WO2022270963A1 - Retrofit micro hybrid system, and hybrid system operating method using same - Google Patents

Retrofit micro hybrid system, and hybrid system operating method using same Download PDF

Info

Publication number
WO2022270963A1
WO2022270963A1 PCT/KR2022/008996 KR2022008996W WO2022270963A1 WO 2022270963 A1 WO2022270963 A1 WO 2022270963A1 KR 2022008996 W KR2022008996 W KR 2022008996W WO 2022270963 A1 WO2022270963 A1 WO 2022270963A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
torque
pedal
signal
hybrid system
Prior art date
Application number
PCT/KR2022/008996
Other languages
French (fr)
Korean (ko)
Inventor
최익준
Original Assignee
최익준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최익준 filed Critical 최익준
Publication of WO2022270963A1 publication Critical patent/WO2022270963A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hybrid system of a vehicle, and more particularly, to a micro-hybrid system and a control method thereof that can improve a vehicle that can be driven only by engine power in a simple manner and satisfy both efficiency and operation feeling.
  • a hybrid electric vehicle refers to using both an internal combustion engine and battery power as power sources.
  • Such a hybrid vehicle uses both the mechanical energy of the engine and the electric energy of the battery, uses the optimal operating range of the engine and motor, and recovers energy during braking, thereby improving fuel efficiency and enabling efficient energy management.
  • a typical hybrid vehicle includes an electric vehicle mode (EV mode) that uses only the torque of the motor by engaging or disengaging the engine clutch, a hybrid electric vehicle mode (HEV mode) that uses the torque of the motor as auxiliary torque while using the engine torque as the main torque, and a hybrid electric vehicle mode.
  • EV mode electric vehicle mode
  • HEV mode hybrid electric vehicle mode
  • Driving in a driving mode such as a regenerative braking mode in which braking and inertial energy is recovered through power generation of the motor to charge a battery when braking or driving by inertia of the vehicle is provided.
  • micro hybrids are sometimes classified as hard types, and in contrast, mild hybrids or micro hybrids exist.
  • a mild hybrid starter & generator (MHSG) that starts an engine or generates power based on the output of the engine is provided instead of the alternator.
  • MHSG mild hybrid starter & generator
  • the micro hybrid vehicle does not have a driving mode in which the vehicle is driven only by the torque of the motor, but the engine torque can be assisted according to the driving condition using ISG (Idle Stop and Go) or BSG (Belt driven integrated starter generator), and regenerative Since a battery (eg, a 48 V battery) can be charged through braking, fuel efficiency of the vehicle can be improved.
  • ISG Idle Stop and Go
  • BSG Belt driven integrated starter generator
  • Hybrid finished cars were accepted as a transitional form before moving to the electric car era, but now they can compensate for the shortcomings of internal combustion engine cars and electric cars, so an independent market is formed.
  • Korean Patent Publication No. 10-2016-0096855 discloses such a conventional hybrid kit.
  • 1 is a configuration diagram showing that a conventional hybrid kit is applied to a vehicle.
  • first sprocket 110 includes a first sprocket 110, a motor 120, a second sprocket 130, and a power transmission chain 140
  • the first sprocket 110 is one of wheels installed in a vehicle, an internal combustion engine. It is installed coaxially with the driven wheel 60 that does not receive the driving force by (10), rotates integrally with the driven wheel 60, and gear teeth may be formed on the outer circumference.
  • the motor 120 may be installed in a vehicle and driven by receiving power from a battery 42 or a generator (not shown) installed in the vehicle.
  • the motor 120 may be coupled to and supported by the vehicle body 5 instead of being supported by a wheel or a knuckle (not shown) of the vehicle.
  • the motor 120 may be coupled to the upper side of a suspension device (not shown) of the vehicle to form a part of the suspended mass.
  • the second sprocket 130 is provided to be rotated by the motor 120, and gear teeth may be formed around it.
  • the power transmission chain 140 is disposed to span the first sprocket 110 and the second sprocket 130, and is engaged with the gear teeth of the first sprocket 110 and the second sprocket 130, It may be provided to transmit mutual rotational force between the first sprocket 110 and the second sprocket 130. Therefore, when the motor 120 is rotated, rotational force is transmitted to the driven wheel 60 through the first sprocket 110 through the power transmission chain 140, and the driving wheel driven by the internal combustion engine 10 ( 50) or drive the vehicle alone.
  • the present invention provides a retrofit micro hybrid system that can be mounted on a finished vehicle with an internal combustion engine and has improved functions to harmonize the power system and eliminate the sense of difference in operation, and a method for operating the hybrid system thereby. intended to provide
  • the present invention provides a hybrid system that can be installed in an existing vehicle equipped with an engine controlled by a main controller to drive wheels.
  • It is configured to include a starting and driving unit 1010, a battery unit 1020 that provides power to the starting and driving unit, and a hybrid control unit 1100 that converts motor torque and outputs a control signal to the starting and driving unit. .
  • the hybrid control unit may receive a pedal effort signal, convert expected torque and motor torque corresponding thereto, calculate final engine torque, and transmit a virtual pedal signal to the main controller.
  • the hybrid control unit includes an input unit 1110 that receives driving information including a pedal effort signal, an operation unit 1200 that converts expected torque and motor torque and generates a virtual pedal signal, a starting and driving unit, and a main controller.
  • An output unit 1120 for outputting a signal may be provided.
  • the hybrid control unit preferably further includes a battery management unit 1130 that monitors the state of the battery unit and controls charging and discharging.
  • the calculation unit converts the engine torque map data 1211 into which the engine torque is converted into data, the motor torque map data 1212 into which the motor torque becomes data, and the expected torque corresponding to the pedal effort signal from the engine torque map data.
  • a torque matching unit 1230 that converts the motor torque corresponding to the pedal effort signal from the motor torque map data and calculates the final engine torque; and a virtual engine torque corresponding to the calculated final engine torque.
  • a pedal virtualization unit 1240 for generating a pedal signal is provided.
  • the present invention by the retrofit micro-hybrid system, includes the steps of a) receiving the pedal effort signal P ⁇ i from the input unit, b) determining whether the battery unit has a set remaining capacity or more, and c) the If the remaining amount is equal to or greater than the remaining amount set in step b), the operation unit converts the expected torque (Tc) from the pedal effort signal, d) the operation unit converts the motor torque (Tm) for the vehicle speed, and e) the operation unit calculates the expected torque calculating a final engine torque (Te) with a difference in motor torque, f) transmitting a control signal corresponding to the motor torque from an output unit to a starting and driving unit, and converting a virtual pedal signal (P ⁇ calculation) into a pedal output signal (P ⁇ e) It provides an operating method of a micro hybrid system including the step of transmitting to the main controller as.
  • 1 is a configuration diagram showing that a conventional hybrid kit is applied to a vehicle.
  • FIG. 2 is a configuration diagram illustrating a retrofit micro-hybrid system according to the concept of the present invention.
  • FIG. 3 is a block diagram illustrating a hybrid control unit in the retrofit micro hybrid system of the present invention.
  • FIG. 4 is a block diagram for explaining an embodiment of an output unit of a hybrid control unit.
  • FIG. 5 is a block diagram for explaining an arithmetic unit of a hybrid control unit.
  • FIG. 6 is a flowchart showing an operating method of the retrofit micro hybrid system of the present invention.
  • the present invention basically provides a micro-hybrid system that can be retrofitted to a complete vehicle equipped with an engine to drive one or more wheels, and uses the output of a starting and driving unit as driving power to assist the output of the engine.
  • a hybrid control unit that functions to distribute output suitable for the user's output intention is configured.
  • the type of vehicle to which the present invention is applied is not limited, and the fuel used for the engine as the main power source of the vehicle may be gasoline, diesel, LPG, etc., and the concept of the present invention is not limited.
  • front engine and front wheel drive are described, but various known technologies may be applied to the arrangement and method of the drive system.
  • FIG. 2 is a configuration diagram illustrating a retrofit micro-hybrid system according to the concept of the present invention.
  • a transmission 220 is interposed between the engine 210 and the wheels, and the basic configuration of the vehicle is ignition, intake/exhaust, electrical, transmission, etc. through the main controller (ECU, 230) through power of the main battery 240. It works
  • an alternator for starting and/or charging is usually provided on the side of the engine 210, and in relation to this alternator, there has been an improvement in starting efficiency or volume.
  • a hybrid system is constructed by replacing the alternator and / or the starter motor. will be.
  • improvement in the direction of increasing output distribution efficiency by mounting the hybrid control unit 1100 on a vehicle equipped with a conventional mild hybrid system can be considered, of course.
  • micro-hybrid system may be a kind of micro-hybrid system that provides a driving force together with the starting motor of the present invention.
  • an engine 210 and a transmission 220 are connected and disconnected through a clutch (not shown), and a starter generator is connected to the engine 210 through a belt.
  • This is usually defined as BSG (Belt driven integrated Starter Generator).
  • BSG Belt driven integrated Starter Generator
  • the present invention provides a post-mounted micro-hybrid system, but the above names will be used uniformly.
  • the main controller 230 is applied to control the output of the engine 210, and when the user operates the pedal 250, the value of the pedal force is digitized through the sensor provided in the pedal 250 and the predetermined required value is reached. It controls the ignition timing, throttle valve, and transmission to provide output to driving.
  • the main controller 230 since the main controller 230 is completed so that it can be integrated and operated, the BSG and the engine can be harmonized together. Since it has only the control logic of, it is not possible to smoothly assist with power simply by mounting the start-up and drive unit 1010, and in fact, it is very difficult to construct a micro-hybrid system ex post facto as described above.
  • the present invention proposes a method of receiving an input of the driver's pedal 250 from the hybrid control unit 1100 and processing it, and an embodiment related to this will be described later.
  • the pedal 250 means an accelerator pedal that functions such as operating a throttle body or controlling an amount of fuel injection.
  • the hybrid control unit 1100 can exchange information with the main controller 230, and the output of the engine 210 and the starting and driving unit 1010 can meet the driver's requirements.
  • the hybrid control unit 1100 controls start-up and operation of the drive unit 1010, but controls acceleration through power assistance, as well as operations for stop-and-start mode operation, regenerative braking deceleration control, etc. 230 and communication can be performed.
  • acceleration through power assistance as well as operations for stop-and-start mode operation, regenerative braking deceleration control, etc. 230 and communication can be performed.
  • the power for starting and operating the driving unit 1010 may be supplied from the main battery 240, but it is preferable to separately configure the battery unit 1020 for operating the hybrid system in order to assist with output. Since the present invention implements a micro-hybrid system, the voltage of the battery unit 1020 is preferably 48V, but the voltage value is optional, such as 36V, 24V, or 12V.
  • FIG. 3 is a block diagram illustrating a hybrid control unit in the retrofit micro hybrid system of the present invention.
  • the hybrid control unit 1100 performs a function of controlling the operation of the starting and driving unit 1010, but functions so that the torque of the starting and driving unit 1010 and the torque of the engine 210 are interlocked to operate in harmony.
  • the hybrid control unit 1100 receives and digitizes the input value of the pedal 250, derives a goal of output, and organically links the output of the engine 210 and the starting and driving unit 1010.
  • An input unit 1110 for receiving information of the pedal 250 and/or the main controller 230 is provided.
  • a displacement sensor or an angle sensor may be installed to measure the pedal force of the pedal 250, and a signal for the pedal pedal force will be transmitted to the normal main controller 230, but in the present invention, it is a hybrid control unit in the middle. (1100) can be processed and transmitted to the main controller.
  • the output unit 1120 of the present invention outputs a virtual pedal signal that allows the main controller 230 to control the output of the engine and a motor control signal that allows the start and drive unit 1010 to be controlled.
  • transmission of the signal may be selective, and an embodiment thereof will be described later.
  • the calculation unit 1200 functions to generate the virtual pedal signal, and a variable for calculating the virtual pedal signal of the calculation unit 1200 may be a pedal effort signal, and additionally, the current vehicle speed, engine speed, transmission state, etc. This may be the above variable.
  • the hybrid control unit 1100 may further include a battery management unit 1130, and the battery management unit 1130 may function to control charging and discharging of the battery unit 1020 for micro-hybrid operation.
  • a function of monitoring whether or not the battery unit 1020 is operable may be performed.
  • FIG. 4 is a block diagram for explaining an embodiment of an output unit of a hybrid control unit.
  • the output unit 1120 is connected to the pedal signal output unit 1121 It is composed of a motor output control unit 1122.
  • the motor output control unit 1122 functions to transmit a control voltage to the motor based on the motor torque converted by the calculation unit 1200, and is dependent on one or more of the user's pedal effort or vehicle speed, engine speed, or mission position. Based on this, the rotation of the motor is controlled.
  • the pedal signal output unit 1121 may perform a function of transmitting a virtual pedal signal for engine rotation to the main controller 230 based on the determined torque of the motor.
  • the signal of the main controller 230 may be substituted only for an element for engine rotation, and the signal of the main controller 230 suitable for the pedal effort signal may be set to be valid for the remaining driving elements.
  • FIG. 5 is a block diagram for explaining an arithmetic unit of a hybrid control unit.
  • the operation unit 1200 finally determines output values for rotation of the motor and rotation of the engine through the pedal force signal of the pedal 250 received from the input unit 1110.
  • the calculation unit 1200 converts torque maps suitable for a predetermined situation into data and stores them in advance, and engine torque map data 1211 for torque per engine revolution number and motor torque map data 1212 for torque for each revolution speed of the motor. ) is provided.
  • the engine torque map data 1211 and motor torque map data 1212 may have preset values according to the specifications of the engine 210 and the starting and driving unit 1010 upon installation, and may be changeable by a user's selection.
  • the motor torque map data 1212 is based on a torque map for each number of revolutions, but the relationship between voltages for each torque may also be stored.
  • a corresponding voltage value is extracted from a predetermined engine torque map. BSG can be driven from the output part.
  • the expected torque converter 1220 digitizes the pedal force signal of the pedal 250 - for example, when the pedal force signal is generated from 0V to 5V and received by the input unit 1110, it is converted into an angle of 0° to 80°. - The expected torque (Tc) is converted according to the value of the pedal effort signal.
  • This expected torque is finally composed of the sum of the motor torque (Tm) generated from the actual motor and the final engine torque (Te) generated from the engine.
  • Tm motor torque
  • Te final engine torque
  • the torque matching unit 1230 matches engine torque and motor torque corresponding to the expected torque value converted by the expected torque converter 1220 . Specifically, the torque matching unit 1230 extracts the number of revolutions corresponding to the pedal power signal of the pedal 250 and the position of the expected torque from the engine torque map data 1211, and starts and drives the vehicle speed in preparation for the driving unit 1010 Convert the torque (Tm) of and match it. Then, the final engine torque Te to be finally output to the main controller 230 is calculated.
  • the sum of the motor torque Tm and the final engine torque Te that can satisfy the expected torque Tc may exist in various ways, which is the number of revolutions of the engine or the vehicle It may be determined by factors such as the speed of
  • the torque matching unit 1230 may perform a function of determining a torque generating output at an optimum location in two maps. Also, in some cases, the level of the motor control signal for generating the motor torque Tm may be determined by the remaining amount of the battery unit 1020.
  • the pedal virtualization unit 1240 Based on the calculated final engine torque (Te), the pedal virtualization unit 1240 generates a virtual pedal signal, and the pedal signal output unit 1121 transmits the virtual pedal signal to the main controller 230 so as to control the entire hybrid system. It is possible to harmonize the output.
  • FIG. 6 is a flowchart showing the operation of the retrofit micro-hybrid system of the present invention.
  • the input unit 1110 receives driving information including a pedal effort signal P ⁇ i ( S100 ).
  • the received driving information may be optional, such as the number of revolutions of an engine, the speed of a vehicle, the position of a mission, the state of a clutch, and the voltage of a battery unit or main battery.
  • the pedal output signal P ⁇ e corresponds to the pedal effort signal P ⁇ i (S210), so that the driver's pedal input directly becomes the output of the main controller 230.
  • the hybrid control unit 1100 intercepts the pedal effort signal and recognizes the pedal signal processed by the calculation unit as a normal signal. Sending to controller 230 may be desirable. Accordingly, the hybrid control unit 1100 converts the received pedal pressure signal into data and temporarily stores it, and bypasses it to the main controller 230 when it does not need to operate in the hybrid mode because the above condition is not satisfied. You will be able to.
  • the hybrid mode In the determination of whether the battery is available (S200), if the remaining amount is equal to or greater than the set value, it is determined that the hybrid mode can be operated, and the expected torque (Tc) is converted (S310).
  • the conversion of the expected torque Tc is performed by the expected torque converter 1220 and extracted from the engine torque map data 1211 the torque value of the engine speed for the converted value obtained by digitizing the pedal effort signal P ⁇ i. can
  • the converted value of the pedal effort signal P ⁇ i is 20° at a rotational speed of 2,000 rpm
  • the converted value of the expected torque Tc extracted from the engine torque map Data 1211 may be 100 Nm.
  • the motor torque Tm is converted and matched (S320).
  • the torque matching unit 1230 converts the motor torque Tm of the vehicle speed for the converted value of the pedal effort signal P ⁇ i in comparison with the motor torque map Data 1212, and calculates the expected torque Tc Matching for the corresponding motor torque Tm can be performed as described above.
  • the corresponding motor torque Tm may be 50 Nm.
  • the final engine output can be determined, and the calculation (S330) of the final engine torque Te can be performed in the torque matching unit 1230.
  • it may be determined as a value obtained by subtracting the motor torque Tm from the expected torque Tc.
  • the final engine torque Te determined as described above may be 50 Nm obtained by subtracting 50 Nm of motor torque from 100 Nm of the expected torque Tc.
  • the output unit 1120 When the final engine torque Te is determined in this way, the output unit 1120 outputs a control signal corresponding to the converted motor torque Tm from the motor output control unit 1122 (S340), and at the same time, from the pedal virtualization unit 1240 A virtual pedal signal (P ⁇ calculation ) corresponding to the calculated final engine torque (Te) is generated, and the pedal signal output unit 1121 converts the virtual pedal signal (P ⁇ calculation ) into the pedal output signal (P ⁇ e) as the main pedal signal output unit. so that it can be transmitted to the controller 230.
  • the virtual pedal signal (P ⁇ calculation ) may be obtained by extracting a voltage corresponding to an accelerator pedal at 50 Nm at 2,000 rpm from a map.
  • Determination of the operation of the above-described hybrid mode may be performed feedbackively during startup or driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The present invention relates to a micro hybrid system improving engine output and motor output operations so as to enhance the functions thereof, and provides a micro hybrid system that can be installed in a conventional vehicle having an engine to drive one or more wheels, the system comprising a hybrid control unit which uses the output of an ignition and driving unit as driving power in order to assist engine output such that output that is suitable for the intended output of a user can be distributed.

Description

레트로핏 마이크로 하이브리드 시스템 및 이에 의한 하이브리드 시스템의 운영방법Retrofit micro hybrid system and operation method of the hybrid system using the same
본 발명은 자동차의 하이브리드 시스템과 관련된 것으로서, 보다 구체적으로는 엔진 출력만으로 구동할 수 있는 차량을 간단한 방식으로 개선하며 효율성과 조작감을 동시에 만족할 수 있도록 하는 마이크로 하이브리드 시스템 및 그 제어방법에 관한 것이다. The present invention relates to a hybrid system of a vehicle, and more particularly, to a micro-hybrid system and a control method thereof that can improve a vehicle that can be driven only by engine power in a simple manner and satisfy both efficiency and operation feeling.
통상 하이브리드 차량(Hybrid electric vehicle)은 내연기관(Internal combustion engine)과 배터리 전력을 함께 동력원으로 사용하는 것을 말한다. 이러한 하이브리드 차량은 엔진의 기계적 에너지와 배터리의 전기 에너지를 함께 이용하고, 엔진과 모터의 최적 작동영역을 이용함은 물론 제동시에는 에너지를 회수하므로 연비가 향상되고 에너지의 효율적인 관리가 가능하다. In general, a hybrid electric vehicle refers to using both an internal combustion engine and battery power as power sources. Such a hybrid vehicle uses both the mechanical energy of the engine and the electric energy of the battery, uses the optimal operating range of the engine and motor, and recovers energy during braking, thereby improving fuel efficiency and enabling efficient energy management.
일반적인 하이브리드 차량은 엔진 클러치를 접합하거나 해제하여 모터의 토크만을 이용하는 EV 모드(electric vehicle mode), 엔진의 토크를 주토크로 하면서 모터의 토크를 보조 토크로 이용하는 HEV 모드(hybrid electric vehicle mode), 하이브리드 차량의 제동 혹은 관성에 의한 주행시 제동 및 관성 에너지를 상기 모터의 발전을 통해 회수하여 배터리를 충전하는 회생제동 모드(regenerative braking mode) 등의 주행모드의 운행을 제공한다.A typical hybrid vehicle includes an electric vehicle mode (EV mode) that uses only the torque of the motor by engaging or disengaging the engine clutch, a hybrid electric vehicle mode (HEV mode) that uses the torque of the motor as auxiliary torque while using the engine torque as the main torque, and a hybrid electric vehicle mode. Driving in a driving mode such as a regenerative braking mode in which braking and inertial energy is recovered through power generation of the motor to charge a battery when braking or driving by inertia of the vehicle is provided.
상기와 같은 형태를 하드타입으로 구분하기도 하며, 이에 대비되어 마일드 하이브리드(Mild hybrid) 또는 마이크로 하이브리드(Micro hybrid)가 존재한다. 상기 마이크로 하이브리드의 경우 알터네이터 대신에 엔진을 시동하거나 상기 엔진의 출력에 의해 발전하는 시동 발전기(mild hybrid starter & generator; MHSG)가 구비된다. 이렇게 마이크로 하이브리드 차량은 모터의 토크만으로 차량을 구동시키는 주행 모드는 없지만, ISG(Idle Stop and Go) 내지 BSG(Belt driven integrated Starter Generator)를 이용하여 주행 상태에 따라 엔진 토크를 보조할 수 있으며, 회생제동을 통해 배터리(예를 들어, 48 V 배터리)를 충전할 수 있기 때문에 차량의 연비가 향상될 수 있다.The above forms are sometimes classified as hard types, and in contrast, mild hybrids or micro hybrids exist. In the case of the micro-hybrid, a mild hybrid starter & generator (MHSG) that starts an engine or generates power based on the output of the engine is provided instead of the alternator. In this way, the micro hybrid vehicle does not have a driving mode in which the vehicle is driven only by the torque of the motor, but the engine torque can be assisted according to the driving condition using ISG (Idle Stop and Go) or BSG (Belt driven integrated starter generator), and regenerative Since a battery (eg, a 48 V battery) can be charged through braking, fuel efficiency of the vehicle can be improved.
이렇게 하이브리드 차량은 전기차의 장점과 내연기관의 장점을 다 가지고 있기 때문에 친환경의 요구에 맞추어 수요와 공급이 증가하고 있는 추세이다. 하이브리드 완성차는 종래 전기차 시대로 넘어가기 전의 과도기적인 형태로 받아들여지기도 했으나 현재는 내연기관 자동차와 전기차의 단점을 보완할 수 있어 독자적인 시장이 형성되어 있다. Since hybrid vehicles have both the advantages of electric vehicles and internal combustion engines, demand and supply are increasing in line with eco-friendly demands. Hybrid finished cars were accepted as a transitional form before moving to the electric car era, but now they can compensate for the shortcomings of internal combustion engine cars and electric cars, so an independent market is formed.
이에, 현재는 종래의 디젤이나 가솔린만을 원료로 하는 내연기관과, 순수하게 전기로만 구동하는 배터리 또는 연료전지를 이용하는 전기차와, 내연기관과 모터를 함께 사용하는 하이브리드차가 병존하고 있는 실정이다. Accordingly, a conventional internal combustion engine using only diesel or gasoline as a raw material, an electric vehicle using a battery or fuel cell driven purely by electricity, and a hybrid vehicle using both an internal combustion engine and a motor coexist.
한편, 현재 운행 중인 내연기관 차량들은 제작된 시점의 배출가스규제가 적용되었기 때문에 시간이 흐를수록 강화되는 배출가스규제 정책을 만족하지 못하여 미세먼지(PM)나 SOX, NOX, CO2 등 환경오염을 야기하는 물질 저감에 대한 시대적인 요청에 부응하지 못하여 문제시된다. On the other hand, internal combustion engine vehicles currently in operation do not satisfy the exhaust gas regulation policy that is strengthened over time because the emission regulation was applied at the time of manufacture, causing environmental pollution such as fine dust (PM), SOX, NOX, and CO2. It is problematic because it does not respond to the request of the times for the reduction of materials.
그런데, 현재 전세계에 운행하는 차량 중에 내연기관 차량의 비율이 압도적으로 높기 때문에 환경오염 방지에 기여할 수 있는 전기차 또는 하이브리드 차량의 영향은 적은 실정이다. 각국별로 장기적인 전기차로의 전환 계획을 가지고 있기는 하나 장기간 순수 내연기관 차량의 병존은 불가피하고 에너지 효율과 배출가스 저감을 고려하면 하이브리드나 전기차의 보급 자체보다는 운행 중에 있는 내연기관 차량에 대한 대책이 더 시급하다. However, the impact of electric vehicles or hybrid vehicles that can contribute to the prevention of environmental pollution is small because internal combustion engine vehicles account for an overwhelmingly high proportion of vehicles currently in operation around the world. Although each country has a long-term plan to switch to electric vehicles, the long-term coexistence of pure internal combustion engine vehicles is unavoidable, and considering energy efficiency and emission reduction, measures for internal combustion engine vehicles in operation are more important than the spread of hybrid or electric vehicles. It's urgent.
기존의 내연기관 차량을 하이브리드 차량으로 개선하고자 하는 시도는 미미하나 일부 기술의 제시들이 있어왔으며, 한국 공개특허 제10-2016-0096855호는 이러한 종래기술의 하이브리드 키트를 공개한다. 도 1은 종래기술의 하이브리드 키트를 차량에 적용한 것을 나타내는 구성도이다. Attempts to improve existing internal combustion engine vehicles into hybrid vehicles have been insignificant, but some technologies have been proposed, and Korean Patent Publication No. 10-2016-0096855 discloses such a conventional hybrid kit. 1 is a configuration diagram showing that a conventional hybrid kit is applied to a vehicle.
이를 구체적으로 살펴보면, 제1스프라켓(110), 모터(120), 제2스프라켓(130), 동력전달체인(140)을 포함하고, 상기 제1스프라켓(110)은 차량에 설치된 바퀴 중, 내연기관(10)에 의한 구동력을 전달받지 아니하는 종동륜(60)과 동축상에 설치되어 상기 종동륜(60)과 일체로 회전되며, 외측둘레에 기어치가 형성될 수 있다. 그리고, 모터(120)는 차량에 설치되며, 차량에 설치된 배터리(42) 또는 발전기(미도시)로부터 전력을 공급받아 구동되도록 구비될 수 있다. 또한, 상기 모터(120)는 차량의 휠이나 너클(미도시)등에 지지되는 것이 아닌 차체(5)에 결합되어 지지되도록 구비될 수 있다. 즉, 상기 모터(120)는 차량의 현가장치(미도시)의 상측에 결합되어 현가상질량의 일부를 형성하도록 구비될 수 있다. 상기 제2스프라켓(130)은 상기 모터(120)에 의해 회전되도록 구비되며, 그 둘레에 기어치가 형성될 수 있다. 상기 동력전달체인(140)은 상기 제1스프라켓(110)과 제2스프라켓(130)에 걸치도록 배치되며, 상기 제1스프라켓(110)과 제2스프라켓(130)의 기어치에 치합되어 상기 제1스프라켓(110)과 제2스프라켓(130)의 상호 회전력을 전달하도록 구비될 수 있다. 따라서, 상기 모터(120)가 회전되면 상기 동력전달체인(140)을 통해 회전력이 제1스프라켓(110)을 통해 상기 종동륜(60)에 전달되어, 내연기관(10)에 의해 구동되는 구동륜(50)을 보조하거나 또는 단독으로 차량을 구동시킬수 있다.Looking at this in detail, it includes a first sprocket 110, a motor 120, a second sprocket 130, and a power transmission chain 140, and the first sprocket 110 is one of wheels installed in a vehicle, an internal combustion engine. It is installed coaxially with the driven wheel 60 that does not receive the driving force by (10), rotates integrally with the driven wheel 60, and gear teeth may be formed on the outer circumference. In addition, the motor 120 may be installed in a vehicle and driven by receiving power from a battery 42 or a generator (not shown) installed in the vehicle. In addition, the motor 120 may be coupled to and supported by the vehicle body 5 instead of being supported by a wheel or a knuckle (not shown) of the vehicle. That is, the motor 120 may be coupled to the upper side of a suspension device (not shown) of the vehicle to form a part of the suspended mass. The second sprocket 130 is provided to be rotated by the motor 120, and gear teeth may be formed around it. The power transmission chain 140 is disposed to span the first sprocket 110 and the second sprocket 130, and is engaged with the gear teeth of the first sprocket 110 and the second sprocket 130, It may be provided to transmit mutual rotational force between the first sprocket 110 and the second sprocket 130. Therefore, when the motor 120 is rotated, rotational force is transmitted to the driven wheel 60 through the first sprocket 110 through the power transmission chain 140, and the driving wheel driven by the internal combustion engine 10 ( 50) or drive the vehicle alone.
그런데, 하이브리드 완성차의 경우는 엔진과 모터의 출력의 변환이나 조화를 어느 정도 조율하여 출고하기 때문에 운행에 큰 문제를 일으키지는 않으나, 상기와 같이 완성 내연기관차에 사후적으로 모터를 부가하는 경우 엔진과의 출력을 조화시키는 것은 매우 어려운 과제이다. 더군다나, 엔진만에 의한 주행 중 모터의 출력을 부가하거나 전환시키는 과정에 회전수와 토크를 맞추는 것은 도시된 체계로는 사실상 불가능하다. By the way, in the case of a complete hybrid vehicle, since the conversion or harmony of the output of the engine and motor is adjusted to some extent before shipment, it does not cause a major problem in operation. Harmonizing the output of . Furthermore, it is virtually impossible with the illustrated system to match the number of revolutions and torque in the process of adding or converting the output of the motor while driving only by the engine.
이러한 이유로 실제 종래 내연기관에 하이브리드 시스템을 탑재하는 사례는 찾아볼 수 없으며, 운전자들도 동력계통의 불안정성과 이질감 때문에 장착을 시도하는 경우도 없는 것이다. For this reason, there is no actual case of mounting a hybrid system on a conventional internal combustion engine, and drivers do not attempt to install the hybrid system due to instability and heterogeneity of the power system.
그러나, 종래의 내연기관 차량들이 여전히 운행하고 있는 현실을 고려하면 연비 향상을 통한 경제성의 달성과 배출가스 저감을 통한 공해방지의 목적의 달성을 위하여 하이브리드 시스템의 탑재가 필요하다. However, considering the reality that conventional internal combustion engine vehicles are still in operation, it is necessary to mount a hybrid system to achieve economic feasibility through fuel efficiency improvement and pollution prevention through emission reduction.
본 발명은 상기 문제점을 해결하기 위하여 내연기관 완성차에 탑재가 가능하면서 동력계통의 조화가 이루어지고 운행의 이질감을 없앨 수 있도록 개선된 기능을 가지는 레트로핏 마이크로 하이브리드 시스템 및 이에 의한 하이브리드 시스템의 운영방법을 제공하는 것을 목적으로 한다. In order to solve the above problems, the present invention provides a retrofit micro hybrid system that can be mounted on a finished vehicle with an internal combustion engine and has improved functions to harmonize the power system and eliminate the sense of difference in operation, and a method for operating the hybrid system thereby. intended to provide
본 발명은, 메인컨트롤러에 의하여 제어되는 엔진이 구비되어 휠을 구동시키는 기성의 차량에 장착될 수 있는 하이브리드 시스템을 제공한다. The present invention provides a hybrid system that can be installed in an existing vehicle equipped with an engine controlled by a main controller to drive wheels.
시동 및 구동부(1010)와, 상기 시동 및 구동부에 전력을 제공하는 배터리부(1020)와, 모터토크를 환산하여 상기 시동 및 구동부에 제어신호를 출력하는 하이브리드 컨트롤유닛(1100)을 포함하여 구성된다.It is configured to include a starting and driving unit 1010, a battery unit 1020 that provides power to the starting and driving unit, and a hybrid control unit 1100 that converts motor torque and outputs a control signal to the starting and driving unit. .
상기 하이브리드 컨트롤유닛은, 일실시예로서 페달의 답력신호를 수신하여 이에 대응되는 기대토크와 모터토크를 환산하고 최종 엔진토크를 연산하여 가상 페달신호를 메인컨트롤러로 전송할 수 있다. As an example, the hybrid control unit may receive a pedal effort signal, convert expected torque and motor torque corresponding thereto, calculate final engine torque, and transmit a virtual pedal signal to the main controller.
상기 하이브리드 컨트롤유닛은, 페달 답력신호를 포함하는 주행정보를 수신하는 입력부(1110)와, 기대토크 및 모터토크를 환산하고 가상 페달신호를 생성하는 연산부(1200)와, 시동 및 구동부와 메인컨트롤러에 신호를 출력하는 출력부(1120)를 구비할 수 있다. The hybrid control unit includes an input unit 1110 that receives driving information including a pedal effort signal, an operation unit 1200 that converts expected torque and motor torque and generates a virtual pedal signal, a starting and driving unit, and a main controller. An output unit 1120 for outputting a signal may be provided.
상기 하이브리드 컨트롤유닛은, 배터리부의 상태를 모니터링하고 충방전을 제어하는 배터리관리부(1130)를 더 구비하는 것이 바람직하다. The hybrid control unit preferably further includes a battery management unit 1130 that monitors the state of the battery unit and controls charging and discharging.
또한, 상기 연산부는 엔진의 토크가 데이터화된 엔진토크맵Data(1211)과, 모터의 토크가 데이터화된 모터토크맵Data(1212)와, 페달 답력신호에 대응한 기대토크를 엔진토크맵Data으로부터 환산하는 기대토크환산부(1220)와, 페달 답력신호에 대응되는 모터토크를 모터토크맵Data로부터 환산하고 최종 엔진토크를 연산하는 토크매칭부(1230)와, 상기 연산된 최종 엔진토크에 대응되는 가상 페달신호를 생성하는 페달가상화부(1240)를 구비하여 이루어지는 것이 바람직하다, In addition, the calculation unit converts the engine torque map data 1211 into which the engine torque is converted into data, the motor torque map data 1212 into which the motor torque becomes data, and the expected torque corresponding to the pedal effort signal from the engine torque map data. a torque matching unit 1230 that converts the motor torque corresponding to the pedal effort signal from the motor torque map data and calculates the final engine torque; and a virtual engine torque corresponding to the calculated final engine torque. Preferably, a pedal virtualization unit 1240 for generating a pedal signal is provided.
한편, 본 발명은 상기 레트로핏 마이크로 하이브리드 시스템에 의하여, 상기 a) 입력부에서 페달 답력신호(Pθi)를 수신하는 단계와, b) 배터리관리부에서 배터리부가 설정된 잔량 이상인지 판단하는 단계와, c) 상기 b) 단계에서 설정된 잔량 이상인 경우 연산부가 페달 답력신호로부터 기대토크(Tc)를 환산하는 단계와, d) 연산부가 차속에 대한 모터토크(Tm)를 환산하는 단계와, e) 연산부에서 기대토크에 대한 모터토크의 차로 최종 엔진토크(Te)를 연산하는 단계와, f) 출력부가 모터토크에 대응되는 제어신호를 시동 및 구동부로 전송하고, 가상 페달신호(Pθ연산)를 페달 출력신호(Pθe)로써 메인컨트롤러로 전송하는 단계를 포함하는 마이크로 하이브리드 시스템의 운영방법을 제공한다.On the other hand, the present invention, by the retrofit micro-hybrid system, includes the steps of a) receiving the pedal effort signal Pθi from the input unit, b) determining whether the battery unit has a set remaining capacity or more, and c) the If the remaining amount is equal to or greater than the remaining amount set in step b), the operation unit converts the expected torque (Tc) from the pedal effort signal, d) the operation unit converts the motor torque (Tm) for the vehicle speed, and e) the operation unit calculates the expected torque calculating a final engine torque (Te) with a difference in motor torque, f) transmitting a control signal corresponding to the motor torque from an output unit to a starting and driving unit, and converting a virtual pedal signal (Pθ calculation) into a pedal output signal (Pθe) It provides an operating method of a micro hybrid system including the step of transmitting to the main controller as.
본 발명에 따라, 하이브리드 시스템이 장착되지 않은 내연기관 완성차에서도 비교적 간단한 과정으로 설비하여 마이크로 하이브리드 시스템으로 운용이 가능하므로 경제성이 높은 효과가 있다. According to the present invention, it is possible to operate a micro-hybrid system by installing it in a relatively simple process even in a complete vehicle with an internal combustion engine that is not equipped with a hybrid system, so there is an effect of high economic efficiency.
또한, 사후적으로 BSG를 장착하면서도 엔진토크와 모터토크의 조화가 가능하기 때문에 운전자의 조작감을 해치지 않고 내연기관 차량의 운전감각으로 운전이 가능한 효과가 있다. In addition, since it is possible to harmonize the engine torque and the motor torque while installing the BSG post facto, there is an effect of enabling driving with the driving sense of an internal combustion engine vehicle without compromising the driver's feeling of operation.
또한, 배출가스가 현저히 저감되어 전기차로 전환하기 전 과도기에 있는 전세계 도로에서 현재 운행 중인 내연기관 차량에 의한 환경오염을 저감시킬 수 있는 효과가 있다.In addition, there is an effect of reducing environmental pollution caused by internal combustion engine vehicles currently operating on roads around the world in a transitional period before switching to electric vehicles due to significantly reduced emissions.
도 1은 종래기술의 하이브리드 키트를 차량에 적용한 것을 나타내는 구성도이다. 1 is a configuration diagram showing that a conventional hybrid kit is applied to a vehicle.
도 2는 본 발명의 개념에 따른 레트로핏 마이크로 하이브리드 시스템을 설명하기 위한 구성도이다. 2 is a configuration diagram illustrating a retrofit micro-hybrid system according to the concept of the present invention.
도 3은 본 발명의 레트로핏 마이크로 하이브리드 시스템에서 하이브리드 컨트롤유닛을 설명하기 위한 블록도이다. 3 is a block diagram illustrating a hybrid control unit in the retrofit micro hybrid system of the present invention.
도 4는 하이브리드 컨트롤유닛의 출력부에 대한 실시예를 설명하기 위한 블록도이다. 4 is a block diagram for explaining an embodiment of an output unit of a hybrid control unit.
도 5는 하이브리드 컨트롤유닛의 연산부를 설명하기 위한 블록도이다. 5 is a block diagram for explaining an arithmetic unit of a hybrid control unit.
도 6은 본 발명의 레트로핏 마이크로 하이브리드 시스템의 운영방법을 나타내는 흐름도이다. 6 is a flowchart showing an operating method of the retrofit micro hybrid system of the present invention.
이하, 첨부도면을 참조하여 본 발명에 따른 바람직한 실시예의 레트로핏 마이크로 하이브리드 시스템 및 이에 의한 하이브리드 시스템의 운영방법을 상세히 설명한다.Hereinafter, a retrofit micro hybrid system according to a preferred embodiment of the present invention and a method of operating the hybrid system according to the retrofit micro hybrid system will be described in detail with reference to the accompanying drawings.
다만, 이하에서 설명되는 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 쉽게 실시할 수 있을 정도로 상세하게 설명하기 위한 것에 불과하며, 이로 인해 본 발명의 보호범위가 한정되는 것을 의미하지는 않는다.However, the embodiments described below are only intended to be described in detail so that those skilled in the art can easily practice the invention, thereby limiting the scope of protection of the present invention. doesn't mean
이하 설명에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자나 장치를 사이에 두고 연결되어 있는 경우를 포함한다. 또한, 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In the following description, when a part is said to be 'connected' to another part, this includes not only the case where it is directly connected but also the case where it is connected with another element or device in between. In addition, when a certain part 'includes' a certain component, this means that it may further include other components without excluding other components unless otherwise stated.
본 발명은 기본적으로 엔진이 구비되어 하나 이상의 휠을 구동시키는 완성 차량에 사후적으로 장착될 수 있는 마이크로 하이브리드 시스템을 제공하며, 엔진의 출력을 보조하기 위하여 시동 및 구동부의 출력을 구동 동력으로 사용하되, 사용자의 출력에 대한 의도에 적합한 출력을 분배할 수 있도록 기능하는 하이브리드 컨트롤유닛이 구성된다. The present invention basically provides a micro-hybrid system that can be retrofitted to a complete vehicle equipped with an engine to drive one or more wheels, and uses the output of a starting and driving unit as driving power to assist the output of the engine. , a hybrid control unit that functions to distribute output suitable for the user's output intention is configured.
본 발명이 적용되는 차량의 유형은 제한되지 않으며, 차량의 주동력원으로서의 엔진에 사용되는 연료는 가솔린, 디젤, LPG 등일 수 있으며 본 발명의 개념을 제한하지는 않는다. The type of vehicle to which the present invention is applied is not limited, and the fuel used for the engine as the main power source of the vehicle may be gasoline, diesel, LPG, etc., and the concept of the present invention is not limited.
또한, 본 발명의 실시예에서는 프론트 엔진 및 프론트 휠 구동을 대상으로 설명하고 있으나 구동계통의 배치와 방식은 공지의 다양한 기술이 적용될 수 있을 것이다. In addition, in the embodiment of the present invention, the front engine and front wheel drive are described, but various known technologies may be applied to the arrangement and method of the drive system.
도 2는 본 발명의 개념에 따른 레트로핏 마이크로 하이브리드 시스템을 설명하기 위한 구성도이다. 2 is a configuration diagram illustrating a retrofit micro-hybrid system according to the concept of the present invention.
내연기관 차량에서 엔진(210)과 휠 사이에는 트랜스미션(220)이 개재되며 차량의 기본적인 구성은 메인배터리(240)의 전력을 통하여 메인컨트롤러(ECU, 230)를 통하여 점화, 흡배기, 전장, 트랜스미션 등을 작동시킨다. In an internal combustion engine vehicle, a transmission 220 is interposed between the engine 210 and the wheels, and the basic configuration of the vehicle is ignition, intake/exhaust, electrical, transmission, etc. through the main controller (ECU, 230) through power of the main battery 240. it works
이렇게 일반적인 내연기관 차량에서 통상 엔진(210)측에는 시동 및/또는 충전을 위한 알터네이터를 구비하고 있으며 이러한 알터네이터와 관련하여서는 시동 효율이나 부피에 대한 개선이 있어왔다. 본 발명의 개념에서는 상기 알터네이터 및/또는 스타터모터를 대체하여 하이브리드 시스템을 구축하는바, 본 발명은 엔진의 동력만을 사용하였던 기성의 차량에 사후적으로 마이크로(마일드) 하이브리드 시스템(1000)을 장착하는 것이다. 다만, 본 발명의 개념에 따라 기성의 마일드 하리브리드 시스템을 장착하였던 차량에 하이브리드 컨트롤유닛(1100)을 장착하여 출력의 분배 효율을 늘리는 방향으로 개선하는 경우도 고려될 수 있음은 물론이다. In such a general internal combustion engine vehicle, an alternator for starting and/or charging is usually provided on the side of the engine 210, and in relation to this alternator, there has been an improvement in starting efficiency or volume. In the concept of the present invention, a hybrid system is constructed by replacing the alternator and / or the starter motor. will be. However, according to the concept of the present invention, improvement in the direction of increasing output distribution efficiency by mounting the hybrid control unit 1100 on a vehicle equipped with a conventional mild hybrid system can be considered, of course.
이에, 본 발명의 시동모터와 함께 구동력을 제공하는 일종의 마이크로 하이브리드 시스템일 수 있다. 참고로, 종래의 마이크로 하이브리드 차량은 엔진(210)과 트랜스미션(220)이 클러치(미도시)를 통해 연결 및 연결 해제되고, 상기 엔진(210)에 벨트를 통해 스타터 제너레이터가 연결되어 있다. 이를 통상 BSG(Belt driven integrated Starter Generator)라 정의한다. 본 발명은 사후 장착형의 마이크로 하이브리드 시스템을 제공하고 있으나 상기 명칭에 대해서는 통일하여 사용하기로 한다. Thus, it may be a kind of micro-hybrid system that provides a driving force together with the starting motor of the present invention. For reference, in a conventional micro hybrid vehicle, an engine 210 and a transmission 220 are connected and disconnected through a clutch (not shown), and a starter generator is connected to the engine 210 through a belt. This is usually defined as BSG (Belt driven integrated Starter Generator). The present invention provides a post-mounted micro-hybrid system, but the above names will be used uniformly.
상기 엔진(210)의 출력을 제어하기 위하여 메인컨트롤러(230)가 적용되며, 사용자가 페달(250)을 작동시키면 상기 페달(250)에 구비되는 센서를 통하여 답력의 값을 수치화하고 소정의 요구치에 따라 점화시기, 스로틀 밸브, 트랜스미션 등을 제어하여 주행에 출력을 제공하고 있다. The main controller 230 is applied to control the output of the engine 210, and when the user operates the pedal 250, the value of the pedal force is digitized through the sensor provided in the pedal 250 and the predetermined required value is reached. It controls the ignition timing, throttle valve, and transmission to provide output to driving.
기성의 마이크로 하이브리드 차량의 경우 상기 메인컨트롤러(230)가 통합 운영될 수 있도록 완성되어 있기 때문에 BSG와 엔진이 함께 조화를 이룰 수 있으나, 기성의 엔진구동 차량은 메인컨트롤러(230)가 출력계통에서 엔진의 제어 로직만을 가지고 있기 때문에 단순히 시동 및 구동부(1010)를 장착하였다고 하여 원활하게 동력의 보조가 가능한 것은 아니며, 실제로 사후적 마이크로 하이브리드 시스템의 구축은 매우 어려움은 상기와 같다. In the case of a ready-made micro hybrid vehicle, since the main controller 230 is completed so that it can be integrated and operated, the BSG and the engine can be harmonized together. Since it has only the control logic of, it is not possible to smoothly assist with power simply by mounting the start-up and drive unit 1010, and in fact, it is very difficult to construct a micro-hybrid system ex post facto as described above.
본 발명은 이를 해결하기 위하여 운전자에 의한 페달(250)의 입력을 하이브리드 컨트롤유닛(1100)에서 입력받아 이를 가공하는 방안을 제시하는데 이와 관련된 실시예는 후술하도록 한다. 여기서 페달(250)은 스로틀바디를 작동시키거나 연료분사량을 제어하는 등의 기능을 하는 악셀러레이터 페달(Accelerator Pedal)을 의미한다. In order to solve this problem, the present invention proposes a method of receiving an input of the driver's pedal 250 from the hybrid control unit 1100 and processing it, and an embodiment related to this will be described later. Here, the pedal 250 means an accelerator pedal that functions such as operating a throttle body or controlling an amount of fuel injection.
이러한 개념에 의하여 하이브리드 컨트롤유닛(1100)은 메인컨트롤러(230)와 정보를 교환할 수 있으며, 엔진(210)과 시동 및 구동부(1010)의 출력이 함께 운전자의 요구조건을 충족할 수 있도록 한다. According to this concept, the hybrid control unit 1100 can exchange information with the main controller 230, and the output of the engine 210 and the starting and driving unit 1010 can meet the driver's requirements.
상기 하이브리드 컨트롤유닛(1100)은 시동 및 구동부(1010)의 작동을 제어하되, 동력의 보조를 통한 가속의 제어는 물론, 스탑앤 스타트 모드의 작동, 회생제동 감속제어 등을 위한 작동에 대해서 메인컨트롤러(230)와 통신을 수행할 수 있는데 이와 관련하여서는 공지의 스탑앤고(Stop and Go) 시스템이나 회생제동에 관한 기술이 적용될 수 있을 것이므로 구체적인 설명은 생략하도록 한다. The hybrid control unit 1100 controls start-up and operation of the drive unit 1010, but controls acceleration through power assistance, as well as operations for stop-and-start mode operation, regenerative braking deceleration control, etc. 230 and communication can be performed. In this regard, since a known stop and go system or regenerative braking technology may be applied, a detailed description thereof will be omitted.
상기 시동 및 구동부(1010)의 작동을 위한 전력은 메인배터리(240)에서 공급될 수도 있을 것이나, 출력의 보조를 위하여서는 하이브리드 시스템의 작동을 위한 배터리부(1020)를 별도로 구성하는 것이 바람직하다. 본 발명이 마이크로 하이브리드 시스템을 구현하고 있기 때문에 배터리부(1020)의 전압은 48V인 것이 바람직하나, 상기 전압값은 36V, 24V, 12V 등 선택적이다. The power for starting and operating the driving unit 1010 may be supplied from the main battery 240, but it is preferable to separately configure the battery unit 1020 for operating the hybrid system in order to assist with output. Since the present invention implements a micro-hybrid system, the voltage of the battery unit 1020 is preferably 48V, but the voltage value is optional, such as 36V, 24V, or 12V.
도 3은 본 발명의 레트로핏 마이크로 하이브리드 시스템에서 하이브리드 컨트롤유닛을 설명하기 위한 블록도이다. 3 is a block diagram illustrating a hybrid control unit in the retrofit micro hybrid system of the present invention.
상기 하이브리드 컨트롤유닛(1100)은 시동 및 구동부(1010)의 동작을 제어하는 기능을 수행하되 시동 및 구동부(1010)의 토크와 엔진(210)의 토크가 연동되어 조화롭게 작동될 수 있도록 기능한다. The hybrid control unit 1100 performs a function of controlling the operation of the starting and driving unit 1010, but functions so that the torque of the starting and driving unit 1010 and the torque of the engine 210 are interlocked to operate in harmony.
이를 위하여 상기 하이브리드 컨트롤유닛(1100)은 페달(250)의 입력값을 수신하여 수치화하고 출력의 목표를 도출하며 엔진(210)과 시동 및 구동부(1010)의 출력을 유기적으로 연계시키는바, 이를 위하여 페달(250) 및/또는 메인컨트롤러(230)의 정보를 입력받는 입력부(1110)를 구비한다. To this end, the hybrid control unit 1100 receives and digitizes the input value of the pedal 250, derives a goal of output, and organically links the output of the engine 210 and the starting and driving unit 1010. An input unit 1110 for receiving information of the pedal 250 and/or the main controller 230 is provided.
상기 페달(250)의 답력을 계량하기 위하여 변위센서 또는 각도센서 등이 설치될 수 있으며 이러한 페달 답력에 대한 신호는 통상의 메인컨트롤러(230)로 전송될 것이나, 본 발명에서는 이를 중간에서 하이브리드 컨트롤유닛(1100)이 가공하여 메인컨트롤러로 전송할 수 있다. A displacement sensor or an angle sensor may be installed to measure the pedal force of the pedal 250, and a signal for the pedal pedal force will be transmitted to the normal main controller 230, but in the present invention, it is a hybrid control unit in the middle. (1100) can be processed and transmitted to the main controller.
따라서, 본 발명의 출력부(1120)는 메인컨트롤러(230)에서 엔진의 출력을 제어할 수 있도록 하는 가상 페달신호와, 시동 및 구동부(1010)를 제어할 수 있도록 하는 모터 제어신호를 함께 출력할 수 있다. 다만, 상기 신호의 전송은 선택적일 수도 있으며 이에 대한 실시예는 후술한다. Therefore, the output unit 1120 of the present invention outputs a virtual pedal signal that allows the main controller 230 to control the output of the engine and a motor control signal that allows the start and drive unit 1010 to be controlled. can However, transmission of the signal may be selective, and an embodiment thereof will be described later.
상기 가상 페달신호를 생성하기 위하여 연산부(1200)가 기능하며, 상기 연산부(1200)의 가상 페달신호를 연산하는 변수는 페달 답력신호일 수 있고, 추가적으로현재의 차속, 엔진의 회전수, 트랜스미션의 상태 등이 상기 변수일 수 있다. The calculation unit 1200 functions to generate the virtual pedal signal, and a variable for calculating the virtual pedal signal of the calculation unit 1200 may be a pedal effort signal, and additionally, the current vehicle speed, engine speed, transmission state, etc. This may be the above variable.
또한, 하이브리드 컨트롤유닛(1100)은 배터리관리부(1130)를 더 포함하고, 상기 배터리관리부(1130)는 마이크로 하이브리드 운영을 위한 배터리부(1020)의 충방전을 제어하도록 기능할 수 있다. In addition, the hybrid control unit 1100 may further include a battery management unit 1130, and the battery management unit 1130 may function to control charging and discharging of the battery unit 1020 for micro-hybrid operation.
또한, 상기 연산부(1200)에서 도출된 가상 페달신호가 적용될 수 있는 전제조건으로 배터리부(1020)가 작 가능한 상태인지 모니터링하는 기능을 수행할 수 있다. In addition, as a precondition for applying the virtual pedal signal derived from the calculation unit 1200, a function of monitoring whether or not the battery unit 1020 is operable may be performed.
도 4는 하이브리드 컨트롤유닛의 출력부에 대한 실시예를 설명하기 위한 블록도이다. 4 is a block diagram for explaining an embodiment of an output unit of a hybrid control unit.
상기한 바와 같이 본 발명에서는 단순히 시동 및 구동부(1010)의 모터만을 제어하는 것이 아닌 운전자의 의도에 맞추어 모터와 엔진의 동력을 조화시키기 때문에, 출력부(1120)는 페달신호출력부(1121)와 모터출력제어부(1122)로 구성된다. As described above, in the present invention, since the power of the motor and the engine is harmonized according to the driver's intention rather than simply controlling the motor of the starting and driving unit 1010, the output unit 1120 is connected to the pedal signal output unit 1121 It is composed of a motor output control unit 1122.
상기 모터출력제어부(1122)는 연산부(1200)에서 환산된 모터토크에 기초하여 모터에 제어전압을 전송하도록 기능하며, 사용자의 페달 답력 또는 차속 또는 엔진 회전수 또는 미션의 위치 중의 어느 하나 이상의 요소에 기초하여 모터의 회전을 제어한다. The motor output control unit 1122 functions to transmit a control voltage to the motor based on the motor torque converted by the calculation unit 1200, and is dependent on one or more of the user's pedal effort or vehicle speed, engine speed, or mission position. Based on this, the rotation of the motor is controlled.
또한, 상기 페달신호출력부(1121)는 결정된 모터의 토크에 기초하여 엔진의 회전을 위한 가상의 페달신호를 메인컨트롤러(230)로 전송하는 기능을 수행할 수 있다. 다만, 경우에 따라 엔진의 회전을 위한 요소에만 메인컨트롤러(230)의 신호를 대체하고 나머지 구동요소에는 페달 답력신호에 맞는 메인컨트롤러(230)의 신호가 유효하도록 설정할 수 있음은 물론이다. In addition, the pedal signal output unit 1121 may perform a function of transmitting a virtual pedal signal for engine rotation to the main controller 230 based on the determined torque of the motor. However, in some cases, the signal of the main controller 230 may be substituted only for an element for engine rotation, and the signal of the main controller 230 suitable for the pedal effort signal may be set to be valid for the remaining driving elements.
도 5는 하이브리드 컨트롤유닛의 연산부를 설명하기 위한 블록도이다. 5 is a block diagram for explaining an arithmetic unit of a hybrid control unit.
상기한 바와 같이 입력부(1110)에서 수신된 페달(250)의 답력신호를 통해 연산부(1200)는 최종적으로 모터의 회전과 엔진의 회전을 위한 출력값을 결정한다. As described above, the operation unit 1200 finally determines output values for rotation of the motor and rotation of the engine through the pedal force signal of the pedal 250 received from the input unit 1110.
이에, 연산부(1200)는 소정의 상황에 맞는 토크맵들을 미리 데이터화하여 저장하고 있으며, 엔진의 회전수별 토크에 관한 엔진토크맵Data(1211)와 모터의 회전수별 토크에 대한 모터토크맵Data(1212)를 구비한다. 상기 엔진토크맵Data(1211)와 모터토크맵Data(1212)는 장착시 엔진(210)과 시동 및 구동부(1010)의 사양에 맞추어 기설정된 값일 수 있으며, 사용자의 선택에 의하여 변경 가능할 것이다. Accordingly, the calculation unit 1200 converts torque maps suitable for a predetermined situation into data and stores them in advance, and engine torque map data 1211 for torque per engine revolution number and motor torque map data 1212 for torque for each revolution speed of the motor. ) is provided. The engine torque map data 1211 and motor torque map data 1212 may have preset values according to the specifications of the engine 210 and the starting and driving unit 1010 upon installation, and may be changeable by a user's selection.
상기 모터토크맵Data(1212)은 회전수별 토크의 맵을 기본으로 하되, 각 토크별 전압의 관계도 함께 저장될 수 있으며, 모터토크가 결정된 경우 소정의 엔진토크맵으로부터 해당하는 전압값이 추출되어 출력부에서 BSG를 구동시킬 수 있는 것이다. The motor torque map data 1212 is based on a torque map for each number of revolutions, but the relationship between voltages for each torque may also be stored. When the motor torque is determined, a corresponding voltage value is extracted from a predetermined engine torque map. BSG can be driven from the output part.
또한, 기대토크환산부(1220)는 페달(250)의 답력신호를 수치화-예를 들어 답력신호가 0V 에서 5V 까지 생성되어 입력부(1110)에 수신된 경우 이를 0°에서 80°의 각도로 변환-하여 페달 답력신호의 값에 따라 기대토크(Tc)를 환산한다. In addition, the expected torque converter 1220 digitizes the pedal force signal of the pedal 250 - for example, when the pedal force signal is generated from 0V to 5V and received by the input unit 1110, it is converted into an angle of 0° to 80°. - The expected torque (Tc) is converted according to the value of the pedal effort signal.
이러한 기대토크는 최종적으로 실제 모터에서 발생하는 모터토크(Tm)와 엔진에서 발생하는 최종 엔진토크(Te)의 합으로 이루어지는데 아래에서 연산과정에 대해 더 구체적으로 살펴본다. This expected torque is finally composed of the sum of the motor torque (Tm) generated from the actual motor and the final engine torque (Te) generated from the engine. The calculation process will be described in more detail below.
한편, 토크매칭부(1230)는 기대토크환산부(1220)에서 환산된 기대토크값에 부응하는 엔진토크와 모터토크를 매칭시킨다. 구체적으로, 상기 토크매칭부(1230)는 페달(250)의 답력신호에 부응하는 회전수와 기대토크의 위치를 엔진토크맵Data(1211)에서 추출하고, 차속에 대비한 시동 및 구동부(1010)의 토크(Tm)을 환산하여 이에 매칭시킨다. 그러면 최종적으로 메인컨트롤러(230)에 출력되어야 하는 최종 엔진토크(Te)가 연산된다. Meanwhile, the torque matching unit 1230 matches engine torque and motor torque corresponding to the expected torque value converted by the expected torque converter 1220 . Specifically, the torque matching unit 1230 extracts the number of revolutions corresponding to the pedal power signal of the pedal 250 and the position of the expected torque from the engine torque map data 1211, and starts and drives the vehicle speed in preparation for the driving unit 1010 Convert the torque (Tm) of and match it. Then, the final engine torque Te to be finally output to the main controller 230 is calculated.
상기 기대토크(Tc)가 환산된 상태에서 상기 기대토크(Tc)를 만족시킬 수 있는 모터토크(Tm)와 최종 엔진토크(Te)의 합은 다양하게 존재할 수 있으며, 이는 엔진의 회전수 또는 차량의 속도 등의 요소에 의하여 결정될 수 있을 것이다. 상기 토크매칭부(1230)는 두 개의 맵에서 최적 위치의 토크 발생 출력을 결정하는 기능을 수행할 수 있을 것이다. 또한, 경우에 따라 상기 모터토크(Tm)의 발생을 위한 모터제어신호의 정도는 배터리부(1020)의 잔량에 의하여서도 결정될 수 있을 것이다. In the state in which the expected torque Tc is converted, the sum of the motor torque Tm and the final engine torque Te that can satisfy the expected torque Tc may exist in various ways, which is the number of revolutions of the engine or the vehicle It may be determined by factors such as the speed of The torque matching unit 1230 may perform a function of determining a torque generating output at an optimum location in two maps. Also, in some cases, the level of the motor control signal for generating the motor torque Tm may be determined by the remaining amount of the battery unit 1020.
상기 연산된 최종 엔진토크(Te)를 기초로 페달가상화부(1240)는 가상 페달신호를 생성하며, 페달신호출력부(1121)는 메인컨트롤러(230)에 가상 페달신호를 전송하여 전체적인 하이브리드 시스템의 출력을 조화시킬 수 있는 것이다. Based on the calculated final engine torque (Te), the pedal virtualization unit 1240 generates a virtual pedal signal, and the pedal signal output unit 1121 transmits the virtual pedal signal to the main controller 230 so as to control the entire hybrid system. It is possible to harmonize the output.
도 6은 본 발명의 레트로핏 마이크로 하이브리드 시스템의 작동을 나타내는 흐름도이다. 6 is a flowchart showing the operation of the retrofit micro-hybrid system of the present invention.
차량의 운행 또는 아이들링 상태에서 상기 입력부(1110)가 페달 답력신호(Pθi)를 포함하는 주행정보를 수신(S100)한다. 상기 수신된 주행정보는 엔진의 회전수, 차량의 속도, 미션의 위치, 클러치의 상태, 배터리부 또는 메인배터리의 전압 등 선택적일 수 있다. In the driving or idling state of the vehicle, the input unit 1110 receives driving information including a pedal effort signal P θi ( S100 ). The received driving information may be optional, such as the number of revolutions of an engine, the speed of a vehicle, the position of a mission, the state of a clutch, and the voltage of a battery unit or main battery.
가상 페달신호를 연산하기에 앞서 배터리의 가용여부(S200)에 대한 판단이 선행되는 것이 바람직하며, 배터리 가용여부(S200) 판단에서 잔량이 설정값 미만인 것으로 판단된 경우 모터토크의 보조를 위한 하이브리드 모드의 작동을 제한한다. 이에, 페달 출력신호(Pθe)는 페달 답력신호(Pθi)에 대응(S210)하여 운전자의 페달 입력이 바로 메인컨트롤러(230)의 출력이 된다. It is preferable to determine the availability of the battery (S200) prior to calculating the virtual pedal signal, and if the remaining amount is determined to be less than the set value in the determination of the availability of the battery (S200), hybrid mode for assisting motor torque limit the operation of Accordingly, the pedal output signal P θe corresponds to the pedal effort signal P θi (S210), so that the driver's pedal input directly becomes the output of the main controller 230.
본 발명에서는 하이브리드 컨트롤유닛(1100)이 페달의 답력신호를 인터셉트하여 연산부에서 가공된 페달신호가 정상적인 신호로 인식하도록 하는데, 상기 배터리 조건을 충족하지 못하는 경우에는 페달 답력신호의 재가공의 필요 없이 바로 메인컨트롤러(230)로 전송하는 것이 바람직할 수 있다. 이에, 상기 하이브리드 컨트롤유닛(1100)은 수신된 페달 답력신호를 데이터화하여 일시 저장하고, 상기 조건이 충족되지 않아 하이브리드 모드로 작동될 필요가 없는 경우 바이패스하여 바로 메인컨트롤러(230)로 우회하도록 할 수 있을 것이다. In the present invention, the hybrid control unit 1100 intercepts the pedal effort signal and recognizes the pedal signal processed by the calculation unit as a normal signal. Sending to controller 230 may be desirable. Accordingly, the hybrid control unit 1100 converts the received pedal pressure signal into data and temporarily stores it, and bypasses it to the main controller 230 when it does not need to operate in the hybrid mode because the above condition is not satisfied. You will be able to.
상기 배터리 가용여부(S200) 판단에서 잔량이 설정값 이상인 경우 하이브리드 모드로 작동 가능한 상태인 것으로 판단하고, 기대토크(Tc)를 환산(S310)한다. 상기 기대토크(Tc)의 환산은 기대토크환산부(1220)에서 이루어지고 페달 답력신호(Pθi)를 수치화한 환산값에 대한 엔진회전수의 토크값을 엔진토크맵Data(1211)로부터 추출하여 이루어질 수 있다. In the determination of whether the battery is available (S200), if the remaining amount is equal to or greater than the set value, it is determined that the hybrid mode can be operated, and the expected torque (Tc) is converted (S310). The conversion of the expected torque Tc is performed by the expected torque converter 1220 and extracted from the engine torque map data 1211 the torque value of the engine speed for the converted value obtained by digitizing the pedal effort signal Pθi. can
예를 들어, 2,000rpm의 회전수에서 페달 답력신호(Pθi)의 환산값이 20°일때 엔진토크맵Data(1211)에서 추출된 기대토크(Tc)의 환산값은 100Nm일 수 있다. For example, when the converted value of the pedal effort signal P θi is 20° at a rotational speed of 2,000 rpm, the converted value of the expected torque Tc extracted from the engine torque map Data 1211 may be 100 Nm.
상기와 같이 기대토크(Tc)가 환산되어 결정(S310)되면, 모터토크(Tm)에 대한 환산 및 매칭(S320)이 수행된다. 토크매칭부(1230)는 예를 들어 페달 답력신호(Pθi)의 환산값에 대한 차속의 모터토크(Tm)를 모터토크맵Data(1212)에 대비하여 환산되며, 상기 기대토크(Tc)에 부응하는 모터토크(Tm)를 위한 매칭이 수행될 수 있음은 상기와 같다. 상기의 예에서 대응되는 모터토크(Tm)는 50Nm일 수 있다. As described above, when the expected torque Tc is converted and determined (S310), the motor torque Tm is converted and matched (S320). For example, the torque matching unit 1230 converts the motor torque Tm of the vehicle speed for the converted value of the pedal effort signal P θi in comparison with the motor torque map Data 1212, and calculates the expected torque Tc Matching for the corresponding motor torque Tm can be performed as described above. In the above example, the corresponding motor torque Tm may be 50 Nm.
이렇게 기대토크(Tc)와 모터토크(Tm)가 결정되면, 최종 엔진출력이 결정될 수 있으며 최종 엔진토크(Te)의 연산(S330)은 토크매칭부(1230)에서 이루어질 수 있고, 본 발명의 실시예에 따라 기대토크(Tc)에서 모터토크(Tm)를 뺀 값으로 결정할 수 있다. When the expected torque Tc and the motor torque Tm are determined in this way, the final engine output can be determined, and the calculation (S330) of the final engine torque Te can be performed in the torque matching unit 1230. According to an example, it may be determined as a value obtained by subtracting the motor torque Tm from the expected torque Tc.
본 실시예에서 상기와 같이 결정되는 최종 엔진토크(Te)는 기대토크(Tc) 100Nm에서 모터토크 50Nm를 차감한 50Nm일 수 있다. In this embodiment, the final engine torque Te determined as described above may be 50 Nm obtained by subtracting 50 Nm of motor torque from 100 Nm of the expected torque Tc.
이렇게 최종 엔진토크(Te)가 결정되면 출력부(1120)는 환산된 모터토크(Tm)에 대응되는 제어신호를 모터출력제어부(1122)에서 출력(S340)하고, 동시에 페달가상화부(1240)에서 연산된 최종 엔진토크(Te)에 대응되는 가상 페달신호(Pθ연산)를 생성하여 페달신호출력부(1121)에서 상기 가상 페달신호(Pθ연산)를 페달 출력신호(Pθe)로서 메인컨트롤러(230)에 전송할 수 있도록 한다. When the final engine torque Te is determined in this way, the output unit 1120 outputs a control signal corresponding to the converted motor torque Tm from the motor output control unit 1122 (S340), and at the same time, from the pedal virtualization unit 1240 A virtual pedal signal (P θ calculation ) corresponding to the calculated final engine torque (Te) is generated, and the pedal signal output unit 1121 converts the virtual pedal signal (P θ calculation ) into the pedal output signal (P θ e) as the main pedal signal output unit. so that it can be transmitted to the controller 230.
가상 페달신호(Pθ연산)는 2,000rpm에서 50Nm일 때의 악셀페달에 해당하는 전압을 맵에서 추출한 것일 수 있다. The virtual pedal signal (P θ calculation ) may be obtained by extracting a voltage corresponding to an accelerator pedal at 50 Nm at 2,000 rpm from a map.
상술한 하이브리드 모드의 작동에 대한 판단은 시동 또는 주행과정에서 궤환적으로 수행될 수 있을 것이다. Determination of the operation of the above-described hybrid mode may be performed feedbackively during startup or driving.
상술된 본 발명에 의하여, 하이브리드 시스템이 장착되지 않은 내연기관 완성차에서도 비교적 간단한 과정으로 설비하여 마이크로 하이브리드 시스템으로 운용이 가능하여 경제성이 높은 효과가 있다. According to the present invention described above, it is possible to operate as a micro-hybrid system by installing it in a relatively simple process even in a complete vehicle with an internal combustion engine that is not equipped with a hybrid system, so that there is an effect of high economic efficiency.
또한, 사후적으로 BSG를 장착하면서도 엔진토크와 모터토크의 조화가 가능하기 때문에 운전자의 조작감을 해치지 않고 내연기관 차량의 운전감각으로 운전이 가능하여 자연스럽고, 배출가스가 현저히 저감되어 전기차로 전환하기 전 과도기에 있는 전세계 도로에서 현재 운행 중인 내연기관 차량에 의한 환경오염의 우려를 해소할 수 있다. In addition, since it is possible to harmonize the engine torque and motor torque while installing the BSG ex post facto, it is possible to drive with the driving feeling of an internal combustion engine vehicle without compromising the driver's sense of operation, which is natural, and the emission gas is significantly reduced, making it possible to switch to an electric vehicle. Concerns about environmental pollution caused by internal combustion engine vehicles currently operating on the world's roads in the transitional period can be eliminated.
이상에서, 본 발명은 실시예 및 첨부도면에 기초하여 상세히 설명되었다. 그러나, 이상의 실시예들 및 도면에 의해 본 발명의 범위가 제한되지는 않으며, 본 발명의 범위는 후술한 특허청구범위에 기재된 내용에 의해서만 제한될 것이다.In the above, the present invention has been described in detail based on examples and accompanying drawings. However, the scope of the present invention is not limited by the above embodiments and drawings, and the scope of the present invention will be limited only by the content described in the claims below.

Claims (5)

  1. 메인컨트롤러에 의하여 제어되는 엔진이 휠을 구동시키는 차량에 장착될 수 있는 하이브리드 시스템으로서, As a hybrid system that can be mounted on a vehicle in which an engine controlled by a main controller drives wheels,
    시동 및 구동부(1010);starting and driving unit 1010;
    상기 시동 및 구동부에 전력을 제공하는 배터리부(1020); 및a battery unit 1020 providing power to the starting and driving units; and
    모터토크를 환산하여 상기 시동 및 구동부에 제어신호를 출력하는 하이브리드 컨트롤유닛(1100);을 포함하되,A hybrid control unit 1100 that converts motor torque and outputs a control signal to the starting and driving unit;
    상기 하이브리드 컨트롤유닛은, The hybrid control unit,
    페달의 답력신호를 수신하여 이에 대응되는 기대토크와 모터토크를 환산하고 최종 엔진토크를 연산하여 가상 페달신호를 메인컨트롤러로 전송하는 레트로핏 마이크로 하이브리드 시스템.The retrofit micro hybrid system receives the pedal effort signal, converts the corresponding expected torque and motor torque, calculates the final engine torque, and transmits the virtual pedal signal to the main controller.
  2. 제1항에 있어서,According to claim 1,
    상기 하이브리드 컨트롤유닛은,The hybrid control unit,
    페달 답력신호를 포함하는 주행정보를 수신하는 입력부(1110)와, 기대토크 및 모터토크를 환산하고 가상 페달신호를 생성하는 연산부(1200)와, 시동 및 구동부와 메인컨트롤러에 신호를 출력하는 출력부(1120)를 구비하는 레트로핏 마이크로 하이브리드 시스템.An input unit 1110 that receives driving information including a pedal effort signal, an operation unit 1200 that converts expected torque and motor torque and generates a virtual pedal signal, and an output unit that outputs signals to the starting and driving unit and the main controller A retrofit micro hybrid system comprising (1120).
  3. 제2항에 있어서,According to claim 2,
    상기 하이브리드 컨트롤유닛은,The hybrid control unit,
    배터리부의 상태를 모니터링하고 충방전을 제어하는 배터리관리부(1130)를 더 구비하는 레트로핏 마이크로 하이브리드 시스템.A retrofit micro-hybrid system further comprising a battery management unit 1130 for monitoring the state of the battery unit and controlling charging and discharging.
  4. 제2항에 있어서,According to claim 2,
    상기 연산부는,The calculation unit,
    엔진의 토크가 데이터화된 엔진토크맵Data(1211)와, 모터의 토크가 데이터화된 모터토크맵Data(1212)와, 페달 답력신호에 대응한 기대토크를 엔진토크맵Data으로부터 환산하는 기대토크환산부(1220)와, 페달 답력신호에 대응되는 모터토크를 모터토크맵Data로부터 환산하고 최종 엔진토크를 연산하는 토크매칭부(1230)와, 상기 연산된 최종 엔진토크에 대응되는 가상 페달신호를 생성하는 페달가상화부(1240)를 구비하는 레트로핏 마이크로 하이브리드 시스템.Expected torque conversion unit that converts the engine torque map Data 1211 into which the engine torque is converted into data, the motor torque map Data 1212 into which motor torque becomes data, and the expected torque corresponding to the pedal effort signal from the engine torque map Data. 1220, a torque matching unit 1230 that converts the motor torque corresponding to the pedal effort signal from the motor torque map data and calculates the final engine torque, and generates a virtual pedal signal corresponding to the calculated final engine torque A retrofit micro-hybrid system having a pedal virtualization unit 1240.
  5. 제1항 내지 제4항 중 어느 한 항의 레트로핏 마이크로 하이브리드 시스템에 의한 하이브리드 시스템의 운영방법으로서, A method of operating a hybrid system by the retrofit micro hybrid system of any one of claims 1 to 4,
    a) 입력부에서 페달 답력신호(Pθi)를 수신하는 단계;a) receiving a pedal pressure signal (P θi ) from an input unit;
    b) 배터리관리부에서 배터리부가 설정된 잔량 이상인지 판단하는 단계;b) determining whether the remaining capacity of the battery unit is greater than or equal to a set level in the battery management unit;
    c) 상기 b) 단계에서 설정된 잔량 이상인 경우 연산부가 페달 답력신호로부터 기대토크(Tc)를 환산하는 단계;c) converting the expected torque (Tc) from the pedal effort signal by a calculation unit when the remaining amount is greater than or equal to the remaining amount set in step b);
    d) 연산부가 차속에 대한 모터토크(Tm)를 환산하는 단계;d) converting motor torque (Tm) with respect to vehicle speed by a calculation unit;
    e) 연산부에서 기대토크에 대한 모터토크의 차로 최종 엔진토크(Te)를 연산하는 단계;e) calculating a final engine torque (Te) by a difference between the motor torque and the expected torque in a calculation unit;
    f) 출력부가 모터토크에 대응되는 제어신호를 시동 및 구동부로 전송하고, 가상 페달신호(Pθ연산)를 페달 출력신호(Pθe)로 메인컨트롤러에 전송하는 단계;를 포함하는 마이크로 하이브리드 시스템의 운영방법.f) transmitting, by the output unit, a control signal corresponding to the motor torque to the starting and driving unit, and transmitting the virtual pedal signal (P θ operation ) to the main controller as a pedal output signal (P θe ); operation method.
PCT/KR2022/008996 2021-06-24 2022-06-24 Retrofit micro hybrid system, and hybrid system operating method using same WO2022270963A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0082510 2021-06-24
KR1020210082510A KR102335652B1 (en) 2021-06-24 2021-06-24 Retrofit micro hybrid system and management method for hybrid system thereby

Publications (1)

Publication Number Publication Date
WO2022270963A1 true WO2022270963A1 (en) 2022-12-29

Family

ID=78901337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008996 WO2022270963A1 (en) 2021-06-24 2022-06-24 Retrofit micro hybrid system, and hybrid system operating method using same

Country Status (2)

Country Link
KR (1) KR102335652B1 (en)
WO (1) WO2022270963A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102335652B1 (en) * 2021-06-24 2021-12-06 최익준 Retrofit micro hybrid system and management method for hybrid system thereby

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020094908A1 (en) * 2001-01-16 2002-07-18 Nissan Motor Co., Ltd. Four-wheel drive hybrid vehicle
WO2015029075A2 (en) * 2013-08-29 2015-03-05 Kpit Technologies Ltd. Retrofit system for converting a vehicle into one of a hybrid electric vehicle (hev) and electric vehicle (ev)
KR101759142B1 (en) * 2016-02-22 2017-07-18 현대자동차주식회사 Control method and apparatus of hybrid electric vehicle
KR20190080329A (en) * 2017-12-28 2019-07-08 현대자동차주식회사 Hybrid vehicle and method of controlling thereof
JP2021054134A (en) * 2019-09-27 2021-04-08 ジヤトコ株式会社 Hybrid vehicle engine control method and engine control device
KR102335652B1 (en) * 2021-06-24 2021-12-06 최익준 Retrofit micro hybrid system and management method for hybrid system thereby

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251255B1 (en) * 2010-12-03 2013-04-10 기아자동차주식회사 Method for protecting high voltage battery in hybrid electric vehicle
KR101490954B1 (en) * 2013-12-02 2015-02-06 현대자동차 주식회사 Method for controlling torque intervention of hybrid vehicle
KR20160096855A (en) * 2015-02-06 2016-08-17 한국기술교육대학교 산학협력단 Hybrid Kit
KR20190067376A (en) * 2017-12-07 2019-06-17 현대자동차주식회사 Hybrid vehicle and method of controlling platooning therefor
US11524672B2 (en) * 2018-09-26 2022-12-13 Elephant Racing, LLC Control techniques for controlling electric hybrid retrofitted vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020094908A1 (en) * 2001-01-16 2002-07-18 Nissan Motor Co., Ltd. Four-wheel drive hybrid vehicle
WO2015029075A2 (en) * 2013-08-29 2015-03-05 Kpit Technologies Ltd. Retrofit system for converting a vehicle into one of a hybrid electric vehicle (hev) and electric vehicle (ev)
KR101759142B1 (en) * 2016-02-22 2017-07-18 현대자동차주식회사 Control method and apparatus of hybrid electric vehicle
KR20190080329A (en) * 2017-12-28 2019-07-08 현대자동차주식회사 Hybrid vehicle and method of controlling thereof
JP2021054134A (en) * 2019-09-27 2021-04-08 ジヤトコ株式会社 Hybrid vehicle engine control method and engine control device
KR102335652B1 (en) * 2021-06-24 2021-12-06 최익준 Retrofit micro hybrid system and management method for hybrid system thereby

Also Published As

Publication number Publication date
KR102335652B1 (en) 2021-12-06

Similar Documents

Publication Publication Date Title
CN102991331B (en) Plug-in hybrid electric vehicle
CN101734138B (en) Hybrid powertrain and method for controlling a hybrid powertrain
US8374771B2 (en) Method for operating a hybrid vehicle drive and a device for carrying out said method
US7607499B2 (en) Hybrid vehicle controller
TW394827B (en) Motor controlling apparatus for a hybrid motor car
EP0323203A2 (en) Control system for internal combustion engine with turbocharger
JP3894143B2 (en) Power output apparatus and automobile equipped with the same
KR101566736B1 (en) Apparatus and method for controlling full load mode of hybird vehicle
EP3805543A1 (en) Vehicle and control method thereof
US20130095401A1 (en) System and method for extracting propulsion energy from motor vehicle exhaust
WO2022270963A1 (en) Retrofit micro hybrid system, and hybrid system operating method using same
JP4224781B2 (en) Vehicle power control system
CN103158710A (en) System and method of controlling torque in hybrid vehicle
CN104203620A (en) Drive control device for hybrid vehicle
CN102092273A (en) Hub motor hybrid automobile based on improvement on conventional automobile
CN113352881A (en) Vehicle with a steering wheel
KR102672892B1 (en) Apparatus for controlling hybrid vehciel having electric supercharger and method using the same
GB2506600A (en) Hybrid powertrain with hill holder control
WO2017200138A1 (en) Power transmission structure for hybrid vehicle comprising two motor generators and three clutches
JP3594010B2 (en) Vehicle driving force control method and its control device
JP3896904B2 (en) Vehicle regeneration control device and automobile
JP2000145493A (en) Engine starting controller
CZ201050A3 (en) Circuit arrangement of electric power management system in a vehicle and method of managing such system
CN104203693A (en) Hybrid vehicle drive control device
JP2012176652A (en) Vehicle and vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22828810

Country of ref document: EP

Kind code of ref document: A1