超过第一阈值达到第二阈值时输出第四姿态信号;
    所述主控单元根据所述第四姿态信号关闭所述辐射源。
  33. 根据权利要求29所述的干燥设备,其特征在于,所述干燥设备包括用于产生风流的电机,所述主控单元接收所述姿态信号并调整所述电机的功率。
  34. 一种控制方法,用于干燥设备,其特征在于,所述干燥设备包括电源、辐射源、操作组件、锁定单元,所述辐射源电连接所述电源,操作组件用于控制所述电源与所述辐射源导通,
    所述控制方法包括:
    识别所述锁定单元是否被操作;
    在所述锁定单元被操作时,控制所述辐射源与所述电源是否可导通;
    所述辐射源与所述电源不可导通时,所述干燥设备进入安全模式;
    在所述安全模式中,所述辐射源与所述电源断开,且不响应所述操作组件。
  35. 根据权利要求34所述的控制方法,其特征在于,所述操作组件包括识别单元和多个操作件,各所述操作件用于输出操作信号,识别单元用于接收所述操作信号,所述控制方法包括:
    在所述操作信号满足预设条件时,控制所述电源与所述辐射源导通以开启所述干燥设备。
  36. 根据权利要求35所述的控制方法,其特征在于,在所述操作信号满足预设条件时,控制所述电源与所述辐射源导通以开启所述干燥设备,包括:
    在接收到的所述操作信号的数量小于预设数量时,确定所述操作信号未满足所述预设条件;在接收到的所述操作信号的数量为所述预设数量时,确定所述操作信号满足所述预设条件。
  37. 根据权利要求35所述的控制方法,其特征在于,所述干燥设备包括握持部,所述多个操作件包括:
    操作信号传感器,设置于所述握持部并感应人体电容和/或握持压力,并用于输出所述操作信号;
    开机按钮,用于被按下后输出所述操作信号。
  38. 根据权利要求35所述的控制方法,其特征在于,所述多个操作件包括:
    机械按键,用于被按下后输出所述操作信号;
    电容按键,设置在所述机械按键的表面并跟随所述机械按键进行活动,所述电容按键用于在被人体触摸时输出所述操作信号。
  39. 根据权利要求38所述的控制方法,其特征在于,所述干燥设备包括保护结构,所述电容按键设置于所述保护结构和所述机械按键之间,所述人体通过所述保护结构触摸所述电容按键。
  40. 根据权利要求34所述的控制方法,其特征在于,所述锁定单元包括可活动地设置于所述干燥设备表面的锁定开关,所述控制方法包括:
    在所述锁定开关活动至第一位置时,控制所述辐射源与所述电源不可导通;
    在所述锁定开关活动至第二位置时,控制所述辐射源与所述电源可导通。
  41. 根据权利要求40所述的控制方法,其特征在于,所述干燥设备包括壳体,所述壳体上设有滑槽,所述锁定开关滑动安装于所述滑槽,所述第一位置、所述第二位置位于所述滑槽内;所述锁定开关和/或所述滑槽上设有标识所述锁定开关当前所处位置的标识结构。
  42. 根据权利要求41所述的控制方法,其特征在于,所述标识结构包括设置在所述第二位置的颜色标识和/或图形标识,所述锁定开关位于所述第一位置时所述第二位置的所述颜色标识和/或图形标识外露。
  43. 根据权利要求34所述的控制方法,其特征在于,所述控制方法包括:
    在识别到所述锁定单元被操作后,产生第一使能信号和第二使能信号;
    根据所述第一使能信号和所述第二使能信号,控制所述电源和所述辐射源之间是否可导通导通或断开,使所述干燥设备进入或退出所述安全模式。
  44. 根据权利要求43所述的控制方法,其特征在于,所述第一使能信号包括第一电平状态和第三电平状态,所述第二使能信号包括第二电平状态和第四电平状态,
    根据所述第一使能信号和所述第二使能信号,控制所述电源和所述辐射源之间是否可导通,使所述干燥设备进入或退出所述安全模式,包括:
    在接收到的所述第一使能信号为第一电平状态、所述第二使能信号为第二电平状态时,控制所述电源和所述辐射源可导通,以使得所述干燥设备退出所述安全模式;
    在接收到其他状态的所述第一使能信号、所述第二使能信号时,控制所述电源和所述辐射源断开且不可导通,以使得所述设备进入所述安全模式。
  45. 根据权利要求34所述的控制方法,其特征在于,所述干燥设备还包括放电开关,所述放电开关耦合于所述锁定单元,在所述安全模式中所述放电开关用于控制所述电源停止放电。
  46. 根据权利要求34所述的控制方法,其特征在于,所述干燥设备还包括供电开关,所述供电开关耦合于所述锁定单元,在所述安全模式中所述供电开关用于控制所述电源停止向所述辐射源供电。
  47. 根据权利要求34或35所述的控制方法,其特征在于,所述控制方法包括:
    检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号;
    根据所述姿态信号调整所述辐射源的功率。
  48. 根据权利要求47所述的控制方法,其特征在于,所述姿态检测单元包括以下至少一种:
    位置传感器、距离传感器、状态传感器、视觉传感器。
  49. 根据权利要求47所述的控制方法,其特征在于,检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号,包括:
    在检测到所述干燥设备姿态信息满足第一范围时,输出第一姿态信号;
    根据所述姿态信号调整所述辐射源的功率,包括:
    根据所述第一姿态信号控制所述辐射源以第一辐射功率运行。
  50. 根据权利要求49所述的控制方法,其特征在于,检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号,包括:
    在检测到所述干燥设备姿态信息满足第二范围时,输出第二姿态信号,所述第二范围小于所述第一范围;
    根据所述姿态信号调整所述辐射源的功率,包括:
    根据所述第二姿态信号控制所述辐射源以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率,其中,所述第二辐射功率大于所述第三辐射功率,所述第四辐射功率和所述第三辐射功率均小于所述第一辐射功率。
  51. 根据权利要求49所述的控制方法,其特征在于,检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号,包括:
    在检测到所述干燥设备姿态信息为静止且对应的时间达到第一阈值时,输出第三姿态信号;
    根据所述姿态信号调整所述辐射源的功率,包括:
    根据所述第三姿态信号控制所述辐射源以第二辐射功率和第三辐射功率交替地运行,所述第二辐射功率大于所述第三辐射功率,所述第三辐射功率小于所述第一辐射功率。
  52. 根据权利要求51所述的控制方法,其特征在于,检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号,包括:
    在检测到所述干燥设备姿态信息为静止,且对应的时间超过所述第一阈值达到第二阈值时,输出第四姿态信号;
    根据所述姿态信号调整所述辐射源的功率,包括:
    根据所述第四姿态信号关闭所述辐射源。
  53. 根据权利要求47所述的控制方法,其特征在于,所述干燥设备包括用于产生风流的电机;检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号,包括:
    接收所述姿态信号并调整所述电机的功率。
  54. 根据权利要求34所述的控制方法,其特征在于,所述干燥设备包括电机,所述电机用于产生风流,所述控制方法包括:
    对所述辐射源和所述电机进行电流采样,在所述辐射源的电流超过预设的第一电流范围,和/或,所述电机的电流超过预设的第二电流范围时,控制所述干燥设备进入关机状态。
  55. 根据权利要求34所述的控制方法,其特征在于,所述干燥设备包括出风风道、测温件和电机,所述测温件设置在所述出风风道内,所述电机用于在所述出风风道内产生风流,所述电机电连接所述电源;所述控制方法包括:
    在所述测温件检测到所述出风风道内的温度值超出预设温度范围时,控制所述干燥设备进入关机状态。
  56. 根据权利要求55所述的控制方法,其特征在于,所述干燥设备包括设置在所述出风风道内的发热件,所述发热件和所述测温件以预设距离相邻设置,所述发热件在所述干燥设备开启后进行发热;在检测到所述出风风道内的温度值超出预设温度范围时,控制所述干燥设备进入关机状态,包括:
    在所述测温件检测到所述预设距离的温度值超出预设温度范围时,控制所述干燥设备进入所述关机状态。
  57. 根据权利要求34或43所述的控制方法,其特征在于,所述控制方法包括:
    通过所述干燥设备预设的主控单元输出第一逻辑控制信号和第二逻辑控制信号,在所述第一逻辑控制信号为第五电平状态和所述第二逻辑控制信号为第六电平状态时,所述电源与所述辐射源的连接断开;和/或,
    通过所述干燥设备预设的电源管理单元输出第三逻辑控制信号和第四逻辑控制信号,在所述第三逻辑控制信号为第七电平状态和所述第四逻辑控制信号为第八电平状态时,所述电源与所述辐射源的连接断开。
  58. 根据权利要求57所述的控制方法,其特征在于,所述干燥设备包括计时单元,所述控制方法包括:
    对所述主控单元以复位时长进行计时操作,在所述复位时长内获取所述主控单元执行的反馈操作时重置所述计时操作;和/或,
    对所述电源管理单元以复位时长进行计时操作,在所述复位时长内获取所述电源管理单元执行的反馈操作时重置所述计时操作。
  59. 根据权利要求58所述的控制方法,其特征在于,所述控制方法包括:
    在所述计时操作中,计时时长达到所述复位时长且所述主控单元未执行所述反馈操作时,对所述主控单元执行复位操作,在完成所述复位操作后使所述电源与所述辐射源的连接断开;和/或,
    在所述计时操作中,计时时长达到所述复位时长且所述电源管理单元未执行所述反馈操作时,对所述电源管理单元执行复位操作,在完成所述复位操作后使所述电源与所述辐射源的连接断开。
  60. 一种控制方法,用于干燥设备,其特征在于,所述干燥设备包括电源、辐射源、操作组件、姿态检测单元和主控单元,所述辐射源电连接所述电源,所述控制方法包括:
    在所述操作组件被操作后,控制所述电源与所述辐射源导通或断开;
    在所述电源与所述辐射源导通时,检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号;
    根据所述姿态信号调整所述辐射源的功率。
  61. 根据权利要求60所述的控制方法,其特征在于,所述姿态检测单元包括以下至少一种:
    位置传感器、距离传感器、状态传感器、视觉传感器。
  62. 根据权利要求60所述的控制方法,其特征在于,检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号,包括:
    在检测到所述干燥设备姿态信息满足第一范围时,输出第一姿态信号;
    根据所述姿态信号调整所述辐射源的功率,包括:
    根据所述第一姿态信号控制所述辐射源以第一辐射功率运行。
  63. 根据权利要求62所述的控制方法,其特征在于,检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号,包括:
    在检测到所述干燥设备姿态信息满足第二范围时,输出第二姿态信号,所述第二范围小于所述第一范围;
    根据所述姿态信号调整所述辐射源的功率,包括:
    根据所述第二姿态信号控制所述辐射源以第二辐射功率和第三辐射功率交替地运行,或切换为第四辐射功率,其中,所述第二辐射功率大于所述第三辐射功率,所述第四辐射功率和所述第三辐射功率均小于所述第一辐射功率。
  64. 根据权利要求62所述的控制方法,其特征在于,检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号,包括:
    在检测到所述干燥设备姿态信息为静止且对应的时间达到第一阈值时,输出第三姿态信号;
    根据所述姿态信号调整所述辐射源的功率,包括:
    根据所述第三姿态信号控制所述辐射源以第二辐射功率和第三辐射功率交替地运行,所述第二辐射功率大于所述第三辐射功率,所述第三辐射功率小于所述第一辐射功率。
  65. 根据权利要求64所述的控制方法,其特征在于,检测所述干燥设备的姿态信息和对应的时间,并输出姿态信号,包括:
    在检测到所述干燥设备姿态信息为静止且对应的时间超过第一阈值达到第二阈值时,输出第四姿态信号;
    根据所述姿态信号调整所述辐射源的功率,包括:
    根据所述第四姿态信号关闭所述辐射源。
  66. 根据权利要求62所述的控制方法,其特征在于,所述干燥设备包括用于产生风流的电机,所述控制方法包括:
    接收所述姿态信号并调整所述电机的功率。
PCT/CN2021/108294 2021-07-23 2021-07-23 干燥设备、控制方法 WO2023000346A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/108294 WO2023000346A1 (zh) 2021-07-23 2021-07-23 干燥设备、控制方法
CN202180051964.7A CN116209372A (zh) 2021-07-23 2021-07-23 干燥设备、控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108294 WO2023000346A1 (zh) 2021-07-23 2021-07-23 干燥设备、控制方法

Publications (1)

Publication Number Publication Date
WO2023000346A1 true WO2023000346A1 (zh) 2023-01-26

Family

ID=84980550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108294 WO2023000346A1 (zh) 2021-07-23 2021-07-23 干燥设备、控制方法

Country Status (2)

Country Link
CN (1) CN116209372A (zh)
WO (1) WO2023000346A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014090767A1 (en) * 2012-12-10 2014-06-19 Arcelik Anonim Sirketi A household appliance having key lock function
CN209711922U (zh) * 2019-04-03 2019-12-03 深圳市大兴业源科技有限公司 一种酒店或家庭使用的智能控制吹风机
CN113573608A (zh) * 2020-05-09 2021-10-29 深圳汝原科技有限公司 干燥设备
CN215737366U (zh) * 2020-05-09 2022-02-08 深圳汝原科技有限公司 干燥设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014090767A1 (en) * 2012-12-10 2014-06-19 Arcelik Anonim Sirketi A household appliance having key lock function
CN209711922U (zh) * 2019-04-03 2019-12-03 深圳市大兴业源科技有限公司 一种酒店或家庭使用的智能控制吹风机
CN113573608A (zh) * 2020-05-09 2021-10-29 深圳汝原科技有限公司 干燥设备
CN215737366U (zh) * 2020-05-09 2022-02-08 深圳汝原科技有限公司 干燥设备
CN215737367U (zh) * 2020-05-09 2022-02-08 深圳汝原科技有限公司 干燥设备

Also Published As

Publication number Publication date
CN116209372A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US9013455B2 (en) Rechargeable active pen and electronic device with corresponding charging dock
EP2560540B1 (en) Appliance having user detection functionality for controlling operation thereof
KR20220002979A (ko) 검출기가 있는 이동식 마개를 갖는 에어로졸 발생 장치
US10845772B2 (en) Method and system for controlling clothing care machine
CN203718844U (zh) 燃气灶余温提示装置和燃气灶
KR101298082B1 (ko) 대기전력 차단장치 및 그 제어방법
WO2023000346A1 (zh) 干燥设备、控制方法
CN110060428A (zh) 一种基于多种传感器的工具管理柜
CA2819935C (en) Rechargeable active pen and electronic device with corresponding charging dock
CN205783074U (zh) 一种打火机
KR101217068B1 (ko) 헤어고데기 및 그 구동방법
CN216019613U (zh) 干燥设备
CN203878385U (zh) 挂烫机
CN115585556A (zh) 一种暖风机以及暖风机控制方法
JP7303897B2 (ja) プロジェクター及びプロジェクターのオンオフの制御方法
CN212898001U (zh) 一种具有访客测温功能的智能锁
CN209132885U (zh) 一种基于多种传感器的工具管理柜
CN209166233U (zh) 礼炮鸣放控制器
JPWO2020083850A5 (zh)
KR20010083268A (ko) 화염감지 센서를 이용한 경보장치
CN206989480U (zh) 一种可手势控制的热水器
CN211346285U (zh) 医疗器械烘干消毒装置
KR101283653B1 (ko) 디지털 도어락 시스템에서의 도어 오픈 제어장치 및 그 방법
CN216011203U (zh) 一种电控盒及管道式室内机
CN219959626U (zh) 带红外遥控功能的插座以及红外遥控器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE