WO2022270745A1 - 음식 이송 스테이지 및 이를 포함하는 서빙 로봇 장치 - Google Patents

음식 이송 스테이지 및 이를 포함하는 서빙 로봇 장치 Download PDF

Info

Publication number
WO2022270745A1
WO2022270745A1 PCT/KR2022/005984 KR2022005984W WO2022270745A1 WO 2022270745 A1 WO2022270745 A1 WO 2022270745A1 KR 2022005984 W KR2022005984 W KR 2022005984W WO 2022270745 A1 WO2022270745 A1 WO 2022270745A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
disposed
food
support member
grooves
Prior art date
Application number
PCT/KR2022/005984
Other languages
English (en)
French (fr)
Inventor
이민희
강상현
곽현석
구동한
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210155866A external-priority patent/KR20230000904A/ko
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to CN202280029401.2A priority Critical patent/CN117203024A/zh
Priority to EP22828594.6A priority patent/EP4269042A1/en
Priority to US17/752,471 priority patent/US20220408944A1/en
Publication of WO2022270745A1 publication Critical patent/WO2022270745A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators

Definitions

  • the present disclosure relates to a food transfer stage and a serving robot device including the same, and more particularly, to a food transfer stage capable of stably transferring food by reacting insensitively to vibration and a serving robot device including the same.
  • the present disclosure is in accordance with the above-described needs, and an object of the present disclosure is to provide a food transfer stage capable of stably transporting food by reacting insensitively to vibration and a serving robot device including the same.
  • a first plate having a plurality of grooves formed on the upper surface, a second plate disposed such that the lower surface faces the upper surface of the first plate, A first support member connected to the upper surface of the first plate and disposed between the first and second plates, connected to the lower surface of the second plate and disposed between the first and first support members A second support member, a plurality of rolling members disposed in the plurality of grooves, respectively, in contact with the lower surface of the second plate, and disposed on the upper surface of the second support member, and when the second and second support members rise, the An elastic friction member that is deformed by being pressed against the lower surface of the first support member may be included.
  • the second support member is disposed to pass through the central axis of the second plate, and the elastic friction member is disposed at one end of the second support member and at the other end of the second support member.
  • a second elastic friction member may be included.
  • the food transfer stage may further include a support link connecting the second plate and the second support member and rotatably connecting a central portion of the second support member.
  • the food conveying stage is connected to the upper surface of the first plate and connected to a plurality of first pillar members on which the plurality of grooves are respectively formed and a lower surface of the second plate, and is connected to the plurality of first pillar members and each of the plurality of grooves. It may include a plurality of second pillar members arranged to face each other and forming a separation space in which the rolling member is movable.
  • the second pillar member may include an additional groove having a shape vertically symmetrical with the groove.
  • the plurality of grooves include first to fourth grooves disposed in a lattice shape, and the plurality of rolling members include first rollers disposed in the first and second grooves and the third and fourth grooves. and a second roller disposed on the food conveying stage, the upper surface of which is disposed to face the lower surface of the first plate, and fifth grooves respectively disposed at positions corresponding to the first to fourth grooves on the upper surface.
  • a third plate on which eighth grooves are formed a third roller disposed in the fifth and eighth grooves, and disposed in contact with the lower surface of the first plate, and disposed in the sixth and seventh grooves, of the first plate
  • a fourth roller in contact with the lower surface may be further included.
  • the food transfer stage may further include a locking device selectively limiting relative movement of the first plate and the second plate.
  • the locking device is connected to a rotary link and a rotary link rotatably disposed on the upper surface of the first plate, and when the rotary link rotates, the side surfaces of the first and second pillar members are simultaneously pressed as they move in opposite directions. It may include a first pressure link and a second pressure link.
  • the locking device is fixedly disposed on the upper surface of the first plate, and the movement path of the first and second pressing links is raised as the first and second pressing links get closer to the first and second pillar members. It may further include first and second guide members for guiding, respectively.
  • the locking device is disposed on the left and right sides of the fitting member and one end of the fitting member having a shape in which the cross-sectional area becomes smaller toward one end, and when the fitting member moves linearly, it is pushed by one end of the fitting member and moves in the opposite direction to each other Accordingly, a first pressure link and a second pressure link simultaneously pressing the side surfaces of the first and second pillar members and an elastic member connecting the first and second pressure links may be included.
  • the locking device is disposed on the upper surface of the first plate, and includes a first block including a first inclined surface and a second inclined surface engaged with the first inclined surface, as the first block moves linearly.
  • the second inclined surface may include a second block that rises by being pressed by the first inclined surface, and a third block that is connected to a lower surface of the second plate and is fitted with the second block that has risen.
  • a serving robot device includes a main body, a driving device for moving the main body, a first plate having a plurality of grooves formed on an upper surface, and a second plate disposed so that the lower surface faces the upper surface of the first plate.
  • a food transfer stage including a plate, a plurality of rolling members each disposed in the plurality of grooves and in contact with the lower surface of the second plate, and a locking device selectively limiting relative movement of the first plate and the second plate. Based on at least one sensor for detecting the type of food placed on the second plate or the inclined surface in front of the serving robot device and the information received by the at least one sensor, relative movement of the first and second plates is performed. It may include a processor for controlling the locking device to be limited.
  • the at least one sensor includes an acceleration sensor that detects an acceleration of the first plate, and the processor determines, based on information received from the acceleration sensor, a frequency within a predetermined range during vibration of the second plate. If vibration is identified, the locking device may be controlled to limit relative movement of the first and second plates.
  • the serving robot device further includes an input device that receives information about target food to be served, and the processor sets a preset food to the food placed on the second plate based on the information received by the input device. If it is confirmed that is included, it is possible to control the locking device so that the relative movement of the first and second plates is limited.
  • the at least one sensor includes an inclination sensor for detecting an inclined surface in front of the serving robot device, and the processor, based on information received by the inclination detection sensor, determines an inclined surface in front of the serving robot device.
  • the locking device can be controlled so that the relative movement of the first and second plates is limited.
  • the at least one sensor includes a camera that captures an image of food placed on the second plate, and the processor determines, based on information received by the camera, that a predetermined food is placed on the second plate. , It is possible to control the locking device so that the relative movement of the first and second plates is limited.
  • the food transfer stage is connected to a first support member connected to an upper surface of the first plate and disposed between the first and second plates, and a lower surface of the second plate, and connected to the first plate and the first support member.
  • a second support member disposed between the first support members and disposed on the upper surface of the second support member, and when the second plate and the second support member rise, the second support member is pressed against the lower surface of the first support member and elastically deformed.
  • a friction member may be further included, and the serving robot device may further include a damping force adjusting device configured to change a vertical drag applied to the elastic friction member by the first support member by adjusting a height of the first support member.
  • the processor based on the information received by the camera, when it is determined that soup or tang is not included in the food placed on the second plate, and only beverage is included, the damping force is increased within a first range in proportion to the amount of food It is possible to control the damping force adjusting device to increase the damping force.
  • the processor based on the information received by the camera, when it is confirmed that soup or tang is included in the food placed on the second plate, the damping force is increased within a second range greater than the first range in proportion to the amount of food It is possible to control the damping force adjusting device to increase the damping force.
  • the food transfer stage includes a first plate including an upper surface and a plurality of grooves formed on the upper surface, and a second plate disposed so that the lower surface faces the upper surface of the first plate,
  • a first support member connected to an upper surface of one plate and disposed between the first and second plates, connected to a lower surface of the second plate, and disposed between the first plate and the first support member It includes a second support member disposed in the plurality of grooves, a plurality of rolling members in contact with the lower surface of the second plate and disposed on the upper surface of the second support member, the second plate and the first 2 may include an elastic friction member that is deformed by being pressed against the lower surface of the first support member when the support member rises.
  • the serving robot device includes a main body and a driving device for moving the main body, and a first plate having a plurality of grooves formed on an upper surface and a second plate disposed so that the lower surface faces the upper surface of the first plate. And a food transfer stage including a plurality of rolling members disposed in the plurality of grooves and in contact with the lower surface of the second plate, and a locking device selectively limiting relative movement of the first plate and the second plate. And, based on at least one sensor for detecting the type of food placed on the second plate or the inclined surface in front of the serving robot device and information received by the at least one sensor, the first and second plates It may include a processor for controlling the locking device so that the relative movement is limited.
  • FIG. 1 is a perspective view of a food transfer stage according to an embodiment of the present disclosure.
  • Figure 2 is an exploded perspective view of the food transfer stage of Figure 1;
  • 3 and 4 are views showing rotational motion of the rolling member.
  • FIG. 5 is a view showing a structure in which a plurality of rolling members are implemented with four rollers.
  • 6 and 7 are views showing a compression process of the elastic friction member.
  • FIGS. 8 and 9 are diagrams illustrating a locking operation of a locking device according to an embodiment of the present disclosure.
  • FIG 10 and 11 are views showing a locking device according to another embodiment of the present disclosure.
  • FIG. 12 is a perspective view of a serving robot device according to an embodiment of the present disclosure.
  • FIG. 13 is a block diagram schematically illustrating a control process of a serving robot device.
  • FIG. 14 is a cross-sectional view showing the structure of the damping force adjusting device.
  • 15 is a flow chart showing a process in which the damping force is adjusted according to the type of food to be transported.
  • expressions such as “has,” “can have,” “includes,” or “can include” indicate the existence of a corresponding feature (eg, numerical value, function, operation, or component such as a part). , which does not preclude the existence of additional features.
  • FIG. 1 is a perspective view of a food transfer stage according to an embodiment of the present disclosure.
  • Figure 2 is an exploded perspective view of the food transfer stage of Figure 1;
  • the food transfer stage 1 includes a first plate 100, a second plate 200, a first support member 300, and a second support member. 400, a plurality of rolling members 500, and an elastic friction member 600 may be included.
  • a plurality of grooves G1 may be formed on an upper surface of the first plate 100 .
  • the groove G1 may have a concave shape having the lowest height at the center and increasing in height as the distance from the center increases.
  • the second plate 200 may support an object to be transported (eg, a container containing food) on the upper surface 201 .
  • the second plate 200 may be disposed parallel to and opposite to the first plate 100 on the upper side of the first plate 100 .
  • the second plate 200 may be disposed so that the lower surface 202 faces the upper surface 101 of the first plate 100 .
  • the second plate 200 As the second plate 200 is not connected to the first plate 100 and is spaced apart, it can move relative to the first plate 100 .
  • a plurality of rolling members 500 to be described later are disposed between the second plate 200 and the first plate 100 so that the second plate 200 can move relative to the first plate 100 . That is, when the first plate 100 moves, the first plate 100 and the second plate 100 are moved by the inertia of the second plate 200 and the small rolling friction force between the first plate 100 and the second plate 200. Relative movement between the plates 200 occurs.
  • the first support member 300 may be disposed parallel to and opposite to the first and second plates 100 and 200 .
  • the first support member 300 is connected to the upper surface 101 of the first plate 100 through the second support link 40 and can move integrally with the first plate 100 .
  • the first support member 300 may be supported by a second support link 40 perpendicularly connected to the upper surface 101 of the first plate 100 .
  • the second support links 40 may be provided as a pair, and may have a lower end connected to the upper surface 101 of the first plate 100 and an upper end connected to the first support member 300 . Accordingly, the first support member 300 is supported by the second support link 40 and can move integrally with the first plate 100 .
  • the first support member 300 may be disposed between the first and second plates 100 and 200 .
  • the first support member 300 may be spaced apart from the first plate 100 by the height of the second support link 40 .
  • first support member 300 is illustrated as being provided in two, the number is not limited thereto, and may be provided in one or three or more.
  • the second support member 400 may be disposed parallel to and opposite to the first plate 100 , the second plate 200 and the first support member 300 .
  • the second support member 400 is connected to the lower surface 202 of the second plate 200 and can move integrally with the second plate 200 .
  • the second support member 400 may be disposed between the first plate 100 and the first support member 300 .
  • the plurality of rolling members 500 may be respectively disposed in the plurality of grooves G1.
  • the plurality of rolling members 500 may be provided in the same number as the plurality of grooves G1.
  • the rolling member 500 may have a spherical shape, but the shape is not limited thereto, and may have a cylindrical shape as will be described later.
  • the plurality of rolling members 500 may come into contact with the lower surface 202 of the second plate 200 .
  • the rolling member 500 is positioned at the lowest point of the groove G1 and rotates by the vibration or movement of the first plate 100 to move to a higher place.
  • the second plate 200 can move relative to the first plate 100 even though there is a small coefficient of rolling friction between the first plate 100 and the second plate 200 (eg, 0.001 to 0.01). .
  • the second plate 200 may also move upward by the motion of the rolling member 500 .
  • the rolling member 500 since the rolling member 500 is disposed in the groove G1 having the lowest center, the rolling member 500 may rise higher as the distance from the center of the groove G1 increases. Accordingly, since the lower surface 202 of the second plate 200 is also supported by the rolling member 500, it can rise higher as it moves in the horizontal direction with respect to the first plate 100, and the second plate 200 ) and the second support member 400 moving integrally with the first plate 100 may also rise higher as they move away from the first plate 100 in the horizontal direction.
  • the food transfer stage 1 may include an elastic friction member 600 .
  • the elastic friction member 600 may be disposed on the upper surface 401 of the second support member 400 .
  • the elastic friction member 600 may be fixedly disposed at a predetermined position on the upper surface 401 of the second support member 400 .
  • the elastic friction member 600 may have the elastic property of an elastic member to return to its original shape when compressed up and down.
  • the elasticity of the elastic friction member 600 may increase in proportion to the degree of vertical compression.
  • the elastic friction member 600 may be formed of a poron sponge, but the material is not limited thereto.
  • the elastic friction member 600 may be pressed against the lower surface of the first support member 300 and deformed. Specifically, when the first plate 100 vibrates or moves, the rolling member 500 rises as it rotates on the groove G1, and as a result, the second plate 200 and the second support member 400 also rotate on the first groove G1. It may rise while moving in a direction away from the center of the plate 100 .
  • the second plate 200 moves away from the center of the first plate 100, the second plate 200 rises further, so that the second support member 400 and the fixed height rise.
  • the elastic friction member 600 disposed between the first support members 300 located at may be further compressed in proportion to the horizontal movement distance of the second plate 200 .
  • Elastic force due to compression of the elastic friction member 600 may act on the lower surface of the first support member 300, and as a reaction thereto, vertical drag may act on the elastic friction member 600 by the first support member 300.
  • the vertical drag force acting on the elastic friction member 600 and the resulting frictional force may increase in proportion to the horizontal movement distance of the second plate 200 .
  • the friction force applied to the elastic friction member 600 by the first support member 300 may be transmitted to the second plate 200 .
  • 3 and 4 are views showing rotational motion of the rolling member.
  • the food transfer stage 1 may include a plurality of first pillar members 20 and a plurality of second pillar members 30 .
  • the plurality of first pillar members 20 may be connected to the upper surface 101 of the first plate 100, and a plurality of grooves G1 may be respectively formed.
  • the first pillar member 20 may move integrally with the first plate 100 .
  • the first pillar member 20 may protrude upward from the upper surface 101 of the first plate 100 .
  • the plurality of second pillar members 30 are connected to the lower surface 202 of the second plate 200 and are arranged to face the plurality of first pillar members 20, respectively, so that the rolling member 500 is movable apart. space can be created.
  • the second pillar member 30 may move integrally with the second plate 200 .
  • the second pillar member 30 may protrude downward from the lower surface 202 of the second plate 200 .
  • the first and second pillar members 20 and 30 are spaced apart from each other, and the rolling member 500 is disposed therebetween, so that the first and second pillar members 20 and 30 may move relative to each other.
  • the first and second pillar members 20 and 30 may be spaced apart by a length smaller than the diameter of the rolling member 500, and thus the rolling member 500 may not leave or fall off the groove G1, and the first and second pillar members 500 may be spaced apart from each other. It can be stopped at the inner wall of the two-post member (20, 30).
  • the second pillar member 30 may include an additional groove G2 having a shape vertically symmetrical with the groove G1. That is, the additional groove G2 may have a concave shape having the highest center and decreasing in height as the distance from the center increases.
  • the rolling member 500 may have an equilibrium state of returning to the center even if it is separated from the center of the groove G1 by the groove G1 and the additional groove G2. Accordingly, even if the first plate 100 vibrates or moves, the second plate 200 can easily return to the initial position of the equilibrium state.
  • the rolling member 500 is located at the lowest point of the groove G1, rotates by the vibration or movement of the first plate 100, and moves to a higher point of the groove G1, and the second plate 200 also rotates. It can move upward by the rotation of the rolling member 500 .
  • the vibration or movement of the second plate 200 does not affect the vibration or movement of the first plate 100. can be generated and attenuated by Accordingly, the container holding the food supported by the second plate 200 does not fall over and the food cannot be separated from the container, so that the food transfer stage 1 can stably transfer the food.
  • FIG. 5 is a view showing a structure in which a plurality of rolling members are implemented with four rollers.
  • the plurality of grooves G1 may include first to fourth grooves G11, G12, G13, and G14 disposed in a lattice shape.
  • the cross section of the first plate 100 has a substantially rectangular shape, and the first to fourth grooves G11, G12, G13, and G14 may be disposed adjacent to corner portions of the first plate 100, respectively. , shape and position are not limited thereto.
  • the plurality of rolling members 500 include first rollers R1 disposed in the first and second grooves G11 and G12 and second rollers disposed in the third and fourth grooves G13 and G14 ( R2) may be included. That is, the first and second rollers R1 and R2 may be disposed elongately along the Y-axis and may rotate around respective rotational axes.
  • the first to fourth grooves G11 , G12 , G13 , and G14 may have a concave shape having the lowest central portion and increasing as the distance from the central portion increases in the X-axis direction.
  • the first roller R1 and the second rollers R1 and R2 may contact the lower surface 202 of the second plate 200 .
  • the food transfer stage 1 may further include a third plate 700, a third roller R3, and a fourth roller R4.
  • the third plate 700 may be horizontally disposed parallel to the first and second plates 100 and 200 .
  • the third plate 700 is disposed so that the upper surface 701 faces the lower surface 102 of the first plate 100, and the upper surface 701 has first to fourth grooves G11, G12, G13, and G14.
  • Fifth to eighth grooves G15, G16, G17, and G18 respectively disposed at corresponding positions may be formed. That is, the first to fourth grooves G11, G12, G13, and G14 may be positioned on the same vertical axis as the fifth to eighth grooves G15, G16, G17, and G18, respectively.
  • the fifth to eighth grooves G15, G16, G17, and G18 may have a concave shape having the lowest central portion and increasing as the distance from the central portion increases in the Y-axis direction.
  • the third roller R3 is disposed in the sixth and seventh grooves G16 and G17 and may contact the lower surface 102 of the first plate 100 .
  • the fourth roller R4 is disposed in the fifth and eighth grooves G15 and G18 and may contact the lower surface of the first plate 100 .
  • the food conveying stage 1 shown in FIG. 5 may include 3 layers of plates, 8 grooves and 4 rollers. Accordingly, the vibration and movement of the Y-axis component are damped by the third and fourth rollers R3 and R4 between the third plate 700 and the first plate 100, and the first plate 100 and Vibration and movement of the X-axis component may be damped between the second plate 200 by the first and second rollers R1 and R2.
  • the container holding the food supported by the second plate 200 on the uppermost side does not fall or overturn, and the food may not be separated from or spilled from the container, so that the food transfer stage 1 stably feeds the food. can be transported
  • 6 and 7 are views showing a compression process of the elastic friction member.
  • the rolling member 500, the second plate 200, and the second support member 400 may rise.
  • the elastic friction member 600 may be pressed against the lower surface of the first support member 300 and deformed.
  • the second plate 200 also moves further away from the first plate 100 in the horizontal direction.
  • the second support member 400 and the elastic friction member 600 which can rise in height and move integrally with the second plate 200, also have the second plate 200 in the horizontal direction with respect to the first plate 100. The farther you go, the higher you can climb.
  • the distance between the upper surface 401 of the second support member 400 and the lower surface of the first support member 300 can be reduced from H1 to H2, and the value of H2 is It may become smaller as it moves away from the plate 100 in the horizontal direction.
  • the vertical drag force and the frictional force acting on the elastic friction member 600 by the first support member 300 may also increase as the second plate 200 moves away from the first plate 100 in the horizontal direction. there is.
  • the serving robot device 1000 since the vibration generated in the serving robot device 1000 is absorbed by the food transfer stage 1, the serving robot device 1000 is moved by the second plate 200. Supported food can be transported stably.
  • the second support member 400 may be disposed to pass through the central axis Z1 of the second plate 200 .
  • the elastic friction member 600 includes a first elastic friction member 610 disposed on one end 410 of the second supporting member 400 and a second elastic friction member 610 disposed on the other end 420 of the second supporting member 400. 2 elastic friction members 620 may be included.
  • the second plate 200 rotates around the Z axis. Vibration (eg, YAW rotation) can be sufficiently damped.
  • the food transfer stage 1 includes a first support link 10 connecting the second plate 200 and the second support member 400 and rotatably connecting the central portion of the second support member 400. may further include.
  • the center of the second support member 400 is rotatably connected to the first support link 10, and the first elastic friction member 610 is separated from the center by a distance of D1.
  • the second elastic friction member 620 may be spaced from the center of the second support member 400 by a distance of D2, and D1 and D2 may have the same value.
  • the normal drag force and the frictional force acting on the first and second elastic friction members 610 and 620 by the first support member 300 may be equal to each other. That is, the vibration of the second plate 200 can be more quickly damped by the frictional force acting symmetrically by the first and second elastic friction members 610 and 620 .
  • FIGS. 8 and 9 are diagrams illustrating a locking operation of a locking device according to an embodiment of the present disclosure.
  • the structure of the locking device 800 described through FIGS. 8 and 9 may be added to various embodiments of the food transfer stage 1 described above.
  • the food transfer stage 1 may further include a locking device 800 that selectively limits relative movement of the first plate 100 and the second plate 200 .
  • a locking device 800 that selectively limits relative movement of the first plate 100 and the second plate 200 .
  • 8 may represent an unlocking state
  • FIG. 9 may represent a locking state.
  • the user when there is no risk of spilling food because liquid is not included in the food to be transported, the user selectively manually manipulates the locking device 800 to move the first and second plates 100 and 200 relative to each other.
  • the food transfer stage 1 determines whether to lock according to the detection result of the sensor to be described later, and then automatically operates the locking device 800 to limit the relative movement of the first and second plates 100 and 200 can do.
  • the first plate 100 and the second plate 200 can be integrally connected and moved by the locking device 800 .
  • the locking device 800 may be manually operated by a user or automatically operated by a motor.
  • the locking device 800 may include a rotating link 811 , a first pressure link 812 and a second pressure link 813 .
  • the rotating link 811 may be rotatably disposed on the upper surface 110 of the first plate 100 .
  • the rotational link 811 is connected to one end L1 of the lever L, and can convert linear movement of the lever L into rotational movement.
  • the first and second pressure links 812 and 813 may be connected to the rotation link 811 .
  • the first and second pressure links 812 and 813 may be positioned opposite to each other based on the center of the rotation link 811 .
  • the first and second pressing links 812 and 813 may simultaneously press or contact the side surfaces of the first and second pillar members 20 and 30 as they move in opposite directions when the rotating link 811 rotates. .
  • first and second pressure links 812 and 813 may serve to brake the first and second pillar members 20 and 30 from moving relative to each other at two different points. Accordingly, relative movement of the first and second pillar members 20 and 30 is impossible, and the second plate 200 can move at the same speed as the lower first plate 100 .
  • the locking device 800 may further include first and second guide members 814 and 815 .
  • the first and second guide members 814 and 815 are fixedly disposed on the upper surface 110 of the first plate 100, and the first and second pressing links 812 and 813 are first and second pillar members ( Moving paths of the first and second pressure links 812 and 813 may be respectively guided so as to rise as they get closer to 20 and 30 .
  • the first and second guide members 814 and 815 may include a groove or hole G having a shape in which the first and second pressure links 812 and 813 are respectively inserted and ascending.
  • the first and second pressing links 812 and 813 are disposed adjacent to the upper surface 110 of the first plate 100, so that the second pillar member 30 is the first pillar member ( 20), since it is disposed at a lower height than the second pillar member 30 even when it is relatively moved in the horizontal direction, the movement of the second pillar member 30 may not be hindered.
  • the first and second pressure links 812 and 813 rise according to the first and second guide members 814 and 815 while the first and second pillar members are raised.
  • the side surfaces of the first and second pillar members (20, 30) can be simultaneously pressed. Accordingly, the locking device 800 may have a more compact size.
  • FIGS. 10 and 11 are views showing a locking device according to another embodiment of the present disclosure.
  • the structure of the locking device 800 described through FIGS. 10 and 11 may be added to various embodiments of the food transfer stage 1 described above.
  • the locking device 800 may include a fitting member 821 , a first pressure link 822 , a second pressure link 823 , and an elastic member 824 .
  • the fitting member 821 may have a shape in which a cross-sectional area decreases toward one end 821a.
  • the first and second pressure links 822 and 823 may be disposed on the left and right sides of one end 821a of the fitting member 821, respectively, and the first and second pressure links 822 and 823 are the fitting member 821 It may have a shape that engages with one end (821a) of.
  • the fitting member 821 may linearly move toward the first and second pressing links 822 and 823 by the lever L.
  • the circular link 825 connected to one end of the lever (L) may rotate.
  • the fitting member 821, the other end of which is connected to the circular link 825 may linearly move toward the first and second pressure links 822 and 823 in a moving direction different from that of the lever L.
  • the first and second pressing links 822 and 823 are pushed by one end 821a of the fitting member 821 and move in opposite directions to each other, so that the first and second pillar members The sides of (20, 30) can be pressed at the same time. Accordingly, since the relative movement of the first and second pillar members 20 and 30 is impossible, the food transfer stage 1 may be in a locked state.
  • the elastic member 824 may connect the first and second pressure links 822 and 823 . Accordingly, when the fitting member 821 moves backward again, the first and second pressure links 822 and 823 also move backward by the elastic force of the elastic member 824, so that the food conveying stage 1 is in an unlocked state. It can be.
  • the locking device 800 may include a first block 831 , a second block 832 and a third block 833 .
  • the first block 831 may be disposed on the upper surface 101 of the first plate 100 and may include a first inclined surface 831a.
  • the second block 832 may include a second inclined surface 832a engaged with the first inclined surface 831a.
  • the second block 832 may be inserted into the upper surface 101 of the first plate 100 such that it may only move vertically with respect to the first plate 100 and may not move horizontally.
  • the second block 832 may rise as the second inclined surface 832a is pressed by the first inclined surface 831a.
  • the third block 833 is connected to the lower surface 202 of the second plate 200, and the raised second block 832 can be inserted therein.
  • the food transfer stage 1 can be in a locking state.
  • the transfer stage 1 can be in an unlocked state.
  • 12 is a perspective view of a serving robot device according to an embodiment of the present disclosure.
  • 13 is a block diagram schematically illustrating a control process of a serving robot device.
  • 14 is a cross-sectional view showing the structure of the damping force adjusting device.
  • the serving robot device 1000 includes a main body 1010, a driving device 1020 for moving the main body 1010, a processor 1100, at least one sensor 1200, and a main body 1010. ) It may include a food transfer stage 1 supported horizontally.
  • the food transfer stage 1 may include a locking device 800 that selectively limits relative movement of the first plate 100 and the second plate 200 .
  • the serving robot device 1000 may move to the designated table and serve the food.
  • the serving robot device 1000 may include a display device 1030 indicating information about the food provided (eg, type of food, location of the arrival table, etc.).
  • the serving robot device 1000 may include a plurality of tray members 1040 horizontally arranged side by side with each other, and the food transfer stage 1 is detachably attached to at least one of the plurality of tray members 1040. can be fixed
  • the processor 1100 may control the overall operation of the serving robot device 1000.
  • the processor 1100 may include one or more of a central processing unit (CPU), an application processor (AP), or a communication processor (CP).
  • the processor 900 may be a microcontroller (Micro Control Unit, MCU).
  • the processor 1100 may control hardware or software components connected to the processor 1100 by driving an operating system or an application program, and may perform various data processing and operations. Also, the processor 1100 may load and process commands or data received from at least one of the other components into a volatile memory, and store various data in a non-volatile memory.
  • the processor 1100 may control the locking device 800 so that the relative movement of the first and second plates 100 and 200 is limited based on the information received by the at least one sensor 1200 .
  • the at least one sensor 1200 may include at least one of an acceleration sensor 1210 , an inclination sensor 1220 , and a camera 1230 .
  • the serving robot device 1000 adjusts the height of the first support member 300 of the food transfer stage 1 to reduce the vertical drag applied to the elastic friction member 600 by the first support member 300.
  • a damping force adjusting device 1500 that changes may be further included.
  • the damping force adjusting device 1500 may include a motor 1510, a worm gear 1520, and a rack gear 1530.
  • the motor 1510 may rotate the worm gear 1520.
  • the rack gear 1530 may be connected to a side surface of the second support link 40 and may be disposed to engage with the worm gear 1520 . As the motor 1510 drives and the worm gear 1520 rotates, the rack gear 1530 vertically moves to change the length of the second support link 40 .
  • the first support member 300 When the length of the second support link 40 increases, the first support member 300 may rise, and when the length of the second support link 40 decreases, the first support member 300 may descend. there is.
  • the elastic friction member 600 is less compressed when the first support member 300 rises, the normal drag force and the frictional force acting on the elastic friction member 600 may be reduced, and thus the damping force may be reduced. Conversely, when the first support member 300 descends, the elastic friction member 600 is further compressed, so that the normal drag force and the frictional force acting on the elastic friction member 600 increase, and thus the damping force may increase.
  • the processor 1100 controls the locking device 800 so that the food transfer stage 1 is locked or unlocked based on the type of food placed on the second plate 200, or the first support
  • the damping force adjusting device 1500 may be controlled so that the normal drag force and the frictional force of the elastic friction member 600 are adjusted by raising or lowering the height of the member 300 .
  • the processor 1100 controls the locking device 800 so that the food transfer stage 1 is unlocked when it is determined that food placed on the food transfer stage 1 contains a liquid such as a beverage.
  • the damping force adjusting device 1500 may be controlled to lower the height of the first support member 300 .
  • the processor 1100 may control the locking device 800 so that the food transfer stage 1 is in a locked state when it is determined that the food placed on the food transfer stage 1 is solid food that does not contain liquid. there is.
  • the processor 1100 controls the locking device 800 so that the food transfer stage 1 is unlocked when it is determined that the food placed on the food transfer stage 1 is at least one of soup, soup, and soup.
  • the damping force adjusting device 1500 may be controlled to lower the height of the first support member 300 .
  • the acceleration sensor 1210 may detect acceleration of the first plate 100 .
  • the processor 1100 based on the information received from the acceleration sensor 1210, when the first plate 100 vibrates or moves within a predetermined range or more, the first and second plates 100 and 200 ) It is possible to control the locking device 800 to enable relative movement.
  • the processor 1100 detects a vibration of a predetermined range of frequencies (eg, 2HZ to 4HZ) among the vibrations of the second plate 200, and drinks are placed on the food placed on the second plate 200. Determined to be included, it is possible to control the locking device 800 to enable the relative movement of the first and second plates (100, 200).
  • a vibration of a predetermined range of frequencies eg, 2HZ to 4HZ
  • the serving robot device 1000 may include an input device 1300 that receives information about food to be served.
  • the input device 1300 may include, for example, a touch panel, a (digital) pen sensor, a key, or an ultrasonic input device.
  • a touch panel, a pen sensor, and a key may be included in the display device 1030 .
  • the touch panel may use at least one of, for example, a capacitive type, a pressure-sensitive type, an infrared type, or an ultrasonic type. Also, the touch panel may further include a control circuit. The touch panel may further include a tactile layer to provide a tactile response to the user.
  • the (digital) pen sensor may be, for example, a part of the touch panel or may include a separate recognition sheet. Keys may include, for example, physical buttons, optical keys, or keypads.
  • the ultrasonic input device may detect ultrasonic waves generated by an input tool through, for example, a microphone, and check data corresponding to the detected ultrasonic waves.
  • the input device 1300 may be a terminal device such as a remote control, a smart watch, a smart band, a wireless headset, a mobile phone, a smart phone, or a tablet.
  • a terminal device such as a remote control, a smart watch, a smart band, a wireless headset, a mobile phone, a smart phone, or a tablet.
  • the processor 1100 determines that the preset food is included in the food placed on the second plate 200, the first and second plates 100 and 200 It is possible to control the locking device 800 to enable relative movement of.
  • the processor 1100 may include the first and second plates 100, It is possible to control the locking device 800 so that the relative movement of the 200 is possible.
  • the tilt detection sensor 1220 may detect an inclined surface in front of the serving robot device 1000.
  • the tilt detection sensor 1220 may be a 3D depth camera or an IMU sensor, but the type is not limited thereto.
  • the inclination detection sensor 1220 implemented as a 3D depth camera can detect the existence of an inclined plane on the moving path of the serving robot device 1000 by capturing an image of the surrounding environment of the serving robot device 1000.
  • the inclination detection sensor 1220 implemented as an IMU sensor may detect an inclination angle of the serving robot device 1000. That is, when it is detected by the inclination sensor 1220 that the inclination of the serving robot device 1000 is greater than or equal to a predetermined angle, the processor 1100 may determine that an inclined surface exists in front of the serving robot device 1000. .
  • the processor 1100 determines that the first and second plates 100 and 200 have a slope when it is confirmed that a slope exists in front of the serving robot device 1000. It is possible to control the locking device 800 so that movement is restricted.
  • the second plate 200 moves rapidly by gravity compared to the first plate 100, and the food placed on the second plate 200 is moved by the serving robot. It may fall away from device 1000 .
  • the serving robot device 1000 may further include a distance sensor 1400.
  • the distance sensor 1400 may detect the distance between the serving robot device 1000 and surrounding obstacles.
  • the distance sensor 1400 may be implemented as a LIDAR sensor (Light Detection And Ranging Sensor), but the type is not limited thereto.
  • the serving robot device 1000 may check the location of the serving robot device 1000 in a pre-stored map based on a result of scanning the surroundings of the serving robot device 1000 using the distance sensor 1400 . In addition, the serving robot device 1000 may obtain a map of the new area using the distance sensor 1400 while driving in a new area where the map is not stored.
  • the processor 1100 uses the driving device 1020 to move the main body 1010 to a target serving point along an optimal path without colliding with an obstacle based on information about the location and the map obtained through the distance sensor 1400. ) can be controlled.
  • 15 is a flow chart showing a process in which the damping force is adjusted according to the type of food to be transported.
  • the camera 1230 may take pictures of the surrounding environment of the serving robot device 1000 or the food placed on the second plate 200 . Based on the information collected from the camera, the serving robot device 1000 recognizes the surrounding environment, can autonomously drive and collect information, and can deliver information to the user.
  • the processor 1100 determines that the food placed on the second plate 200 does not include soup, soup, or beverage, the first and second plates ( It is possible to control the locking device 800 so that the relative movement of the 100 and 200 is limited.
  • the first and second plates 100 and 200 are locked to each other, so that the second plate 200 vibrates unnecessarily. solid food can be transported stably.
  • the processor 1100 determines that at least one of soup, soup, and beverage is included in the food placed on the second plate 200 based on the information received by the camera 1230, the first and second It is possible to control the locking device 800 so that the relative movement of the plates 100 and 200 is possible.
  • the processor 1100 determines, based on the information received by the camera 1230, that soup or tang is not included in the food placed on the second plate 200 and only beverage is included, the amount of food is determined.
  • the damping force adjusting device 1500 may be controlled to proportionally increase the damping force within the first range.
  • the processor 1100 based on the information received by the camera 1230, if it is confirmed that soup or tang is included in the food placed on the second plate 200, the processor 1100, in proportion to the amount of food greater than the first range
  • the damping force adjusting device 1500 may be controlled to increase the damping force within the second range.
  • Soup or soup may refer to liquid food served in a low or flat bowl or plate. Soup or tang has a relatively large liquid level amplitude due to a relatively large cup size, and can resonate at a low frequency (eg, around 1HZ).
  • the damping force adjusting device 1500 since the food transport stage 1 sufficiently absorbs the vibration of a small frequency, the soup or soup can be stably transferred while being placed on the food transport stage 1. can
  • Beverage may refer to liquid food contained in a tall cup.
  • a beverage can resonate at a high frequency (eg, around 3HZ) with a relatively small liquid surface amplitude due to a small cup size.
  • the food transport stage 1 sufficiently absorbs vibration of a large frequency, so that the beverage is placed on the food transport stage 1 without vibrating as much as possible in the cup. It can be transported stably.
  • the amount of food placed on the second plate 200 is determined by the number of bowls or cups among the information received by the camera 1230, or a weight sensor disposed on the first plate 100 or the second plate 200 ( Not shown) can be determined by the weight sensed by.
  • the damping force adjusting device 1500 raises the first support member 300, the elastic friction member 600 is less compressed, so the damping force may decrease. Conversely, when the damping force adjusting device 1500 lowers the first support member 300, the elastic friction member 600 is further compressed, and thus the damping force may increase.
  • the damping force is classified from the smallest step 1 to the largest step 6.
  • the damping forces of the first to third stages may fall within a first range
  • the damping forces of the fourth to sixth stages may fall within a second range.
  • the processor 1100 controls the damping force adjusting device 1500 to have a third level of damping force within the first range. can do.
  • the processor 1100 may control the damping force adjusting device 1500 to have a damping force of a first stage in a first range. .
  • the damping force adjusting device 1500 has a damping force of the sixth level of the second range. can control.
  • the processor 1100 controls the damping force adjusting device 1500 to have a damping force of the fourth level of the second range. can do.
  • the damping force is finely adjusted according to the amount of food as well as the type of food placed on the second plate 200, the food can be stably transferred while being placed on the food transfer stage 1 having an optimized damping force. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

음식 이송 스테이지가 개시된다. 본 음식 이송 스테이지는, 상면에 복수의 그루브가 형성되는 제 1 플레이 트, 하면이 상기 제 1 플레이트의 상면과 마주하도록 배치되는 제 2 플레이트, 상기 제 1 플레이트의 상면에 연결되고, 상기 제 1 및 제 2 플레이트의 사이에 배치되는 제 1 지지 부재, 상기 제 2 플레이트의 하면에 연결되고, 상기 제 1 플레이트 및 상기 제 1 지지 부재의 사이에 배치되는 제 2 지지 부재, 상기 복수의 그루 브에 각각 배치되고, 상기 제 2 플레이트의 하면과 접하는 복수의 롤링 부재 및 상기 제 2 지지 부재의 상 면에 배치되고, 상기 제 2 플레이트 및 상기 제 2 지지 부재가 상승하면 상기 제 1 지지 부재의 하면에 가압 되어 변형되는 탄성 마찰 부재를 포함한다.

Description

음식 이송 스테이지 및 이를 포함하는 서빙 로봇 장치
본 개시는 음식 이송 스테이지 및 이를 포함하는 서빙 로봇 장치에 관한 것으로, 보다 구체적으로는 진동에 둔감하게 반응하여 음식을 안정적으로 이송할 수 있는 음식 이송 스테이지 및 이를 포함하는 서빙 로봇 장치에 관한 것이다.
로봇 기술의 발전에 따라, 식당 등에서 서빙의 대상물(예를 들어, 음식물)을 지정된 위치로 운반하는 로봇의 개발이 이루어지고 있다. 그러나, 서빙 로봇이 급격하게 가속 또는 감속을 하거나, 장애물과 충돌하거나, 지면이 울퉁불퉁한 경우에 서빙 대상물에 진동이 전달되어, 음식을 담은 용기가 쓰러지거나 음식이 용기로부터 쏟아지거나 떨어지는 문제점이 있었다.
본 개시는 상술한 필요성에 따른 것으로, 본 개시의 목적은 진동에 둔감하게 반응하여 음식을 안정적으로 이송할 수 있는 음식 이송 스테이지 및 이를 포함하는 서빙 로봇 장치를 제공함에 있다.
이상과 같은 목적을 달성하기 위한 본 개시의 일 실시예에 따른 음식 이송 스테이지는, 상면에 복수의 그루브가 형성되는 제1 플레이트, 하면이 상기 제1 플레이트의 상면과 마주하도록 배치되는 제2 플레이트, 상기 제1 플레이트의 상면에 연결되고, 상기 제1 및 제2 플레이트의 사이에 배치되는 제1 지지 부재, 상기 제2 플레이트의 하면에 연결되고, 상기 제1 및 제1 지지 부재의 사이에 배치되는 제2 지지 부재, 상기 복수의 그루브에 각각 배치되고, 상기 제2 플레이트의 하면과 접하는 복수의 롤링 부재 및 상기 제2 지지 부재의 상면에 배치되고, 상기 제2 및 제2 지지 부재가 상승하면 상기 제1 지지 부재의 하면에 가압되어 변형되는 탄성 마찰 부재를 포함할 수 있다.
상기 제2 지지 부재는 상기 제2 플레이트의 중심축을 통과하도록 배치되고, 상기 탄성 마찰 부재는, 상기 제2 지지 부재의 일단에 배치되는 제1 탄성 마찰 부재 및 상기 제2 지지 부재의 타단에 배치되는 제2 탄성 마찰 부재를 포함할 수 있다.
상기 음식 이송 스테이지는, 상기 제2 플레이트와 상기 제2 지지 부재를 연결하고, 상기 제2 지지 부재의 중심부가 회전 가능하게 연결되는 지지 링크를 더 포함할 수 있다.
상기 음식 이송 스테이지는, 상기 제1 플레이트의 상면에 연결되고, 상기 복수의 그루브가 각각 형성되는 복수의 제1 기둥 부재 및 상기 제2 플레이트의 하면에 연결되고, 상기 복수의 제1 기둥 부재와 각각 마주하도록 배치되어, 상기 롤링 부재가 이동 가능한 이격 공간을 형성하는 복수의 제2 기둥 부재를 포함할 수 있다.
상기 제2 기둥 부재는, 상기 그루브와 상하 대칭의 형상을 갖는 추가 그루브를 포함할 수 있다.
상기 복수의 그루브는, 격자형으로 배치되는 제1 그루브 내지 제4 그루브를 포함하고, 상기 복수의 롤링 부재는, 상기 제1 및 제2 그루브에 배치되는 제1 롤러 및 상기 제3 및 제4 그루브에 배치되는 제2 롤러를 포함하고, 상기 음식 이송 스테이지는, 상면이 상기 제1 플레이트의 하면과 마주하도록 배치되고, 상면에 상기 제1 내지 제4 그루브와 대응되는 위치에 각각 배치되는 제5 그루브 내지 제8 그루브가 형성되는 제3 플레이트, 상기 제5 및 제8 그루브에 배치되고, 상기 제1 플레이트의 하면과 접하는 제3 롤러 및 상기 제6 및 제7 그루브에 배치되고, 상기 제1 플레이트의 하면과 접하는 제4 롤러를 더 포함할 수 있다.
상기 음식 이송 스테이지는, 상기 제1 플레이트와 상기 제2 플레이트의 상대 이동을 선택적으로 제한하는 락킹 장치를 더 포함할 수 있다.
상기 락킹 장치는,상기 제1 플레이트의 상면에 회전 가능하게 배치되는 회전 링크 및 회전 링크에 연결되어, 회전 링크가 회전하면 서로 반대 방향으로 이동함에 따라 제1 및 제2 기둥 부재의 측면을 동시에 가압하는 제1 가압 링크 및 제2 가압 링크를 포함할 수 있다.
상기 락킹 장치는, 상기 제1 플레이트의 상면에 고정 배치되고, 상기 제1 및 제2 가압 링크가 상기 제1 및 제2 기둥 부재와 가까워짐에 따라 상승하도록 상기 제1 및 제2 가압 링크의 이동 경로를 각각 가이드하는 제1 및 제2 가이드 부재를 더 포함할 수 있다.
상기 락킹 장치는, 일단으로 갈수록 단면적이 작아지는 형상을 갖는 끼움 부재 및 상기 끼움 부재의 일단의 좌우에 각각 배치되어, 상기 끼움 부재가 직선 이동하면 상기 끼움 부재의 일단에 밀려 서로 반대 방향으로 이동함에 따라 상기 제1 및 제2 기둥 부재의 측면을 동시에 가압하는 제1 가압 링크 및 제2 가압 링크 및 상기 제1 및 제2 가압 링크를 연결하는 탄성 부재를 포함할 수 있다.
상기 락킹 장치는, 상기 제1 플레이트의 상면에 배치되고, 제1 경사면을 포함하는 제1 블록, 상기 제1 경사면과 맞물리는 제2 경사면을 포함하여, 상기 제1 블록이 직선 이동함에 따라 상기 제2 경사면이 상기 제1 경사면에 의해 가압되어 상승하는 제2 블록 및 상기 제2 플레이트의 하면에 연결되어, 상승한 상기 제2 블록이 끼워지는 제3 블록을 포함할 수 있다.
본 개시의 일 실시예에 따른 서빙 로봇 장치는, 본체, 상기 본체를 이동시키는 구동 장치, 상면에 복수의 그루브가 형성되는 제1 플레이트, 하면이 상기 제1 플레이트의 상면과 마주하도록 배치되는 제2 플레이트, 상기 복수의 그루브에 각각 배치되고 상기 제2 플레이트의 하면과 접하는 복수의 롤링 부재 및 상기 제1 플레이트와 상기 제2 플레이트의 상대 이동을 선택적으로 제한하는 락킹 장치를 포함하는 음식 이송 스테이지, 상기 제2 플레이트에 놓여진 음식의 종류 또는 상기 서빙 로봇 장치의 전방에 경사면을 감지하는 적어도 하나의 센서 및 상기 적어도 하나의 센서에 의해 수신된 정보에 기초하여, 상기 제1 및 제2 플레이트의 상대 이동이 제한되도록 상기 락킹 장치를 제어하는 프로세서를 포함할 수 있다.
상기 적어도 하나의 센서는, 상기 제1 플레이트의 가속도를 감지하는 가속도 센서를 포함하고, 상기 프로세서는, 상기 가속도 센서로부터 수신된 정보에 기초하여, 상기 제2 플레이트의 진동 중 기설정된 범위의 주파수의 진동이 식별되면, 상기 제1 및 제2 플레이트의 상대 이동이 제한되도록 상기 락킹 장치를 제어할 수 있다.
상기 서빙 로봇 장치는, 서빙의 대상 음식에 관한 정보를 입력받는 입력 장치를 더 포함하고, 상기 프로세서는, 상기 입력 장치에 의해 수신된 정보에 기초하여, 상기 제2 플레이트에 놓여진 음식에 기설정된 음식이 포함된 것으로 확인되면, 상기 제1 및 제2 플레이트의 상대 이동이 제한되도록 상기 락킹 장치를 제어할 수 있다.
상기 적어도 하나의 센서는, 상기 서빙 로봇 장치의 전방에 경사면을 감지하는 경사 감지 센서를 포함하고, 상기 프로세서는, 상기 경사 감지 센서에 의해 수신된 정보에 기초하여, 상기 서빙 로봇 장치의 전방에 경사면이 존재하는 것으로 확인되면, 상기 제1 및 제2 플레이트의 상대 이동이 제한되도록 상기 락킹 장치를 제어할 수 있다.
상기 적어도 하나의 센서는, 상기 제2 플레이트에 놓여진 음식을 촬상하는 카메라를 포함하고, 상기 프로세서는, 상기 카메라에 의해 수신된 정보에 기초하여, 상기 제2 플레이트에 기설정된 음식이 놓여진 것으로 확인되면, 상기 제1 및 제2 플레이트의 상대 이동이 제한되도록 상기 락킹 장치를 제어할 수 있다.
상기 음식 이송 스테이지는, 상기 제1 플레이트의 상면에 연결되고, 상기 제1 및 제2 플레이트의 사이에 배치되는 제1 지지 부재, 상기 제2 플레이트의 하면에 연결되고, 상기 제1 플레이트 및 상기 제1 지지 부재의 사이에 배치되는 제2 지지 부재 및 상기 제2 지지 부재의 상면에 배치되고, 상기 제2 플레이트 및 상기 제2 지지 부재가 상승하면 상기 제1 지지 부재의 하면에 가압되어 변형되는 탄성 마찰 부재를 더 포함하고, 상기 서빙 로봇 장치는, 상기 제1 지지 부재의 높이를 조절하여, 상기 제1 지지 부재에 의해 상기 탄성 마찰 부재에 작용하는 수직 항력을 변화시키는 감쇠력 조절 장치를 더 포함할 수 있다.
상기 프로세서는, 상기 카메라에 의해 수신된 정보에 기초하여, 제2 플레이트에 놓여진 음식에 국 또는 탕이 포함되지 않고, 음료만 포함된 것으로 확인되면, 음식양에 비례하여 제1 범위 내에서 감쇠력이 증가하도록 감쇠력 조절 장치를 제어할 수 있다.
상기 프로세서는, 상기 카메라에 의해 수신된 정보에 기초하여, 제2 플레이트에 놓여진 음식에 국 또는 탕이 포함된 것으로 확인되면, 음식양에 비례하여 상기 제1 범위보다 큰 제2 범위 내에서 감쇠력이 증가하도록 감쇠력 조절 장치를 제어할 수 있다.
일 실시예에 있어서 음식 이송 스테이지는 상면과 상면에 형성되는 복수의 그루브를 포함하는 제1 플레이트를 포함하고, 하면이 상기 제1 플레이트의 상면과 마주하도록 배치되는 제2 플레이트를 포함하며, 상기 제1 플레이트의 상면에 연결되고, 상기 제1 및 제2 플레이트의 사이에 배치되는 제1 지지 부재를 포함하고, 상기 제2 플레이트의 하면에 연결되고, 상기 제1 플레이트 및 상기 제1 지지 부재의 사이에 배치되는 제2 지지 부재를 포함하며, 상기 복수의 그루브에 배치되고, 상기 제2 플레이트의 하면과 접하는 복수의 롤링 부재 및 상기 제2 지지 부재의 상면에 배치되고, 상기 제2 플레이트 및 상기 제2 지지 부재가 상승하면 상기 제1 지지 부재의 하면에 가압되어 변형되는 탄성 마찰 부재를 포함할 수 있다.
다른 실시예에 있어서 서빙 로봇 장치는 본체와 상기 본체를 이동시키는 구동 장치를 포함하고, 상면에 복수의 그루브가 형성되는 제1 플레이트와 하면이 상기 제1 플레이트의 상면과 마주하도록 배치되는 제2 플레이트를 포함하고 상기 복수의 그루브에 배치되고 상기 제2 플레이트의 하면과 접하는 복수의 롤링 부재 및 상기 제1 플레이트와 상기 제2 플레이트의 상대 이동을 선택적으로 제한하는 락킹 장치를 포함하는 음식 이송 스테이지를 포함하며, 상기 제2 플레이트에 놓여진 음식의 종류 또는 상기 서빙 로봇 장치의 전방에 경사면을 감지하는 적어도 하나의 센서 및 상기 적어도 하나의 센서에 의해 수신된 정보에 기초하여, 상기 제1 및 제2 플레이트의 상대 이동이 제한되도록 상기 락킹 장치를 제어하는 프로세서를 포함할 수 있다.
도 1은 본 개시의 일 실시예에 따른 음식 이송 스테이지의 사시도이다.
도 2는 도 1의 음식 이송 스테이지의 분해 사시도이다.
도 3 및 도 4는 롤링 부재의 회전 동작을 나타내는 도면이다.
도 5는 복수의 롤링 부재가 4개의 롤러로 구현되는 구조를 나타내는 도면이다.
도 6 및 도 7은 탄성 마찰 부재의 압착 과정을 나타내는 도면이다.
도 8 및 도 9는 본 개시의 일 실시예에 따른 락킹 장치의 락킹 동작을 나타내는 도면이다.
도 10 및 도 11은 본 개시의 다른 실시예에 따른 락킹 장치를 나타내는 도면이다.
도 12는 본 개시의 일 실시예에 따른 서빙 로봇 장치의 사시도이다.
도 13은 서빙 로봇 장치의 제어 과정을 개략적으로 나타내는 블록도이다.
도 14는 감쇠력 조절 장치의 구조를 나타낸 단면도이다.
도 15는 이송되는 음식의 종류에 따라 감쇠력이 조절되는 과정을 나타내는 흐름도이다.
이하에서 설명되는 실시 예는 본 개시의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 본 개시는 여기서 설명되는 실시 예들과 다르게, 다양하게 변형되어 실시될 수 있음이 이해되어야 할 것이다. 다만, 이하에서 본 개시를 설명함에 있어서, 관련된 공지 기능 혹은 구성요소에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명 및 구체적인 도시를 생략한다. 또한, 첨부된 도면은 개시의 이해를 돕기 위하여 실제 축척대로 도시된 것이 아니라 일부 구성요소의 치수가 과장되게 도시될 수 있다.
본 명세서 및 청구범위에서 사용되는 용어는 본 개시의 기능을 고려하여 일반적인 용어들을 선택하였다. 하지만, 이러한 용어들은 당 분야에 종사하는 기술자의 의도나 법률적 또는 기술적 해석 및 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 일부 용어는 출원인이 임의로 선정한 용어도 있다. 이러한 용어에 대해서는 본 명세서에서 정의된 의미로 해석될 수 있으며, 구체적인 용어 정의가 없으면 본 명세서의 전반적인 내용 및 당해 기술 분야의 통상적인 기술 상식을 토대로 해석될 수도 있다.
본 명세서에서, "가진다," "가질 수 있다," "포함한다," 또는 "포함할 수 있다" 등의 표현은 해당 특징(예: 수치, 기능, 동작, 또는 부품 등의 구성요소)의 존재를 가리키며, 추가적인 특징의 존재를 배제하지 않는다.
그리고, 본 명세서에서는 본 개시의 각 실시 예의 설명에 필요한 구성요소를 설명한 것이므로, 반드시 이에 한정되는 것은 아니다. 따라서, 일부 구성요소는 변경 또는 생략될 수도 있으며, 다른 구성요소가 추가될 수도 있다. 또한, 서로 다른 독립적인 장치에 분산되어 배치될 수도 있다.
나아가, 이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 개시의 실시 예를 상세하게 설명하지만, 본 개시가 실시 예들에 의해 제한되거나 한정되는 것은 아니다.
이하에서는 첨부된 도면을 참조하여 본 개시에 대하여 더욱 상세히 설명하도록 한다.
도 1은 본 개시의 일 실시예에 따른 음식 이송 스테이지의 사시도이다. 도 2는 도 1의 음식 이송 스테이지의 분해 사시도이다.
도 1 및 도 2를 참조하면, 본 개시의 일 실시예에 따른 음식 이송 스테이지(1)는 제1 플레이트(100), 제2 플레이트(200), 제1 지지 부재(300), 제2 지지 부재(400), 복수의 롤링 부재(500) 및 탄성 마찰 부재(600)를 포함할 수 있다.
제1 플레이트(100)는 상면에 복수의 그루브(G1)가 형성될 수 있다. 그루브(G1)는 중심부의 높이가 가장 낮고, 중심부로부터 멀어질수록 높이가 높아지는 오목면의 형상을 가질 수 있다.
제2 플레이트(200)는 상면(201)에 이송 대상물(예를 들어, 음식이 담긴 용기)을 지지할 수 있다. 제2 플레이트(200)는 제1 플레이트(100)의 상측에서 제1 플레이트(100)와 나란하게 대향 배치될 수 있다. 제2 플레이트(200)는 하면(202)이 제1 플레이트(100)의 상면(101)과 마주하도록 배치될 수 있다.
제2 플레이트(200)는 제1 플레이트(100)와 연결되지 않고 이격 배치됨에 따라, 제1 플레이트(100)에 대해 상대 운동할 수 있다. 제2 플레이트(200)와 제1 플레이트(100)의 사이에는 후술할 복수의 롤링 부재(500)가 배치되어, 제2 플레이트(200)는 제1 플레이트(100)에 대하여 상대 운동할 수 있다. 즉, 제1 플레이트(100)가 운동할때, 제2 플레이트(200)의 관성과 제 1플레이트(100)와 제2 플레이트(200) 사이의 작은 구름 마찰력에 의해 제1 플레이트(100)과 제2 플레이트(200) 사이의 상대적인 움직임이 발생한다.
제1 지지 부재(300)는 제1 및 제2 플레이트(100, 200)와 나란하게 대향 배치될 수 있다. 제1 지지 부재(300)는 제2 지지 링크(40)를 통하여 제1 플레이트(100)의 상면(101)에 연결되어 제1 플레이트(100)와 일체로 이동할 수 있다. 제1 지지 부재(300)는 제1 플레이트(100)의 상면(101)에 수직하게 연결되는 제2 지지 링크(40)에 의해 지지될 수 있다.
제2 지지 링크(40)는 한 쌍으로 구비되어, 하단은 제1 플레이트(100)의 상면(101)에 연결되고, 상단은 제1 지지 부재(300)에 연결될 수 있다. 이에 따라, 제1 지지 부재(300)는 제2 지지 링크(40)에 의해 지지되어 제1 플레이트(100)와 일체로 이동할 수 있다.
제1 지지 부재(300)는 제1 및 제2 플레이트(100, 200)의 사이에 배치될 수 있다. 제1 지지 부재(300)는 제1 플레이트(100)로부터 제2 지지 링크(40)의 높이만큼 이격 배치될 수 있다.
제1 지지 부재(300)는 2개로 구비되는 것으로 도시되었으나, 개수가 이에 한정되는 것은 아니고, 1개로 구비되거나, 3개 이상으로 마련될 수 있다.
제2 지지 부재(400)는 제1 플레이트(100), 제2 플레이트(200) 및 제1 지지 부재(300)와 나란하게 대향 배치될 수 있다. 제2 지지 부재(400)는 제2 플레이트(200)의 하면(202)에 연결되어, 제2 플레이트(200)와 일체로 이동할 수 있다. 제2 지지 부재(400)는 제1 플레이트(100)와 제1 지지 부재(300)의 사이에 배치될 수 있다.
복수의 롤링 부재(500)는 복수의 그루브(G1)에 각각 배치될 수 있다. 복수의 롤링 부재(500)는 복수의 그루브(G1)와 동일한 개수로 마련될 수 있다. 롤링 부재(500)는 구의 형상을 가질 수 있으나, 형상이 이에 한정되는 것은 아니고, 후술할 바와 같이 원통형의 형상을 가질 수도 있다.
복수의 롤링 부재(500)는 제2 플레이트(200)의 하면(202)과 접할 수 있다. 롤링 부재(500)는 그루브(G1)의 최저점에 위치하다가, 제1 플레이트(100)의 진동이나 움직임에 의해 회전하여 더 높은 곳으로 이동할 수 있다. 제2 플레이트(200)는 제1 플레이트(100)과 제2 플레이트(200) 사이의 작은 구름 마찰 계수(예를 들어, 0.001 내지 0.01)가 있음에도 제1 플레이트(100)에 대하여 상대 운동할 수 있다. 이 때, 제2 플레이트(200)도 롤링 부재(500)의 움직임에 의해 상승 이동할 수 있다.
또한, 롤링 부재(500)는 중심부가 가장 낮은 그루브(G1)에 배치되어 있으므로, 롤링 부재(500)는 그루브(G1)의 중심부로부터 멀어질수록 더 높이 상승할 수 있다. 이에 따라, 제2 플레이트(200)도 하면(202)이 롤링 부재(500)에 의해 지지되므로, 제1 플레이트(100)에 대하여 수평 방향으로 이동할수록 더 높이 상승할 수 있고, 제2 플레이트(200)와 일체로 이동하는 제2 지지 부재(400)도 제1 플레이트(100)에 대하여 수평 방향으로 멀어질수록 더 높이 상승할 수 있다.
한편, 제2 플레이트(200)가 한번 진동하거나 움직인 이후에 계속적으로 진동하거나 움직이지 않고 원 위치로 복귀하여 정지하려면, 제2 플레이트(200)의 진동과 움직임의 감쇠가 필요할 수 있다. 특히, 제2 플레이트(200)는 롤링 부재(500)의 충분히 낮은 구름 마찰 계수에 의하여 제1 플레이트(100)에 대하여 상대 운동하여야 하지만, 제1 플레이트(100)의 중심으로부터 소정 거리보다 더 멀어지는 이후에는 진동과 움직임의 감쇠가 필요할 수 있다. 이에 따라, 음식 이송 스테이지(1)는 탄성 마찰 부재(600)를 포함할 수 있다.
탄성 마찰 부재(600)는 제2 지지 부재(400)의 상면(401)에 배치될 수 있다. 탄성 마찰 부재(600)는 제2 지지 부재(400)의 상면(401)의 소정 위치에 고정 배치될 수 있다. 탄성 마찰 부재(600)는 상하로 압착되면 원상태의 형상으로 돌아가게 하는 탄성부재의 탄성특성을 가질 수 있다. 또한, 탄성 마찰 부재(600)는 상하 압착된 정도에 비례하여 탄성력이 커질 수 있다.
탄성 마찰 부재(600)는 포론 스펀지(poron sponge)로 형성될 수 있으나, 재질이 이에 한정되는 것은 아니다.
탄성 마찰 부재(600)는 제2 플레이트(200) 및 제2 지지 부재(400)가 상승하면 제1 지지 부재(300)의 하면에 가압되어 변형될 수 있다. 구체적으로, 제1 플레이트(100)가 진동하거나 움직이면, 롤링 부재(500)는 그루브(G1) 상에서 회전함에 따라 상승하고, 결과적으로 제2 플레이트(200)와 제2 지지 부재(400)도 제1 플레이트(100)의 중심으로부터 멀어지는 방향으로 이동하면서 상승할 수 있다.
또한, 상술한 바와 같이 제2 플레이트(200)가 제1 플레이트(100)의 중심으로부터 멀어질수록, 제2 플레이트(200)는 더욱 상승하므로, 상승하는 제2 지지 부재(400)와 고정된 높이에 위치한 제1 지지 부재(300)의 사이에 배치되는 탄성 마찰 부재(600)는, 제2 플레이트(200)의 수평 이동 거리에 비례하여 더욱 압착될 수 있다.
탄성 마찰 부재(600)의 압착에 따른 탄성력은 제1 지지 부재(300)의 하면에 작용할 수 있고, 그에 따른 반작용으로 제1 지지 부재(300)에 의해 탄성 마찰 부재(600)로 수직 항력이 작용할 수 있다. 즉, 탄성 마찰 부재(600)에 작용하는 수직 항력 및 그에 따른 마찰력은, 제2 플레이트(200)의 수평 이동 거리에 비례하여 증가할 수 있다. 제1 지지 부재(300)에 의해 탄성 마찰 부재(600)로 작용하는 마찰력은, 제2 플레이트(200)에 전달될 수 있다.
도 3 및 도 4는 롤링 부재의 회전 동작을 나타내는 도면이다.
도 3 및 도 4를 참조하면, 본 개시의 일 실시예에 따른 음식 이송 스테이지(1)는 복수의 제1 기둥 부재(20) 및 복수의 제2 기둥 부재(30)를 포함할 수 있다.
복수의 제1 기둥 부재(20)는, 제1 플레이트(100)의 상면(101)에 연결되고, 복수의 그루브(G1)가 각각 형성될 수 있다. 제1 기둥 부재(20)는 제1 플레이트(100)와 일체로 이동할 수 있다. 제1 기둥 부재(20)는 제1 플레이트(100)의 상면(101)으로부터 상측으로 돌출 형성될 수 있다.
복수의 제2 기둥 부재(30)는 제2 플레이트(200)의 하면(202)에 연결되고, 복수의 제1 기둥 부재(20)와 각각 마주하도록 배치되어, 롤링 부재(500)가 이동 가능한 이격 공간을 형성할 수 있다. 제2 기둥 부재(30)는 제2 플레이트(200)와 일체로 이동할 수 있다. 제2 기둥 부재(30)는 제2 플레이트(200)의 하면(202)으로부터 하측으로 돌출 형성될 수 있다.
제1 및 제2 기둥 부재(20, 30)는 서로 이격 배치되고, 그 사이에 롤링 부재(500)가 배치되어, 제1 및 제2 기둥부재(20, 30)는 상대 운동할 수 있다. 제1 및 제2 기둥 부재(20, 30)는 롤링 부재(500)의 직경보다 작은 길이만큼 이격될 수 있고, 이에 따라 롤링 부재(500)는 그루브(G1)를 이탈하거나 떨어지지 않고 제1 및 제2 기둥 부재(20, 30)의 내측벽에서 멈출 수 있다.
제2 기둥 부재(30)는, 그루브(G1)와 상하 대칭의 형상을 갖는 추가 그루브(G2)를 포함할 수 있다. 즉, 추가 그루브(G2)는 중심부가 가장 높고, 중심부로부터 멀어질수록 높이가 낮아지는 오목면의 형상을 가질 수 있다.
롤링 부재(500)는, 그루브(G1) 및 추가 그루브(G2)에 의하여 그루브(G1)의 중심부로부터 이탈하여도 중심부로 다시 되돌아가려는 평형상태를 가질 수 있다. 이에 따라, 제1 플레이트(100)가 진동하거나 움직여도, 제2 플레이트(200)는 용이하게 평형상태의 초기 위치로 되돌아갈 수 있다.
롤링 부재(500)는 그루브(G1)의 최저점에 위치하다가, 제1 플레이트(100)의 진동이나 움직임에 의해 회전하여, 그루브(G1)의 더 높은 지점으로 이동하고, 제2 플레이트(200)도 롤링 부재(500)의 회전에 의해 상승 이동할 수 있다.
이 때, 롤링 부재(500)와 그루브(G1)와 추가 그루브(G2)사이의 구름 마찰이 작음에도 불구하고, 제2 플레이트(200)의 진동이나 움직임은 제1 플레이트(100)의 진동이나 움직임에 의해 발생하고 감쇠될 수 있다. 이에 따라, 제2 플레이트(200)에 의해 지지되는 음식을 담은 용기는 쓰러지지 않고, 음식도 용기로부터 이탈되지 않을 수 있어서, 음식 이송 스테이지(1)는 안정적으로 음식을 이송할 수 있다.
도 5는 복수의 롤링 부재가 4개의 롤러로 구현되는 구조를 나타내는 도면이다.
도 5를 참조하면, 복수의 그루브(G1)는, 격자형으로 배치되는 제1 그루브 내지 제4 그루브(G11, G12, G13, G14)를 포함할 수 있다. 제1 플레이트(100)의 단면은 대략 직사각형의 형상을 갖고, 제1 그루브 내지 제4 그루브(G11, G12, G13, G14)는 제1 플레이트(100)의 코너부에 각각 인접하게 배치될 수 있으나, 형상 및 위치가 이에 한정되는 것은 아니다.
또한, 복수의 롤링 부재(500)는, 제1 및 제2 그루브(G11, G12)에 배치되는 제1 롤러(R1) 및 제3 및 제4 그루브(G13, G14)에 배치되는 제2 롤러(R2)를 포함할 수 있다. 즉, 제1 및 제2 롤러(R1, R2)는 Y축을 따라 길게 배치될 수 있고, 각각의 회전축을 중심으로 회전할 수 있다. 제1 그루브 내지 제4 그루브(G11, G12, G13, G14)는 중심부가 가장 낮고, 중심부로부터 X축 방향을 기준으로 멀어질수록 높아지는 오목면의 형상을 가질 수 있다. 제1 롤러(R1) 및 제2 롤러(R1, R2)는 제2 플레이트(200)의 하면(202)과 접할 수 있다.
음식 이송 스테이지(1)는, 제3 플레이트(700), 제3 롤러(R3) 및 제4 롤러(R4)를 더 포함할 수 있다.
제3 플레이트(700)는 제1 및 제2 플레이트(100, 200)와 나란하게 수평 배치될 수 있다. 제3 플레이트(700)는 상면(701)이 제1 플레이트(100)의 하면(102)과 마주하도록 배치되고, 상면(701)에 제1 내지 제4 그루브(G11, G12, G13, G14)와 대응되는 위치에 각각 배치되는 제5 그루브 내지 제8 그루브(G15, G16, G17, G18)가 형성될 수 있다. 즉, 제1 내지 제4 그루브(G11, G12, G13, G14)는 제5 그루브 내지 제8 그루브(G15, G16, G17, G18)와 각각 동일한 수직축 상에 위치할 수 있다.
제5 그루브 내지 제8 그루브(G15, G16, G17, G18)는 중심부가 가장 낮고, 중심부로부터 Y축 방향을 기준으로 멀어질수록 높아지는 오목면의 형상을 가질 수 있다.
제3 롤러(R3)는 제6 및 제7 그루브(G16, G17)에 배치되고, 제1 플레이트(100)의 하면(102)과 접할 수 있다. 제4 롤러(R4)는 제5 및 제8 그루브(G15, G18)에 배치되고, 제1 플레이트(100)의 하면과 접할 수 있다.
즉, 도 5에 도시된 음식 이송 스테이지(1)는 3층의 플레이트와, 8개의 그루브 및 4개의 롤러를 구비할 수 있다. 이에 따라, 제3 플레이트(700)와 제1 플레이트(100)의 사이에서 제3 및 제4 롤러(R3, R4)에 의해 Y축 성분의 진동과 움직임이 감쇠되고, 제1 플레이트(100)와 제2 플레이트(200)의 사이에서 제1 및 제2 롤러(R1, R2)에 의해 X축 성분의 진동과 움직임이 감쇠될 수 있다.
이에 따라, 최상측의 제2 플레이트(200)에 의해 지지되는 음식을 담은 용기는 쓰러지거나 뒤집어지지 않고, 음식도 용기로부터 이탈되거나 쏟아지지 않을 수 있어서, 음식 이송 스테이지(1)는 안정적으로 음식을 이송할 수 있다.
도 6 및 도 7은 탄성 마찰 부재의 압착 과정을 나타내는 도면이다.
도 6및 도 7을 참조하면, 제1 플레이트(100)가 진동하거나 움직이면, 롤링 부재(500)와 제2 플레이트(200) 및 제2 지지 부재(400)는 상승 할 수 있다. 탄성 마찰 부재(600)는 제2 플레이트(200) 및 제2 지지 부재(400)가 상승하면 제1 지지 부재(300)의 하면에 가압되어 변형될 수 있다.
또한, 상술한 바와 같이, 롤링 부재(500)는 그루브(G1)의 중심부로부터 멀어질수록 더 높이 상승하므로, 제2 플레이트(200)도 제1 플레이트(100)에 대하여 수평 방향으로 멀어질수록 더 높이 상승할 수 있고, 제2 플레이트(200)와 일체로 이동하는 제2 지지 부재(400) 및 탄성 마찰 부재(600)도 제2 플레이트(200)가 제1 플레이트(100)에 대하여 수평 방향으로 멀어질수록 더 높이 상승할 수 있다.
이에 따라, 제2 지지 부재(400)의 상면(401)과 제1 지지 부재(300)의 하면 사이의 간격을 H1에서 H2로 감소할 수 있고, H2의 값은 제2 플레이트(200)가 제1 플레이트(100)에 대하여 수평 방향으로 멀어질수록 더욱 작아질 수 있다.
즉, 제1 지지 부재(300)에 의해 탄성 마찰 부재(600)에 작용하는 수직 항력 및 마찰력도, 제2 플레이트(200)가 제1 플레이트(100)에 대하여 수평 방향으로 멀어질수록 더욱 커질 수 있다.
이에 따라, 제2 플레이트(200)가 제1 플레이트(100)의 중심으로부터 작은 거리만 멀어지는 경우, 탄성 마찰 부재(600)에 작은 마찰력이 작용하므로, 제1 플레이트(100)의 진동이나 움직임에 의한 제2 플레이트(200)의 진동이나 움직임은 롤링 부재(500)와 그루부 G1과 G2의 구름 마찰이 작음에도 불구하고 감쇠될 수 있다.
또한, 제2 플레이트(200)가 제1 플레이트(100)의 중심으로부터 큰 거리만큼 멀어지는 경우, 탄성 마찰 부재(600)에 큰 마찰력이 작용하므로, 제2 플레이트(200)의 진동과 움직임이 감쇠되어 계속적으로 진동하거나 움직이지 않고 원 위치로 복귀하여 정지할 수 있다.
제2 플레이트(200)의 상술한 움직임에 따라, 서빙 로봇 장치(1000)에서 발생하는 진동이 음식 이송 스테이지(1)에 의해 흡수되므로, 서빙 로봇 장치(1000)는 제2 플레이트(200)에 의해 지지되는 음식을 안정적으로 이송할 수 있다.
한편, 제2 지지 부재(400)는 제2 플레이트(200)의 중심축(Z1)을 통과하도록 배치될 수 있다. 또한, 탄성 마찰 부재(600)는, 제2 지지 부재(400)의 일단(410)에 배치되는 제1 탄성 마찰 부재(610) 및 제2 지지 부재(400)의 타단(420)에 배치되는 제2 탄성 마찰 부재(620)를 포함할 수 있다.
즉, 제2 플레이트(200)의 중심축(Z1)으로부터 떨어진 2곳에서 제1 및 제2 탄성 마찰 부재(620)에 의해 마찰력이 작용하므로, 제2 플레이트(200)의 Z축 중심으로의 회전 진동(예를 들어, 요우(YAW) 회전)이 충분히 감쇠될 수 있다.
또한, 음식 이송 스테이지(1)는, 제2 플레이트(200)와 제2 지지 부재(400)를 연결하고, 제2 지지 부재(400)의 중심부가 회전 가능하게 연결되는 제1 지지 링크(10)를 더 포함할 수 있다.
즉, 제2 지지 부재(400)는 중심부가 제1 지지 링크(10)에 회전 가능하게 연결되고, 제1 탄성 마찰 부재(610)는 제2 지지 부재(400)는 중심부로부터 D1의 거리만큼 떨어져 있고, 제2 탄성 마찰 부재(620)는 제2 지지 부재(400)는 중심부로부터 D2의 거리만큼 떨어져 있고, D1과 D2는 동일한 값을 가질 수 있다.
이에 따라, 제1 지지 부재(300)에 의해 제1 및 제2 탄성 마찰 부재(610, 620)에 작용하는 수직 항력 및 마찰력은 서로 동일할 수 있다. 즉, 제2 플레이트(200)의 진동은 제1 및 제2 탄성 마찰 부재(610, 620)에 의해 대칭적으로 작용하는 마찰력에 의해 보다 빠르게 감쇠될 수 있다.
도 8 및 도 9는 본 개시의 일 실시예에 따른 락킹 장치의 락킹 동작을 나타내는 도면이다. 도 8 및 도 9를 통하여 설명하는 락킹 장치(800)의 구조는 전술한 음식 이송 스테이지(1)의 다양한 실시예에 추가될 수 있다.
도 8 및 도 9를 참조하면, 음식 이송 스테이지(1)는, 제1 플레이트(100)와 제2 플레이트(200)의 상대 이동을 선택적으로 제한하는 락킹 장치(800)를 더 포함할 수 있다. 도 8은 락킹 해제 상태를 나타내고, 도 9는 락킹 상태를 나타낸 것일 수 있다.
예를 들어, 이송하는 음식에 액체가 포함되지 않아서 음식을 흘릴 위험이 없는 경우, 사용자는 선택적으로 락킹 장치(800)를 수동으로 조작하여 제1 및 제2 플레이트(100, 200)의 상대 이동을 제한할 수 있다. 또는, 음식 이송 스테이지(1)는 후술할 센서의 감지 결과에 따라 락킹 여부를 결정한 후, 락킹 장치(800)를 자동으로 조작하여, 제1 및 제2 플레이트(100, 200)의 상대 이동을 제한할 수 있다.
이에 따라, 제1 플레이트(100)와 제2 플레이트(200)는, 락킹 장치(800)에 의해 일체로 연결되어 움직일 수 있다. 또한, 락킹 장치(800)는 사용자가 수동으로 조작할 수도 있고, 모터에 의하여 자동으로 조작될 수도 있다.
락킹 장치(800)는, 회전 링크(811), 제1 가압 링크(812) 및 제2 가압 링크(813)를 포함할 수 있다.
회전 링크(811)는 제1 플레이트(100)의 상면(110)에 회전 가능하게 배치될 수 있다. 회전 링크(811)는 레버(L)의 일단(L1)에 연결되어, 레버(L)의 직선 이동을 회전 운동으로 변환시킬 수 있다.
제1 및 제2 가압 링크(812, 813)는 회전 링크(811)에 연결될 수 있다. 예를 들어, 제1 및 제2 가압 링크(812, 813)는 회전 링크(811)의 중심을 기준으로 서로 반대에 위치할 수 있다.
제1 및 제2 가압 링크(812, 813)은 회전 링크(811)가 회전하면 서로 반대 방향으로 이동함에 따라 제1 및 제2 기둥 부재(20, 30)의 측면을 동시에 가압하거나 접촉할 수 있다.
즉, 제1 및 제2 가압 링크(812, 813)는 각각 서로 다른 2개의 지점에서 제1 및 제2 기둥 부재(20, 30)가 상대 이동하지 못하도록 제동시키는 역할을 수행할 수 있다. 이에 따라, 제1 및 제2 기둥 부재(20, 30)의 상대 이동이 불가하고, 제2 플레이트(200)는 하측의 제1 플레이트(100)와 동일한 속도로 이동할 수 있다.
락킹 장치(800)는, 제1 및 제2 가이드 부재(814, 815)를 더 포함할 수 있다. 제1 및 제2 가이드 부재(814, 815)는 제1 플레이트(100)의 상면(110)에 고정 배치되고, 제1 및 제2 가압 링크(812, 813)가 제1 및 제2 기둥 부재(20, 30)와 가까워짐에 따라 상승하도록 상기 제1 및 제2 가압 링크(812, 813)의 이동 경로를 각각 가이드할 수 있다.
제1 및 제2 가이드 부재(814, 815)는, 제1 및 제2 가압 링크(812, 813)이 각각 끼워지고, 상승하는 형상을 갖는 홈 또는 홀(G)을 포함할 수 있다.
즉, 락킹 해제 상태에서 제1 및 제2 가압 링크(812, 813)는, 제1 플레이트(100)의 상면(110)과 인접하게 배치되므로, 제2 기둥 부재(30)가 제1 기둥 부재(20)에 대하여 수평 방향으로 상대 이동하여도, 제2 기둥 부재(30)보다 낮은 높이에 배치되므로, 제2 기둥 부재(30)의 이동을 방해하지 않을 수 있다.
이후, 홈과 홀의 형상으로 인해, 락킹 상태에서 제1 및 제2 가압 링크(812, 813)는, 제1 및 제2 가이드 부재(814, 815)에 따라, 상승하면서 제1 및 제2 기둥 부재(20, 30)와 가깝게 이동하여 제1 및 제2 기둥 부재(20, 30)의 측면을 동시에 가압할 수 있다. 이에 따라, 락킹 장치(800)는 더욱 컴팩트한 크기를 가질 수 있다.
도 10 및 도 11은 본 개시의 다른 실시예에 따른 락킹 장치를 나타내는 도면이다. 도 10 및 도 11을 통하여 설명하는 락킹 장치(800)의 구조는 전술한 음식 이송 스테이지(1)의 다양한 실시예에 추가될 수 있다.
도 10을 참조하면, 락킹 장치(800)는, 끼움 부재(821), 제1 가압 링크(822), 제2 가압 링크(823), 탄성 부재(824)를 포함할 수 있다.
끼움 부재(821)는 일단(821a)으로 갈수록 단면적이 작아지는 형상을 가질 수 있다. 제1 및 제2 가압 링크(822, 823)은 끼움 부재(821)의 일단(821a)의 좌우에 각각 배치될 수 있고, 제1 및 제2 가압 링크(822, 823)는 끼움 부재(821)의 일단(821a)과 맞물리는 형상을 가질 수 있다.
끼움 부재(821)는 레버(L)에 의해 제1 및 제2 가압 링크(822, 823)을 향하여 직선 이동할 수 있다. 예를 들어, 레버(L)가 일 방향으로 직선 이동하면, 레버(L)의 일단에 연결된 원형 링크(825)가 회전할 수 있다. 이후, 타단이 원형 링크(825)에 연결된 끼움 부재(821)는 레버(L)와 상이한 이동 방향으로 제1 및 제2 가압 링크(822, 823)을 향하여 직선 이동할 수 있다.
끼움 부재(821)가 직선 이동하면, 제1 및 제2 가압 링크(822, 823)은 끼움 부재(821)의 일단(821a)에 밀려 서로 반대 방향으로 이동함에 따라, 제1 및 제2 기둥 부재(20, 30)의 측면을 동시에 가압할 수 있다. 이에 따라, 제1 및 제2 기둥 부재(20, 30)의 상대 이동이 불가하므로, 음식 이송 스테이지(1)는 락킹 상태가 될 수 있다.
한편, 탄성 부재(824)는 제1 및 제2 가압 링크(822, 823)를 연결할 수 있다. 이에 따라, 끼움 부재(821)가 다시 후진하면, 탄성 부재(824)의 탄성력에 의해 제1 및 제2 가압 링크(822, 823)도 다시 후진하므로, 음식 이송 스테이지(1)는 락킹 해제 상태가 될 수 있다.
도 11을 참조하면, 락킹 장치(800)는, 제1 블록(831), 제2 블록(832) 및 제3 블록(833)을 포함할 수 있다. 제1 블록(831)은 제1 플레이트(100)의 상면(101)에 배치되고, 제1 경사면(831a)을 포함할 수 있다. 제2 블록(832)은 제1 경사면(831a)과 맞물리는 제2 경사면(832a)을 포함할 수 있다. 또한, 제2 블록(832)은 제1 플레이트(100)에 대하여 수직 이동만 할 수 있고, 수평 이동이 불가하도록, 제1 플레이트(100)의 상면(101)에 끼워질 수 있다.
이에 따라, 제2 블록(832)은 제1 블록(831)이 직선 이동함에 따라 제2 경사면(832a)이 제1 경사면(831a)에 의해 가압되어 상승할 수 있다. 제3 블록(833)은 제2 플레이트(200)의 하면(202)에 연결되어, 상승한 제2 블록(832)이 끼워질 수 있다.
즉, 제1 블록(831)이 제2 블록(832)을 향하여 전진하여 제2 블록(832)이 상승하고 제3 블록(833)에 끼워지면, 제2 플레이트(200)는 제1 플레이트(100)에 대하여 상대 이동하지 못할 수 있다. 이에 따라, 제1 플레이트(100)와 제2 플레이트(200)는, 락킹 장치(800)에 의해 일체로 연결되어 움직이므로, 음식 이송 스테이지(1)는 락킹 상태가 될 수 있다.
이후, 제1 블록(831)이 후진하면, 제2 블록(832)이낙하하여 제3 블록(833)과 멀어지게 되므로, 제1 및 제2 플레이트(100, 200)는 상대 이동할 수 있고, 음식 이송 스테이지(1)는 락킹 해제 상태가 될 수 있다.
도 12는 본 개시의 일 실시예에 따른 서빙 로봇 장치의 사시도이다. 도 13은 서빙 로봇 장치의 제어 과정을 개략적으로 나타내는 블록도이다. 도 14는 감쇠력 조절 장치의 구조를 나타낸 단면도이다.
본 개시의 일 실시예에 따른 서빙 로봇 장치(1000)는, 본체(1010), 본체(1010)를 이동시키는 구동 장치(1020), 프로세서(1100), 적어도 하나의 센서(1200) 및 본체(1010)에 수평하게 지지되는 음식 이송 스테이지(1)를 포함할 수 있다. 음식 이송 스테이지(1)는 제1 플레이트(100)와 제2 플레이트(200)의 상대 이동을 선택적으로 제한하는 락킹 장치(800)를 포함할 수 있다.
사용자는, 서빙 로봇 장치(1000)에 음식이 담긴 용기를 올려놓고 서빙할 테이블을 지정하면, 서빙 로봇 장치(1000)는 지정된 테이블로 이동하여 음식을 서빙할 수 있다. 또한, 서빙 로봇 장치(1000)는 제공되는 음식에 대한 정보(예를 들어, 음식의 종류, 도착 테이블 위치 등)를 나타내는 디스플레이 장치(1030)를 포함할 수 있다.
구체적으로, 서빙 로봇 장치(1000)는 서로 나란하게 수평 배치되는 복수의 트레이 부재(1040)를 포함할 수 있고, 음식 이송 스테이지(1)는 복수의 트레이 부재(1040) 중 적어도 하나에 분리 가능하게 고정될 수 있다.
프로세서(1100)는 서빙 로봇 장치(1000)의 전반적인 동작을 제어할 수 있다. 이를 위해, 프로세서(1100)는 중앙처리장치(central processing unit(CPU)), 어플리케이션 프로세서(application processor(AP)), 또는 커뮤니케이션 프로세서(communication processor(CP)) 중 하나 또는 그 이상을 포함할 수 있다. 프로세서(900)는 마이크로컨트롤러(Micro Control Unit, MCU)일 수 있다.
프로세서(1100)는 운영 체제 또는 응용 프로그램을 구동하여 프로세서(1100)에 연결된 하드웨어 또는 소프트웨어 구성요소들을 제어할 수 있고, 각종 데이터 처리 및 연산을 수행할 수 있다. 또한, 프로세서(1100)는 다른 구성요소들중 적어도 하나로부터 수신된 명령 또는 데이터를 휘발성 메모리에 로드하여 처리하고, 다양한 데이터를 비휘발성 메모리에 저장할 수 있다.
프로세서(1100)는 적어도 하나의 센서(1200)에 의해 수신된 정보에 기초하여, 제1 및 제2 플레이트(100, 200)의 상대 이동이 제한되도록 락킹 장치(800)를 제어할 수 있다.
적어도 하나의 센서(1200)는, 가속도 센서(1210), 경사 감지 센서(1220) 및 카메라(1230) 중 적어도 하나를 포함할 수 있다.
또한, 서빙 로봇 장치(1000)는 음식 이송 스테이지(1)의 제1 지지 부재(300)의 높이를 조절하여, 제1 지지 부재(300)에 의해 탄성 마찰 부재(600)에 작용하는 수직 항력을 변화시키는 감쇠력 조절 장치(1500)를 더 포함할 수 있다.
구체적으로, 도 14를 참조하면, 감쇠력 조절 장치(1500)는 모터(1510), 웜 기어(1520) 및 랙 기어(1530)를 포함할 수 있다. 모터(1510)는 웜 기어(1520)를 회전시킬 수 있다. 랙 기어(1530)는, 제2 지지 링크(40)의 측면에 연결될 수 있고, 웜 기어(1520)와 맞물리게 배치될 수 있다. 모터(1510)가 구동하여 웜 기어(1520)가 회전함에 따라, 랙 기어(1530)는 수직 이동하여 제2 지지 링크(40)의 길이를 가변시킬 수 있다.
제2 지지 링크(40)의 길이가 증가하면, 제1 지지 부재(300)는 상승할 수 있고, 제2 지지 링크(40)의 길이가 감소하면, 제1 지지 부재(300)는 하강할 수 있다.
예를 들어, 제1 지지 부재(300)가 상승하면 탄성 마찰 부재(600)가 덜 압착되므로, 탄성 마찰 부재(600)에 작용하는 수직 항력 및 마찰력이 감소되어, 감쇠력이 감소할 수 있다. 반대로, 제1 지지 부재(300)가 하강하면 탄성 마찰 부재(600)가 더 압착되므로, 탄성 마찰 부재(600)에 작용하는 수직 항력 및 마찰력이 증가되어, 감쇠력이 증가할 수 있다.
이후, 프로세서(1100)는, 제2 플레이트(200)에 놓여진 음식의 종류에 기초하여, 음식 이송 스테이지(1)가 락킹 상태 또는 락킹 해제 상태가 되도록 락킹 장치(800)를 제어하거나, 제1 지지 부재(300)의 높이를 높이거나 낮춰서 탄성 마찰 부재(600)의 수직항력 및 마찰력이 조절되도록 감쇠력 조절 장치(1500)를 제어할 수 있다.
예를 들어, 프로세서(1100)는, 음식 이송 스테이지(1)에 놓인 음식에 음료와 같이 액체가 포함된 것으로 판단되면, 음식 이송 스테이지(1)가 락킹 해제 상태가 되도록 락킹 장치(800)를 제어하거나, 제1 지지 부재(300)의 높이가 낮아지도록 감쇠력 조절 장치(1500)를 제어할 수 있다.
또한, 프로세서(1100)는, 음식 이송 스테이지(1)에 놓인 음식이 액체가 포함되지 않은 고형 음식인 것으로 판단되면, 음식 이송 스테이지(1)가 락킹 상태가 되도록 락킹 장치(800)를 제어할 수 있다.
또한, 프로세서(1100)는, 음식 이송 스테이지(1)에 놓인 음식이 국, 탕 및 수프 중 적어도 하나인 것으로 판단되면, 음식 이송 스테이지(1)가 락킹 해제 상태가 되도록 락킹 장치(800)를 제어하거나, 제1 지지 부재(300)의 높이가 낮아지도록 감쇠력 조절 장치(1500)를 제어할 수 있다.
가속도 센서(1210)는 제1 플레이트(100)의 가속도를 감지할 수 있다. 프로세서(1100)는 가속도 센서(1210)로부터 수신된 정보에 기초하여, 제1 플레이트(100)의 진동 중 기설정된 범위 또는 그 이상의 범위에서 진동하거나 움직일 때, 제1 및 제2 플레이트(100, 200)의 상대 이동이 가능하도록 락킹 장치(800)를 제어할 수 있다.
예를 들어, 프로세서(1100)는 제2 플레이트(200)의 진동 중 기설정된 범위의 주파수(예를 들어, 2HZ 내지 4HZ)의 진동이 식별되면, 제2 플레이트(200)에 놓여진 음식에 음료가 포함된 것으로 판단하여, 제1 및 제2 플레이트(100, 200)의 상대 이동이 가능하도록 락킹 장치(800)를 제어할 수 있다.
또한, 서빙 로봇 장치(1000)는 서빙의 대상 음식에 관한 정보를 입력받는 입력 장치(1300)를 포함할 수 있다.
입력 장치(1300)는, 예를 들면, 터치 패널, (디지털) 펜 센서, 키, 또는 초음파 입력 장치를 포함할 수 있다. 터치 패널, 펜 센서, 키는 디스플레이 장치(1030)에 구비될 수 있다.
터치 패널은, 예를 들면, 정전식, 감압식, 적외선 방식, 또는 초음파 방식 중 적어도 하나의 방식을 사용할 수 있다. 또한, 터치 패널은 제어 회로를 더 포함할 수도 있다. 터치 패널은 택타일 레이어(tactile layer)를 더 포함하여, 사용자에게 촉각 반응을 제공할 수 있다. (디지털) 펜 센서는, 예를 들면, 터치 패널의 일부이거나, 별도의 인식용 시트를 포함할 수 있다. 키는, 예를 들면, 물리적인 버튼, 광학식 키, 또는 키패드를 포함할 수 있다. 초음파 입력 장치는, 예를 들면, 마이크를 통해, 입력 도구에서 발생된 초음파를 감지하여, 상기 감지된 초음파에 대응하는 데이터를 확인할 수 있다.
또한, 입력 장치(1300)는 리모컨, 스마트 워치, 스마트 밴드, 무선 헤드셋, 휴대폰, 스마트폰, 태블릿 등의 단말 장치일 수 있다.
프로세서(1100)는 입력 장치(1300)에 의해 수신된 정보에 기초하여, 제2 플레이트(200)에 놓여진 음식에 기설정된 음식이 포함된 것으로 확인되면, 제1 및 제2 플레이트(100, 200)의 상대 이동이 가능하도록 락킹 장치(800)를 제어할 수 있다.
예를 들어, 프로세서(1100)는 입력 장치(1300)에 의해 수신된 정보에 기초하여, 제2 플레이트(200)에 놓여진 음식에 음료가 포함된 것으로 확인되면, 제1 및 제2 플레이트(100, 200)의 상대 이동이 가능하도록 락킹 장치(800)를 제어할 수 있다.
경사 감지 센서(1220)는, 서빙 로봇 장치(1000)의 전방에 경사면을 감지할 수 있다. 경사 감지 센서(1220)는 3D 뎁스 카메라 또는 IMU센서일 수 있으나, 종류가 이에 한정되는 것은 아니다.
3D 뎁스 카메라로 구현되는 경사 감지 센서(1220)는, 서빙 로봇 장치(1000)의 주변 환경을 촬상하여 서빙 로봇 장치(1000)의 이동 경로상에 경사면이 존재하는 감지할 수 있다.
또는, IMU센서로 구현되는 경사 감지 센서(1220)는 서빙 로봇 장치(1000)의 기울어진 각도를 감지할 수 있다. 즉, 서빙 로봇 장치(1000)의 기울기가 기설정된 각도 이상인 것이 경사 감지 센서(1220)에 의해 감지되면, 프로세서(1100)는 서빙 로봇 장치(1000)의 전방에 경사면이 존재하는 것으로 판단할 수 있다.
프로세서(1100)는 경사 감지 센서(1220)에 의해 수신된 정보에 기초하여, 서빙 로봇 장치(1000)의 전방에 경사면이 존재하는 것으로 확인되면, 제1 및 제2 플레이트(100, 200)의 상대 이동이 제한되도록 락킹 장치(800)를 제어할 수 있다.
그러므로, 서빙 로봇 장치(1000)에 경사면에 진입하는 상황에서, 제2 플레이트(200)가 제1 플레이트(100)에 비하여 중력에 의해 급격하게 이동하고 제2 플레이트(200)에 놓여진 음식이 서빙 로봇 장치(1000)로부터 떨어질 수 있다.
서빙 로봇 장치(1000)는, 거리 센서(1400)를 더 포함할 수 있다. 거리 센서(1400)는 서빙 로봇 장치(1000)와 주위 장애물 사이의 거리를 감지할 수 있다. 거리 센서(1400)는 라이다 센서(Light Detection And Ranging Sensor)로 구현될 수 있으나, 종류가 이에 한정되는 것은 아니다.
서빙 로봇 장치(1000)는, 거리 센서(1400)를 이용하여 서빙 로봇 장치(1000)의 주변을 스캐닝한 결과를 바탕으로 기 저장된 맵 중에서 서빙 로봇 장치(1000)의 위치를 확인할 수 있다. 또한, 서빙 로봇 장치(1000)는, 맵이 저장되지 않은 새로운 구역을 주행하면서 거리 센서(1400)를 이용하여 새로운 구역의 맵을 획득할 수 있다.
프로세서(1100)는, 거리 센서(1400)를 통해 얻은 위치 및 맵에 관한 정보를 기반으로, 본체(1010)가 장애물과 충돌하지 않으면서 최적의 경로를 따라 목표 서빙 지점으로 이동하도록 구동 장치(1020)를 제어할 수 있다.
도 15는 이송되는 음식의 종류에 따라 감쇠력이 조절되는 과정을 나타내는 흐름도이다.
카메라(1230)는, 서빙 로봇 장치(1000)의 주위 환경 또는 제2 플레이트(200)에 놓여진 음식을 촬영할 수 있다. 서빙 로봇 장치(1000)는 카메라에서 수집한 정보를 기초로, 주위 환경을 인식하고 자율 주행 및 정보 수집이 가능하며 사용자에게 정보를 전달할 수 있다.
프로세서(1100)는 카메라(1230)에 의해 수신된 정보에 기초하여, 제2 플레이트(200)에 놓여진 음식에 국, 탕, 음료 중 어느 것도 포함되지 않은 것으로 확인되면, 제1 및 제2 플레이트(100, 200)의 상대 이동이 제한되도록 락킹 장치(800)를 제어할 수 있다.
즉, 제2 플레이트(200)에 놓여진 음식이 그릇으로부터 이탈될 위험이 적은 고형 음식인 경우, 제1 및 제2 플레이트(100, 200)가 서로 락킹되어, 제2 플레이트(200)가 불필요하게 진동하지 않아서 고형 음식을 안정적으로 이송할 수 있다.
또한, 프로세서(1100)는 카메라(1230)에 의해 수신된 정보에 기초하여, 제2 플레이트(200)에 놓여진 음식에 국, 탕, 음료 중 적어도 하나가 포함된 것으로 확인되면, 제1 및 제2 플레이트(100, 200)의 상대 이동이 가능하도록 락킹 장치(800)를 제어할 수 있다.
구체적으로, 프로세서(1100)는 카메라(1230)에 의해 수신된 정보에 기초하여, 제2 플레이트(200)에 놓여진 음식에 국 또는 탕이 포함되지 않고, 음료만 포함된 것으로 확인되면, 음식양에 비례하여 제1 범위 내에서 감쇠력이 증가하도록 감쇠력 조절 장치(1500)를 제어할 수 있다.
또한, 프로세서(1100)는 카메라(1230)에 의해 수신된 정보에 기초하여, 제2 플레이트(200)에 놓여진 음식에 국 또는 탕이 포함된 것으로 확인되면, 음식양에 비례하여 제1 범위보다 큰 제2 범위 내에서 감쇠력이 증가하도록 감쇠력 조절 장치(1500)를 제어할 수 있다.
국 또는 탕은, 높이가 낮거나 납작한 그릇 또는 접시에 담긴 액체 음식을 의미할 수 있다. 국 또는 탕은, 컵의 크기가 상대적으로 커서 액면 진폭이 크고, 저주파(예를 들어, 1HZ 부근)에서 공진할 수 있다.
즉, 감쇠력 조절 장치(1500)에 의해 감쇠력이 증가함에 따라, 음식 이송 스테이지(1)가 작은 진동수의 진동을 충분히 흡수하므로, 국 또는 탕은 음식 이송 스테이지(1)에 놓인 상태로 안정적으로 이송될 수 있다.
음료는, 높이가 높은 컵에 담긴 액체 음식을 의미할 수 있다. 음료는, 컵의 크기가 작아 상대적으로 액면 진폭이 작고, 고주파(예를 들어, 3HZ 부근)에서 공진할 수 있다.
즉, 감쇠력 조절 장치(1500)에 의해 감쇠력이 감소함에 따라, 음식 이송 스테이지(1)가 큰 진동수의 진동을 충분히 흡수하므로, 음료는 컵 내에서 최대한 진동하지 않으면서 음식 이송 스테이지(1)에 놓인 상태로 안정적으로 이송될 수 있다.
제2 플레이트(200)에 놓여진 음식양은, 카메라(1230)에 의해 수신된 정보 중 그릇 또는 컵의 개수에 의해 판단되거나, 제1 플레이트(100) 또는 제2 플레이트(200)에 배치된 무게 센서(미도시)에 의해 감지된 무게로 판단될 수 있다.
감쇠력 조절 장치(1500)가 제1 지지 부재(300)를 상승시키면, 탄성 마찰 부재(600)가 덜 압착되므로, 감쇠력이 감소할 수 있다. 반대로, 감쇠력 조절 장치(1500)가 제1 지지 부재(300)를 하강시키면, 탄성 마찰 부재(600)가 더 압착되므로, 감쇠력이 증가할 수 있다.
예를 들어, 락킹 장치(800)의 락킹 해제 상태(즉, 제1 및 제2 플레이트(100, 200)의 상대 이동이 가능한 상태)에서, 감쇠력은 가장 작은 1단계부터 가장 큰 6단계까지 분류될 수 있다. 예를 들어, 제1 내지 제3 단계의 감쇠력은 제1 범위에 속할 수 있고, 제4 내지 제6 단계의 감쇠력은 제2 범위에 속할 수 있다.
예를 들어, 프로세서(1100)는, 제2 플레이트(200)에 놓여진 음식에 음료가 3잔 이상 포함된 것으로 판단되면, 제1 범위 중 제3 단계의 감쇠력을 갖도록 감쇠력 조절 장치(1500)를 제어할 수 있다. 또는, 프로세서(1100)는, 제2 플레이트(200)에 놓여진 음식에 음료가 1잔만 포함된 것으로 판단되면, 제1 범위 중 제1 단계의 감쇠력을 갖도록 감쇠력 조절 장치(1500)를 제어할 수 있다.
예를 들어, 프로세서(1100)는, 제2 플레이트(200)에 놓여진 음식에 국 또는 탕이 3그릇 이상 포함된 것으로 판단되면, 제2 범위 중 제6 단계의 감쇠력을 갖도록 감쇠력 조절 장치(1500)를 제어할 수 있다. 또는, 프로세서(1100)는, 제2 플레이트(200)에 놓여진 음식에 국 또는 탕이 1그릇만 포함된 것으로 판단되면, 제2 범위 중 제4 단계의 감쇠력을 갖도록 감쇠력 조절 장치(1500)를 제어할 수 있다.
이에 따라, 제2 플레이트(200)에 놓여진 음식의 종류뿐만 아니라 음식 양에 따라 감쇠력이 미세하게 조정되므로, 음식은 최적화된 감쇠력을 갖는 음식 이송 스테이지(1)에 놓인 상태로 안정적으로 이송될 수 있다.
이상에서는 본 개시의 바람직한 실시예에 대해서 도시하고, 설명하였으나, 본 개시는 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 개시의 요지를 벗어남이 없이 당해 개시가 속하는 기술분야에서 통상의 지식을 가진자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.

Claims (15)

  1. 상면과 상면에 형성되는 복수의 그루브를 포함하는 제1 플레이트;
    하면이 상기 제1 플레이트의 상면과 마주하도록 배치되는 제2 플레이트;
    상기 제1 플레이트의 상면에 연결되고, 상기 제1 및 제2 플레이트의 사이에 배치되는 제1 지지 부재;
    상기 제2 플레이트의 하면에 연결되고, 상기 제1 플레이트 및 상기 제1 지지 부재의 사이에 배치되는 제2 지지 부재;
    상기 복수의 그루브에 배치되고, 상기 제2 플레이트의 하면과 접하는 복수의 롤링 부재; 및
    상기 제2 지지 부재의 상면에 배치되고, 상기 제2 플레이트 및 상기 제2 지지 부재가 상승하면 상기 제1 지지 부재의 하면에 가압되어 변형되는 탄성 마찰 부재;를 포함하는 음식 이송 스테이지.
  2. 제1항에 있어서,
    상기 제2 지지 부재는 상기 제2 플레이트의 중심축을 통과하도록 배치되고,
    상기 탄성 마찰 부재는, 상기 제2 지지 부재의 일단에 배치되는 제1 탄성 마찰 부재 및 상기 제2 지지 부재의 타단에 배치되는 제2 탄성 마찰 부재를 포함하는 음식 이송 스테이지.
  3. 제2항에 있어서,
    상기 제2 플레이트와 상기 제2 지지 부재를 연결하고, 상기 제2 지지 부재의 중심부가 회전 가능하게 연결되는 지지 링크;를 더 포함하는 음식 이송 스테이지.
  4. 제1항에 있어서,
    상기 제1 플레이트의 상면에 연결되고, 상기 복수의 그루브가 각각 형성되는 복수의 제1 기둥 부재; 및
    상기 제2 플레이트의 하면에 연결되고, 상기 복수의 제1 기둥 부재와 각각 마주하도록 배치되어, 상기 롤링 부재가 이동 가능하게 배치되는 공간을 형성하는 복수의 제2 기둥 부재;를 포함하는 음식 이송 스테이지.
  5. 제4항에 있어서,
    상기 제2 기둥 부재는,
    상기 그루브와 대칭의 형상을 갖는 추가 그루브를 포함하는 음식 이송 스테이지.
  6. 제1항에 있어서,
    상기 복수의 그루브는, 격자형으로 배치되는 제1 그루브, 제2 그루브, 제3 그루브와 제4 그루브를 포함하고,
    상기 복수의 롤링 부재는, 상기 제1 및 제2 그루브에 배치되는 제1 롤러 및 상기 제3 및 제4 그루브에 배치되는 제2 롤러를 포함하고,
    상면이 상기 제1 플레이트의 하면과 마주하도록 배치되고, 상면에 상기 제1 그루브, 제2 그루브, 제3 그루브 및 제4 그루브와 대응되는 위치에 각각 배치되는 제5 그루브, 제6 그루브, 제7 그루브 및 제8 그루브가 형성되는 제3 플레이트;
    상기 제5 및 제8 그루브에 배치되고, 상기 제1 플레이트의 하면과 접하는 제3 롤러; 및
    상기 제6 및 제7 그루브에 배치되고, 상기 제1 플레이트의 하면과 접하는 제4 롤러;를 더 포함하는 음식 이송 스테이지.
  7. 제1항에 있어서,
    상기 제1 플레이트와 상기 제2 플레이트의 상대 이동을 선택적으로 제한하는 락킹 장치;를 더 포함하는 음식 이송 스테이지.
  8. 제7항에 있어서,
    상기 제1 플레이트의 상면에 연결되고, 상기 복수의 그루브가 각각 형성되는 복수의 제1 기둥 부재; 및
    상기 제2 플레이트의 하면에 연결되고, 상기 복수의 제1 기둥 부재와 각각 마주하도록 배치되어, 상기 롤링 부재가 이동 가능하게 배치되는 공간을 형성하는 복수의 제2 기둥 부재;를 더 포함하고,
    상기 락킹 장치는,
    상기 제1 플레이트의 상면에 회전 가능하게 배치되는 회전 링크; 및
    상기 회전 링크에 연결되어, 상기 회전 링크가 회전하면 서로 반대 방향으로 이동함에 따라 상기 제1 및 제2 기둥 부재의 측면을 접촉하는 제1 가압 링크 및 제2 가압 링크;를 포함하는 음식 이송 스테이지.
  9. 제8항에 있어서,
    상기 락킹 장치는,
    상기 제1 플레이트의 상면에 고정 배치되고, 상기 제1 및 제2 가압 링크가 상기 제1 및 제2 기둥 부재와 가까워짐에 따라 상승하도록 상기 제1 및 제2 가압 링크의 이동 경로를 각각 가이드하는 제1 및 제2 가이드 부재;를 더 포함하는 음식 이송 스테이지.
  10. 제7항에 있어서,
    상기 제1 플레이트의 상면에 연결되고, 상기 복수의 그루브가 각각 형성되는 복수의 제1 기둥 부재; 및
    상기 제2 플레이트의 하면에 연결되고, 상기 복수의 제1 기둥 부재와 각각 마주하도록 배치되어, 상기 롤링 부재가 이동 가능하게 배치되는 공간을 형성하는 복수의 제2 기둥 부재;를 더 포함하고,
    상기 락킹 장치는,
    일단으로 갈수록 단면적이 작아지는 형상을 갖는 끼움 부재; 및
    상기 끼움 부재의 일단의 좌우에 각각 배치되어, 상기 끼움 부재가 직선 이동하면 상기 끼움 부재의 일단에 밀려 서로 반대 방향으로 이동함에 따라 상기 제1 및 제2 기둥 부재의 측면을 접촉하는 제1 가압 링크 및 제2 가압 링크; 및
    상기 제1 및 제2 가압 링크를 연결하는 탄성 부재;를 포함하는 음식 이송 스테이지.
  11. 제7항에 있어서,
    상기 락킹 장치는,
    상기 제1 플레이트의 상면에 배치되고, 제1 경사면을 포함하는 제1 블록;
    상기 제1 경사면과 맞물리는 제2 경사면을 포함하여, 상기 제1 블록이 직선 이동함에 따라 상기 제2 경사면이 상기 제1 경사면에 의해 접촉되어 상승하는 제2 블록; 및
    상기 제2 플레이트의 하면에 연결되어, 상승한 상기 제2 블록이 끼워지는 제3 블록;을 포함하는 음식 이송 스테이지.
  12. 서빙 로봇 장치에 있어서,
    본체;
    상기 본체를 이동시키는 구동 장치;
    상면에 복수의 그루브가 형성되는 제1 플레이트, 하면이 상기 제1 플레이트의 상면과 마주하도록 배치되는 제2 플레이트, 상기 복수의 그루브에 배치되고 상기 제2 플레이트의 하면과 접하는 복수의 롤링 부재 및 상기 제1 플레이트와 상기 제2 플레이트의 상대 이동을 선택적으로 제한하는 락킹 장치를 포함하는 음식 이송 스테이지;
    상기 제2 플레이트에 놓여진 음식의 종류 또는 상기 서빙 로봇 장치의 전방에 경사면을 감지하는 적어도 하나의 센서; 및
    상기 적어도 하나의 센서에 의해 수신된 정보에 기초하여, 상기 제1 및 제2 플레이트의 상대 이동이 제한되도록 상기 락킹 장치를 제어하는 프로세서;를 포함하는 서빙 로봇 장치.
  13. 제12항에 있어서,
    상기 적어도 하나의 센서는, 상기 제1 플레이트의 가속도를 감지하는 가속도 센서를 포함하고,
    상기 프로세서는,
    상기 가속도 센서로부터 수신된 정보에 기초하여, 상기 제2 플레이트의 진동 중 기설정된 범위의 주파수의 진동이 식별되면, 상기 제1 및 제2 플레이트의 상대 이동이 제한되도록 상기 락킹 장치를 제어하는 서빙 로봇 장치.
  14. 제12항에 있어서,
    서빙의 대상 음식에 관한 정보를 입력받는 입력 장치;를 더 포함하고,
    상기 프로세서는, 상기 입력 장치에 의해 수신된 정보에 기초하여, 상기 제2 플레이트에 놓여진 음식에 기설정된 음식이 포함된 것으로 확인되면, 상기 제1 및 제2 플레이트의 상대 이동이 제한되도록 상기 락킹 장치를 제어하는 서빙 로봇 장치.
  15. 제12항에 있어서,
    상기 적어도 하나의 센서는, 상기 서빙 로봇 장치의 전방에 경사면을 감지하는 경사 감지 센서를 포함하고,
    상기 프로세서는,
    상기 경사 감지 센서에 의해 수신된 정보에 기초하여, 상기 서빙 로봇 장치의 전방에 경사면이 존재하는 것으로 확인되면, 상기 제1 및 제2 플레이트의 상대 이동이 제한되도록 상기 락킹 장치를 제어하는 서빙 로봇 장치.
PCT/KR2022/005984 2021-06-25 2022-04-27 음식 이송 스테이지 및 이를 포함하는 서빙 로봇 장치 WO2022270745A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280029401.2A CN117203024A (zh) 2021-06-25 2022-04-27 食物移动台及包括食物移动台的服务机器人
EP22828594.6A EP4269042A1 (en) 2021-06-25 2022-04-27 Food moving stage and serving robot including same
US17/752,471 US20220408944A1 (en) 2021-06-25 2022-05-24 Food moving stage and serving robot including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0082923 2021-06-25
KR20210082923 2021-06-25
KR10-2021-0155866 2021-11-12
KR1020210155866A KR20230000904A (ko) 2021-06-25 2021-11-12 음식 이송 스테이지 및 이를 포함하는 서빙 로봇 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/752,471 Continuation US20220408944A1 (en) 2021-06-25 2022-05-24 Food moving stage and serving robot including the same

Publications (1)

Publication Number Publication Date
WO2022270745A1 true WO2022270745A1 (ko) 2022-12-29

Family

ID=84545540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005984 WO2022270745A1 (ko) 2021-06-25 2022-04-27 음식 이송 스테이지 및 이를 포함하는 서빙 로봇 장치

Country Status (1)

Country Link
WO (1) WO2022270745A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1061250A (ja) * 1996-08-23 1998-03-03 Fumio Hayashi 耐震装置及びその集合体
KR100971365B1 (ko) * 2010-06-04 2010-07-20 제희문 일정 진도 이상의 지진에 응답하는 면진 장치
KR101187412B1 (ko) * 2012-03-27 2012-10-02 (주)알티에스 댐핑 성능이 뛰어난 전기/전자기기 지지용 면진장치 및 이를 위한 고무볼
KR20200109235A (ko) * 2019-03-12 2020-09-22 주식회사 베어로보틱스코리아 음식 및/또는 음료의 서빙을 위한 로봇
US20210139065A1 (en) * 2019-11-12 2021-05-13 Bear Robotics, Inc. Serving apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1061250A (ja) * 1996-08-23 1998-03-03 Fumio Hayashi 耐震装置及びその集合体
KR100971365B1 (ko) * 2010-06-04 2010-07-20 제희문 일정 진도 이상의 지진에 응답하는 면진 장치
KR101187412B1 (ko) * 2012-03-27 2012-10-02 (주)알티에스 댐핑 성능이 뛰어난 전기/전자기기 지지용 면진장치 및 이를 위한 고무볼
KR20200109235A (ko) * 2019-03-12 2020-09-22 주식회사 베어로보틱스코리아 음식 및/또는 음료의 서빙을 위한 로봇
US20210139065A1 (en) * 2019-11-12 2021-05-13 Bear Robotics, Inc. Serving apparatus

Similar Documents

Publication Publication Date Title
EP3713199B1 (en) Camera control method and mobile terminal
WO2016108546A1 (en) User terminal apparatus
WO2016072635A1 (en) User terminal device and method for control thereof and system for providing contents
EP3767929A1 (en) Lens control method and mobile terminal
WO2020184733A1 (ko) 로봇
US20070151772A1 (en) Tapping Operation Method and Mobile Electrical Apparatus with the Tapping Operation Function
RU2741058C1 (ru) Способ контроля включенного и выключенного состояний экрана и абонентское оборудование мобильной связи
EP1818755A2 (en) Tapping operation method and mobile electrical apparatus with the tapping operation function
WO2020216002A1 (zh) 检测方法及移动终端
WO2021047070A1 (zh) 终端拍摄方法、装置、移动终端及可读存储介质
US11051412B2 (en) Electronic device
WO2015023145A1 (ko) 공간 해상도가 가변되는 거리 정보를 획득할 수 있는 거리검출장치 및 이를 구비한 영상표시장치
CN110139018B (zh) 摄像头控制模组、摄像头的移动控制方法及终端
WO2022270745A1 (ko) 음식 이송 스테이지 및 이를 포함하는 서빙 로봇 장치
US20220408944A1 (en) Food moving stage and serving robot including the same
WO2020019981A1 (zh) 电子设备及受话接听方法
WO2013172566A1 (en) Camera module and method for auto focusing the same
WO2022163998A1 (ko) 이동 로봇 장치 및 이의 제어 방법
WO2018056783A1 (ko) 패치형 컨트롤러
WO2020085844A1 (en) Electronic device and method of operating the same
WO2021040199A1 (en) Caster device, robot having the same, and method for driving robot
WO2016047824A1 (ko) 화상 정보 영사 장치 및 그 영사 장치의 제어 방법
JP6090760B1 (ja) 携帯情報端末
WO2020242065A1 (ko) 위험도 판단에 기초한 로봇 움직임 제어 방법 및 이를 이용한 이동 로봇 장치
WO2021141162A1 (ko) 플렉서블 디스플레이를 포함하는 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022828594

Country of ref document: EP

Effective date: 20230726

WWE Wipo information: entry into national phase

Ref document number: 202280029401.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE