WO2022270176A1 - Hydraulic drive device - Google Patents

Hydraulic drive device Download PDF

Info

Publication number
WO2022270176A1
WO2022270176A1 PCT/JP2022/020227 JP2022020227W WO2022270176A1 WO 2022270176 A1 WO2022270176 A1 WO 2022270176A1 JP 2022020227 W JP2022020227 W JP 2022020227W WO 2022270176 A1 WO2022270176 A1 WO 2022270176A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
hydraulic
rod
port
pressure
Prior art date
Application number
PCT/JP2022/020227
Other languages
French (fr)
Japanese (ja)
Inventor
純一 白尾
英紀 田中
康弘 藤原
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2022270176A1 publication Critical patent/WO2022270176A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor

Definitions

  • the present invention relates to a hydraulic drive device that drives a hydraulic cylinder by supplying and discharging hydraulic fluid.
  • a hydraulic closed circuit disclosed in Patent Document 1 forms a closed circuit together with a hydraulic cylinder and a variable displacement pump.
  • the hydraulic closed circuit also includes a charge pump. The charge pump replenishes the shortage of working oil when introducing the working oil from the rod-side port of the hydraulic cylinder to the head-side port.
  • both the head side port and the rod side port may become high pressure.
  • the suction side port (for example, the first pump port) of the hydraulic pump becomes high pressure.
  • the discharge pressure of the charge pump is set to a low pressure. Therefore, when the first pump port becomes high pressure, hydraulic oil cannot be supplied to the hydraulic pump. As a result, the flow rate of the hydraulic oil supplied from the hydraulic pump to the head-side port becomes insufficient, so that the hydraulic cylinder cannot be operated smoothly.
  • an object of the present invention is to provide a hydraulic drive device capable of more reliably replenishing hydraulic fluid from a charge pump to a first pump port.
  • a hydraulic drive device is a hydraulic drive device for driving a hydraulic cylinder by supplying and discharging hydraulic fluid, the hydraulic drive device having first and second pump ports, wherein the first and second pump ports are connecting a main pump that sucks hydraulic fluid from one of the pump ports and discharges hydraulic fluid from the other pump port, the rod side port of the hydraulic cylinder, and the first pump port; a hydraulic circuit forming a closed circuit by connecting the head-side port of the hydraulic cylinder and the second pump port; and a charge pump for supplying hydraulic fluid to the one pump port.
  • the pressure circuit is interposed in the rod-side passage connecting the rod-side port and the first pump port, and has a control valve whose opening degree can be adjusted.
  • Hydraulic pressure can be adjusted.
  • the hydraulic pressure on the first pump port side can be suppressed below the discharge pressure of the charge pump. Therefore, it is possible to more reliably replenish the hydraulic fluid from the charge pump to the first pump port.
  • FIG. 1 is a circuit diagram showing the configuration of a hydraulic drive device of the present invention
  • FIG. FIG. 2 is a graph showing changes over time in pressure at each port in the hydraulic drive device of FIG. 1
  • FIG. FIG. 2 is a flow chart showing the procedure of opening degree control processing in the hydraulic drive system of FIG. 1 ;
  • a hydraulic drive device 1 according to an embodiment of the present invention will be described below with reference to the above-described drawings. It should be noted that the concept of direction used in the following description is used for convenience of explanation, and does not limit the orientation of the configuration of the invention to that direction. Moreover, the hydraulic drive device 1 described below is merely an embodiment of the present invention. Therefore, the present invention is not limited to the embodiments, and additions, deletions, and modifications can be made without departing from the spirit of the invention.
  • Hydraulic equipment 2 mounted on construction machinery and industrial machinery includes a hydraulic cylinder 3 and a hydraulic drive device 1 as shown in FIG.
  • the hydraulic device 2 operates the hydraulic cylinder 3 by means of the hydraulic drive device 1 .
  • various components (not shown) of the hydraulic device 2 are moved.
  • the hydraulic cylinder 3 expands and contracts by supplying hydraulic fluid (for example, oil or liquid such as water). Also, the hydraulic cylinder 3 can be switched between extension and contraction by switching the direction of flow of the hydraulic fluid. More specifically, the hydraulic cylinder 3 has a cylinder tube 11 and a rod 12 .
  • the cylinder tube 11 has a rod side port 11a and a head side port 11b.
  • the rod 12 is slidably inserted through the cylinder tube 11 .
  • the rod 12 partitions the inside of the cylinder tube 11 into two chambers, a rod chamber 11c and a head chamber 11d. Each chamber 11c, 11d is connected to the rod side port 11a and the head side port 11b, respectively.
  • the hydraulic cylinder 3 is a single-rod cylinder. That is, in the hydraulic cylinder 3, the areas of the pressure-receiving surfaces of the rod 12 facing the chambers 11c and 11d are different. Therefore, when the hydraulic cylinder 3 expands and contracts, the flow rate of the hydraulic fluid supplied to and discharged from the chambers 11c and 11d differs. In the present embodiment, in the hydraulic cylinder 3, the flow rate supplied to and discharged from the rod chamber 11c is smaller than the flow rate supplied to and discharged from the head chamber 11d.
  • the hydraulic drive device 1 supplies and discharges hydraulic fluid to and from the hydraulic cylinder 3 .
  • the hydraulic drive device 1 expands and contracts the hydraulic cylinder 3 by supplying and discharging hydraulic fluid. More specifically, the hydraulic drive device 1 includes a main pump 21, an electric motor 22, a hydraulic circuit 23, a charge pump 24, a pump pressure sensor 25, a rod pressure sensor 26, and a head pressure sensor 27. , a position sensor 28 and a controller 29 .
  • the main pump 21 sucks and discharges working fluid. More specifically, the main pump 21 has a shaft 21a, a first pump port 21b and a second pump port 21c. The main pump 21 sucks hydraulic fluid from one of the two pump ports 21b and 21c according to the rotation direction (forward direction and reverse direction) of the shaft 21a. Then, the main pump 21 discharges the hydraulic fluid from the other pump ports 21c, 21b (that is, discharge side ports).
  • the main pump 21 is a variable displacement swash plate pump.
  • the main pump 21 may be another pump such as an inclined shaft pump, or may be a fixed displacement pump.
  • the electric motor 22 rotationally drives the main pump 21 . More specifically, the electric motor 22 is connected to the shaft 21 a of the main pump 21 . The electric motor 22 rotates the main pump 21 forward or backward through the shaft 21a. In this embodiment, the electric motor 22 is a servomotor. That is, the electric motor 22 can control the amount of rotation. The electric motor 22 may be rotatable only in one direction. In this case, the main pump 21 employs, for example, a double tilt type swash plate pump.
  • the hydraulic circuit 23 connects the rod side port 11 a of the hydraulic cylinder 3 and the first pump port 21 b of the main pump 21 . Also, the hydraulic circuit 23 connects the head-side port 11 b of the hydraulic cylinder 3 and the second pump port 21 c of the main pump 21 . Thereby, the hydraulic circuit 23 constitutes a closed circuit. More specifically, the hydraulic circuit 23 includes a rod-side passage 31, a head-side passage 32, a supply passage 33, two check valves 34 and 35, a relief valve 36, and a rod-side control valve 37. , and a head-side on-off valve 38 .
  • the rod-side passage 31 connects the rod-side port 11a and the first pump port 21b.
  • the head-side passage 32 connects the head-side port 11b and the second pump port 21c.
  • a replenishment passage 33 is connected to a tank 39 and each of the two passages 31 and 32 . More specifically, one end of the supply passage 33 is bifurcated. In the replenishment passage 33 , the bifurcated portion is connected to the passages 31 and 32 via check valves 34 and 35 .
  • the check valves 34, 35 allow the flow in the replenishment passage 33 toward the passages 31, 32 and block the flow in the opposite direction.
  • the other end of the replenishment passage 33 is connected to a tank 39 via a relief valve 36 .
  • the rod side control valve 37 is interposed in the rod side passage 31 . More specifically, the rod-side control valve 37 is interposed in the rod-side passage 31 on the hydraulic cylinder 3 side (that is, on the rod-side port 11a side) from the point g1 where the supply passages 33 join. Moreover, the rod side control valve 37 is configured to be able to open and close the opening. Furthermore, the rod side control valve 37 functions as a holding valve in this embodiment.
  • the rod side control valve 37 is configured as follows. That is, the rod side control valve 37 blocks communication between the rod side port 11a and the first pump port 21b in the closed state. Further, the rod side control valve 37 communicates the rod side port 11a and the first pump port 21b in the open state. More specifically, the rod-side control valve 37 is configured so that the degree of opening can be adjusted.
  • the rod-side control valve 37 can adjust the hydraulic pressure on both sides of the rod-side passage 31 by changing the degree of opening. That is, by adjusting the degree of opening of the rod-side control valve 37, the rod-side passage 31 flows from the rod-side control valve 37 to the first pump port 21b side and from the rod-side control valve 37 to the rod-side port 11a side, respectively. Adjust hydraulic fluid pressure.
  • the rod side control valve 37 is a proportional control valve in this embodiment. However, the rod-side control valve 37 is not limited to a proportional control valve, and may be an inverse proportional control valve.
  • the head side on-off valve 38 is interposed in the head side passage 32 . More specifically, the head-side on-off valve 38 is interposed in the head-side passage 32 on the side of the hydraulic cylinder 3 (that is, on the side of the head-side port 11b) from the point g2 where the supply passage 33 joins. Further, the head side opening/closing valve 38 is configured so that the opening can be adjusted.
  • the head side on-off valve 38 is a holding valve in this embodiment. That is, the head side opening/closing valve 38 blocks communication between the head side port 11b and the second pump port 21c in the closed state. Further, the head side on-off valve 38 communicates the head side port 11b and the second pump port 21c in the open state.
  • the charge pump 24 supplies hydraulic fluid to one of the first pump port 21b and the second pump port 21c, 21b and 21c. More specifically, the charge pump 24 is connected in the make-up passage 33 of the hydraulic circuit 23 between the branch point and the relief valve 36 . The charge pump 24 discharges working fluid to the supply passage 33 . The discharged hydraulic fluid is supplied to one of the pump ports 21b, 21c through one of the check valves 34, 35. As shown in FIG. In this embodiment, the charge pump 24 is a fixed displacement pump, and discharges working fluid at a constant pressure. Also, the charge pump 24 is driven by a prime mover (not shown) such as an engine and an electric motor.
  • a prime mover not shown
  • a pump pressure sensor 25 which is an example of a pump-side hydraulic pressure detector, detects the hydraulic pressure on the first pump port 21b side from the rod-side control valve 37. As shown in FIG. More specifically, the pump pressure sensor 25 is provided in the rod-side passage 31 closer to the first pump port 21 b than the rod-side control valve 37 . The pump pressure sensor 25 detects the hydraulic pressure of the hydraulic fluid flowing therethrough, that is, the hydraulic pressure of the first pump port 21b (pump-side pressure, which corresponds to the suction pressure or discharge pressure of the main pump 21).
  • a rod pressure sensor 26 which is an example of a cylinder-side hydraulic pressure detector, detects the hydraulic pressure on the rod-side port 11 a side from the rod-side control valve 37 . More specifically, the rod pressure sensor 26 is provided in the rod-side passage 31 closer to the rod-side port 11 a than the rod-side control valve 37 . The rod pressure sensor 26 detects the hydraulic pressure of the hydraulic fluid flowing therethrough, that is, the hydraulic pressure of the rod-side port 11a (the cylinder-side pressure, which corresponds to the rod pressure).
  • the head pressure sensor 27 detects the hydraulic pressure on the side of the head side port 11b from the head side on-off valve 38 . More specifically, the head pressure sensor 27 is provided in the head-side passage 32 closer to the head-side port 11b than the head-side on-off valve 38 is. The head pressure sensor 27 detects the fluid pressure flowing therethrough, that is, the fluid pressure of the head-side port 11b (corresponding to the head pressure).
  • a position sensor 28 detects the position of the rod 12 of the hydraulic cylinder 3 . More specifically, position sensor 28 detects the stroke amount of rod 12 .
  • the control device 29 acquires detection results from each of the pump pressure sensor 25 , rod pressure sensor 26 , head pressure sensor 27 and position sensor 28 . Further, the control device 29 controls the operations of the main pump 21 and the electric motor 22 based on a pre-stored operation plan (program) or operation of an operation device (not shown) and the above-described detection results. That is, the control device 29 controls the discharge flow rate of the main pump 21 , that is, the meter-in flow rate of the hydraulic cylinder 3 based on the stroke amount detected by the position sensor 28 . Thereby, the position of the rod 12 of the hydraulic cylinder 3 is controlled by the control device 29 .
  • the control device 29 also controls the opening of the rod-side control valve 37 based on the pump-side pressure detected by the pump pressure sensor 25 . More specifically, the control device 29 controls the opening of the rod-side control valve 37 so that the hydraulic pressure of the first pump port 21b is equal to or lower than the discharge pressure of the charge pump 24. As shown in FIG. Further, the control device 29 controls the opening degree of the rod side control valve 37 based on the pressure difference between the rod pressure and the pump side pressure, which is the detection result of the rod pressure sensor 26 . Furthermore, the control device 29 opens and closes the rod-side control valve 37 based on the comparison result between the rod pressure and the head pressure. Furthermore, the control device 29 also controls the operation of the head side on-off valve 38 .
  • the rod side control valve 37 and the head side opening/closing valve 38 serve as holding valves as described above. Therefore, the hydraulic drive device 1 closes the openings of the rod-side control valve 37 and the head-side on-off valve 38 in the stopped state. Then, supply and discharge of hydraulic fluid to and from the chambers 11c and 11d of the hydraulic cylinder 3 are stopped. Thereby, the rod 12 of the hydraulic cylinder 3 is held at that position.
  • the hydraulic drive device 1 operates as follows when the hydraulic cylinder 3 is contracted based on the operation plan or operation of the operation device (that is, when hydraulic fluid is supplied to the rod side port 11a). That is, in the hydraulic drive system 1, the controller 29 causes the electric motor 22 to rotate the shaft 21a of the main pump 21 in the reverse direction. As a result, the main pump 21 sucks the hydraulic fluid from the second pump port 21c. The main pump 21 then discharges the hydraulic fluid from the first pump port 21b.
  • the control device 29 also controls the movement of the electric motor 22 and opens the rod-side control valve 37 and the head-side on-off valve 38 .
  • the control device 29 fully opens the rod side control valve 37 and the head side on-off valve 38 .
  • the rod side control valve 37 and the head side on-off valve 38 do not necessarily have to be fully opened.
  • control device 29 controls the meter-in flow rate to the rod side port 11 a by controlling the discharge capacity of the main pump 21 and the output of the electric motor 22 . Thereby, the control device 29 can move the rod 12 to a position according to the operation plan or the operation of the operating device. That is, the control device 29 contracts the hydraulic cylinder 3 and controls the position of the rod 12 .
  • the working fluid is discharged to the tank 39 by a throttle valve (not shown) at a flow rate corresponding to the difference in volume between the head chambers 11d.
  • the hydraulic drive device 1 the case where the operation of the hydraulic cylinder 3 is switched from the contraction operation to the extension operation based on the operation plan or the operation of the operating device will be explained.
  • the supply destination of the hydraulic fluid from the main pump 21 is switched from the rod-side port 11a to the head-side port 11b.
  • the controller 29 switches the direction of rotation of the electric motor 22 .
  • the rotation direction of the shaft 21a of the main pump 21 is switched from the reverse direction to the forward direction.
  • the main pump 21 sucks the hydraulic fluid from the first pump port 21b.
  • the main pump 21 then discharges the hydraulic fluid from the second pump port 21c.
  • the control device 29 also controls the movement of the electric motor 22 and opens the head side on-off valve 38 (fully open in this embodiment). As a result, the hydraulic fluid is sucked from the first pump port 21b and the hydraulic fluid discharged from the second pump port 21c is supplied to the head chamber 11d through the head-side port 11b.
  • the controller 29 controls the discharge capacity of the main pump 21 and the output of the electric motor 22 to control the meter-in flow rate to the head-side port 11b. Thereby, the rod 12 can be moved to a position according to the operation plan or the operation of the operating device. That is, the control device 29 extends the hydraulic cylinder 3 and controls the position of the rod 12 .
  • the control device 29 controls the opening degree of the rod-side control valve 37 as follows.
  • the control device 29 determines that the pump-side pressure (see the solid line in FIG. 2) is the discharge pressure of the charge pump 24 (that is, the boost pressure, see the chain line in FIG. 2). )
  • the opening degree of the rod-side control valve 37 is controlled so as to be as follows (see after time t1 in FIG. 2). More specifically, the controller 29 controls the opening of the rod-side control valve 37 based on the pressure difference between the pump-side pressure and the rod pressure. In this embodiment, the control device 29 generates a predetermined pressure difference between the pump-side pressure and the rod pressure (see the two-dot chain line in FIG. 2).
  • the pump-side pressure is kept below the discharge pressure of the charge pump 24 .
  • the control device 29 controls the opening degree of the rod-side control valve 37 so that the pressure difference falls within a predetermined range equal to or less than the upper limit threshold and equal to or more than the lower limit threshold.
  • step S1 which is a pressure difference calculation step
  • step S2 the control device 29 calculates the pressure difference. More specifically, the control device 29 acquires the pump-side pressure from the pump pressure sensor 25 and the rod pressure from the rod pressure sensor 26 . The controller 29 then calculates the pressure difference between the pump-side pressure and the rod pressure. After calculating the pressure difference, the process proceeds to step S2.
  • step S2 which is a pressure difference determination step
  • the control device 29 determines whether the pressure difference is within a predetermined range. Then, when the control device 29 determines that the pressure difference is within the predetermined range, the opening degree of the rod-side control valve 37 is maintained. Then, the process returns to step S1. On the other hand, when the control device 29 determines that the pressure difference exceeds the upper limit threshold value, the process proceeds to step S3. Moreover, when the control device 29 determines that the pressure difference is less than the lower limit threshold value, the process proceeds to step S4.
  • step S3 which is the first degree-of-opening adjustment step
  • the control device 29 increases the degree of opening of the rod-side control valve 37 .
  • the rod pressure is lowered, so the pressure difference can be reduced. If the pressure difference is reduced, the process returns to step S1.
  • step S4 which is the second degree-of-opening request step
  • the control device 29 reduces the degree of opening of the rod-side control valve 37 .
  • the rod pressure rises, so the pressure difference can be increased.
  • the process returns to step S1.
  • control device 29 maintains the pressure difference within a predetermined range by executing the opening degree control process.
  • the pump-side pressure can be suppressed below the boost pressure.
  • the rod side control valve 37 can prevent the rod pressure from becoming too high. Therefore, when the hydraulic cylinder 3 is extended, it is possible to prevent the back pressure in the hydraulic cylinder 3 from increasing.
  • the control device 29 acquires the head pressure from the head pressure sensor 27 (see the dashed-dotted line in FIG. 2). The controller 29 then compares the head pressure and the rod pressure. If the comparison result shows that the head pressure is lower than the rod pressure, the control device 29 continues control of the opening degree of the rod-side control valve 37 . On the other hand, when the head pressure is higher than the rod pressure in the comparison result, the control device 29 stops controlling the opening of the rod-side control valve 37 . The controller 29 then widens the opening of the rod-side control valve 37 (see time t2 in FIG. 2). Then, since the rod pressure can be lowered, the back pressure generated when the rod 12 moves can be further reduced. As a result, deterioration in energy efficiency when extending the hydraulic cylinder 3 is suppressed.
  • the control device 29 operates as follows. That is, the control device 29 controls the opening degree of the rod side control valve 37 when supplying the hydraulic fluid to the head side port 11b and sucking the hydraulic fluid from the rod side port 11a to the first pump port 21b. Then, the pump-side pressure on the first pump port 21b side can be adjusted. In this embodiment, the pump-side pressure on the side of the first pump port 21b can be suppressed below the boost pressure. Therefore, it is possible to reliably replenish the first pump port 21b from the charge pump 24 with the working fluid. As a result, it is possible to prevent a shortage of the discharge flow rate of the main pump 21 when supplying the hydraulic fluid to the second pump port 21c.
  • control device 29 feedback-controls the rod side control valve 37 so that the hydraulic pressure on the first pump port 21b side is suppressed below the boost pressure. Therefore, it is possible to reliably replenish the first pump port 21b from the charge pump 24 with the working fluid.
  • the control device 29 controls the opening degree of the rod side control valve 37 based on the pressure difference. As a result, it is possible to prevent the hydraulic pressure in the rod-side port 11a from remaining at a high level. As a result, the back pressure in the hydraulic cylinder 3 can be prevented from remaining at a high level. Therefore, the discharge pressure of the main pump 21 can be kept low. That is, energy loss in the hydraulic drive system 1 is suppressed.
  • the control device 29 narrows the opening when the pressure difference is less than the lower limit threshold, and opens the opening when the pressure difference exceeds the upper limit threshold. Then, the control device 29 maintains the opening degree of the rod-side control valve 37 when the pressure difference is within a predetermined range. In this way, the control device 29 provides hysteresis characteristics to the relationship between the opening of the rod-side control valve 37 and the pressure difference, so that pressure hunting occurs in the rod pressure due to fluctuations in the opening of the rod-side control valve 37. can be suppressed.
  • the rod side control valve 37 functions as a holding valve. Therefore, in the hydraulic drive device 1, the number of parts can be reduced.
  • the head side on-off valve 38 is an on-off valve that can be switched between opening and closing.
  • the rod-side control valve 37 and the head-side opening/closing valve 38 function as holding valves, they do not necessarily have such a function. Further, a holding valve may be separately provided in the hydraulic drive device 1 .
  • control device 29 controls the opening degree of the rod side control valve 37 according to the pressure difference.
  • the degree of opening of the rod-side control valve 37 may be controlled only in accordance with the pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

This hydraulic drive device drives a hydraulic cylinder by supplying and discharging a hydraulic fluid and comprises: a main pump which has first and the second pump ports and which suctions the hydraulic fluid from one pump port of the first and the second pump port and discharges the hydraulic fluid from the other pump port; a hydraulic circuit that forms a closed circuit by connecting a rod-side port of the hydraulic cylinder and the first pump port to each other and connecting a head-side port of the hydraulic cylinder and the second pump port to each other; and a charge pump that replenishes the one pump port with the hydraulic fluid. The hydraulic circuit is interposed in a rod-side passage connecting the rod-side port and the first pump port to each other and has a control valve capable of controlling the opening degree.

Description

液圧駆動装置hydraulic drive
 本発明は、作動液を給排することによって液圧シリンダを駆動する液圧駆動装置に関する。 The present invention relates to a hydraulic drive device that drives a hydraulic cylinder by supplying and discharging hydraulic fluid.
 作動液を給排することによって液圧シリンダを駆動する液圧駆動装置が実用に供されている。液圧駆動装置の一例として、例えば特許文献1の油圧閉回路が知られている。特許文献1の油圧閉回路は、油圧シリンダと可変容量ポンプと共に閉回路を構成している。また、油圧閉回路は、チャージポンプを備えている。チャージポンプは、油圧シリンダのロッド側ポートからヘッド側ポートに作動油を導く際に、不足する作動油を補給する。  Hydraulic drive devices that drive hydraulic cylinders by supplying and discharging hydraulic fluid have been put into practical use. 2. Description of the Related Art As an example of a hydraulic drive system, for example, a hydraulic closed circuit disclosed in Patent Document 1 is known. The hydraulic closed circuit of Patent Document 1 forms a closed circuit together with a hydraulic cylinder and a variable displacement pump. The hydraulic closed circuit also includes a charge pump. The charge pump replenishes the shortage of working oil when introducing the working oil from the rod-side port of the hydraulic cylinder to the head-side port.
特開昭59-133804号公報JP-A-59-133804
 特許文献1の油圧閉回路では、油圧ポンプから油圧シリンダに流す作動油の方向をヘッド側ポートからロッド側ポートに切り替える際、ヘッド側ポート及びロッド側ポートが共に高圧となる場合がある。そうすると、油圧ポンプの吸入側ポート(例えば、第1ポンプポート)が高圧となる。チャージポンプの吐出圧が低圧に設定されている。それ故、第1ポンプポートが高圧になると作動油を油圧ポンプに補給することができない。そうすると、油圧ポンプからヘッド側ポートに供給される作動油の流量が不足するので、油圧シリンダをスムーズに作動させることができない。 In the closed hydraulic circuit of Patent Document 1, when switching the direction of hydraulic fluid flowing from the hydraulic pump to the hydraulic cylinder from the head side port to the rod side port, both the head side port and the rod side port may become high pressure. Then, the suction side port (for example, the first pump port) of the hydraulic pump becomes high pressure. The discharge pressure of the charge pump is set to a low pressure. Therefore, when the first pump port becomes high pressure, hydraulic oil cannot be supplied to the hydraulic pump. As a result, the flow rate of the hydraulic oil supplied from the hydraulic pump to the head-side port becomes insufficient, so that the hydraulic cylinder cannot be operated smoothly.
 そこで本発明は、チャージポンプから第1ポンプポートに作動液をより確実に補給することができる液圧駆動装置を提供することを目的としている。 Accordingly, an object of the present invention is to provide a hydraulic drive device capable of more reliably replenishing hydraulic fluid from a charge pump to a first pump port.
 本発明の液圧駆動装置は、作動液を給排することによって液圧シリンダを駆動する液圧駆動装置であって、第1及び第2ポンプポートを有し、前記第1及び第2ポンプポートのうち一方の前記ポンプポートから作動液を吸入し、且つ他方の前記ポンプポートから作動液を吐出するメインポンプと、前記液圧シリンダのロッド側ポートと前記第1ポンプポートとを接続し、且つ前記液圧シリンダのヘッド側ポートと前記第2ポンプポートとを接続することによって閉回路を構成する液圧回路と、前記一方のポンプポートに作動液を補給するチャージポンプと、を備え、前記液圧回路は、前記ロッド側ポートと前記第1ポンプポートとを接続するロッド側通路に介在し、且つ開度を調整可能な制御弁を有しているものである。 A hydraulic drive device according to the present invention is a hydraulic drive device for driving a hydraulic cylinder by supplying and discharging hydraulic fluid, the hydraulic drive device having first and second pump ports, wherein the first and second pump ports are connecting a main pump that sucks hydraulic fluid from one of the pump ports and discharges hydraulic fluid from the other pump port, the rod side port of the hydraulic cylinder, and the first pump port; a hydraulic circuit forming a closed circuit by connecting the head-side port of the hydraulic cylinder and the second pump port; and a charge pump for supplying hydraulic fluid to the one pump port. The pressure circuit is interposed in the rod-side passage connecting the rod-side port and the first pump port, and has a control valve whose opening degree can be adjusted.
 本発明に従えば、ヘッド側ポートに作動液を供給し、且つロッド側ポートから第1ポンプポートに作動液を吸入する際、制御弁の開度を調整することによって、第1ポンプポート側の液圧を調整することができる。これにより、例えば第1ポンプポート側の液圧をチャージポンプの吐出圧以下に抑えることができる。それ故、チャージポンプから第1ポンプポートに作動液をより確実に補給することができる。 According to the present invention, when hydraulic fluid is supplied to the head side port and hydraulic fluid is sucked from the rod side port to the first pump port, by adjusting the opening degree of the control valve, Hydraulic pressure can be adjusted. As a result, for example, the hydraulic pressure on the first pump port side can be suppressed below the discharge pressure of the charge pump. Therefore, it is possible to more reliably replenish the hydraulic fluid from the charge pump to the first pump port.
 本発明によれば、チャージポンプから第1ポンプポートに作動液をより確実に補給することができる。 According to the present invention, it is possible to more reliably replenish the hydraulic fluid from the charge pump to the first pump port.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will be made clear from the following detailed description of preferred embodiments with reference to the accompanying drawings.
本発明の液圧駆動装置の構成を示す回路図である。1 is a circuit diagram showing the configuration of a hydraulic drive device of the present invention; FIG. 図1の液圧駆動装置において、各ポートの圧力の経時変化を示すグラフである。FIG. 2 is a graph showing changes over time in pressure at each port in the hydraulic drive device of FIG. 1; FIG. 図1の液圧駆動装置における開度制御処理の手順を示すフローチャートである。FIG. 2 is a flow chart showing the procedure of opening degree control processing in the hydraulic drive system of FIG. 1 ; FIG.
 以下、本発明に係る実施形態の液圧駆動装置1について前述する図面を参照しながら説明する。なお、以下の説明で用いる方向の概念は、説明する上で便宜上使用するものであって、発明の構成の向き等をその方向に限定するものではない。また、以下に説明する液圧駆動装置1は、本発明の一実施形態に過ぎない。従って、本発明は実施形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。 A hydraulic drive device 1 according to an embodiment of the present invention will be described below with reference to the above-described drawings. It should be noted that the concept of direction used in the following description is used for convenience of explanation, and does not limit the orientation of the configuration of the invention to that direction. Moreover, the hydraulic drive device 1 described below is merely an embodiment of the present invention. Therefore, the present invention is not limited to the embodiments, and additions, deletions, and modifications can be made without departing from the spirit of the invention.
 <液圧機器>
 建設機械及び産業機械に搭載される液圧機器2は、図1に示すような液圧シリンダ3及び液圧駆動装置1を備えている。液圧機器2は、液圧駆動装置1によって液圧シリンダ3を作動させる。これにより、液圧機器2に備わる種々の構成部品(図示せず)が動かされる。
<Hydraulic equipment>
Hydraulic equipment 2 mounted on construction machinery and industrial machinery includes a hydraulic cylinder 3 and a hydraulic drive device 1 as shown in FIG. The hydraulic device 2 operates the hydraulic cylinder 3 by means of the hydraulic drive device 1 . As a result, various components (not shown) of the hydraulic device 2 are moved.
 <液圧シリンダ>
 液圧シリンダ3は、作動液(例えば油、又は水等の液体)を供給することによって伸縮する。また、液圧シリンダ3は、作動液の流れる方向を切換えることによって伸長及び収縮を切換えられる。より詳細に説明すると、液圧シリンダ3は、シリンダチューブ11とロッド12とを有している。シリンダチューブ11は、ロッド側ポート11a及びヘッド側ポート11bを有している。ロッド12は、シリンダチューブ11に摺動可能に挿通されている。そして、ロッド12は、シリンダチューブ11内をロッド室11c及びヘッド室11dの2つの部屋に区画している。各部屋11c,11dは、ロッド側ポート11a及びヘッド側ポート11bに夫々繋がっている。
<Hydraulic cylinder>
The hydraulic cylinder 3 expands and contracts by supplying hydraulic fluid (for example, oil or liquid such as water). Also, the hydraulic cylinder 3 can be switched between extension and contraction by switching the direction of flow of the hydraulic fluid. More specifically, the hydraulic cylinder 3 has a cylinder tube 11 and a rod 12 . The cylinder tube 11 has a rod side port 11a and a head side port 11b. The rod 12 is slidably inserted through the cylinder tube 11 . The rod 12 partitions the inside of the cylinder tube 11 into two chambers, a rod chamber 11c and a head chamber 11d. Each chamber 11c, 11d is connected to the rod side port 11a and the head side port 11b, respectively.
 また、液圧シリンダ3は、片ロッドシリンダである。即ち、液圧シリンダ3では、ロッド12において各部屋11c,11dに面する受圧面の面積が異なっている。それ故、液圧シリンダ3を伸縮する際に各部屋11c,11dに給排される作動液の流量が異なる。本実施形態において、液圧シリンダ3では、ヘッド室11dに給排される流量に対してロッド室11cに給排される流量が小さくなっている。 Also, the hydraulic cylinder 3 is a single-rod cylinder. That is, in the hydraulic cylinder 3, the areas of the pressure-receiving surfaces of the rod 12 facing the chambers 11c and 11d are different. Therefore, when the hydraulic cylinder 3 expands and contracts, the flow rate of the hydraulic fluid supplied to and discharged from the chambers 11c and 11d differs. In the present embodiment, in the hydraulic cylinder 3, the flow rate supplied to and discharged from the rod chamber 11c is smaller than the flow rate supplied to and discharged from the head chamber 11d.
 <液圧駆動装置>
 液圧駆動装置1は、液圧シリンダ3に作動液を給排する。そして、液圧駆動装置1は、作動液を給排することによって液圧シリンダ3を伸縮させる。更に詳細に説明すると、液圧駆動装置1は、メインポンプ21と、電動機22と、液圧回路23と、チャージポンプ24と、ポンプ圧センサ25と、ロッド圧センサ26と、ヘッド圧センサ27と、位置センサ28と、制御装置29と、を備えている。
<Hydraulic drive device>
The hydraulic drive device 1 supplies and discharges hydraulic fluid to and from the hydraulic cylinder 3 . The hydraulic drive device 1 expands and contracts the hydraulic cylinder 3 by supplying and discharging hydraulic fluid. More specifically, the hydraulic drive device 1 includes a main pump 21, an electric motor 22, a hydraulic circuit 23, a charge pump 24, a pump pressure sensor 25, a rod pressure sensor 26, and a head pressure sensor 27. , a position sensor 28 and a controller 29 .
 <メインポンプ>
 メインポンプ21は、作動液を吸入して吐出する。より詳細に説明すると、メインポンプ21は、シャフト21aと、第1ポンプポート21bと、第2ポンプポート21cとを有している。メインポンプ21は、シャフト21aの回転方向(正方向及び逆方向)に応じて2つのポンプポート21b,21cのうち一方から作動液を吸入する。そして、メインポンプ21は、他方のポンプポート21c,21b(即ち、吐出側ポート)から作動液を吐出する。本実施形態において、メインポンプ21は、可変容量形の斜板ポンプである。但し、メインポンプ21は、斜板ポンプではなく斜軸ポンプ等他のポンプであってもよく、また固定容量形のポンプであってもよい。
<Main pump>
The main pump 21 sucks and discharges working fluid. More specifically, the main pump 21 has a shaft 21a, a first pump port 21b and a second pump port 21c. The main pump 21 sucks hydraulic fluid from one of the two pump ports 21b and 21c according to the rotation direction (forward direction and reverse direction) of the shaft 21a. Then, the main pump 21 discharges the hydraulic fluid from the other pump ports 21c, 21b (that is, discharge side ports). In this embodiment, the main pump 21 is a variable displacement swash plate pump. However, instead of the swash plate pump, the main pump 21 may be another pump such as an inclined shaft pump, or may be a fixed displacement pump.
 <電動機>
 電動機22は、メインポンプ21を回転駆動する。より詳細に説明すると、電動機22は、メインポンプ21のシャフト21aに連結されている。そして、電動機22は、シャフト21aを介してメインポンプ21を正方向又は逆方向に回転駆動する。本実施形態において、電動機22は、サーボモータである。即ち、電動機22は、その回動量を制御することができる。なお、電動機22は、一方向にのみ回転可能なものであってもよい。この場合、メインポンプ21には、例えば両傾転型の斜板ポンプが採用される。
<Electric motor>
The electric motor 22 rotationally drives the main pump 21 . More specifically, the electric motor 22 is connected to the shaft 21 a of the main pump 21 . The electric motor 22 rotates the main pump 21 forward or backward through the shaft 21a. In this embodiment, the electric motor 22 is a servomotor. That is, the electric motor 22 can control the amount of rotation. The electric motor 22 may be rotatable only in one direction. In this case, the main pump 21 employs, for example, a double tilt type swash plate pump.
 <液圧回路>
 液圧回路23は、液圧シリンダ3のロッド側ポート11aとメインポンプ21の第1ポンプポート21bとを接続する。また、液圧回路23は、液圧シリンダ3のヘッド側ポート11bとメインポンプ21の第2ポンプポート21cとを接続する。これにより、液圧回路23は、閉回路を構成している。更に詳細に説明すると、液圧回路23は、ロッド側通路31と、ヘッド側通路32と、補給通路33と、2つの逆止弁34,35と,リリーフ弁36と、ロッド側制御弁37と,ヘッド側開閉弁38と、を有している。
<Hydraulic circuit>
The hydraulic circuit 23 connects the rod side port 11 a of the hydraulic cylinder 3 and the first pump port 21 b of the main pump 21 . Also, the hydraulic circuit 23 connects the head-side port 11 b of the hydraulic cylinder 3 and the second pump port 21 c of the main pump 21 . Thereby, the hydraulic circuit 23 constitutes a closed circuit. More specifically, the hydraulic circuit 23 includes a rod-side passage 31, a head-side passage 32, a supply passage 33, two check valves 34 and 35, a relief valve 36, and a rod-side control valve 37. , and a head-side on-off valve 38 .
 ロッド側通路31は、ロッド側ポート11aと第1ポンプポート21bとを接続している。ヘッド側通路32は、ヘッド側ポート11bと第2ポンプポート21cとを接続する。補給通路33は、タンク39と2つの通路31,32の各々とに繋がっている。更に詳細に説明すると、補給通路33の一端側が二股に分かれている。そして、補給通路33では、二股に分かれている部分が逆止弁34,35を介して各通路31,32に接続されている。逆止弁34,35は、補給通路33において通路31,32側への流れを許容し、且つその逆方向の流れを阻止する。また、補給通路33の他端側は、リリーフ弁36を介してタンク39に接続されている。 The rod-side passage 31 connects the rod-side port 11a and the first pump port 21b. The head-side passage 32 connects the head-side port 11b and the second pump port 21c. A replenishment passage 33 is connected to a tank 39 and each of the two passages 31 and 32 . More specifically, one end of the supply passage 33 is bifurcated. In the replenishment passage 33 , the bifurcated portion is connected to the passages 31 and 32 via check valves 34 and 35 . The check valves 34, 35 allow the flow in the replenishment passage 33 toward the passages 31, 32 and block the flow in the opposite direction. The other end of the replenishment passage 33 is connected to a tank 39 via a relief valve 36 .
 [ロッド側制御弁]
 ロッド側制御弁37は、ロッド側通路31に介在している。より詳細に説明すると、ロッド側制御弁37は、ロッド側通路31において補給通路33が合流する点g1より液圧シリンダ3側(即ち、ロッド側ポート11a側)に介在している。また、ロッド側制御弁37は、開口を開閉可能に構成されている。更に、ロッド側制御弁37は、本実施形態においてホールディング弁として機能する。
[Rod side control valve]
The rod side control valve 37 is interposed in the rod side passage 31 . More specifically, the rod-side control valve 37 is interposed in the rod-side passage 31 on the hydraulic cylinder 3 side (that is, on the rod-side port 11a side) from the point g1 where the supply passages 33 join. Moreover, the rod side control valve 37 is configured to be able to open and close the opening. Furthermore, the rod side control valve 37 functions as a holding valve in this embodiment.
 より詳細に説明すると、ロッド側制御弁37は、以下のように構成されている。即ち、ロッド側制御弁37は、閉状態においてロッド側ポート11aと第1ポンプポート21bとの間を遮断する。また、ロッド側制御弁37は、開状態においてロッド側ポート11aと第1ポンプポート21bとを連通する。更に詳細に説明すると、ロッド側制御弁37は、開度を調整可能に構成されている。そして、ロッド側制御弁37は、開度を変えることによってロッド側通路31であってロッド側制御弁37の両側の液圧を調整することができる。即ち、ロッド側制御弁37は、開度を調整することによってロッド側通路31であってロッド側制御弁37より第1ポンプポート21b側及びロッド側制御弁37よりロッド側ポート11a側を夫々流れる作動液の液圧を調整する。なお、ロッド側制御弁37は、本実施形態において比例制御弁である。但し、ロッド側制御弁37は、比例制御弁に限定されず、逆比例制御弁であってもよい。 In more detail, the rod side control valve 37 is configured as follows. That is, the rod side control valve 37 blocks communication between the rod side port 11a and the first pump port 21b in the closed state. Further, the rod side control valve 37 communicates the rod side port 11a and the first pump port 21b in the open state. More specifically, the rod-side control valve 37 is configured so that the degree of opening can be adjusted. The rod-side control valve 37 can adjust the hydraulic pressure on both sides of the rod-side passage 31 by changing the degree of opening. That is, by adjusting the degree of opening of the rod-side control valve 37, the rod-side passage 31 flows from the rod-side control valve 37 to the first pump port 21b side and from the rod-side control valve 37 to the rod-side port 11a side, respectively. Adjust hydraulic fluid pressure. In addition, the rod side control valve 37 is a proportional control valve in this embodiment. However, the rod-side control valve 37 is not limited to a proportional control valve, and may be an inverse proportional control valve.
 [ヘッド側開閉弁]
 ヘッド側開閉弁38は、ヘッド側通路32に介在している。より詳細に説明すると、ヘッド側開閉弁38は、ヘッド側通路32において補給通路33が合流する点g2より液圧シリンダ3側(即ち、ヘッド側ポート11b側)に介在している。また、ヘッド側開閉弁38は、開口を調整可能に構成されている。ヘッド側開閉弁38は、本実施形態においてホールディング弁である。即ち、ヘッド側開閉弁38は、閉状態においてヘッド側ポート11bと第2ポンプポート21cとの間を遮断する。また、ヘッド側開閉弁38は、開状態においてヘッド側ポート11bと第2ポンプポート21cとを連通する。
[Head side open/close valve]
The head side on-off valve 38 is interposed in the head side passage 32 . More specifically, the head-side on-off valve 38 is interposed in the head-side passage 32 on the side of the hydraulic cylinder 3 (that is, on the side of the head-side port 11b) from the point g2 where the supply passage 33 joins. Further, the head side opening/closing valve 38 is configured so that the opening can be adjusted. The head side on-off valve 38 is a holding valve in this embodiment. That is, the head side opening/closing valve 38 blocks communication between the head side port 11b and the second pump port 21c in the closed state. Further, the head side on-off valve 38 communicates the head side port 11b and the second pump port 21c in the open state.
 <チャージポンプ>
 チャージポンプ24は、第1ポンプポート21b及び第2ポンプポート21cのうち一方のポンプポート21b,21cに作動液を補給する。より詳細に説明すると、チャージポンプ24は、液圧回路23の補給通路33において分岐点とリリーフ弁36との間に接続されている。チャージポンプ24は、補給通路33に作動液を吐出する。そして、吐出された作動液が一方の逆止弁34,35を介して一方のポンプポート21b,21cに補給される。本実施形態において、チャージポンプ24は、固定容量形のポンプであって、定圧の作動液を吐出する。また、チャージポンプ24は、エンジン及び電動モータ等の原動機(図示せず)によって駆動される。
<Charge pump>
The charge pump 24 supplies hydraulic fluid to one of the first pump port 21b and the second pump port 21c, 21b and 21c. More specifically, the charge pump 24 is connected in the make-up passage 33 of the hydraulic circuit 23 between the branch point and the relief valve 36 . The charge pump 24 discharges working fluid to the supply passage 33 . The discharged hydraulic fluid is supplied to one of the pump ports 21b, 21c through one of the check valves 34, 35. As shown in FIG. In this embodiment, the charge pump 24 is a fixed displacement pump, and discharges working fluid at a constant pressure. Also, the charge pump 24 is driven by a prime mover (not shown) such as an engine and an electric motor.
 <ポンプ圧センサ>
 ポンプ側液圧検出器の一例であるポンプ圧センサ25は、ロッド側制御弁37より前記第1ポンプポート21b側の液圧を検出する。より詳細に説明すると、ポンプ圧センサ25は、ロッド側通路31であってロッド側制御弁37より第1ポンプポート21b側に設けられている。そして、ポンプ圧センサ25は、そこを流れる作動液の液圧、即ち第1ポンプポート21bの液圧(ポンプ側圧力であって、メインポンプ21の吸入圧又は吐出圧に相当)を検出する。
<Pump pressure sensor>
A pump pressure sensor 25, which is an example of a pump-side hydraulic pressure detector, detects the hydraulic pressure on the first pump port 21b side from the rod-side control valve 37. As shown in FIG. More specifically, the pump pressure sensor 25 is provided in the rod-side passage 31 closer to the first pump port 21 b than the rod-side control valve 37 . The pump pressure sensor 25 detects the hydraulic pressure of the hydraulic fluid flowing therethrough, that is, the hydraulic pressure of the first pump port 21b (pump-side pressure, which corresponds to the suction pressure or discharge pressure of the main pump 21).
 <ロッド圧センサ>
 シリンダ側液圧検出器の一例であるロッド圧センサ26は、ロッド側制御弁37よりロッド側ポート11a側の液圧を検出する。より詳細に説明すると、ロッド圧センサ26は、ロッド側通路31であってロッド側制御弁37よりロッド側ポート11a側に設けられている。そして、ロッド圧センサ26は、そこを流れる作動液の液圧、即ちロッド側ポート11aの液圧(シリンダ側圧力であって、ロッド圧に相当)を検出する。
<Rod pressure sensor>
A rod pressure sensor 26 , which is an example of a cylinder-side hydraulic pressure detector, detects the hydraulic pressure on the rod-side port 11 a side from the rod-side control valve 37 . More specifically, the rod pressure sensor 26 is provided in the rod-side passage 31 closer to the rod-side port 11 a than the rod-side control valve 37 . The rod pressure sensor 26 detects the hydraulic pressure of the hydraulic fluid flowing therethrough, that is, the hydraulic pressure of the rod-side port 11a (the cylinder-side pressure, which corresponds to the rod pressure).
 <ヘッド圧センサ>
 ヘッド圧センサ27は、ヘッド側開閉弁38よりヘッド側ポート11b側の液圧を検出する。より詳細に説明すると、ヘッド圧センサ27は、ヘッド側通路32であってヘッド側開閉弁38よりヘッド側ポート11b側に設けられている。そして、ヘッド圧センサ27は、そこを流れる液圧、即ちヘッド側ポート11bの液圧(ヘッド圧に相当)を検出する。
<Head pressure sensor>
The head pressure sensor 27 detects the hydraulic pressure on the side of the head side port 11b from the head side on-off valve 38 . More specifically, the head pressure sensor 27 is provided in the head-side passage 32 closer to the head-side port 11b than the head-side on-off valve 38 is. The head pressure sensor 27 detects the fluid pressure flowing therethrough, that is, the fluid pressure of the head-side port 11b (corresponding to the head pressure).
 <位置センサ>
 位置センサ28は、液圧シリンダ3のロッド12の位置を検出する。より詳細に説明すると、位置センサ28は、ロッド12のストローク量を検出する。
<Position sensor>
A position sensor 28 detects the position of the rod 12 of the hydraulic cylinder 3 . More specifically, position sensor 28 detects the stroke amount of rod 12 .
 <制御装置>
 制御装置29は、ポンプ圧センサ25、ロッド圧センサ26、ヘッド圧センサ27、及び位置センサ28の各々から検出結果を取得する。また、制御装置29は、予め記憶される動作計画(プログラム)又は図示しない操作装置の操作と前述する検出結果とに基づいてメインポンプ21、及び電動機22の動作を制御する。即ち、制御装置29は、位置センサ28で検出されるストローク量に基づいてメインポンプ21の吐出流量、即ち液圧シリンダ3のメータイン流量を制御する。これにより、液圧シリンダ3のロッド12が制御装置29によって位置制御される。
<Control device>
The control device 29 acquires detection results from each of the pump pressure sensor 25 , rod pressure sensor 26 , head pressure sensor 27 and position sensor 28 . Further, the control device 29 controls the operations of the main pump 21 and the electric motor 22 based on a pre-stored operation plan (program) or operation of an operation device (not shown) and the above-described detection results. That is, the control device 29 controls the discharge flow rate of the main pump 21 , that is, the meter-in flow rate of the hydraulic cylinder 3 based on the stroke amount detected by the position sensor 28 . Thereby, the position of the rod 12 of the hydraulic cylinder 3 is controlled by the control device 29 .
 また、制御装置29は、ポンプ圧センサ25の検出結果であるポンプ側圧力に基づいてロッド側制御弁37の開度を制御する。より詳細に説明すると、制御装置29は、第1ポンプポート21bの液圧がチャージポンプ24の吐出圧以下になるようにロッド側制御弁37の開度を制御する。更に、制御装置29は、ロッド圧センサ26の検出結果であるロッド圧とポンプ側圧力との圧力差に基づいてロッド側制御弁37の開度を制御する。更に、制御装置29は、ロッド圧とヘッド圧との比較結果に基づいてロッド側制御弁37を開閉する。更に、制御装置29は、ヘッド側開閉弁38の動作も制御する。 The control device 29 also controls the opening of the rod-side control valve 37 based on the pump-side pressure detected by the pump pressure sensor 25 . More specifically, the control device 29 controls the opening of the rod-side control valve 37 so that the hydraulic pressure of the first pump port 21b is equal to or lower than the discharge pressure of the charge pump 24. As shown in FIG. Further, the control device 29 controls the opening degree of the rod side control valve 37 based on the pressure difference between the rod pressure and the pump side pressure, which is the detection result of the rod pressure sensor 26 . Furthermore, the control device 29 opens and closes the rod-side control valve 37 based on the comparison result between the rod pressure and the head pressure. Furthermore, the control device 29 also controls the operation of the head side on-off valve 38 .
 <液圧駆動装置の動作>
 液圧駆動装置1では、前述の通りロッド側制御弁37及びヘッド側開閉弁38がホールディング弁の役割を果たしている。それ故、液圧駆動装置1は、停止状態においてロッド側制御弁37及びヘッド側開閉弁38の開口を閉じる。そうすると、液圧シリンダ3の各部屋11c,11dに対する作動液の給排が止められる。これにより、液圧シリンダ3のロッド12がその位置にて保持される。
<Operation of hydraulic drive device>
In the hydraulic drive system 1, the rod side control valve 37 and the head side opening/closing valve 38 serve as holding valves as described above. Therefore, the hydraulic drive device 1 closes the openings of the rod-side control valve 37 and the head-side on-off valve 38 in the stopped state. Then, supply and discharge of hydraulic fluid to and from the chambers 11c and 11d of the hydraulic cylinder 3 are stopped. Thereby, the rod 12 of the hydraulic cylinder 3 is held at that position.
 次に液圧駆動装置1は、動作計画又は操作装置の操作に基づいて液圧シリンダ3を収縮させる場合(即ち、ロッド側ポート11aに作動液を供給する場合)、以下のように動作する。即ち、液圧駆動装置1では、制御装置29が電動機22によってメインポンプ21のシャフト21aを逆回転させる。これにより、メインポンプ21は、第2ポンプポート21cから作動液を吸入する。そして、メインポンプ21は、第1ポンプポート21bから作動液を吐出する。 Next, the hydraulic drive device 1 operates as follows when the hydraulic cylinder 3 is contracted based on the operation plan or operation of the operation device (that is, when hydraulic fluid is supplied to the rod side port 11a). That is, in the hydraulic drive system 1, the controller 29 causes the electric motor 22 to rotate the shaft 21a of the main pump 21 in the reverse direction. As a result, the main pump 21 sucks the hydraulic fluid from the second pump port 21c. The main pump 21 then discharges the hydraulic fluid from the first pump port 21b.
 また、制御装置29は、電動機22の動きを制御すると共にロッド側制御弁37及びヘッド側開閉弁38を開状態にする。本実施形態において、制御装置29は、ロッド側制御弁37及びヘッド側開閉弁38を全開にする。但し、ロッド側制御弁37及びヘッド側開閉弁38は、必ずしも全開にする必要はない。ロッド側制御弁37及びヘッド側開閉弁38が開状態になることによって、第2ポンプポート21cから吸入された作動液が第1ポンプポート21bから吐出される。そして、作動液がロッド側ポート11aを介してロッド室11cに供給される。これにより、液圧シリンダ3が収縮する。また、制御装置29は、メインポンプ21の吐出容量及び電動機22の出力を制御することによってロッド側ポート11aへのメータイン流量を制御する。これにより、制御装置29は、動作計画又は操作装置の操作に応じた位置へとロッド12を移動させることができる。即ち、制御装置29は、液圧シリンダ3を収縮させ、ロッド12を位置制御する。なお、液圧駆動装置1では、ヘッド室11dがロッド室11cより大きいので、それらの容積の差分に相当する流量の作動液が図示しない絞り弁によってタンク39に排出される。 The control device 29 also controls the movement of the electric motor 22 and opens the rod-side control valve 37 and the head-side on-off valve 38 . In this embodiment, the control device 29 fully opens the rod side control valve 37 and the head side on-off valve 38 . However, the rod side control valve 37 and the head side on-off valve 38 do not necessarily have to be fully opened. By opening the rod-side control valve 37 and the head-side on-off valve 38, the hydraulic fluid sucked from the second pump port 21c is discharged from the first pump port 21b. Hydraulic fluid is supplied to the rod chamber 11c through the rod-side port 11a. This causes the hydraulic cylinder 3 to contract. Further, the control device 29 controls the meter-in flow rate to the rod side port 11 a by controlling the discharge capacity of the main pump 21 and the output of the electric motor 22 . Thereby, the control device 29 can move the rod 12 to a position according to the operation plan or the operation of the operating device. That is, the control device 29 contracts the hydraulic cylinder 3 and controls the position of the rod 12 . In the hydraulic drive system 1, since the head chamber 11d is larger than the rod chamber 11c, the working fluid is discharged to the tank 39 by a throttle valve (not shown) at a flow rate corresponding to the difference in volume between the head chambers 11d.
 次に液圧駆動装置1において、動作計画又は操作装置の操作に基づいて液圧シリンダ3の動作が収縮動作から伸長動作に切り替えられた場合が説明される。動作が切換えられると、メインポンプ21からの作動液の供給先がロッド側ポート11aからヘッド側ポート11bに切り替えられる。より詳細に説明すると、液圧駆動装置1では、制御装置29が電動機22の回転方向を切換える。これにより、メインポンプ21のシャフト21aの回転方向が逆方向から正方向に切り替えられる。そうすると、液圧駆動装置1では、メインポンプ21は、第1ポンプポート21bから作動液を吸入する。そして、メインポンプ21は、第2ポンプポート21cから作動液を吐出する。 Next, in the hydraulic drive device 1, the case where the operation of the hydraulic cylinder 3 is switched from the contraction operation to the extension operation based on the operation plan or the operation of the operating device will be explained. When the operation is switched, the supply destination of the hydraulic fluid from the main pump 21 is switched from the rod-side port 11a to the head-side port 11b. More specifically, in the hydraulic drive system 1 , the controller 29 switches the direction of rotation of the electric motor 22 . As a result, the rotation direction of the shaft 21a of the main pump 21 is switched from the reverse direction to the forward direction. Then, in the hydraulic drive device 1, the main pump 21 sucks the hydraulic fluid from the first pump port 21b. The main pump 21 then discharges the hydraulic fluid from the second pump port 21c.
 また、制御装置29は、電動機22の動きを制御すると共にヘッド側開閉弁38を開状態(本実施形態において全開)にする。これにより、第1ポンプポート21bから作動液を吸入し、また第2ポンプポート21cから吐出される作動液がヘッド側ポート11bを介してヘッド室11dに供給される。そして、制御装置29は、メインポンプ21の吐出容量及び電動機22の出力を制御することによってヘッド側ポート11bへのメータイン流量を制御する。これにより、ロッド12が動作計画又は操作装置の操作に応じた位置へロッド12を移動させることができる。即ち、制御装置29は、液圧シリンダ3を伸長させ、ロッド12を位置制御する。 The control device 29 also controls the movement of the electric motor 22 and opens the head side on-off valve 38 (fully open in this embodiment). As a result, the hydraulic fluid is sucked from the first pump port 21b and the hydraulic fluid discharged from the second pump port 21c is supplied to the head chamber 11d through the head-side port 11b. The controller 29 controls the discharge capacity of the main pump 21 and the output of the electric motor 22 to control the meter-in flow rate to the head-side port 11b. Thereby, the rod 12 can be moved to a position according to the operation plan or the operation of the operating device. That is, the control device 29 extends the hydraulic cylinder 3 and controls the position of the rod 12 .
 また、ヘッド側ポート11bに作動液を供給した後では、ロッド室11cの作動液がロッド12によってロッド側ポート11aからロッド側通路31に押し出される。それ故、ヘッド側ポート11bと共にロッド側ポート11aもまた高圧にて維持される。そこで、制御装置29は、ロッド側制御弁37の開度を以下のように制御する。 Also, after the hydraulic fluid is supplied to the head-side port 11b, the hydraulic fluid in the rod chamber 11c is pushed out by the rod 12 from the rod-side port 11a into the rod-side passage 31. Therefore, the rod side port 11a as well as the head side port 11b are maintained at high pressure. Therefore, the control device 29 controls the opening degree of the rod-side control valve 37 as follows.
 即ち、制御装置29は、ポンプ圧センサ25から取得するポンプ側圧力に基づいてポンプ側圧力(図2の実線参照)がチャージポンプ24の吐出圧(即ち、ブースト圧であって図2の鎖線参照)以下になるようにロッド側制御弁37の開度を制御する(図2の時刻t1以降参照)。更に詳細に説明すると、制御装置29は、ポンプ側圧力とロッド圧との圧力差に基づいてロッド側制御弁37の開度を制御する。本実施形態において、制御装置29は、ポンプ側圧力とロッド圧(図2の二点鎖線参照)との間に所定の圧力差を発生させる。これにより、ポンプ側圧力がチャージポンプ24の吐出圧以下に抑えられている。更に、制御装置29は、圧力差が上限閾値以下且つ下限閾値以上の所定範囲内に収まるようにロッド側制御弁37の開度を制御する。 That is, based on the pump-side pressure acquired from the pump pressure sensor 25, the control device 29 determines that the pump-side pressure (see the solid line in FIG. 2) is the discharge pressure of the charge pump 24 (that is, the boost pressure, see the chain line in FIG. 2). ) The opening degree of the rod-side control valve 37 is controlled so as to be as follows (see after time t1 in FIG. 2). More specifically, the controller 29 controls the opening of the rod-side control valve 37 based on the pressure difference between the pump-side pressure and the rod pressure. In this embodiment, the control device 29 generates a predetermined pressure difference between the pump-side pressure and the rod pressure (see the two-dot chain line in FIG. 2). As a result, the pump-side pressure is kept below the discharge pressure of the charge pump 24 . Furthermore, the control device 29 controls the opening degree of the rod-side control valve 37 so that the pressure difference falls within a predetermined range equal to or less than the upper limit threshold and equal to or more than the lower limit threshold.
 より詳細に説明すると、制御装置29は、ロッド側制御弁37の開度を制御するために図3に示す開度制御処理を実行する。開度制御処理が開始されると、ステップS1に移行する。圧力差演算工程であるステップS1では、圧力差を制御装置29が演算する。より詳細に説明すると、制御装置29は、ポンプ圧センサ25からポンプ側圧力を取得し、またロッド圧センサ26からロッド圧を取得する。そして、制御装置29は、ポンプ側圧力とロッド圧との圧力差を演算する。圧力差が演算されると、ステップS2に移行する。 More specifically, the control device 29 executes the opening degree control process shown in FIG. 3 in order to control the opening degree of the rod side control valve 37 . When the opening degree control process is started, the process proceeds to step S1. In step S1, which is a pressure difference calculation step, the control device 29 calculates the pressure difference. More specifically, the control device 29 acquires the pump-side pressure from the pump pressure sensor 25 and the rod pressure from the rod pressure sensor 26 . The controller 29 then calculates the pressure difference between the pump-side pressure and the rod pressure. After calculating the pressure difference, the process proceeds to step S2.
 圧力差判定工程であるステップS2では、圧力差が所定範囲内か否かを制御装置29が判定する。そして、制御装置29が圧力差が所定範囲内と判定した場合、ロッド側制御弁37の開度を維持する。そして、ステップS1に戻る。他方、制御装置29が圧力差が上限閾値を超えると判定した場合、ステップS3に移行する。また、制御装置29が圧力差が下限閾値未満であると判定した場合、ステップS4に移行する。 In step S2, which is a pressure difference determination step, the control device 29 determines whether the pressure difference is within a predetermined range. Then, when the control device 29 determines that the pressure difference is within the predetermined range, the opening degree of the rod-side control valve 37 is maintained. Then, the process returns to step S1. On the other hand, when the control device 29 determines that the pressure difference exceeds the upper limit threshold value, the process proceeds to step S3. Moreover, when the control device 29 determines that the pressure difference is less than the lower limit threshold value, the process proceeds to step S4.
 第1開度調整工程であるステップS3では、制御装置29がロッド側制御弁37の開度を大きくする。これにより、ロッド圧が低下するので、圧力差を小さくすることができる。圧力差を小さくと、ステップS1に戻る。 In step S3, which is the first degree-of-opening adjustment step, the control device 29 increases the degree of opening of the rod-side control valve 37 . As a result, the rod pressure is lowered, so the pressure difference can be reduced. If the pressure difference is reduced, the process returns to step S1.
 第2開度要請工程であるステップS4では、制御装置29がロッド側制御弁37の開度を小さくする。これにより、ロッド圧が上昇するので、圧力差を大きくすることができる。圧力差を大きくすると、ステップS1に戻る。 In step S4, which is the second degree-of-opening request step, the control device 29 reduces the degree of opening of the rod-side control valve 37 . As a result, the rod pressure rises, so the pressure difference can be increased. When the pressure difference is increased, the process returns to step S1.
 このように制御装置29は、開度制御処理を実行することによって圧力差を所定範囲内に維持する。これにより、ポンプ側圧力をブースト圧以下に抑えることができる。また、ロッド側制御弁37によってロッド圧が高くなりすぎることを抑えることができる。それ故、液圧シリンダ3を伸長させる際、液圧シリンダ3における背圧が高くなることを抑制できる。 In this way, the control device 29 maintains the pressure difference within a predetermined range by executing the opening degree control process. As a result, the pump-side pressure can be suppressed below the boost pressure. Also, the rod side control valve 37 can prevent the rod pressure from becoming too high. Therefore, when the hydraulic cylinder 3 is extended, it is possible to prevent the back pressure in the hydraulic cylinder 3 from increasing.
 また、制御装置29は、ヘッド圧センサ27からヘッド圧(図2の一点鎖線参照)を取得する。そして、制御装置29は、ヘッド圧とロッド圧を比較する。制御装置29は、比較結果においてヘッド圧がロッド圧より小さい場合、ロッド側制御弁37の開度制御を続ける。他方、比較結果においてヘッド圧がロッド圧より大きい場合、制御装置29は、ロッド側制御弁37の開度制御を止める。そして、制御装置29は、ロッド側制御弁37の開度を大きく開ける(図2の時刻t2参照)。そうすると、ロッド圧を下げることができるので、ロッド12が移動する際に生じる背圧を更に低減することができる。これにより、液圧シリンダ3を伸長させる際のエネルギー効率の悪化が抑制される。 Also, the control device 29 acquires the head pressure from the head pressure sensor 27 (see the dashed-dotted line in FIG. 2). The controller 29 then compares the head pressure and the rod pressure. If the comparison result shows that the head pressure is lower than the rod pressure, the control device 29 continues control of the opening degree of the rod-side control valve 37 . On the other hand, when the head pressure is higher than the rod pressure in the comparison result, the control device 29 stops controlling the opening of the rod-side control valve 37 . The controller 29 then widens the opening of the rod-side control valve 37 (see time t2 in FIG. 2). Then, since the rod pressure can be lowered, the back pressure generated when the rod 12 moves can be further reduced. As a result, deterioration in energy efficiency when extending the hydraulic cylinder 3 is suppressed.
 本実施形態の液圧駆動装置1では、制御装置29が以下のように動作する。即ち、制御装置29は、ヘッド側ポート11bに作動液を供給し且つロッド側ポート11aから第1ポンプポート21bに作動液を吸入する際、ロッド側制御弁37の開度を制御する。そうすると、第1ポンプポート21b側のポンプ側圧力を調整することができる。本実施形態において、第1ポンプポート21b側のポンプ側圧力をブースト圧以下に抑えることができる。それ故、チャージポンプ24から第1ポンプポート21bに作動液により確実に補給することができる。これにより、第2ポンプポート21cに作動液を供給する際にメインポンプ21の吐出流量が不足することを抑制できる。 In the hydraulic drive device 1 of this embodiment, the control device 29 operates as follows. That is, the control device 29 controls the opening degree of the rod side control valve 37 when supplying the hydraulic fluid to the head side port 11b and sucking the hydraulic fluid from the rod side port 11a to the first pump port 21b. Then, the pump-side pressure on the first pump port 21b side can be adjusted. In this embodiment, the pump-side pressure on the side of the first pump port 21b can be suppressed below the boost pressure. Therefore, it is possible to reliably replenish the first pump port 21b from the charge pump 24 with the working fluid. As a result, it is possible to prevent a shortage of the discharge flow rate of the main pump 21 when supplying the hydraulic fluid to the second pump port 21c.
 また、本実施形態の液圧駆動装置1では、制御装置29が第1ポンプポート21b側の液圧をブースト圧以下に抑えるようにロッド側制御弁37をフィードバック制御する。それ故、チャージポンプ24から第1ポンプポート21bに作動液により確実に補給することができる。 In addition, in the hydraulic drive system 1 of the present embodiment, the control device 29 feedback-controls the rod side control valve 37 so that the hydraulic pressure on the first pump port 21b side is suppressed below the boost pressure. Therefore, it is possible to reliably replenish the first pump port 21b from the charge pump 24 with the working fluid.
 更に、本実施形態の液圧駆動装置1では、制御装置29が圧力差に基づいてロッド側制御弁37の開度を制御する。これにより、ロッド側ポート11aの液圧が高止まりすることを抑制できる。これにより、液圧シリンダ3における背圧の高止まりを抑えることができる。それ故、メインポンプ21の吐出圧を低く抑えることができる。即ち、液圧駆動装置1におけるエネルギー損失が抑制される。 Furthermore, in the hydraulic drive system 1 of this embodiment, the control device 29 controls the opening degree of the rod side control valve 37 based on the pressure difference. As a result, it is possible to prevent the hydraulic pressure in the rod-side port 11a from remaining at a high level. As a result, the back pressure in the hydraulic cylinder 3 can be prevented from remaining at a high level. Therefore, the discharge pressure of the main pump 21 can be kept low. That is, energy loss in the hydraulic drive system 1 is suppressed.
 更に、本実施形態の液圧駆動装置1では、制御装置29は、圧力差が下限閾値未満の場合に開度を絞り、圧力差が上限閾値を超える場合に開度を開く。そして、制御装置29は、圧力差が所定範囲内においてロッド側制御弁37の開度を維持する。このように制御装置29は、ロッド側制御弁37の開度と圧力差の関係に関してヒステリシス特性を持たせることによって、ロッド側制御弁37の開度変動に起因してロッド圧に圧力ハンチングが生じることを抑制することができる。 Furthermore, in the hydraulic drive device 1 of the present embodiment, the control device 29 narrows the opening when the pressure difference is less than the lower limit threshold, and opens the opening when the pressure difference exceeds the upper limit threshold. Then, the control device 29 maintains the opening degree of the rod-side control valve 37 when the pressure difference is within a predetermined range. In this way, the control device 29 provides hysteresis characteristics to the relationship between the opening of the rod-side control valve 37 and the pressure difference, so that pressure hunting occurs in the rod pressure due to fluctuations in the opening of the rod-side control valve 37. can be suppressed.
 更に、本実施形態の液圧駆動装置1では、ロッド側制御弁37がホールディング弁として機能している。それ故、液圧駆動装置1において、部品点数を低減することができる。 Furthermore, in the hydraulic drive device 1 of this embodiment, the rod side control valve 37 functions as a holding valve. Therefore, in the hydraulic drive device 1, the number of parts can be reduced.
 [その他の実施形態について]
 本実施形態の液圧駆動装置1において、ヘッド側開閉弁38は、開閉を切換え可能な開閉弁であるが、ヘッド側開閉弁38に代えてロッド側制御弁37と同様の制御弁が設けられてもよい。また、ロッド側制御弁37及びヘッド側開閉弁38は、ホールディング弁として機能しているが、必ずしもそのような機能を有する必要はない。また、液圧駆動装置1において、ホールディング弁が別途設けられてもよい。
[About other embodiments]
In the hydraulic drive device 1 of this embodiment, the head side on-off valve 38 is an on-off valve that can be switched between opening and closing. may Also, although the rod-side control valve 37 and the head-side opening/closing valve 38 function as holding valves, they do not necessarily have such a function. Further, a holding valve may be separately provided in the hydraulic drive device 1 .
 また、本実施形態の液圧駆動装置1において、制御装置29は、圧力差に応じてロッド側制御弁37の開度を制御しているが、第1ポンプポート21bのポンプ側圧力だけ又はロッド圧だけに応じてロッド側制御弁37の開度を制御してもよい。 In addition, in the hydraulic drive system 1 of this embodiment, the control device 29 controls the opening degree of the rod side control valve 37 according to the pressure difference. The degree of opening of the rod-side control valve 37 may be controlled only in accordance with the pressure.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the invention will be apparent to those skilled in the art. Accordingly, the above description is to be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Substantial details of construction and/or function may be changed without departing from the spirit of the invention.

Claims (5)

  1.  作動液を給排することによって液圧シリンダを駆動する液圧駆動装置であって、
     第1及び第2ポンプポートを有し、前記第1及び第2ポンプポートのうち一方の前記ポンプポートから作動液を吸入し、且つ他方の前記ポンプポートから作動液を吐出するメインポンプと、
     前記液圧シリンダのロッド側ポートと前記第1ポンプポートとを接続し、且つ前記液圧シリンダのヘッド側ポートと前記第2ポンプポートとを接続することによって閉回路を構成する液圧回路と、
     前記一方のポンプポートに作動液を補給するチャージポンプと、を備え、
     前記液圧回路は、前記ロッド側ポートと前記第1ポンプポートとを接続するロッド側通路に介在し、且つ開度を調整可能な制御弁を有している、液圧駆動装置。
    A hydraulic drive device that drives a hydraulic cylinder by supplying and discharging hydraulic fluid,
    a main pump having first and second pump ports, sucking hydraulic fluid from one of the first and second pump ports and discharging hydraulic fluid from the other pump port;
    a hydraulic circuit forming a closed circuit by connecting the rod side port of the hydraulic cylinder and the first pump port and connecting the head side port of the hydraulic cylinder and the second pump port;
    a charge pump that supplies hydraulic fluid to the one pump port,
    The hydraulic drive device, wherein the hydraulic circuit includes a control valve that is interposed in a rod-side passage that connects the rod-side port and the first pump port and that is adjustable in opening degree.
  2.  前記ロッド側通路において、前記制御弁より前記第1ポンプポート側の液圧を検出するポンプ側液圧検出器と、
     前記ポンプ側液圧検出器の検出結果に基づいて前記制御弁の開度を制御する制御装置と、を更に備え、
     前記制御装置は、前記第1ポンプポートの液圧が前記チャージポンプの吐出圧以下になるように前記制御弁の開度を制御する、請求項1に記載の液圧駆動装置。
    a pump-side hydraulic pressure detector that detects the hydraulic pressure on the first pump port side of the control valve in the rod-side passage;
    a control device that controls the opening of the control valve based on the detection result of the pump-side hydraulic pressure detector,
    2. The hydraulic drive device according to claim 1, wherein said control device controls the degree of opening of said control valve so that the hydraulic pressure of said first pump port is equal to or less than the discharge pressure of said charge pump.
  3.  前記ロッド側通路において、前記制御弁より前記ロッド側ポート側の液圧を検出するシリンダ側液圧検出器を更に備え、
     前記制御装置は、前記ポンプ側液圧検出器の検出結果であるポンプ側圧力と前記シリンダ側液圧検出器の検出結果であるシリンダ側圧力との圧力差に基づいて、前記制御弁の開度を制御する、請求項2に記載の液圧駆動装置。
    further comprising a cylinder-side hydraulic pressure detector that detects the hydraulic pressure on the rod-side port side of the control valve in the rod-side passage,
    The control device determines the degree of opening of the control valve based on the pressure difference between the pump-side pressure, which is the detection result of the pump-side hydraulic pressure detector, and the cylinder-side pressure, which is the detection result of the cylinder-side hydraulic pressure detector. 3. The hydraulic drive according to claim 2, which controls the
  4.  前記制御装置は、前記圧力差が所定の下限閾値未満になると前記制御弁の開度を絞り、前記圧力差が所定の上限閾値を超えると前記制御弁の開度を開く、請求項3に記載の液圧駆動装置。 4. The control device according to claim 3, wherein the control device reduces the degree of opening of the control valve when the pressure difference becomes less than a predetermined lower threshold, and opens the degree of opening of the control valve when the pressure difference exceeds a predetermined upper threshold. hydraulic drive.
  5.  前記制御弁は、前記ロッド側ポートの液圧を保持するホールディング弁である、請求項1乃至4の何れか1つに記載の液圧駆動装置。 The hydraulic drive device according to any one of claims 1 to 4, wherein the control valve is a holding valve that holds the hydraulic pressure of the rod side port.
PCT/JP2022/020227 2021-06-25 2022-05-13 Hydraulic drive device WO2022270176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-105636 2021-06-25
JP2021105636A JP2023004125A (en) 2021-06-25 2021-06-25 Hydraulic drive system

Publications (1)

Publication Number Publication Date
WO2022270176A1 true WO2022270176A1 (en) 2022-12-29

Family

ID=84544498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020227 WO2022270176A1 (en) 2021-06-25 2022-05-13 Hydraulic drive device

Country Status (2)

Country Link
JP (1) JP2023004125A (en)
WO (1) WO2022270176A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336842A (en) * 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd Control device of work machine
US20170184139A1 (en) * 2014-06-20 2017-06-29 Parker-Hannifin Corporation Method of controlling velocity of a hydraulic actuator in over-center linkage systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336842A (en) * 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd Control device of work machine
US20170184139A1 (en) * 2014-06-20 2017-06-29 Parker-Hannifin Corporation Method of controlling velocity of a hydraulic actuator in over-center linkage systems

Also Published As

Publication number Publication date
JP2023004125A (en) 2023-01-17

Similar Documents

Publication Publication Date Title
US6502499B2 (en) Hydraulic recovery system for construction machine and construction machine using the same
JP5956179B2 (en) Hydraulic drive system
JP2004272873A (en) Method based on rapidity for controlling hydraulic system
KR20070102490A (en) Hydraulic drive
JP4999404B2 (en) Hydraulic control device
US9810246B2 (en) Hydraulic drive system
CN112154271B (en) Construction machine
JP6860521B2 (en) Construction machinery
JP6814309B2 (en) Construction machinery
US7614335B2 (en) Hydraulic system with variable standby pressure
US11781288B2 (en) Shovel
US10889964B2 (en) Drive system for construction machine
WO2022270176A1 (en) Hydraulic drive device
WO2002004820A1 (en) Hydraulic cylinder circuit
JP2020139574A (en) Construction machine
JP6324186B2 (en) Hydraulic drive
KR20090068823A (en) Hydraulic pump control apparatus for construction machinery
US8443827B2 (en) Controlling device for hydraulic consumers
JP2009275776A (en) Fluid pressure actuator control circuit
JP6782272B2 (en) Construction machinery
WO2015178316A1 (en) Shovel and control method therefor
JP2021021427A (en) Construction machine
EP3470677A1 (en) Pump device
JPH04258505A (en) Driving control device for hydraulic construction machine
WO2024014083A1 (en) Hydraulic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22828095

Country of ref document: EP

Kind code of ref document: A1