WO2022270849A1 - 세포해동기 및 이의 운전방법 - Google Patents

세포해동기 및 이의 운전방법 Download PDF

Info

Publication number
WO2022270849A1
WO2022270849A1 PCT/KR2022/008718 KR2022008718W WO2022270849A1 WO 2022270849 A1 WO2022270849 A1 WO 2022270849A1 KR 2022008718 W KR2022008718 W KR 2022008718W WO 2022270849 A1 WO2022270849 A1 WO 2022270849A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heating block
block
container
sensor
Prior art date
Application number
PCT/KR2022/008718
Other languages
English (en)
French (fr)
Inventor
한경구
장선호
송재경
서인용
김재윤
강경선
이미혜
허현숙
Original Assignee
주식회사 아모그린텍
주식회사 강스템바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210082930A external-priority patent/KR20230000617A/ko
Priority claimed from KR1020210098640A external-priority patent/KR20230016982A/ko
Priority claimed from KR1020210151328A external-priority patent/KR20230065600A/ko
Application filed by 주식회사 아모그린텍, 주식회사 강스템바이오텍 filed Critical 주식회사 아모그린텍
Priority to EP22828696.9A priority Critical patent/EP4361247A1/en
Publication of WO2022270849A1 publication Critical patent/WO2022270849A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/54Heating or cooling apparatus; Heat insulating devices using spatial temperature gradients
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/025Displaying results or values with integrated means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders

Definitions

  • the present invention relates to a cell thawing machine and an operating method thereof.
  • various biological substances are stored at low temperature after being stored in containers such as vials.
  • plasma and tissue cells are stored at a maximum of minus 100 degrees Celsius
  • stem cells are stored at cryogenic temperatures of up to minus 165 degrees Celsius using gaseous liquid nitrogen.
  • a cell thawer has been proposed for thawing a biological material in a low-temperature state by heating a container such as a vial in which the biological material is stored.
  • conventional cell thawing machines adopt a method of transferring heat while a heating block and a container are in contact with each other. Accordingly, the conventional cell thawing machine has a problem in that it is difficult to uniformly heat the container as a whole, and since the high-temperature heating block directly contacts the container, there is a problem in that the container is cracked or deformed by the high temperature.
  • the conventional cell thawing machine was a method of simply displaying whether or not the heating block was operating normally through an indicator such as an LED.
  • the conventional cell thawer has a problem in that the operating temperature of the heating block cannot be easily measured during qualification evaluation to determine whether the heating block operates correctly.
  • the present invention has been devised in view of the above points, and provides a cell defroster capable of uniformly heating the container as a whole while securing the heat stability of the container containing the biological material during the heating process, and an operation method thereof. There is a purpose.
  • Another object of the present invention is to provide a cell thawing machine capable of increasing energy use efficiency and an operating method thereof.
  • Another object of the present invention is to provide a cell thawing machine capable of conveniently measuring the operating temperature of a heating block during qualification evaluation.
  • the present invention provides a heating block including a first heating block and a second heating block forming a heating space for heating a container in which a certain amount of biological material including cells is stored, and the heating block a defrosting unit including a heater installed on the heating block to provide heat to the heater, an insulation block coupled to the heating block to surround the heater, and a pedestal for supporting the lower portion of the container in the heating space; a driving unit providing a driving force to linearly move the first heating block and the second heating block in left and right directions, respectively; a sensing unit including a sensor for detecting the state of the container disposed in the heating space, and a mounting member to which the sensor is mounted and moving in forward and backward directions in association with the operation of the drive unit; and a control unit controlling operations of the thawing unit, the driving unit, and the sensing unit.
  • the present invention forms a heating space for heating a container in which a certain amount of biological material including cells is stored through linear movement through the driving force of a motor, and heats the container accommodated in the heating space through heat provided from a heater.
  • a heating block including a first heating block and a second heating block for heating; and a sensor whose position is changed in connection with the linear movement of the heating block and which detects the state of the container disposed in the heating space.
  • Characterized in that the container disposed in the heating space is heated by heat transmitted in a non-contact manner from the first heating block and the second heating block in a state in which the container is not in contact with the first heating block and the second heating block.
  • the container can be uniformly heated by heating the container in a non-contact heating method using radiant heat, and cracks or thermal deformation of the container that may occur during heating by conductive heat can be prevented.
  • the present invention Since the temperature of the heating block can be maintained constant, a plurality of containers can be sequentially defrosted. Through this, the present invention can improve energy consumption efficiency because it is possible to defrost a plurality of containers while reducing the reuse waiting time for defrosting containers.
  • the sensor insertion hole for qualification evaluation is exposed to the outside, so that qualification evaluation can be easily performed.
  • FIG. 1 is a diagram showing a cell thawing machine according to an embodiment of the present invention.
  • FIG. 2 is a view of FIG. 1 viewed from another direction;
  • Figure 3 is a view in which the housing is separated from Figure 1;
  • Figure 4 is a view showing the cell thawing machine according to the first embodiment of the present invention, showing a state in which the housing and circuit board are removed from Figure 3;
  • FIG. 5 is a view of FIG. 4 viewed from another direction;
  • Figure 6 is a view in which some components are separated from Figure 4.
  • FIG. 7 is an enlarged view of a part of FIG. 5, in which parts of the first heating block and the second heating block are cut in a standby position;
  • FIG. 8 is a view showing a part of the cell thawing machine according to the first embodiment of the present invention in a state in which a heating block is disposed in a heating position;
  • FIG. 9 is a view showing the configuration of a sensing unit applied to a cell thawing machine according to an embodiment of the present invention, showing the position of a roller member in a state where a heating block is disposed at a heating position;
  • FIG. 10 is a diagram showing the configuration of a sensing unit applied to a cell thawing machine according to an embodiment of the present invention, showing the position of a roller member in a state where a heating block is placed in a standby position;
  • FIG. 11 is a view showing the arrangement relationship of the sensing unit, the heating block, and the container corresponding to the state of FIG. 9, showing a state in which the first heating block, the first insulation block, and the first guide block are removed;
  • FIG. 12 is a view showing the arrangement relationship of the sensing unit and the heating block corresponding to the state of FIG. 10, showing a state in which the first heating block, the first insulation block, and the first guide block are removed;
  • FIG. 13 is an operating state diagram of the cell thawer according to the first embodiment of the present invention, a partial cross-sectional view of the standby position at the time of initial operation, viewed from the A-A direction of FIG. 8;
  • FIG. 14 is an operating state diagram showing a state in which the heating block is preheated in the cell thawing machine according to the first embodiment of the present invention, a partial cross-sectional view as viewed from the A-A direction of FIG. 8;
  • FIG. 15 is a partial cross-sectional view of the cell thawing machine according to the first embodiment of the present invention, as viewed from the direction A-A of FIG.
  • FIG. 16 is an operating state diagram of the cell thawer according to the first embodiment of the present invention, a partial cross-sectional view of a state in which the container is heated in the heating position, as viewed from the A-A direction in FIG. 8;
  • 17 is an operating state diagram of the cell thawing machine according to the first embodiment of the present invention, and is a partial cross-sectional view of the process of taking out the container from the standby position as viewed from the A-A direction in FIG. 8;
  • FIG. 18 is a view showing a cell thawing machine according to a second embodiment of the present invention, showing a state in which the top cover is separated from the state in which the cover is removed in FIG. 1;
  • FIG. 19 is a cross-sectional view in the B-B direction of FIG. 18, taken from a thawing portion;
  • FIG. 20 is a view showing a cell thawing machine according to a second embodiment of the present invention, showing a state in which the housing and circuit board are removed from FIG. 3;
  • FIG. 21 is a view of FIG. 20 viewed from another direction;
  • FIG. 22 is a view in which some components are separated from FIG. 20;
  • FIG. 23 is an enlarged view of a part of FIG. 21, in which parts of the first heating block and the second heating block are cut in a standby position;
  • FIG. 24 is a view showing a part of the cell thawing machine according to the second embodiment of the present invention in a state in which a heating block is disposed at a heating position;
  • 25 is an operating state diagram of a cell thawer according to a second embodiment of the present invention, a partial cross-sectional view of the standby position when initially driven, viewed from the B-B direction of FIG. 24;
  • 26 is an operating state diagram showing a state in which the heating block is preheated in the cell thawing machine according to the second embodiment of the present invention, a partial cross-sectional view viewed from the C-C direction of FIG. 24;
  • FIG. 27 is a partial cross-sectional view of the cell thawing machine according to the second embodiment of the present invention, as viewed from the C-C direction of FIG.
  • FIG. 28 is an operating state diagram of the cell thawer according to the second embodiment of the present invention, a partial cross-sectional view of the state in which the vessel is heated in the heating position, viewed from the direction C-C in FIG. 24;
  • 29 is an operating state diagram of a cell thawer according to a second embodiment of the present invention, a partial cross-sectional view of the process of taking out a container from a stand-by position, as viewed from the C-C direction in FIG. 24;
  • FIG. 30 is a block diagram showing an operating method of a cell thawing machine according to an embodiment of the present invention.
  • the cell thawers 100 and 200 can heat and thaw biological materials in a low-temperature state (eg, frozen state) contained in the container 10 .
  • a low-temperature state eg, frozen state
  • the biological material may include a cell, which is a structural basic unit of an organism, and the vessel 10 may be a known laboratory vessel such as a vial, a beaker, or a test tube, or It may be a container for medical use.
  • the vessel 10 may be a known laboratory vessel such as a vial, a beaker, or a test tube, or It may be a container for medical use.
  • the container 10 includes a container body 12 in which the biological material is accommodated, a cap portion 14 covering the open top of the container body 12, and the container body 12 ), and may include a flange portion 16 protruding from the lower portion, and a biological material of about 2 ml capacity may be contained in the container body 12.
  • the shape of the container 10 and the capacity of the biological material contained in the container body 12 are not limited thereto and may be changed into various shapes depending on design conditions.
  • the cell thawers 100 and 200 can heat the container 10 uniformly as a whole by heating the container 10 in a non-contact heating method through radiant heat and/or convection heat, Cracks or thermal deformation of the container 10 that may occur during contact heating by conductive heat can be prevented in advance.
  • the cell defrost device 100 or 200 includes a housing 110, a defrosting unit 120, a driving unit 130, It includes a sensing unit 140 and a control unit 150.
  • the housing 110 may form the outer surface of the cell thawing device 100 or 200, and the thawing unit 120, the driving unit 130, the sensing unit 140, and the controller 150 may be formed in a box shape so that it can be disposed therein.
  • the housing 110 may be composed of one member or may be composed of a plurality of members, and the plurality of members may be detachably coupled.
  • the housing 110 includes a housing-shaped main body 111, a lower cover 112 covering the open lower part of the main body 111, and the main body 111.
  • a rear cover 113 covering the open rear surface and an upper cover 114 covering the top of the main body 111 may be included.
  • the defrosting unit 120, the driving unit 130, the sensing unit 140, and the control unit 150 may be disposed inside the main body 111.
  • the housing 110 may include an inlet 115 penetrating a predetermined area so that the container 10 can be inserted into the body 111, and the inlet 115 is a cover. It can be covered through (116).
  • the inlet 115 may be formed through the housing 110 so as to be located at a position corresponding to a heating space 121 to be described later.
  • the inlet 115 may be formed to pass through the upper cover 114 to communicate with a heating space 121 formed in the defrosting unit 120 at a heating position to be described later.
  • the cap portion 14 of the container 10 may be exposed to the outside through the inlet 115, except for the cap portion 14. The remaining part may be inserted into the heating space 121 side.
  • a manipulation unit 117 for manipulating the operation of the cell thawing machine 100 or 200 according to an embodiment of the present invention, and the cell thawing machine ( 100,200) may be provided with a display 118 for displaying the operating state.
  • Such a manipulation unit 117 may be an interface for transmitting an input signal to the control unit 150 through user manipulation.
  • control unit 117 may be configured with a known press-type physical button or capacitive touch button.
  • the display 118 may be provided separately from the display 118, it may be provided in an integrated form with the display 118.
  • the display 118 displays information on the overall operating state of the cell defrosters 100 and 200 operated through the control unit 150 (eg, the temperature of the heating blocks 122a and 122b, and the surface temperature of the vessel 10). , operation status such as thawing, completion of thawing, thawing progress time), date and time at the time of thawing, and an error message such as sensor or heater failure, which will be described later, can be output.
  • the user can transfer input signals, such as operation and stop of the cell defrosters 100 and 200, defrosting temperature adjustment, and defrosting time adjustment, to the control unit 150 through manipulation of the control unit 117, and the display ( 118) may output information on the overall state of the cell thawers 100 and 200 through the control unit 150.
  • input signals such as operation and stop of the cell defrosters 100 and 200, defrosting temperature adjustment, and defrosting time adjustment
  • the cell thawers 100 and 200 may include at least one communication port 119 provided to be exposed to the outside from one side of the housing 110, as shown in FIG. 2, and the communication port 119 ) may be electrically connected to the controller 150.
  • the communication port 119 may include a LAN port 119a for communication with communication equipment such as an external network device or a PC, and a USB port 119b for inputting or outputting data.
  • the communication port 119 may be mounted on the rear cover 113 so as to be electrically connected to the controller 150 .
  • the controller 150 controls the external network device.
  • the time can be synchronized with a communication device such as a device or a PC.
  • the cell thawing machine 100 or 200 when the cell thawing machine 100 or 200 is connected to a PC such as a notebook computer, the cell thawing machine 100 or 200 may be synchronized with the date and time of the PC using a synchronization program installed in the PC.
  • the cell defrost device 100 or 200 can be synchronized with the local time of the region where thawing is performed when in use, and the local time of the region can be output through the display 118.
  • the cell defrosters 100 and 200 can store history information about the exact time of thawing of the biological material contained in the container 10, and the user can use the history information to store the container ( 10) can confirm the exact thawing time of the biological material.
  • information related to thawing may be stored in the cell thawer 100 or 200 itself or may be stored in a synchronization program of a communication device connected through the communication port 119 .
  • the information related to thawing stored in the cell thawer 100 or 200 or the synchronization program may be stored by date
  • a thawing history may be stored for each thawing case, and the thawing history may be stored locally in the region where the thawing is performed. may include time.
  • the thawing unit 120 may heat the container 10 in a state where the container 10 introduced into the housing 110 through the inlet 115 is accommodated in the heating space 121 .
  • the thawing unit 120 includes heating blocks 122a and 122b forming a heating space 121 for accommodating the container 10 as shown in FIGS. 4 to 8 and 20 to 24 And, heaters 123a and 123b installed on the heating blocks 122a and 122b to provide heat to the heating blocks 122a and 122b, and the heating block to surround the heaters 123a and 123b ( Insulation blocks 124a and 124b coupled to 122a and 122b and a pedestal 125 for supporting the lower portion of the container 10 in the heating space 121 may be included.
  • the container 10 when the container 10 is introduced into the housing 110 through the inlet 115, the lower portion of the container 10 may be supported through the pedestal 125, and the container ( 10) may be surrounded by the heating blocks 122a and 122b while being accommodated in the heating space 121 (see FIGS. 16, 19 and 28).
  • the heating blocks 122a and 122b may include disposition grooves 126a and 126b formed to be drawn inward on one surface, and the The heaters 123a and 123b may be inserted into the placement grooves 126a and 126b, and the heat insulation blocks 124a and 124b are inserted into the placement grooves 126a and 126b. In this state, it may be coupled to the heating blocks 122a and 122b so as to completely cover the placement grooves 126a and 126b.
  • the heating blocks 122a and 122b may be made of a material having thermal conductivity such as metal, and the heat insulating blocks 124a and 124b may be made of a material having heat insulation.
  • the heating blocks 122a and 122b can be heated by the heat generated from the heaters 123a and 123b, and the heat generated from the heaters 123a and 123b Heat can be concentrated toward the heating blocks 122a and 122b by limiting the direction of heat movement through the insulation blocks 124a and 124b, and transferred from the heaters 123a and 123b to the heating blocks 122a and 122b.
  • the generated heat may be transferred to the heating space 121 side.
  • the container 10 can be heated by the heat provided from the heating blocks 122a and 122b, and the biological material stored in the container 10 can be thawed by the heat.
  • the heat generated from the heaters 123a and 123b can be concentrated toward the heating blocks 122a and 122b by limiting the direction of heat movement through the heat insulation blocks 124a and 124b, one embodiment of the present invention In the cell thawers 100 and 200 according to the example, energy consumption efficiency may be improved.
  • the container 10 accommodated in the heating space 121 can be heated using the heat of the heating blocks 122a and 122b heated to a constant temperature by the heat transferred from the heaters 123a and 123b,
  • the circumferential surface of the container 10 can be heated to a uniform temperature.
  • the circumferential surface of the container 10 may be the circumferential surface of the container body 12 excluding the cap portion 14 and the flange portion 16 .
  • the thawing unit 120 has a temperature sensor 128a installed on the heating blocks 122a and 122b to measure the temperature of the heating blocks 122a and 122b. 128b) may be included.
  • the temperature sensors 128a and 128b may be known contact temperature sensors such as thermocouples, resistance thermometers (RTDs), and thermisters, and the temperature sensors 128a and 128b The temperatures of the heating blocks 122a and 122b measured through this may be transmitted to the controller 150.
  • control unit 150 controls the driving of the heaters 123a and 123b based on the temperature information measured by the temperature sensors 128a and 128b to set the temperatures of the heating blocks 122a and 122b to a constant temperature.
  • the controller 150 can maintain the temperature of the heating blocks 122a and 122b constant by controlling driving of the heaters 123a and 123b through PID control.
  • control unit 150 may prevent overheating of the heating blocks 122a and 122b by controlling driving of the heaters 123a and 123b based on the temperature information measured by the temperature sensors 128a and 128b. there is.
  • the heaters 123a and 123b may be ceramic heaters to secure reliability and improve the life cycle of products even under operating conditions in which heating and cooling are repeatedly performed, but are not limited thereto. All heaters can be applied.
  • the heating space 121 may be provided in a shape corresponding to the shape of the container 10, and the heating space 121 may be formed through at least two heating blocks 122a and 122b.
  • the heating blocks 122a and 122b have first and second heating blocks 122a and 122b disposed so that one surfaces face each other. ), and the heating space 121 is a pair of opposing surfaces 127a and 127b formed in the first heating block 122a and the second heating block 122b facing each other, respectively. can be formed through
  • the pair of opposing surfaces 127a and 127b may be drawn inward to have a shape corresponding to the circumferential surface of the container 10 .
  • the pair of opposing surfaces 127a and 127b may be arc-shaped curved surfaces, and when the container 10 is formed in the shape of a square column, The pair of opposite surfaces 127a and 127b may be formed as bent surfaces having a substantially 'c' cross-sectional shape.
  • the container 10 when the container 10 is introduced into the heating space 121 through the inlet 115, the container 10 has a pair of opposite surfaces (circumferential surfaces defining the heating space 121) 127a, 127b) can be completely surrounded.
  • the circumferential surface of the container 10 accommodated in the heating space 121 can be uniformly heated by the heat provided from the first heating block 122a and the second heating block 122b.
  • each of the first heating block 122a and the second heating block 122b may include disposition grooves 126a and 126b drawn inward on one surface thereof, respectively, and the heaters 123a and 123b The first heater 123a and the second heater 123b are inserted into the arrangement groove 126a formed in the first heating block 122a and the arrangement groove 126b formed in the second heating block 122b, respectively.
  • the heat insulation blocks 124a and 124b may include a first heat insulation block 124a and a second heat insulation block 124b, and the first heat insulation block 124a is the first heater 123a.
  • the first heat insulation block 124a is the first heater 123a.
  • the second insulation block 124b may be coupled to the second heating block 122b so as to completely cover the placement groove 126b in a state where the second heater 123b is inserted into the placement groove 126b of the second heating block 122b.
  • the temperature sensors 128a and 128b are the first temperature sensor 128a and the second heating block installed in the first heating block 122a to measure the temperature of the first heating block 122a.
  • a second temperature sensor 128b installed in the second heating block 122b may be included to measure the temperature of 122b.
  • the heat generated from the first heater 123a may heat the first heating block 122a
  • the heat generated from the second heater 123b may heat the second heating block 122b.
  • the controller 150 controls the heating of the first heater 123a and the second heater 123b based on the temperature information measured by the first temperature sensor 128a and the second temperature sensor 128b. By controlling driving, the temperature of the first heating block 122a and the second heating block 122b can be kept constant.
  • the controller 150 controls the operation of the first heater 123a and the second heater 123b based on the temperature information measured through the first temperature sensor 128a and the second temperature sensor 128b. Driving may be controlled together, and the controller 150 controls the first heater 123a and the second heater based on temperature information measured through the first temperature sensor 128a and the second temperature sensor 128b.
  • the driving of 123b can be individually controlled.
  • the heating blocks 122a and 122b include the first heating block 122a and the second heating block 122b in the cell thawing machine 100 or 200 according to an embodiment of the present invention
  • the first heating block 122a and the second heating block 122b The temperature of the block 122a and the second heating block 122b can be precisely controlled through the control of the controller 150.
  • the container 10 has a uniform circumferential surface. can be heated
  • control unit 150 individually controls the driving of the first heater 123a and the second heater 123b, the user immediately sees the corresponding part based on the information output through the display 118. It is possible to check the abnormality of the part, and take appropriate action on the part in which the abnormality occurred.
  • the user can immediately check the abnormality of the corresponding part based on the information output through the display 118, and the corresponding part in which the abnormality occurred. can be taken appropriately.
  • the container 10 accommodated in the heating space 121 does not contact the heating block 122a or 122b with the heating block 122a. , 122b) may be heated by heat transmitted in a non-contact manner.
  • the circumferential surface of the container 10 faces the opposite surface 127a of the first heating block 122a forming the heating space 121.
  • the opposite surface 127b of the second heating block 122b and may be spaced apart at a predetermined interval.
  • a gap d may be formed between the opposing surfaces 127a and 127b and the outer surface of the container 10 .
  • the heat stored in the first heating block 122a and the second heating block 122b may be transferred to the relatively low-temperature container 10 through convection and/or radiation instead of conduction.
  • the cell thawers 100 and 200 can heat the circumferential surface of the container 10 through heat transfer using convection and/or radiation, the circumferential surface of the container 10 is It can be evenly heated through convective heat and/or radiant heat transmitted from the heating blocks 122a and 122b.
  • the cell thawing apparatus 100 or 200 has convective heat. And/or because the circumferential surface of the container 10 can be uniformly heated through radiant heat, concentration of heat in a local location of the container 10 can be prevented.
  • the first heating block (122a) and the second heating block (122b) even if the container (10) is made of glass or plastic material vulnerable to high temperature heat. Since it does not come into direct contact with the container 10, it is possible to prevent cracks or thermal deformation of the container that may occur due to heat when in direct contact with a high-temperature object.
  • the gap (d) between the pair of opposing surfaces 127a and 127b forming the heating space 121 and the outer surface of the container 10 may be 0.2 mm to 0.3 mm, but is limited thereto
  • the size of the gap (d) may be appropriately changed according to the overall size of the container (10).
  • the pedestal 125 supporting the lower portion of the container 10 allows the lower edge of the container 10 to be inserted into the container 10.
  • a protruding member 125d protruding at a predetermined height so that the lower surface of the container 10 can be spaced apart at a predetermined height from one surface of the pedestal 125.
  • the seating groove 125a can stably support the container 10 by fixing the lower edge of the container 10.
  • the protruding member 125d supports the lower surface of the container 10 so that the lower surface of the container 10 is constant from one surface of the pedestal 125. It can be spaced apart in height.
  • the seating groove 125a may be formed in a shape corresponding to the flange portion 16 so that the flange portion 16 formed along the lower edge of the container 10 can be inserted. As shown in FIGS. 9 and 10 , the groove 125a may be formed to be located outside the protruding member 125d along the circumferential direction of the protruding member 125d.
  • the lower surface of the container 10 can be supported by one surface of the protruding member 125d, and the flange portion 16 is the seating groove ( 125a), and the container 10 in which the flange portion 16 is inserted into the seating groove 125a can maintain an upright state without tilting in any direction.
  • the container 10 disposed in the heating space 121 has a circumferential surface facing a pair of opposing surfaces 127a and 127b forming the heating space 121 in the heating space 121. It is possible to maintain a uniform distance from the pair of opposing surfaces 127a and 127b while being positioned as .
  • the driving unit 130 may linearly move the heating blocks 122a and 122b in left and right directions. For example, as described above, when the heating blocks 122a and 122b include the first heating block 122a and the second heating block 122b, the driving unit 130 may operate on the first heating block 122a. And at least one of the second heating block 122b can be reciprocally moved in a straight line in the left and right directions.
  • the driving unit 130 may operate on the first heating block 122a and The second heating block 122b may be reciprocally moved in a straight line in the left and right directions, respectively.
  • the cell thawing machine 100 or 200 operates the first heating block 122a and the first heating block 122a through the driving of the driving unit 130. 2 through the heating position where the heating blocks 122b are arranged to be close to each other and the driving of the driving unit 130 as shown in FIGS. 13, 15, 17, 25, 27 and 29
  • the first heating block 122a and the second heating block 122b may be changed to a standby position in which they are spaced apart from each other.
  • the facing surface 127a of the first heating block 122a and a heating space 121 for receiving the container 10 and heating the container 10 may be formed between the opposite surface 127b of the second heating block 122b.
  • the first heating block 122a A gap between the facing surface 127a of the second heating block 122b and the facing surface 127b of the second heating block 122b may be widened.
  • the user can easily insert the vessel 10 to be disposed between the first heating block 122a and the second heating block 122b or the first heating block 122a and the second heating block 122b )
  • the container 10 disposed between can be easily taken out.
  • the drive unit 130 is coupled with a motor 131 that provides a driving force and a rotating shaft 131a of the motor 131 as shown in FIGS. 4 to 6 and 20 to 22.
  • the rotation member 132 and the rotation member 132 and the rotation member 132 can linearly move the first heating block 122a and the second heating block 122b in the left and right directions, respectively.
  • a power transmission member interconnecting the thawing unit 120 may be included.
  • the power transmission member includes guide blocks 134a and 134b fixedly coupled to the heat insulation blocks 124a and 124b, guide rails 135 for guiding linear movement of the guide blocks 134a and 134b,
  • the movable member 136 that moves up and down along the rotating member 132 and the guide blocks 134a and 134b and the movable member 136 are mutually linked. It may include a link member (137a, 137b) to.
  • the guide blocks 134a and 134b include a first guide block 134a fixedly coupled to the first insulating block 124a and a second guide block fixedly coupled to the second insulating block 124b. (134b), the first guide block (134a) and the second guide block (134b) can be slidably coupled to the guide rail (135).
  • link members 137a and 137b include a first link member 137a interconnecting the movable member 136 and the first guide block 134a, and the movable member 136 and the second link member 137a.
  • a second link member 137b linking the guide blocks 134b to each other may be included.
  • the cell defroster 100 or 200 includes a base 161, a mount 162, a support bar 163, and a support 164 disposed inside the housing 110. may further include.
  • a mounting table 162 may be fixedly coupled to the upper surface of the base 161, and the motor 131 may be coupled to the mounting table ( 162), and the rotating member 132 coupled to the rotating shaft 131a of the motor 131 can be rotatably coupled to the mounting table 162.
  • the plate-shaped support 164 having a predetermined area has a predetermined length and one end is fixedly coupled to the base 161 through at least one support bar 163 upward from the base 161 at a predetermined interval. It may be disposed in a spaced apart state, and the guide rail 135 and the pedestal 125 may be fixedly coupled to one surface of the support 164 .
  • first guide block 134a and the second guide block 134b can be slidably coupled to the guide rail 135, and the first insulation block 124a is the first guide block ( 134a), and the second insulation block 124b may be fixedly coupled to the second guide block 134b.
  • the rotating member 132 may be a screw bar having a predetermined length and having one end coupled to the rotating shaft 131a of the motor 131, and the moving member 136 is screwed to the rotating member 132. It can be movably coupled.
  • the support 164 may include a through hole 164a having a long hole through which the first link member 137a and the second link member 137b may respectively pass.
  • both ends of the first link member 137a may be linked to the rotation member 132 and the first guide block 134a, respectively, and the second link member 137b has both ends connected to the rotation member 132 ) and the second guide block 134b, respectively.
  • the moving member 136 when the rotating member 132 coupled to the rotating shaft 131a rotates when the motor 131 is driven, as shown in FIGS. 13 to 17 and 25 to 29, the moving member 136 ) can be ascended and descended by screw movement along the rotating member 132, and the first guide block 134a and the second guide block 134b each linked to the moving member 136 are linked to the moving member 136. Through the ascending and descending of the 136, it can be linearly moved in the left and right directions along the guide rail 135.
  • first and second insulating blocks 124a and 124b fixedly coupled to the first guide block 134a and the second guide block 134b are respectively connected to the first guide block 134a and the second insulating block 124b.
  • the first heating block 122a and the first heating block 122a fixedly coupled to the first and second insulating blocks 124a and 124b can be moved in a straight line in the left and right directions in the same way as the two guide blocks 134b.
  • 2 Heating block (122b) can also be moved in a straight line in the left and right directions.
  • the first heating block 122a and the second heating block 122b are driven by the driving unit 130 to move the first heating block ( 122a) and the second heating block 122b are disposed close to each other at a heating position, and the first heating block 122a and the second heating block 122b are mutually connected to each other through the driving of the drive unit 130. It can be changed to a standby position that is spaced apart at intervals.
  • the container 10 accommodated in the heating space 121 has a lower portion.
  • the protruding member 125d it can be located at a relatively higher position than the lower surfaces of the first heating block 122a and the second heating block 122b.
  • the vessel 10 disposed in the heating space 121 may be disposed in a state in which the circumferential surface faces a pair of opposing surfaces 127a and 127b forming the heating space 121 .
  • the rotational movement of the motor 131 through mutual coupling of the rotating member 132, the moving member 136, and the link members 137a and 137b is performed by the first guide block 134a and the second guide block 134a.
  • the present invention is not limited thereto, and various known structures such as a ball screw structure can all be applied as long as rotational motion can be converted into linear motion.
  • the cell thawing machine 100 or 200 may further include a position detecting means for detecting the position of the heating block 122a or 122b.
  • the position detecting means detects the position of the heating blocks 122a and 122b through contact with the insulation blocks 124a and 124b. It may be a limit switch 170.
  • the limit switch 170 may be installed on one surface of the support 164, and through contact with the second insulating block 124b, the second heating block 122b The position can be detected, and the information detected through the limit switch 170 can be provided to the controller 150.
  • the limit switch 170 is a switch box 171 fixedly installed on one side of the support 164, as shown in FIGS. 7 and 8, and a hinge operation on one side of the switch box 171 It may include an operating lever 172 and a roller 173 rotatably coupled to one end of the operating lever 172.
  • the switch box 171 when the roller 173 contacts the second insulation block 124b and the operation lever 172 operates, the switch box 171 can be operated. Information on whether the switch box 171 is operated may be transmitted to the control unit 150.
  • the second insulating block 124b may move together with the second heating block 122b.
  • the second insulation block 124b can come into contact with the roller 173, and as shown in FIG. 7, when the second heating block 122b is completely moved to the standby position, the operating lever 172 ) is operated so that the switch box 171 can be operated.
  • control unit 150 determines that the second heating block 122b is positioned in the standby position and controls the driving of the motor 131 so that the second heating block 122b moves excessively. can prevent doing so.
  • the second insulating block ( 124b) is moved together with the second heating block 122b, so that the contact state between the second insulating block 124b and the roller 173 can be released.
  • a hinge roller type limit switch is exemplified as a position detection means for detecting the position of the second heating block 122b, but the present invention is not limited thereto, and a lever type limit switch, a pin type limit switch Various known limit switches, such as limit switches, may all be employed.
  • the position detecting unit includes the heating blocks 122a and 122b that linearly move in left and right directions through driving of the driving unit 130). It may be a position detection sensor 270 for detecting the position of.
  • Such a position detection sensor 270 may be a non-contact type position detection sensor.
  • the non-contact position detection sensor 270 may be a known photomicro sensor.
  • the non-contact position detection sensor 270 has a photosensor 272 installed on one surface of the support 164 and one end of the second insulation block 124b. ) may include a detection bar 274 fixed to the
  • the photosensor 272 detects the detection bar 274.
  • the position of the second heating block 122b can be detected through the bar 274, and the information detected through the position detection sensor 270 can be provided to the controller 150.
  • control unit 150 can accurately detect the position of the second heating block 122b through the non-contact position detection sensor 270 and can accurately check the origin of the motor 131.
  • the second insulating block 124b may move together with the second heating block 122b.
  • the detection bar 274 fixed to the second insulating block 124b can move toward the photosensor 272, and as shown in FIG. 23, the second heating block 122b is in a standby position. When completely moved to , the detection bar 274 may enter a groove portion formed in the photosensor 272 with a partial length.
  • control unit 150 determines that the second heating block 122b is positioned in the standby position and controls the driving of the motor 131 so that the second heating block 122b moves excessively. can prevent doing so.
  • the second insulating block ( The detection bar 274 fixed to 124b) may move away from the photosensor 272.
  • a non-contact sensor is exemplified as a method for detecting the position of the second heating block 122b, but the present invention is not limited thereto, and if the position of the heating block 122 can be detected, a known Position detection sensors of various types may all be employed.
  • the sensing unit 140 may check the state of the container 10 disposed in the heating space 121 . For example, when the defrosting unit 120 is located at the heating position, the sensing unit 140 detects the surface temperature of the vessel 10 disposed in the heating space 121 and transmits the detected result to the control unit 150) side.
  • control unit 150 may output information on the container 10 sensed through the sensing unit 140 at the heating position to the display 118 .
  • the user can check the thawing process of the biological material contained in the container 10 in real time through the information output from the display 118, and can monitor whether the biological material is thawing within an appropriate temperature range.
  • the sensing unit 140 includes a sensor 141 for checking the state of the container 10 disposed in the heating space 121 and , may include a mounting member 142 to which the sensor 141 is mounted.
  • the senor 141 may be an infrared temperature sensor to measure the surface temperature of the container 10 in a non-contact manner, and the sensor 141 is fixed to the mounting member 142 in a state The surface temperature of the vessel 10 disposed in the heating space 121 may be measured.
  • the heating blocks 122a and 122b may include placement holes 129a and 129b formed in a shape corresponding to the sensor 141 so that the sensor 141 may enter the heating space 121 side.
  • the arranging holes 129a and 129b may be formed to pass through the first heating block 122a and the second heating block 122b, respectively, and the arranging holes 129a and 129b may pass through the first heating block 122a and the second heating block 122b.
  • the part 129a formed on 122a and the part 129b formed on the second heating block 122b may be formed by being molded together.
  • the thawing unit 120 when the thawing unit 120 is positioned at the heating position, the sensor 141 does not come into contact with the container 10 disposed in the heating space 121 through the placement holes 129a and 129b, and The surface temperature of the container 10 can be measured at a location very close to the container 10 .
  • the temperature information measured by the sensor 141 may be used as information for detecting whether or not the vessel 10 is disposed in the heating space 121 .
  • an infrared temperature sensor is exemplified as the sensor 141, but the present invention is not limited thereto, and various known sensors may all be employed, and the temperature of the container 10 measured according to the type of sensor employed. Information may vary.
  • the mounting member 142 may be provided to move in forward and backward directions in association with the operation of the power transmission member.
  • the first heating block 122a and the second heating block 122b are placed in the heating position in the standby position based on the state in which the container 10 is disposed in the heating space 121.
  • it can move in a direction closer to the container 10
  • the first heating block 122a and the second heating block 122b change from the heating position to the standby position, the direction away from the container 10 can move to
  • the sensing unit 140 includes a roller member 143 rotatably coupled to the mounting member 142 as shown in FIGS. 6, 9 to 12 and 22, and the first insulation block. (124a) fixedly coupled to and projecting a certain length in a direction parallel to the moving direction of the first insulating block (124a) to include a contact member (144) formed with a contact surface (145) contacting the roller member (143).
  • the contact surface 145 may be formed as a flat cam.
  • the sensing unit 140 includes an elastic member 146 that presses the mounting member 142 toward the heating space 121 and an end of the elastic member 146.
  • a fixing table 147 coupled to the pedestal 125 to be supported may be further included.
  • the pedestal 125 includes a coupling groove 125b that is drawn in from one surface to a certain depth so that a part of the mounting member 142 can be accommodated and the mounting member ( It may include a moving path 125c of a long hole formed through the coupling groove 125b so that the roller member 143 protruding from 142 can pass through, and the fixing table 147 is the coupling groove 125b. ) may be coupled to the pedestal 125 so as to cover a portion of the mounting member 142 inserted into.
  • the mounting member 142 may be pressed toward the contact member 144 through the elastic force provided from the elastic member 146 in a state where a portion thereof is accommodated in the coupling groove 125b, and the roller member ( 143) can maintain a state in contact with the contact surface 145 of the contact member 144, and the roller member 143 can be rotated while one side is in contact with the contact surface 145.
  • the contact surface 145 may include a first portion 145a, a second portion 145b, and a third portion 145c, as shown in the enlarged views of FIGS. 6 and 22 , and the first portion 145a.
  • the portion 145a and the third portion 145c may be connected to each other via the second portion 145b.
  • the first portion 145a and the third portion 145c may be formed stepwise from each other, and the third portion 145c is relatively larger than the first portion 145a, and the roller member 143 ) may be formed to protrude to the side.
  • the mounting member 142 moves a certain distance (L) in the front and rear directions along the moving path 125c within the coupling groove 125b to heat the heating. Based on the state in which the container 10 is disposed in the space 121, it may move in a direction closer to the container 10 or move in a direction away from the container 10.
  • the container 10 can be easily placed on the pedestal 125 or the container 10 can be easily taken out from the pedestal 125 without being interfered by the sensor 141. .
  • the control unit 150 may control overall driving of the cell thawers 100 and 200 according to an embodiment of the present invention.
  • control unit 150 may include a circuit board 151 and a chipset 152 such as an MCU mounted on the circuit board 151. All operations of the defrosting unit 120, the driving unit 130, the sensing unit 140, the display 118, the manipulation unit 117, and the position detection means can be controlled.
  • the controller 150 heats the container 10 accommodated in the heating space 121 at the heating position, the first heating block 122a and the second heating block 122b are in contact with each other Although driving of the driver 130 may be controlled to heat the container 10, the container 10 is operated in a state where the first heating block 122a and the second heating block 122b do not come into contact with each other. Driving of the driving unit 130 may be controlled to heat.
  • control unit 150 controls the part where the opposite surfaces 127a and 127b for forming the heating space 121 are formed among the surfaces of the first heating block 122a and the second heating block 122b facing each other.
  • the heating position may be set so that a predetermined gap is formed in the rest of the portion except for.
  • the motor 131 generates electricity to maintain contact between the first heating block 122a and the second heating block 122b at the heating position. potential loads can be avoided.
  • the cell thawing apparatus 100 or 200 removes moisture or moisture generated from the surface of the container 10 into the gap. can be discharged to the outside. Through this, the biological material contained in the container 10 can be thawed more smoothly.
  • the controller 150 preheats the heating blocks 122a and 122b to a predetermined temperature by driving the heaters 123a and 123b, and then starts thawing the biological material contained in the container 10. .
  • control unit 150 can keep the temperature of the heating blocks 122a and 122b constant through PID control, and when the heating blocks 122a and 122b are provided in plurality, the control unit ( 150) may individually control each of the heating blocks 122a and 122b.
  • the preheating temperature of the heating blocks 122a and 122b may be the same as the thawing temperature for thawing the biological material contained in the container 10 or may be a relatively higher temperature than the thawing temperature.
  • the controller 150 controls the temperature of the heating blocks 122a and 122b in a state where the container 10 put into the heating space 121 is completely thawed and the heating blocks 122a and 122b are changed to the standby position. can be kept constant.
  • the cell defroster 100 or 200 can be changed between a heating position and a standby position while the heating blocks 122a and 122b are continuously maintained at a constant temperature.
  • the user when using the cell defrost device 100 or 200 according to an embodiment of the present invention, the user can sequentially insert and take out a plurality of containers 10 into the heating space 121 to defrost the waiting time. can be minimized to increase work productivity.
  • the cell thawing machine 200 can conveniently perform qualification evaluation to verify the operating temperature of the heating block.
  • the cell thawing machine 200 may further include a sensor insertion hole 180, and the sensor insertion hole 180 extends from one surface of the heating blocks 122a and 122b. It can be drawn in at a certain depth.
  • the sensor insertion hole 180 may be a space into which a calibration sensor is inserted during calibration to check whether the heating blocks 122a and 122b are normally operating.
  • the calibration sensor (not shown) may be a bar-shaped temperature sensor having a predetermined length, and a partial length of the calibration sensor may be inserted into the sensor insertion hole 180 .
  • the checker can easily measure the temperature of the heating blocks 122a and 122b through the calibration sensor inserted into the sensor insertion hole 180, and thus the cell thawing machine 100, 200 according to an embodiment of the present invention can be used. ) can be checked for normal operation.
  • the sensor insertion hole 180 may be provided as one, when the heating blocks 122a and 122b include the above-described first heating block 122a and second heating block 122b, the first heating block 122a and 122b are included. It may be provided in plurality so as to be respectively formed in the block 122a and the second heating block 122b.
  • the sensor insertion hole 180 may be formed on the side surface of the heating blocks 122a and 122b, but as shown in FIG. 18, the sensor insertion hole 180 is inserted from the upper surface to the lower part of the heating block 122a and 122b to a certain depth. It may be formed on the heating blocks 122a and 122b.
  • the sensor insertion holes 180 formed on the upper surfaces of the heating blocks 122a and 122b can be exposed to the outside. .
  • the sensor insertion hole 180 for calibration is formed. may be exposed to the outside.
  • the sensor insertion hole 180 is inserted from the upper surface to the lower portion of the heating block 122a, 122b by a certain depth, the sensor insertion hole ( The calibration sensor inserted into 180) can maintain a state of being inserted upright into the sensor insertion hole 180 even without a separate fixing means.
  • the checker separates the upper cover 114 and inserts a partial length of the sensor for calibration into the sensor insertion hole 180 formed on the upper surface of the heating block 122a, 122b, and the heating block 122a, 122b ) can be easily and accurately measured.
  • the sensor insertion hole 180 may be formed to be positioned directly above the temperature sensors 128a and 128b embedded in the heating blocks 122a and 122b.
  • the sensor insertion hole 180 may be formed in the heating blocks 122a and 122b so that a lower end, which is a sealed end, is located directly above the temperature sensors 128a and 128b.
  • the lower end of the sensor insertion hole 180 may be formed on the heating block 122a or 122b to have a gap of 1 mm to 5 mm from the temperature sensor 128a or 128b.
  • the temperatures of the heating blocks 122a and 122b measured by the calibration sensor inserted into the sensor insertion hole 180 are set to It may be similar to the temperature of the heating blocks 122a and 122b measured by the temperature sensors 128a and 128b.
  • the temperature of the heating blocks 122a and 122b measured through the calibration sensor. Since the temperatures of the heating blocks 122a and 122b measured by the temperature sensors 128a and 128b during normal operation are similar to those of the heating block, the calibration result can be highly reliable.
  • the cover 116 covering the inlet 115 is removed, and power is supplied to the cell thawers 100 and 200.
  • control unit 150 may drive the driving unit 130 to change the thawing unit 120 to a stand-by position.
  • the controller 150 may drive the motor 131 to raise the moving member 136 . Accordingly, the first heating block 122a and the second heating block 122b can be slid and moved away from each other, and can be changed to a standby position spaced apart from each other at a predetermined interval.
  • the preparation step of changing the thawing unit 120 to the standby position when power is applied may be omitted.
  • the controller 150 operates the first heater 123a and the second heater 123b to heat the first heating block 122a and the second heating block 122b. It can be preheated to a predetermined temperature.
  • the preheating temperature of the first heating block 122a and the second heating block 122b is equal to or higher than the thawing temperature for thawing the biological material contained in the container 10.
  • the preheating of the first heating block 122a and the second heating block 122b may be performed in a state in which surfaces of the first heating block 122a and the second heating block 122b are in contact with each other.
  • the controller 150 may lower the moving member 136 by driving the motor 131 . Accordingly, the first heating block 122a and the second heating block 122b can slide in a direction closer to each other in the standby position, respectively, and the first heating block 122a and the second heating block 122b ) can be changed to a state in which one surface facing each other is in contact with each other.
  • the controller 150 controls the operation of the first heating block 122a and the second heating block 122b until the preheating of the first heating block 122a and the second heating block 122b is finished. Driving of the motor 131 can be controlled so that the contact state can be maintained.
  • the first heating block 122a and the second heating block 122b are in contact with each other through the first heater 123a and the second heater 123b disposed on both sides, respectively.
  • (122a) and the second heating block (122b) can be heated simultaneously, the first heating block (122a) and the second heating block (122b) are the first heater (123a) and the second heater (123b)
  • the temperature can be rapidly raised to a predetermined temperature through the heat transferred from the.
  • the control unit 150 may output a message indicating that the preheating is completed to the display 118, and the control unit ( 150 may slide and move the first heating block 122a and the second heating block 122b by driving the motor 131 .
  • the first heating block 122a and the second heating block 122b can be changed to a standby position spaced apart from each other at a predetermined interval.
  • the user checks the set defrosting time through the display 118 and, if the set defrosting time needs to be changed, the control unit By operating (117), the set defrosting time can be changed to an appropriate time.
  • the container 10 requiring defrosting may be disposed.
  • the container 10 may be arranged so that the flange portion 16 is inserted into the seating groove 125a while the lower surface is seated on one surface of the protruding member 125d.
  • the user sends a defrosting start signal through the control unit 117 in a state where the container 10 requiring defrosting is placed between the first heating block 122a and the second heating block 122b disposed in the standby position. can be entered.
  • the controller 150 may heat the container 10 to thaw the biological material contained in the container 10 as a second step (S2).
  • the controller 150 lowers the moving member 136 by driving the motor 131 so that the first heating block 122a and the second heating block 122b can be moved in a direction closer to each other. can make it
  • the first heating block 122a and the second heating block 122b provide a heating space 121 for accommodating and heating the container 10 in the standby position. It can be changed to a heating position to form, and the container 10 is surrounded by the first heating block 122a and the second heating block 122b in a state in which the container 10 is disposed in the heating space 121. can
  • the sensor 141 is connected to the linear movement of the first heating block 122a and the second heating block 122b to generate the first heating block 122a and the second heating block 122b.
  • the state of the container 10 accommodated in the heating space 121 can be sensed by moving toward the placement holes 129a and 129b respectively formed therein.
  • the container 10 can be heated by the defrosting time set by the user through the heat transmitted from the first heating block 122a and the second heating block 122b, and through the sensor 141
  • the state of the container 10 can be measured in real time.
  • the controller 150 may output a message indicating that it is defrosting to the display 118, based on the temperature information transmitted from the first temperature sensor 128a and the second temperature sensor 128b.
  • the temperature of the first heating block 122a and the second heating block 122b can be maintained constant by controlling the operation of the first heater 123a and the second heater 123b, and the sensor 141 State information about the container 10 sensed through may be output to the display 118 through driving of the control unit 150 .
  • the container 10 disposed in the heating space 121 is not in contact with the first heating block 122a and the second heating block 122b, and the first heating block ( 122a) and the second heating block 122b may be heated by heat transmitted in a non-contact manner.
  • the circumferential surface of the container 10 is the opposite surface 127a of the first heating block 122a forming the heating space 121. And it may be spaced apart from the opposite surface 127b of the second heating block 122b by a predetermined interval.
  • a gap d may be formed between the pair of opposing surfaces 127a and 127b and the outer surface of the container 10 in a state where the container 10 is disposed in the heating space 121 .
  • the heat stored in the first heating block 122a and the second heating block 122b may be transferred to the relatively low-temperature container 10 through convection and/or radiation instead of conduction.
  • the circumferential surface of the container 10 can be heated through convective heat and/or radiant heat, the circumferential surface of the container 10 is heated by convective heat and/or It can be heated evenly through radiant heat.
  • the controller 150 controls the motor 131 to heat the container 10 in a state where the first heating block 122a and the second heating block 122b are in contact with each other. ), but it is possible to control the driving of the motor 131 to heat the container 10 in a state where the first heating block 122a and the second heating block 122b do not contact each other.
  • control unit 150 controls the part where the opposite surfaces 127a and 127b for forming the heating space 121 are formed among the surfaces of the first heating block 122a and the second heating block 122b facing each other.
  • the heating position may be set so that a predetermined gap is formed in the rest of the portion except for.
  • the cell thawing machine 100 or 200 uses the motor 131 to keep the first heating block 122a and the second heating block 122b in contact with each other in the heating position. It is possible to prevent a load that may occur on the container, and in the process of thawing the biological material contained in the container 10 at the heating position, moisture or moisture generated from the surface of the container 10 is discharged to the outside through the gap. By doing so, the biological material can be thawed more smoothly.
  • the control unit 150 can output a message indicating completion to the display 118, and the control unit 150, as a third step (S3), the motor ( 131) may be driven to change the first heating block 122a and the second heating block 122b to a standby position.
  • the user can use the first heating block 122a and the second heating block 122a and the second heating block 122b in a state where the first heating block 122a and the second heating block 122b are located in the standby position.
  • the container 10 disposed between the blocks 122b can be taken out.
  • control unit 150 operates the first heater 123a and the second heater 123b so that the temperatures of the first heating block 122a and the second heating block 122b are constantly maintained. You can control it.
  • the user can sequentially defrost the plurality of containers 10 by sequentially repeating the first step (S1) and the second step (S2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

세포해동기가 제공된다. 본 발명의 일 실시예에 따른 세포해동기는 세포를 포함하는 생물학적 물질이 일정량 저장된 용기를 가열하기 위한 히팅공간을 형성하는 제1히팅블럭 및 제2히팅블럭을 포함하는 히팅블럭과, 상기 히팅블럭에 열을 제공할 수 있도록 상기 히팅블럭에 설치되는 히터와, 상기 히터를 감싸도록 상기 히팅블럭에 결합되는 단열블럭 및 상기 히팅공간에서 상기 용기의 하부를 지지하기 위한 받침대를 포함하는 해동부; 상기 제1히팅블럭 및 제2히팅블럭을 각각 좌,우 방향으로 직선이동시키는 구동력을 제공하는 구동부; 상기 히팅공간에 배치된 상기 용기의 상태를 감지하기 위한 센서와, 상기 센서가 장착되고 상기 구동부의 작동과 연계되어 전,후 방향으로 이동하는 장착부재를 포함하는 감지부; 및 상기 해동부, 구동부 및 감지부의 작동을 제어하는 제어부;를 포함한다.

Description

세포해동기 및 이의 운전방법
본 발명은 세포해동기 및 이의 운전방법에 관한 것이다.
일반적으로 다양한 생물학적 물질은 바이알과 같은 용기에 저장된 후 저온 상태에서 보관된다. 일례로, 혈장 및 조직세포는 최대 영하 100도에서 보관되며, 줄기세포는 가스상의 액체질소를 사용하여 최대 영하 165도에 이르는 극저온 상태에서 보관된다.
이러한 생물학적 물질은 상술한 저온 상태의 보관 온도보다 높은 온도에서 실험이 행해진다. 이에 따라, 생물학적 물질을 실험하기 위해서는 해동하는 과정이 요구된다.
이를 위해, 생물학적 물질이 보관된 바이알과 같은 용기를 가열하여 저온 상태의 생물학적 물질을 해동하기 위한 세포해동기가 제안된 바 있다.
그러나 종래의 세포해동기는 히팅블럭과 용기가 서로 접촉된 상태에서 열을 전달하는 방식을 채택하고 있다. 이에 따라, 종래의 세포해동기는 용기를 전체적으로 균일하게 가열하기 어려운 문제가 있으며, 고온의 히팅블럭이 용기와 직접 접촉되기 때문에 고온에 의해 용기가 균열되거나 변형되는 문제가 있다.
더불어, 종래의 세포해동기는 히팅블럭의 정상작동여부를 엘이디와 같은 인디케이터를 통해 단순히 표시하는 방식이었다.
이에 따라, 종래의 세포해동기는 히팅블럭이 올바르게 작동하는지를 판단하기 위한 적격성 평가시 히팅블럭의 작동온도를 간편하게 측정할 수 없는 문제가 있었다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 가열과정에서 생물학적 물질을 포함하는 용기의 열에 대한 안정성을 확보하면서도 용기를 전체적으로 균일하게 가열할 수 있는 세포해동기 및 이의 운전방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 에너지 사용 효율을 높일 수 있는 세포해동기 및 이의 운전방법을 제공하는데 다른 목적이 있다.
더욱이, 본 발명은 적격성 평가시 히팅블럭의 작동온도를 간편하게 측정할 수 있는 세포해동기를 제공하는데 또 다른 목적이 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명은 세포를 포함하는 생물학적 물질이 일정량 저장된 용기를 가열하기 위한 히팅공간을 형성하는 제1히팅블럭 및 제2히팅블럭을 포함하는 히팅블럭과, 상기 히팅블럭에 열을 제공할 수 있도록 상기 히팅블럭에 설치되는 히터와, 상기 히터를 감싸도록 상기 히팅블럭에 결합되는 단열블럭 및 상기 히팅공간에서 상기 용기의 하부를 지지하기 위한 받침대를 포함하는 해동부; 상기 제1히팅블럭 및 제2히팅블럭을 각각 좌,우 방향으로 직선이동시키는 구동력을 제공하는 구동부; 상기 히팅공간에 배치된 상기 용기의 상태를 감지하기 위한 센서와, 상기 센서가 장착되고 상기 구동부의 작동과 연계되어 전,후 방향으로 이동하는 장착부재를 포함하는 감지부; 및 상기 해동부, 구동부 및 감지부의 작동을 제어하는 제어부;를 포함한다.
한편, 본 발명은 모터의 구동력을 통해 직선이동을 통하여 세포를 포함하는 생물학적 물질이 일정량 저장된 용기를 가열하기 위한 히팅공간을 형성하고 히터로부터 제공되는 열을 통해 상기 히팅공간에 수용된 상기 용기를 가열하기 위한 제1히팅블럭 및 제2히팅블럭을포함하는 히팅블럭; 및 상기 히팅블럭의 직선이동과 연계되어 위치가 변경되고 상기 히팅공간에 배치된 용기의 상태를 감지하기 위한 센서;를 포함하는 세포해동기에 있어서, 서로 마주하는 상기 제1히팅블럭의 일면 및 제2히팅블럭의 일면이 서로 접촉된 상태에서 상기 히터를 구동하여 상기 제1히팅블럭 및 제2히팅블럭을 소정의 온도까지 예열하는 제1단계; 상기 제1히팅블럭 및 제2히팅블럭이 상기 히팅공간을 형성하는 가열위치로 변경된 상태에서 상기 생물학적 물질을 해동할 수 있도록 상기 히팅공간에 배치된 상기 용기를 가열하는 제2단계; 및 상기 히팅공간에 배치된 용기를 취출할 수 있도록 상기 제1히팅블럭 및 제2히팅블럭을 가열위치에서 서로 멀어지는 방향으로 이동시켜 대기위치로 변경하는 제3단계;를 포함하고, 상기 제2단계에서 상기 히팅공간에 배치된 상기 용기는 상기 제1히팅블럭 및 제2히팅블럭과 서로 접촉되지 않은 상태에서 상기 제1히팅블럭 및 제2히팅블럭으로부터 비접촉 방식으로 전달되는 열에 의해 가열되는 것을 특징으로 하는 세포해동기의 운전방법을 제공한다.
본 발명에 의하면, 복사열을 이용하여 비접촉 가열 방식으로 용기를 가열함으로써 용기를 균일하게 가열할 수 있고, 전도열에 의한 가열시 발생할 수 있는 용기의 균열 또는 열변형을 미연에 방지할 수 있다.
또한, 본 발명에 의하면. 히팅블럭의 온도가 일정하게 유지될 수 있음으로써 복수의 용기를 순차적으로 해동할 수 있다. 이를 통해, 본 발명은 용기를 해동하기 위한 재사용 대기시간을 줄이면서도 복수 개의 용기를 해동할 수 있기 때문에 에너지소비효율을 향상시킬 수 있다.
더욱이, 본 발명에 의하면, 상부커버를 분리하면 적격성 평가를 위한 센서삽입홀이 외부로 노출됨으로써 적격성 평가를 간편하게 수행할 수 있다.
도 1은 본 발명의 일 실시예에 따른 세포해동기를 나타낸 도면,
도 2는 도 1을 다른 방향에서 바라본 도면,
도 3은 도 1에서 하우징을 분리한 도면,
도 4는 본 발명의 제1실시예에 따른 세포해동기를 나타낸 도면으로서, 도 3에서 하우징 및 회로기판이 제거된 상태를 나타낸 도면,
도 5는 도 4를 다른 방향에서 바라본 도면,
도 6은 도 4에서 일부 구성을 분리한 도면,
도 7은 도 5의 일부를 확대한 도면으로서, 대기위치에서 제1히팅블럭 및 제2히팅블럭의 일부를 절개한 도면,
도 8은 본 발명의 제1실시예에 따른 세포해동기에서 히팅블럭이 가열위치에 배치된 상태에서의 일부를 나타낸 도면,
도 9는 본 발명의 일 실시예에 따른 세포해동기에 적용되는 감지부의 구성을 나타낸 도면으로서, 히팅블럭이 가열위치에 배치된 상태에서 롤러부재의 위치를 나타낸 도면,
도 10은 본 발명의 일 실시예에 따른 세포해동기에 적용되는 감지부의 구성을 나타낸 도면으로서, 히팅블럭이 대기위치에 배치된 상태에서 롤러부재의 위치를 나타낸 도면,
도 11은 도 9의 상태에 해당하는 감지부, 히팅블럭 및 용기의 배치관계를 나타낸 도면으로서, 제1히팅블럭, 제1단열블럭 및 제1가이드블럭이 제거된 상태를 나타낸 도면,
도 12는 도 10의 상태에 해당하는 감지부 및 히팅블럭의 배치관계를 나타낸 도면으로서, 제1히팅블럭, 제1단열블럭 및 제1가이드블럭이 제거된 상태를 나타낸 도면,
도 13은 본 발명의 제1실시예에 따른 세포해동기의 작동상태도로서, 초기 구동시 대기위치를 도 8의 A-A 방향에서 바라본 부분단면도,
도 14는 본 발명의 제1실시예에 따른 세포해동기에서 히팅블럭이 예열되는 상태를 나타낸 작동상태도로서, 도 8의 A-A 방향에서 바라본 부분단면도,
도 15는 본 발명의 제1실시예에 따른 세포해동기에서 용기가 투입되는 과정을 나타낸 작동상태로서, 도 8의 A-A 방향에서 바라본 부분단면도,
도 16은 본 발명의 제1실시예에 따른 세포해동기에서 의 작동상태도로서, 가열위치에서 용기가 가열되는 상태를 도 8의 A-A 방향에서 바라본 부분단면도,
도 17은 본 발명의 제1실시예에 따른 세포해동기의 작동상태도로서, 대기위치에서 용기가 취출되는 과정을 도 8의 A-A 방향에서 바라본 부분단면도,
도 18은 본 발명의 제2실시예에 따른 세포해동기를 나타낸 도면으로서, 도 1에서 덮개가 제거된 상태에서 상부커버가 분리된 상태를 나타낸 도면,
도 19는 도 18의 B-B 방향 단면도로서, 해동부를 발췌한 단면도,
도 20은 본 발명의 제2실시예에 따른 세포해동기를 나타낸 도면으로서, 도 3에서 하우징 및 회로기판이 제거된 상태를 나타낸 도면,
도 21은 도 20을 다른 방향에서 바라본 도면,
도 22는 도 20에서 일부 구성을 분리한 도면,
도 23은 도 21의 일부를 확대한 도면으로서, 대기위치에서 제1히팅블럭 및 제2히팅블럭의 일부를 절개한 도면,
도 24는 본 발명의 제2실시예에 따른 세포해동기에서 히팅블럭이 가열위치에 배치된 상태에서의 일부를 나타낸 도면,
도 25는 본 발명의 제2실시예에 따른 세포해동기의 작동상태도로서, 초기 구동시 대기위치를 도 24의 B-B 방향에서 바라본 부분단면도,
도 26은 본 발명의 제2실시예에 따른 세포해동기에서 히팅블럭이 예열되는 상태를 나타낸 작동상태도로서, 도 24의 C-C 방향에서 바라본 부분단면도,
도 27은 본 발명의 제2실시예에 따른 세포해동기에서 용기가 투입되는 과정을 나타낸 작동상태로서, 도 24의 C-C 방향에서 바라본 부분단면도,
도 28은 본 발명의 제2실시예에 따른 세포해동기의 작동상태도로서, 가열위치에서 용기가 가열되는 상태를 도 24의 C-C 방향에서 바라본 부분단면도,
도 29는 본 발명의 제2실시예에 따른 세포해동기의 작동상태도로서, 대기위치에서 용기가 취출되는 과정을 도 24의 C-C 방향에서 바라본 부분단면도, 그리고
도 30은 본 발명의 일 실시예에 따른 세포해동기의 운전방법을 나타낸 블럭도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
본 발명의 일 실시에 따른 세포해동기(100,200)는 용기(10)에 담긴 저온 상태(예를 들면 냉동 상태)의 생물학적 물질을 가열하여 해동할 수 있다.
여기서, 상기 생물학적 물질은 생물체의 구조적 기본 단위인 세포(Cell)를 포함할 수 있으며, 상기 용기(10)는 바이알(Vial), 비커(beaker) 또는 시험관(test tube) 등과 같은 공지의 실험용 용기 또는 의학용 용기일 수 있다.
또한, 상기 용기(10)는 도 1에 도시된 바와 같이 상기 생물학적 물질이 수용되는 용기본체(12)와, 상기 용기본체(12)의 개방된 상부를 덮는 캡부(14)와 상기 용기본체(12)의 하부에 돌출형성되는 플랜지부(16)를 포함할 수 있으며, 대략 2㎖ 용량의 생물학적 물질이 상기 용기본체(12)에 담길 수 있다. 그러나 상기 용기(10)의 형상 및 상기 용기본체(12)에 담기는 생물학적 물질의 용량을 이에 한정하는 것은 아니며 설계조건에 따라 다양한 형태로 변경될 수 있다.
이때, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 상기 용기(10)를 복사열 및/또는 대류열을 통해 비접촉 가열 방식으로 가열함으로써 용기(10)를 전체적으로 균일하게 가열할 수 있으며, 전도열에 의한 접촉가열시 발생할 수 있는 용기(10)의 균열 또는 열변형을 미연에 방지할 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 도 1 내지 도 6, 도 18 내지 도 22에 도시된 바와 같이 하우징(110), 해동부(120), 구동부(130), 감지부(140) 및 제어부(150)를 포함한다.
상기 하우징(110)은 도 1 내지 도 3에 도시된 바와 같이, 세포해동기(100,200)의 외면을 형성할 수 있으며, 상기 해동부(120), 구동부(130), 감지부(140) 및 제어부(150)가 내부에 배치될 수 있도록 함체형상으로 형성될 수 있다.
이와 같은 하우징(110)은 하나의 부재로 구성될 수도 있지만 복수 개의 부재로 구성될 수 있으며, 상기 복수 개의 부재는 착탈가능하게 결합될 수 있다.
일례로, 상기 하우징(110)은 도 3에 도시된 바와 같이, 함체형상의 본체(111)와, 상기 본체(111)의 개방된 하부를 덮는 하부커버(112)와, 상기 본체(111)의 개방된 후면을 덮는 후면커버(113) 및 상기 본체(111)의 상부를 덮는 상부커버(114)를 포함할 수 있다.
이와 같은 경우, 상기 해동부(120), 구동부(130), 감지부(140) 및 제어부(150)는 상기 본체(111)의 내부에 배치될 수 있다.
이때, 상기 하우징(110)은 상기 용기(10)가 상기 본체(111)의 내부로 삽입될 수 있도록 소정의 면적으로 관통형성되는 투입구(115)를 포함할 수 있으며, 상기 투입구(115)는 덮개(116)를 통해 덮어질 수 있다.
여기서, 상기 투입구(115)는 후술할 히팅공간(121)과 대응되는 위치에 위치하도록 상기 하우징(110)에 관통형성될 수 있다.
일례로, 상기 투입구(115)는 후술할 가열위치에서 상기 해동부(120)에 형성되는 히팅공간(121)과 연통되도록 상기 상부커버(114)를 관통하도록 형성될 수 있다. 이를 통해, 상기 용기(10)가 상기 투입구(115) 측으로 삽입되면, 상기 용기(10)는 캡부(14)가 상기 투입구(115)를 통해 외부로 노출될 수 있으며, 상기 캡부(14)를 제외한 나머지 부분이 상기 히팅공간(121) 측에 삽입될 수 있다.
또한, 도 1 및 도 18에 도시된 바와 같이 상기 하우징(110)의 일측에는 본 발명의 일 실시에 따른 세포해동기(100,200)의 작동을 조작하기 위한 조작부(117)와, 상기 세포해동기(100,200)의 작동상태를 표시하기 위한 디스플레이(118)가 구비될 수 있다.
이와 같은 조작부(117)는 사용자 조작을 통하여 상기 제어부(150) 측으로 입력신호를 전달하기 위한 인터페이스일 수 있다.
여기서, 상기 조작부(117)는 공지의 가압식 물리 버튼이나 정전식 터치 버튼 등으로 구성될 수 있다.
또한, 상기 디스플레이(118)와 별도로 구비될 수도 있지만, 상기 디스플레이(118)와 통합된 형태로 구비될 수도 있다.
더불어, 상기 디스플레이(118)는 상기 제어부(150)를 통해 작동되는 세포해동기(100,200)의 전반적인 작동상태에 대한 정보(ex, 히팅블럭(122a,122b)의 온도, 용기(10)의 표면온도, 해동 중, 해동 완료 등과 같은 작동상태, 해동진행시간), 해동이 진행되는 시점의 날짜 및 시간, 후술할 센서나 히터의 고장과 같은 오류 메시지 등을 출력할 수 있다.
이를 통해, 사용자는 상기 조작부(117)의 조작을 통하여 세포해동기(100,200)의 작동 및 정지, 해동 온도 조절, 해동 시간 조절 등과 같은 입력신호를 상기 제어부(150) 측으로 전달할 수 있으며, 상기 디스플레이(118)는 상기 제어부(150)를 통해 세포해동기(100,200)의 전반적인 상태에 대한 정보를 출력할 수 있다.
더불어, 상기 세포해동기(100,200)는 도 2에 도시된 바와 같이 상기 하우징(110)의 일측에서 외부로 노출되도록 구비되는 적어도 하나의 통신포트(119)를 포함할 수 있으며, 상기 통신포트(119)는 상기 제어부(150)와 전기적으로 연결될 수 있다.
일례로, 상기 통신포트(119)는 외부 네트워크 장비나 PC와 같은 통신장비와의 통신을 위한 LAN 포트(119a)와, 데이터를 입력하거나 출력하기 위한 USB 포트(119b)를 포함할 수 있으며, 상기 통신포트(119)는 상기 제어부(150)와 전기적으로 연결되도록 상기 후면커버(113)에 장착될 수 있다.
이와 같은 경우, 본 발명의 일 실시예에 따른 세포해동기(100,200)가 상기 통신포트(119)를 통해 상기 외부 네크워크 장비나 PC와 같은 통신장비와 연결되면, 상기 제어부(150)는 상기 외부 네크워크 장비나 PC와 같은 통신장비와 시간이 동기화될 수 있다.
일례로, 상기 세포해동기(100,200)가 노트북과 같은 PC와 연결되는 경우 상기 세포해동기(100,200)는 상기 PC에 설치된 동기화 프로그램을 이용하여 상기 PC의 날짜 및 시간과 동기화될 수 있다.
이를 통해, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 사용시 해동이 이루어지는 지역의 로컬시간과 동기화될 수 있고, 상기 디스플레이(118)를 통해 해당 지역의 로컬시간이 출력될 수 있다.
이로 인해, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 상기 용기(10)에 담긴 생물학적 물질의 정확한 해동시점에 대한 이력정보를 저장할 수 있으며, 사용자는 상기 이력정보를 통해 상기 용기(10)에 담긴 생물학적 물질의 정확한 해동시점을 확인할 수 있다.
더불어, 해동과 관련된 정보는 상기 세포해동기(100,200)에 자체저장될 수도 있고 상기 통신포트(119)를 통해 연결된 통신장비의 동기화 프로그램에 저장될 수 있다.
이와 같은 경우, 상기 세포해동기(100,200) 또는 동기화 프로그램에 저장되는 해동과 관련된 정보는 일자별로 저장될 수도 있지만, 해동 건 별로 해동이력이 저장될 수 있으며, 상기 해동이력은 해동이 이루어지는 지역의 로컬시간을 포함할 수 있다.
상기 해동부(120)는 상기 투입구(115)를 통해 상기 하우징(110)의 내부로 투입된 용기(10)를 히팅공간(121)에 수용한 상태에서 상기 용기(10)를 가열할 수 있다.
이를 위해, 상기 해동부(120)는 도 4 내지 도 8, 도 20 내지 도 24에 도시된 바와 같이 상기 용기(10)를 수용하기 위한 히팅공간(121)을 형성하는 히팅블럭(122a,122b)과, 상기 히팅블럭(122a,122b)에 열을 제공할 수 있도록 상기 히팅블럭(122a,122b)에 설치되는 히터(123a,123b)와, 상기 히터(123a,123b)를 감싸도록 상기 히팅블럭(122a,122b)에 결합되는 단열블럭(124a,124b) 및 상기 히팅공간(121)에서 상기 용기(10)의 하부를 지지하기 위한 받침대(125)를 포함할 수 있다.
이에 따라, 상기 투입구(115)를 통해 상기 용기(10)가 상기 하우징(110)의 내부로 투입되면, 상기 용기(10)는 하부가 상기 받침대(125)를 통해 지지될 수 있으며, 상기 용기(10)는 상기 히팅공간(121)에 수용된 상태에서 상기 히팅블럭(122a,122b)을 통해 둘러싸일 수 있다(도 16, 도 19 및 도 28 참조).
이와 같은 경우, 상기 히팅블럭(122a,122b)은 도 6, 도 7, 도 22 및 도 23에 도시된 바와 같이 일면에 내측으로 인입형성되는 배치홈(126a,126b)을 포함할 수 있고, 상기 히터(123a,123b)는 상기 배치홈(126a,126b)에 삽입배치될 수 있으며, 상기 단열블럭(124a,124b)은 상기 히터(123a,123b)가 상기 배치홈(126a,126b)에 삽입된 상태에서 상기 배치홈(126a,126b)을 완전히 덮도록 상기 히팅블럭(122a,122b)에 결합될 수 있다.
여기서, 상기 히팅블럭(122a,122b)은 금속과 같이 열전도성을 갖는 재질로 이루어질 수 있으며, 상기 단열블럭(124a,124b)은 단열성을 갖는 재질로 이루어질 수 있다.
이에 따라, 상기 히터(123a,123b)가 발열하면, 상기 히팅블럭(122a,122b)은 상기 히터(123a,123b)로부터 발생되는 열에 의해 가열될 수 있고, 상기 히터(123a,123b)로부터 발생된 열은 상기 단열블럭(124a,124b)을 통해 열의 이동방향이 제한되어 상기 히팅블럭(122a,122b) 측으로 집중될 수 있으며, 상기 히터(123a,123b)로부터 상기 히팅블럭(122a,122b)으로 전달된 열은 상기 히팅공간(121) 측으로 전달될 수 있다.
이로 인해, 상기 용기(10)는 상기 히팅블럭(122a,122b)으로부터 제공되는 열에 의해 가열될 수 있으며, 상기 용기(10)에 저장된 생물학적 물질은 상기 열에 의해 해동될 수 있다.
더불어, 상기 히터(123a,123b)로부터 발생된 열은 상기 단열블럭(124a,124b)을 통해 열의 이동방향이 제한되어 상기 히팅블럭(122a,122b) 측으로 집중될 수 있기 때문에, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 에너지의 소비 효율이 향상될 수 있다.
더하여, 상기 히팅공간(121)에 수용된 용기(10)는 상기 히터(123a,123b)로부터 전달된 열에 의해 일정한 온도로 승온된 히팅블럭(122a,122b)의 열을 이용하여 가열될 수 있기 때문에 상기 용기(10)의 둘레면이 균일한 온도로 가열될 수 있다. 여기서, 상기 용기(10)의 둘레면은 캡부(14)와 플랜지부(16)를 제외한 용기본체(12)의 둘레면일 수 있다.
이때, 상기 해동부(120)는 도 4 및 도 20에 도시된 바와 같이 상기 히팅블럭(122a,122b)의 온도를 측정할 수 있도록 상기 히팅블럭(122a,122b)에 설치되는 온도센서(128a,128b)를 포함할 수 있다. 여기서, 상기 온도센서(128a,128b)는 열전대(Thermocouple), 저항 온도계(RTD, Resistance thermometer), 써미스터(Thermister) 등과 같은 공지의 접촉식 온도센서일 수 있으며, 상기 온도센서(128a,128b)를 통해 측정된 히팅블럭(122a,122b)의 온도는 상기 제어부(150) 측으로 전달될 수 있다.
이에 따라, 상기 제어부(150)는 상기 온도센서(128a,128b)로부터 측정된 온도정보를 기반으로 상기 히터(123a,123b)의 구동을 제어함으로써 상기 히팅블럭(122a,122b)의 온도를 일정한 온도로 유지할 수 있다. 일례로, 상기 제어부(150)는 PID 제어를 통해 상기 히터(123a,123b)의 구동을 제어함으로써 상기 히팅블럭(122a,122b)의 온도를 일정하게 유지할 수 있다.
더불어, 상기 제어부(150)는 상기 온도센서(128a,128b)로부터 측정된 온도정보를 기반으로 상기 히터(123a,123b)의 구동을 제어함으로써 상기 히팅블럭(122a,122b)의 과열을 방지할 수 있다.
본 발명에서, 상기 히터(123a,123b)는 승온과 냉각이 반복적으로 이루어지는 운전 조건에서도 신뢰성을 확보하고 제품의 수명주기를 향상시킬 수 있도록 세라믹 히터일 수 있으나, 이에 한정하는 것은 아니며, 공지의 다양한 히터가 모두 적용될 수 있다.
한편, 상기 히팅공간(121)은 상기 용기(10)의 형상과 대응되는 형상으로 구비될 수 있으며, 상기 히팅공간(121)은 적어도 두 개의 히팅블럭(122a,122b)을 통해 형성될 수 있다.
구체적인 일례로써, 상기 히팅블럭(122a,122b)은 도 4 내지 도 6, 도 20 내지 도 22에 도시된 바와 같이 일면이 서로 마주하도록 배치되는 제1히팅블럭(122a) 및 제2히팅블럭(122b)을 포함할 수 있으며, 상기 히팅공간(121)은 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)에서 서로 마주하는 일면에 각각 인입형성되는 한 쌍의 대향면(127a,127b)을 통해 형성될 수 있다.
여기서, 상기 한 쌍의 대향면(127a,127b)은 상기 용기(10)의 둘레면과 대응되는 형상을 갖도록 내측으로 인입형성될 수 있다.
일례로, 상기 용기(10)가 원기둥 형상으로 형성되는 경우 상기 한 쌍의 대향면(127a,127b)은 호형상의 곡면일 수 있으며, 상기 용기(10)가 사각기둥 형상으로 형성되는 경우 상기 한 쌍의 대향면(127a,127b)은 대략 'ㄷ'자 단면형상의 절곡면으로 형성될 수 있다.
이에 따라, 상기 투입구(115)를 통해 상기 용기(10)가 상기 히팅공간(121)으로 투입되면, 상기 용기(10)는 둘레면이 상기 히팅공간(121)을 규정하는 한 쌍의 대향면(127a,127b)을 통해 완전히 둘러싸일 수 있다.
이로 인해, 상기 히팅공간(121)에 수용된 용기(10)는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)으로부터 제공되는 열에 의해 둘레면이 균일하게 가열될 수 있다.
이와 같은 경우, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b) 각각은 일면에 내측으로 인입형성되는 배치홈(126a,126b)을 각각 포함할 수 있고, 상기 히터(123a,123b)는 상기 제1히팅블럭(122a)에 형성된 배치홈(126a)과 상기 제2히팅블럭(122b)에 형성된 배치홈(126b)에 각각 삽입배치되는 제1히터(123a) 및 제2히터(123b)를 포함할 수 있다.
또한, 상기 단열블럭(124a,124b)은 제1단열블럭(124a) 및 제2단열블럭(124b)을 포함할 수 있고, 상기 제1단열블럭(124a)은 상기 제1히터(123a)가 상기 제1히팅블럭(122a)의 배치홈(126a)에 삽입된 상태에서 상기 배치홈(126a)을 완전히 덮도록 상기 제1히팅블럭(122a)에 결합될 수 있으며, 상기 제2단열블럭(124b)은 상기 제2히터(123b)가 상기 제2히팅블럭(122b)의 배치홈(126b)에 삽입된 상태에서 상기 배치홈(126b)을 완전히 덮도록 상기 제2히팅블럭(122b)에 결합될 수 있다.
더불어, 상기 온도센서(128a,128b)는 상기 제1히팅블럭(122a)의 온도를 측정할 수 있도록 상기 제1히팅블럭(122a)에 설치되는 제1온도센서(128a)와 상기 제2히팅블럭(122b)의 온도를 측정할 수 있도록 상기 제2히팅블럭(122b)에 설치되는 제2온도센서(128b)를 포함할 수 있다.
이에 따라, 상기 제1히터(123a)에서 발생된 열은 상기 제1히팅블럭(122a)을 가열할 수 있고, 상기 제2히터(123b)에서 발생된 열은 상기 제2히팅블럭(122b)을 가열할 수 있으며, 상기 제어부(150)는 상기 제1온도센서(128a) 및 제2온도센서(128b)로부터 측정된 온도정보를 기반으로 상기 제1히터(123a) 및 제2히터(123b)의 구동을 제어함으로써 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 온도를 일정하게 유지할 수 있다.
이와 같은 경우, 상기 제어부(150)는 상기 제1온도센서(128a) 및 제2온도센서(128b)를 통해 측정된 온도정보를 기반으로 상기 제1히터(123a) 및 제2히터(123b)의 구동을 함께 제어할 수도 있고, 상기 제어부(150)는 상기 제1온도센서(128a) 및 제2온도센서(128b)를 통해 측정된 온도정보를 기반으로 상기 제1히터(123a) 및 제2히터(123b)의 구동을 개별적으로 제어할 수 있다.
이를 통해, 본 발명의 일 실시예에 따른 세포해동기(100,200)에서 상기 히팅블럭(122a,122b)이 제1히팅블럭(122a) 및 제2히팅블럭(122b)을 포함하더라도, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 온도는 상기 제어부(150)의 제어를 통해 온도가 정밀하게 조절될 수 있다.
이에 따라, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)은 상기 제어부(150)를 통해 온도편차 없이 동일한 온도로 유지될 수 있기 때문에, 상기 용기(10)는 둘레면이 균일하게 가열될 수 있다.
더불어, 상기 제어부(150)가 상기 제1히터(123a) 및 제2히터(123b)의 구동을 개별적으로 제어하는 경우, 사용자는 상기 디스플레이(118)를 통해 출력되는 정보를 기반으로 즉각적으로 해당 부품의 이상을 확인할 수 있으며, 이상이 발생한 해당부품을 적절하게 조치할 수 있다.
일례로, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b) 각각에 설치된 히터들(123a,123b) 중 어느 하나 또는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b) 각각에 설치된 온도센서(128a,128b) 중 어느 하나가 정상적으로 작동하지 않는 경우, 사용자는 상기 디스플레이(118)를 통해 출력되는 정보를 기반으로 즉각적으로 해당 부품의 이상을 확인할 수 있으며, 이상이 발생한 해당부품을 적절하게 조치할 수 있다.
한편, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 상기 히팅공간(121)에 수용된 용기(10)가 상기 히팅블럭(122a,122b)과 서로 접촉되지 않은 상태에서 상기 히팅블럭(122a,122b)으로부터 비접촉 방식으로 전달되는 열에 의해 가열될 수 있다.
일례로, 상기 용기(10)가 상기 히팅공간(121)에 삽입된 상태에서 상기 용기(10)의 둘레면은 상기 히팅공간(121)을 형성하는 제1히팅블럭(122a)의 대향면(127a) 및 제2히팅블럭(122b)의 대향면(127b)과 일정간격 이격될 수 있다.
즉, 도 16 및 도 28에 도시된 바와 같이 상기 용기(10)가 상기 히팅공간(121)에 삽입되고 상기 용기(10)의 하부가 상기 받침대(125)를 통해 지지된 상태에서 상기 한 쌍의 대향면(127a,127b)과 용기(10)의 외면 사이에는 간극(d)이 형성될 수 있다.
이에 따라, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)에 저장된 열은 상대적으로 저온인 용기(10) 측으로 전도 방식이 아닌 대류 및/또는 복사를 통해 전달될 수 있다.
이로 인해, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 대류 및/또는 복사를 이용한 열전달을 통해 용기(10)의 둘레면을 가열할 수 있기 때문에 상기 용기(10)의 둘레면은 상기 히팅블럭(122a,122b)으로부터 전달되는 대류열 및/또는 복사열을 통해 고르게 가열될 수 있다.
즉, 상기 용기(10)와 히팅블럭(122a,122b)이 직접 접촉되어 전도열을 통해 용기(10)가 가열되는 경우와 비교할 때 본 발명의 일 실시예에 따른 세포해동기(100,200)는 대류열 및/또는 복사열을 통해 상기 용기(10)의 둘레면을 균일하게 가열할 수 있기 때문에 상기 용기(10)의 국부적인 위치에 열이 집중되는 것이 방지될 수 있다.
더불어, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 상기 용기(10)가 고온의 열에 취약한 유리 또는 플라스틱 재질로 이루어지더라도 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 상기 용기(10)와 직접 접촉되지 않기 때문에 고온체와의 직접적인 접촉시 열에 의해 발생할 수 있는 용기의 균열 또는 열변형을 방지할 수 있다.
본 발명에서, 상기 히팅공간(121)을 형성하는 상기 한 쌍의 대향면(127a,127b)과 용기(10)의 외면 사이의 간극(d)은 0.2mm 내지 0.3mm 일 수 있으나, 이에 한정하는 것은 아니며 상기 간극(d)의 크기는 상기 용기(10)의 전체 사이즈에 따라 적절하게 변경될 수 있다.
이때, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b) 중 적어도 어느 하나는 직선왕복 이동될 수 있으며, 상기 히팅공간(121)은 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b) 중 적어도 어느 하나의 직선이동을 통하여 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 서로 가까운 위치에 위치하도록 배치된 경우에 형성될 수 있다. 이에 대한, 상세한 설명은 후술하기로 한다.
한편, 상기 용기(10)의 하부를 지지하는 받침대(125)는 도 6, 도 7, 도 22 및 도 23에 도시된 바와 같이 상기 용기(10)의 하부테두리가 삽입될 수 있도록 상기 용기(10)의 하부를 지지하는 일면에 형성되는 안착홈(125a)과, 상기 용기(10)의 하면이 상기 받침대(125)의 일면으로부터 일정높이 이격될 수 있도록 일정높이 돌출형성되는 돌출부재(125d)를 포함할 수 있다.
이와 같은 안착홈(125a)은 상기 용기(10)가 상기 투입구(115)로 삽입되면 상기 용기(10)의 하부테두리를 고정함으로써 상기 용기(10)를 안정적으로 지지할 수 있다.
또한, 상기 돌출부재(125d)는 상기 용기(10)가 상기 투입구(115)로 삽입되면 상기 용기(10)의 하면을 지지하면서 상기 용기(10)의 하면이 상기 받침대(125)의 일면으로부터 일정높이 이격되도록 할 수 있다.
이를 위해, 상기 안착홈(125a)은 상기 용기(10)의 하부테두리를 따라 형성되는 플랜지부(16)가 삽입될 수 있도록 상기 플랜지부(16)와 대응되는 형상으로 형성될 수 있으며, 상기 안착홈(125a)은 도 9 및 도 10에 도시된 바와 같이 상기 돌출부재(125d)의 둘레방향을 따라 상기 돌출부재(125d)의 외측에 위치하도록 형성될 수 있다.
이에 따라, 상기 용기(10)가 상기 투입구(115)로 삽입되면 상기 용기(10)의 하면은 상기 돌출부재(125d)의 일면에 의해 지지될 수 있고 상기 플랜지부(16)는 상기 안착홈(125a)에 삽입될 수 있으며, 상기 플랜지부(16)가 안착홈(125a)에 삽입된 용기(10)는 어느 일 방향으로 기울어지지 않고 직립 상태를 유지할 수 있다.
이로 인해, 상기 히팅공간(121)에 배치된 용기(10)는 둘레면이 상기 히팅공간(121)에서 상기 히팅공간(121)을 형성하는 한 쌍의 대향면(127a,127b)과 대면하는 위치로 정위치되면서 상기 한 쌍의 대향면(127a,127b)과 균일한 간격을 유지할 수 있다.
상기 구동부(130)는 상기 히팅블럭(122a,122b)을 좌,우 방향으로 직선이동시킬 수 있다. 일례로, 상술한 바와 같이 상기 히팅블럭(122a,122b)이 제1히팅블럭(122a) 및 제2히팅블럭(122b)을 포함하는 경우, 상기 구동부(130)는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b) 중 적어도 어느 하나를 좌,우 방향으로 직선왕복 이동시킬 수 있다.
비제한적인 일례로써, 상기 히팅블럭(122a,122b)이 제1히팅블럭(122a) 및 제2히팅블럭(122b)을 포함하는 경우, 상기 구동부(130)는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)을 각각 좌,우 방향으로 직선왕복 이동시킬 수 있다.
이를 통해, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 도 16, 도 26 및 도 28에 도시된 바와 같이 상기 구동부(130)의 구동을 통해 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 서로 가까운 위치에서 근접하도록 배치되는 가열위치와, 도 13, 도 15, 도 17, 도 25, 도 27 및 도 29에 도시된 바와 같이 상기 구동부(130)의 구동을 통해 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 서로 간격을 두고 이격 배치되는 대기위치로 변경될 수 있다.
이에 따라, 도 16 및 도 28에 도시된 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 상기 가열위치에 위치하면 상기 제1히팅블럭(122a)의 대향면(127a) 및 상기 제2히팅블럭(122b)의 대향면(127b) 사이에는 상기 용기(10)를 수용하여 상기 용기(10)를 가열하기 위한 히팅공간(121)이 형성될 수 있다.
또한, 도 15, 도 17, 도 27 및 도 29에 도시된 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 상기 대기위치에 위치하면, 상기 제1히팅블럭(122a)의 대향면(127a) 및 상기 제2히팅블럭(122b)의 대향면(127b) 사이의 간격이 넓어질 수 있다. 이를 통해, 사용자는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b) 사이에 배치되도록 상기 용기(10)를 용이하게 투입하거나 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b) 사이에 배치된 상기 용기(10)를 용이하게 취출할 수 있다.
이를 위해, 상기 구동부(130)는 도 4 내지 도 6, 도 20 내지 도 22에 도시된 바와 같이 구동력을 제공하는 모터(131)와, 상기 모터(131)의 회전축(131a)과 축결합되는 회전부재(132)와, 상기 모터(131)의 구동시 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)을 각각 좌,우 방향으로 직선이동시킬 수 있도록 상기 회전부재(132)와 상기 해동부(120)를 상호 연결하는 동력전달부재를 포함할 수 있다.
또한, 상기 동력전달부재는, 상기 단열블럭(124a,124b)과 고정결합되는 가이드블럭(134a,134b)과, 상기 가이드블럭(134a,134b)의 직선이동을 안내하는 가이드레일(135)과, 상기 모터(131)의 구동시 상기 회전부재(132)를 따라 상,하 방향으로 승,하강되는 이동부재(136) 및 상기 가이드블럭(134a,134b)과 상기 이동부재(136)를 상호 링크연결하는 링크부재(137a,137b)를 포함할 수 있다.
구체적인 일례로써, 상기 가이드블럭(134a,134b)은 상기 제1단열블럭(124a)과 고정결합되는 제1가이드블럭(134a)과, 상기 제2단열블럭(124b)과 고정결합되는 제2가이드블럭(134b)을 포함할 수 있으며, 상기 제1가이드블럭(134a) 및 제2가이드블럭(134b)은 상기 가이드레일(135)에 슬라이딩 이동가능하게 결합될 수 있다.
또한, 상기 링크부재(137a,137b)는 상기 이동부재(136)와 상기 제1가이드블럭(134a)을 상호 링크연결하는 제1링크부재(137a)와, 상기 이동부재(136)와 상기 제2가이드블럭(134b)을 상호 링크연결하는 제2링크부재(137b)를 포함할 수 있다.
이와 같은 경우, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 상기 하우징(110)의 내부에 배치되는 베이스(161), 장착대(162), 지지바(163) 및 지지대(164)를 더 포함할 수 있다.
즉, 도 6 및 도 22에 도시된 바와 같이 상기 베이스(161)의 상면에는 장착대(162)가 고정결합될 수 있고, 상기 모터(131)는 결합대(165)를 매개로 상기 장착대(162)의 일측에 고정결합될 수 있으며, 상기 모터(131)의 회전축(131a)과 축결합되는 회전부재(132)는 상기 장착대(162)에 회전가능하게 결합될 수 있다.
또한, 소정의 면적을 갖는 판상의 지지대(164)는 소정의 길이를 가지고 일단이 상기 베이스(161)에 고정결합되는 적어도 하나의 지지바(163)를 통해 상기 베이스(161)로부터 상부로 일정간격 이격된 상태로 배치될 수 있으며, 상기 지지대(164)의 일면에는 상기 가이드레일(135) 및 받침대(125)가 고정결합될 수 있다.
더불어, 상기 제1가이드블럭(134a) 및 제2가이드블럭(134b)은 상기 가이드레일(135)에 슬라이딩 이동가능하게 결합될 수 있고, 상기 제1단열블럭(124a)은 상기 제1가이드블럭(134a)에 고정결합될 수 있으며, 상기 제2단열블럭(124b)은 상기 제2가이드블럭(134b)에 고정결합될 수 있다.
여기서, 상기 회전부재(132)는 소정의 길이를 가지고 일단이 상기 모터(131)의 회전축(131a)과 축결합되는 스크류바일 수 있으며, 상기 이동부재(136)는 상기 회전부재(132)에 나사이동가능하게 결합될 수 있다.
또한, 상기 지지대(164)는 상기 제1링크부재(137a) 및 제2링크부재(137b)가 각각 통과할 수 있도록 관통형성되는 장공의 통과공(164a)을 포함할 수 있다.
더불어, 상기 제1링크부재(137a)는 양단이 상기 회전부재(132) 및 제1가이드블럭(134a)과 각각 링크연결될 수 있으며, 상기 제2링크부재(137b)는 양단이 상기 회전부재(132) 및 제2가이드블럭(134b)과 각각 링크연결될 수 있다.
이에 따라, 상기 모터(131)의 구동시 상기 회전축(131a)과 축결합된 회전부재(132)가 회전하면, 도 13 내지 도 17, 도 25 내지 도 29에 도시된 바와 같이 상기 이동부재(136)는 상기 회전부재(132)를 따라 나사이동하여 승,하강될 수 있으며, 상기 이동부재(136)와 각각 링크연결된 상기 제1가이드블럭(134a) 및 제2가이드블럭(134b)은 상기 이동부재(136)의 승,하강을 통해 상기 가이드레일(135)을 따라 좌,우 방향으로 직선이동될 수 있다.
이로 인해, 상기 제1가이드블럭(134a) 및 제2가이드블럭(134b)과 각각 고정결합된 제1단열블럭(124a) 및 제2단열블럭(124b)은 상기 제1가이드블럭(134a) 및 제2가이드블럭(134b)과 동일하게 좌,우 방향으로 직선이동될 수 있으며, 상기 제1단열블럭(124a) 및 제2단열블럭(124b)과 각각 고정결합된 제1히팅블럭(122a) 및 제2히팅블럭(122b) 역시 좌,우 방향으로 직선이동될 수 있다.
이를 통해, 본 발명의 일 실시예에 따른 세포해동기(100,200)에서 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)은 상기 구동부(130)의 구동을 통해 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 서로 가까운 위치에서 근접하도록 배치되는 가열위치와, 상기 구동부(130)의 구동을 통해 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 서로 간격을 두고 이격 배치되는 대기위치로 변경될 수 있다.
더불어, 본 발명의 일 실시예에 따른 세포해동기(100,200)가 상기 제어부(150)의 제어를 통해 대기위치에서 가열위치로 변경되면, 상기 히팅공간(121)에 수용된 용기(10)는 하부가 상기 돌출부재(125d)를 통해 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 하면보다 상대적으로 더 높은 위치에 위치할 수 있다.
이에 따라, 상기 히팅공간(121)에 배치되는 용기(10)는 둘레면이 상기 히팅공간(121)을 형성하는 한 쌍의 대향면(127a,127b)과 서로 대면한 상태로 배치될 수 있다.
도면과 설명에서는, 상기 회전부재(132), 이동부재(136) 및 링크부재(137a,137b)의 상호 결합을 통해 상기 모터(131)의 회전운동이 상기 제1가이드블럭(134a) 및 제2가이드블럭(134b)의 직선운동으로 변환되는 것으로 도시하고 설명하였지만 본 발명을 이에 한정하는 것은 아니며, 회전운동을 직선운동으로 변환할 수 있다면 볼스크류 구조와 같은 공지의 다양한 구조가 모두 적용될 수 있다.
이때, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 상기 히팅블럭(122a,122b)의 위치를 검출하기 위한 위치검출수단을 더 포함할 수 있다.
일례로, 본 발명의 일 실시예에 따른 세포해동기(100)에서 상기 위치검출수단은 상기 단열블럭(124a,124b)과의 접촉을 통하여 상기 히팅블럭(122a,122b)의 위치를 검출하기 위한 리미트스위치(170)일 수 있다.
이와 같은 리미트스위치(170)는 도 6에 도시된 바와 같이 상기 지지대(164)의 일면에 설치될 수 있고, 상기 제2단열블럭(124b)과의 접촉을 통하여 상기 제2히팅블럭(122b)의 위치를 검출할 수 있으며, 상기 리미트스위치(170)를 통해 검출된 정보는 상기 제어부(150) 측으로 제공될 수 있다.
구체적인 일례로써, 상기 리미트스위치(170)는 도 7 및 도 8에 도시된 바와 같이 상기 지지대(164)의 일면에 고정설치되는 스위치박스(171)와, 상기 스위치박스(171)의 일측에서 힌지 작동하는 작동레버(172) 및 상기 작동레버(172)의 일단에 회전가능하게 결합되는 롤러(173)를 포함할 수 있다.
이에 따라, 상기 리미트스위치(170)는 상기 롤러(173)가 상기 제2단열블럭(124b)과 접촉되어 상기 작동레버(172)가 작동하는 경우 상기 스위치박스(171)가 작동될 수 있으며, 상기 스위치박스(171)의 작동여부에 대한 정보는 상기 제어부(150) 측으로 전달될 수 있다.
구체적으로, 상술한 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 상기 구동부(130)의 구동을 통해 가열위치에서 대기위치로 변경되면, 상기 제2단열블럭(124b)은 상기 제2히팅블럭(122b)과 함께 이동될 수 있다.
이를 통해, 상기 제2단열블럭(124b)은 상기 롤러(173)와 접촉될 수 있으며, 도 7에 도시된 바와 같이 상기 제2히팅블럭(122b)이 대기위치로 완전히 이동하면 상기 작동레버(172)가 작동하여 상기 스위치박스(171)가 작동될 수 있다.
이와 같은 경우, 상기 제어부(150)는 상기 제2히팅블럭(122b)이 대기위치로 정위치된 것으로 판단하고 상기 모터(131)의 구동을 제어함으로써 상기 제2히팅블럭(122b)이 과도하게 이동하는 것을 방지할 수 있다.
또한, 도 8에 도시된 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 상기 구동부(130)의 구동을 통해 대기위치에서 가열위치로 변경되면, 상기 제2단열블럭(124b)은 상기 제2히팅블럭(122b)과 함께 이동됨으로써 상기 제2단열블럭(124b)과 상기 롤러(173)는 접촉상태가 해제될 수 있다.
도면과 설명에서는 상기 제2히팅블럭(122b)의 위치를 검출하기 위한 위치검출수단으로서, 힌지 롤러 타입의 리미트스위치를 예시하였지만 본 발명을 이에 한정하는 것은 아니며, 레버 타입의 리미트스위치, 핀 타입의 리미트스위치 등과 같이 공지의 다양한 미리트스위치들이 모두 채용될 수 있다.
다른 예로써, 본 발명의 일 실시예에 따른 세포해동기(200)에서 상기 위치검출수단은 상기 구동부(130))의 구동을 통해 좌,우 방향으로 직선이동하는 상기 히팅블럭(122a,122b)의 위치를 검출하기 위한 위치검출센서(270)일 수 있다.
이와 같은 위치검출센서(270)는 비접촉식 위치검출센서일 수 있다.
구체적인 일례로써, 상기 비접촉식 위치검출센서(270)는 공지의 포토마이크로센서일 수 있다. 비제한적인 일례로써, 도 20 내지 도 21에 도시된 바와 같이 상기 비접촉식 위치검출센서(270)는 상기 지지대(164)의 일면에 설치되는 포토센서(272)와 일단이 상기 제2단열블럭(124b)에 고정설치되는 검출바(274)를 포함할 수 있다.
이에 따라, 상기 제2히팅블럭(122b) 및 제2단열블럭(124b)의 직선이동을 통해 상기 검출바(274)가 상기 포토센서(272) 측으로 접근하면, 상기 포토센서(272)는 상기 검출바(274)를 통해 제2히팅블럭(122b)의 위치를 검출할 수 있으며, 상기 위치검출센서(270)를 통해 검출된 정보는 상기 제어부(150) 측으로 제공될 수 있다.
이로 인해, 상기 제어부(150)는 상기 비접촉식 위치검출센서(270)를 통해 상기 제2히팅블럭(122b)의 위치를 정확하게 검출할 수 있으며, 상기 모터(131)의 원점을 정확하게 확인할 수 있다.
구체적으로, 상술한 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 상기 구동부(130)의 구동을 통해 가열위치에서 대기위치로 변경되면, 상기 제2단열블럭(124b)은 상기 제2히팅블럭(122b)과 함께 이동될 수 있다.
이를 통해, 상기 제2단열블럭(124b)에 고정된 상기 검출바(274)는 상기 포토센서(272) 측으로 이동할 수 있으며, 도 23에 도시된 바와 같이 상기 제2히팅블럭(122b)이 대기위치로 완전히 이동하면 상기 검출바(274)는 일부길이가 상기 포토센서(272)에 형성된 홈부 측으로 진입할 수 있다.
이와 같은 경우, 상기 제어부(150)는 상기 제2히팅블럭(122b)이 대기위치로 정위치된 것으로 판단하고 상기 모터(131)의 구동을 제어함으로써 상기 제2히팅블럭(122b)이 과도하게 이동하는 것을 방지할 수 있다.
또한, 도 24에 도시된 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 상기 구동부(130)의 구동을 통해 대기위치에서 가열위치로 변경되면, 상기 제2단열블럭(124b)에 고정된 검출바(274)는 상기 포토센서(272)로부터 멀어질 수 있다.
도면과 설명에서는 상기 제2히팅블럭(122b)의 위치를 검출하기 위한 방법으로서, 비접촉식 센서를 예시하였지만 본 발명을 이에 한정하는 것은 아니며, 상기 히팅블럭(122)의 위치를 검출할 수 있다면 공지의 다양한 방식의 위치검출센서가 모두 채용될 수 있다.
상기 감지부(140)는 상기 히팅공간(121)에 배치된 용기(10)의 상태를 확인할 수 있다. 일례로, 상기 감지부(140)는 상기 해동부(120)가 가열위치에 위치하는 경우, 상기 히팅공간(121)에 배치된 용기(10)의 표면온도를 감지하고 감지된 결과를 상기 제어부(150) 측으로 제공할 수 있다.
이에 따라, 상기 제어부(150)는 가열위치에서 상기 감지부(140)를 통해 감지된 용기(10)에 대한 정보를 상기 디스플레이(118)로 출력할 수 있다.
이로 인해, 사용자는 상기 디스플레이(118)에서 출력되는 정보를 통하여 상기 용기(10)에 담긴 생물학적 물질의 해동과정을 실시간으로 확인할 수 있으며, 상기 생물학적 물질이 적정 온도 범위 내에서 해동되고 있는지를 모니터링할 수 있다.
이를 위해, 상기 감지부(140)는 도 6, 도 7, 도 22 및 도 23에 도시된 바와 같이 상기 히팅공간(121)에 배치된 용기(10)의 상태를 확인하기 위한 센서(141)와, 상기 센서(141)가 장착되는 장착부재(142)를 포함할 수 있다.
이와 같은 경우, 상기 센서(141)는 비접촉 방식으로 상기 용기(10)의 표면온도를 측정할 수 있도록 적외선 온도센서일 수 있으며, 상기 센서(141)는 상기 장착부재(142)에 고정된 상태에서 상기 히팅공간(121)에 배치된 용기(10)의 표면온도를 측정할 수 있다.
또한, 상기 히팅블럭(122a,122b)은 상기 센서(141)가 상기 히팅공간(121) 측으로 진입할 수 있도록 상기 센서(141)와 대응되는 형상으로 형성되는 배치공(129a,129b)을 포함할 수 있다.
즉, 상기 배치공(129a,129b)은 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)을 각각 관통하도록 형성될 수 있으며, 상기 배치공(129a,129b)은 상기 제1히팅블럭(122a)에 형성되는 부분(129a)과 상기 제2히팅블럭(122b)에 형성되는 부분(129b)이 형합되어 형성된 것일 수 있다.
이에 따라, 상기 해동부(120)가 가열위치에 위치하면 상기 센서(141)는 상기 배치공(129a,129b)을 통하여 상기 히팅공간(121) 내에 배치된 용기(10)와 접촉되지 않으면서 상기 용기(10)와 매우 근접한 위치에서 상기 용기(10)의 표면온도를 측정할 수 있다.
더불어, 상기 센서(141)를 통해 측정된 온도정보는 상기 용기(10)가 상기 히팅공간(121)에 배치되어 있는지에 대한 여부를 감지하기 위한 정보로 활용될 수도 있다.
상술한 설명에서는 상기 센서(141)로서 적외선 온도센서를 예시하였지만 본 발명을 이에 한정하는 것은 아니며, 공지의 다양한 센서들이 모두 채용될 수 있으며, 채용되는 센서의 종류에 따라 측정되는 용기(10)의 정보가 달라질 수 있다.
한편, 상기 장착부재(142)는 상기 모터(131)의 구동시 상기 동력전달부재의 작동과 연계되어 전,후 방향으로 이동할 수 있도록 구비될 수 있다.
즉, 상기 장착부재(142)는 상기 히팅공간(121)에 상기 용기(10)가 배치된 상태를 기준으로 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 대기위치에서 가열위치로 변경되면 상기 용기(10)와 가까워지는 방향으로 이동할 수 있고, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 가열위치에서 대기위치로 변경되면 상기 용기(10)와 멀어지는 방향으로 이동할 수 있다.
이를 위해, 상기 감지부(140)는 도 6, 도 9 내지 도 12 및 도 22에 도시된 바와 같이 상기 장착부재(142)에 회전가능하게 결합되는 롤러부재(143)와, 상기 제1단열블럭(124a)에 고정결합되고 상기 제1단열블럭(124a)의 이동방향과 평행한 방향으로 일정길이 돌출되면서 상기 롤러부재(143)가 접촉되는 접촉면(145)이 형성된 접촉부재(144)를 포함할 수 있으며, 상기 접촉면(145)은 평면캠으로 형성될 수 있다.
또한, 상기 감지부(140)는 도 9 및 도 10에 도시된 바와 같이 상기 장착부재(142)를 상기 히팅공간(121) 측으로 가압하는 탄성부재(146)와 상기 탄성부재(146)의 단부를 지지할 수 있도록 상기 받침대(125)에 결합되는 고정대(147)를 더 포함할 수 있다.
이와 같은 경우, 상기 받침대(125)는 도 6 및 도 22에 도시된 바와 같이 상기 장착부재(142)의 일부가 수용될 수 있도록 일면으로부터 일정깊이 인입형성되는 결합홈(125b)과 상기 장착부재(142)로부터 돌출되는 상기 롤러부재(143)가 통과할 수 있도록 상기 결합홈(125b)에 관통형성되는 장공의 이동로(125c)를 포함할 수 있으며, 상기 고정대(147)는 상기 결합홈(125b)에 삽입된 상기 장착부재(142)의 일부를 덮도록 상기 받침대(125)에 결합될 수 있다.
이에 따라, 상기 장착부재(142)는 상기 결합홈(125b)에 일부가 수용된 상태에서 상기 탄성부재(146)로부터 제공되는 탄성력을 통해 상기 접촉부재(144) 측으로 가압될 수 있고, 상기 롤러부재(143)는 상기 접촉부재(144)의 접촉면(145)과 접촉된 상태를 유지할 수 있으며, 상기 롤러부재(143)는 일측이 상기 접촉면(145)과 접촉된 상태에서 회전될 수 있다.
이로 인해, 상술한 바와 같이 상기 제1단열블럭(124a)이 고정설치된 제1가이드블럭(134a)이 상기 가이드레일(135)을 따라 슬라이딩 이동되면, 상기 제1단열블럭(124a)에 고정설치된 접촉부재(144)는 상기 제1단열블럭(124a)과 함께 상기 가이드레일(135)을 따라 슬라이딩 이동될 수 있으며, 상기 접촉면(145) 중 상기 롤러부재(143)가 접촉된 부분은 위치가 변경될 수 있다.
즉, 상기 접촉면(145)은 도 6 및 도 22의 확대도에 도시된 바와 같이 제1부분(145a), 제2부분(145b) 및 제3부분(145c)을 포함할 수 있고, 상기 제1부분(145a) 및 제3부분(145c)은 상기 제2부분(145b)을 매개로 서로 연결될 수 있다. 이와 같은 경우, 상기 제1부분(145a) 및 제3부분(145c)은 서로 단차지게 형성될 수 있으며, 상기 제3부분(145c)은 상기 제1부분(145a)보다 상대적으로 상기 롤러부재(143) 측으로 돌출되도록 형성될 수 있다.
이에 따라, 상기 제1단열블럭(124a)에 고정설치된 접촉부재(144)가 상기 제1단열블럭(124a)과 함께 상기 가이드레일(135)을 따라 슬라이딩 이동되면, 도 9 및 도 10에 도시된 바와 같이 상기 롤러부재(143)는 상기 접촉면(145)과 접촉된 부분이 상기 제1부분(145a)에서 제3부분(145c)으로 변경되거나 상기 제3부분(145c)에서 제1부분(145a)으로 변경될 수 있다.
이로 인해, 상기 장착부재(142)는 도 11 및 도 12에 도시된 바와 같이 상기 결합홈(125b) 내에서 상기 이동로(125c)를 따라 전,후 방향으로 일정거리(L) 이동하여 상기 히팅공간(121)에 상기 용기(10)가 배치된 상태를 기준으로 상기 용기(10)와 가까워지는 방향으로 이동하거나 상기 용기(10)와 멀어지는 방향으로 이동할 수 있다.
이에 따라, 도 1에 도시된 바와 같이 상기 용기(10)가 용기본체(12)로부터 돌출되는 플랜지부(16)를 포함하더라도 사용자는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 대기위치에 위치한 상태에서 상기 센서(141)의 간섭을 받지 않으면서 상기 받침대(125)에 용기(10)를 용이하게 배치하거나 상기 받침대(125)로부터 용기(10)를 용이하게 취출할 수 있다.
상기 제어부(150)는 본 발명의 일 실시예에 따른 세포해동기(100,200)의 전반적인 구동을 제어할 수 있다.
이와 같은 제어부(150)는 도 3에 도시된 바와 같이 회로기판(151)과 상기 회로기판(151)에 실장되는 MCU와 같은 칩셋(152)을 포함할 수 있으며, 상기 제어부(150)는 상술한 상기 해동부(120), 구동부(130), 감지부(140), 디스플레이(118), 조작부(117), 위치검출수단 등의 작동을 모두 제어할 수 있다.
이때, 상기 제어부(150)는 가열위치에서 상기 히팅공간(121)에 수용된 용기(10)를 가열하는 경우, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 서로 접촉된 상태에서 상기 용기(10)를 가열하도록 상기 구동부(130)의 구동을 제어할 수도 있지만, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 서로 접촉되지 않은 상태에서 상기 용기(10)를 가열하도록 상기 구동부(130)의 구동을 제어할 수도 있다.
즉, 상기 제어부(150)는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)에서 서로 마주하는 일면 중 상기 히팅공간(121)을 형성하기 위한 대향면(127a,127b)이 형성된 부분을 제외한 나머지 부분에서 소정의 간극이 형성되도록 상기 가열위치를 설정할 수 있다.
이를 통해, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 가열위치에서 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 접촉을 유지하기 위하여 상기 모터(131)에 발생될 수 있는 부하를 방지할 수 있다.
또한, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 가열위치에서 상기 용기(10)에 담긴 생물학적 물질을 해동하는 과정에서 상기 용기(10)의 표면으로부터 발생하는 수분이나 습기가 상기 간극을 통해 외부로 배출될 수 있다. 이를 통해, 상기 용기(10)에 담긴 생물학적 물질은 더욱 원활하게 해동될 수 있다.
더불어, 상기 제어부(150)는 상기 히터(123a,123b)의 구동을 통해 상기 히팅블럭(122a,122b)을 소정의 온도로 예열시킨 후 상기 용기(10)에 담긴 생물학적 물질의 해동을 시작할 수 있다.
이와 같은 제어부(150)는 상술한 바와 같이 PID 제어를 통해 상기 히팅블럭(122a,122b)의 온도를 일정하게 유지할 수 있으며, 상기 히팅블럭(122a,122b)이 복수 개로 구비되는 경우, 상기 제어부(150)는 각각의 히팅블럭들(122a,122b)을 개별적으로 제어할 수 있다.
여기서, 상기 히팅블럭(122a,122b)의 예열온도는 상기 용기(10)에 담긴 생물학적 물질을 해동하기 위한 해동온도와 동일한 온도일 수도 있고 상기 해동온도보다 상대적으로 더 높은 고온의 온도일 수도 있다.
또한, 상기 제어부(150)는 상기 히팅공간(121)에 투입된 용기(10)의 해동이 완료되고 상기 히팅블럭(122a,122b)이 대기위치로 변경된 상태에서 상기 히팅블럭(122a,122b)의 온도를 일정하게 유지할 수 있다.
이를 통해, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 상기 히팅블럭(122a,122b)이 일정한 온도로 지속적으로 유지되면서 가열위치와 대기위치로 변경될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 세포해동기(100,200)를 이용하면, 사용자는 복수 개의 용기(10)를 상기 히팅공간(121)에 순차적으로 투입하고 취출하여 해동할 수 있음으로써 대기시간을 최소화하여 작업생산성을 높일 수 있다.
한편, 본 발명의 일 실시예에 따른 세포해동기(200)는 히팅블럭의 작동온도를 검증하기 위한 적격성 평가를 간편하게 수행할 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 세포해동기(200)는 센서삽입홀(180)을 더 포함할 수 있으며, 상기 센서삽입홀(180)은 상기 히팅블럭(122a,122b)의 일면으로부터 일정깊이 인입형성될 수 있다.
이와 같은 센서삽입홀(180)은 상기 히팅블럭(122a,122b)의 정상작동 여부를 확인하기 위한 검교정시 검교정용 센서가 삽입되는 공간일 수 있다.
일례로, 상기 검교정용 센서(미도시)는 소정의 길이를 가지는 바형상의 온도센서일 수 있으며, 상기 검교정용 센서는 일부 길이가 상기 센서삽입홀(180)에 삽입될 수 있다.
이에 따라, 확인자는 상기 센서삽입홀(180)에 삽입된 검교정용 센서를 통해 상기 히팅블럭(122a,122b)의 온도를 간편하게 측정할 수 있음으로써 본 발명의 일 실시예에 따른 세포해동기(100,200)의 정상작동여부를 확인할 수 있다.
이와 같은 센서삽입홀(180)은 하나로 구비될 수도 있지만, 상기 히팅블럭(122a,122b)이 상술한 제1히팅블럭(122a) 및 제2히팅블럭(122b)을 포함하는 경우, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)에 각각 형성되도록 복수 개로 구비될 수 있다.
이때, 상기 센서삽입홀(180)은 상기 히팅블럭(122a,122b)의 측면에 형성될 수도 있지만, 도 18에 도시된 바와 같이 상기 히팅블럭(122a,122b)의 상면에서 하부로 일정깊이 인입되도록 상기 히팅블럭(122a,122b)에 형성될 수 있다.
이에 따라, 상기 하우징(110)에서 상기 투입구(115)가 형성된 상부커버(114)를 분리하면, 상기 히팅블럭(122a,122b)의 상면에 형성된 센서삽입홀(180)은 외부로 노출될 수 있다.
이로 인해, 본 발명의 일 실시예에 따른 세포해동기(100,200)에서 하우징 전체를 분리할 필요없이 상기 하우징(110)으로부터 상기 상부커버(114)만을 분리하더라도 검교정을 위한 센서삽입홀(180)이 외부로 노출될 수 있다.
또한, 본 발명의 일 실시예에 따른 세포해동기(200)에서 상기 센서삽입홀(180)이 상기 히팅블럭(122a,122b)의 상면에서 하부로 일정깊이 인입형성되기 때문에, 상기 센서삽입홀(180)로 삽입된 검교정용 센서는 별도의 고정수단이 없더라도 상기 센서삽입홀(180)에 직립으로 삽입된 상태를 유지할 수 있다.
이를 통해, 확인자는 상기 상부커버(114)를 분리한 후 상기 히팅블럭(122a,122b)의 상면에 형성된 센서삽입홀(180)로 검교정용 센서의 일부길이를 삽입하면 상기 히팅블럭(122a,122b)의 작동온도를 간편하고 정확하게 측정할 수 있다.
이때, 상기 센서삽입홀(180)은 상기 히팅블럭(122a,122b)에 내장되는 온도센서(128a,128b)의 직상부에 위치하도록 형성될 수 있다.
일례로, 상기 센서삽입홀(180)은 도 19에 도시된 바와 같이 밀폐단인 하부단이 상기 온도센서(128a,128b)의 직상부에 위치하도록 상기 히팅블럭(122a,122b)에 형성될 수 있으며, 상기 센서삽입홀(180)의 하부단은 상기 온도센서(128a,128b)와 1mm 내지 5mm의 간격을 갖도록 상기 히팅블럭(122a,122b)에 형성될 수 있다.
이에 따라, 검교정시 상기 센서삽입홀(180)로 삽입된 검교정용 센서를 통해 측정되는 히팅블럭(122a,122b)의 온도는 본 발명의 일 실시예에 따른 세포해동기(100,200)의 작동시 상기 온도센서(128a,128b)를 통해 측정되는 히팅블럭(122a,122b)의 온도와 유사한 온도일 수 있다.
이로 인해, 상기 센서삽입홀(180)을 이용하여 본 발명의 일 실시예에 따른 세포해동기(200)의 검교정을 수행하면, 상기 검교정용 센서를 통해 측정된 히팅블럭(122a,122b)의 온도와 정상작동시 상기 온도센서(128a,128b)를 통해 측정되는 히팅블럭(122a,122b)의 온도가 유사하기 때문에 검교정 결과는 높은 신뢰성을 확보할 수 있다.
이하에서는, 도 13 내지 도 17, 도 25 내지 도 30을 참조하여 상술한 세포해동기(100,200)의 운전방법에 대해서 설명하기로 한다.
먼저, 준비단계로서 상기 투입구(115)를 덮는 덮개(116)를 제거하고 상기 세포해동기(100,200)에 전원을 공급한다.
상기 세포해동기(100,200)에 전원이 인가되면, 상기 제어부(150)는 상기 구동부(130)를 구동시켜 상기 해동부(120)를 대기위치로 변경할 수 있다.
즉, 도 13 및 도 25에 도시된 바와 같이 상기 제어부(150)는 상기 모터(131)를 구동시켜 상기 이동부재(136)를 상승시킬 수 있다. 이에 따라, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)은 서로 멀어지는 방향으로 각각 슬라이딩 이동될 수 있으며, 서로 일정간격 이격배치된 대기위치로 변경될 수 있다.
만약, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 대기위치에 위치한 상태라면 전원인가시 상기 해동부(120)를 대기위치로 변경하는 준비단계는 생략될 수 있다.
그런 다음 제1단계(S1)로서, 상기 제어부(150)는 상기 제1히터(123a) 및 제2히터(123b)를 가동하여 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)을 소정의 온도까지 예열할 수 있다.
일례로, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 예열온도는 상기 용기(10)에 담긴 생물학적 물질을 해동하기 위한 해동온도와 동일하거나 상기 해동온도보다 상대적으로 더 높은 온도일 수 있다.
이때, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 예열은 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 서로 마주하는 일면이 서로 접촉된 상태에서 수행될 수 있다.
즉, 도 14 및 도 26에 도시된 바와 같이 상기 제어부(150)는 상기 모터(131)를 구동시켜 상기 이동부재(136)를 하강시킬 수 있다. 이에 따라, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)은 대기위치에서 서로 가까워지는 방향으로 각각 슬라이딩 이동될 수 있으며, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 서로 마주하는 일면이 서로 접촉된 상태로 변경될 수 있다.
이와 같은 상태에서, 상기 제어부(150)는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 예열이 끝날 때까지 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 접촉상태가 유지될 수 있도록 상기 모터(131)의 구동을 제어할 수 있다.
이에 따라, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 서로 접촉된 상태에서 양측에 각각 배치된 제1히터(123a) 및 제2히터(123b)를 통해 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 동시에 가열될 수 있기 때문에, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)은 상기 제1히터(123a) 및 제2히터(123b)로부터 전달되는 열을 통해 빠르게 소정의 온도까지 승온될 수 있다.
이후, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 예열이 완료되면, 상기 제어부(150)는 상기 디스플레이(118)로 예열이 완료되었다는 메시지를 출력할 수 있으며, 상기 제어부(150)는 상기 모터(131)를 구동시켜 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)을 각각 슬라이딩 이동시킬 수 있다. 이를 통해, 도 15에 도시된 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)은 서로 일정간격 이격배치된 대기위치로 변경될 수 있다.
이와 같이, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 예열이 완료되면, 사용자는 상기 디스플레이(118)를 통해 설정된 해동시간을 확인하고 설정된 해동시간의 변경이 필요한 경우 상기 조작부(117)를 조작하여 설정된 해동시간을 적절한 시간으로 변경할 수 있다.
그런 다음, 도 15 및 도 27에 도시된 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 대기위치에 위치한 상태에서 사용자는 상기 대기위치에 배치된 제1히팅블럭(122a) 및 제2히팅블럭(122b) 사이에 해동이 필요한 용기(10)를 배치할 수 있다. 이와 같은 경우, 상기 용기(10)는 하면이 상기 돌출부재(125d)의 일면에 안착되면서 플랜지부(16)가 상기 안착홈(125a)에 삽입되도록 배치될 수 있다.
이후, 사용자는 상기 대기위치에 배치된 제1히팅블럭(122a) 및 제2히팅블럭(122b) 사이에 해동이 필요한 용기(10)를 배치한 상태에서 상기 조작부(117)를 통해 해동시작신호를 입력할 수 있다.
이에 따라, 상기 제어부(150)는 제2단계(S2)로서 상기 용기(10)에 담긴 생물학적 물질을 해동할 수 있도록 상기 용기(10)를 가열할 수 있다.
즉, 상기 제어부(150)는 상기 모터(131)를 구동시켜 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 서로 가까워지는 방향으로 이동될 수 있도록 상기 이동부재(136)를 하강시킬 수 있다.
이에 따라, 도 16 및 도 28에 도시된 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)은 대기위치에서 상기 용기(10)를 수용하고 가열하기 위한 히팅공간(121)을 형성하는 가열위치로 변경될 수 있으며, 상기 용기(10)는 상기 히팅공간(121)에 배치된 상태에서 둘레면이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)에 의해 둘러싸일 수 있다.
또한, 상기 센서(141)는 상술한 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 직선이동과 연계되어 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)에 각각 형성된 배치공(129a,129b) 측으로 이동함으로써 상기 히팅공간(121)에 수용된 용기(10)의 상태를 감지할 수 있다.
이를 통해, 상기 용기(10)는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)으로부터 전달되는 열을 통해 사용자에 의해 설정된 해동시간만큼 가열될 수 있으며, 상기 센서(141)를 통해 상기 용기(10)의 상태가 실시간으로 측정될 수 있다.
이와 같은 경우, 상기 제어부(150)는 상기 디스플레이(118) 측에 해동중이라는 메시지를 출력할 수 있고, 상기 제1온도센서(128a) 및 제2온도센서(128b)로부터 전달되는 온도정보를 기반으로 상기 제1히터(123a) 및 제2히터(123b)의 구동을 제어하여 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 온도를 일정하게 유지할 수 있으며, 상기 센서(141)를 통해 감지된 용기(10)에 대한 상태정보는 상기 제어부(150)의 구동을 통해 상기 디스플레이(118)에 출력될 수 있다.
이때, 상기 히팅공간(121)에 배치된 상기 용기(10)는 상술한 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)과 서로 접촉되지 않은 상태에서 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)으로부터 비접촉 방식으로 전달되는 열에 의해 가열될 수 있다.
즉, 상기 용기(10)가 상기 히팅공간(121)에 삽입된 상태에서 상기 용기(10)의 둘레면은 상기 히팅공간(121)을 형성하는 제1히팅블럭(122a)의 대향면(127a) 및 제2히팅블럭(122b)의 대향면(127b)과 일정간격 이격될 수 있다.
이를 통해, 상기 용기(10)가 상기 히팅공간(121)에 배치된 상태에서 상기 한 쌍의 대향면(127a,127b)과 용기(10)의 외면 사이에는 간극(d)이 형성될 수 있다.
이에 따라, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)에 저장된 열은 상대적으로 저온인 용기(10) 측으로 전도 방식이 아닌 대류 및/또는 복사를 통해 전달될 수 있다.
이로 인해, 상기 용기(10)의 둘레면은 대류열 및/또는 복사열을 통해 가열될 수 있기 때문에 상기 용기(10)의 둘레면은 상기 히팅블럭(122a,122b)으로부터 전달되는 대류열 및/또는 복사열을 통해 고르게 가열될 수 있다.
또한, 상기 제2단계(S2)에서 상기 제어부(150)는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 서로 접촉된 상태에서 상기 용기(10)를 가열하도록 상기 모터(131)의 구동을 제어할 수도 있지만, 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 서로 접촉되지 않은 상태에서 상기 용기(10)를 가열하도록 상기 모터(131)의 구동을 제어할 수 있다.
즉, 상기 제어부(150)는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)에서 서로 마주하는 일면 중 상기 히팅공간(121)을 형성하기 위한 대향면(127a,127b)이 형성된 부분을 제외한 나머지 부분에서 소정의 간극이 형성되도록 상기 가열위치를 설정할 수 있다.
이를 통해, 본 발명의 일 실시예에 따른 세포해동기(100,200)는 가열위치에서 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 접촉된 상태를 유지하기 위하여 상기 모터(131)에 발생될 수 있는 부하를 방지할 수 있으며, 가열위치에서 상기 용기(10)에 담긴 생물학적 물질을 해동하는 과정에서 상기 용기(10)의 표면으로부터 발생하는 수분이나 습기를 상기 간극을 통해 외부로 배출할 수 있음으로써 상기 생물학적 물질을 더욱 원활하게 해동할 수 있다.
그런 다음, 사용자에 의해 설정된 해동시간이 경과하면 상기 제어부(150)는 상기 디스플레이(118) 측에 완료라는 메시지를 출력할 수 있으며, 상기 제어부(150)는 제3단계(S3)로서 상기 모터(131)를 구동시켜 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)을 대기위치로 변경할 수 있다.
이에 따라, 사용자는 도 17 및 도 29에 도시된 바와 같이 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)이 대기위치에 위치한 상태에서 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b) 사이에 배치된 용기(10)를 취출할 수 있다.
이때, 상기 제어부(150)는 상기 제1히팅블럭(122a) 및 제2히팅블럭(122b)의 온도가 일정하게 지속적으로 유지되도록 상기 제1히터(123a) 및 제2히터(123b)의 구동을 제어할 수 있다.
이에 따라, 사용자는 상기 제1단계(S1) 및 제2단계(S2)를 순차적으로 반복함으로써 복수 개의 용기(10)를 순차적으로 해동할 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (20)

  1. 세포를 포함하는 생물학적 물질이 일정량 저장된 용기를 가열하기 위한 히팅공간을 형성하는 제1히팅블럭 및 제2히팅블럭을 포함하는 히팅블럭과, 상기 히팅블럭에 열을 제공할 수 있도록 상기 히팅블럭에 설치되는 히터와, 상기 히터를 감싸도록 상기 히팅블럭에 결합되는 단열블럭 및 상기 히팅공간에서 상기 용기의 하부를 지지하기 위한 받침대를 포함하는 해동부;
    상기 제1히팅블럭 및 제2히팅블럭을 각각 좌,우 방향으로 직선이동시키는 구동력을 제공하는 구동부;
    상기 히팅공간에 배치된 상기 용기의 상태를 감지하기 위한 센서와, 상기 센서가 장착되고 상기 구동부의 작동과 연계되어 전,후 방향으로 이동하는 장착부재를 포함하는 감지부; 및
    상기 해동부, 구동부 및 감지부의 작동을 제어하는 제어부;를 포함하는 세포해동기.
  2. 제1항에 있어서,
    상기 히팅공간에 수용된 상기 용기는 상기 히팅블럭과 서로 접촉되지 않은 상태에서 상기 히팅블럭으로부터 비접촉 방식으로 전달되는 열에 의해 가열되는 세포해동기.
  3. 제1항에 있어서,
    상기 히팅블럭은 열전도성을 갖는 재질로 이루어지는 세포해동기.
  4. 제1항에 있어서,
    상기 히팅블럭은 일면에 내측으로 인입형성되는 배치홈을 포함하고, 상기 히터는 상기 배치홈에 삽입배치되며, 상기 단열블럭은 상기 배치홈을 덮도록 상기 히팅블럭에 결합되는 세포해동기.
  5. 제1항에 있어서,
    상기 히팅공간은 상기 제1히팅블럭 및 제2히팅블럭에서 서로 마주하는 일면에 상기 용기의 둘레면과 대응되는 형상을 갖도록 내측으로 각각 인입형성되는 대향면을 통해 형성되는 세포해동기.
  6. 제1항에 있어서,
    상기 받침대는 상기 용기의 하부테두리가 삽입될 수 있도록 상기 히팅공간과 마주하는 일면에 형성되는 안착홈을 포함하는 세포해동기.
  7. 제1항에 있어서,
    상기 해동부는, 상기 히팅블럭의 온도를 측정할 수 있도록 상기 히팅블럭에 설치되는 온도센서를 포함하는 세포해동기.
  8. 제7항에 있어서,
    상기 세포해동기는, 상기 히팅블럭의 온도를 측정하기 위한 검교정용 센서가 삽입될 수 있도록 상기 히팅블럭의 상면에서 하부로 일정깊이 인입형성되는 센서삽입홀을 더 포함하고,
    상기 센서삽입홀은 상기 온도센서의 직상부에 위치하도록 형성되는 세포해동기.
  9. 제1항에 있어서, 상기 구동부는,
    구동력을 제공하는 모터와, 상기 모터의 회전축과 축결합되는 회전부재와, 상기 모터의 구동력을 통해 상기 제1히팅블럭 및 제2히팅블럭을 각각 좌,우 방향으로 직선이동시킬 수 있도록 상기 회전부재와 상기 해동부를 상호 연결하는 동력전달부재를 포함하는 세포해동기.
  10. 제9항에 있어서,
    상기 동력전달부재는, 상기 단열블럭과 고정결합되는 가이드블럭과, 상기 가이드블럭의 직선이동을 안내하는 가이드레일과, 상기 모터의 구동력을 통해 상기 회전부재를 따라 상,하 방향으로 승,하강되는 이동부재 및 상기 가이드블럭과 상기 이동부재를 상호 링크연결하는 링크부재를 포함하는 세포해동기.
  11. 제1항에 있어서,
    상기 감지부는,
    상기 장착부재에 회전가능하게 결합되는 롤러부재와, 상기 단열블럭에 고정결합되고 상기 단열블럭의 이동방향과 평행한 방향으로 일정길이 돌출되면서 상기 롤러부재가 접촉되는 접촉면이 형성된 접촉부재를 포함하고,
    상기 접촉면은 평면캠으로 형성되는 세포해동기.
  12. 제11항에 있어서,
    상기 감지부는 상기 장착부재를 상기 히팅공간 측으로 가압하는 탄성부재와 상기 탄성부재의 단부를 지지할 수 있도록 상기 받침대에 결합되는 고정대를 더 포함하는 세포해동기.
  13. 제11항에 있어서,
    상기 받침대는 상기 장착부재로부터 돌출되는 상기 롤러부재가 통과할 수 있도록 관통형성되는 장공의 이동로를 포함하는 세포해동기.
  14. 제1항에 있어서,
    상기 세포해동기는, 상기 단열블럭과의 접촉을 통하여 상기 히팅블럭의 위치를 검출하기 위한 리미트스위치를 더 포함하는 세포해동기.
  15. 제1항에 있어서,
    상기 세포해동기는, 상기 히팅블럭의 위치를 검출하기 위한 비접촉식 위치검출센서를 더 포함하는 세포해동기.
  16. 제1항에 있어서, 상기 세포해동기는,
    상기 히팅공간과 대응되는 위치에 관통형성되는 투입구를 갖는 하우징을 포함하는 세포해동기.
  17. 제16항에 있어서,
    상기 세포해동기는, 상기 히팅블럭의 온도를 측정하기 위한 검교정용 센서가 삽입될 수 있도록 상기 히팅블럭의 상면에서 하부로 일정깊이 인입형성되는 센서삽입홀을 더 포함하고,
    상기 하우징은, 함체형상의 본체와, 상기 본체의 상부를 덮을 수 있도록 상기 본체에 착탈가능하게 결합되는 상부커버를 포함하며,
    상기 투입구는 상기 히팅공간과 대응되는 위치에 위치하도록 상기 상부커버에 형성되며,
    상기 센서삽입홀은 상기 상부커버와 상기 본체의 분리시 외부로 노출되는 세포해동기.
  18. 제1항에 있어서,
    상기 제어부는 상기 히팅공간에 수용된 용기를 가열하는 경우, 상기 제1히팅블럭 및 제2히팅블럭이 서로 접촉되지 않은 상태에서 상기 용기를 가열하도록 상기 구동부의 구동을 제어하는 세포해동기.
  19. 제1항에 있어서,
    상기 제어부는, 상기 제1히팅블럭 및 제2히팅블럭의 온도를 개별적으로 제어하는 세포해동기.
  20. 모터의 구동력에 의한 직선이동을 통하여 세포를 포함하는 생물학적 물질이 일정량 저장된 용기를 수용하고 가열하기 위한 히팅공간을 형성하고 히터로부터 제공되는 열을 통해 상기 히팅공간에 수용된 상기 용기를 가열하기 위한 제1히팅블럭 및 제2히팅블럭을 포함하는 히팅블럭; 및
    상기 히팅블럭의 직선이동과 연계되어 위치가 변경되고 상기 히팅공간에 배치된 용기의 상태를 감지하기 위한 센서;를 포함하는 세포해동기의 운전방법으로서,
    서로 마주하는 상기 제1히팅블럭의 일면 및 제2히팅블럭의 일면이 서로 접촉된 상태에서 상기 히터를 구동하여 상기 제1히팅블럭 및 제2히팅블럭을 소정의 온도까지 예열하는 제1단계;
    상기 제1히팅블럭 및 제2히팅블럭이 상기 히팅공간을 형성하는 가열위치로 변경된 상태에서 상기 생물학적 물질을 해동할 수 있도록 상기 히팅공간에 배치된 상기 용기를 가열하는 제2단계; 및
    상기 히팅공간에 배치된 용기를 취출할 수 있도록 상기 제1히팅블럭 및 제2히팅블럭을 가열위치에서 서로 멀어지는 방향으로 이동시켜 대기위치로 변경하는 제3단계;를 포함하고,
    상기 제2단계에서 상기 히팅공간에 배치된 상기 용기는 상기 제1히팅블럭 및 제2히팅블럭과 서로 접촉되지 않은 상태에서 상기 제1히팅블럭 및 제2히팅블럭으로부터 비접촉 방식으로 전달되는 열에 의해 가열되는 것을 특징으로 하는 세포해동기의 운전방법.
PCT/KR2022/008718 2021-06-25 2022-06-20 세포해동기 및 이의 운전방법 WO2022270849A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22828696.9A EP4361247A1 (en) 2021-06-25 2022-06-20 Cell thawing machine and method for operating same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2021-0082930 2021-06-25
KR1020210082930A KR20230000617A (ko) 2021-06-25 2021-06-25 세포해동기
KR1020210098640A KR20230016982A (ko) 2021-07-27 2021-07-27 세포해동기 및 이의 운전방법
KR10-2021-0098640 2021-07-27
KR1020210151328A KR20230065600A (ko) 2021-11-05 2021-11-05 세포해동기
KR10-2021-0151328 2021-11-05

Publications (1)

Publication Number Publication Date
WO2022270849A1 true WO2022270849A1 (ko) 2022-12-29

Family

ID=84545578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008718 WO2022270849A1 (ko) 2021-06-25 2022-06-20 세포해동기 및 이의 운전방법

Country Status (2)

Country Link
EP (1) EP4361247A1 (ko)
WO (1) WO2022270849A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538447A (ja) * 2014-12-04 2017-12-28 アシンプトート リミテッド 解凍方法および装置
JP2020080838A (ja) * 2018-11-19 2020-06-04 竹中 伸太郎 各種冷凍物の気中解凍処理法
JP2020115813A (ja) * 2019-01-25 2020-08-06 Ysec株式会社 細胞解凍装置
JP2020529868A (ja) * 2017-08-03 2020-10-15 メドシジョン・インコーポレイテッドMedCision, Inc. バッグ形式貯蔵容器の自動解凍用システム、デバイス、及び方法
KR20210045796A (ko) * 2019-10-17 2021-04-27 주식회사 아모그린텍 세포배양장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538447A (ja) * 2014-12-04 2017-12-28 アシンプトート リミテッド 解凍方法および装置
JP2020529868A (ja) * 2017-08-03 2020-10-15 メドシジョン・インコーポレイテッドMedCision, Inc. バッグ形式貯蔵容器の自動解凍用システム、デバイス、及び方法
JP2020080838A (ja) * 2018-11-19 2020-06-04 竹中 伸太郎 各種冷凍物の気中解凍処理法
JP2020115813A (ja) * 2019-01-25 2020-08-06 Ysec株式会社 細胞解凍装置
KR20210045796A (ko) * 2019-10-17 2021-04-27 주식회사 아모그린텍 세포배양장치

Also Published As

Publication number Publication date
EP4361247A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2019172532A1 (ko) 냉장고 및 그 제어방법
WO2011105691A2 (ko) 소재온도 측정장치 및 그 방법
WO2019172497A1 (ko) 냉장고
WO2018048119A1 (ko) 조리기기 및 그 제어방법
WO2022270849A1 (ko) 세포해동기 및 이의 운전방법
WO2021230577A1 (ko) 조리 기기, 조리 기기의 제어 방법 및 조리 시스템
WO2022270848A1 (ko) 세포해동기 및 이의 운전방법
WO2021167161A1 (en) Induction heating type cooktop
WO2022270850A1 (ko) 세포해동기 및 이의 운전방법
WO2018038334A1 (ko) 틸팅 스테이지 시스템
WO2022108060A1 (ko) 적층형 박막 온도센서 어레이
WO2019078475A1 (ko) 병렬연결 구조의 배터리 팩의 히터 제어 시스템 및 그 방법
WO2021071340A1 (ko) 가압모듈 및 그를 가지는 소자 핸들러
WO2021006448A1 (ko) 뚜껑 개방 시 내부 증기를 배출하는 전기압력밥솥
WO2018216956A1 (ko) 바이오 센서, 바이오 센서의 제조방법 및 생체신호 측정장치
WO2021145736A1 (en) Cooking appliance
WO2021167163A1 (en) Induction heating type cooktop
WO2021029608A1 (ko) 블렌더
WO2023158270A1 (ko) 반도체 소자 테스트 장치
WO2021029606A1 (ko) 블렌더
WO2017191935A1 (ko) 온도 측정 장치
WO2021167162A1 (en) Induction heating type cooktop
WO2016182396A1 (ko) 압전 소자를 이용한 전력 소자의 온도 계측 장치, 열응력 저감 장치 및 그 제조 방법
WO2017015987A1 (zh) 一种测试方法和液晶显示面板
WO2023113244A1 (ko) 조리 기기 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022828696

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022828696

Country of ref document: EP

Effective date: 20240125