WO2023000140A1 - 一种体温检测耳机及体温测量方法 - Google Patents
一种体温检测耳机及体温测量方法 Download PDFInfo
- Publication number
- WO2023000140A1 WO2023000140A1 PCT/CN2021/107161 CN2021107161W WO2023000140A1 WO 2023000140 A1 WO2023000140 A1 WO 2023000140A1 CN 2021107161 W CN2021107161 W CN 2021107161W WO 2023000140 A1 WO2023000140 A1 WO 2023000140A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature measurement
- temperature
- earphone
- cavity
- measurement module
- Prior art date
Links
- 238000009529 body temperature measurement Methods 0.000 title claims abstract description 143
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000036760 body temperature Effects 0.000 claims abstract description 25
- 210000003454 tympanic membrane Anatomy 0.000 claims abstract description 17
- 125000006850 spacer group Chemical group 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 15
- 239000000853 adhesive Substances 0.000 claims description 13
- 230000001070 adhesive effect Effects 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 9
- 239000006260 foam Substances 0.000 claims description 4
- 239000006261 foam material Substances 0.000 claims description 3
- 239000004519 grease Substances 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 210000000613 ear canal Anatomy 0.000 abstract description 12
- 238000013461 design Methods 0.000 abstract description 4
- 238000004891 communication Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/20—Clinical contact thermometers for use with humans or animals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/22—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/10—Earpieces; Attachments therefor ; Earphones; Monophonic headphones
Definitions
- the invention relates to the technical field of temperature detection, in particular to a body temperature detection earphone and a body temperature measurement method.
- Earphones are commonly used entertainment and recreation tools in people's lives. With the development of wearable health devices and people's attention to their own health, earphones with body temperature detection functions are becoming more and more valuable in the market.
- the existing temperature measurement technologies mainly include contact temperature measurement and non-contact infrared temperature measurement.
- contact temperature measurement products the most common ones are contact temperature measurement needles, followed by watches and bracelets.
- non-contact infrared temperature measurement products are forehead thermometers and ear thermometers.
- the existing contact temperature measurement scheme needs to be in close contact with the skin to test better data. Due to the changeable shape of the human ear, it is difficult to achieve this condition in the actual application of earphones. In the existing traditional infrared temperature measurement module, the large size does not meet the space design requirements inside the earphone. The above products all require a large internal space to support, and it is difficult to achieve small modular assembly in the limited space of the earphone.
- the embodiment of the present application provides a body temperature detection earphone, which is used to solve the problems existing in the prior art that the body temperature detection result has a large error and the body temperature detection module is too large to fit the earphone.
- an embodiment of the present application provides an earphone, which includes: an earphone housing and a temperature sensing module accommodated in the earphone housing, the earphone housing is surrounded by an earphone cavity, and the earphone cavity faces Extending outward to form a sound guide tube that communicates with the outside world, the sound guide tube is located on the side of the earphone cavity close to the eardrum, the temperature sensing module includes at least two temperature measurement modules, and the at least two temperature measurement modules are sequentially along the The direction of the sound guide tube is fixed in the sound guide tube, wherein the body temperature of the earphone wearer is obtained according to the measured temperature difference of the at least two temperature measurement modules.
- the temperature sensing module is in the sound guide tube of the earphone, and the sound guide tube is at the ear canal, that is, the temperature sensing module uses the ear canal as the temperature measurement position, because the temperature of the ear canal is closer to the actual temperature of the body.
- the position of the ear canal corresponding to the earphone is the sound guide tube, and the combination of the temperature measurement module and the sound guide tube does not affect the design of the sound cavity, while taking into account the industrial design of different earphones.
- the temperature sensing module includes at least two temperature measurement modules. The temperature sensing module is arranged along the direction of the sound guide tube, which can make the distance between the at least two temperature measurement modules and the eardrum different.
- the temperature of the eardrum in the ear is the highest, From the eardrum along the direction of the ear canal, the heat will gradually weaken. Therefore, there will be a temperature difference between at least two temperature measurement modules. Combined with the corresponding algorithm, the temperature to be measured can be calculated.
- a first spacer is disposed between each of the at least two temperature measurement modules.
- the material of the first spacer is plastic or foam.
- the earphone further includes a second spacer sleeved on the surface of the temperature sensing module.
- the temperature sensor module includes:
- the first temperature measurement module includes a first temperature sensor, a first heat conduction member, and a first support member, a first cavity is configured inside the first heat conduction member, and the first temperature sensor is configured In the first cavity, the first support is in contact with the inner wall of the sound guide tube, so that the positions of the first support and the sound guide tube are relatively fixed, and a second cavity is formed inside the first support , the first heat conducting member is disposed in the second cavity;
- the second temperature measurement module includes a second temperature sensor, a second heat conduction member, and a second support member, a third cavity is configured inside the second heat conduction member, and the second temperature sensor is configured In the third cavity, a fourth cavity is formed inside the second support member, and the second heat conducting member is disposed in the fourth cavity;
- the first support member and the second support member are made of stainless steel or plastic.
- the material of the first heat conduction member and the second heat conduction member is heat conduction silicone grease.
- the earphone further includes an adhesive
- the temperature sensing module further includes a circuit board
- the circuit board is fixed on the inner wall of the sound guide tube through the adhesive
- the at least two temperature measurement modules are respectively the first A temperature measurement module and a second temperature measurement module
- the first temperature measurement module and the second temperature measurement module are arranged on the circuit board
- the first temperature measurement module is located opposite to the second temperature measurement module The side of the module near the eardrum.
- the first temperature measurement module and the second temperature measurement module are spaced apart on the circuit board.
- the circuit board is a flexible circuit board.
- the adhesive part is made of foam material.
- the earphone also includes a chip electrically connected to the temperature sensing module.
- a seal is also provided at the sound guide tube of the earphone.
- the sealing member is an ear cap or an ear bag.
- any one of the at least two temperature measurement modules is a contact temperature measurement module.
- the embodiment of the present application provides a body temperature measurement method, which is applied to the earphone of the embodiment of the present application, including: obtaining at least two temperature measurement values through the at least two temperature measurement modules; and, according to the at least two The difference between the temperature measurements is obtained to obtain the body temperature of the earphone wearer.
- FIG. 1 is a schematic structural diagram of a body temperature detection earphone provided in an embodiment of the present application
- Fig. 2 is a schematic diagram of cooperation between a body temperature detection earphone and an ear provided in the embodiment of the present application;
- FIG. 3 is a schematic structural diagram of a body temperature detection earphone with a first spacer provided in an embodiment of the present application
- FIG. 4 is a schematic structural diagram of a body temperature detection earphone with an air gap provided in an embodiment of the present application
- FIG. 5 is a schematic structural diagram of a body temperature detection earphone with a second spacer provided in an embodiment of the present application
- Fig. 6 is an exploded schematic view of the temperature sensing module provided by the embodiment of the present application.
- Fig. 7 is another structural schematic diagram of a body temperature detection earphone provided by the embodiment of the present application.
- FIG. 8 is a schematic diagram of the electrical connection between the temperature sensing module and the processor provided by the embodiment of the present application.
- FIG. 9 is a schematic diagram of another electrical connection between the temperature sensing module and the processor provided by the embodiment of the present application.
- FIG. 10 is a schematic flowchart of a method for measuring body temperature provided in an embodiment of the present application.
- processing steps described herein may be performed out of the specified order, that is, each step may be performed in the specified order, substantially simultaneously. steps, perform each step in reverse order, or perform each step in a different order.
- the embodiment of the present application provides an earphone.
- FIG. 1 is a schematic structural diagram of a body temperature detection earphone provided in an embodiment of the present application.
- the earphone 10 includes: an earphone housing 11 and a temperature sensing module 12 accommodated in the earphone housing 11.
- the earphone housing 11 is surrounded by an earphone cavity 13, and the earphone cavity 13 extends outward to form a contact with the outside world.
- FIG. 2 is a schematic diagram of cooperation between a body temperature detection earphone provided in an embodiment of the present application and a human ear. 1 and 2, the sound guide tube 14 is located on the side of the earphone cavity 13 close to the eardrum 202, and the temperature sensing module 12 includes at least two temperature measurement modules (for example, the first temperature measurement module is shown in FIG. 1 ). module 121 and the second temperature measurement module 122), the first temperature measurement module 121 and the second temperature measurement module 122 are fixed in the sound guide tube 14 along the direction of the sound guide tube 14 in sequence.
- This setting can make the heat received by the first temperature measurement module 121 and the second temperature measurement module 122 have a difference, and then generate a temperature difference between the temperature measurement module 121 and the temperature measurement module 122, combined with the corresponding algorithm, The user's body temperature can be calculated. It should be understood that the number of temperature measurement modules is not limited by that shown in FIG. 1 .
- the temperature of the eardrum 202 in the ear 200 is the highest, along the direction of the ear canal 201,
- the heat conducts from strong to weak, and the temperature sensing module 12 is arranged along the direction of the sound guide tube 14, so that at least two temperature measurement modules of the temperature sensor module 12 (for example, the first one is shown in FIG.
- the heat received by the temperature measurement module 121 and the second temperature measurement module 122) produces a difference, and then a temperature difference is generated between the temperature measurement module 121 and the temperature measurement module 122, combined with the corresponding algorithm, the user's body temperature can be calculated , it should be understood that the number of temperature measurement modules is not limited by FIG. 1 .
- FIG. 3 is a schematic structural diagram of a body temperature detection earphone with a first spacer provided in an embodiment of the present application.
- at least two temperature measurement modules a first temperature measurement module 121 and a second temperature measurement module 122 are shown in FIG. 3 .
- the first spacer 15 can reduce the thermal conductivity between at least two temperature measurement modules.
- the thickness and/or material of the first spacer By adjusting the thickness and/or material of the first spacer, the relationship between the first temperature measurement module 121 and the second temperature measurement module 122 can be controlled. Adjust the temperature difference to an appropriate size, and combine with the corresponding algorithm to calculate the temperature to be measured.
- the temperature difference between the first temperature measurement module 121 and the second temperature measurement module 122 becomes larger, which is beneficial to the calculation of the algorithm. Combined with the corresponding algorithm, it can reduce Calculation error.
- the material of the first spacer 15 is a material with low thermal conductivity, preferably plastic or foam.
- the embodiment of the present application does not specifically limit the material of the first spacer 15 . Selecting a material with a low thermal conductivity can increase the temperature difference between at least two temperature measuring modules 15 , which is beneficial to the algorithm calculation. Combining with the corresponding algorithm, the calculation error can be reduced.
- the air gap 16 surrounds the outer surface of the temperature sensing module between the outer surface of the temperature sensing module 12 and the inner wall of the sound guide 14 .
- the air gap 16 can play a role of heat insulation, reduce the influence of the external environment on the temperature sensing module 12, and improve the accuracy of temperature detection. Meanwhile, the air gap 16 is also a sound guiding path.
- the earphone 10 further includes a second spacer 17 sleeved on the surface of the temperature sensing module 12 . Adopting the scheme of this embodiment, by sheathing the second spacer 17 on the surface of the temperature sensing module 12, the influence of the external environment on the temperature sensing module 12 can be reduced, thereby making the temperature detection more accurate.
- the material of the second spacer 17 may be any material with low thermal conductivity, and the embodiment of the present application does not specifically limit the material of the second spacer, for example, it may be foam or the like.
- FIG. 6 is an exploded schematic view of the temperature sensing module provided by the embodiment of the present application.
- the temperature sensing module 12 includes a first temperature measurement module 121 and a second temperature measurement module 122 .
- the first temperature measurement module 121 includes: a first temperature sensor 1211, a first heat conduction member 1212, a first support member 1213, a first cavity 12121 is arranged inside the first heat conduction member 1212, and the first temperature sensor 1211 is arranged at the second A cavity 12121. Adopting the scheme of this embodiment, the first heat conduction member 1212 wraps the first temperature sensor 1211 in the first cavity 12121 , which can make the first temperature sensor 1211 fully contact with the first support member 1213 and improve the efficiency of heat conduction and heat dissipation.
- the first support 1213 is in contact with the inner wall of the sound guide tube 14, so that the positions of the first support 1213 and the sound guide tube 14 are relatively fixed, and the first temperature measurement module 121 and the second temperature measurement module 122 pass through the first temperature measurement module 121.
- a spacer 15 is fixedly connected so that the temperature sensing module 12 and the sound guide tube 14 are relatively fixed.
- the first support member 1213 plays the role of heat conduction and heat dissipation, and on the other hand, it plays the role of fixing.
- the embodiment of the present application does not limit the relatively fixed structure and method of the first support member 1213 and the sound guide tube 14.
- the first support member 1213 is in contact with the inner wall of the sound guide tube 14 or the first support member 1213 is in contact with the inner wall of the sound guide tube 14.
- the sound guide tubes 14 are fixed by gluing.
- the embodiment of the present application does not specifically limit the material of the first support member 1213 .
- the first supporting member 1213 is made of plastic or metal.
- a second cavity 12131 is formed inside the first support member 1213 , and the first heat conducting member 1212 is disposed in the second cavity 12131 .
- the second temperature measurement module 121 includes: a second temperature sensor 1221, a second heat conduction member 1222, and a second support member 1223.
- a third cavity 12221 is arranged inside the second heat conduction member 1222, and the second temperature sensor 1221 is arranged at the second Three cavities 12121.
- the second heat conduction member 1212 wraps the second temperature sensor 1221 in the third cavity 12121 , which can make the second temperature sensor 1221 fully contact with the second support member 1223 and improve the efficiency of heat conduction and heat dissipation.
- a fourth cavity 12231 is formed inside the second supporting member 1223 , and the second heat conducting member 1222 is disposed in the fourth cavity 12231 .
- a first spacer 15 is arranged between the first temperature measurement module 121 and the second temperature measurement module 122, and the first temperature measurement module 121 and the second temperature measurement module 122 pass through The first spacer 15 is fixed, so that the first temperature measurement module 121 and the second temperature measurement module 122 are relatively fixed.
- the first support 1213 is in contact with the inner wall of the sound guide tube 14, so that the positions of the first support 1213 and the sound guide tube 14 are relatively fixed, and the first temperature measurement module 121 and the second temperature measurement module 122 The position is relatively fixed, and the temperature sensing module 12 is suspended inside the sound guide tube when the second spacer 17 is not provided on the surface of the temperature sensing module 12 .
- FIG. 6 Take Figure 6 as an example to illustrate the principle of earphone temperature detection.
- the heat transfer sequence in the ear 200 is: eardrum 202—ear canal 201—first support member 1213—first heat conducting member 1212—first temperature sensor 1211—first spacer 15—second support member 1223 —second heat conducting element 1222 —second temperature sensor 1221 .
- Heat is transferred from strong to weak along the above path, thus, the first temperature sensor 1211 and the second temperature sensor 1221 generate a temperature difference.
- FIG. 7 is another schematic structural diagram of a body temperature detection earphone provided by an embodiment of the present application.
- the earphone 10 also includes an adhesive 18, the temperature sensing module also includes a circuit board 19, the circuit board 19 is fixed on the inner wall of the sound guide tube 14 through the adhesive 18, and at least two temperature measuring modules are respectively the first A temperature measurement module 121 and a second temperature measurement module 122, the first temperature measurement module 121 and the second temperature measurement module 122 are arranged on the circuit board 19, and the first temperature measurement module 121 is located opposite to the second temperature measurement module.
- the temperature measurement module 122 is close to the side of the eardrum 202 .
- the first temperature measurement module 121 is located on a side closer to the eardrum 202 relative to the second temperature measurement module 122 .
- the heat transfer direction inside the ear 200 is: from the eardrum 202 along the ear canal 201, through the first temperature sensor 121 relatively close to the eardrum 202, and then through the second temperature sensor 122 relatively far away from the eardrum 202.
- the first temperature measurement module 121 and the second temperature measurement module 122 receive a difference in the heat of the ear 200 and generate a temperature difference. Combined with the corresponding algorithm, the temperature to be detected can be calculated.
- the first temperature measurement module 121 and the second temperature measurement module 122 are arranged on the circuit board 19 at intervals. With the solution of this embodiment, there will be an air gap between the first temperature measurement module 121 and the second temperature measurement module 122, and the thermal conductivity of the air is relatively low.
- the first temperature measurement module 121 and the second temperature measurement module The arrangement of the groups 122 at intervals can make the temperature difference between the first temperature measurement module 121 and the second temperature measurement module 122 larger, and combined with the corresponding algorithm, the error of temperature detection can be reduced.
- the adhesive member 18 is glue, on the one hand, the adhesive member 18 can make the circuit board 19 and the sound guide tube 14 relatively fixed, on the other hand, the adhesive member 18 can play a role of heat insulation, The influence of the external environment on the temperature sensing module 12 is reduced, thereby making the temperature detection result more accurate.
- the embodiment of the present application does not limit the material of the adhesive.
- the adhesive is preferably a foam material.
- the circuit board 19 is a flexible printed circuit (Flexible Printed Circuit, FPC), and the flexible printed circuit is relatively thin and can be easily positioned.
- FPC Flexible Printed Circuit
- FIG. 8 is a schematic diagram of the electrical connection between the temperature sensing module and the processor provided by the embodiment of the present application.
- the first temperature sensor 1211 and the second temperature sensor 1221 are connected by a wire (not shown in the figure), and are connected to the chip 21 through the sensor lead 20.
- the first temperature sensor 1211 and the second temperature sensor 1221 The temperature signal is converted into an electrical signal, and the chip 21 is used to receive the electrical signal and calculate the temperature to be measured according to the electrical signal.
- FIG. 9 is a schematic diagram of another electrical connection between the temperature sensing module and the processor provided by the embodiment of the present application.
- the first temperature sensor 1211 and the second temperature sensor 1221 are packaged in a chip type and soldered on a flexible printed circuit (FPC).
- the circuit board 19 is directly connected to the chip 21 .
- the temperature sensor module 12 converts the temperature signal into an electrical signal, and the chip 21 is used to receive the electrical signal and calculate the temperature to be measured according to the electrical signal.
- the sound guide tube 14 of the earphone 10 is sleeved with a sealing member 23.
- the embodiment of the present application does not limit the structure of the sealing member 23.
- the sealing member 23 is an ear cap or an ear cap. Bag.
- the sealing member 23 cooperates with the ear canal 201 to improve the sealing effect of the earphone 10, improve the sealing performance in the ear canal 201, reduce the convective influence between the external environment and the ear canal 201, and then reduce the environmental impact.
- the influence of temperature on the temperature sensing module 12 makes the heat generated by the eardrum 202 and the ear canal 201 transfer to the direction of the temperature sensing module 12 to improve the accuracy of temperature detection.
- any one of the at least two temperature measurement modules is a contact temperature measurement module.
- a non-contact temperature measurement module is realized.
- the contact temperature measurement solution solves the test error problem caused by the unstable contact between the contact single temperature measurement module and the measured object, and on the other hand, solves the problem that the infrared non-contact temperature measurement module is too large The problem of not fitting the headset 10.
- the embodiment of the present application provides a body temperature measurement method.
- FIG. 10 it is a schematic flowchart of a body temperature measurement method provided in the embodiment of the present application.
- the body temperature measurement method specifically includes the following steps: step S100, obtain at least two temperature measurement values through at least two temperature measurement modules; step S200, obtain the earphone wearing body temperature of the patient.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Physiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Cardiology (AREA)
- General Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Pulmonology (AREA)
- Nonlinear Science (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
一种体温检测耳机(10)及体温测量方法,属于温度检测技术领域。耳机(10)包括:耳机壳体(11)和收容于耳机壳体(11)内的温度传感模块(12),耳机壳体(11)围设成耳机(10)腔体,耳机(10)腔体向外延伸形成与外界连通的导音管(14),导音管(14)位于耳机(10)腔体靠近耳膜的一侧,温度传感模块(12)包括至少两个测温模组(121,122),至少两个测温模组(121,122)依次沿着导音管(14)的方向,固设于导音管(14)中,其中,根据至少两个测温模组(121,122)的测量温差获得耳机(10)佩戴者的体温。耳机(10)的温度传感模块(12)与导音管(14)相结合,不影响音腔的设计,并以耳道作为温度检测的位置,提高了温度检测的准确度;体温测量方法包括:通过至少两个测温模组获得至少两个温度测量值(S100);以及,根据至少两个温度测量值的差值,获得耳机佩戴者的体温(S200)。
Description
本发明涉及温度检测技术领域,尤其涉及一种体温检测耳机及体温测量方法。
耳机是人们生活中常用的娱乐消遣工具,随着可穿戴健康设备的发展以及人们对自身健康的关注,具有体温检测功能的耳机越来越具有市场价值。
现有的测温技术主要有接触式测温与非接触式红外测温。对于接触式测温产品来说,最常见的是接触式测温针,其次是手表、手环。而非接触式红外测温产品较常见的是额温枪与耳温枪。
然而,现有的接触式测温方案需要与皮肤紧密接触才能测试到较好的数据,由于人耳造型多变,在耳机的实际应用中是很难实现这个条件。在现有的传统红外测温模组中,尺寸较大不满足于耳机内部的空间设计要求。以上产品都需要较大的内部空间去支持,难以做到小型模组化装配于耳机的有限的空间内。
发明内容
本申请实施例提供了一种体温检测耳机,用于解决现有技术存在的体温检测结果误差大,且体温检测模组偏大不适配耳机的问题。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供了一种耳机,该耳机包括:耳机壳体和收容于该耳机壳体内的温度传感模块,该耳机壳体围设成耳机腔体,该耳机腔体向外延伸形成与外界连通的导音管,该导音管位于该耳机腔体靠近耳膜的一侧,该温度传感模块包括至少两个测温模组,该至少两个测温模组依次 沿着该导音管的方向,固设于该导音管中,其中,根据该至少两个测温模组的测量温差获得耳机佩戴者的体温。由此,温度传感模块在耳机的导音管中,而导音管又在耳道处,即温度传感模块以耳道作为测温位置,因为,耳道温度较接近身体实际温度。此外,耳道对应于耳机的位置是导音管,测温模组与导音管相结合,不影响音腔设计,同时兼顾了不同耳机的工业设计。温度传感模块包括至少两个测温模组,温度传感模块沿着导音管的方向配置,可以使至少两个测温模组距离耳膜的距离产生远近差异,由于耳朵中耳膜温度最高,从耳膜沿着耳道的方向,热量将逐渐变弱,因此,至少两个测温模组之间会产生温度差,结合对应的算法,可以计算出待测温度。
可选地,该至少两个测温模组的每两个之间配置有第一间隔件。
可选地,该第一间隔件的材料为塑胶或泡棉体。
可选地,该温度传感模块的外表面与该导音管的内壁之间具有围绕该温度传感器外表面的空气隙。
可选地,该耳机还包括第二间隔件,该第二间隔件套设在该温度传感模块的表面。
可选地,该温度传感器模块包括:
第一测温模组,该第一测温模组包括第一温度传感器、第一导热件、第一支撑件,该第一导热件的内部配置有第一空腔,该第一温度传感器配置在该第一空腔中,该第一支撑件与导音管的内壁相接触,用以使第一支撑件和该导音管的位置相对固定,该第一支撑件内部形成第二空腔,该第一导热件被配置在该第二空腔中;
第二测温模组,该第二测温模组包括第二温度传感器、第二导热件、第二支撑件,该第二导热件的内部配置有第三空腔,该第二温度传感器配置在该第三空腔中,该第二支撑件内部形成第四空腔,该第二导热件被配置在该第四空腔中;
可选地,该第一支撑件、该第二支撑件的材质为不锈钢或塑胶。
可选地,该第一导热件、该第二导热件的材质为导热硅脂。
可选地,该耳机还包括粘着件,该温度传感模块还包括电路板,该电路板通过该粘着件固定在该导音管的内壁上,该至少两个测温模组分别为第 一测温模组和第二测温模组,该第一测温模组和该第二测温模组被设置在该电路板上,且该第一测温模组位于相对该第二测温模组靠近耳膜的一侧。
该第一测温模组和该第二测温模组被相间隔地设置在该电路板上。
可选地,电路板为柔性电路板。
该粘着件的材质为发泡体材料。
该耳机还包括与该温度传感模块电连接的芯片。
可选地,耳机的导音管处还设有密封件。
可选地,该密封件为耳帽或者耳包。
可选地,至少两个测温模组的任一个均为接触式测温模组。
第二方面,本申请实施例提供一种体温测量方法,应用于本申请实施例的耳机,包括:通过该至少两个测温模组获得至少两个温度测量值;以及,根据该至少两个温度测量值的差值,获得该耳机佩戴者的体温。
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元器件表示为基本相同的元器件。除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例提供的一种体温检测耳机的结构示意图;
图2为本申请实施例提供的一种体温检测耳机与耳朵的配合示意图;
图3为本申请实施例提供的一种带有第一间隔件的体温检测耳机的结构示意图;
图4为本申请实施例提供的一种带有空气隙的体温检测耳机的结构示意图;
图5为本申请实施例提供的一种带有第二间隔件的体温检测耳机的结构示意图;
图6为本申请实施例提供的温度传感模块的分解示意图;
图7为本申请实施例提供的一种体温检测耳机的另一结构示意图;
图8为本申请实施例提供的温度传感模块与处理器的电连接的示意图;
图9为本申请实施例提供的温度传感模块与处理器的另一电连接的示意图;
图10为本申请实施例提供的一种体温测量方法的流程示意图。
下面将结合附图对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。
本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本申请中,“上”、“下”、“前”、“后”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
另外,除非在本申请的上下文中清楚地说明了指定的顺序,否则可与指定的顺序不同地执行在此描述的处理步骤,即,可以以指定的顺序执行每个步骤、基本上同时执行每个步骤、以相反的顺序执行每个步骤或者以不同的顺序执行每个步骤。
第一方面,本申请实施例提供一种耳机。
图1为本申请实施例提供的一种体温检测耳机的结构示意图。如图所示,耳机10包括:耳机壳体11和收容于耳机壳体11内的温度传感模块12,耳机壳体11围设成耳机腔体13,耳机腔体13向外延伸形成与外界连通的导音管14。
图2为本申请实施例提供的一种体温检测耳机与人体耳朵的配合示意图。结合图1和图2,导音管14位于耳机腔体13靠近耳膜202的一侧,温度传感模块12包括至少两个测温模组(示例性的,图1中示出第一测温模组121和第二测温模组122),第一测温模组121和第二测温模组122依次沿着导音管14的方向,固设在导音管14中。这样设置,可以使得第一测温模组121和第二测温模组122接收的热量产生差异,进而在测温模组121和测 温模组122之间产生温度差,结合对应的算法,可以计算出用户的体温,应当理解,测温模组的数量不受图1的限制。
沿着导音管14的方向,配置在导音管14中,且温度传感模块12与导音管14的位置相对固定,耳朵200中耳膜202的温度最高,沿着耳道201的方向,热量进行由强到弱的传导,温度传感模块12沿着导音管14的方向设置,可以使得温度传感器模块12的至少两个测温模组(示例性的,图1中示出第一测温模组121和第二测温模组122)接收的热量产生差异,进而在测温模组121和测温模组122之间产生温度差,结合对应的算法,可以计算出用户的体温,应当理解,测温模组的数量不受图1的限制。
图3为本申请实施例提供的一种带有第一间隔件的体温检测耳机的结构示意图。如图所示,至少两个测温模组(图3中示出第一测温模组121和第二测温模组122)每两个之间配置有第一间隔件15。第一间隔件15可以降低至少两个测温模组间的导热率,通过调整第一间隔件的厚度与/或材料,可以控制第一测温模组121和第二测温模组122之间的温度差,将温度差调整到合适的大小,结合对应的算法,可以计算得出待测温度。示例性的,选择厚度较大的第一间隔件15,第一测温模组121和第二测温模组122之间的温度差变大,有利于算法计算,结合对应的算法,可以降低计算误差。
第一间隔件15的材质采用导热系数低的材料,优选塑胶或泡棉体,本申请实施例对第一间隔件15的材质不做具体限制。选择导热系数低的材料,可以使得至少两个测温模组15之间的温度差变大,有利于算法计算,结合对应的算法,可以降低计算误差。
在一个可选的实施方式中,如图4所示,所述温度传感模块12的外表面与所述导音14的内壁之间具有围绕所述温度传感模块外表面的空气隙16。采用该实施例的方案,空气隙16可以起到隔热作用,降低外界环境对温度传感模块12的影响,提升温度检测的准确性。同时,空气隙16也是导音路径。
在本申请另一种实现方式中,如图5所示,耳机10还包括第二间隔件17,第二间隔件17套设在所述温度传感模块12的表面。采用该实施例的方案,通过在温度传感模块12的表面套设第二间隔件17,能够降低外界环 境对温度传感模块12的影响,进而使得温度检测更加准确。第二间隔件17的材质可以是任何低导热系数的材料,本申请实施例对第二间隔件的材质不做具体限制,示例性的,可以是泡棉等。
图6为本申请实施例提供的温度传感模块的分解示意图。温度传感模块12包括第一测温模组121和第二测温模组122。
第一测温模组121包括:第一温度传感器1211、第一导热件1212,第一支撑件1213,第一导热件1212的内部配置有第一空腔12121,第一温度传感器1211配置在第一空腔12121中。采用该实施例的方案,第一导热件1212将第一温度传感器1211包裹在第一空腔12121中,可以使第一温度传感器1211与第一支撑件1213充分接触,提高导热与散热效率。
第一支撑件1213与导音管14的内壁相接触,用以使第一支撑件1213和导音管14的位置相对固定,第一测温模组121和第二测温模组122通过第一间隔件15固接,进而,使得温度传感模块12与导音管14相对固定。第一支撑件1213一方面起到导热和散热的作用,另一方面,起到固定作用。本申请实施例对第一支撑件1213和导音管14相对固定的结构、方法不做限定,示例性的,第一支撑件1213与导音管14的内壁抵接或者第一支撑件1213与导音管14之间采用胶粘的方式固定等。本申请实施例对第一支撑件1213的材质不做具体限制。示例性的,第一支撑件1213采用塑胶或金属制成。
第一支撑件1213内部形成第二空腔12131,第一导热件1212被配置在所述第二空腔12131中。
第二测温模组121包括:第二温度传感器1221、第二导热件1222,第二支撑件1223,第二导热件1222的内部配置有第三空腔12221,第二温度传感器1221配置在第三空腔12121中。采用该实施例的方案,第二导热件1212将第二温度传感器1221包裹在第三空腔12121中,可以使第二温度传感器1221与第二支撑件1223充分接触,提高导热与散热效率。
第二支撑件1223内部形成第四空腔12231,第二导热件1222被配置在所述第四空腔12231中。
在一个可选的实施方式中,第一测温模组121和第二测温模组122之 间配置有第一间隔件15,第一测温模组121和第二测温模组122通过第一间隔件15固接,以使得第一测温模组121和第二测温模组122相对固定。
第一支撑件1213与导音管14的内壁相接触,用以使第一支撑件1213和导音管14的位置相对固定,且第一测温模组121和第二测温模组122的位置相对固定,在温度传感模块12的表面不设置第二间隔件17的情况下,温度传感模块12悬空于导音管内部。
以图6为例说明耳机检测温度的原理。如图6所示,耳朵200内的热量传递顺序为:耳膜202—耳道201—第一支撑件1213—第一导热件1212—第一温度传感器1211—第一间隔件15—第二支撑件1223—第二导热件1222—第二温度传感器1221。热量沿着上述路径由强到弱进行传递,由此,第一温度传感器1211和第二温度传感器1221产生温度差。
图7为本申请实施例提供的一种体温检测耳机的另一结构示意图。如图所示,耳机10还包括粘着件18,温度传感模块还包括电路板19,电路板19通过粘着件18固定在导音管14的内壁上,至少两个测温模组分别为第一测温模组121和第二测温模组122,第一测温模组121和第二测温模组122被设置在电路板19上,且第一测温模组121位于相对第二测温模组122靠近耳膜202的一侧。
第一测温模组121位于相对第二测温模组122靠近耳膜202的一侧。在用户佩戴耳机10时,耳朵200内部的热传递方向为:从耳膜202沿着耳道201经过相对靠近耳膜202的第一温度传感器121,再经过相对远离耳膜202的第二温度传感器122。第一测温模组121和第二测温模组122接受耳朵200的热量存在差异,产生温差,结合对应的算法,可以计算出待检测的温度。
本申请另一种实现方式中,第一测温模组121和第二测温模组122被相间隔地设置在电路板19上。采用该实施例的方案,第一测温模组121和第二测温模组122之间会有空气隙,空气的导热系数相对较低,第一测温模组121和第二测温模组122相间隔地配置可以使得第一测温模组121和第二测温模组122之间的温差变大,结合对应的算法,可以降低温度检测的误差。
在一个可选的实施方式中,粘着件18为贴合胶,一方面,粘着件18 可以使得电路板19与导音管14相对固定,另一方面,粘着件18可以起到隔热作用,降低外界环境对温度传感模块12的影响,进而使得温度检测结果更加准确。本申请实施例对贴合胶的材质不做限制,示例性的,贴合胶优选为发泡体材料。
在一个可选的实施方式中,电路板19为柔性电路板(Flexible Printed Circuit,FPC),柔性电路板相对比较薄且比较好定位。
图8为本申请实施例提供的温度传感模块与处理器的电连接的示意图。如图所示,第一温度传传感器1211和第二温度传感器1221通过导线连接(图中未示出),又通过传感器引线20与芯片21连接,第一温度传传感器1211和第二温度传感器1221将温度信号转换为电信号,芯片21用于接收电信号,并根据电信号计算待测温度。
图9为本申请实施例提供的温度传感模块与处理器的另一电连接的示意图。如图所示,第一温度传传感器1211和第二温度传感器1221采用贴片式封装,焊接在柔性电路板(Flexible Printed Circuit,FPC)上。电路板19直接与芯片21连接。温度传感器模块12将温度信号转换为电信号,芯片21用于接收电信号,并根据电信号计算待测温度。
参考图4,如图所示,耳机10的导音管14处套设有密封件23,本申请实施例对密封件23的结构不做限制,示例性的,密封件23为耳帽或者耳包。
采用该实施例的方案,密封件23与耳道201相配合,用以提高耳机10的密封作用,提升耳道201内的密封性,降低外界环境与耳道201内的对流影响,进而降低环境温度对温度传感模块12的影响,使耳膜202及耳道201产生的热量向温度传感模块12的方向传递,提升温度检测的准确性。
在一种可选的实施方式中,至少两个测温模组中的任一个均为接触式测温模组,这样,采用该实施例的方案,以接触式多测温模组实现了非接触式测温方案,一方面,解决了由于接触式单测温模组与被测对象的接触不稳定所引起的测试误差问题,另一方面,解决了红外非接触式测温模组偏大不适配耳机10的问题。
第二方面,本申请实施例提供一种体温测量方法。
如图10所示,为本申请实施例提供的一种体温测量方法的流程示意图。该体温测测量方法具体包括如下步骤:步骤S100,通过至少两个测温模组获得至少两个温度测量值;步骤S200,根据所述至少两个温度测量值的差值,获得所述耳机佩戴者的体温。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (17)
- 一种耳机,其特征在于,所述耳机包括:耳机壳体和收容于所述耳机壳体内的温度传感模块,所述耳机壳体围设成耳机腔体,所述耳机腔体向外延伸形成与外界连通的导音管,所述导音管位于所述耳机腔体靠近耳膜的一侧,所述温度传感模块包括至少两个测温模组,所述至少两个测温模组依次沿着所述导音管的方向,固设于所述导音管中,其中,根据所述至少两个测温模组的测量温差获得耳机佩戴者的体温。
- 如权利要求1所述的耳机,其特征在于,所述至少两个测温模组的每两个之间设置有第一间隔件。
- 如权利要求2所述的耳机,其特征在于,所述第一间隔件的材料为塑胶或泡棉体。
- 如权利要求1所述的耳机,其特征在于,所述温度传感模块的外表面与所述导音管的内壁之间具有围绕所述温度传感模块外表面的空气隙。
- 如权利要求1所述的耳机,其特征在于,所述耳机还包括第二间隔件,所述第二间隔件套设在所述温度传感模块的表面。
- 如权利要求2-5任一项所述的耳机,其特征在于,所述至少两个测温模组包括:第一测温模组,所述第一测温模组包括:第一温度传感器、第一导热件、第一支撑件,所述第一导热件的内部配置有第一空腔,所述第一温度传感器设置在所述第一空腔中,所述第一支撑件与导音管的内壁相接触,用以使第一支撑件和所述导音管的位置相对固定,所述第一支撑件内部形成第二空腔,所述第一导热件被设置在所述第二空腔中;以及第二测温模组,所述第二测温模组包括:第二温度传感器、第二导热件、第二支撑件,所述第二导热件的内部配置有第三空腔,所述第二温度传感器配置在所述第三空腔中,所述第二支撑件内部形成第四空腔,所述第二导热件被配置在所述第四空腔中。
- 如权利要求6所述的耳机,其特征在于,所述第一支撑件、所述第二支撑件的材质为不锈钢或塑胶。
- 如权利要求6所述的耳机,其特征在于,所述第一导热件、所述第二导热件的材质为导热硅脂。
- 如权利要求1所述的耳机,其特征在于,所述耳机还包括粘着件,所述温度传感模块还包括电路板,所述电路板通过所述粘着件固定在所述导音管的内壁上,所述至少两个测温模组分别为第一测温模组和第二测温模组,所述第一测温模组和所述第二测温模组被设置在所述电路板上,且所述第一测温模组位于相对所述第二测温模组靠近耳膜的一侧。
- 如权利要求9所述的耳机,其特征在于,所述第一测温模组和所述第二测温模组被相间隔地设置在所述电路板上。
- 如权利要求9或10任一项所述的耳机,其特征在于,所述电路板为柔性电路板。
- 如权利要求9所述的耳机,所述粘着件的材质为发泡体材料。
- 如权利要求1所述的耳机,其特征在于,所述耳机还包括与所述温度传感模块电连接的芯片。
- 如权利要求1所述的耳机,其特征在于,所述耳机的导音管处还套设有密封件。
- 如权利要求13所述的耳机,其特征在于,所述密封件为耳帽或者耳包。
- 如权利要求1任一项所述的耳机,其特征在于,所述至少两个测温模组中的任一个均为接触式测温模组。
- 一种体温测量方法,其特征在于,应用于如权利要求1-16任一项所述的耳机,包括:通过所述至少两个测温模组获得至少两个温度测量值;以及,根据所述至少两个温度测量值的差值,获得所述耳机佩戴者的体温。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/107161 WO2023000140A1 (zh) | 2021-07-19 | 2021-07-19 | 一种体温检测耳机及体温测量方法 |
CN202221117135.2U CN217765293U (zh) | 2021-07-19 | 2022-05-10 | 一种温度传感模块及耳机 |
CN202221911305.4U CN218352686U (zh) | 2021-07-19 | 2022-07-19 | 一种耳机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/107161 WO2023000140A1 (zh) | 2021-07-19 | 2021-07-19 | 一种体温检测耳机及体温测量方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023000140A1 true WO2023000140A1 (zh) | 2023-01-26 |
Family
ID=83883648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/107161 WO2023000140A1 (zh) | 2021-07-19 | 2021-07-19 | 一种体温检测耳机及体温测量方法 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN217765293U (zh) |
WO (1) | WO2023000140A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6450970B1 (en) * | 1999-11-16 | 2002-09-17 | Ron Mahler | Method and device for diagnosing an inflammatory process |
US20060173375A1 (en) * | 2005-02-03 | 2006-08-03 | Drager Safety Ag & Co. Kgaa | Arrangement for measuring the body temperature of a living organism |
US20190117155A1 (en) * | 2017-10-20 | 2019-04-25 | Starkey Hearing Technologies | Devices and sensing methods for measuring temperature from an ear |
CN208799210U (zh) * | 2017-11-14 | 2019-04-30 | 肖殿清 | 一种连续测量体温的热敏电阻式的耳机 |
WO2020151487A1 (en) * | 2019-01-23 | 2020-07-30 | Well Being Digital Limited | Method for determining a state of over-heating or a risk of over-heating of a subject and device therefor |
-
2021
- 2021-07-19 WO PCT/CN2021/107161 patent/WO2023000140A1/zh active Application Filing
-
2022
- 2022-05-10 CN CN202221117135.2U patent/CN217765293U/zh active Active
- 2022-07-19 CN CN202221911305.4U patent/CN218352686U/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6450970B1 (en) * | 1999-11-16 | 2002-09-17 | Ron Mahler | Method and device for diagnosing an inflammatory process |
US20060173375A1 (en) * | 2005-02-03 | 2006-08-03 | Drager Safety Ag & Co. Kgaa | Arrangement for measuring the body temperature of a living organism |
US20190117155A1 (en) * | 2017-10-20 | 2019-04-25 | Starkey Hearing Technologies | Devices and sensing methods for measuring temperature from an ear |
CN208799210U (zh) * | 2017-11-14 | 2019-04-30 | 肖殿清 | 一种连续测量体温的热敏电阻式的耳机 |
WO2020151487A1 (en) * | 2019-01-23 | 2020-07-30 | Well Being Digital Limited | Method for determining a state of over-heating or a risk of over-heating of a subject and device therefor |
Also Published As
Publication number | Publication date |
---|---|
CN218352686U (zh) | 2023-01-20 |
CN217765293U (zh) | 2022-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN214070123U (zh) | 入耳式耳机 | |
US11213252B2 (en) | Devices and sensing methods for measuring temperature from an ear | |
EP2120681B1 (en) | Methods and devices for measuring core body temperature | |
CN113015953A (zh) | 具有电容式触摸界面的可穿戴音频设备 | |
CN108871609A (zh) | 一种长工作周期的可穿戴温度测量贴片 | |
CN215991162U (zh) | 一种体温检测耳机 | |
ITTO20130496A1 (it) | Dispositivo mobile per uno stetoscopio elettronico includente un microfono elettronico e un'unita' di rilevazione della posizione del dispositivo mobile | |
WO2023000140A1 (zh) | 一种体温检测耳机及体温测量方法 | |
TW202037328A (zh) | 耳式體溫計 | |
CN209437238U (zh) | 耳塞式装置及电子装置 | |
JP7361428B2 (ja) | イヤホン | |
JP5322876B2 (ja) | 耳内挿入型体温計 | |
JP2016158878A (ja) | 生体情報測定装置 | |
CN215414054U (zh) | 穿戴式电子设备 | |
TWM596600U (zh) | 耳溫量測之穿戴式耳機 | |
CN208891024U (zh) | 带健康检测的骨传导耳机 | |
CN212903637U (zh) | 一种体温检测结构及耳挂式耳机 | |
CN111854959B (zh) | 一种耳机式远红外连续耳温及生理参数测量装置 | |
CN211086940U (zh) | 一种集成装置 | |
TWI734321B (zh) | 保持具及使用該保持具的耳式體溫計 | |
WO2023160268A9 (zh) | 可穿戴电子装置、体温测量方法及可穿戴电子设备 | |
WO2022088125A1 (zh) | 一种体温检测装置及其耳机 | |
CN219420991U (zh) | 一种带耳温检测功能的tws耳机 | |
US20230414174A1 (en) | Earbud with temperature sensing | |
TWM654413U (zh) | 耳機及其傳感器模組 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21950406 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21950406 Country of ref document: EP Kind code of ref document: A1 |