WO2022270363A1 - アレイ型超音波送受信装置 - Google Patents

アレイ型超音波送受信装置 Download PDF

Info

Publication number
WO2022270363A1
WO2022270363A1 PCT/JP2022/023827 JP2022023827W WO2022270363A1 WO 2022270363 A1 WO2022270363 A1 WO 2022270363A1 JP 2022023827 W JP2022023827 W JP 2022023827W WO 2022270363 A1 WO2022270363 A1 WO 2022270363A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
axis direction
probe
array
array probe
Prior art date
Application number
PCT/JP2022/023827
Other languages
English (en)
French (fr)
Inventor
卓弥 岸本
薫 北見
浩行 郡司
高明 黛
昇三 宮部
巖 中嶋
Original Assignee
株式会社日立パワーソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーソリューションズ filed Critical 株式会社日立パワーソリューションズ
Priority to CN202280043792.3A priority Critical patent/CN117529658A/zh
Priority to KR1020237044312A priority patent/KR20240011784A/ko
Publication of WO2022270363A1 publication Critical patent/WO2022270363A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Definitions

  • the present invention relates to an array-type ultrasonic transmission/reception device.
  • ultrasonic transmission/reception device that irradiates an object such as a semiconductor with ultrasonic waves, generates image information of the inside of the object based on the reflected waves, and detects defects inside the object. According to this ultrasonic transmission/reception device, non-destructive high-resolution inspection can be performed, and the reliability of electronic components can be ensured.
  • an ultrasonic inspection apparatus uses an array probe that is composed of a plurality of ultrasonic transducers arranged in a straight line and electronically scans these ultrasonic transducers (Patent Document 1).
  • This ultrasonic inspection apparatus is configured to scan a predetermined width with one electronic scan while the array probe is stationary. Specifically, while a single probe performs processing with one ultrasonic transducer, high-speed processing is realized by performing electronic scanning processing with a plurality of ultrasonic transducers that constitute an array probe.
  • the above-mentioned prior art discloses a method of moving to the next inspection position after completing the electronic scanning process with the array probe stationary, and performing the electronic scanning process with the array probe stationary again. That is, the method in which the array probe is stationary when electronically scanned.
  • the time required to transmit ultrasonic waves from one inspection position to the next inspection position is the sum of the electronic scanning time and the probe movement time. Further high-speed processing is required in order to shorten the inspection time in the ultrasonic transmitter/receiver.
  • An object of the present invention is to provide an ultrasonic transmission/reception device that reduces examination time.
  • an array-type ultrasonic transmitting/receiving apparatus of the present invention is an array-type ultrasonic transmitting/receiving apparatus including an array probe having a plurality of ultrasonic transducers arranged in a straight line.
  • the arrangement direction of the ultrasonic transducer is the Y-axis direction of the scanning plane, and the direction perpendicular to the arrangement direction is the X-axis direction of the scanning plane, and a preset scanning is performed Based on the conditions, the array probe is moved in the X-axis direction without being stationary, and the array probe sequentially transmits ultrasonic beams to a plurality of irradiation points of the subject while moving in the X-axis direction.
  • the position of the array probe at the start of the first electronic scanning for irradiating the subject with an ultrasonic beam is defined as the origin of the scanning plane of the array probe.
  • the Y-coordinate of the position of the array probe at the start of the electronic scan is Yl
  • the Y-coordinate Yl+1 of the array probe in the Y-axis direction after the movement is Yl .
  • the array probe moves to a position where the X coordinate is from X k to X k+1 , and moves in the direction approaching the origin.
  • the array probe is moved from X k to X k ⁇ 1 in X coordinate position, and while electronic scanning is performed, the array probe is moved in the X axis direction from X k to X k+1 ; moving the array probe in the Y-axis direction by the scanning width of the electronic scanning so that the Y coordinate is from Yl to Yl+1 at the end of the movement of the forward scanning operation, and the array probe while performing the electronic scanning is moved in the X-axis direction from X k to X k-1 , and at the end of the movement in the X-axis direction, the array probe is moved in the Y-axis direction so that the Y coordinate is from Y l to Y l+1 .
  • the scanning plane is electronically scanned by alternate
  • the present invention it is possible to shorten the inspection time of the ultrasonic transmission/reception device.
  • FIG. 4 is a diagram for explaining an irradiation point of an ultrasonic beam of a probe;
  • FIG. 4 is a diagram showing positions of irradiation points of ultrasonic beams in planar scanning of a probe;
  • FIG. 4 is a diagram for explaining a coordinate system in which a scanner control unit scans a plane with a probe;
  • FIG. 1 is a diagram showing the overall configuration of an ultrasonic transmission/reception device according to an embodiment.
  • the ultrasonic transmitting/receiving device 1 includes a 3-axis scanner 2 (scanning means) and an ultrasonic array probe (hereinafter referred to as probe).
  • the three-axis scanner 2 scans (plane scans) the probe 4 two-dimensionally in the X-axis direction and the Y-axis direction with respect to the planar subject 8 . Accordingly, the ultrasonic transmission/reception device 1 can image the planar subject 8 using ultrasonic waves.
  • the probe 4 is a phased array ultrasonic probe (ultrasonic array probe) in which a large number of transducers are arranged in strips. Specifically, the oscillation timing of some of the multiple transducers (transducer group) in a large number of transducers is controlled to create an ultrasonic convergence beam (ultrasonic beam), and the transducer group is electronically switched. By moving, the irradiation position is changed to irradiate the ultrasonic beam, and the object 8 is one-dimensionally scanned. In this specification, electronic scanning of an ultrasonic beam by a phased array ultrasonic probe is referred to as electronic scanning. Reception control of reflected waves of ultrasonic beams is also performed by controlling the group of transducers.
  • the probe 4 may focus ultrasonic waves generated from a single transducer with an acoustic lens and irradiate the subject with the ultrasonic waves, and the transducers may be configured in a plurality of strips. Also in this configuration, electronic scanning of the subject 8 is performed by changing the irradiation position of the ultrasonic beam by electronically switching the transducers.
  • the probe 4 is immersed in the water filled in the water tank 91 and placed so that the tip of the probe 4 faces the subject 8 .
  • the probe 4 is attached to the 3-axis scanner 2 with a holder 24 .
  • a water tank 91 is placed on a table 92 .
  • the three-axis scanner 2 detects the scanning position based on the linear position or the rotational position (angular position) detected by the built-in encoder for detecting positional changes.
  • the ultrasound imaging apparatus 1 can two-dimensionally visualize the relationship between each scanning position (scanning point) of the subject 8 and the echo wave.
  • the three-axis scanner 2 includes an X-axis scanner 21 and a Y-axis scanner 22 for scanning the probe 4, a Z-axis scanner 23 for varying the distance between the probe 4 and the subject 8, and a holder 24 for holding the probe 4. .
  • the height of the probe 4 is adjusted by the table 92 before the examination, and the distance from the subject 8 is adjusted by the Z-axis scanner 23 .
  • the probe 4 is continuously moved at a predetermined speed by the X-axis scanner 21 of the 3-axis scanner 2 in a direction perpendicular to the direction in which the plurality of transducers are linearly arranged (hereinafter, this direction is referred to as the X-axis direction).
  • the probe 4 is moved (scanned), in other words, the probe 4 is moved in the X-axis direction without standing still. is moved (shift operation) by the scanning width of .
  • the holder 24 supports the flange 42 provided on the top of the probe 4 so that it can move upward smoothly when an upward force is applied to the probe 4 .
  • a sensor 3 is provided on the holder 24 to detect that the probe 4 has moved upward.
  • the control device 10 includes a control unit 18, a transmission/reception command unit 12, a transducer operation signal generation unit 14, a reflected wave signal processing unit 15, a reflected wave image generation unit 16, and a display unit 17. 4 and the display control of echo waves from the subject 8 are performed.
  • the mechanical control unit 11 drives the X-axis scanner 21 and the Y-axis scanner 22 based on the output of the encoders built into the X-axis scanner 21 and the Y-axis scanner 22 according to the scanning conditions described later, and the probe 4 moves over the object 8. It is a control unit for moving the scanning plane parallel to the subject 8 above.
  • the transmission/reception command unit 12 is a control unit that commands the transducer operation signal generation unit 14 to generate a transducer operation signal and starts electronic scanning of the probe 4 .
  • the transducer operation signal generation unit 14 generates transducer operation signals according to the transducer group and scanning order selected by the transmission/reception command unit 12, and transmits the signals to the probe 4 for each scanning point.
  • the probe 4 irradiates an ultrasonic beam according to the transducer operation signal from the transducer operation signal generator 14 .
  • the reflected wave signal processing unit 15 receives the signal of the reflected wave of the ultrasonic beam from the probe 4 for each scanning point, provides a gate corresponding to the depth of the object 8 to be measured, and performs gate processing to obtain the reflected wave. A displacement (amplitude) is obtained, and the signal strength is calculated from the displacement.
  • the reflected wave image generation unit 16 converts the signal intensity of the reflected wave for each scanning point calculated by the reflected wave signal processing unit 15 into a gradation of 0 to 255, for example.
  • a reflected wave of the ultrasonic beam is generated at a boundary surface where the acoustic impedance (density) changes, such as a boundary between the subject 8 and the water in the water tank 91, a material boundary inside the subject 8, a peeled portion, a void portion, or the like.
  • the reflected wave image generation unit 16 sets the gradation to 0 at a point where there is no reflected wave of the ultrasonic beam, and increases the gradation as the signal strength of the reflected wave increases.
  • the display unit 17 displays the signal intensity of the reflected wave of the ultrasonic beam obtained by the reflected wave image generation unit 16 as a grayscale image obtained by planarly scanning the subject 8 . Specifically, black is displayed when the gradation is 0, white is displayed when the gradation is the maximum value, and gray is displayed according to the gradation when the gradation is an intermediate value. As a result, the ultrasound transmitting/receiving apparatus 1 displays the planarly scanned cavity of the subject 8 (which has a large difference in density from its surroundings) as a white image.
  • the control unit 18 controls the mechanical control unit 11 and also controls the transmission/reception command unit 12 in synchronization with the encoder output of the X-axis scanner 21 notified from the mechanical control unit 11 . That is, the control unit 18 starts electronic scanning in synchronization with the scanning operation of the probe 4 . As a result, the scanning pitch of the subject 8 in the X-axis direction by electronic scanning of the probe 4 becomes equal to the pitch of the encoder output of the X-axis scanner 21 .
  • the probe 4 is configured by linearly arranging 192 transducers.
  • a case is shown in which the vibrator is composed of
  • the ultrasound transmitting/receiving apparatus 1 uses the set position of the subject 8 as the scanning origin (upper left of the scanning area in FIG. 2), specifies the size of the scanning area, and performs planar scanning with the probe 4 .
  • the three-axis scanner 2 is driven to move the probe 4 so that the starting point of electronic scanning of the probe 4 is positioned at the origin of planar scanning.
  • the probe 4 is moved including the run-up so that the moving speed when passing the start point of the electronic scan is a predetermined value.
  • the probe 4 performs electronic scanning with the transducers a, b, c, d, e, f, and g, and is scanned in the direction in which the transducers are arranged by the X-axis scanner 21 of the triaxial scanner 2. Move vertically. The probe 4 then performs the next electronic scan in synchronization with the encoder output of the X-axis scanner 21 . The probe 4 repeats this for the width of the scanning area (the size in the X-axis direction).
  • the probe 4 repeats electronic scanning while continuously moving the probe 4 in the X-axis direction (scanning operation 1) without standing still, and the length in the Y-axis direction is the scanning width of the electronic scanning.
  • an ultrasonic beam is applied to a band-shaped scanning area having a width of the scanning area whose length in the X-axis direction is set, and reflected waves from the subject 8 are detected.
  • control device 10 converts the reflected wave from the subject 8 detected by one electronic scan of the probe 4 into the reflected wave of the ultrasonic beam having the same position (scanning row) in the X-axis direction as a reflected wave. is calculated and displayed as a grayscale image.
  • the probe 4 is moved by the Y-axis scanner 22 of the 3-axis scanner 2 by the scanning width of the electronic scan (shift operation) parallel to the arrangement direction of the plurality of transducers. Then, the probe 4 is moved by the X-axis scanner 21 so that the starting point of the electronic scanning of the probe 4 is at the same position in the X-axis direction as the starting point of the last electronic scanning of the scanning operation 1 described above.
  • the probe 4 performs electronic scanning with the transducers a, b, c, d, e, f, and g, and the X-axis scanner 21 of the triaxial scanner 2 scans the transducers in parallel in the direction opposite to the scan operation 1. Move in a direction perpendicular to the direction. The probe 4 then performs the next electronic scan in synchronization with the encoder output of the X-axis scanner 21 . The probe 4 repeats this for the width of the scanning area (the size in the X-axis direction).
  • the probe 4 repeats the electronic scanning while continuously moving the probe 4 in the X-axis direction (scanning operation 2), and the length in the Y-axis direction is the scanning width of the electronic scanning, and the X An ultrasonic beam is applied to a band-shaped scanning area having a width of the scanning area whose length in the axial direction is set, and reflected waves from the subject 8 are detected.
  • the control device 10 ends the plane scanning. Then, electronic scanning is performed and scan operation 3, shift operation, and scan operation 4 are performed in the same manner as the previous operation. The control device 10 repeats the above operation until the specified scanning area is covered, and performs planar scanning of the subject 8 .
  • the X-axis direction of the irradiation point of the ultrasonic beam depends on the irradiation timing of the ultrasonic beam. position is shifted. Next, the relationship between the irradiation timing of the ultrasonic beam and the irradiation point will be described.
  • FIG. 3A is a diagram for explaining the irradiation point of the ultrasonic beam of the probe 4.
  • Irradiation points a, b, c, d, e, f, and g are irradiation points of ultrasonic beams by electronic scanning of transducers a, b, c, d, e, f, and g of the probe 4 .
  • the irradiation point a is the irradiation point corresponding to the origin of the scanning area, and is the irradiation point of the first ultrasonic beam for electronic scanning synchronized with the encoder output of the X-axis scanner 21 during the scanning operation.
  • the solid-line rectangle in FIG. 3A indicates the position of the probe 4 when the ultrasonic beam is first applied, and the dashed-line rectangle indicates the position of the probe 4 when the ultrasonic beam is finally applied.
  • the probe 4 irradiates ultrasonic beams sequentially from the irradiation point a toward the other end of the probe 4 . Therefore, the irradiation points b, c, d, e, f, and g are shifted little by little in the scanning direction.
  • FIG. 3B is a diagram showing the positions of the irradiation points of the ultrasonic beams in the plane scans of the scan operation 1 and the scan operation 2 of the probe 4 . Since the irradiation point a of the probe 4 is electronically scanned in synchronization with the encoder output of the X-axis scanner 21, the position in the X-axis direction is the same between the scan operation 1 and the scan operation 2. FIG. However, the irradiation points b, c, d, e, f, and g are shifted little by little according to the scanning direction.
  • FIG. 4 is a diagram for explaining a control coordinate system in which the control device 10 scans the plane of the probe 4. As shown in FIG. 4
  • the mechanical control unit 11 sets the direction perpendicular to the direction in which the ultrasonic transducers of the probe 4 are arranged in the X-axis direction of the scanning plane, and the direction in which the ultrasonic transducers are arranged in the Y-axis direction of the scanning plane.
  • a coordinate system is defined with the position of the probe 4 at the start of the first electronic scan for irradiating the beam as the origin of the scanning plane.
  • Coordinates (X k , Y l ) are the position of the probe 4 when the ultrasonic beam is irradiated to the irradiation point a (the first irradiation point of the electronic scan) for each electronic scan of the probe 4 .
  • the position of the irradiation point a for each electronic scan represents the position of the probe 4 .
  • the subscript k of the Xk coordinate is a number indicating the irradiation point of the ultrasonic beam in the X-axis direction, and takes any value from 0 to n.
  • the X0 coordinate and the Xn coordinate indicate the positions of the ends of the movement of the probe 4 in the X-axis direction, and n+1 indicates the number of irradiation points in the X-axis direction of the scanning plane.
  • the subscript l of the Yl coordinate is a number indicating the irradiation point of the ultrasonic beam in the Y-axis direction, and takes any value from 0 to m.
  • the Y0 coordinate and the Ym coordinate indicate the positions of the ends of the movement of the probe 4 in the Y-axis direction, and m + 1 indicates the number of irradiation points in the Y-axis direction of the scanning plane.
  • n is obtained by dividing the length in the X-axis direction of the region (scanning area) to be planarly scanned by half the resolution of the ultrasonic transmission/reception device 1 . That is, n is a value obtained by dividing the length of the scanning area in the X-axis direction by the movement distance Dm, which is the distance between the Xk coordinates. Further, m is obtained by dividing the length of the region (scanning area) to be planarly scanned in the Y-axis direction by the scanning width of the electronic scanning of the probe 4 .
  • the mechanical control unit 11 sets the position of the probe 4 at the start of the first electronic scan for irradiating the subject 8 with an ultrasonic beam as the origin of the scanning plane, and sets the position of the probe 4 at the start of the electronic scan in the Y-axis direction.
  • the Y coordinate of the position of the probe 4 is Yl
  • the next position Yl+1 of the probe 4 in the Y-axis direction due to the movement is the position obtained by adding the scanning width of the electronic scan to Yl
  • a control coordinate system is defined in which the X coordinate of the position of the probe 4 at the start of the electronic scan is Xk.
  • the mechanical control unit 11 controls the X-axis scanner 21 continuously moves the probe 4 from coordinates (X k , Y l ) to coordinates (X k+1 , Y l ) (k is from 0 to n). Further, when controlling the movement of the probe 4 in the scan operation 2 or the scan operation 4, that is, when moving the probe 4 in a direction approaching the origin, the mechanical control unit 11 causes the X-axis scanner 21 to move the probe 4 to coordinates (X k , Y l ) to coordinates (X k ⁇ 1 , Y l ) (k is 0 from n).
  • the velocity V m is the moving distance Dm, which is the distance between the X k coordinates, and the moving time T m from the coordinates (X k , Y l ) to the coordinates (X k+1 , Y l ), or the coordinates (X k , Y l ) to the coordinates (X k ⁇ 1 , Y l ) by the time T m .
  • the movement time Tm is set equal to the scan time Ts, which is the sum of transmission and reception times at a plurality of electronic scanning irradiation points, so that one electronic scanning can be performed while the probe 4 is moving in the X-axis direction. Accordingly, in the present invention, when the electronic scan is started at the X k coordinate, and the electronic scan is completed and the electronic scan process is started at the next X k+1 coordinate, the first transducer of the array probe is already X k+1. It will be located at the coordinates. As in the known art, the time required to move from the Xk coordinate to the Xk + 1 coordinate after one-electron scanning is completed is zero.
  • the moving speed Vm of the probe 4 must be less than or equal to the maximum speed (Vmax) within which disturbance factors such as water fluctuations and air bubbles do not occur.
  • the scanning time of one electronic scan is 0.0025536 seconds.
  • the maximum value (Vmax) of the moving speed is 300 mm/sec from the results of previous experiments, and since the moving speed Vm is within Vmax, disturbance factors such as water fluctuations and air bubbles do not occur.
  • the mechanical control unit 11 stores this moving speed Vm as a scanning condition.
  • the mechanical control unit 11 manages the Xk coordinate by the encoder output of the X-axis scanner 21, and moves the probe 4 at the moving speed Vm .
  • the mechanical control unit 11 moves from the coordinates (X k+1 , Y l ) to the coordinates (X k+1 , Y l+1 ), or from the coordinates (X k-1 , Y l ) to the coordinates (X k- 1 , Y l+1 ), the Y-axis scanner 22 is driven to move the probe 4 in the Y-axis direction.
  • the ultrasonic transmitting/receiving apparatus 1 moves the probe 4 in the X-axis direction from X coordinate X k to X k+1 while electronically scanning the probe 4 , and moves the probe 4 at the end of the X-axis direction movement. 4 in the Y - axis direction from Y coordinate Y1 to Y1 +1 ; and an operation of moving the probe 4 in the Y-axis direction from Y coordinate Y1 to Y1 +1 at the end of movement in the X-axis direction. Scan electronically.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

直線状に配置した複数の超音波振動子を有するアレイプローブを備えたアレイ型超音波送受信装置は、被検体の上方の被検体と平行な走査平面において、超音波振動子の配置方向を走査平面のY軸方向、配置方向と垂直な方向を走査平面のX軸方向とし、予め設定された走査条件に基づいて、静止することなくX軸方向にアレイプローブを移動し、アレイプローブが、X軸方向の移動中に、被検体の複数の照射点に超音波ビームを順次送信しその反射波を受信する電子スキャンを行い、検査時間を短縮した超音波送受信装置を提供する。

Description

アレイ型超音波送受信装置
 本発明は、アレイ型超音波送受信装置に関する。
 半導体などの被検体に超音波を照射して、その反射波に基づいて被検体内部の画像情報を生成し、被検体内部の欠陥を検出する超音波送受信装置がある。この超音波送受信装置によれば、非破壊による高分解能検査を行うことができ、電子部品の信頼性を確保できる。
 近年の半導体ウェハの高密度実装化に伴う検査時間の短縮が求められている。これを実現するためには、超音波の送受信処理の短縮が必須になっている。
 このため、直線状に配置された複数の超音波振動子で構成し、これらの超音波振動子を電子走査(電子スキャン)するアレイプローブを使用する超音波検査装置が考案されている(特許文献1を参照)。
 この超音波検査装置では、アレイプローブを静止した状態で一度の電子スキャンで所定幅をスキャンする構成となっている。詳しくは、シングルプローブが、ひとつ超音波振動子により処理をするのに対して、アレイプローブを構成する複数の超音波振動子により電子スキャン処理を行うことにより、高速処理を実現している。
特開昭63-177056号公報
 上記の先行技術では、アレイプローブが静止した状態における電子スキャン処理を終了したら、次の検査位置に移動し、再びアレイプローブを静止して電子スキャン処理を行う方法が開示されている。つまり、電子スキャンするときには、アレイプローブが静止している方法である。
 詳しくは、ある検査位置において超音波を送信し、次の検査位置で超音波を送信するまでに要する時間は、電子スキャンの時間とプローブの移動時間の和の時間となる。
 超音波送受信装置における検査時間の短縮のため、さらなる高速処理が必要になっている。
 本発明の目的は、検査時間を短縮した超音波送受信装置を提供することにある。
 前記課題を解決するため、本発明のアレイ型超音波送受信装置は、直線状に配置した複数の超音波振動子を有するアレイプローブを備えたアレイ型超音波送受信装置であって、被検体の上方の前記被検体と平行な走査平面において、前記超音波振動子の配置方向を前記走査平面のY軸方向、前記配置方向と垂直な方向を前記走査平面のX軸方向とし、予め設定された走査条件に基づいて、静止することなくX軸方向に前記アレイプローブを移動し、前記アレイプローブが、X軸方向の移動中に、前記被検体の複数の照射点に超音波ビームを順次送信しその反射波を受信する電子スキャンを行うアレイ型超音波送受信装置において、前記被検体に超音波ビームを照射する最初の電子スキャンの開始時における前記アレイプローブの位置を前記アレイプローブの走査平面の原点とし、Y軸方向において、電子スキャンの開始時のアレイプローブの位置のY座標をYとしたとき、移動による前記アレイプローブの次のY軸方向のY座標Yl+1は、Yに電子スキャンの走査幅を加算した値の位置としたときに、前記原点から離間する方向に移動するときには前記アレイプローブはX座標がXからXk+1の位置に移動し、前記原点に接近する方向に移動するときには前記アレイプローブはX座標がXからXk―1の位置に移動し、電子スキャンを行いながらアレイプローブをX軸方向にX座標がXからXk+1に移動する動作と、X軸方向の移動終端でアレイプローブをY軸方向にY座標がYからYl+1となるように電子スキャンの走査幅分を移動する動作と、から成る往動スキャン動作と、電子スキャンを行いながらアレイプローブをX軸方向にX座標がXからXk―1に移動する動作と、X軸方向の移動終端でアレイプローブをY軸方向にY座標がYからYl+1となるように電子スキャンの走査幅分を移動する動作と、から成る復動スキャン動作と、を交互に繰り返して前記走査平面を電子スキャンするようにした。
 本発明によれば、超音波送受信装置の検査時間を短縮することができる。
実施形態の超音波送受信装置の全体構成を示す図である。 超音波送受信装置におけるプローブの平面走査の動作内容を説明する図である。 プローブの超音波ビームの照射点について説明する図である。 プローブの平面走査における超音波ビームの照射点の位置を示す図である。 スキャナ制御部がプローブを平面走査する座標系を説明する図である。
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
 図1は、実施形態の超音波送受信装置の全体構成を示す図である。
 超音波送受信装置1は、3軸スキャナ2(走査手段)と、超音波アレイプローブ(以下、プローブと記す)を備えている。この3軸スキャナ2は、平面状の被検体8に対してプローブ4をX軸方向とY軸方向の二次元で走査(平面走査)する。これにより超音波送受信装置1は、平面状の被検体8を超音波によって映像化することができる。
 プローブ4は、多数の振動子を短冊状に並べたフェイズドアレイ超音波プローブ(超音波アレイプローブ)である。詳しくは、多数の振動子における一部の複数の振動子(振動子群)のそれぞれの発振タイミングを制御して超音波収束ビーム(超音波ビーム)を作り、振動子群を電子的に切り替えていくことで、照射位置を変えて超音波ビームを照射し、被検体8を一次元走査する。本明細書では、フェイズドアレイ超音波プローブによる電子的な超音波ビームの走査を電子スキャンと記す。
 超音波ビームの反射波の受信制御も、振動子群を制御して行う。
 また、プローブ4が、単一の振動子から発生した超音波を音響レンズで集束して被検体に照射し、この振動子を短冊状に複数個構成されるようにしてもよい。この構成でも、振動子を電子的に切り替えていくことで、超音波ビームの照射位置を変えて、被検体8の電子スキャンを行う。
 プローブ4は、水槽91に満たされた水に浸漬され、プローブ4の先端が被検体8に対向するように配置される。プローブ4は、ホルダ24により3軸スキャナ2に取り付けられている。
 水槽91は、台92の上に載置される。
 この3軸スキャナ2は、プローブ4を二次元で走査する際に、内蔵する位置変化を検出するエンコーダにより検出した直線位置又は回転位置(角度位置)に基づいて、その走査位置を検出する。これにより、超音波映像装置1は、被検体8の各走査位置(走査点)とエコー波との関係を二次元で映像化することができる。
 3軸スキャナ2は、プローブ4を走査するX軸スキャナ21及びY軸スキャナ22と、プローブ4と被検体8との間隔を可変するZ軸スキャナ23と、プローブ4を把持するホルダ24とを備える。
 また、プローブ4は、検査前に台92によって高さが調整されると共に、Z軸スキャナ23により被検体8との間隔が調整される。
 プロ―プ4は、複数の振動子がリニアに並設された方向に垂直な方向(以下、この方向をX軸方向と呼ぶ)に、3軸スキャナ2のX軸スキャナ21により所定速度で連続移動(スキャン動作)され、つまり、静止することなくX軸方向にプローブ4を移動し、その後、3軸スキャナ2のY軸スキャナ22により、複数の振動子の並設方向と並行に、電子スキャンの走査幅分の移動(シフト動作)が行われる。
 このホルダ24は、プローブ4の上部に設けられた鍔部42を支え、このプローブ4に上向きの力が加わったときにスムーズに上方向に動くようにしている。ホルダ24にはセンサ3が設けられており、プローブ4が上方向に動いたことを検知する。
 制御装置10は、制御部18、送受信指令部12、振動子動作信号生成部14、反射波信号処理部15、反射波画像生成部16と表示部17を備え、3軸スキャナ2の制御、プローブ4の送受信制御と被検体8からのエコー波の表示制御とを行う。
 メカ制御部11は、後述する走査条件に従い、X軸スキャナ21及びY軸スキャナ22が内蔵するエンコーダ出力に基づいて、X軸スキャナ21及びY軸スキャナ22を駆動し、プローブ4が被検体8の上方の被検体8と平行な走査平面を移動するための制御部である。
 送受信指令部12は、振動子動作信号生成部14に振動子動作信号の生成を指令し、プローブ4の電子スキャンを開始する制御部である。
 振動子動作信号生成部14は、送受信指令部12で選択された振動子群と走査順序とに従って振動子動作信号を生成し、走査点毎に、プロ―プ4に送信する。
 プローブ4は、振動子動作信号生成部14の振動子動作信号により超音波ビームを照射する。
 反射波信号処理部15は、走査点毎に、プローブ4から超音波ビームの反射波の信号を受信し、測定する被検体8の深度に対応するゲートを設けてゲート処理することによって反射波の変位(振幅)を求め、その変位によって信号強度を算出する。
 反射波画像生成部16は、反射波信号処理部15で算出した走査点毎の反射波の信号強度を、例えば、0~255の階調度に変換する。被検体8と水槽91の水との境界や被検体8の内部の材料境界・剥離部・ボイド部等の音響インピーダンス(密度)が変わる境界面では、超音波ビームの反射波が生じる。反射波画像生成部16は、超音波ビームの反射波が無い点を階調度が0、反射波の信号強度が大きくなるほど、階調度を大きくする。
 表示部17は、反射波画像生成部16で求めた超音波ビームの反射波の信号強度を、被検体8の平面走査した濃淡画像として表示する。具体的には、階調度が0の場合には黒色を表示し、階調度が最大値の場合に白色を表示し、階調度が中間値の場合には階調度に応じて灰色を表示する。
 これにより、超音波送受信装置1は、平面走査した被検体8の空洞(周囲と密度の差が大きい)を白い画像として表示する。
 制御部18は、メカ制御部11を制御すると共に、メカ制御部11から通知されるX軸スキャナ21のエンコーダ出力に同期して、送受信指令部12を制御する。つまり、制御部18は、プローブ4のスキャン動作に同期して電子スキャンを開始する。これにより、プローブ4の電子スキャンによる被検体8のX軸方向の走査ピッチは、X軸スキャナ21のエンコーダ出力のピッチに等しくなる。
 次に、図2により、超音波送受信装置1におけるプローブ4の平面走査の動作内容を説明する。
 プローブ4は、例えば、192個の振動子がリニアに並設されて構成されるが、図2には、プローブ4が、振動子a、b、c、d、e、f、gの7個の振動子で構成される場合を示している。
 超音波送受信装置1は、被検体8の設定された位置を走査の原点(図2の走査エリアの左上)とし、走査エリアの大きさが指定されて、プローブ4の平面走査を行う。
 まず、プローブ4の電子スキャンの開始点が平面走査の原点に位置するように、3軸スキャナ2を駆動して、プローブ4を移動する。詳しくは、電子スキャンはプローブ4の移動中に行うため、プローブ4が電子スキャンの開始点を通過する際の移動速度が所定値になるように、助走分を含めて移動する。
 平面走査の原点で、プローブ4は、振動子a、b、c、d、e、f、gによる電子スキャンを行うと共に、3軸スキャナ2のX軸スキャナ21により、振動子の並設方向に垂直な方向に移動する。そして、プローブ4は、X軸スキャナ21のエンコーダ出力に同期して、次の電子スキャンを行う。プローブ4は、これを走査エリアの幅分(X軸方向の大きさ分)、繰り返す。
 プローブ4が、上記のようにして、静止することなくX軸方向のプローブ4の連続移動(スキャン動作1)をしながら、電子スキャンを繰り返して、Y軸方向の長さが電子スキャンの走査幅分で、X軸方向の長さが設定された走査エリアの幅分の帯状の走査エリアに超音波ビームを照射し、被検体8からの反射波を検出する。
 この際、制御装置10は、プローブ4の一回の電子スキャンで検出した被検体8からの反射波を、X軸方向の位置(走査列)が同一の超音波ビームの反射波として、反射波の信号強度を算出し、濃淡画像として表示する。
 次に、プローブ4は、3軸スキャナ2のY軸スキャナ22により、複数の振動子の並設方向と並行に、電子スキャンの走査幅分の移動(シフト動作)を行う。そして、プローブ4の電子スキャンの開始点が、上記のスキャン動作1の最後の電子スキャンの開始点と同一のX軸方向の位置になるように、X軸スキャナ21によりプローブ4を移動する。
 プローブ4は、振動子a、b、c、d、e、f、gによる電子スキャンを行うと共に、3軸スキャナ2のX軸スキャナ21により、スキャン動作1とは逆方向の振動子の並設方向に垂直な方向に移動する。そして、プローブ4は、X軸スキャナ21のエンコーダ出力に同期して、次の電子スキャンを行う。プローブ4は、これを走査エリアの幅分(X軸方向の大きさ分)、繰り返す。
 プローブ4が、上記のようにして、X軸方向のプローブ4の連続移動(スキャン動作2)をしながら、電子スキャンを繰り返して、Y軸方向の長さが電子スキャンの走査幅分で、X軸方向の長さが設定された走査エリアの幅分の帯状の走査エリアに超音波ビームを照射し、被検体8からの反射波を検出する。
 制御装置10は、上記のプローブ4のスキャン動作1とスキャン動作2により、指定された走査エリアをカバーできれば、平面走査を終了するが、不足の場合には、プローブ4を電子スキャンの走査幅分のシフト動作をして移動し、先の動作と同様の、電子スキャンすると共にスキャン動作3・シフト動作・スキャン動作4を行う。
 制御装置10は、指定された走査エリアをカバーするまで上記の動作を繰り返して、被検体8の平面走査を行う。
 本明細書では、プローブ4のスキャン動作1、スキャン動作3…を往動スキャン動作と記し、プローブ4のスキャン動作2、スキャン動作4…を復動スキャン動作と記す。
 プローブ4は、上記のスキャン動作1、2、3、4で、連続移動しながら、電子スキャンを行うため、詳細には、超音波ビームの照射タイミングによって、超音波ビームの照射点のX軸方向の位置にずれが生じる。次に、超音波ビームの照射タイミングと照射点の関係について説明する。
 図3Aは、プローブ4の超音波ビームの照射点について説明する図である。
 照射点a、b、c、d、e、f、gは、プローブ4の振動子a、b、c、d、e、f、gの電子スキャンによる超音波ビームの照射点である。特に、照射点aは、走査エリアの原点に対応する照射点であり、またスキャン動作の際に、X軸スキャナ21のエンコーダ出力に同期した電子スキャンの最初の超音波ビームの照射点である。
 プローブ4の電子スキャンは、スキャン動作の連続移動中に行う。図3Aの実線の矩形は、最初に超音波ビームを照射する際のプローブ4の位置、破線の矩形は、最後に超音波ビームを照射する際のプローブ4の位置を示している。
 プローブ4では、照射点aからプローブ4の他端に向けて順に超音波ビームを照射する。このため、照射点b、c、d、e、f、gは、スキャン方向に少しずつずれた位置となる。
 図3Bは、プローブ4のスキャン動作1とスキャン動作2の平面走査における超音波ビームの照射点の位置を示す図である。
 プローブ4の照射点aは、X軸スキャナ21のエンコーダ出力に同期して電子スキャンが行われるため、スキャン動作1とスキャン動作2とで、X軸方向の位置が一致する。しかし、照射点b、c、d、e、f、gは、スキャン方向に応じて少しずつずれた位置となる。
 次に、制御装置10のプローブ4の平面走査の処理を詳細に説明する。
  図4は、制御装置10がプローブ4を平面走査する制御座標系を説明する図である。
 メカ制御部11は、プローブ4の超音波振動子の配置方向と垂直な方向を走査平面のX軸方向、超音波振動子の配置方向を走査平面のY軸方向とし、被検体8に超音波ビームを照射する最初の電子スキャンの開始時におけるプローブ4の位置を走査平面の原点とする座標系を定める。
 座標(X、Y)は、プローブ4の電子スキャン毎の照射点a(電子スキャンの最初の照射点)に超音波ビームを照射する際のプローブ4の位置とする。以下、電子スキャン毎の照射点aの位置が、プローブ4の位置を代表する。
 X座標の添え字kは、超音波ビームの照射点のX軸方向の照射点を示す番号であり、0からnのいずれかの値となる。X座標、X座標は、プローブ4のX軸方向の移動の端部の位置を示し、n+1は、走査平面のX軸方向の照射点数を示す。
  Y座標の添え字lは、超音波ビームの照射点のY軸方向の照射点を示す番号であり、0からmのいずれかの値となる。Y座標、Y座標は、プローブ4のY軸方向の移動の端部の位置を示し、m+1は、走査平面のY軸方向の照射点数を示す。
 nは、平面走査する領域(走査エリア)のX軸方向の長さを、超音波送受信装置1の分解能の半分で除して求める。つまり、nは、走査エリアのX軸方向の長さを、X座標間の距離である移動距離Dmで除した値となる。
  また、mは、平面走査する領域(走査エリア)のY軸方向の長さを、プローブ4の電子スキャンの走査幅で除して求める。
 以上のように、メカ制御部11は、被検体8に超音波ビームを照射する最初の電子スキャンの開始時におけるプローブ4の位置を走査平面の原点とし、Y軸方向において、電子スキャンの開始時のプローブ4の位置のY座標をYとしたとき、移動によるプローブ4の次のY軸方向の位置Yl+1は、Yに電子スキャンの走査幅を加算した位置とし、X軸方向において、電子スキャンの開始時のプローブ4の位置のX座標をXとする制御座標系を定める。
 そして、図2と図3Bとで説明したスキャン動作1又はスキャン動作3におけるプローブ4の移動制御、つまり、原点から離間する方向にプローブ4を移動するときには、メカ制御部11は、X軸スキャナ21により、プローブ4を座標(X、Y)から座標(Xk+1、Y)に連続移動する(kは0からn)。また、スキャン動作2又はスキャン動作4におけるプローブ4の移動制御、つまり、原点に接近する方向にプローブ4を移動するときには、メカ制御部11は、X軸スキャナ21により、プローブ4を座標(X、Y)から座標(Xk―1、Y)に連続移動する(kはnから0)。
 プローブ4の座標(X、Y)から座標(Xk+1、Y)への移動速度V、及び座標(X、Y)から座標(Xk―1、Y)への移動速度Vは、X座標間の距離である移動距離Dmを、座標(X、Y)から座標(Xk+1、Y)への移動時間T、又は座標(X、Y)から座標(Xk―1、Y)への移動時間Tで除して求める。
  移動時間Tは、プローブ4のX軸方向の移動中に1回当たりの電子スキャンを行えるように、電子スキャンの複数の照射点における送受信時間の和であるスキャン時間Tsに等しく設定する。
 これにより、本発明においては、X座標において電子スキャンを開始し、当該電子スキャンが終了して次のXk+1座標において電子スキャン処理を開始するときには、アレイプローブの最初の振動子はすでにXk+1座標に位置することとなる。公知技術のように、一電子スキャン終了後にX座標からXk+1座標に移動するために要する時間は0となる。
 また、プローブ4が移動すると、浸漬する水にゆらぎや気泡が生じて、超音波ビーム及び/又は反射波の進行に影響を与えることがある。このため、プローブ4の移動速度Vは、水のゆらぎや気泡などの外乱要因が生じない範囲の最大速度(Vmax)以下でなければならない。
 具体的には、水中の音速を1500m/秒、プローブ4の振動子から被検体の検査面までの距離を10mm、プローブ4の振動子数を192とすると、1回当たりの電子スキャンのスキャン時間は、0.0025536秒となる。0.4mmの欠陥を抽出する解像度を得ようとした場合、移動距離Dmは0.2mmで設定することとなり、移動速度Vは移動距離Dmと移動時間T(=Ts)との関係から78.320802mm/秒となる。移動速度の最大値(Vmax)は、これまでの実験結果から300mm/秒であり、移動速度VはVmax以内であるため、水のゆらぎや気泡などの外乱要因が生じない。
 メカ制御部11は、この移動速度Vを走査条件として記憶する。そして、メカ制御部11は、X軸スキャナ21のエンコーダ出力によりX座標を管理し、移動速度Vでプローブ4を移動する。
 メカ制御部11は、X軸方向の移動の終端では、座標(Xk+1、Y)から座標(Xk+1、Yl+1)、又は座標(Xk-1、Y)から座標(Xk-1、Yl+1)にY軸スキャナ22を駆動して、プローブ4のY軸方向移動を行う。
 以上のようにして、超音波送受信装置1は、プローブ4の電子スキャンを行いながらプローブ4をX軸方向にX座標がXからXk+1に移動する動作と、X軸方向の移動終端でプローブ4をY軸方向にY座標がYからYl+1に移動する動作と、から成る往動スキャン動作と、電子スキャンを行いながらプローブ4をX軸方向にX座標がXからXk―1に移動する動作と、X軸方向の移動終端でプローブ4をY軸方向にY座標がYからYl+1に移動する動作と、から成る復動スキャン動作と、を交互に繰り返して走査平面を電子スキャンする。
 本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施形態は本発明で分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 1 超音波送受信装置
 10 制御装置
 11 メカ制御部
 12 送受信指令部
 14 振動子動作信号生成部
 15 反射波信号処理部
 16 反射波画像生成部
 17 表示部
 18 制御部
 2 3軸スキャナ
 21 X軸スキャナ
 22 Y軸スキャナ
 23 Z軸スキャナ
 24 ホルダ
 3 センサ
 4 プロ―ブ(アレイプローブ)
 42 鍔部
 8 被検体
 91 水槽
 92 台
 

Claims (4)

  1.  直線状に配置した複数の超音波振動子を有するアレイプローブを備えたアレイ型超音波送受信装置であって、
     被検体の上方の前記被検体と平行な走査平面において、前記超音波振動子の配置方向を前記走査平面のY軸方向、前記配置方向と垂直な方向を前記走査平面のX軸方向とし、
     予め設定された走査条件に基づいて、静止することなくX軸方向に前記アレイプローブを移動し、
     前記アレイプローブが、X軸方向の移動中に、前記被検体の複数の照射点に超音波ビームを順次送信しその反射波を受信する電子スキャンを行うアレイ型超音波送受信装置において、
     前記被検体に超音波ビームを照射する最初の電子スキャンの開始時における前記アレイプローブの位置を前記アレイプローブの走査平面の原点とし、
     Y軸方向において、電子スキャンの開始時のアレイプローブの位置のY座標をYとしたとき、移動による前記アレイプローブの次のY軸方向のY座標Yl+1は、Yに電子スキャンの走査幅を加算した値の位置としたときに、
     前記原点から離間する方向に移動するときには前記アレイプローブはX座標がXからXk+1の位置に移動し、前記原点に接近する方向に移動するときには前記アレイプローブはX座標がXからXk―1の位置に移動し、
     電子スキャンを行いながらアレイプローブをX軸方向にX座標がXからXk+1に移動する動作と、X軸方向の移動終端でアレイプローブをY軸方向にY座標がYからYl+1となるように電子スキャンの走査幅分を移動する動作と、から成る往動スキャン動作と、
     電子スキャンを行いながらアレイプローブをX軸方向にX座標がXからXk―1に移動する動作と、X軸方向の移動終端でアレイプローブをY軸方向にY座標がYからYl+1となるように電子スキャンの走査幅分を移動する動作と、から成る復動スキャン動作と、
     を交互に繰り返して前記走査平面を電子スキャンする
    ことを特徴とするアレイ型超音波送受信装置。
  2.  請求項1に記載のアレイ型超音波送受信装置において、
     前記電子スキャンの開始時の前記アレイプローブの位置のX座標をXとしたとき、
     前記Xから、次の電子スキャンの開始時の前記アレイプローブの位置のX座標であるXk―1又はXk+1までの前記アレイプローブの移動速度Vを前記走査条件とする
    ことを特徴とするアレイ型超音波送受信装置。
  3.  請求項2に記載のアレイ型超音波送受信装置において、
     前記Xから、次の電子スキャンの開始時の前記アレイプローブの位置のX座標であるXk―1又はXk+1までの移動時間Tを、前記電子スキャンの複数の照射点における送受信時間の和であるスキャン時間Tに等しく設定し、
     前記移動時間Tと、前記Xから前記Xk―1又はXk+1までの前記アレイプローブの移動距離Dと、から前記移動速度Vを求める
    ことを特徴とするアレイ型超音波送受信装置。
  4.  請求項2に記載のアレイ型超音波送受信装置において、
     前記移動速度Vは、前記アレイプローブが前記X軸方向に移動するときに、前記超音波ビーム及び/又は前記反射波の進行に影響を与えるゆらぎや気泡の外乱要因が生じない範囲内の最大速度(300mm/秒)である
    ことを特徴とするアレイ型超音波送受信装置。
     
PCT/JP2022/023827 2021-06-25 2022-06-14 アレイ型超音波送受信装置 WO2022270363A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280043792.3A CN117529658A (zh) 2021-06-25 2022-06-14 阵列式超声波收发装置
KR1020237044312A KR20240011784A (ko) 2021-06-25 2022-06-14 어레이형 초음파 송수신 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021105595A JP7022861B1 (ja) 2021-06-25 2021-06-25 アレイ型超音波送受信装置
JP2021-105595 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022270363A1 true WO2022270363A1 (ja) 2022-12-29

Family

ID=81073874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023827 WO2022270363A1 (ja) 2021-06-25 2022-06-14 アレイ型超音波送受信装置

Country Status (4)

Country Link
JP (1) JP7022861B1 (ja)
KR (1) KR20240011784A (ja)
CN (1) CN117529658A (ja)
WO (1) WO2022270363A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177056A (ja) * 1987-01-19 1988-07-21 Hitachi Constr Mach Co Ltd 超音波検査方法
JPH01197649A (ja) * 1988-02-03 1989-08-09 Hitachi Constr Mach Co Ltd 超音波探傷装置
JPH0510928A (ja) * 1991-06-28 1993-01-19 Hitachi Constr Mach Co Ltd 超音波映像検査装置
JP2008139123A (ja) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd 超音波探傷装置および方法
JP2016035477A (ja) * 2015-12-14 2016-03-17 公益財団法人鉄道総合技術研究所 レール頭部傷連続探傷方法及び装置
CN106802321A (zh) * 2017-01-03 2017-06-06 航天科工防御技术研究试验中心 一种点聚焦式线性阵列相控阵检测装置
JP2017133973A (ja) * 2016-01-28 2017-08-03 株式会社Subaru 超音波プローブのスライド機構、超音波検査装置及び超音波検査方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177056A (ja) * 1987-01-19 1988-07-21 Hitachi Constr Mach Co Ltd 超音波検査方法
JPH01197649A (ja) * 1988-02-03 1989-08-09 Hitachi Constr Mach Co Ltd 超音波探傷装置
JPH0510928A (ja) * 1991-06-28 1993-01-19 Hitachi Constr Mach Co Ltd 超音波映像検査装置
JP2008139123A (ja) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd 超音波探傷装置および方法
JP2016035477A (ja) * 2015-12-14 2016-03-17 公益財団法人鉄道総合技術研究所 レール頭部傷連続探傷方法及び装置
JP2017133973A (ja) * 2016-01-28 2017-08-03 株式会社Subaru 超音波プローブのスライド機構、超音波検査装置及び超音波検査方法
CN106802321A (zh) * 2017-01-03 2017-06-06 航天科工防御技术研究试验中心 一种点聚焦式线性阵列相控阵检测装置

Also Published As

Publication number Publication date
KR20240011784A (ko) 2024-01-26
JP2023004096A (ja) 2023-01-17
JP7022861B1 (ja) 2022-02-18
CN117529658A (zh) 2024-02-06
TW202317985A (zh) 2023-05-01

Similar Documents

Publication Publication Date Title
JP5155692B2 (ja) 超音波検査装置
JP5155693B2 (ja) 超音波検査装置
US20060219013A1 (en) Ultrasonic inspection method and ultrasonic inspection equipment
TWI828194B (zh) 陣列式超音波影像裝置及其控制方法
US3939696A (en) Scanning ultrasonic inspection method and apparatus
KR101723752B1 (ko) 초음파 영상 장치 및 그것을 사용한 관찰 방법
JPH0558502B2 (ja)
JP2010088486A (ja) 超音波診断装置
KR20190133632A (ko) 위치 제어 장치, 위치 제어 방법, 및 초음파 영상 시스템
JP2011177385A (ja) 超音波診断装置
WO2022270363A1 (ja) アレイ型超音波送受信装置
TWI838769B (zh) 陣列式超音波收發裝置
US4252024A (en) Flaw detection, characterization and study
JP2014064856A (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
US20120296211A1 (en) Ultrasound diagnostic apparatus
JPH0614033B2 (ja) 超音波検査方法
JP2008175661A (ja) 音響パラメータ測定方法、及び音響パラメータ測定装置
JP2008046096A (ja) 超音波顕微鏡システムの調整方法、及び超音波顕微鏡システム
JPH1114611A (ja) 電子走査式超音波検査装置
JP5627436B2 (ja) 超音波診断装置
JPH07174737A (ja) 超音波画像形成方法および超音波画像形成装置
JP2612351B2 (ja) 超音波検査装置
CA1087292A (en) Method and apparatus for ultrasonic examination
JPH02124148A (ja) 超音波診断装置
JP2011156287A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280043792.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237044312

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237044312

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE