WO2022270581A1 - Composition and molded body - Google Patents

Composition and molded body Download PDF

Info

Publication number
WO2022270581A1
WO2022270581A1 PCT/JP2022/025106 JP2022025106W WO2022270581A1 WO 2022270581 A1 WO2022270581 A1 WO 2022270581A1 JP 2022025106 W JP2022025106 W JP 2022025106W WO 2022270581 A1 WO2022270581 A1 WO 2022270581A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
methyl
styrene
composition
pentene
Prior art date
Application number
PCT/JP2022/025106
Other languages
French (fr)
Japanese (ja)
Inventor
賢士 野間
智也 又吉
孝行 渡辺
遼太 堀谷
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2023530118A priority Critical patent/JPWO2022270581A1/ja
Publication of WO2022270581A1 publication Critical patent/WO2022270581A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to compositions and molded articles. More particularly, the present invention relates to a composition, a molded article, a fabric laminate using the molded article, and a method for producing the same.
  • Patent Document 1 discloses a release film used in the production of a sealing body for a semiconductor module. In order to obtain excellent conformability to the mold, it is provided with a surface layer mainly composed of polymethylpentene resin such as 4-methyl-1-pentene, and an intermediate layer mainly composed of polymethylpentene resin and thermoplastic elastomer. A release film is disclosed.
  • Patent Document 2 by using a resin composition containing a base resin made of polyethylene resin or polypropylene resin and a low-molecular-weight 4-methyl-1-pentene polymer, excellent releasability and anti-rust properties are achieved. It is disclosed that high flexibility and transparency can be obtained while having blocking properties.
  • the present inventors maintain the characteristics of the conventional 4-methyl-1-pentene-based polymer, such as flexibility against stress, while further imparting new characteristics not disclosed in Patent Documents 1 and 2. Since then, we have conducted an in-depth study. As a result, by combining a 4-methyl-1-pentene polymer and a hydrogenated styrene-based elastomer, it is possible to obtain a high fit and a good feeling of use even at temperatures lower than room temperature. First time I've found what I can get.
  • the present invention has been made in view of the above circumstances, and provides a composition that has a good feeling of use at low temperatures while obtaining a good fit, and a molded article using the same.
  • composition shown below is provided.
  • the 4-methyl-1-pentene-based polymer (a) is a structural unit derived from 4-methyl-1-pentene and a structural unit derived from an ⁇ -olefin having 2 to 10 carbon atoms other than 4-methyl-1-pentene and
  • the styrene-based elastomer (b) is a hydrogenated block copolymer of a polystyrene block and a diene block, and the content of the polystyrene block relative to the total amount of the styrene-based elastomer (b) is greater than 0.0% by mass.
  • the 4-methyl-1-pentene polymer (a) is obtained by dynamic viscoelasticity measurement under the conditions of a heating rate of 4° C./min, a frequency of 1.59 Hz, and a strain of 0.1%. At least one temperature at which the loss tangent (tan ⁇ ) exhibits a maximum value is in the range of 10° C. or more and 100° C. or less, and the maximum value of the loss tangent is 0.5 or more and 3.5 or less [1]
  • the styrene elastomer (b) includes a hydrogenated styrene/butadiene rubber (HSBR), a hydrogenated styrene/butadiene block copolymer (SEBS), a hydrogenated styrene/isoprene block copolymer (SEPS), and water.
  • HSBR hydrogenated styrene/butadiene rubber
  • SEBS hydrogenated styrene/butadiene block copolymer
  • SEPS hydrogenated styrene/isoprene block copolymer
  • a saturated hydrocarbon compound (d) having a pour point of -10°C or less is added to 100 parts by weight of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b). and 0.1 to 20 parts by weight of the composition according to any one of [1] to [5].
  • the content of the polystyrene block with respect to the total amount of the styrene-based elastomer (b) is more than 25% by mass and not more than 50% by mass;
  • a saturated hydrocarbon compound (d) having a pour point of -10°C or less is added to 100 parts by weight of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) to 0. .1 to 20 parts by weight of the composition according to any one of [1] to [5].
  • the composition has a loss tangent (tan ⁇ ) value at 30 ° C.
  • a foam sheet extruded at °C is prepared, and the sheets are overlapped so that the total thickness is 7 mm to obtain a test piece a.
  • the Shore A hardness (JIS K6253) of the test piece a is 10-70.
  • a foam sheet extruded at °C is prepared, and the sheet is punched into a width of 25 mm and a length of 100 mm to obtain a test piece c.
  • a tensile tester universal tensile tester 3380, manufactured by Instron
  • the test piece c was subjected to two temperature conditions of 23 ° C. and 40 ° C. with a distance between chucks of 30 mm and a tensile speed of 300 mm / min. Extend c by 50% in the TD direction, and measure the tensile load [N/25 mm] after 60 seconds.
  • a molded foam sheet is prepared, and the surface impact strength (in accordance with JIS K7211-2) of the sheet measured at a test temperature of 10° C. is 0.6 J or more.
  • a molded article obtained by molding the composition according to any one of [1] to [10].
  • the molded article according to [11], wherein the molded article contains cells and has a density of 0.10 to 1.0 g/cm 3 .
  • the molded article according to [11] or [12] is a sheet, A fabric laminate in which a fabric is attached to at least one surface of the sheet.
  • the term “substantially” means that it includes a range that takes into account manufacturing tolerances, assembly variations, and the like, unless otherwise explicitly stated.
  • the notation “a to b" in the description of numerical ranges means from a to b, unless otherwise specified.
  • “1 to 5% by mass” means “1% by mass or more and 5% by mass or less”.
  • the term "low temperature” means a temperature lower than room temperature of 20°C and at which the composition and molded article do not freeze.
  • the temperature may be 15° C. or lower, 10° C. or lower, or 5° C. or lower, or -10° C. or higher, -5° C. or higher, or 0° C. or higher.
  • the melt flow rate can be measured under the conditions of 230°C and a test load of 2.16 kg according to JIS K7210.
  • composition of the present embodiment comprises a 4-methyl-1-pentene polymer (a) and a styrene elastomer (b), and the 4-methyl-1-pentene polymer (a) contains a structural unit derived from 4-methyl-1-pentene and a structural unit derived from an ⁇ -olefin having 2 to 10 carbon atoms other than 4-methyl-1-pentene, and the styrene elastomer (b) is a polystyrene block and a diene block, wherein the content of the polystyrene block relative to the total amount of the styrene elastomer (b) is more than 0.0% by mass and 50% by mass or less, and the 4- The content of the styrene-based elastomer (b) with respect to 100 parts by mass of the methyl-1-pentene-based polymer (a) is 5 parts by mass or more and 500 parts by mass or less.
  • the composition of the present embodiment can improve tensile elongation at low temperatures while obtaining stress relaxation properties. As a result, it is possible to obtain a good feeling of use even at a temperature lower than room temperature while obtaining a high fitting property.
  • the composition of the present embodiment can appropriately fit human movements and shapes, and retains flexibility even when exposed to cold water and placed at low temperatures during washing. be done.
  • good flexibility, tensile properties, etc. are maintained even in cold regions, breakage is suppressed and it can be used satisfactorily.
  • heat resistance and low-temperature impact resistance can be further improved. Although the details of this reason are not clear, it is presumed as follows.
  • the styrene-based elastomer (b) of the present embodiment is a type of thermoplastic elastomer and includes a block copolymer composed of polystyrene as a hard part and polydiene as a soft part.
  • Tg glass transition point temperature
  • the polystyrene block forms physical crosslinks to develop rubber elasticity, while the glass transition point temperature (Tg ), it has the characteristic that it is plasticized and can be processed under the temperature above.
  • Tg glass transition point temperature
  • Tg glass transition point temperature
  • the present inventors have found that, among others, the hydrogenated product in which the soft portion is hydrogenated tends to increase the tensile strength and is more effective in solving the problem.
  • fit means, for example, that when applied to clothing, it can be moderately matched to human movements and body shapes.
  • Good feeling in use at low temperatures means that the fabric does not easily break or avoid cracking even at temperatures lower than room temperature, and maintains flexibility even when exposed to cold water during washing or the like and placed at low temperatures.
  • the composition of the present embodiment further has a loss tangent (tan ⁇ ) value at 30 ° C. obtained by dynamic viscoelasticity measurement under the conditions of a heating rate of 4 ° C./min, a frequency of 1.59 Hz, and a strain of 0.1%. is preferably 0.5 or more. As a result, more flexibility can be obtained at a temperature close to that of human skin, and the fit can be improved.
  • composition of the present embodiment preferably further satisfies condition i below.
  • condition i The extruder die temperature ( Film Forming Temperature) A foam sheet extruded at 190° C. is prepared, and the sheets are superimposed so that the total thickness is 7 mm to obtain a test piece a.
  • the Shore A hardness (JIS K6253) of the test piece a is 10-70.
  • the molded article using the composition of the present embodiment has appropriate flexibility and stress relaxation properties, can easily follow human movements and shapes, and has a high fit. Become.
  • the Shore A hardness (JIS K6253) of test piece a is preferably 20-70, more preferably 30-70, and even more preferably 40-70.
  • the thickness per expandable sheet under condition i is 0.3 to 0.6 mm, and the specific gravity is preferably 0.73 to 0.81. That is, by using a plurality of expandable sheets, it is possible to obtain a test piece a having a total thickness of 7 mm.
  • the thickness and specific gravity per foamable sheet can be appropriately set by adjusting the extrusion conditions (temperature, extrusion speed, etc.).
  • composition of the present embodiment preferably further satisfies the following condition (ii).
  • condition (ii) A sheet is prepared by extruding the above composition, and the sheets are superimposed so that the total thickness is 7 mm to obtain a test piece b.
  • the value ⁇ HS obtained by subtracting the value of Shore A hardness (JIS K6253) after 15 seconds from the value of Shore A hardness (JIS K6253) immediately after contact with the indentor of the Shore A hardness tester is 10 to 40. is.
  • condition ii it is possible to obtain good conformability to irregularities and improve fit.
  • the ⁇ HS of the test piece b under condition ii is preferably 15-30.
  • the thickness per sheet of condition ii is preferably 0.3 to 0.6 mm. That is, a test piece b having a total thickness of 7 mm can be obtained by using a plurality of sheets.
  • the thickness per sheet in condition ii can be appropriately set by adjusting extrusion conditions (temperature, extrusion speed, etc.).
  • composition of the present embodiment preferably further satisfies condition iii below.
  • condition iii Extrusion at a die temperature of 190° C. using the composition containing 1 part by mass of a chemical foaming agent per 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b)
  • a molded foam sheet is prepared, and the sheet is punched into a width of 25 mm and a length of 100 mm to obtain a test piece c.
  • a tensile tester universal tensile tester 3380, manufactured by Instron
  • the test piece c was subjected to two temperature conditions of 23 ° C. and 40 ° C.
  • condition iii it is possible to obtain good conformability to irregularities in a molded article using the composition of the present embodiment.
  • good followability is obtained in a temperature range where human skin can warm the composition, making it easier for the composition to adhere to the human body.
  • the softening degree of the test piece c is preferably 30% to 70%. By setting the softening degree to the above upper limit or less, more flexibility can be obtained, skin familiarity is good, and fit can be improved.
  • each expandable sheet of condition iii is 0.3 to 0.6 mm, and the specific gravity is preferably 0.83 to 0.90.
  • the thickness and specific gravity per foamable sheet in condition iii can be appropriately set by adjusting the extrusion conditions (temperature, extrusion speed, etc.).
  • composition of the present embodiment preferably further satisfies condition iv below.
  • Condition iv Extrusion at a die temperature of 190° C. using the composition containing 1 part by mass of a chemical foaming agent per 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b)
  • a molded foam sheet is prepared, and the surface impact strength (in accordance with JIS K7211-2) of the sheet measured at a test temperature of 10° C. is 0.6 J or more.
  • a molded article using the composition of the present embodiment can have high impact resistance even at low temperatures. As a result, it is possible to reduce breakage due to stress and deformation from the outside, and to improve usability at low temperatures. In addition, when the composition of the present embodiment is applied to clothing, good flexibility and durability can be obtained even when the clothing is washed under cold water or when used in cold climates.
  • the surface impact strength of the sheet is preferably 0.7 J or more.
  • the upper limit of the surface impact strength of the sheet is not particularly limited, but is preferably 10 J or less, more preferably 8 J or less, from the viewpoint of maintaining a balance with other performances.
  • composition of the present embodiment preferably further satisfies condition v below.
  • Condition v Extrusion at a die temperature of 190° C. using the composition containing 1 part by mass of a chemical foaming agent per 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b)
  • a molded foam sheet is prepared, and the sheet is punched into a width of 25 mm and a length of 100 mm to obtain a test piece d.
  • a tensile tester universal tensile tester 3380, manufactured by Instron
  • the test piece d was subjected to two temperature conditions of 23 ° C. and 40 ° C.
  • the composition of the present embodiment has an initial load residual rate of 15 to 60% at 23 ° C. under condition v, so that even after deformation at room temperature, it returns to its original shape and exhibits a moderate tightening feeling.
  • an initial load residual rate of 50 to 80% it has a moderate initial load residual rate after being warmed by human skin, so even if tension is applied, it is difficult to create a feeling of tightening. It is preferable in terms of excellent fit.
  • These conditions i to v are indicators newly devised by the present inventor from the viewpoint of obtaining a composition that more stably provides a good feel in use at low temperatures while obtaining a better fit. That is, the effects of fit and feeling in use at low temperatures are new effects not found in conventional compositions, and indices based on existing measurement methods do not provide sufficient fit and feel in use at low temperatures. there was a case.
  • the composition of the present embodiment by satisfying the conditions iv, it is possible to obtain a better fit and a more stable feeling of use at low temperatures.
  • composition of the present embodiment that satisfies the properties and conditions described above can be realized, for example, by combining the materials of the composition by a known method. Specifically, focusing on the difference in melt flow rate (g/10 min) between the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b), the styrene elastomer (b) and adjusting the ratio of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b).
  • melt flow rate g/10 min
  • the composition of this embodiment is not limited to such materials and production methods.
  • the 4-methyl-1-pentene-based polymer (a) is a polymer having structural units derived from 4-methyl-1-pentene.
  • the 4-methyl-1-pentene-based polymer (a) includes, for example, a structural unit (c1) derived from 4-methyl-1-pentene and carbon atoms other than 4-methyl-1-pentene and a 4-methyl-1-pentene/ ⁇ -olefin copolymer (c) containing a structural unit (c2) derived from an ⁇ -olefin of number 2 to 20.
  • ⁇ -olefin having 2 to 20 carbon atoms means not containing 4-methyl-1-pentene unless otherwise specified.
  • the 4-methyl-1-pentene/ ⁇ -olefin copolymer (c) according to the present embodiment has the structural unit (c1) and the structural unit (c2). ) is 100 mol%, the content of the structural unit (c1) is 10 mol% or more and 90 mol% or less, and the content of the structural unit (c2) is 10 mol% or more and 90 mol% or less.
  • the 4-methyl-1-pentene/ ⁇ -olefin copolymer (c) according to the present embodiment contains the structural unit (c1) and When the total with the structural unit (c2) is 100 mol%, the following order is more preferable.
  • the content of the structural unit (c1) is 30 mol% or more and 95 mol% or less, and the content of the structural unit (c2) is 5 mol% or more and 70 mol% or less;
  • the content of the structural unit (c1) is 30 mol% or more and 93 mol% or less, and the content of the structural unit (c2) is 7 mol% or more and 70 mol% or less;
  • the content of the structural unit (c1) is 30 mol% or more and 90 mol% or less, and the content of the structural unit (c2) is 10 mol% or more and 70 mol% or less;
  • the content of the structural unit (c1) is 50 mol% or more and 90 mol% or less, and the content of the structural unit (c2) is 10 mol% or more and 50 mol% or less;
  • the content of the structural unit (c1) is 60 mol% or more and 90 mol% or less, and the content of the structural unit (c2) is 10 mol% or more and 40 mol% or less;
  • the ⁇ -olefin having 2 to 20 carbon atoms used in the 4-methyl-1-pentene/ ⁇ -olefin copolymer (c) includes, for example, a linear or branched ⁇ -olefin , cyclic olefins, aromatic vinyl compounds, conjugated dienes, functionalized vinyl compounds, etc., and linear ⁇ -olefins are preferred.
  • the linear ⁇ -olefin preferably has 2 to 10 carbon atoms, more preferably 2 to 3 carbon atoms.
  • Linear ⁇ -olefins include, for example, ethylene, propylene, 1-butene, 1-pentene, etc., and ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and 1-
  • One or more selected from decene is preferred, and at least one selected from ethylene and propylene is more preferred.
  • the number of carbon atoms in the branched ⁇ -olefin is preferably 5-20, more preferably 5-15.
  • Branched ⁇ -olefins include, for example, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene and the like.
  • the number of carbon atoms in the cyclic olefin is preferably 5-15.
  • Cyclic olefins include, for example, cyclopentene, cyclohexene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, vinylcyclohexane, and the like.
  • aromatic vinyl compounds examples include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, p- Examples include mono- or polyalkylstyrenes such as ethylstyrene.
  • the number of carbon atoms in the conjugated diene is preferably 4-20, more preferably 4-10.
  • Conjugated dienes include, for example, 1,3-butadiene, isoprene, chloroprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, and 1,3- - Octadiene and the like.
  • Examples of functionalized vinyl compounds include hydroxyl group-containing olefins, halogenated olefins, (meth)acrylic acid, propionic acid, 3-butenoic acid, 4-pentenoic acid, 5-hexenoic acid, 6-heptenoic acid, and 7-octene.
  • Acids unsaturated carboxylic acids such as 8-nonenoic acid, 9-decenoic acid and 10-undecenoic acid and their acid anhydrides and acid halides, unsaturated amines such as allylamine, 5-hexeneamine and 6-heptenamine, (2, 7-octadienyl)succinic anhydride, pentapropenyl succinic anhydride, unsaturated epoxy compounds, ethylenically unsaturated silane compounds, and the like.
  • unsaturated carboxylic acids such as 8-nonenoic acid, 9-decenoic acid and 10-undecenoic acid and their acid anhydrides and acid halides
  • unsaturated amines such as allylamine, 5-hexeneamine and 6-heptenamine, (2, 7-octadienyl)succinic anhydride, pentapropenyl succinic anhydride, unsaturated epoxy compounds, ethylenically unsatur
  • hydroxyl group-containing olefins examples include linear or branched ⁇ -olefins having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, and hydroxyl-terminated ⁇ -olefins.
  • halogenated olefin examples include linear or branched halogenated ⁇ -olefins having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms.
  • ⁇ -olefins having 2 to 20 carbon atoms can be used alone or in combination of two or more.
  • ethylene and propylene are preferable, and propylene is particularly preferable because it can improve flexibility and the like.
  • the 4-methyl-1-pentene/ ⁇ -olefin copolymer (c) contains structural units other than the structural unit (c1) and the structural unit (c2) within a range that does not impair the object of the present invention. good too.
  • Other configurations include structural units derived from non-conjugated polyenes.
  • Non-conjugated polyenes include linear, branched or cyclic dienes having preferably 5 to 20 carbon atoms, more preferably 5 to 10 carbon atoms, various norbornenes, norbornadiene, and the like. Among these, 5-vinylidene-2-norbornene and 5-ethylidene-2-norbornene are preferred.
  • the 4-methyl-1-pentene polymer (a) is determined by dynamic viscoelasticity measurement under the conditions of a temperature increase rate of 4° C./min, a frequency of 1.59 Hz, and a strain amount of 0.1%.
  • At least one temperature showing the maximum value of loss tangent (tan ⁇ ) is in the range of 10 ° C. or more and 100 ° C. or less, and the maximum value of the loss tangent is 0.5 or more and 3.5 or less. preferable.
  • a 4-methyl-1-pentene polymer (a) is used to prepare a test piece of 30 mm long x 10 mm wide, and the frequency is 1.59 Hz and the temperature rise rate is 4 ° C./ Minutes, measurement temperature range of 0° C. to 110° C., amount of strain of 0.1%, distance between chucks of 20 mm, and torsion mode, using a rheometer.
  • the present inventors prepared a 4-methyl-1-pentene-based polymer (a) having a specific maximum value of loss tangent (tan ⁇ ) and a specific temperature range showing the maximum value, and a styrene-based elastomer (b ), the temperature at which the tangent loss is maximized can be shifted to the low temperature side, and the elongation at low temperatures can be improved more stably.
  • the 4-methyl-1-pentene-based polymer (a) by setting the maximum value of the loss tangent in the range of 10 ° C. or more and 100 ° C. or less, in this temperature range, the dynamics given when deforming Most of the energy can be converted into thermal energy, and much of the energy can be absorbed, so it is thought that the restoration speed after deformation becomes slow. As a result, it is considered that the 4-methyl-1-pentene polymer (a) can well follow deformation while maintaining the flexibility of the 4-methyl-1-pentene polymer (a).
  • the present inventors combined a 4-methyl-1-pentene-based polymer (a) having such a specific property with a new specific styrene-based elastomer (b) to obtain a 4-methyl-1-pentene-based polymer.
  • the temperature (Tg) at which the loss tangent (tan ⁇ ) of coalescence (a) exhibits a maximum value can be effectively shifted to the low temperature side, and the resulting composition can exhibit stress relaxation properties while maintaining tensile strength at low temperatures. It has been found that elongation can be improved, and low-temperature impact resistance and heat resistance can also be obtained.
  • the loss tangent of the 4-methyl-1-pentene-based polymer (a) according to the present embodiment is, for example, the type and blending ratio of the 4-methyl-1-pentene-based polymer (a), the presence or absence of crosslinking, the composition It is possible to control within the above range by appropriately adjusting the molding method of the object. Specifically, for example, by increasing the blending ratio of the 4-methyl-1-pentene polymer (a) in the composition, and by subjecting the 4-methyl-1-pentene polymer (a) to cross-linking treatment. and the like.
  • the 4-methyl-1-pentene polymer (a) is preferably uncrosslinked from the viewpoint of obtaining flexibility, conformability, and stress relaxation. That is, the 4-methyl-1-pentene polymer (a) according to the present embodiment is, for example, uncrosslinked without undergoing crosslinking treatment such as ionizing radiation crosslinking using electron beams or ⁇ rays. preferable. As a result, the maximum value of the loss tangent in the range of 10 ° C. or higher and 100 ° C. or lower can be improved, and the 4-methyl-1-pentene polymer (a) which is more excellent in the balance of stress relaxation and low-temperature tensile elongation is obtained. Obtainable.
  • the 4-methyl-1-pentene polymer (a) has at least one temperature in the range of at least 10° C. or higher and 40° C. or lower at which the dynamic viscoelasticity loss tangent (tan ⁇ ) exhibits the maximum value. and the maximum value of the loss tangent is preferably 0.8 or more and 3.0 or less. This makes it easier to improve low-temperature properties such as tensile elongation at low temperatures and low-temperature impact resistance.
  • the maximum value of the loss tangent of the 4-methyl-1-pentene polymer (a) is preferably 0.8 or more, more preferably 1.0 or more, and 1 .2 or more is more preferable.
  • the maximum value of the loss tangent is preferably 3.0 or less, more preferably 2.8 or less.
  • the melt flow rate of the 4-methyl-1-pentene polymer (a) according to the present embodiment is preferably 0.1 to 100 (g/10 minutes), more preferably 1 to 70 (g/10 minutes). , more preferably 2 to 20 (g/10 min), and even more preferably 3 to 15 (g/10 min).
  • the intrinsic viscosity [ ⁇ ] of the 4-methyl-1-pentene polymer (a) according to the present embodiment in decalin at 135° C. is, from the viewpoint of improving the flexibility and mechanical strength of the composition, It is preferably 0.01 to 5.0 dL/g, more preferably 0.1 to 4.0 dL/g, even more preferably 0.5 to 3.0 dL/g, and 1.0 ⁇ 2.8 dL/g is particularly preferred.
  • the density of the 4-methyl-1-pentene polymer (a) according to the present embodiment measured according to ASTM D 1505 (water substitution method) is preferably 0.810 to 0.850 g/cm 3 , more preferably 0.820 to 0.850 g/cm 3 , more preferably 0.830 to 0.850 g/cm 3 .
  • the 4-methyl-1-pentene polymer (a) according to this embodiment can be produced by various methods. For example, magnesium-supported titanium catalysts; metallocene catalysts described in WO 01/53369, WO 01/027124, JP-A-3-193796, and JP-A-02-41303; It can be produced using a known catalyst such as an olefin polymerization catalyst containing a metallocene compound described in 2011/055803.
  • the content of the 4-methyl-1-pentene polymer (a) in the composition according to the present embodiment is not particularly limited, but when the total composition is 100% by mass, preferably 20% by mass or more, More preferably 30% by mass or more, still more preferably 40% by mass or more, on the other hand, preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 75% by mass or less.
  • the total composition is 100% by mass, preferably 20% by mass or more, More preferably 30% by mass or more, still more preferably 40% by mass or more, on the other hand, preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 75% by mass or less.
  • the styrene-based elastomer (b) of the present embodiment is a hydrogenated block copolymer of a polystyrene block and a diene block.
  • a block copolymer can be hydrogenated by a known method in an inert solvent in the presence of a hydrogenation catalyst.
  • the hydrogenation of the block copolymer may be partially or wholly, but the hydrogenation reduces the unsaturated bonds and makes it easier to obtain flexibility, heat resistance, mechanical properties, etc. Therefore, the degree of hydrogenation is such that 50% or more of the olefinic double bonds in the copolymer block are hydrogenated, preferably 80% or more.
  • the content of the polystyrene block (styrene content) relative to the total amount of the styrene elastomer (b) is greater than 0.0% by mass and 50% by mass or less, preferably 5% by mass or more and 50% by mass or less, It is more preferably 30% by mass or less, and even more preferably 15% by mass or less.
  • the content of the polystyrene block with respect to the total amount of the styrene elastomer (b) is more than 25% by mass and 50% by mass or less.
  • the saturated hydrocarbon compound (d) is included, the content of the polystyrene block with respect to the total amount of the styrene elastomer (b) is 30% by mass or more and 40% by mass or less, and the saturated hydrocarbon compound (d) is more preferably contained in an amount of 1 to 15 parts by weight per 100 parts by weight of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b).
  • the styrene elastomer (b) includes hydrogenated styrene/butadiene rubber, hydrogenated styrene/butadiene block copolymer (SEBS), hydrogenated styrene/isoprene block copolymer (SEPS) and hydrogenated styrene/isoprene/butadiene block copolymer.
  • SEBS hydrogenated styrene/butadiene block copolymer
  • SEPS hydrogenated styrene/isoprene block copolymer
  • SEEPS polymers
  • SEBS hydrogenated styrene-butadiene block copolymer
  • the Shore A hardness (JIS K6253) of the styrene elastomer (b) is preferably 10-100, more preferably 20-90, even more preferably 30-80.
  • the weight average molecular weight of the styrene-based elastomer (b) is preferably 10,000 to 450,000, more preferably 30,000 to 350,000, even more preferably 40,000 to 300,000.
  • the weight average molecular weight is the polystyrene equivalent weight average molecular weight measured by gel permeation chromatography.
  • the melt flow rate of the styrene-based elastomer (b) of the present embodiment is preferably 0.1 to 20 (g/10 min), more preferably 0.5 to 15 (g/10 min), still more preferably 1 to 10 (g/10 minutes).
  • Examples of the styrene-based elastomer (b) of the present embodiment include “Clayton (registered trademark) G” manufactured by Kraton Polymer Co., Ltd., “Hibler (registered trademark)” and “Septon (registered trademark)” manufactured by Kuraray Co., Ltd., and “Tuftec” manufactured by Asahi Kasei Corporation. (registered trademark)”, “SOE (registered trademark)”, and “DYNARON (registered trademark)” manufactured by JRS may be used.
  • the absolute value of the difference in melt flow rate (g/10 min) between the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) is 10 or less. One is preferred, nine is more preferred, and eight is even more preferred.
  • the content of the styrene elastomer (b) with respect to 100 parts by mass of the 4-methyl-1-pentene polymer (a) is 5 parts by mass or more and 500 parts by mass or less, preferably 10 to 400 parts by mass. , more preferably 20 to 300 parts by mass, still more preferably 40 to 200 parts by mass.
  • the content of the styrene-based elastomer (b) is set to the above lower limit or more, it is possible to improve the tensile elongation at low temperatures while maintaining the stress relaxation properties.
  • the content of the styrene-based elastomer (b) to the above upper limit or less, good stress relaxation properties and flexibility can be achieved while maintaining tensile elongation at low temperatures.
  • composition according to this embodiment may contain components other than the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b).
  • the composition of the present embodiment may further contain a saturated hydrocarbon compound (d) having a pour point of -10°C or lower. This makes it easier to further improve the tensile elongation at low temperatures.
  • the pour point is preferably -11°C or lower, more preferably -12°C or lower. By setting the pour point to the upper limit or less, it becomes easier to obtain conformability and flexibility at low temperatures, and good tensile elongation can be obtained.
  • the pour point is measured according to JIS K2269.
  • the saturated hydrocarbon compound (d) preferably has 20 or more carbon atoms, and more preferably liquid paraffin or the like.
  • the content of the saturated hydrocarbon compound (d) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b). Yes, preferably 1 to 15 parts by mass, more preferably 2 to 12 parts by mass.
  • the composition according to the present embodiment is a modified resin (a2) (however, the 4-methyl-1-pentene polymer (a) according to the present embodiment, and styrene-based elastomer (except for (b)) may be contained.
  • the modified resin (a2) according to the present embodiment includes, for example, one or more selected from thermoplastic resins, thermoplastic elastomers and rubbers.
  • thermoplastic resins examples include, for example, low-density polyethylene, medium-density polyethylene, high-density polyethylene, high-pressure low-density Polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, poly-3-methyl-1-butene, ethylene/ ⁇ -olefin copolymer, propylene/ ⁇ -olefin copolymer, 1-butene/ ⁇ - thermoplastic polyolefin resins such as olefin copolymers, cyclic olefin copolymers, chlorinated polyolefins; aliphatic polyamides (nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 612), polyether block amide co Thermoplastic polyamide resins such as polymers; Thermoplastic polyester resins such as polyethylene terephthalate and polybutylene terephthal
  • thermoplastic elastomers include, for example, olefin-based elastomers, styrene-based elastomers (excluding the above styrene-based elastomer (b)), acid-modified styrene-based elastomers, vinyl chloride-based elastomers, urethane-based elastomers, ester-based elastomers, amide-based elastomers, Elastomers and the like can be mentioned.
  • these modified resins (a2) may be acid-modified with acrylic acid, methacrylic acid, maleic acid, or the like. These modified resins (a2) may be used singly or in combination of two or more.
  • low-density polyethylene low-density polyethylene, medium-density polyethylene, high-density polyethylene, high-pressure low-density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, poly-3-methyl- One or two or more selected from 1-butene, ethylene/ ⁇ -olefin copolymer, propylene/ ⁇ -olefin copolymer, and 1-butene/ ⁇ -olefin copolymer are preferred, and polyethylene, polypropylene, and poly(1) -butene, poly 4-methyl-1-pentene, ethylene/ ⁇ -olefin copolymer, propylene/ ⁇ -olefin copolymer, 1-butene/ ⁇ -olefin copolymer, ethylene/vinyl acetate copolymer, poly One or two or more selected from ether block amides, ionomers, fluorine resins, acid-modified fluorine resins,
  • composition according to the present embodiment can be used singly or in combination of two or more of these modified resins (a2).
  • the content of the modified resin (a2) in the composition according to the present embodiment is not particularly limited. above, more preferably 2% by mass or more, still more preferably 3% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 35% by mass or less, still more preferably 30% by mass % or less, particularly preferably 25 mass % or less.
  • the content of the modified resin (a2) is at least the above lower limit, the composition according to the present embodiment can have better appearance, touch, and the like.
  • the content of the modified resin (a2) is equal to or less than the above upper limit value, it is possible to improve the performance balance of the composition according to the present embodiment, such as flexibility.
  • the composition according to the present embodiment optionally contains a foaming agent, a heat stabilizer, an antioxidant, an ultraviolet absorber, a pigment, an antistatic agent, a copper damage inhibitor, a flame retardant, a neutralizer, a plasticizer, Additives such as nucleating agents, weather stabilizers, light stabilizers, antioxidants, fatty acid metal salts, softeners, dispersants, colorants, lubricants, natural oils, synthetic oils and waxes may be added. Among these, plasticizers, softeners, natural oils and synthetic oils are used to adjust the temperature at which the solid viscoelasticity loss tangent (tan ⁇ ) of the composition according to the present embodiment reaches its maximum value and the loss tangent maximum value. In addition, the type and amount added may be controlled.
  • foaming agent examples include chemical foaming agents and physical foaming agents.
  • Chemical foaming agents include sodium bicarbonate, ammonium bicarbonate, various carboxylates, sodium borohydride, azodicarbamide, N,N-dinitrosopentamethylenetetramine, P,P-oxybis(benzenesulfonylhydrazide). , azobisisobutyronitrile, p-toluenesulfonyl hydrazide, sodium bicarbonate sodium citrate, and the like.
  • Physical blowing agents include carbon dioxide, nitrogen, a mixture of carbon dioxide and nitrogen, and the like, all of which can be supplied in a gaseous, liquid, or supercritical state.
  • the composition of this embodiment may be in a foamed state containing air bubbles.
  • the density of the composition is preferably 0.10 to 1.0 g/cm 3 , more preferably 0.5 to 0.9 g/cm 3 , and more preferably 0.7 to 0.8 g/cm 3 . cm 3 is more preferred.
  • the shape of the composition according to this embodiment is not particularly limited, it may be in the form of a sheet. In the case of a sheet, the thickness is preferably 0.1 mm or more and 30 mm or less, more preferably 0.2 mm or more and 20 mm or less, and still more preferably 0.3 mm or more and 10 mm or less.
  • the thickness By setting the thickness to the above lower limit or more, a good balance of low-temperature tensile elongation, flexibility, mechanical properties, moldability, low-temperature impact resistance, and the like can be obtained. On the other hand, by setting the thickness to be equal to or less than the above upper limit value, lightness, appearance, and handleability can be improved.
  • the composition of the present embodiment may be a foam processed into a sheet.
  • composition of the present embodiment is prepared by dry blending the 4-methyl-1-pentene polymer (a), the organic compound (b), and other optional components as raw materials, using a tumbler mixer, a Banbury mixer, and a single screw extruder. , a twin-screw extruder, a high-speed twin-screw extruder, a hot roll, or the like.
  • the composition according to the present embodiment when the composition according to the present embodiment is in a foamed state, for example, the chemical foaming agent can be blended with the composition and uniformly mixed before being fed into the extruder.
  • carbon dioxide when carbon dioxide is used as a physical blowing agent, the composition is kneaded in an extruder, and after being plasticized, it can be obtained by injecting carbon dioxide directly into the extruder.
  • the expansion ratio is not particularly limited, and can be appropriately determined in consideration of the use of the composition.
  • the molded article of the present embodiment is obtained by molding the composition described above by a known method.
  • the shape of the molded body is not particularly limited, and it may be processed into any shape depending on the application.
  • the molded article of the present embodiment preferably satisfies the following condition a.
  • Condition A When the molded bodies are superimposed as necessary to prepare a test piece A so that the molded body has a thickness of 7 mm, the Shore A hardness (JIS K6253) of the test piece is 10 to 70.
  • the molded article of the present embodiment can have moderate flexibility and stress relaxation properties, can easily follow human movements and shapes, and can have a high fit.
  • the Shore A hardness (JIS K6253) of the test piece a is preferably 20-70, more preferably 30-70.
  • the molded article of the present embodiment preferably satisfies the following condition a.
  • Condition A A 25 mm wide ⁇ 100 mm long test piece is punched out of the compact. Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece (a) was subjected to two temperature conditions of 23 ° C. and 40 ° C. with a distance between chucks of 30 mm and a tensile speed of 300 mm / min. A is stretched by 50% in the TD direction, and the tensile load [N/25 mm] after 60 seconds is measured.
  • condition (a) it is possible to obtain good irregularity followability in the molded article of the present embodiment.
  • good followability is obtained in a temperature range where human skin can warm the body, making it easier for the molded body to adhere to the human body.
  • the softening degree of the test piece a is preferably 30% to 70% under condition b.
  • the softening degree is preferably 30% to 70% under condition b.
  • the molded article of the present embodiment preferably satisfies the following condition c.
  • Condition c The surface impact strength (in accordance with JIS K7211-2) of the molded product measured at a test temperature of 10° C. is 0.6 J or more.
  • the molded article of this embodiment can have high impact resistance even at low temperatures. As a result, it is possible to reduce breakage due to stress and deformation from the outside, and to improve usability at low temperatures. In addition, when the molded article of the present embodiment is applied to clothing, good flexibility and durability can be obtained even when the article is washed under cold water or used in cold climates.
  • the surface impact strength of the sheet is preferably 0.7 J or more.
  • the upper limit of the surface impact strength of the sheet is not particularly limited, but is preferably 10 J or less, more preferably 8 J or less, from the viewpoint of maintaining a balance with other performances.
  • the molded article of the present embodiment that satisfies the above conditions a to c can be realized by selecting the material of the composition constituting the molded article, controlling the manufacturing conditions of the molded article, and the like. For example, focusing on the difference in melt flow rate (g/10 min) between the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b), the styrene elastomer (b) can be selected. , adjusting the ratio of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b).
  • the molded article of this embodiment is not limited to such materials and manufacturing methods.
  • the molded body of the present embodiment contain air bubbles.
  • the air bubbles are not limited to individual air bubbles, but may be a plurality of continuous air bubbles, or a mixture of air bubbles.
  • the density of the molded article of the present embodiment is preferably 0.10 g/cm 3 or more, more preferably 0.20 g/cm 3 or more, still more preferably 0.30 g/cm 3 or more, More preferably, it is 0.40 g/cm 3 or more.
  • the density of the molded article of the present embodiment is preferably 1.0 g/cm 3 or less, more preferably 0.90 g/cm 3 or less, still more preferably 0.85 g/cm 3 or less, More preferably, it is 0.80 g/cm 3 or less.
  • the molded article of the present embodiment is preferably a sheet, and the thickness of the sheet is preferably 0.1 mm or more and 10 mm or less, more preferably 0.2 mm or more and 8 mm or less, and still more preferably 0.3 mm or more and 5 mm. or less, and more preferably 0.4 mm or more and 3 mm or less.
  • the molded article of the present embodiment when the molded article of the present embodiment is a sheet, it may be a fabric laminate in which a fabric is bonded to at least one surface of the sheet. As a result, it is possible to realize a new fabric laminate that can obtain new functions such as stress relaxation and low-temperature tensile elongation properties of the molded article of the present embodiment, while taking advantage of the flexibility and texture of the fabric.
  • the fabrics are made by thinly processing fibers such as natural fibers, synthetic fibers, and chemical fibers, and include woven fabrics such as fabrics and non-woven fabrics.
  • woven fabrics such as fabrics and non-woven fabrics.
  • Specific examples include knitted fabrics having a weft knitting structure such as jersey, milled, smooth and double knit; knitted fabrics having a warp knitting structure such as tricot and raschel; and woven fabrics having a structure such as plain weave, twill weave and satin.
  • the thickness of the fabric is preferably 0.2 to 1.0 mm, more preferably 0.2 to 0.8 mm, even more preferably 0.2 to 0.6 mm.
  • the basis weight of the fabric is preferably 50 to 250 g/m 2 , more preferably 70 to 180 g/m 2 and even more preferably 100 to 150 g/m 2 .
  • Natural fibers such as cotton, linen, wool, and silk; regenerated fibers such as rayon and cupra; semi-synthetic fibers such as acetate and triacetate; synthetic fibers such as nylon, polyester, polyurethane, and acrylic; Mentioned are chemical fiber products consisting of mixed fibers of fibers.
  • At least a portion of the fabric laminate of this embodiment may be curved, and the radius of curvature may be in the range of 50 mm to 150 mm. This makes it easier for the fabric laminate of the present embodiment to follow the curved surface.
  • Curved surfaces include rounded portions of the human body, such as the head, chest, elbows, knees, and the like. Clothing worn on curved surfaces includes, for example, hats, hoods, brassieres, undergarments, and supporters.
  • the thickness of the fabric laminate of this embodiment is appropriately adjusted in consideration of flexibility, workability, ease of sewing, and the like.
  • the manufacturing method of the fabric laminate is not particularly limited, but when it is attached to the fabric, it is suitable to attach it at 140 to 190°C and 1.0 to 1.8 MPa.
  • the production efficiency is good when the bonding time is 30 seconds to 10 minutes. As a result, a fabric laminate can be obtained while maintaining the properties of the sheet composition of the present embodiment.
  • the molded article according to the present embodiment may have ventilation holes to improve breathability depending on the application.
  • ventilation holes to improve breathability depending on the application.
  • a large number of communicating vent holes can be provided on the front and back sides by processing techniques such as mechanical punching, needle processing, laser perforation, and water jetting.
  • composition and molded article according to the present embodiment are widely used in any field, for example, mobility goods such as automobile parts, railway parts, aircraft parts, ship parts, bicycle parts; electronic equipment; Audio equipment; camera equipment; precision equipment; game equipment; VR equipment; , Leisure goods such as backpacks; Agricultural goods such as gardening; eyeglasses, etc.), shoe supplies (various insoles, shoe lining materials, various equipment, shoes, shoelaces, etc.), decorative products such as accessories and small portable miscellaneous goods; medical supplies such as medical supplies and healthcare supplies; Educational/toy goods such as books and toys; Packaging-related goods such as packaging goods; Cosmetics-related goods such as face washing and makeup goods; It can be used for safety goods such as child seats; music goods; pet goods; fishing goods and the like.
  • clothing and clothing parts are preferable. That is, it is more preferably used for clothes in general, undergarments, undergarments, hats, shoes, and the like, which use fabrics.
  • the garment component is intended to be part of such a garment.
  • the core material of underwear, the insole of shoes, etc. are mentioned.
  • the molded article according to the present embodiment is suitable for use in a low-temperature environment. Examples include use in cold regions and use under cold water such as swimming pools and sea bathing. It is also suitable for use as a member that is attached to rounded parts of the human body. Examples thereof include members that constitute hats, hoods, brassieres, undergarments, supporters, and the like.
  • Melt flow rate (MFR) of 4-methyl-1-pentene polymer (a) It was measured under conditions of 230° C. and a test load of 2.16 kg according to JIS K7210.
  • Saturated hydrocarbon compound (d) ⁇ Saturated hydrocarbon compound (d-1): liquid paraffin “No.530-SP” (manufactured by Sanko Chemical Industry Co., Ltd.) (density: 0.86 g/cm 3 , viscosity: 87 (mPa s), pour point: ⁇ 15°C)
  • the resin temperature of the cylinder head part is 190 to 204 ° C.
  • the extrusion rate is 3.5 to 4.4 kg / hour T die (die temperature 190 °C) into sheets.
  • the extruded sheet is cooled with a cooling roll (water flow temperature inside the roll: 30° C.), taken up using a take-up machine (take-up speed: 0.8 to 0.9 m/min), and a sheet with a width of about 240 to 270 mm.
  • a composition processed into a shape was obtained.
  • a sheet was extruded through a T-die (die temperature: 190° C.) at an extrusion rate of 5 to 8.5 kg/hour.
  • the extruded sheet is cooled with a cooling roll (water flow temperature inside the roll: 30°C), taken up using a take-up machine (take-up speed: 0.4 to 2.3 m/min), and formed into a sheet with a width of about 300 mm.
  • a processed composition (unfoamed; molded body) was obtained respectively.
  • the fabric laminate of Example 13 has the same initial load residual rate at 23 ° C. as in Example 2 in which the fabric is not laminated, and the softening degree is It was in the range of 25-80%, and a good fit was also obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A composition according to the present invention contains a 4-methyl-1-pentene polymer (a) and a styrene elastomer (b); the 4-methyl-1-pentene polymer (a) comprises a constituent unit derived from 4-methyl-1-pentene and a constituent unit derived from an α-olefin other than 4-methyl-1-pentene, the α-olefin having 2 to 10 carbon atoms; the styrene elastomer (b) is a hydrogenated product of a block copolymer of a polystyrene block and a diene block; the content of the polystyrene block relative to the total mass of the styrene elastomer (b) is more than 0.0% by mass but not more than 70% by mass; and the content of the styrene elastomer (b) relative to 100 parts by mass of the 4-methyl-1-pentene polymer (a) is from 5 parts by mass to 500 parts by mass.

Description

組成物、および成形体Composition and molded article
 本発明は、組成物、および成形体に関する。より詳細には、本発明は、組成物、成形体、成形体を用いた生地積層体、およびその製造方法に関する。 The present invention relates to compositions and molded articles. More particularly, the present invention relates to a composition, a molded article, a fabric laminate using the molded article, and a method for producing the same.
 4-メチル-1-ペンテンを主たる構成モノマーとする4-メチル-1-ペンテン系重合体は、離型性、耐熱性、耐水性、耐溶剤性等の諸性能に優れているため各種用途に広く使用されている。なかでも、4-メチル-1-ペンテン系重合体による柔軟性、追従性を利用した技術として、例えば、特許文献1には、半導体モジュールの封止体の製造の際に用いられる離型フィルムであって、金型に対する優れた追従性を得るため、4-メチル-1-ペンテン等のポリメチルペンテン樹脂から主としてなる表面層と、ポリメチルペンテン樹脂および熱可塑性エラストマーから主としてなる中間層とを備える離型フィルムが開示されている。また、特許文献2には、ポリエチレン樹脂またはポリプロピレン樹脂からなるベース樹脂と、低分子量の4-メチル-1-ペンテン系重合体とを含む樹脂組成物を用いることで、優れた離型性やアンチブロッキング性を有しつつ、高い柔軟性や透明性が得られることが開示されている。 4-Methyl-1-pentene-based polymers with 4-methyl-1-pentene as the main constituent monomer are excellent in various performances such as releasability, heat resistance, water resistance, and solvent resistance, and are suitable for various applications. Widely used. Among them, as a technique utilizing the flexibility and followability of a 4-methyl-1-pentene polymer, for example, Patent Document 1 discloses a release film used in the production of a sealing body for a semiconductor module. In order to obtain excellent conformability to the mold, it is provided with a surface layer mainly composed of polymethylpentene resin such as 4-methyl-1-pentene, and an intermediate layer mainly composed of polymethylpentene resin and thermoplastic elastomer. A release film is disclosed. Further, in Patent Document 2, by using a resin composition containing a base resin made of polyethylene resin or polypropylene resin and a low-molecular-weight 4-methyl-1-pentene polymer, excellent releasability and anti-rust properties are achieved. It is disclosed that high flexibility and transparency can be obtained while having blocking properties.
特開2020-202273号公報Japanese Patent Application Laid-Open No. 2020-202273 特開2011-140594号公報JP 2011-140594 A
 本発明者らは、従来の4-メチル-1-ペンテン系重合体が備える応力に対する柔軟性といった特性を保持しつつ、特許文献1、2には開示されていない新たな特性をさらに付与する観点から鋭意検討を行った。その結果、4-メチル-1-ペンテン系重合体と、水添されたスチレン系エラストマーとを新たに組み合わせることで、高いフィット性を得つつ、室温よりも低い温度下においても良好な使用感が得られることを初めて見出した。 The present inventors maintain the characteristics of the conventional 4-methyl-1-pentene-based polymer, such as flexibility against stress, while further imparting new characteristics not disclosed in Patent Documents 1 and 2. Since then, we have conducted an in-depth study. As a result, by combining a 4-methyl-1-pentene polymer and a hydrogenated styrene-based elastomer, it is possible to obtain a high fit and a good feeling of use even at temperatures lower than room temperature. First time I've found what I can get.
 本発明は、上記事情に鑑みてなされたものであり、良好なフィット性を得つつ、低温での使用感が良好な組成物およびこれを用いた成形体を提供するものである。 The present invention has been made in view of the above circumstances, and provides a composition that has a good feeling of use at low temperatures while obtaining a good fit, and a molded article using the same.
 すなわち、本発明によれば、以下に示す組成物が提供される。 That is, according to the present invention, the composition shown below is provided.
[1] 4-メチル-1-ペンテン系重合体(a)と、
 スチレン系エラストマー(b)と、
を含み、
 前記4-メチル-1-ペンテン系重合体(a)が4-メチル-1-ペンテン由来の構成単位と4-メチル-1-ペンテン以外の炭素原子数2~10のα-オレフィン由来の構成単位とを含み、
 前記スチレン系エラストマー(b)がポリスチレンブロックとジエンブロックとのブロック共重合体の水添物であり、前記スチレン系エラストマー(b)全量に対する前記ポリスチレンブロックの含有量が0.0質量%よりも大きく50質量%以下であり、
 前記4-メチル-1-ペンテン系重合体(a)100質量部に対する前記スチレン系エラストマー(b)の含有量が5質量部以上500質量部以下である、組成物。
[2] 前記4-メチル-1-ペンテン系重合体(a)は、昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上100℃以下の範囲に1つ以上あり、かつ、前記損失正接の極大値が0.5以上3.5以下である、[1]に記載の組成物。
[3] 前記スチレン系エラストマー(b)は、水添スチレン・ブタジエンゴム(HSBR)、水添スチレン・ブタジエンブロック共重合体(SEBS)、水添スチレン・イソプレンブロック共重合体(SEPS)、及び水添スチレン・イソプレン・ブタジエンブロック共重合体(SEEPS)の中から選ばれる1種または2種以上である、[1]または2に記載の組成物。
[4] 前記スチレン系エラストマー(b)全量に対する前記ポリスチレンブロックの含有量が5質量%以上15質量%以下である、[1]乃至[3]いずれか一つに記載の組成物。
[5] 流動点がマイナス10℃以下の飽和炭化水素化合物(d)を、前記4-メチル-1-ペンテン系重合体(a)および前記スチレン系エラストマー(b)の合計量100重量部に対して、0.1~20重量部含む、[1]乃至[5]いずれか一つに記載の組成物。
[6] 前記スチレン系エラストマー(b)全量に対する前記ポリスチレンブロックの含有量が25質量%を超えて50質量%以下であり、
 流動点がマイナス10℃以下の飽和炭化水素化合物(d)を、前記4-メチル-1-ペンテン系重合体(a)および前記スチレン系エラストマー(b)の合計量100重量部に対して、0.1~20重量部含む、[1]乃至[5]いずれか一つに記載の組成物。
[7] 前記組成物は、昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる30℃における損失正接(tanδ)の値の絶対値が0.5以上である、[1]乃至[6]いずれか一つに記載の組成物。
[8] 以下の条件iを満たす、[1]乃至[7]いずれか一つに記載の組成物。
(条件i)
 前記4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の合計量100質量部に対して化学発泡剤1質量部を含む前記組成物を用いて押出機のダイス温度190℃で押出成形した発泡性シートを準備し、合計厚みが7mmとなるように当該シートを重ね合わせ、試験片aとする。試験片aのショアA硬度(JIS K6253)が10~70である。
[9] 以下の条件iiiを満たす、[1]乃至[8]いずれか一つに記載の組成物。
(条件iii)
 前記4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の合計量100質量部に対して化学発泡剤1質量部を含む前記組成物を用いて押出機のダイス温度190℃で押出成形した発泡性シートを準備し、当該シートを幅25mm×長さ100mmに打ち抜き、試験片cとする。試験片cに対し、引張試験機(万能引張試験機3380、インストロン社製)を用いて、23℃、40℃の2つの温度条件でチャック間距離30mm、及び引張速度300mm/min、試験片cをTD方向に50%伸長させ、60秒後の引張荷重[N/25mm]を測定する。各温度で得られた60秒後の引張荷重を以下の式にあてはめ、軟化度としたとき、当該軟化度が25%~80%である。
 軟化度[%]=〔40℃での60秒後の引張荷重[N/25mm]〕/〔23℃での60秒後の引張荷重[N/25mm]
[10] 以下の条件ivを満たす、[1]乃至[9]いずれか一つに記載の組成物。
(条件iv)
 前記4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の合計量100質量部に対して化学発泡剤1質量部を含む前記組成物を用いてダイス温度190℃で押出成形した発泡性シートを準備し、当該シートの、試験温度10℃で測定した面衝撃強度(JIS K7211-2準拠)が0.6J以上である。
[11] [1]乃至[10]いずれか一つに記載の組成物が成形された成形体。
[12] 前記成形体が気泡を含み、密度が0.10~1.0g/cmである、[11]に記載の成形体。
[13] [11]または[12]に記載の成形体がシートであり、
 前記シートの少なくとも一方の面に生地が貼り合わされた、生地積層体。
[14] 前記生地積層体の少なくとも一部が湾曲し、曲率半径が50mm~150mmの範囲である、[13]に記載の生地積層体。
[15] 前記シートと前記生地とを、140~190℃、1.0~1.8MPaで貼り合せる工程を有する、[13]または[14]に記載の生地積層体の製造方法。
[16] [13]または[14]に記載の生地積層体を用いた衣料品。
[17] [11]または[12]に記載の成形体の低温環境下での使用。
[1] a 4-methyl-1-pentene polymer (a);
a styrene-based elastomer (b);
including
The 4-methyl-1-pentene-based polymer (a) is a structural unit derived from 4-methyl-1-pentene and a structural unit derived from an α-olefin having 2 to 10 carbon atoms other than 4-methyl-1-pentene and
The styrene-based elastomer (b) is a hydrogenated block copolymer of a polystyrene block and a diene block, and the content of the polystyrene block relative to the total amount of the styrene-based elastomer (b) is greater than 0.0% by mass. 50% by mass or less,
A composition, wherein the content of the styrene elastomer (b) is 5 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the 4-methyl-1-pentene polymer (a).
[2] The 4-methyl-1-pentene polymer (a) is obtained by dynamic viscoelasticity measurement under the conditions of a heating rate of 4° C./min, a frequency of 1.59 Hz, and a strain of 0.1%. At least one temperature at which the loss tangent (tan δ) exhibits a maximum value is in the range of 10° C. or more and 100° C. or less, and the maximum value of the loss tangent is 0.5 or more and 3.5 or less [1] The composition according to .
[3] The styrene elastomer (b) includes a hydrogenated styrene/butadiene rubber (HSBR), a hydrogenated styrene/butadiene block copolymer (SEBS), a hydrogenated styrene/isoprene block copolymer (SEPS), and water. 3. The composition according to [1] or 2, which is one or more selected from styrene/isoprene/butadiene block copolymers (SEEPS).
[4] The composition according to any one of [1] to [3], wherein the content of the polystyrene block relative to the total amount of the styrene elastomer (b) is 5% by mass or more and 15% by mass or less.
[5] A saturated hydrocarbon compound (d) having a pour point of -10°C or less is added to 100 parts by weight of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b). and 0.1 to 20 parts by weight of the composition according to any one of [1] to [5].
[6] the content of the polystyrene block with respect to the total amount of the styrene-based elastomer (b) is more than 25% by mass and not more than 50% by mass;
A saturated hydrocarbon compound (d) having a pour point of -10°C or less is added to 100 parts by weight of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) to 0. .1 to 20 parts by weight of the composition according to any one of [1] to [5].
[7] The composition has a loss tangent (tan δ) value at 30 ° C. obtained by dynamic viscoelasticity measurement under the conditions of a heating rate of 4 ° C./min, a frequency of 1.59 Hz, and a strain of 0.1%. The composition according to any one of [1] to [6], which has an absolute value of 0.5 or more.
[8] The composition according to any one of [1] to [7], which satisfies condition i below.
(Condition i)
Using the composition containing 1 part by mass of a chemical foaming agent with respect to 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b), the die temperature of the extruder was 190. A foam sheet extruded at ℃ is prepared, and the sheets are overlapped so that the total thickness is 7 mm to obtain a test piece a. The Shore A hardness (JIS K6253) of the test piece a is 10-70.
[9] The composition according to any one of [1] to [8], which satisfies the following condition iii.
(Condition iii)
Using the composition containing 1 part by mass of a chemical foaming agent with respect to 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b), the die temperature of the extruder was 190. A foam sheet extruded at ℃ is prepared, and the sheet is punched into a width of 25 mm and a length of 100 mm to obtain a test piece c. Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece c was subjected to two temperature conditions of 23 ° C. and 40 ° C. with a distance between chucks of 30 mm and a tensile speed of 300 mm / min. Extend c by 50% in the TD direction, and measure the tensile load [N/25 mm] after 60 seconds. When the tensile load obtained at each temperature after 60 seconds is applied to the following formula to determine the degree of softening, the degree of softening is 25% to 80%.
Softness [%] = [Tensile load after 60 seconds at 40°C [N/25mm]]/[Tensile load after 60 seconds at 23°C [N/25mm]
[10] The composition according to any one of [1] to [9], which satisfies condition iv below.
(Condition iv)
Extrusion at a die temperature of 190° C. using the composition containing 1 part by mass of a chemical foaming agent per 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) A molded foam sheet is prepared, and the surface impact strength (in accordance with JIS K7211-2) of the sheet measured at a test temperature of 10° C. is 0.6 J or more.
[11] A molded article obtained by molding the composition according to any one of [1] to [10].
[12] The molded article according to [11], wherein the molded article contains cells and has a density of 0.10 to 1.0 g/cm 3 .
[13] The molded article according to [11] or [12] is a sheet,
A fabric laminate in which a fabric is attached to at least one surface of the sheet.
[14] The fabric laminate according to [13], wherein at least a portion of the fabric laminate is curved and has a radius of curvature in the range of 50 mm to 150 mm.
[15] The fabric laminate manufacturing method according to [13] or [14], comprising a step of bonding the sheet and the fabric together at 140 to 190° C. and 1.0 to 1.8 MPa.
[16] Clothing using the fabric laminate according to [13] or [14].
[17] Use of the molded article according to [11] or [12] in a low-temperature environment.
 本発明によれば、良好なフィット性を得つつ、低温での使用感が良好な組成物およびこれを用いた成形体を提供することができる。 According to the present invention, it is possible to provide a composition and a molded article using the composition that have good fit and feel when used at low temperatures.
 以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
 本明細書中、「略」という用語は、特に明示的な説明の無い限りは、製造上の公差や組立て上のばらつき等を考慮した範囲を含むことを表す。
 本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
In this specification, the term "substantially" means that it includes a range that takes into account manufacturing tolerances, assembly variations, and the like, unless otherwise explicitly stated.
In this specification, the notation "a to b" in the description of numerical ranges means from a to b, unless otherwise specified. For example, "1 to 5% by mass" means "1% by mass or more and 5% by mass or less".
 本明細書において「低温」とは、室温20℃よりも低い温度であって組成物および成形体が凍結しない温度を意図する。例えば、15℃以下、10℃以下、5℃以下であってもよく、マイナス10℃以上、マイナス5℃以上、0℃以上であってもよい。 As used herein, the term "low temperature" means a temperature lower than room temperature of 20°C and at which the composition and molded article do not freeze. For example, the temperature may be 15° C. or lower, 10° C. or lower, or 5° C. or lower, or -10° C. or higher, -5° C. or higher, or 0° C. or higher.
 本実施形態においてメルトフローレートは、JIS K7210に従って、230℃、試験荷重2.16kgの条件で測定できる。 In this embodiment, the melt flow rate can be measured under the conditions of 230°C and a test load of 2.16 kg according to JIS K7210.
1.組成物
 本実施形態の組成物は、4-メチル-1-ペンテン系重合体(a)と、スチレン系エラストマー(b)と、を含み、前記4-メチル-1-ペンテン系重合体(a)が4-メチル-1-ペンテン由来の構成単位と4-メチル-1-ペンテン以外の炭素原子数2~10のα-オレフィン由来の構成単位とを含み、前記スチレン系エラストマー(b)がポリスチレンブロックとジエンブロックとのブロック共重合体の水添物であり、前記スチレン系エラストマー(b)全量に対する前記ポリスチレンブロックの含有量が0.0質量%よりも大きく50質量%以下であり、前記4-メチル-1-ペンテン系重合体(a)100質量部に対する前記スチレン系エラストマー(b)の含有量が5質量部以上500質量部以下という構成を備える。
1. Composition The composition of the present embodiment comprises a 4-methyl-1-pentene polymer (a) and a styrene elastomer (b), and the 4-methyl-1-pentene polymer (a) contains a structural unit derived from 4-methyl-1-pentene and a structural unit derived from an α-olefin having 2 to 10 carbon atoms other than 4-methyl-1-pentene, and the styrene elastomer (b) is a polystyrene block and a diene block, wherein the content of the polystyrene block relative to the total amount of the styrene elastomer (b) is more than 0.0% by mass and 50% by mass or less, and the 4- The content of the styrene-based elastomer (b) with respect to 100 parts by mass of the methyl-1-pentene-based polymer (a) is 5 parts by mass or more and 500 parts by mass or less.
 本実施形態の組成物は、かかる構成を備えることにより、応力緩和性を得つつ、低温での引張伸びを向上できる。その結果、高いフィット性を得つつ、室温よりも低い温度下においても良好な使用感が得られる。例えば、衣料品に適用した場合、本実施形態の組成物は、ヒトの動きや形状に適切にフィットすることできるとともに、洗濯時等に冷水に晒され低温下におかれても柔軟性が保持される。また、寒冷地でも良好な柔軟性、引張性等が保持されるため、破損が抑制され、良好に使用することができる。また、本実施形態の組成物によれば、さらに、耐熱性および耐低温衝撃性も向上することができる。かかる理由の詳細は明らかではないが、以下のように推測される。
 本実施形態のスチレン系エラストマー(b)は、熱可塑性エラストマーの一種であり、ハード部であるポリスチレンと、ソフト部であるポリジエンからなるブロックコポリマーを含む。ハード部であるポリスチレンブロックのガラス転移点温度(Tg)以下の温度下では、ポリスチレンブロックが物理的な架橋を形成することでゴム弾性が発現し、一方で、ポリスチレンブロックのガラス転移点温度(Tg)以上の温度下では可塑化して加工が可能になるという特性を有する。本発明者は、なかでもソフト部が水素添加された水添物は、引張強度が高くなる傾向が見られ、課題解決により効果的であることを見出した。そこでスチレン系エラストマー(b)のスチレン系単量体からなるハード部分と、ジエン等のソフト部分の割合を制御することで、柔軟性を保持しつつも低温下において適度なゴム弾性が得られると推測される。
 本実施形態においては、かかる特性を有する特定のスチレン系エラストマー(b)と、4-メチル-1-ペンテン系重合体(a)とを組み合わせることによって、両者の相乗効果により、応力緩和性を得つつも、低温下であっても適度なゴム弾性が発揮され、引張強度を向上でき、その結果、高いフィット性を得つつ、室温よりも低い温度下においても良好な使用感が得られると推測される。
By having such a configuration, the composition of the present embodiment can improve tensile elongation at low temperatures while obtaining stress relaxation properties. As a result, it is possible to obtain a good feeling of use even at a temperature lower than room temperature while obtaining a high fitting property. For example, when applied to clothing, the composition of the present embodiment can appropriately fit human movements and shapes, and retains flexibility even when exposed to cold water and placed at low temperatures during washing. be done. In addition, since good flexibility, tensile properties, etc. are maintained even in cold regions, breakage is suppressed and it can be used satisfactorily. Moreover, according to the composition of the present embodiment, heat resistance and low-temperature impact resistance can be further improved. Although the details of this reason are not clear, it is presumed as follows.
The styrene-based elastomer (b) of the present embodiment is a type of thermoplastic elastomer and includes a block copolymer composed of polystyrene as a hard part and polydiene as a soft part. At a temperature below the glass transition point temperature (Tg) of the polystyrene block, which is the hard part, the polystyrene block forms physical crosslinks to develop rubber elasticity, while the glass transition point temperature (Tg ), it has the characteristic that it is plasticized and can be processed under the temperature above. The present inventors have found that, among others, the hydrogenated product in which the soft portion is hydrogenated tends to increase the tensile strength and is more effective in solving the problem. Therefore, by controlling the ratio of the hard portion of the styrene-based elastomer (b) consisting of the styrene-based monomer and the soft portion of the diene or the like, it is possible to obtain appropriate rubber elasticity at low temperatures while maintaining flexibility. guessed.
In the present embodiment, by combining a specific styrene-based elastomer (b) having such properties with a 4-methyl-1-pentene-based polymer (a), stress relaxation is obtained due to the synergistic effect of both. However, even at low temperatures, it exhibits appropriate rubber elasticity and can improve tensile strength. As a result, it is speculated that a good feeling of use can be obtained even at temperatures lower than room temperature while obtaining high fit. be done.
 なお、フィット性とは例えば、衣料品に適用した場合、ヒトの動きや体の形状に、ほどよく合わせられることである。低温下での良好な使用感とは、室温よりも低い温度下でも割れたり避けたりしにくく、洗濯時等に冷水に晒され低温下におかれても柔軟性が保持されることである。 It should be noted that fit means, for example, that when applied to clothing, it can be moderately matched to human movements and body shapes. Good feeling in use at low temperatures means that the fabric does not easily break or avoid cracking even at temperatures lower than room temperature, and maintains flexibility even when exposed to cold water during washing or the like and placed at low temperatures.
 本実施形態の組成物は、さらに昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる30℃における損失正接(tanδ)の値の絶対値が0.5以上であることが好ましい。これにより、人肌に近い温度でより柔軟性が得られるようになり、フィット性を高めることができる。 The composition of the present embodiment further has a loss tangent (tan δ) value at 30 ° C. obtained by dynamic viscoelasticity measurement under the conditions of a heating rate of 4 ° C./min, a frequency of 1.59 Hz, and a strain of 0.1%. is preferably 0.5 or more. As a result, more flexibility can be obtained at a temperature close to that of human skin, and the fit can be improved.
 本実施形態の組成物は、さらに以下の条件iを満たすことが好ましい。
(条件i)
 前記4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の合計量100質量部に対して化学発泡剤1質量部を含む前記組成物を用いて押出機のダイス温度(製膜温度)190℃で押出成形した発泡性シートを準備し、合計厚みが7mmとなるように当該シートを重ね合わせ、試験片aとする。試験片aのショアA硬度(JIS K6253)が10~70である。
The composition of the present embodiment preferably further satisfies condition i below.
(Condition i)
The extruder die temperature ( Film Forming Temperature) A foam sheet extruded at 190° C. is prepared, and the sheets are superimposed so that the total thickness is 7 mm to obtain a test piece a. The Shore A hardness (JIS K6253) of the test piece a is 10-70.
 条件iを満たすことにより、本実施形態の組成物を用いた成形体において適度な柔軟性、応力緩和性が得られ、ヒトの動きや形状に追従しやすくなり、高いフィット性が得られるようになる。 By satisfying the condition i, the molded article using the composition of the present embodiment has appropriate flexibility and stress relaxation properties, can easily follow human movements and shapes, and has a high fit. Become.
 また、条件iにおいて試験片aのショアA硬度(JIS K6253)は、好ましくは20~70であり、より好ましくは30~70であり、さらに好ましくは40~70である。 In addition, under condition i, the Shore A hardness (JIS K6253) of test piece a is preferably 20-70, more preferably 30-70, and even more preferably 40-70.
 ここで、条件iの発泡性シート一枚当たりの厚みは0.3~0.6mmであることが好ましく、比重は0.73~0.81であることが好ましい。すなわち、複数の発泡性シートを用いることで合計厚み7mmの試験片aを得ることができる。発泡性シート一枚当たりの厚みおよび比重は、押出条件(温度、押出速度など)を調整することで適宜設定できる。 Here, it is preferable that the thickness per expandable sheet under condition i is 0.3 to 0.6 mm, and the specific gravity is preferably 0.73 to 0.81. That is, by using a plurality of expandable sheets, it is possible to obtain a test piece a having a total thickness of 7 mm. The thickness and specific gravity per foamable sheet can be appropriately set by adjusting the extrusion conditions (temperature, extrusion speed, etc.).
 本実施形態の組成物は、さらに以下の条件(ii)を満たすことが好ましい。
(条件ii)
 前記組成物を用いて押出成形したシートを準備し、合計厚みが7mmとなるように当該シートを重ね合わせ、試験片bとする。試験片bに対し、ショアA硬度計の押針が接触した直後のショアA硬度(JIS K6253)の値から15秒後のショアA硬度(JIS K6253)の値を引いた値ΔHSが10~40である。
The composition of the present embodiment preferably further satisfies the following condition (ii).
(Condition ii)
A sheet is prepared by extruding the above composition, and the sheets are superimposed so that the total thickness is 7 mm to obtain a test piece b. For test piece b, the value ΔHS obtained by subtracting the value of Shore A hardness (JIS K6253) after 15 seconds from the value of Shore A hardness (JIS K6253) immediately after contact with the indentor of the Shore A hardness tester is 10 to 40. is.
 条件iiを満たすことにより、良好な凹凸追従性が得られるようになり、フィット性を高めることができる。 By satisfying condition ii, it is possible to obtain good conformability to irregularities and improve fit.
 また、条件iiにおいて試験片bのΔHSは、好ましくは15~30である。ΔHSを上記下限値以上とすることにより、凹凸追従性を高めることができる。 In addition, the ΔHS of the test piece b under condition ii is preferably 15-30. By setting ΔHS to be equal to or higher than the above lower limit, it is possible to enhance conformability to irregularities.
 ここで、条件iiのシート一枚当たりの厚みは0.3~0.6mmであることが好ましい。すなわち、複数のシートを用いることで合計厚み7mmの試験片bを得ることができる。条件iiにおけるシート一枚当たりの厚みは、押出条件(温度、押出速度など)を調整することで適宜設定できる。 Here, the thickness per sheet of condition ii is preferably 0.3 to 0.6 mm. That is, a test piece b having a total thickness of 7 mm can be obtained by using a plurality of sheets. The thickness per sheet in condition ii can be appropriately set by adjusting extrusion conditions (temperature, extrusion speed, etc.).
 本実施形態の組成物は、さらに以下の条件iiiを満たすことが好ましい。
(条件iii)
 前記4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の合計量100質量部に対して化学発泡剤1質量部を含む前記組成物を用いてダイス温度190℃で押出成形した発泡性シートを準備し、当該シートを幅25mm×長さ100mmに打ち抜き、試験片cとする。試験片cに対し、引張試験機(万能引張試験機3380、インストロン社製)を用いて、23℃、40℃の2つの温度条件でチャック間距離30mm、及び引張速度300mm/min、試験片cをTD方向に50%伸長させ、60秒後の引張荷重[N/25mm]を測定する。各温度で得られた60秒後の引張荷重を以下の式にあてはめ、軟化度としたとき、当該軟化度が25%~80%である。
 軟化度[%]=〔40℃での60秒後の引張荷重[N/25mm]〕/〔23℃での60秒後の引張荷重[N/25mm]〕
The composition of the present embodiment preferably further satisfies condition iii below.
(Condition iii)
Extrusion at a die temperature of 190° C. using the composition containing 1 part by mass of a chemical foaming agent per 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) A molded foam sheet is prepared, and the sheet is punched into a width of 25 mm and a length of 100 mm to obtain a test piece c. Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece c was subjected to two temperature conditions of 23 ° C. and 40 ° C. with a distance between chucks of 30 mm and a tensile speed of 300 mm / min. Extend c by 50% in the TD direction, and measure the tensile load [N/25 mm] after 60 seconds. When the tensile load obtained at each temperature after 60 seconds is applied to the following formula to determine the degree of softening, the degree of softening is 25% to 80%.
Softness [%] = [Tensile load after 60 seconds at 40°C [N/25mm]]/[Tensile load after 60 seconds at 23°C [N/25mm]]
 条件iiiを満たすことにより、本実施形態の組成物を用いた成形体において良好な凹凸追従性を得ることができる。なかでも人肌で温められるような温度域において良好な追従性が得られることで、組成物が人体に密着しやすくなる。 By satisfying condition iii, it is possible to obtain good conformability to irregularities in a molded article using the composition of the present embodiment. In particular, good followability is obtained in a temperature range where human skin can warm the composition, making it easier for the composition to adhere to the human body.
 また、条件iiiにおいて試験片cの軟化度は、好ましくは30%~70%である。軟化度を上記上限値以下とすることにより、より柔軟性が得られ、肌なじみがよく、フィット性を高めることができる。 Also, in condition iii, the softening degree of the test piece c is preferably 30% to 70%. By setting the softening degree to the above upper limit or less, more flexibility can be obtained, skin familiarity is good, and fit can be improved.
 ここで、条件iiiの発泡性シート一枚当たりの厚みは0.3~0.6mmであることが好ましく、比重は0.83~0.90であることが好ましい。条件iiiにおける発泡性シート一枚当たりの厚みおよび比重は、押出条件(温度、押出速度など)を調整することで適宜設定できる。 Here, it is preferable that the thickness of each expandable sheet of condition iii is 0.3 to 0.6 mm, and the specific gravity is preferably 0.83 to 0.90. The thickness and specific gravity per foamable sheet in condition iii can be appropriately set by adjusting the extrusion conditions (temperature, extrusion speed, etc.).
 本実施形態の組成物は、さらに以下の条件ivを満たすことが好ましい。
(条件iv)
 前記4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の合計量100質量部に対して化学発泡剤1質量部を含む前記組成物を用いてダイス温度190℃で押出成形した発泡性シートを準備し、当該シートの、試験温度10℃で測定した面衝撃強度(JIS K7211-2準拠)が0.6J以上である。
The composition of the present embodiment preferably further satisfies condition iv below.
(Condition iv)
Extrusion at a die temperature of 190° C. using the composition containing 1 part by mass of a chemical foaming agent per 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) A molded foam sheet is prepared, and the surface impact strength (in accordance with JIS K7211-2) of the sheet measured at a test temperature of 10° C. is 0.6 J or more.
 条件ivを満たすことにより、本実施形態の組成物を用いた成形体において低温下においても高い衝撃性が得られる。その結果、外部からの応力・変形によって破損することが低減でき、低温下での使用感を良好にできる。また、本実施形態の組成物を衣料に適用した場合、洗濯時の冷水下や寒冷地での使用時にも良好な柔軟性および耐久性が得られる。 By satisfying condition iv, a molded article using the composition of the present embodiment can have high impact resistance even at low temperatures. As a result, it is possible to reduce breakage due to stress and deformation from the outside, and to improve usability at low temperatures. In addition, when the composition of the present embodiment is applied to clothing, good flexibility and durability can be obtained even when the clothing is washed under cold water or when used in cold climates.
 また、条件ivにおいてシートの面衝撃強度は、好ましくは0.7J以上である。一方、シートの面衝撃強度の上限値は特に限定されないが、他の性能とのバランスを保持する観点から、好ましくは10J以下であり、より好ましくは8J以下である。 In addition, in condition iv, the surface impact strength of the sheet is preferably 0.7 J or more. On the other hand, the upper limit of the surface impact strength of the sheet is not particularly limited, but is preferably 10 J or less, more preferably 8 J or less, from the viewpoint of maintaining a balance with other performances.
 本実施形態の組成物は、さらに以下の条件vを満たすことが好ましい。
(条件v)
前記4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の合計量100質量部に対して化学発泡剤1質量部を含む前記組成物を用いてダイス温度190℃で押出成形した発泡性シートを準備し、当該シートを幅25mm×長さ100mmに打ち抜き、試験片dとする。試験片dに対し、引張試験機(万能引張試験機3380、インストロン社製)を用いて、23℃、40℃の2つの温度条件でチャック間距離30mm、及び引張速度300mm/min、試験片dをTD方向に50%伸長させ、それぞれの温度条件での伸長直後の引張荷重[N/25mm]と60秒後の引張荷重[N/25mm]をそれぞれ測定する。初期荷重残存率[%]として{(60秒後の引張荷重[N/25mm])÷(伸長直後の引張荷重[N/25mm])}×100[%]を算出したとき、23℃の初期荷重残存率が15~60%であり、40℃の初期荷重残存率が50~80%である。
The composition of the present embodiment preferably further satisfies condition v below.
(Condition v)
Extrusion at a die temperature of 190° C. using the composition containing 1 part by mass of a chemical foaming agent per 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) A molded foam sheet is prepared, and the sheet is punched into a width of 25 mm and a length of 100 mm to obtain a test piece d. Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece d was subjected to two temperature conditions of 23 ° C. and 40 ° C. with a distance between chucks of 30 mm and a tensile speed of 300 mm / min. d is stretched by 50% in the TD direction, and the tensile load [N/25 mm] immediately after stretching and the tensile load [N/25 mm] after 60 seconds under each temperature condition are measured. {(Tensile load after 60 seconds [N / 25 mm]) ÷ (Tensile load immediately after elongation [N / 25 mm])} × 100 [%] as the initial load residual rate [%], the initial load at 23 ° C. The load retention rate is 15-60%, and the initial load retention rate at 40° C. is 50-80%.
 本実施形態の組成物は、条件vにおいて、23℃の初期荷重残存率が15~60%であることで、室温で変形後でも緩やかに元の形状に戻り程よく締め付け感が発揮され、40℃の初期荷重残存率が50~80%であることで、人肌に温められた後に適度な初期荷重残存率を持つことから張力がかかっても締め付け感を生じにくくなり、いずれの温度条件においてもフィット性に優れる点で好ましい。 The composition of the present embodiment has an initial load residual rate of 15 to 60% at 23 ° C. under condition v, so that even after deformation at room temperature, it returns to its original shape and exhibits a moderate tightening feeling. With an initial load residual rate of 50 to 80%, it has a moderate initial load residual rate after being warmed by human skin, so even if tension is applied, it is difficult to create a feeling of tightening. It is preferable in terms of excellent fit.
 かかる条件i~vは、より一層良好なフィット性を得つつ、低温での良好な使用感をより安定的に得られる組成物を得る観点から、本件発明者が新たに考案した指標である。すなわち、フィット性および低温での使用感という作用効果は、従来の組成物にはない新たな作用効果であり、既存の測定方法による指標では十分なフィット性および低温での使用感が得られない場合があった。これに対し、本実施形態の組成物においては、条件i~vを満たすことによって、より一層良好なフィット性を得つつ、低温での良好な使用感をより安定的に得ることができる。 These conditions i to v are indicators newly devised by the present inventor from the viewpoint of obtaining a composition that more stably provides a good feel in use at low temperatures while obtaining a better fit. That is, the effects of fit and feeling in use at low temperatures are new effects not found in conventional compositions, and indices based on existing measurement methods do not provide sufficient fit and feel in use at low temperatures. there was a case. On the other hand, in the composition of the present embodiment, by satisfying the conditions iv, it is possible to obtain a better fit and a more stable feeling of use at low temperatures.
 上記のような特性、各条件を満たす本実施形態の組成物は、例えば、組成物の材料を公知の方法を組み合わせることによって実現することができる。具体的には、4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の各メルトフローレート(g/10分)の差に着目して、スチレン系エラストマー(b)を選択したり、4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の比率を調整すること等が挙げられる。ただし、本実施形態の組成物は、かかる材料や製造方法に限定されるものではない。 The composition of the present embodiment that satisfies the properties and conditions described above can be realized, for example, by combining the materials of the composition by a known method. Specifically, focusing on the difference in melt flow rate (g/10 min) between the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b), the styrene elastomer (b) and adjusting the ratio of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b). However, the composition of this embodiment is not limited to such materials and production methods.
 以下、本実施形態の組成物に含まれる各成分について詳述する。 Each component contained in the composition of the present embodiment will be described in detail below.
[4-メチル-1-ペンテン系重合体(a)]
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)は、4-メチル-1-ペンテン由来の構成単位を有する重合体である。
[4-methyl-1-pentene polymer (a)]
The 4-methyl-1-pentene-based polymer (a) according to the present embodiment is a polymer having structural units derived from 4-methyl-1-pentene.
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)としては、例えば、4-メチル-1-ペンテン由来の構成単位(c1)と、4-メチル-1-ペンテン以外の炭素原子数2~20のα-オレフィン由来の構成単位(c2)とを含む4-メチル-1-ペンテン・α-オレフィン共重合体(c)が挙げられる。
 ここで、本実施形態において、「炭素原子数2~20のα-オレフィン」は特に断らない限り4-メチル-1-ペンテンを含まないことを意味する。
The 4-methyl-1-pentene-based polymer (a) according to the present embodiment includes, for example, a structural unit (c1) derived from 4-methyl-1-pentene and carbon atoms other than 4-methyl-1-pentene and a 4-methyl-1-pentene/α-olefin copolymer (c) containing a structural unit (c2) derived from an α-olefin of number 2 to 20.
Here, in the present embodiment, "α-olefin having 2 to 20 carbon atoms" means not containing 4-methyl-1-pentene unless otherwise specified.
 本実施形態に係る4-メチル-1-ペンテン・α-オレフィン共重合体(c)は、組成物の柔軟性および成形性等をより向上させる観点から、構成単位(c1)と構成単位(c2)との合計を100モル%としたとき、構成単位(c1)の含有量が10モル%以上90モル%以下であり、構成単位(c2)の含有量が10モル%以上90モル%以下であることが好ましい。
 また、本実施形態に係る4-メチル-1-ペンテン・α-オレフィン共重合体(c)は、組成物の柔軟性や機械的特性等をより良好にする観点から、構成単位(c1)と構成単位(c2)との合計を100モル%としたとき、以下の順でより好ましい。
構成単位(c1)の含有量が30モル%以上95モル%以下であり、構成単位(c2)の含有量が5モル%以上70モル%以下であること、
構成単位(c1)の含有量が30モル%以上93モル%以下であり、構成単位(c2)の含有量が7モル%以上70モル%以下であること、
構成単位(c1)の含有量が30モル%以上90モル%以下であり、構成単位(c2)の含有量が10モル%以上70モル%以下であること、
構成単位(c1)の含有量が50モル%以上90モル%以下であり、構成単位(c2)の含有量が10モル%以上50モル%以下であること、
構成単位(c1)の含有量が60モル%以上90モル%以下であり、構成単位(c2)の含有量が10モル%以上40モル%以下であること、
構成単位(c1)の含有量が65モル%以上90モル%以下であり、構成単位(c2)の含有量が10モル%以上35モル%以下であること、
構成単位(c1)の含有量が65モル%以上85モル%以下であり、構成単位(c2)の含有量が15モル%以上35モル%以下であること、および
構成単位(c1)の含有量が65モル%以上80モル%以下であり、構成単位(c2)の含有量が20モル%以上35モル%以下であること、の順でより好ましい。
From the viewpoint of further improving the flexibility and moldability of the composition, the 4-methyl-1-pentene/α-olefin copolymer (c) according to the present embodiment has the structural unit (c1) and the structural unit (c2). ) is 100 mol%, the content of the structural unit (c1) is 10 mol% or more and 90 mol% or less, and the content of the structural unit (c2) is 10 mol% or more and 90 mol% or less. Preferably.
In addition, the 4-methyl-1-pentene/α-olefin copolymer (c) according to the present embodiment contains the structural unit (c1) and When the total with the structural unit (c2) is 100 mol%, the following order is more preferable.
The content of the structural unit (c1) is 30 mol% or more and 95 mol% or less, and the content of the structural unit (c2) is 5 mol% or more and 70 mol% or less;
The content of the structural unit (c1) is 30 mol% or more and 93 mol% or less, and the content of the structural unit (c2) is 7 mol% or more and 70 mol% or less;
The content of the structural unit (c1) is 30 mol% or more and 90 mol% or less, and the content of the structural unit (c2) is 10 mol% or more and 70 mol% or less;
The content of the structural unit (c1) is 50 mol% or more and 90 mol% or less, and the content of the structural unit (c2) is 10 mol% or more and 50 mol% or less;
The content of the structural unit (c1) is 60 mol% or more and 90 mol% or less, and the content of the structural unit (c2) is 10 mol% or more and 40 mol% or less;
The content of the structural unit (c1) is 65 mol% or more and 90 mol% or less, and the content of the structural unit (c2) is 10 mol% or more and 35 mol% or less;
The content of the structural unit (c1) is 65 mol% or more and 85 mol% or less, the content of the structural unit (c2) is 15 mol% or more and 35 mol% or less, and the content of the structural unit (c1) is 65 mol % or more and 80 mol % or less, and the content of the structural unit (c2) is 20 mol % or more and 35 mol % or less.
 本実施形態において、4-メチル-1-ペンテン・α-オレフィン共重合体(c)に用いられる炭素原子数2~20のα-オレフィンとしては、例えば、直鎖状又は分岐状のα-オレフィン、環状オレフィン、芳香族ビニル化合物、共役ジエン、官能基化ビニル化合物等が挙げられ、直鎖状のα-オレフィンが好ましい。 In the present embodiment, the α-olefin having 2 to 20 carbon atoms used in the 4-methyl-1-pentene/α-olefin copolymer (c) includes, for example, a linear or branched α-olefin , cyclic olefins, aromatic vinyl compounds, conjugated dienes, functionalized vinyl compounds, etc., and linear α-olefins are preferred.
 直鎖状α-オレフィンの炭素原子数は、好ましくは2~10であり、より好ましくは2~3である。直鎖状α-オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン等が挙げられ、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、および1-デセンから選択される一種または二種以上が好ましく、エチレンおよびプロピレンから選択される少なくとも一種がより好ましい。
 分岐状のα-オレフィンの炭素原子数は、好ましくは5~20であり、より好ましくは5~15である。分岐状のα-オレフィンとしては、例えば、3-メチル-1-ブテン、3-メチル-1-ペンテン、および3-エチル-1-ペンテン等が挙げられる。
 環状オレフィンの炭素原子数は、好ましくは5~15である。環状オレフィンとしては、例えば、シクロペンテン、シクロヘキセン、シクロへプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、およびビニルシクロヘキサン等が挙げられる。
The linear α-olefin preferably has 2 to 10 carbon atoms, more preferably 2 to 3 carbon atoms. Linear α-olefins include, for example, ethylene, propylene, 1-butene, 1-pentene, etc., and ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and 1- One or more selected from decene is preferred, and at least one selected from ethylene and propylene is more preferred.
The number of carbon atoms in the branched α-olefin is preferably 5-20, more preferably 5-15. Branched α-olefins include, for example, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene and the like.
The number of carbon atoms in the cyclic olefin is preferably 5-15. Cyclic olefins include, for example, cyclopentene, cyclohexene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, vinylcyclohexane, and the like.
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン等のモノ又はポリアルキルスチレン等が挙げられる。
 共役ジエンの炭素原子数は、好ましくは4~20、より好ましくは4~10である。共役ジエンとしては、例えば、1,3-ブタジエン、イソプレン、クロロプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、および1,3-オクタジエン等が挙げられる。
Examples of aromatic vinyl compounds include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, p- Examples include mono- or polyalkylstyrenes such as ethylstyrene.
The number of carbon atoms in the conjugated diene is preferably 4-20, more preferably 4-10. Conjugated dienes include, for example, 1,3-butadiene, isoprene, chloroprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, and 1,3- - Octadiene and the like.
 官能基化ビニル化合物としては、例えば、水酸基含有オレフィン、ハロゲン化オレフィン、(メタ)アクリル酸、プロピオン酸、3-ブテン酸、4-ペンテン酸、5-ヘキセン酸、6-ヘプテン酸、7-オクテン酸、8-ノネン酸、9-デセン酸、10-ウンデセン酸等の不飽和カルボン酸およびその酸無水物や酸ハライド、アリルアミン、5-ヘキセンアミン、6-ヘプテンアミン等の不飽和アミン、(2,7-オクタジエニル)コハク酸無水物、ペンタプロペニルコハク酸無水物、不飽和エポキシ化合物、エチレン性不飽和シラン化合物等が挙げられる。
 上記水酸基含有オレフィンとしては、例えば、炭素原子数2~20であり、好ましくは2~15の直鎖状又は分岐状の末端水酸基化α-オレフィン等が挙げられる。
 上記ハロゲン化オレフィンとしては、例えば、炭素原子数が2~20であり、好ましくは2~15の直鎖状又は分岐状のハロゲン化α-オレフィン等が挙げられる。
Examples of functionalized vinyl compounds include hydroxyl group-containing olefins, halogenated olefins, (meth)acrylic acid, propionic acid, 3-butenoic acid, 4-pentenoic acid, 5-hexenoic acid, 6-heptenoic acid, and 7-octene. Acids, unsaturated carboxylic acids such as 8-nonenoic acid, 9-decenoic acid and 10-undecenoic acid and their acid anhydrides and acid halides, unsaturated amines such as allylamine, 5-hexeneamine and 6-heptenamine, (2, 7-octadienyl)succinic anhydride, pentapropenyl succinic anhydride, unsaturated epoxy compounds, ethylenically unsaturated silane compounds, and the like.
Examples of the hydroxyl group-containing olefins include linear or branched α-olefins having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, and hydroxyl-terminated α-olefins.
Examples of the halogenated olefin include linear or branched halogenated α-olefins having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms.
 これらの炭素原子数2~20のα-オレフィンは、単独で又は2種以上を組み合わせて用いることができる。上記の中でもエチレン、プロピレンが好適であるが、プロピレンを使用すると、柔軟性等をより良好にできる点で特に好ましい。 These α-olefins having 2 to 20 carbon atoms can be used alone or in combination of two or more. Among the above, ethylene and propylene are preferable, and propylene is particularly preferable because it can improve flexibility and the like.
 なお、4-メチル-1-ペンテン・α-オレフィン共重合体(c)は、本発明の目的を損なわない範囲で、構成単位(c1)と構成単位(c2)以外の構成単位を含んでいてもよい。その他の構成としては、非共役ポリエン由来の構成単位が挙げられる。
 非共役ポリエンとしては、炭素原子数が好ましくは5~20、より好ましくは5~10の直鎖状、分岐状又は環状のジエン、各種のノルボルネン、ノルボルナジエン等が挙げられる。これらの中でも、5-ビニリデン-2-ノルボルネン、および5-エチリデン-2-ノルボルネンが好ましい。
The 4-methyl-1-pentene/α-olefin copolymer (c) contains structural units other than the structural unit (c1) and the structural unit (c2) within a range that does not impair the object of the present invention. good too. Other configurations include structural units derived from non-conjugated polyenes.
Non-conjugated polyenes include linear, branched or cyclic dienes having preferably 5 to 20 carbon atoms, more preferably 5 to 10 carbon atoms, various norbornenes, norbornadiene, and the like. Among these, 5-vinylidene-2-norbornene and 5-ethylidene-2-norbornene are preferred.
 本実施形態において、4-メチル-1-ペンテン系重合体(a)は、昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる、損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上100℃以下の範囲に1つ以上あり、かつ、上記損失正接の極大値が0.5以上3.5以下であることが好ましい。 In the present embodiment, the 4-methyl-1-pentene polymer (a) is determined by dynamic viscoelasticity measurement under the conditions of a temperature increase rate of 4° C./min, a frequency of 1.59 Hz, and a strain amount of 0.1%. At least one temperature showing the maximum value of loss tangent (tan δ) is in the range of 10 ° C. or more and 100 ° C. or less, and the maximum value of the loss tangent is 0.5 or more and 3.5 or less. preferable.
 なお、動的粘弾性測定は、例えば、4-メチル-1-ペンテン系重合体(a)を用いて縦30mm×幅10mmの試験片を作成し、周波数1.59Hz、昇温速度4℃/分、測定温度範囲0℃~110℃、歪量0.1%、チャック間距離20mm、捻りモードの条件で、レオメータを用いて行うことができる。 In the dynamic viscoelasticity measurement, for example, a 4-methyl-1-pentene polymer (a) is used to prepare a test piece of 30 mm long x 10 mm wide, and the frequency is 1.59 Hz and the temperature rise rate is 4 ° C./ Minutes, measurement temperature range of 0° C. to 110° C., amount of strain of 0.1%, distance between chucks of 20 mm, and torsion mode, using a rheometer.
 本発明者らは、特定の損失正接(tanδ)の極大値、当該極大値を示す特定の温度範囲を有する4-メチル-1-ペンテン系重合体(a)を、後述のスチレン系エラストマー(b)とともに用いることで、正接損失の極大値を示す温度を低温側にシフトすることができ、より安定的に低温での伸びを向上できることを見出した。 The present inventors prepared a 4-methyl-1-pentene-based polymer (a) having a specific maximum value of loss tangent (tan δ) and a specific temperature range showing the maximum value, and a styrene-based elastomer (b ), the temperature at which the tangent loss is maximized can be shifted to the low temperature side, and the elongation at low temperatures can be improved more stably.
 かかる理由の詳細は明らかではないが、以下のように考えられる。
 まず、4-メチル-1-ペンテン系重合体(a)において、かかる損失正接の極大値を10℃以上100℃以下の範囲とすることで、かかる温度範囲において、変形する際に与えられる力学的エネルギーの多くを熱エネルギーに変換でき、エネルギーを多く吸収できるため、変形後の復元速度が緩やかになると考えられる。その結果、4-メチル-1-ペンテン系重合体(a)が有する柔軟性を維持しながら、変形に良好に追従できると考えられる。
 また、周波数1.59Hzという比較的低周波数領域での損失正接(tanδ)を制御することによって、時間をかけてかかる力(遅い力ともいう)に対する追従性が得られることを意図する。
 そこで、本発明者らは、かかる特定を有する4-メチル-1-ペンテン系重合体(a)に新たに特定のスチレン系エラストマー(b)を組み合わせることで、4-メチル-1-ペンテン系重合体(a)の損失正接(tanδ)の極大値を示す温度(Tg)を効果的に低温側にシフトさせることができるとともに、得られる組成物において、応力緩和性を得つつ、低温での引張伸びを向上でき、また、低温衝撃性、耐熱性も得られることを見出した。
Although the details of this reason are not clear, it is considered as follows.
First, in the 4-methyl-1-pentene-based polymer (a), by setting the maximum value of the loss tangent in the range of 10 ° C. or more and 100 ° C. or less, in this temperature range, the dynamics given when deforming Most of the energy can be converted into thermal energy, and much of the energy can be absorbed, so it is thought that the restoration speed after deformation becomes slow. As a result, it is considered that the 4-methyl-1-pentene polymer (a) can well follow deformation while maintaining the flexibility of the 4-methyl-1-pentene polymer (a).
Also, by controlling the loss tangent (tan δ) in a relatively low frequency region of 1.59 Hz, it is intended to obtain followability to a force that takes time (also referred to as a slow force).
Therefore, the present inventors combined a 4-methyl-1-pentene-based polymer (a) having such a specific property with a new specific styrene-based elastomer (b) to obtain a 4-methyl-1-pentene-based polymer. The temperature (Tg) at which the loss tangent (tan δ) of coalescence (a) exhibits a maximum value can be effectively shifted to the low temperature side, and the resulting composition can exhibit stress relaxation properties while maintaining tensile strength at low temperatures. It has been found that elongation can be improved, and low-temperature impact resistance and heat resistance can also be obtained.
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)の上記損失正接は、例えば、4-メチル-1-ペンテン系重合体(a)の種類や配合割合、架橋の有無、組成物の成形方法等を適切に調節することにより、上記範囲内に制御することが可能である。
 具体的には、例えば、組成物中の4-メチル-1-ペンテン系重合体(a)の配合割合を高めること、4-メチル-1-ペンテン系重合体(a)に対し架橋処理をおこなわないこと等が挙げられる。
The loss tangent of the 4-methyl-1-pentene-based polymer (a) according to the present embodiment is, for example, the type and blending ratio of the 4-methyl-1-pentene-based polymer (a), the presence or absence of crosslinking, the composition It is possible to control within the above range by appropriately adjusting the molding method of the object.
Specifically, for example, by increasing the blending ratio of the 4-methyl-1-pentene polymer (a) in the composition, and by subjecting the 4-methyl-1-pentene polymer (a) to cross-linking treatment. and the like.
 本実施形態において、4-メチル-1-ペンテン系重合体(a)は、柔軟性、追従性、応力緩和性を得る観点から、未架橋であることが好ましい。すなわち、本実施形態に係る4-メチル-1-ペンテン系重合体(a)は、例えば、電子線やγ線を用いた電離性放射架橋等の架橋処理がなされていない未架橋であることが好ましい。これにより10℃以上100℃以下の範囲における損失正接の極大値を向上させることができ、応力緩和性と低温引張伸び性のバランスにより一層優れる4-メチル-1-ペンテン系重合体(a)を得ることができる。 In the present embodiment, the 4-methyl-1-pentene polymer (a) is preferably uncrosslinked from the viewpoint of obtaining flexibility, conformability, and stress relaxation. That is, the 4-methyl-1-pentene polymer (a) according to the present embodiment is, for example, uncrosslinked without undergoing crosslinking treatment such as ionizing radiation crosslinking using electron beams or γ rays. preferable. As a result, the maximum value of the loss tangent in the range of 10 ° C. or higher and 100 ° C. or lower can be improved, and the 4-methyl-1-pentene polymer (a) which is more excellent in the balance of stress relaxation and low-temperature tensile elongation is obtained. Obtainable.
 本実施形態において、4-メチル-1-ペンテン系重合体(a)は、動的粘弾性の損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上40℃以下の範囲に1つ以上あり、かつ、前記損失正接の極大値が0.8以上3.0以下であることが好ましい。
 これにより、低温での引張伸び、低温衝撃性といった低温特性を向上しやすくなる。
In the present embodiment, the 4-methyl-1-pentene polymer (a) has at least one temperature in the range of at least 10° C. or higher and 40° C. or lower at which the dynamic viscoelasticity loss tangent (tan δ) exhibits the maximum value. and the maximum value of the loss tangent is preferably 0.8 or more and 3.0 or less.
This makes it easier to improve low-temperature properties such as tensile elongation at low temperatures and low-temperature impact resistance.
 また、本実施形態において、4-メチル-1-ペンテン系重合体(a)の上記損失正接の極大値は0.8以上であることが好ましく、1.0以上であることがより好ましく、1.2以上であることがさらに好ましい。そして本実施形態において、上記損失正接の極大値は3.0以下であることが好ましく、2.8以下であることがより好ましい。
 これにより、本実施形態の組成物の応力緩和性、および低温での伸び性の性能バランスをより良好にすることができる。
 ここで、損失正接の極大値が大きいほど、組成物の粘性的な性質が強いことを意味する。粘性的な性質が強い組成物は、変形する際に与えられる力学的エネルギーのより多くを熱エネルギーに変換でき、エネルギーをより多く吸収できるため、変形後の復元速度がより一層緩やかになると考えられる。その結果、組成物が有する柔軟性を維持しながら、変形後の形状をより一層良好に保持できたり、変形により一層良好に追従できると考えられる。
Further, in the present embodiment, the maximum value of the loss tangent of the 4-methyl-1-pentene polymer (a) is preferably 0.8 or more, more preferably 1.0 or more, and 1 .2 or more is more preferable. In this embodiment, the maximum value of the loss tangent is preferably 3.0 or less, more preferably 2.8 or less.
Thereby, the stress relaxation property of the composition of the present embodiment and the performance balance of elongation at low temperature can be improved.
Here, the larger the maximum value of the loss tangent, the stronger the viscous properties of the composition. Compositions with strong viscous properties can convert more of the mechanical energy given during deformation into thermal energy, and can absorb more energy, so it is thought that the recovery speed after deformation becomes much slower. . As a result, it is thought that the shape after deformation can be better maintained and that the composition can follow the deformation better while maintaining the flexibility of the composition.
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)のメルトフローレートは、好ましくは0.1~100(g/10分)、より好ましくは1~70(g/10分)、さらに好ましくは2~20(g/10分)であり、ことさらに好ましくは3~15(g/10分)である。 The melt flow rate of the 4-methyl-1-pentene polymer (a) according to the present embodiment is preferably 0.1 to 100 (g/10 minutes), more preferably 1 to 70 (g/10 minutes). , more preferably 2 to 20 (g/10 min), and even more preferably 3 to 15 (g/10 min).
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)の135℃のデカリン中での極限粘度[η]は、組成物による柔軟性や機械的強度をより良好にする観点から、0.01~5.0dL/gであることが好ましく、0.1~4.0dL/gであることがより好ましく、0.5~3.0dL/gであることがさらに好ましく、1.0~2.8dL/gであることが特に好ましい。 The intrinsic viscosity [η] of the 4-methyl-1-pentene polymer (a) according to the present embodiment in decalin at 135° C. is, from the viewpoint of improving the flexibility and mechanical strength of the composition, It is preferably 0.01 to 5.0 dL/g, more preferably 0.1 to 4.0 dL/g, even more preferably 0.5 to 3.0 dL/g, and 1.0 ~2.8 dL/g is particularly preferred.
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)のASTM D 1505(水中置換法)に従って測定された密度は、好ましくは0.810~0.850g/cm、より好ましくは0.820~0.850g/cm、さらに好ましくは0.830~0.850g/cmである。 The density of the 4-methyl-1-pentene polymer (a) according to the present embodiment measured according to ASTM D 1505 (water substitution method) is preferably 0.810 to 0.850 g/cm 3 , more preferably 0.820 to 0.850 g/cm 3 , more preferably 0.830 to 0.850 g/cm 3 .
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)は種々の方法により製造することができる。例えば、マグネシウム担持型チタン触媒;国際公開第01/53369号、国際公開第01/027124号、特開平3-193796号公報、および特開平02-41303号公報等に記載のメタロセン触媒;国際公開第2011/055803号に記載されるメタロセン化合物を含有するオレフィン重合触媒等の公知の触媒を用いて製造することができる。 The 4-methyl-1-pentene polymer (a) according to this embodiment can be produced by various methods. For example, magnesium-supported titanium catalysts; metallocene catalysts described in WO 01/53369, WO 01/027124, JP-A-3-193796, and JP-A-02-41303; It can be produced using a known catalyst such as an olefin polymerization catalyst containing a metallocene compound described in 2011/055803.
 本実施形態に係る組成物中の4-メチル-1-ペンテン系重合体(a)の含有量は特に限定されないが、組成物の全体を100質量%としたとき、好ましくは20質量%以上、より好ましくは30質量%以上であり、さらに好ましくは40質量部以上であり、一方、好ましくは90質量%以下、より好ましくは80質量%以下、さらに好ましくは75質量%以下である。
 これにより、フィット性を高めるとともに、低温での使用感を良好にできる。また、柔軟性、形状追従性、軽量性、機械的特性、成形性のバランスを良好にしやすくなる。
The content of the 4-methyl-1-pentene polymer (a) in the composition according to the present embodiment is not particularly limited, but when the total composition is 100% by mass, preferably 20% by mass or more, More preferably 30% by mass or more, still more preferably 40% by mass or more, on the other hand, preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 75% by mass or less.
As a result, it is possible to enhance fit and improve the feeling of use at low temperatures. In addition, it becomes easy to improve the balance of flexibility, shape followability, lightness, mechanical properties, and moldability.
[スチレン系エラストマー(b)]
 本実施形態のスチレン系エラストマー(b)は、ポリスチレンブロックとジエンブロックとのブロック共重合体の水添物である。水添物は、ブロック共重合体を公知の方法により不活性溶媒中で水添触媒の存在下で行うことができる。
[Styrene-based elastomer (b)]
The styrene-based elastomer (b) of the present embodiment is a hydrogenated block copolymer of a polystyrene block and a diene block. A block copolymer can be hydrogenated by a known method in an inert solvent in the presence of a hydrogenation catalyst.
 ブロック共重合体の水素添加は、一部であっても、全部であってもよいが、水素添加により不飽和結合が減少し、柔軟性、耐熱性及び機械的特性等が得られやすくなる観点から、水素添加率は、共重合体ブロック中のオレフィン性二重結合の50%以上が水添されていることが好ましく、80%以上が水添されていることがより好ましい。 The hydrogenation of the block copolymer may be partially or wholly, but the hydrogenation reduces the unsaturated bonds and makes it easier to obtain flexibility, heat resistance, mechanical properties, etc. Therefore, the degree of hydrogenation is such that 50% or more of the olefinic double bonds in the copolymer block are hydrogenated, preferably 80% or more.
 スチレン系エラストマー(b)全量に対する前記ポリスチレンブロックの含有量(スチレン含有量)は、0.0質量%よりも大きく50質量%以下であり、5質量%以上50質量%以下であることが好ましく、30質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。
 一方、後述の流動点がマイナス10℃以下の飽和炭化水素化合物(d)を含む場合は、スチレン系エラストマー(b)全量に対する前記ポリスチレンブロックの含有量が25質量%を超えて50質量%以下であり、かつ、当該飽和炭化水素化合物(d)を、4-メチル-1-ペンテン系重合体(a)およびスチレン系エラストマー(b)の合計量100重量部に対して、0.1~20重量部含むことが好ましい。さらに、飽和炭化水素化合物(d)を含む場合は、スチレン系エラストマー(b)全量に対する前記ポリスチレンブロックの含有量が30質量%以上40質量%以下であり、かつ、当該飽和炭化水素化合物(d)を、4-メチル-1-ペンテン系重合体(a)およびスチレン系エラストマー(b)の合計量100重量部に対して1~15重量部含むことがより好ましい。
The content of the polystyrene block (styrene content) relative to the total amount of the styrene elastomer (b) is greater than 0.0% by mass and 50% by mass or less, preferably 5% by mass or more and 50% by mass or less, It is more preferably 30% by mass or less, and even more preferably 15% by mass or less.
On the other hand, when the below-described saturated hydrocarbon compound (d) having a pour point of -10°C or less is included, the content of the polystyrene block with respect to the total amount of the styrene elastomer (b) is more than 25% by mass and 50% by mass or less. and 0.1 to 20 parts by weight of the saturated hydrocarbon compound (d) with respect to 100 parts by weight of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) It is preferable to include Furthermore, when the saturated hydrocarbon compound (d) is included, the content of the polystyrene block with respect to the total amount of the styrene elastomer (b) is 30% by mass or more and 40% by mass or less, and the saturated hydrocarbon compound (d) is more preferably contained in an amount of 1 to 15 parts by weight per 100 parts by weight of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b).
 スチレン系エラストマー(b)は、水添スチレン・ブタジエンゴム、水添スチレン・ブタジエンブロック共重合体(SEBS)、水添スチレン・イソプレンブロック共重合体(SEPS)及び水添スチレン・イソプレン・ブタジエンブロック共重合体(SEEPS)の中から選ばれる1種または2種以上であることが好ましく、なかでも、耐熱性、低温引張伸び性を得る観点から、水添スチレン・ブタジエンブロック共重合体(SEBS)であることがより好ましい。また、ビニル結合が主体(1,2-ビニル結合が30~50%)の構造であり、いわゆる、ビニルSEBS、ビニルSEPS、ビニルSEEPSと呼ばれるものであってもよい。 The styrene elastomer (b) includes hydrogenated styrene/butadiene rubber, hydrogenated styrene/butadiene block copolymer (SEBS), hydrogenated styrene/isoprene block copolymer (SEPS) and hydrogenated styrene/isoprene/butadiene block copolymer. It is preferably one or more selected from polymers (SEEPS), and among them, from the viewpoint of obtaining heat resistance and low-temperature tensile elongation, hydrogenated styrene-butadiene block copolymer (SEBS) It is more preferable to have Also, it may have a structure mainly composed of vinyl bonds (30 to 50% of 1,2-vinyl bonds), and may be so-called vinyl SEBS, vinyl SEPS, or vinyl SEEPS.
 スチレン系エラストマー(b)のショアA硬度(JIS K6253)は、10~100であることが好ましく、20~90であることがより好ましく、30~80であることがさらに好ましい。 The Shore A hardness (JIS K6253) of the styrene elastomer (b) is preferably 10-100, more preferably 20-90, even more preferably 30-80.
 スチレン系エラストマー(b)の重量平均分子量は、1万~45万であることが好ましく、3万~35万であることがより好ましく、4万~30万であることがさらに好ましい。
 重量平均分子量は、ゲル浸透クロマトグラフィーにより測定したポリスチレン換算の重量平均分子量である。
The weight average molecular weight of the styrene-based elastomer (b) is preferably 10,000 to 450,000, more preferably 30,000 to 350,000, even more preferably 40,000 to 300,000.
The weight average molecular weight is the polystyrene equivalent weight average molecular weight measured by gel permeation chromatography.
 本実施形態のスチレン系エラストマー(b)のメルトフローレートは、好ましくは0.1~20(g/10分)、より好ましくは0.5~15(g/10分)、さらに好ましくは1~10(g/10分)である。 The melt flow rate of the styrene-based elastomer (b) of the present embodiment is preferably 0.1 to 20 (g/10 min), more preferably 0.5 to 15 (g/10 min), still more preferably 1 to 10 (g/10 minutes).
 本実施形態のスチレン系エラストマー(b)としては、クレイトンポリマー社製「クレイトン(登録商標)G」、クラレ社製「ハイブラー(登録商標)」、「セプトン(登録商標)」、旭化成社製「タフテック(登録商標)」、「SOE(登録商標)」、JRS社製「ダイナロン(登録商標)」等の市販品を用いてもよい。 Examples of the styrene-based elastomer (b) of the present embodiment include "Clayton (registered trademark) G" manufactured by Kraton Polymer Co., Ltd., "Hibler (registered trademark)" and "Septon (registered trademark)" manufactured by Kuraray Co., Ltd., and "Tuftec" manufactured by Asahi Kasei Corporation. (registered trademark)”, “SOE (registered trademark)”, and “DYNARON (registered trademark)” manufactured by JRS may be used.
 また、本実施形態の組成物において、4-メチル-1-ペンテン系重合体(a)及びスチレン系エラストマー(b)の各メルトフローレート(g/10分)の差の絶対値が10以下であることが好ましく、9であることがより好ましく、8であることがさらに好ましい。 Further, in the composition of the present embodiment, the absolute value of the difference in melt flow rate (g/10 min) between the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) is 10 or less. One is preferred, nine is more preferred, and eight is even more preferred.
 本実施形態において、4-メチル-1-ペンテン系重合体(a)100質量部に対するスチレン系エラストマー(b)の含有量が5質量部以上500質量部以下であり、好ましくは10~400質量部であり、より好ましくは20~300質量部であり、さらに好ましくは40~200質量部である。
 スチレン系エラストマー(b)の含有量を上記下限値以上とすることにより、応力緩和性を保持しつつ、低温での引張伸び性を向上できる。一方、スチレン系エラストマー(b)の含有量を上記上限値以下とすることにより、低温での引張伸び性を保持しつつ、応力緩和性、柔軟性を良好にできる。
In the present embodiment, the content of the styrene elastomer (b) with respect to 100 parts by mass of the 4-methyl-1-pentene polymer (a) is 5 parts by mass or more and 500 parts by mass or less, preferably 10 to 400 parts by mass. , more preferably 20 to 300 parts by mass, still more preferably 40 to 200 parts by mass.
By setting the content of the styrene-based elastomer (b) to the above lower limit or more, it is possible to improve the tensile elongation at low temperatures while maintaining the stress relaxation properties. On the other hand, by setting the content of the styrene-based elastomer (b) to the above upper limit or less, good stress relaxation properties and flexibility can be achieved while maintaining tensile elongation at low temperatures.
[その他成分]
 本実施形態に係る組成物は、4-メチル-1-ペンテン系重合体(a)、スチレン系エラストマー(b)以外の成分を含んでもよい。
[Other ingredients]
The composition according to this embodiment may contain components other than the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b).
[飽和炭化水素化合物(d)]
 本実施形態の組成物は、さらに流動点がマイナス10℃以下の飽和炭化水素化合物(d)を含んでもよい。これにより、低温での引張伸び性を一層向上しやすくなる。
 また、かかる流動点は、好ましくはマイナス11℃以下であり、より好ましくはマイナス12℃以下である。流動点を上限値以下とすることにより、低温での追従性・柔軟性がより得られやすくなり、良好な引張伸び性が得られる。
 当該流動点は、JIS K2269に従って測定される。
[Saturated hydrocarbon compound (d)]
The composition of the present embodiment may further contain a saturated hydrocarbon compound (d) having a pour point of -10°C or lower. This makes it easier to further improve the tensile elongation at low temperatures.
Also, the pour point is preferably -11°C or lower, more preferably -12°C or lower. By setting the pour point to the upper limit or less, it becomes easier to obtain conformability and flexibility at low temperatures, and good tensile elongation can be obtained.
The pour point is measured according to JIS K2269.
 飽和炭化水素化合物(d)としては、炭素数が20以上であることが好ましく、なかでも流動パラフィン等であることがより好ましい。 The saturated hydrocarbon compound (d) preferably has 20 or more carbon atoms, and more preferably liquid paraffin or the like.
 飽和炭化水素化合物(d)の含有量は、4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の合計量100質量部に対して、0.1~20質量部であり、好ましくは1~15質量部であり、より好ましくは2~12質量部である。 The content of the saturated hydrocarbon compound (d) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b). Yes, preferably 1 to 15 parts by mass, more preferably 2 to 12 parts by mass.
[改質樹脂(a2)]
 本実施形態に係る組成物は、外観や肌触り等をより良好にする観点から、改質樹脂(a2)(ただし、本実施形態に係る4-メチル-1-ペンテン系重合体(a)、およびスチレン系エラストマー(b)を除く)を含有してもよい。本実施形態に係る改質樹脂(a2)は、例えば、熱可塑性樹脂、熱可塑性エラストマーおよびゴムから選択される1種または2種以上が挙げられる。
[Modified resin (a2)]
From the viewpoint of improving the appearance and touch, the composition according to the present embodiment is a modified resin (a2) (however, the 4-methyl-1-pentene polymer (a) according to the present embodiment, and styrene-based elastomer (except for (b)) may be contained. The modified resin (a2) according to the present embodiment includes, for example, one or more selected from thermoplastic resins, thermoplastic elastomers and rubbers.
 上記の熱可塑性樹脂(ただし、本実施形態に係る4-メチル-1-ペンテン系重合体(a1)を除く)としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、高圧法低密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、ポリ3-メチル-1-ブテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、1-ブテン・α-オレフィン共重合体、環状オレフィン共重合体、塩素化ポリオレフィン等の熱可塑性ポリオレフィン樹脂;脂肪族ポリアミド(ナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン610、ナイロン612)、ポリエーテルブロックアミド共重合体等の熱可塑性ポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等の熱可塑性ポリエステル系樹脂;ポリスチレン、ABS樹脂、AS樹脂等の熱可塑性ビニル芳香族系樹脂;塩化ビニル樹脂;塩化ビニリデン樹脂;アクリル樹脂;エチレン・酢酸ビニル共重合体;エチレン・メタクリル酸アクリレート共重合体;アイオノマー;エチレン・ビニルアルコール共重合体;ポリビニルアルコール;ポリフッ化ビニル樹脂、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ETFE等のフッ素系樹脂;ポリカーボネート;ポリアセタール;ポリフェニレンオキシド;ポリフェニレンサルファイド;ポリイミド;ポリアリレート;ポリスルホン;ポリエーテルスルホン;ロジン系樹脂;テルペン系樹脂;石油樹脂等が挙げられる。
 ゴムとしては、例えば、エチレン・α-オレフィン・ジエン共重合体ゴム、プロピレン・α-オレフィン・ジエン共重合体ゴム等が挙げられる。
 さらに、熱可塑性エラストマーとしては、例えば、オレフィン系エラストマー、スチレン系エラストマー(上記スチレン系エラストマー(b)を除く)、酸変性スチレン系エラストマー、塩化ビニル系エラストマー、ウレタン系エラストマー、エステル系エラストマー、アミド系エラストマー等が挙げられる。
 また、これらの改質樹脂(a2)をアクリル酸やメタクリル酸、マレイン酸等により酸変性したものであってもよい。
 これらの改質樹脂(a2)は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the above thermoplastic resins (excluding the 4-methyl-1-pentene polymer (a1) according to the present embodiment) include, for example, low-density polyethylene, medium-density polyethylene, high-density polyethylene, high-pressure low-density Polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, poly-3-methyl-1-butene, ethylene/α-olefin copolymer, propylene/α-olefin copolymer, 1-butene/α - thermoplastic polyolefin resins such as olefin copolymers, cyclic olefin copolymers, chlorinated polyolefins; aliphatic polyamides (nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 612), polyether block amide co Thermoplastic polyamide resins such as polymers; Thermoplastic polyester resins such as polyethylene terephthalate and polybutylene terephthalate; Thermoplastic vinyl aromatic resins such as polystyrene, ABS resin, and AS resin; Vinyl chloride resin; Vinylidene chloride resin; Resin; ethylene/vinyl acetate copolymer; ethylene/methacrylic acid acrylate copolymer; ionomer; ethylene/vinyl alcohol copolymer; polyvinyl alcohol; fluorine such as polyvinyl fluoride resin, polytetrafluoroethylene, polyvinylidene fluoride, and ETFE polyacetal; polyphenylene oxide; polyphenylene sulfide; polyimide; polyarylate; polysulfone;
Examples of the rubber include ethylene/α-olefin/diene copolymer rubber and propylene/α-olefin/diene copolymer rubber.
Furthermore, thermoplastic elastomers include, for example, olefin-based elastomers, styrene-based elastomers (excluding the above styrene-based elastomer (b)), acid-modified styrene-based elastomers, vinyl chloride-based elastomers, urethane-based elastomers, ester-based elastomers, amide-based elastomers, Elastomers and the like can be mentioned.
Also, these modified resins (a2) may be acid-modified with acrylic acid, methacrylic acid, maleic acid, or the like.
These modified resins (a2) may be used singly or in combination of two or more.
 これらの改質樹脂(a2)の中でも、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、高圧法低密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、ポリ3-メチル-1-ブテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、1-ブテン・α-オレフィン共重合体から選択される一種または二種以上が好ましく、ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、1-ブテン・α-オレフィン共重合体、エチレン・酢酸ビニル共重合体、ポリエーテルブロックアミド、アイオノマー、フッ素系樹脂、酸変性フッ素系樹脂、ロジン系樹脂、テルペン系樹脂、および石油樹脂から選択される一種または二種以上で、添加により溶融張力を向上させるものがより好ましい。 Among these modified resins (a2), low-density polyethylene, medium-density polyethylene, high-density polyethylene, high-pressure low-density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, poly-3-methyl- One or two or more selected from 1-butene, ethylene/α-olefin copolymer, propylene/α-olefin copolymer, and 1-butene/α-olefin copolymer are preferred, and polyethylene, polypropylene, and poly(1) -butene, poly 4-methyl-1-pentene, ethylene/α-olefin copolymer, propylene/α-olefin copolymer, 1-butene/α-olefin copolymer, ethylene/vinyl acetate copolymer, poly One or two or more selected from ether block amides, ionomers, fluorine resins, acid-modified fluorine resins, rosin resins, terpene resins, and petroleum resins, and those that improve the melt tension by addition are more preferable.
 本実施形態に係る組成物は、これらの改質樹脂(a2)の中から1種単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 The composition according to the present embodiment can be used singly or in combination of two or more of these modified resins (a2).
 本実施形態に係る組成物中の改質樹脂(a2)の含有量は特に限定されないが、組成物全体を100質量%としたとき、好ましくは0.5質量%以上、より好ましくは1質量%以上、さらに好ましくは2質量%以上、さらにより好ましくは3質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは35質量%以下、さらにより好ましくは30質量%以下、特に好ましくは25質量%以下である。
 改質樹脂(a2)の含有量が上記下限値以上であると、本実施形態に係る組成物の外観や肌触り等をより良好にすることができる。改質樹脂(a2)の含有量が上記上限値以下であると、本実施形態に係る組成物の柔軟性等の性能バランスをより良好にすることができる。
The content of the modified resin (a2) in the composition according to the present embodiment is not particularly limited. above, more preferably 2% by mass or more, still more preferably 3% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 35% by mass or less, still more preferably 30% by mass % or less, particularly preferably 25 mass % or less.
When the content of the modified resin (a2) is at least the above lower limit, the composition according to the present embodiment can have better appearance, touch, and the like. When the content of the modified resin (a2) is equal to or less than the above upper limit value, it is possible to improve the performance balance of the composition according to the present embodiment, such as flexibility.
[その他の成分]
 本実施形態に係る組成物は、必要に応じて、発泡剤、耐熱安定剤、酸化防止剤、紫外線吸収剤、顔料、帯電防止剤、銅害防止剤、難燃剤、中和剤、可塑剤、造核剤、耐候安定剤、耐光安定剤、老化防止剤、脂肪酸金属塩、軟化剤、分散剤、着色剤、滑剤、天然油、合成油、ワックス等の添加剤を配合してもよい。これらの中でも、可塑剤、軟化剤、天然油および合成油は、本実施形態に係る組成物の固体粘弾性の損失正接(tanδ)の極大値を示す温度および損失正接の極大値を調整するために、種類および添加量を制御して用いてもよい。
[Other ingredients]
The composition according to the present embodiment optionally contains a foaming agent, a heat stabilizer, an antioxidant, an ultraviolet absorber, a pigment, an antistatic agent, a copper damage inhibitor, a flame retardant, a neutralizer, a plasticizer, Additives such as nucleating agents, weather stabilizers, light stabilizers, antioxidants, fatty acid metal salts, softeners, dispersants, colorants, lubricants, natural oils, synthetic oils and waxes may be added. Among these, plasticizers, softeners, natural oils and synthetic oils are used to adjust the temperature at which the solid viscoelasticity loss tangent (tan δ) of the composition according to the present embodiment reaches its maximum value and the loss tangent maximum value. In addition, the type and amount added may be controlled.
 上記の発泡剤としては、化学発泡剤、物理発泡剤が挙げられる。
 化学発泡剤としては、重炭酸ナトリウム、重炭酸アンモニウム、各種カルボン酸塩、水素化ホウ素ナトリウム、アゾジカルボアミド、N,N-ジニトロソペンタメチレンテトラミン、P,P-オキシビス(ベンゼンスルホニルヒドラジッド)、アゾビスイソブチロニトリル、パラトルエンスルホニルヒドラジッド、重曹クエン酸ナトリウム等が挙げられる。
 物理発泡剤としては、二酸化炭素、窒素、または二酸化炭素と窒素の混合物等が挙げられ、いずれもガス状、液状または超臨界状態のいずれでも供給することが可能である。
Examples of the foaming agent include chemical foaming agents and physical foaming agents.
Chemical foaming agents include sodium bicarbonate, ammonium bicarbonate, various carboxylates, sodium borohydride, azodicarbamide, N,N-dinitrosopentamethylenetetramine, P,P-oxybis(benzenesulfonylhydrazide). , azobisisobutyronitrile, p-toluenesulfonyl hydrazide, sodium bicarbonate sodium citrate, and the like.
Physical blowing agents include carbon dioxide, nitrogen, a mixture of carbon dioxide and nitrogen, and the like, all of which can be supplied in a gaseous, liquid, or supercritical state.
[形態]
 本実施形態の組成物は、気泡を含んだ発泡状態であってもよい。この場合、組成物の密度は、0.10~1.0g/cmであることが好ましく、0.5~0.9g/cmであることがより好ましく、0.7~0.8g/cmであることがより好ましい。
 本実施形態に係る組成物の形状は、特に限定されないが、シート状であってもよい。シート状である場合、厚みは、好ましくは0.1mm以上30mm以下の範囲であり、より好ましくは0.2mm以上20mm以下の範囲であり、さらに好ましくは0.3mm以上10mm以下の範囲である。当該厚みを、上記下限値以上とすることにより、低温引張伸び性、柔軟性、機械的特性、成形性、および低温衝撃性等の良好なバランスが得られる。一方、当該厚みを、上記上限値以下とすることにより、軽量性、外観、および取扱い性を良好にできる。
 また、本実施形態の組成物は、シート状に加工された発泡体であってもよい。
[form]
The composition of this embodiment may be in a foamed state containing air bubbles. In this case, the density of the composition is preferably 0.10 to 1.0 g/cm 3 , more preferably 0.5 to 0.9 g/cm 3 , and more preferably 0.7 to 0.8 g/cm 3 . cm 3 is more preferred.
Although the shape of the composition according to this embodiment is not particularly limited, it may be in the form of a sheet. In the case of a sheet, the thickness is preferably 0.1 mm or more and 30 mm or less, more preferably 0.2 mm or more and 20 mm or less, and still more preferably 0.3 mm or more and 10 mm or less. By setting the thickness to the above lower limit or more, a good balance of low-temperature tensile elongation, flexibility, mechanical properties, moldability, low-temperature impact resistance, and the like can be obtained. On the other hand, by setting the thickness to be equal to or less than the above upper limit value, lightness, appearance, and handleability can be improved.
Moreover, the composition of the present embodiment may be a foam processed into a sheet.
<組成物の製造方法>
 本実施形態の組成物は、原料となる4-メチル-1-ペンテン系重合体(a)、有機化合物(b)、その他任意の各成分をドライブレンド、タンブラーミキサー、バンバリーミキサー、単軸押出機、二軸押出機、高速二軸押出機、熱ロール等により混合または溶融・混練することにより調製することができる。
<Method for producing composition>
The composition of the present embodiment is prepared by dry blending the 4-methyl-1-pentene polymer (a), the organic compound (b), and other optional components as raw materials, using a tumbler mixer, a Banbury mixer, and a single screw extruder. , a twin-screw extruder, a high-speed twin-screw extruder, a hot roll, or the like.
 また、本実施形態に係る組成物が発泡状態である場合は、例えば、化学発泡剤を押出成形機に投入する前に組成物と配合して均一に混合することであることができる。また、物理発泡剤として二酸化炭素を使用する場合は、組成物が押出成形機内で混練、可塑化された状態になった後、直接押出成形機内へ二酸化炭素を注入することによって得ることができる。
 発泡倍率は特に限定されず、組成物の用途等を考慮して適宜決定することができる。
Moreover, when the composition according to the present embodiment is in a foamed state, for example, the chemical foaming agent can be blended with the composition and uniformly mixed before being fed into the extruder. Further, when carbon dioxide is used as a physical blowing agent, the composition is kneaded in an extruder, and after being plasticized, it can be obtained by injecting carbon dioxide directly into the extruder.
The expansion ratio is not particularly limited, and can be appropriately determined in consideration of the use of the composition.
2.成形体
 本実施形態の成形体は上述した組成物を用い、公知の方法で、成形して得られるものである。成形体の形状は、特に限定されず、用途に応じて、いかなる形状に加工されてもよい。
2. Molded Article The molded article of the present embodiment is obtained by molding the composition described above by a known method. The shape of the molded body is not particularly limited, and it may be processed into any shape depending on the application.
 本実施形態の成形体は、以下の条件アを満たすことが好ましい。
(条件ア)
 前記成形体の厚みが7mmとなるように、前記成形体を必要に応じて重ね合わせて試験片アを作成した時、当該試験片のショアA硬度(JIS K6253)が10~70である。
The molded article of the present embodiment preferably satisfies the following condition a.
(Condition A)
When the molded bodies are superimposed as necessary to prepare a test piece A so that the molded body has a thickness of 7 mm, the Shore A hardness (JIS K6253) of the test piece is 10 to 70.
 条件アを満たすことにより、本実施形態の成形体において適度な柔軟性、応力緩和性が得られ、ヒトの動きや形状に追従しやすくなり、高いフィット性が得られるようになる。 By satisfying the condition a, the molded article of the present embodiment can have moderate flexibility and stress relaxation properties, can easily follow human movements and shapes, and can have a high fit.
 また、条件アにおいて試験片アのショアA硬度(JIS K6253)は、好ましくは20~70であり、より好ましくは30~70である。 Also, in condition a, the Shore A hardness (JIS K6253) of the test piece a is preferably 20-70, more preferably 30-70.
 本実施形態の成形体は、以下の条件イを満たすことが好ましい。
(条件イ)
 前記成形体を幅25mm×長さ100mmに打ち抜き、試験片イを作成する。試験片イに対し、引張試験機(万能引張試験機3380、インストロン社製)を用いて、23℃、40℃の2つの温度条件でチャック間距離30mm、及び引張速度300mm/min、試験片イをTD方向に50%伸長させ、60秒後の引張荷重[N/25mm]を測定する。各温度で得られた60秒後の引張荷重を以下の式にあてはめ、軟化度としたとき、当該軟化度が25%~80%である。
 軟化度[%]=〔40℃での60秒後の引張荷重[N/25mm]〕/〔23℃での60秒後の引張荷重[N/25mm]〕
The molded article of the present embodiment preferably satisfies the following condition a.
(Condition A)
A 25 mm wide×100 mm long test piece is punched out of the compact. Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece (a) was subjected to two temperature conditions of 23 ° C. and 40 ° C. with a distance between chucks of 30 mm and a tensile speed of 300 mm / min. A is stretched by 50% in the TD direction, and the tensile load [N/25 mm] after 60 seconds is measured. When the tensile load obtained at each temperature after 60 seconds is applied to the following formula to determine the degree of softening, the degree of softening is 25% to 80%.
Softness [%] = [Tensile load after 60 seconds at 40°C [N/25mm]]/[Tensile load after 60 seconds at 23°C [N/25mm]]
 条件イを満たすことにより、本実施形態の成形体において良好な凹凸追従性を得ることができる。なかでも人肌で温められるような温度域において良好な追従性が得られることで、成形体が人体に密着しやすくなる。 By satisfying the condition (a), it is possible to obtain good irregularity followability in the molded article of the present embodiment. In particular, good followability is obtained in a temperature range where human skin can warm the body, making it easier for the molded body to adhere to the human body.
 また、条件イにおいて試験片イの軟化度は、好ましくは30%~70%である。軟化度を上記上限値以下とすることにより、より柔軟性が得られ、肌なじみがよく、フィット性を高めることができる。 In addition, the softening degree of the test piece a is preferably 30% to 70% under condition b. By setting the softening degree to the above upper limit or less, more flexibility can be obtained, skin familiarity is good, and fit can be improved.
 本実施形態の成形体は、以下の条件ウを満たすことが好ましい。
(条件ウ)
 前記成形体の、試験温度10℃で測定した面衝撃強度(JIS K7211-2準拠)が0.6J以上である。
The molded article of the present embodiment preferably satisfies the following condition c.
(Condition c)
The surface impact strength (in accordance with JIS K7211-2) of the molded product measured at a test temperature of 10° C. is 0.6 J or more.
 条件ウを満たすことにより、本実施形態の成形体において低温下においても高い衝撃性が得られる。その結果、外部からの応力・変形によって破損することが低減でき、低温下での使用感を良好にできる。また、本実施形態の成形体を衣料品に適用した場合、洗濯時の冷水下や寒冷地での使用時にも良好な柔軟性および耐久性が得られる。 By satisfying condition (c), the molded article of this embodiment can have high impact resistance even at low temperatures. As a result, it is possible to reduce breakage due to stress and deformation from the outside, and to improve usability at low temperatures. In addition, when the molded article of the present embodiment is applied to clothing, good flexibility and durability can be obtained even when the article is washed under cold water or used in cold climates.
 また、条件ウにおいてシートの面衝撃強度は、好ましくは0.7J以上である。一方、シートの面衝撃強度の上限値は特に限定されないが、他の性能とのバランスを保持する観点から、好ましくは10J以下であり、より好ましくは8J以下である。 In addition, in condition c, the surface impact strength of the sheet is preferably 0.7 J or more. On the other hand, the upper limit of the surface impact strength of the sheet is not particularly limited, but is preferably 10 J or less, more preferably 8 J or less, from the viewpoint of maintaining a balance with other performances.
 上記の条件ア~ウを満たす本実施形態の成形体は、成形体を構成する組成物の材料を選択したり、成形体の製造条件を制御すること等によって実現できる。例えば、4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の各メルトフローレート(g/10分)の差に着目して、スチレン系エラストマー(b)を選択したり、4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の比率を調整すること等が挙げられる。ただし、本実施形態の成形体は、かかる材料や製造方法に限定されるものではない。 The molded article of the present embodiment that satisfies the above conditions a to c can be realized by selecting the material of the composition constituting the molded article, controlling the manufacturing conditions of the molded article, and the like. For example, focusing on the difference in melt flow rate (g/10 min) between the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b), the styrene elastomer (b) can be selected. , adjusting the ratio of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b). However, the molded article of this embodiment is not limited to such materials and manufacturing methods.
 また、本実施形態の成形体は気泡を含むことが好ましい。気泡とは、気泡一つ一つが独立したものに限られず、複数の気泡が連続したものであってもよく、これらが混在したものであってもよい。 In addition, it is preferable that the molded body of the present embodiment contain air bubbles. The air bubbles are not limited to individual air bubbles, but may be a plurality of continuous air bubbles, or a mixture of air bubbles.
 また、本実施形態の成形体の密度は、好ましくは0.10g/cm以上であり、より好ましくは0.20g/cm以上であり、さらに好ましくは0.30g/cm以上であり、ことさらに好ましくは0.40g/cm以上である。一方、本実施形態の成形体の密度は、好ましくは1.0g/cm以下であり、より好ましくは0.90g/cm以下であり、さらに好ましくは0.85g/cm以下であり、ことさらに好ましくは0.80g/cm以下である。 In addition, the density of the molded article of the present embodiment is preferably 0.10 g/cm 3 or more, more preferably 0.20 g/cm 3 or more, still more preferably 0.30 g/cm 3 or more, More preferably, it is 0.40 g/cm 3 or more. On the other hand, the density of the molded article of the present embodiment is preferably 1.0 g/cm 3 or less, more preferably 0.90 g/cm 3 or less, still more preferably 0.85 g/cm 3 or less, More preferably, it is 0.80 g/cm 3 or less.
 本実施形態の成形体は、シートであることが好ましく、シートの厚みは好ましくは0.1mm以上10mm以下であり、より好ましくは0.2mm以上8mm以下であり、さらに好ましくは0.3mm以上5mm以下であり、ことさらに好ましくは0.4mm以上3mm以下である。 The molded article of the present embodiment is preferably a sheet, and the thickness of the sheet is preferably 0.1 mm or more and 10 mm or less, more preferably 0.2 mm or more and 8 mm or less, and still more preferably 0.3 mm or more and 5 mm. or less, and more preferably 0.4 mm or more and 3 mm or less.
[生地積層体]
 また、本実施形態の成形体がシートである場合、シートの少なくとも一方の面に生地が貼り合わされた生地積層体であってもよい。これにより、生地が有する柔軟性および風合いを活かしつつ、本実施形態の成形体が有する応力緩和性および低温引張伸び性といった新たな機能も得られる新たな生地積層体を実現できる。
[Fabric laminate]
Moreover, when the molded article of the present embodiment is a sheet, it may be a fabric laminate in which a fabric is bonded to at least one surface of the sheet. As a result, it is possible to realize a new fabric laminate that can obtain new functions such as stress relaxation and low-temperature tensile elongation properties of the molded article of the present embodiment, while taking advantage of the flexibility and texture of the fabric.
 生地としては、天然繊維、合成繊維、化学繊維といった繊維類を薄く加工したものであり、生地帛等の織物、および不織布などが挙げられる。具体的には、天竺、フライス、スムース、ダブルニット等の緯編組織を有する編物、トリコット、ラッセル等の経編組織を有する編物、平織、綾織、サテン等の組織を有する織物が挙げられる。 The fabrics are made by thinly processing fibers such as natural fibers, synthetic fibers, and chemical fibers, and include woven fabrics such as fabrics and non-woven fabrics. Specific examples include knitted fabrics having a weft knitting structure such as jersey, milled, smooth and double knit; knitted fabrics having a warp knitting structure such as tricot and raschel; and woven fabrics having a structure such as plain weave, twill weave and satin.
 生地の厚みは、0.2~1.0mmであることが好ましく、0.2~0.8mmであることがより好ましく、0.2~0.6mmであることがさらに好ましい。 The thickness of the fabric is preferably 0.2 to 1.0 mm, more preferably 0.2 to 0.8 mm, even more preferably 0.2 to 0.6 mm.
 生地の目付は、50~250g/mであることが好ましく、70~180g/mであることがより好ましく、100~150g/mであることがさらに好ましい。 The basis weight of the fabric is preferably 50 to 250 g/m 2 , more preferably 70 to 180 g/m 2 and even more preferably 100 to 150 g/m 2 .
 生地の素材としては、綿、麻、ウール、シルク等の天然繊維;レーヨン、キュプラ等の再生繊維、アセテート・トリアセテートなどの半合成繊維、ナイロン、ポリエステル、ポリウレタン、アクリル等の合成繊維、ならびにこれら合成繊維の混合繊維からなる化学繊維製品が挙げられる。 Natural fibers such as cotton, linen, wool, and silk; regenerated fibers such as rayon and cupra; semi-synthetic fibers such as acetate and triacetate; synthetic fibers such as nylon, polyester, polyurethane, and acrylic; Mentioned are chemical fiber products consisting of mixed fibers of fibers.
 また、本実施形態の生地積層体は、少なくとも一部が湾曲し、曲率半径が50mm~150mmの範囲とすることもできる。これにより、湾曲した面に対して、本実施形態の生地積層体を追従させやすくなる。湾曲した面としてはヒトの身体の丸みを帯びた部分が挙げられ、例えば、頭部、胸部、肘、膝等が挙げられる。また、湾曲した面に装着される衣料品としては、例えば、帽子、フード、ブラジャー、肌着、サポーター等が挙げられる。 In addition, at least a portion of the fabric laminate of this embodiment may be curved, and the radius of curvature may be in the range of 50 mm to 150 mm. This makes it easier for the fabric laminate of the present embodiment to follow the curved surface. Curved surfaces include rounded portions of the human body, such as the head, chest, elbows, knees, and the like. Clothing worn on curved surfaces includes, for example, hats, hoods, brassieres, undergarments, and supporters.
 また、本実施形態の生地積層体の厚みは、柔軟性、加工性、縫いやすさ等を考慮して、適宜調整される。 In addition, the thickness of the fabric laminate of this embodiment is appropriately adjusted in consideration of flexibility, workability, ease of sewing, and the like.
 生地積層体の製造方法は、特に限定されないが、生地と貼り合わせる際、140~190℃、1.0~1.8MPaで貼り合せることが好適である。貼り合せ時間は30秒~10分であると生産効率が良い。これにより、本実施形態のシート組成物の特性を保持したまま、生地積層体を得ることができる。 The manufacturing method of the fabric laminate is not particularly limited, but when it is attached to the fabric, it is suitable to attach it at 140 to 190°C and 1.0 to 1.8 MPa. The production efficiency is good when the bonding time is 30 seconds to 10 minutes. As a result, a fabric laminate can be obtained while maintaining the properties of the sheet composition of the present embodiment.
 また、本実施形態に係る成形体は、用途に応じて、通気性を高めるために通気孔を有してもよい。例えば、機械式パンチング、ニードル加工、レーザーパーフォレーション、ウォータージェット等の加工技術により、表裏に連通した多数の通気孔を設けることができる。 In addition, the molded article according to the present embodiment may have ventilation holes to improve breathability depending on the application. For example, a large number of communicating vent holes can be provided on the front and back sides by processing techniques such as mechanical punching, needle processing, laser perforation, and water jetting.
<用途>
 本実施形態に係る組成物および成形体は、分野を問わず、広く利用される例えば、自動車部品、鉄道部品、航空機部品、船舶部品、自転車部品等のモビリティー用品;電子機器;家庭用電気機器;オーディオ機器;カメラ用品;精密機器;ゲーム機器;VR機器;土木部品、建築部品、建築材等の土木・建築用品;家具、寝具等の家財道具;台所用品、トイレタリー、文具等の日用品;アウトドア用品、リュック等のレジャー用品;園芸等の農業用品;アパレル用品(服、肌着、下着類(例えば、ブラジャー、肩パッド、補正用下着等)の芯材、帽子、ベルト、ランドセルのライニング、名刺入れ、メガネ等)、シューズ用品(各種インソール、靴の内張り材、各種機材、靴、靴ひも等)、アクセサリー・携帯用小物雑貨等の装飾製品;医療用品、ヘルスケア用品等の医療関係用品;スポーツ品等のスポーツ分野の用品;書籍、玩具等の教育・玩具用品;包装用品等の包装関係用品;洗顔・メイク用品等の化粧品関係の用品;LED照明等の電灯用品;水産用品等の養殖用品;チャイルドシート等の安全用品;音楽用品;ペット用品;釣用品等に用いることができる。
<Application>
The composition and molded article according to the present embodiment are widely used in any field, for example, mobility goods such as automobile parts, railway parts, aircraft parts, ship parts, bicycle parts; electronic equipment; Audio equipment; camera equipment; precision equipment; game equipment; VR equipment; , Leisure goods such as backpacks; Agricultural goods such as gardening; eyeglasses, etc.), shoe supplies (various insoles, shoe lining materials, various equipment, shoes, shoelaces, etc.), decorative products such as accessories and small portable miscellaneous goods; medical supplies such as medical supplies and healthcare supplies; Educational/toy goods such as books and toys; Packaging-related goods such as packaging goods; Cosmetics-related goods such as face washing and makeup goods; It can be used for safety goods such as child seats; music goods; pet goods; fishing goods and the like.
 なかでも、衣料品、および衣料品部材であることが好ましい。すなわち、衣料品としては、衣服全般、肌着、下着類、帽子、シューズ用品などの生地を用いたものに対してより好適に用いられる。また衣料品部材としては、かかる衣料品の一部を構成しうるものを意図する。たとえば、下着の芯材、シューズの中敷きなどが挙げられる。これにより、例えば、寒冷地でかかる衣料品および衣料品部材を用いたり、衣料品および衣料品部材を冷水で洗濯した場合であっても、良好な応力緩和性、柔軟性を得つつ、良好な引張伸び性を得ることができるため、衣料品の破損などを低減することができる。また、ヒトが着用した際には、ヒトの動きや体の形状に適切に追従し、なめらかかつ柔軟な感触が得られ、肌触りがよく、良好なフィット性および使用感が得られる。 Among them, clothing and clothing parts are preferable. That is, it is more preferably used for clothes in general, undergarments, undergarments, hats, shoes, and the like, which use fabrics. Also, the garment component is intended to be part of such a garment. For example, the core material of underwear, the insole of shoes, etc. are mentioned. As a result, for example, even when such clothing and clothing members are used in cold regions or when the clothing and clothing members are washed with cold water, good stress relaxation properties and flexibility are obtained, and good Since tensile elongation can be obtained, damage to clothing can be reduced. In addition, when worn by a person, it appropriately follows the movements and body shape of the person, provides a smooth and soft feel, feels good on the skin, and provides a good fit and feeling of use.
 また、本実施形態に係る成形体は、成形体の低温環境下での使用に適している。例えば、寒冷地での使用、プールや海水浴等による冷水下での使用が挙げられる。また、ヒトの身体の丸みを帯びた部分に装着される部材としての使用にも適している。例えば、帽子、フード、ブラジャー、肌着、サポーター等を構成する部材が挙げられる。 In addition, the molded article according to the present embodiment is suitable for use in a low-temperature environment. Examples include use in cold regions and use under cold water such as swimming pools and sea bathing. It is also suitable for use as a member that is attached to rounded parts of the human body. Examples thereof include members that constitute hats, hoods, brassieres, undergarments, supporters, and the like.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than those described above can also be adopted. Moreover, the present invention is not limited to the above-described embodiments, and includes modifications, improvements, etc. within the scope of achieving the object of the present invention.
 以下、本実施形態を、実施例・比較例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, the present embodiment will be described in detail with reference to examples and comparative examples. It should be noted that the present embodiment is not limited to the description of these examples.
<4-メチル-1-ペンテン系重合体(a)の分析・測定>
(1)固体粘弾性
 4-メチル-1-ペンテン系重合体(a)を、短冊状に縦30mm×幅10mmに切り出し、試験片とした。次いで、得られた試験片に対して、TA Instuments社製RSA-IIIを用いて、チャック間距離20mm、周波数1.59Hz、歪量0.1%、昇温速度4℃/分、引張モードの条件で温度範囲-60℃~110℃までの動的粘弾性の温度依存性を測定した。得られたグラフから、損失正接(tanδ)の極大値を示す温度(T)およびそのtanδの極大値をそれぞれ求めた。
<Analysis and measurement of 4-methyl-1-pentene polymer (a)>
(1) Solid Viscoelasticity A 4-methyl-1-pentene polymer (a) was cut into strips of 30 mm long and 10 mm wide to prepare test pieces. Next, the obtained test piece was subjected to a chuck distance of 20 mm, a frequency of 1.59 Hz, a strain amount of 0.1%, a heating rate of 4 ° C./min, and a tensile mode using RSA-III manufactured by TA Instruments. The temperature dependence of dynamic viscoelasticity was measured in a temperature range of -60°C to 110°C. From the obtained graph, the temperature (T a ) showing the maximum value of loss tangent (tan δ) and the maximum value of tan δ were obtained.
(2)4-メチル-1-ペンテン系重合体(a)の極限粘度[η]
 極限粘度[η]は、デカリン溶媒を用いて135℃で測定した。
(2) Intrinsic viscosity [η] of 4-methyl-1-pentene polymer (a)
The intrinsic viscosity [η] was measured at 135°C using decalin solvent.
(3)4-メチル-1-ペンテン系重合体(a)の組成
 4-メチル-1-ペンテン系重合体(a)中の4-メチル-1-ペンテンおよびα-オレフィンの含有量は13C-NMRにより定量した。
(3) Composition of 4-methyl-1-pentene polymer (a) The content of 4-methyl-1-pentene and α-olefin in the 4-methyl-1-pentene polymer (a) is 13 C - quantified by NMR.
(4)4-メチル-1-ペンテン系重合体(a)の密度
 ASTM D 1505(水中置換法)に従って、ALFA MIRAGE社電子比重計MD-300Sを用い、水中と空気中で測定された各試料の重量から算出した。
(4) Density of 4-methyl-1-pentene polymer (a) According to ASTM D 1505 (water replacement method), using an electronic hydrometer MD-300S from ALFA MIRAGE, each sample measured in water and air. calculated from the weight of
(5)4-メチル-1-ペンテン系重合体(a)のメルトフローレート(MFR)
 JIS K7210に従って、230℃、試験荷重2.16kgの条件で測定した。
(5) Melt flow rate (MFR) of 4-methyl-1-pentene polymer (a)
It was measured under conditions of 230° C. and a test load of 2.16 kg according to JIS K7210.
<組成物および成形体の原料>
 実施例、比較例および参考例で用いた原料について以下に示す。
[4-メチル-1-ペンテン系重合体(a)]
・4-メチル-1-ペンテン系重合体(a-1):4-メチル-1-ペンテンとプロピレンとの共重合体(4-メチル-1-ペンテン由来の構成単位の含有量:72モル%、プロピレン由来の構成単位の含有量:28モル%)
 損失正接(tanδ)の極大値を示す温度Ta:28℃
 損失正接の極大値:2.6
 ガラス転移温度:28℃
 135℃のデカリン中での極限粘度[η]:1.5dL/g
 密度:0.84g/cm
 MFR:10g/10min
<Raw materials for composition and molding>
Raw materials used in Examples, Comparative Examples and Reference Examples are shown below.
[4-methyl-1-pentene polymer (a)]
4-methyl-1-pentene-based polymer (a-1): copolymer of 4-methyl-1-pentene and propylene (content of structural units derived from 4-methyl-1-pentene: 72 mol% , content of structural units derived from propylene: 28 mol%)
Temperature Ta showing maximum value of loss tangent (tan δ): 28°C
Maximum value of loss tangent: 2.6
Glass transition temperature: 28°C
Intrinsic viscosity [η] in decalin at 135°C: 1.5 dL/g
Density: 0.84g/ cm3
MFR: 10g/10min
[スチレン系エラストマー(b)]
・スチレン系エラストマー(b-1):水添スチレン・イソプレン・ブタジエンブロック共重合体(ビニルSEEPS)「ハイブラー7311F」(クラレ社製)ポリスチレンブロック含有量12質量%、MFR0.5g/10min
・スチレン系エラストマー(b-2):水添スチレン・ブタジエンゴム(HSBR)「ダイナロン1320P」(JSR社製)ポリスチレンブロック含有量10質量%、MFR3.5g/10min
・スチレン系エラストマー(b-3):水添スチレン・ブタジエンブロック共重合体(SEBS)「クレイトンG1657」(クレイトンポリマー社製)ポリスチレンブロック含有量13質量%、MFR9g/10min
・スチレン系エラストマー(b-4)水添スチレン・ブタジエンブロック共重合体(SEBS)「クレイトンG1651」(クレイトンポリマー社製)ポリスチレンブロック含有量33質量%、MFR1g/10min未満
・スチレン系エラストマー(b-5):水添スチレン・ブタジエンブロック共重合体(SEBS)「タフテックH1221」(旭化成社製)ポリスチレンブロック含有量12質量%、MFR4.5g/10min
・スチレン系エラストマー(b-6):水添スチレン・ブタジエンブロック共重合体(SEBS)「SOE1605」(旭化成社製)ポリスチレンブロック含有量67質量%、MFR5g/10min
・スチレン系エラストマー(b-7):水添スチレン・ブタジエンブロック(SEBS)「SOE1606」(旭化成社製)ポリスチレンブロック含有量51質量%、MFR4g/10min
[Styrene-based elastomer (b)]
・ Styrene-based elastomer (b-1): Hydrogenated styrene/isoprene/butadiene block copolymer (vinyl SEEPS) “Hybler 7311F” (manufactured by Kuraray Co., Ltd.) polystyrene block content 12% by mass, MFR 0.5 g/10 min
・ Styrene-based elastomer (b-2): Hydrogenated styrene-butadiene rubber (HSBR) "Dynaron 1320P" (manufactured by JSR) polystyrene block content 10% by mass, MFR 3.5g/10min
・ Styrene-based elastomer (b-3): Hydrogenated styrene/butadiene block copolymer (SEBS) “Kraton G1657” (manufactured by Kraton Polymer Co., Ltd.) polystyrene block content 13% by mass, MFR 9 g/10 min
・Styrene elastomer (b-4) Hydrogenated styrene/butadiene block copolymer (SEBS) “Kraton G1651” (manufactured by Kraton Polymer Co., Ltd.) Polystyrene block content 33% by mass, MFR less than 1 g/10 min ・Styrene elastomer (b- 5): Hydrogenated styrene/butadiene block copolymer (SEBS) “Tuftec H1221” (manufactured by Asahi Kasei Corporation) polystyrene block content 12% by mass, MFR 4.5 g/10 min
Styrene-based elastomer (b-6): Hydrogenated styrene/butadiene block copolymer (SEBS) "SOE1605" (manufactured by Asahi Kasei Corporation) polystyrene block content 67% by mass, MFR 5g/10min
Styrene-based elastomer (b-7): Hydrogenated styrene-butadiene block (SEBS) "SOE1606" (manufactured by Asahi Kasei Corporation) polystyrene block content 51% by mass, MFR 4g/10min
[飽和炭化水素化合物(d)]
・飽和炭化水素化合物(d-1):流動パラフィン「No.530-SP」(三光化学工業株製)(密度:0.86g/cm、粘度:87(mPa・s)、流動点:-15℃)
[Saturated hydrocarbon compound (d)]
・ Saturated hydrocarbon compound (d-1): liquid paraffin “No.530-SP” (manufactured by Sanko Chemical Industry Co., Ltd.) (density: 0.86 g/cm 3 , viscosity: 87 (mPa s), pour point: − 15°C)
[発泡剤]
・重曹系化学発泡剤マスターバッチ「ポリスレンEE275F」(永和化成工業社製)
[Blowing agent]
・Baking soda-based chemical foaming agent masterbatch “Polythrene EE275F” (manufactured by Eiwa Kasei Kogyo Co., Ltd.)
<組成物および成形体の作製>
(1)発泡体の作製
 成形機としては、単軸押出成形機(シリンダー内径D:50mm、フルフライトスクリュー、スクリュー有効長をLとしたときL/D:32mm)、Tダイ(ダイ幅:320mm、リップ開度:0.2~0.3mm)、冷却ロール(外径50mm、鏡面仕上げ硬質クロムメッキ表面処理付のスチール製、水冷式)、冷却ロール、および引取機、とからなる装置を用いた。
 まず、表1,2に示す割合で上記の原料と、化学発泡剤(ポリスレンEE275F)を外部で1重量部と、を押出成形機に投入し、シリンダー各部の温度120~230℃、スクリュー回転数10~13rpmの条件で(各成分原料を)溶融・混練し、シリンダーヘッド部の樹脂温度190~204℃で、押出量3.5~4.4kg/時間となるようにTダイ(ダイス温度190℃)からシート状に押出した。
 押し出されたシートは、冷却ロール(ロール内部通水温度30℃)で冷却して、引取機を用いて引き取り(引取速度0.8~0.9m/分)、シート幅約240~270mmのシート状に加工された組成物(発泡体:成形体)をそれぞれ得た。
<Preparation of composition and molding>
(1) Production of foam As a molding machine, a single screw extruder (cylinder inner diameter D: 50 mm, full flight screw, L / D when the effective screw length is L: 32 mm), T die (die width: 320 mm , lip opening: 0.2 to 0.3 mm), cooling roll (outer diameter 50 mm, steel with mirror finish hard chrome plating surface treatment, water cooling type), cooling roll, and take-up machine. board.
First, the above raw materials and 1 part by weight of a chemical foaming agent (polystyrene EE275F) are put into an extruder at the ratios shown in Tables 1 and 2. Melting and kneading (raw materials for each component) under the conditions of 10 to 13 rpm, the resin temperature of the cylinder head part is 190 to 204 ° C., and the extrusion rate is 3.5 to 4.4 kg / hour T die (die temperature 190 °C) into sheets.
The extruded sheet is cooled with a cooling roll (water flow temperature inside the roll: 30° C.), taken up using a take-up machine (take-up speed: 0.8 to 0.9 m/min), and a sheet with a width of about 240 to 270 mm. A composition processed into a shape (foam: molded article) was obtained.
(2)無発泡体の作製
 成形機としては、単軸押出成形機(シリンダー内径D:50mm、フルフライトスクリュー、スクリュー有効長をLとしたときL/D:32mm)、Tダイ(ダイ幅:320mm、リップ開度:0.5~1.8mm)、冷却ロール(外径50mm、鏡面仕上げ硬質クロムメッキ表面処理付のスチール製、水冷式)、冷却ロール、および引取機、とからなる装置を用いた。
 まず、表3,4に示す割合で、上記の原料を押出成形機に投入し、シリンダー各部の温度100~230℃、スクリュー回転数20~36rpmの条件で溶融・混練し、シリンダーヘッド部の樹脂温度130~195℃で、押出量5~8.5kg/時間となるようにTダイ(ダイス温度190℃)からシート状に押出した。
 押し出されたシートは、冷却ロール(ロール内部通水温度30℃)で冷却して、引取機を用いて引き取り(引取速度0.4~2.3m/分)、シート幅約300mmのシート状に加工された組成物(無発泡;成形体)をそれぞれ得た。
(2) Production of non-foamed body As a molding machine, a single screw extruder (cylinder inner diameter D: 50 mm, full flight screw, L / D when the effective screw length is L: 32 mm), T die (die width: 320 mm, lip opening: 0.5 to 1.8 mm), cooling roll (outer diameter 50 mm, steel with mirror finish hard chrome plating surface treatment, water cooling), cooling roll, and take-up machine. Using.
First, the above raw materials are put into an extruder in the proportions shown in Tables 3 and 4, melted and kneaded under the conditions of a temperature of 100 to 230 ° C. and a screw rotation speed of 20 to 36 rpm in each part of the cylinder, and the resin of the cylinder head part At a temperature of 130 to 195° C., a sheet was extruded through a T-die (die temperature: 190° C.) at an extrusion rate of 5 to 8.5 kg/hour.
The extruded sheet is cooled with a cooling roll (water flow temperature inside the roll: 30°C), taken up using a take-up machine (take-up speed: 0.4 to 2.3 m/min), and formed into a sheet with a width of about 300 mm. A processed composition (unfoamed; molded body) was obtained respectively.
 得られたシート状の組成物(成形体)をそれぞれ用いて、以下の測定、および評価を行った。結果を、表1~4に示す。 The following measurements and evaluations were performed using each of the obtained sheet-like compositions (molded bodies). The results are shown in Tables 1-4.
<組成物および成形体の測定・評価>
(1)固体粘弾性
 得られたシート状の組成物を、短冊状(縦30mm×幅10mm)に切り出し、試験片とした。次いで、得られた試験片に対して、TA Instuments社製RSA-IIIを用いて、チャック間距離20mm、周波数1.59Hz、歪量0.1%、昇温速度4℃/分、引張モードの条件で温度範囲-60℃~110℃までの動的粘弾性の温度依存性を測定した。30℃における損失正接(tanδ)の値を求めた。
<Measurement and Evaluation of Composition and Molded Body>
(1) Solid viscoelasticity The resulting sheet-like composition was cut into strips (length 30 mm x width 10 mm) to obtain test pieces. Next, the obtained test piece was subjected to a chuck distance of 20 mm, a frequency of 1.59 Hz, a strain amount of 0.1%, a heating rate of 4 ° C./min, and a tensile mode using RSA-III manufactured by TA Instruments. The temperature dependence of dynamic viscoelasticity was measured in a temperature range of -60°C to 110°C. A value of loss tangent (tan δ) at 30° C. was obtained.
(2)引張試験
 得られたシート状組成物を用いて、以下の条件で、試験片を作成して引張試験を行い、破断荷重、破断伸びを測定した。
・試験片形状:短冊状、幅25mm(共通)
・試験片方向:MD方向(共通)
・チャック間距離:30mm(共通)
・引張速度:300mm/分(共通)
・測定温度:各10℃、23℃
・測定点数:各温度で測定点数n=1
(2) Tensile test Using the obtained sheet composition, a test piece was prepared under the following conditions, and a tensile test was performed to measure the breaking load and breaking elongation.
・ Specimen shape: Strip shape, width 25 mm (common)
・Specimen direction: MD direction (common)
・Distance between chucks: 30 mm (common)
・ Tensile speed: 300 mm / min (common)
・Measurement temperature: 10°C and 23°C each
・ Number of measurement points: Number of measurement points n = 1 at each temperature
(3)ショアA硬度の測定
 得られたシート状組成物を用いて、以下の条件で、試験片を作成して引張試験を行い、ショアA硬度を測定した。
・試験規格:JIS K6253
・試験温度:23℃
・試験片の厚さ:7mm
・装置:ショアA硬度計
 合計の厚みが7mmとなるように複数のシートを重ね合わせ試験片として用いた。試験片を用いて、ショアA硬度計の押針接触開始直後(条件i)の値(HS0)と、押針接触開始から15秒後の値(HS1)を読み取った。さらに下式で定義されるショアA硬度の値の変化ΔHS(条件ii)を求めた。
ΔHS=(HS0)-(HS1)
 なお、ここで、ΔHSが大きいほど凹凸追従性が高いことを示す。
(3) Measurement of Shore A hardness Using the obtained sheet-like composition, a test piece was prepared under the following conditions, and a tensile test was performed to measure the Shore A hardness.
・Test standard: JIS K6253
・Test temperature: 23°C
・Thickness of test piece: 7 mm
Apparatus: Shore A hardness tester A plurality of sheets were superimposed and used as a test piece so that the total thickness was 7 mm. Using the test piece, the value (HS0) immediately after the start of contact with the indenter (condition i) of the Shore A hardness tester and the value (HS1) 15 seconds after the start of contact with the indenter were read. Furthermore, the change ΔHS (condition ii) in the Shore A hardness value defined by the following formula was obtained.
ΔHS = (HS0) - (HS1)
Here, it is shown that the larger ΔHS is, the higher the irregularity followability is.
(4)応力緩和試験
 得られたシート状組成物を用いて、幅25mm×長さ100mmに打ち抜きして、試験片を作成し、引張試験を行い、引張荷重を測定した。
・試験片:短冊状、幅25mm(共通)
・試験片方向:TD方向(共通)
・チャック間距離:30mm(共通)
・引張速度:300mm/分(共通)
・測定温度:各23℃、40℃
・測定点数:各温度で測定点数n=1
・定歪量が50%に達したときに引張を停止し、伸長直後の引張荷重[N/25mm]と60秒後の引張荷重[N/25mm]をそれぞれ測定した。
(4) Stress Relaxation Test Using the obtained sheet-like composition, a test piece of 25 mm width×100 mm length was punched to prepare a test piece, and a tensile test was performed to measure the tensile load.
・Test piece: Strip shape, width 25 mm (common)
・Specimen direction: TD direction (common)
・Distance between chucks: 30 mm (common)
・ Tensile speed: 300 mm / min (common)
・Measurement temperature: 23°C and 40°C
・ Number of measurement points: Number of measurement points n = 1 at each temperature
- The tension was stopped when the constant strain amount reached 50%, and the tensile load [N/25 mm] immediately after elongation and the tensile load [N/25 mm] after 60 seconds were measured.
(5)面衝撃試験
 得られたシート状組成物を用いて、高速面衝撃試験を行い、最大衝撃(J)、パンクチャー(J)を測定した。
・試験規格:JIS K7211-2
・試験温度:10℃
・試験点数:n=1
(5) Surface Impact Test Using the obtained sheet-like composition, a high-speed surface impact test was performed to measure maximum impact (J) and puncture (J).
・Test standard: JIS K7211-2
・Test temperature: 10°C
・Number of test points: n=1
(6)評価
 得られたシート状組成物を用い熟練した技術者により以下の評価を行った。
・フィット性
 各シートを幅1.5cm、長さ30cmに切り出し、手首にフィットするように巻きつけたのち、以下の基準にしたがい評価した。
(基準)
◎(優):巻き付け後、1分たっても締め付け感をまったく感じなかった。その後、手首を動かしても締め付け感を感じなかった。
○(良):巻き付け後、1分たっても締め付け感をまったく感じなかったが、その後、手首を動かすと、引っかかった感じがあった。
△(可):巻き付け後、1分ほど経過した時点では密着感が高まり、30分ほど置くと締め付け感を感じた。その後、手首を動かすと、引っかかった感じがある
×(不可):巻き付け直後から締め付け感をかなり感じた。
(6) Evaluation Using the obtained sheet-like composition, a skilled technician performed the following evaluations.
·Fitness Each sheet was cut into a width of 1.5 cm and a length of 30 cm, wrapped around the wrist so as to fit, and then evaluated according to the following criteria.
(standard)
⊚ (excellent): Absolutely no feeling of tightness was felt even after 1 minute from winding. After that, even if I moved my wrist, I didn't feel a tightening feeling.
◯ (Good): I did not feel any tightness even after 1 minute from wrapping, but after that, I felt that my wrist was caught.
(triangle|delta) (acceptable): After about 1 minute from wrapping, the feeling of close contact increased, and after about 30 minutes, the feeling of tightness was felt. After that, when the wrist is moved, there is a feeling that it is caught. × (impossible): A feeling of tightness was felt considerably immediately after wrapping.
・低温での使用感
 各シートを冷蔵庫(3~4℃)内で冷却した後直ちにシートの両端を両手でもち、以下の基準にしたがい評価した。
(基準)
◎(優):強い力で引っ張っても避けたり割れたりしなかった。
○(良):やや強い力で引っ張っても避けたり割れたりしなかった。
△(可):やや強い力で引っ張ると、避けたり割れたりする場合があった。
×(不可):弱い力で引っ張ると、避けたり割れたりした。
Feeling in Use at Low Temperature Immediately after each sheet was cooled in a refrigerator (3 to 4° C.), both ends of the sheet were held with both hands and evaluated according to the following criteria.
(standard)
⊚ (excellent): The film did not avoid or crack even when pulled with a strong force.
◯ (Good): The film did not avoid or crack even when pulled with a slightly strong force.
(triangle|delta) (acceptable): When it pulls by a rather strong force, it avoided or cracked in some cases.
x (impossible): Avoided or cracked when pulled with a weak force.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<生地積層体の作製>
 以下の材料を用いて、シート状組成物の一方の面上に生地を載せ、190℃、1.3MPa、5分間で両者を貼り合せ、生地積層体のサンプルを得た。この時、シート状組成物のMD方向と、生地のタテ方向とが平行になるように重ね合わせた。
(材料)
・シート状組成物:実施例1で作製した発泡シート
・生地:ファーストリテイリング社製「エアリズム」(登録商標)、クルーネックT(半袖)、厚み0.2mm、目付100g/m、素材:ポリエステル88%、ポリウレタン12%
<Production of fabric laminate>
Using the following materials, a fabric was placed on one side of the sheet-shaped composition, and the two were bonded together at 190° C. and 1.3 MPa for 5 minutes to obtain a fabric laminate sample. At this time, the sheets were superimposed so that the MD direction of the sheet composition and the vertical direction of the fabric were parallel to each other.
(material)
- Sheet composition: Foam sheet produced in Example 1 - Fabric: Fast Retailing Co., Ltd. "AIRism" (registered trademark), crew neck T (short sleeve), thickness 0.2 mm, basis weight 100 g / m 2 , material: polyester 88%, 12% polyurethane
<生地積層体の測定・評価>
・応力緩和試験
 得られたサンプルを用いて、上記「(4)応力緩和試験」と同様にして、以下の条件にて引張試験を行った。各測定温度において定歪量が50%に達したときに引張を停止し、伸長直後の引張荷重[N/25mm]と60秒後の引張荷重[N/25mm]をそれぞれ測定した。
 各測定温度の初期荷重残存率[%]と、軟化度[%]をそれぞれ下記計算式にて算出した。結果を表5に示す。
初期荷重残存率={(60秒後の引張荷重[N/25mm])÷(伸長直後の引張荷重[N/25mm])}×100[%]
軟化度[%]=〔40℃での60秒後の引張荷重[N/25mm]〕/〔23℃での60秒後の引張荷重[N/25mm]
(条件)
試験片サイズ:幅25mm(短冊状)
チャック間距離:30mm
引張歪速度:1,000%/分
測定温度:23℃、40℃
測定点数:n=1
<Measurement and evaluation of fabric laminate>
- Stress relaxation test Using the obtained sample, a tensile test was performed under the following conditions in the same manner as in the above "(4) Stress relaxation test". The tension was stopped when the constant strain amount reached 50% at each measurement temperature, and the tensile load [N/25 mm] immediately after elongation and the tensile load [N/25 mm] after 60 seconds were measured.
The initial load residual rate [%] and the degree of softening [%] at each measurement temperature were calculated using the following formulas. Table 5 shows the results.
Initial load residual rate = {(tensile load after 60 seconds [N/25mm]) ÷ (tensile load immediately after elongation [N/25mm])} × 100 [%]
Softness [%] = [Tensile load after 60 seconds at 40°C [N/25mm]]/[Tensile load after 60 seconds at 23°C [N/25mm]
(conditions)
Test piece size: Width 25 mm (strip shape)
Distance between chucks: 30mm
Tensile strain rate: 1,000%/min Measurement temperature: 23°C, 40°C
Number of measurement points: n = 1
・評価
 得られた生地積層体、生地単層、および2枚の生地を重ねたものを用いて、上記「(6)評価」と同じように「フィット性」「低温での使用感」を評価した。結果を表5に示す。
 なお、2枚の生地を重ねたものは、接着等せず生地の方向が同じ方向になるように重ねたものとした。
・Evaluation Using the obtained fabric laminate, single layer of fabric, and two layers of fabric, "fitness" and "feeling of use at low temperature" are evaluated in the same manner as in "(6) Evaluation" above. did. Table 5 shows the results.
It should be noted that the two fabrics were piled up so that the directions of the fabrics were in the same direction without adhesion or the like.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 生地のみの参考例1,2と比較して、実施例13の生地積層体は、生地を積層していない実施例2と同様に、23℃の初期荷重残存率が同程度で、軟化度が25~80%の範囲であり、良好なフィット性も得られた。 Compared to Reference Examples 1 and 2 with only the fabric, the fabric laminate of Example 13 has the same initial load residual rate at 23 ° C. as in Example 2 in which the fabric is not laminated, and the softening degree is It was in the range of 25-80%, and a good fit was also obtained.
 この出願は、2021年6月25日に出願された日本出願特願2021-105799号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-105799 filed on June 25, 2021, and the entire disclosure thereof is incorporated herein.

Claims (17)

  1.  4-メチル-1-ペンテン系重合体(a)と、
     スチレン系エラストマー(b)と、
    を含み、
     前記4-メチル-1-ペンテン系重合体(a)が4-メチル-1-ペンテン由来の構成単位と4-メチル-1-ペンテン以外の炭素原子数2~10のα-オレフィン由来の構成単位とを含み、
     前記スチレン系エラストマー(b)がポリスチレンブロックとジエンブロックとのブロック共重合体の水添物であり、前記スチレン系エラストマー(b)全量に対する前記ポリスチレンブロックの含有量が0.0質量%よりも大きく50質量%以下であり、
     前記4-メチル-1-ペンテン系重合体(a)100質量部に対する前記スチレン系エラストマー(b)の含有量が5質量部以上500質量部以下である、組成物。
    4-methyl-1-pentene polymer (a);
    a styrene-based elastomer (b);
    including
    The 4-methyl-1-pentene-based polymer (a) is a structural unit derived from 4-methyl-1-pentene and a structural unit derived from an α-olefin having 2 to 10 carbon atoms other than 4-methyl-1-pentene and
    The styrene-based elastomer (b) is a hydrogenated block copolymer of a polystyrene block and a diene block, and the content of the polystyrene block relative to the total amount of the styrene-based elastomer (b) is greater than 0.0% by mass. 50% by mass or less,
    A composition, wherein the content of the styrene elastomer (b) is 5 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the 4-methyl-1-pentene polymer (a).
  2.  前記4-メチル-1-ペンテン系重合体(a)は、昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上100℃以下の範囲に1つ以上あり、かつ、前記損失正接の極大値が0.5以上3.5以下である、請求項1に記載の組成物。 The 4-methyl-1-pentene polymer (a) has a loss tangent ( tan δ) has at least one temperature in the range of 10° C. or higher and 100° C. or lower, and the maximum value of the loss tangent is 0.5 or higher and 3.5 or lower. Composition.
  3.  前記スチレン系エラストマー(b)は、水添スチレン・ブタジエンゴム(HSBR)、水添スチレン・ブタジエンブロック共重合体(SEBS)、水添スチレン・イソプレンブロック共重合体(SEPS)、及び水添スチレン・イソプレン・ブタジエンブロック共重合体(SEEPS)の中から選ばれる1種または2種以上である、請求項1または2に記載の組成物。 The styrene elastomer (b) includes hydrogenated styrene/butadiene rubber (HSBR), hydrogenated styrene/butadiene block copolymer (SEBS), hydrogenated styrene/isoprene block copolymer (SEPS), and hydrogenated styrene/ 3. The composition according to claim 1, which is one or more selected from isoprene-butadiene block copolymers (SEEPS).
  4.  前記スチレン系エラストマー(b)全量に対する前記ポリスチレンブロックの含有量が5質量%以上15質量%以下である、請求項1乃至3いずれか一項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the content of said polystyrene block relative to the total amount of said styrene-based elastomer (b) is 5% by mass or more and 15% by mass or less.
  5.  流動点がマイナス10℃以下の飽和炭化水素化合物(d)を、前記4-メチル-1-ペンテン系重合体(a)および前記スチレン系エラストマー(b)の合計量100重量部に対して、0.1~20重量部含む、請求項1乃至5いずれか一項に記載の組成物。 A saturated hydrocarbon compound (d) having a pour point of -10°C or less is added to 100 parts by weight of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) to 0. .1 to 20 parts by weight of the composition according to any one of the preceding claims.
  6.  前記スチレン系エラストマー(b)全量に対する前記ポリスチレンブロックの含有量が25質量%を超えて50質量%以下であり、
     流動点がマイナス10℃以下の飽和炭化水素化合物(d)を、前記4-メチル-1-ペンテン系重合体(a)および前記スチレン系エラストマー(b)の合計量100重量部に対して、0.1~20重量部含む、請求項1乃至5いずれか一項に記載の組成物。
    The content of the polystyrene block with respect to the total amount of the styrene elastomer (b) is more than 25% by mass and 50% by mass or less,
    A saturated hydrocarbon compound (d) having a pour point of -10°C or less is added to 100 parts by weight of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) to 0. .1 to 20 parts by weight of the composition according to any one of the preceding claims.
  7.  前記組成物は、昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる30℃における損失正接(tanδ)の値の絶対値が0.5以上である、請求項1乃至6いずれか一項に記載の組成物。 The composition has an absolute value of loss tangent (tan δ) at 30° C. obtained by dynamic viscoelasticity measurement under the conditions of a heating rate of 4° C./min, a frequency of 1.59 Hz, and a strain of 0.1%. 7. A composition according to any one of claims 1 to 6, which is greater than or equal to 0.5.
  8.  以下の条件iを満たす、請求項1乃至7いずれか一項に記載の組成物。
    (条件i)
     前記4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の合計量100質量部に対して化学発泡剤1質量部を含む前記組成物を用いて押出機のダイス温度190℃で押出成形した発泡性シートを準備し、合計厚みが7mmとなるように当該シートを重ね合わせ、試験片aとする。試験片aのショアA硬度(JIS K6253)が10~70である。
    8. A composition according to any one of claims 1 to 7, which satisfies condition i below.
    (Condition i)
    Using the composition containing 1 part by mass of a chemical foaming agent with respect to 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b), the die temperature of the extruder was 190. A foam sheet extruded at ℃ is prepared, and the sheets are overlapped so that the total thickness is 7 mm to obtain a test piece a. The Shore A hardness (JIS K6253) of the test piece a is 10-70.
  9.  以下の条件iiiを満たす、請求項1乃至8いずれか一項に記載の組成物。
    (条件iii)
     前記4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の合計量100質量部に対して化学発泡剤1質量部を含む前記組成物を用いて押出機のダイス温度190℃で押出成形した発泡性シートを準備し、当該シートを幅25mm×長さ100mmに打ち抜き、試験片cとする。試験片cに対し、引張試験機(万能引張試験機3380、インストロン社製)を用いて、23℃、40℃の2つの温度条件でチャック間距離30mm、及び引張速度300mm/min、試験片cをTD方向に50%伸長させ、60秒後の引張荷重[N/25mm]を測定する。各温度で得られた60秒後の引張荷重を以下の式にあてはめ、軟化度としたとき、当該軟化度が25%~80%である。
     軟化度[%]=〔40℃での60秒後の引張荷重[N/25mm]〕/〔23℃での60秒後の引張荷重[N/25mm]
    9. A composition according to any one of claims 1 to 8, which satisfies condition iii below.
    (Condition iii)
    Using the composition containing 1 part by mass of a chemical foaming agent with respect to 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b), the die temperature of the extruder was 190. A foam sheet extruded at ℃ is prepared, and the sheet is punched into a width of 25 mm and a length of 100 mm to obtain a test piece c. Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece c was subjected to two temperature conditions of 23 ° C. and 40 ° C. with a distance between chucks of 30 mm and a tensile speed of 300 mm / min. Extend c by 50% in the TD direction, and measure the tensile load [N/25 mm] after 60 seconds. When the tensile load obtained at each temperature after 60 seconds is applied to the following formula to determine the degree of softening, the degree of softening is 25% to 80%.
    Softness [%] = [Tensile load after 60 seconds at 40°C [N/25mm]]/[Tensile load after 60 seconds at 23°C [N/25mm]
  10.  以下の条件ivを満たす、請求項1乃至9いずれか一項に記載の組成物。
    (条件iv)
     前記4-メチル-1-ペンテン系重合体(a)とスチレン系エラストマー(b)の合計量100質量部に対して化学発泡剤1質量部を含む前記組成物を用いてダイス温度190℃で押出成形した発泡性シートを準備し、当該シートの、試験温度10℃で測定した面衝撃強度(JIS K7211-2準拠)が0.6J以上である。
    10. A composition according to any one of claims 1 to 9, which satisfies condition iv below.
    (Condition iv)
    Extrusion at a die temperature of 190° C. using the composition containing 1 part by mass of a chemical foaming agent per 100 parts by mass of the total amount of the 4-methyl-1-pentene polymer (a) and the styrene elastomer (b) A molded foam sheet is prepared, and the surface impact strength (in accordance with JIS K7211-2) of the sheet measured at a test temperature of 10° C. is 0.6 J or more.
  11.  請求項1乃至10いずれか一項に記載の組成物が成形された成形体。 A molded article obtained by molding the composition according to any one of claims 1 to 10.
  12.  前記成形体が気泡を含み、密度が0.10~1.0g/cmである、請求項11に記載の成形体。 The molded article according to claim 11, wherein the molded article contains cells and has a density of 0.10 to 1.0 g/cm 3 .
  13.  請求項11または12に記載の成形体がシートであり、
     前記シートの少なくとも一方の面に生地が貼り合わされた、生地積層体。
    The molded article according to claim 11 or 12 is a sheet,
    A fabric laminate in which a fabric is attached to at least one surface of the sheet.
  14.  前記生地積層体の少なくとも一部が湾曲し、曲率半径が50mm~150mmの範囲である、請求項13に記載の生地積層体。 The fabric laminate according to claim 13, wherein at least a portion of the fabric laminate is curved and has a radius of curvature in the range of 50 mm to 150 mm.
  15.  前記シートと前記生地とを、140~190℃、1.0~1.8MPaで貼り合せる工程を有する、請求項13または14に記載の生地積層体の製造方法。 The fabric laminate manufacturing method according to claim 13 or 14, comprising a step of bonding the sheet and the fabric together at 140 to 190°C and 1.0 to 1.8 MPa.
  16.  請求項13または14に記載の生地積層体を用いた衣料品。 A garment using the fabric laminate according to claim 13 or 14.
  17.  請求項11または12に記載の成形体の低温環境下での使用。 Use of the molded article according to claim 11 or 12 in a low temperature environment.
PCT/JP2022/025106 2021-06-25 2022-06-23 Composition and molded body WO2022270581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530118A JPWO2022270581A1 (en) 2021-06-25 2022-06-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021105799 2021-06-25
JP2021-105799 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022270581A1 true WO2022270581A1 (en) 2022-12-29

Family

ID=84544422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025106 WO2022270581A1 (en) 2021-06-25 2022-06-23 Composition and molded body

Country Status (2)

Country Link
JP (1) JPWO2022270581A1 (en)
WO (1) WO2022270581A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169662A (en) * 2001-02-27 2007-07-05 Riken Technos Corp Thermoplastic elastomer composition
JP2008234992A (en) * 2007-03-20 2008-10-02 Swcc Showa Cable Systems Co Ltd Insulating resin composition, and wire and cable using it
WO2011055803A1 (en) * 2009-11-06 2011-05-12 三井化学株式会社 4-METHYL-1-PENTENE/α-OLEFIN COPOLYMER, COMPOSITION COMPRISING THE COPOLYMER AND 4-METHYL-1-PENTENE COPOLYMER COMPOSITION
WO2013191222A1 (en) * 2012-06-20 2013-12-27 積水化学工業株式会社 Shock-absorbing material and sealing material
JP2017197682A (en) * 2016-04-28 2017-11-02 三井化学株式会社 Thermoplastic elastomer resin composition
JP2018009133A (en) * 2016-07-15 2018-01-18 住友電気工業株式会社 Resin composition, resin molding and insulated wire
JP2018079583A (en) * 2016-11-14 2018-05-24 フタムラ化学株式会社 Polypropylene-based stretched sealant film and film laminate using the same
WO2018143411A1 (en) * 2017-02-02 2018-08-09 三井化学東セロ株式会社 Foam body, polyolefin-based foam sheet and complex
JP2019130707A (en) * 2018-01-30 2019-08-08 三井化学株式会社 Damping material
JP2019155917A (en) * 2018-03-07 2019-09-19 三菱ケミカル株式会社 Support material for laminate shaping

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169662A (en) * 2001-02-27 2007-07-05 Riken Technos Corp Thermoplastic elastomer composition
JP2008234992A (en) * 2007-03-20 2008-10-02 Swcc Showa Cable Systems Co Ltd Insulating resin composition, and wire and cable using it
WO2011055803A1 (en) * 2009-11-06 2011-05-12 三井化学株式会社 4-METHYL-1-PENTENE/α-OLEFIN COPOLYMER, COMPOSITION COMPRISING THE COPOLYMER AND 4-METHYL-1-PENTENE COPOLYMER COMPOSITION
WO2013191222A1 (en) * 2012-06-20 2013-12-27 積水化学工業株式会社 Shock-absorbing material and sealing material
JP2017197682A (en) * 2016-04-28 2017-11-02 三井化学株式会社 Thermoplastic elastomer resin composition
JP2018009133A (en) * 2016-07-15 2018-01-18 住友電気工業株式会社 Resin composition, resin molding and insulated wire
JP2018079583A (en) * 2016-11-14 2018-05-24 フタムラ化学株式会社 Polypropylene-based stretched sealant film and film laminate using the same
WO2018143411A1 (en) * 2017-02-02 2018-08-09 三井化学東セロ株式会社 Foam body, polyolefin-based foam sheet and complex
JP2019130707A (en) * 2018-01-30 2019-08-08 三井化学株式会社 Damping material
JP2019155917A (en) * 2018-03-07 2019-09-19 三菱ケミカル株式会社 Support material for laminate shaping

Also Published As

Publication number Publication date
JPWO2022270581A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP7144548B2 (en) Foams, polyolefin foam sheets and composites
CA2712517C (en) Elastomeric materials
KR101679897B1 (en) Polyolefin-based artificial leather
US11345788B2 (en) Porous sheet, and porous composite
AU2021202336B2 (en) Thermoplastic cast
JP6905561B2 (en) Elastic structures, multi-layer elastic sheets, spun yarns and fiber structures
WO2022270581A1 (en) Composition and molded body
JP2004182916A (en) Moisture-permeating resin composition and moisture-permeating elastic film
TW201404599A (en) An article comprising a flame retardant polymeric foam
JP6954778B2 (en) Elastic structure and multi-layer elastic sheet
JP2002331024A (en) Laminating material and adhesive plaster as well as emergency adhesive plaster
JP7144524B2 (en) Shock absorbers and protective equipment
JP2021083845A (en) Cushion member
US20230120980A1 (en) Composition and molded article
JP6681824B2 (en) Composite and method for producing the same
JP2002159093A (en) Foamed speaker diaphragm edge material and its producing method
JP2015229721A (en) Moisture-permeable film
JP2023005769A (en) Chair
JP2004161009A (en) Polyolefinic-resin foam sheet
JP2015229720A (en) Moisture-permeable film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530118

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE