WO2022270054A1 - Nitride semiconductor light emitting element - Google Patents

Nitride semiconductor light emitting element Download PDF

Info

Publication number
WO2022270054A1
WO2022270054A1 PCT/JP2022/012132 JP2022012132W WO2022270054A1 WO 2022270054 A1 WO2022270054 A1 WO 2022270054A1 JP 2022012132 W JP2022012132 W JP 2022012132W WO 2022270054 A1 WO2022270054 A1 WO 2022270054A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor light
fault
nitride semiconductor
optical guide
Prior art date
Application number
PCT/JP2022/012132
Other languages
French (fr)
Japanese (ja)
Inventor
幸男 保科
誠 太田
崇 水野
秀和 川西
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022270054A1 publication Critical patent/WO2022270054A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present disclosure relates to a nitride semiconductor light emitting device such as a nitride semiconductor laser device having a ridge.
  • Blue to green light emitting diodes LED: light emitting diodes
  • pure blue semiconductor lasers LD: Laser Diodes
  • the active layer of a semiconductor light-emitting device using a nitride-based compound generally uses an aluminum indium gallium nitride (AlInGaN)-based quantum well layer, and the composition ratio of indium (In) in the active layer is increased. This makes it possible to obtain light emission in the blue band.
  • a semiconductor laser device which is a nitride semiconductor light-emitting device, is provided with a current constriction layer to narrow the passage of current in the active layer, thereby increasing the threshold current density and thereby reducing the threshold current itself.
  • Stripe lasers are the mainstream.
  • a stripe laser has a ridge formed on the upper surface of the p-side semiconductor layer above the active layer.
  • An anode electrode is formed on the ridge for electrical connection.
  • some semiconductor laser devices which are nitride semiconductor light emitting devices, have an electron barrier layer made of p-type aluminum gallium nitride (AlGaN) in order to suppress electron overflow from the active layer.
  • AlGaN aluminum gallium nitride
  • Electron overflow is a phenomenon in which electrons supplied from the n-side do not emit light due to recombination with holes in the quantum well layer of the active layer and are conducted to the p-side layer. Such electron overflow causes a decrease in luminous efficiency and a deterioration in temperature characteristics as characteristics of the laser.
  • the aforementioned electron barrier layer requires high-concentration p-type doping in order not to deteriorate the voltage.
  • forming the electron barrier layer with a high-concentration dopant worsens the threshold current due to optical loss.
  • the deterioration of the threshold current with respect to the amount of optical loss becomes remarkable, which poses a serious problem.
  • the doping concentration is reduced in an attempt to reduce the optical loss, there is a problem that the voltage deteriorates and a sufficient barrier effect cannot be obtained. If the electron barrier layer is eliminated, the electron overflow occurs as described above, and the luminous efficiency and temperature characteristics deteriorate. Therefore, due to the trade-off as described above, at present, it is common to provide an electron barrier layer.
  • the electron barrier layer has a high aluminum (Al) composition ratio
  • stress is generated due to strain due to the difference in lattice constant between the electron barrier layer and the optical guide layer containing In.
  • a mechanical force is applied to the laser light exit facet of the nitride semiconductor light emitting device. Due to the force applied during such cleavage, an unintended minute step (also called a "fault") occurs on the laser light exit facet in the vicinity of the active layer. It is a factor of yield deterioration in
  • Japanese Unexamined Patent Application Publication No. 2002-200003 discloses a prior art for suppressing the strain due to the difference in lattice constant and the step due to the mechanical force applied during cleavage.
  • a semiconductor substrate, a lower clad layer formed on the semiconductor substrate and having a first conductivity type, an active layer formed on the lower clad layer, an active layer formed on the active layer and the first A cap layer having a second conductivity type opposite to the conductivity type, a current confinement structure formed on the cap layer, an upper electrode layer formed on the current confinement structure, and electrically connected to the lower clad layer.
  • a semiconductor light emitting device having a lower electrode layer is disclosed.
  • This semiconductor light emitting device includes a stepped confinement layer interposed between the active layer and the current confinement structure. That is, by interposing the step confinement layer between the active layer and the current confinement structure, the effect of the step is confined.
  • the “step” is said to mean unevenness or undulation that occurs in different angular directions on a plane with respect to the cleaved end face (see paragraph [0008]).
  • Patent Document 1 reduces the number of electrons that overflow beyond the electron barrier in order to confine electrons in the active layer, and has a small threshold current and a high differential efficiency. A light emitting device is provided. Therefore, it does not prevent the generation of the step. Further, the technique disclosed in Patent Document 2 confines the influence of the step, and does not prevent the step (hereinafter referred to as "fault") itself from occurring.
  • the present disclosure has been made in view of these problems, and by forming a fault suppression structure on the upper part of the electron barrier layer, suppresses electron overflow, prevents deterioration of laser characteristics, and suppresses stress caused by strain. It is an object of the present invention to provide a nitride semiconductor light-emitting device capable of alleviating stress, preventing the occurrence of faults, and improving the yield during manufacturing.
  • a first aspect thereof includes a gallium nitride (GaN) substrate, a first clad layer laminated on the GaN substrate, and the first A first optical guide layer laminated on one clad layer, an active layer laminated on the first optical guide layer, a second optical guide layer laminated on the active layer, and the second optical guide An electron barrier layer laminated on a layer, a fault suppression layer laminated on the electron barrier layer, a second clad layer laminated on the fault suppression layer, and a layer laminated on the second clad layer , a nitride semiconductor light emitting device having a contact layer.
  • GaN gallium nitride
  • the fault suppression layer is formed of aluminum gallium nitride made of Al z Ga (1-z) N (0 ⁇ z ⁇ 1), or In a Ga (1-a) N ( It may be made of indium gallium nitride satisfying 0 ⁇ a ⁇ 1.
  • the fault suppression layer may be formed with a thickness of 10 nm or more.
  • the first optical guide layer and the second optical guide layer are formed of indium gallium nitride made of In b Ga (1 ⁇ b) N (0 ⁇ b ⁇ 1), and the composition ratio is b and the total film thickness t of both may be 7 nm or more.
  • the electron barrier layer is formed of aluminum gallium nitride having a thickness of 5 nm or more and made of Al x Ga (1-x) N (0 ⁇ x ⁇ 1) doped with p-type impurities. good too.
  • the second clad layer may be made of aluminum gallium nitride made of Al y Ga (1-y) N (0 ⁇ z ⁇ y ⁇ 1).
  • a nitride semiconductor light-emitting device that suppresses electron overflow, prevents deterioration of laser characteristics, relieves stress due to distortion, prevents faults, and improves manufacturing yield. can be provided.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a nitride semiconductor light emitting device according to the present disclosure
  • FIG. 1 is a plan view showing a schematic structure of a nitride semiconductor light emitting device according to the present disclosure
  • FIG. 4 is an explanatory diagram showing the relationship between the average composition ratio of In in the optical guide layer of the nitride semiconductor light-emitting device according to the present disclosure and the occurrence rate of faults;
  • FIG. 4 is an explanatory diagram showing the relationship between the amount of strain in the optical guide layer and the occurrence rate of faults in the nitride semiconductor light emitting device according to the present disclosure
  • 1 is an explanatory diagram of a method for manufacturing a nitride semiconductor light emitting device according to the present disclosure (part 1);
  • FIG. FIG. 2 is an explanatory diagram of a method for manufacturing a nitride semiconductor light emitting device according to the present disclosure (Part 2);
  • FIG. 3 is an explanatory diagram of a method for manufacturing a nitride semiconductor light emitting device according to the present disclosure (part 3);
  • FIG. 4 is an explanatory diagram of a method for manufacturing a nitride semiconductor light emitting device according to the present disclosure (No. 4);
  • FIG. 3 is a schematic diagram showing a fault generated in a nitride semiconductor light emitting device; It is a figure which shows the relationship between a lattice constant and bandgap energy.
  • FIG. 1 is a cross-sectional view of a nitride semiconductor light emitting device 100 according to the present disclosure, viewed from a front facet 31 that is a light emitting facet.
  • the nitride semiconductor light emitting device 100 according to the present disclosure has a ridge portion 30 protruding from the top and is formed in a substantially convex shape.
  • the ridge portion 30 is formed by removing both side surfaces of the contact layer 19 and the second clad layer 18 by etching such as RIE.
  • the width of the ridge portion 30 (direction orthogonal to the resonator direction) is, for example, 500 nm to 100 ⁇ m.
  • a region sandwiched between the front end face 31 and the rear end face 32 of the ridge portion 30 forms a reflector.
  • a resonator that amplifies the light is formed by reciprocating the laser light between the front facet 31 and the rear facet 32 .
  • the distance (resonator length) between the front facet 31 and the rear facet 32 is, for example, 50 ⁇ m to 3000 ⁇ m.
  • Both side surfaces 30a, 30a of the ridge portion 30 are covered with an insulating layer 21.
  • the insulating layer 21 is made of, for example, silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ), and has a film thickness of, for example, 10 nm to 500 nm.
  • the nitride semiconductor light-emitting device 100 comprises a GaN substrate 11, a first clad layer 12, a first optical guide layer 13, an active layer 14, a second optical guide layer 15, an electron barrier layer 16, a fault suppressing layer 17, and the above-described
  • a second cladding layer 18 and a contact layer 19 are sequentially laminated.
  • a first electrode 10 that is a cathode is formed on the lower surface of the GaN substrate 11
  • a second electrode 20 that is an anode is formed on the upper surface of the contact layer 19 .
  • the GaN substrate 11 forms a base for laminating each layer constituting the nitride semiconductor light emitting device 100 .
  • the first clad layer 12 is formed to have a low refractive index in order to confine light emitted from the active layer 14, which will be described later.
  • the first clad layer 12 is made of, for example, n-type AlGaN.
  • the film thickness is, for example, 1000 nm or more.
  • the first optical guide layer 13 is a layer for confining light having a refractive index intermediate between the n-type first clad layer 12 and the active layer 14 and formed between them.
  • the first optical guide layer 13 is made of, for example, indium gallium nitride (InGaN) made of In b Ga (1-b) N (0 ⁇ b ⁇ 1).
  • the film thickness is, for example, 150 nm or more.
  • the active layer 14 is a light-emitting region made of InGaN or the like that emits light with a wavelength corresponding to the bandgap by recombination of electrons and holes.
  • the active layer 14 may have a multi-quantum well (MQW) structure as well as a quantum well structure.
  • MQW multi-quantum well
  • the number of light-emitting layers increases, so that the light emission intensity of the laser can be improved.
  • the second optical guide layer 15 is an optical guide layer formed on the upper surface of the first optical guide layer 13 that confines light due to the difference in refractive index so as to sandwich the active layer 14 .
  • the second optical guide layer 15 is made of, for example, indium gallium nitride (InGaN) made of InbGa(1- b ) N (0 ⁇ b ⁇ 1).
  • the film thickness is, for example, 150 nm or more.
  • the product of the average composition ratio b of the second optical guide layer 15 and the first optical guide layer 13 and the total film thickness t of the first optical guide layer 13 and the second optical guide layer 15 is 7 nm or more.
  • the electron barrier layer 16 is an energy barrier for suppressing electron overflow from the active layer 14 and promoting recombination of electrons and holes in the active layer 14 .
  • the electron barrier layer 16 is made of, for example, aluminum gallium nitride (AlGaN) made of Al x Ga (1-x) N (0 ⁇ x ⁇ 1).
  • AlGaN aluminum gallium nitride
  • the thickness of the electron barrier layer 16 is desirably a very thin layer of, for example, 5 nm to 10 nm.
  • magnesium (Mg) is doped at 10 19 /cm 3 or more in order to increase the energy barrier of the conduction band.
  • the fault suppression layer 17 is a layer for preventing occurrence of faults 35 laminated on the upper surface of the electron barrier layer 16 .
  • the fault suppression layer 17 is, for example, aluminum gallium nitride (AlGaN) made of Al z Ga (1-z) N (0 ⁇ z ⁇ y ⁇ 1) or In a Ga (1-a) N (0 ⁇ a ⁇ 1). ) is made of indium gallium nitride (InGaN).
  • the film thickness is, for example, 10 nm or more, and the p-type is configured by doping Mg at 10 18 /cm 3 or more.
  • the second clad layer 18 sandwiches the active layer 14 with the second optical guide layer 15, the electron barrier layer 16 and the fault suppressing layer 17 in correspondence with the first optical guide layer 13 that confines light due to the difference in refractive index.
  • 2 is a layer formed on the upper surface of the fault suppression layer 17 .
  • the second clad layer 18 is made of, for example, aluminum gallium nitride (AlGaN) made of Al y Ga (1-y) N (0 ⁇ y ⁇ 1). Also, the film thickness is, for example, 100 nm or more, and the p-type is configured by doping Mg at 5 ⁇ 10 18 /cm 3 or more.
  • the contact layer 19 is a layer laminated on the upper surface of the second clad layer 18 and electrically connected to the second electrode 20 .
  • the film thickness is 10 nm or more, and for example, a p-type GaN layer doped with Mg at 10 21 /cm 3 or more is configured and ohmic-connected to the second electrode 20 .
  • the second electrode 20 is laminated on the upper surface of the contact layer 19 .
  • the second electrode 20 is an anode electrode to be wire-bonded with, for example, at least one gold wire (Au) or the like in the subsequent mounting process.
  • the second electrode 20 is formed on the upper surface of the ridge portion 30 from which both side surfaces of the contact layer 19 and the second clad layer 18 are removed by etching such as RIE.
  • the insulating layer 21 exposes the upper surface 20a of the second electrode 20, covers the other side surfaces 30a, 30a of the ridge portion 30, and provides electrical insulation.
  • the upper surface 20a of the second electrode 20 not covered with the insulating layer 21 is wire-bonded as described above.
  • the configuration of the nitride semiconductor light emitting device 100 according to the present disclosure is as described above.
  • FIG. 9 is a schematic diagram of a fault 35 generated in the front facet 31, which is the cleavage plane of the nitride semiconductor light emitting device 100.
  • the fault 35 often occurs in a crosswise direction from the upper surface of the second cladding layer 18 slightly away from the side surface 30a of the ridge 30, diagonally to the lower left, in a horizontal direction. The occurrence of such a fault 35 affects the characteristics of the laser and becomes a factor of deteriorating the yield in manufacturing.
  • the active layer 14 has a structure sandwiched between the first optical guide layer 13 and the second optical guide layer 15 above and below.
  • the first optical guide layer 13 and the second optical guide layer 15 are composed of InGaN obtained by adding In to GaN (more precisely, "InGaN" of the second optical guide layer 15 is, for example, "In b Ga (1-b) N etc., but when it is complicated, it is simply written as "InGaN.”
  • InGaN When an InGaN layer is formed by adding In to GaN, its lattice constant becomes larger than that of the GaN layer. Therefore, compressive strain is generated in the InGaN layer.
  • the electron barrier layer 16 and the second clad layer 18 laminated on the upper surface of the second optical guide layer 15 are composed of AlGaN layers in which Al is added to GaN.
  • AlGaN layer When an AlGaN layer is formed by adding Al to GaN, its lattice constant becomes smaller than that of GaN. Therefore, tensile strain is generated in the AlGaN layer.
  • the strain at the boundary between the second optical guide layer 15 in which In is added to GaN and the electron barrier layer 16 in which Al is added to GaN is the sum of the compressive strain and the tensile strain, so the stress becomes maximum.
  • force is applied to the front end surface 31 and the rear end surface 32 when cleaving the wafer (not shown).
  • the fault 35 is caused by the mechanical force applied during cleavage.
  • FIG. 10 shows the relationship between the lattice constants and bandgap energies of InGaN, GaN, and AlGaN. That is, as shown in this figure, InN (52) has a smaller bandgap energy and a larger lattice constant than GaN (51). On the other hand, AlN(53) has a large bandgap energy and a small lattice constant. Therefore, the wavelength of InN (52) is in the infrared region, and the wavelength of AlN (53) is in the ultraviolet region. Also, the wavelength of GaN (51) is in the ultraviolet region close to the visible light region.
  • FIG. 10 refers to "Optical Vol. 24, No. 11, p. 674, FIG. 1".
  • the active layer 14 can adjust the wavelength of the emitted light, that is, the emission color, by adjusting the composition ratio of In.
  • the lattice constant becomes larger than that of GaN (51), so the compressive strain increases.
  • AlGaN is used on the anode side of the nitride semiconductor light-emitting device 100 because it must have an energy gap larger than the bandgap of GaN in order to inject a large current for laser oscillation. is. That is, in FIG. 10, it can be seen that the energy gap can be increased by increasing the composition ratio of Al in AlGaN (63). On the other hand, however, as the composition ratio of Al increases, the lattice constant becomes smaller than that of GaN (51), resulting in an increase in tensile strain.
  • the difference in lattice constant between InGaN (62) and AlGaN (63) is the difference 72 in lattice constant between InGaN (62) and GaN (51) and the difference 72 in lattice constant between GaN (51) and AlGaN (63). is the total value of the lattice constant difference 73 of , which is a very large value. This is the main reason why faults 35 are generated in the second clad layer 18 . In addition, it is considered that the force applied when cleaving the wafer, which will be described later, triggers the generation of the fault 35 .
  • the fault suppressing layer 17 is provided between the first optical guide layer 13 and the second optical guide layer 15, which are InGaN layers, and the second clad layer 18, which is an AlGaN layer. is inserted. That is, the difference in lattice constant between InGaN (62) and AlGaN (63) (difference 72+difference 73) is the difference in lattice constant between the InGaN layer and the fault suppression layer 17, and the lattice constant between the fault suppression layer 17 and the AlGaN layer. , the effect of the stress caused by the strain generated at the boundary between the InGaN layer and the AlGaN layer is suppressed, and the generation of the fault 35 is prevented.
  • the lattice constant difference 72, 73 is the value of the average composition ratio b in In b Ga (1 ⁇ b) N (0 ⁇ b ⁇ 1) of the first optical guide layer 13 and the second optical guide layer 15, the electron
  • the value of the composition ratio x in Al x Ga (1-x) N (0 ⁇ x ⁇ 1) of the barrier layer 16, the Al y Ga (1-y) N (0 ⁇ y ⁇ 1) of the second cladding layer 18 It can be adjusted by changing the value of the composition ratio y.
  • the fault suppression layer 17 is made of Al z Ga (1-z) N (0 ⁇ z ⁇ y ⁇ 1) (corresponding to AlGaN (63) in FIG. 10) or In a Ga (1-a) N (0 ⁇ a). If ⁇ 1) (corresponding to InGaN (62) in FIG. 10), it can be adjusted by changing the value of the composition ratio z or a in this case.
  • the value of the composition ratio z or the value of the composition ratio a of the fault suppression layer 17 that is likely to be effective, and the average composition ratio of In in the first optical guide layer 13 and the second optical guide layer 15, which are InGaN layers It was decided to adjust by changing the value of b. That is, in FIG. 10, first, with GaN (51) as the center, the value of the Al composition ratio z of the fault suppressing layer 17 is used as a parameter, and the amount of In in the InGaN of the first optical guide layer 13 and the second optical guide layer 15 is calculated. By changing the value of the average composition ratio b, that is, by changing the InGaN (62) in this figure, the value of the composition ratio b that can prevent the generation of the fault 35 was obtained.
  • the nitride semiconductor light emitting device 100 includes Al x Ga ( 1-x) N (0 ⁇ x ⁇ 1) and the second clad layer 18 of Al y Ga (1-y) N (0 ⁇ y ⁇ 1), for example , Al z Ga (1-z) N (0 ⁇ z ⁇ y ⁇ 1) or In a Ga (1-a) N layer (0 ⁇ a ⁇ 1).
  • an electron barrier layer 16 made of AlGaN is interposed between the fault suppression layer.
  • the fault suppression layer 17 should be inserted between the second optical guide layer 15 and the electron barrier layer 16, which is the boundary between the InGaN layer and the AlGaN layer.
  • the gap between the active layer 14 and the electron barrier layer 16 becomes too wide, and the effect of suppressing electron overflow from the active layer 14 is reduced.
  • the electron barrier layer 16 stops electrons passing over the active layer 14, and its film thickness should be 5 nm. Therefore, if the film thickness is extremely thin, for example, 5 nm to 10 nm, the stress due to strain generated in the electron barrier layer 16 is not so large as compared with others. Also, the thinner the film is, the less the stress can be. Therefore, by forming the electron barrier layer 16 with an extremely thin film thickness, the gap between the electron barrier layer 16 laminated on the upper surface of the second optical guide layer 15 made of InGaN and the second clad layer 18 made of AlGaN is reduced. It was decided to dispose the fault suppression layer 17 on the .
  • FIG. 3 represents the average composition ratio (%) of In in the first optical guide layer 13 and the second optical guide layer 15 .
  • the vertical axis is the fault occurrence rate.
  • the composition ratio (%) of Al in the AlGaN layer of the fault suppression layer 17 is used as a parameter.
  • the white circles are 7% Al
  • the black triangles are 5% Al
  • the black circles are 0% Al.
  • the white circle indicating that the Al composition ratio of the fault suppression layer 17 is 7% indicates that the fault occurs when the average In composition ratio of the first optical guide layer 13 and the second optical guide layer 15 exceeds 2.3%. It can be seen that the incidence increases rapidly to about 62%.
  • the black triangles where the Al composition ratio of the fault suppressing layer 17 is 5% indicate that the fault 35 is formed when the average In composition ratio of the first optical guide layer 13 and the second optical guide layer 15 is about 2.1%. Occur. However, even if the composition ratio of In is increased, the fault occurrence rate is about 20%, and does not increase rapidly as indicated by the white circles.
  • the black circles at which the Al composition ratio of the fault suppression layer 17 is 0% correspond to when the average In composition ratio of the first optical guide layer 13 and the second optical guide layer 15 is 2.5% to 2.6%. It can be seen that the fault occurrence rate is close to 0%. That is, when the average composition ratio of In in the first optical guide layer 13 and the second optical guide layer 15 is set to approximately 2.5% to 2.6%, and the composition ratio of Al in the fault suppression layer 17 is set to 0%, the fault 35 was found not to occur. Setting the Al composition ratio of the fault suppression layer 17 to 0% means that the fault suppression layer 17 is formed of GaN, which is the same composition as the GaN substrate 11 .
  • the horizontal axis of FIG. 4 is the product of the total film thickness t (nm) of the first optical guide layer 13 and the second optical guide layer 15 and the average composition ratio b of In. This becomes the amount of distortion.
  • the vertical axis is the fault occurrence rate.
  • the Al composition ratio (%) of the fault suppression layer 17 is used as a parameter.
  • the white circles are 7% Al
  • the black triangles are 5% Al
  • the black circles are 0% Al.
  • the fault occurrence rate rapidly increases to about 62% when the strain amount exceeds about 8 nm.
  • the black triangle where the Al composition ratio of the fault suppression layer 17 is 5% faults 35 are generated when the amount of strain exceeds about 7 nm.
  • the fault occurrence rate is about 20% and does not increase rapidly like the white circles.
  • the black circles in which the Al composition ratio of the fault suppression layer 17 is 0% have a fault generation rate close to 0% even when the strain amount is approximately 10.5 nm.
  • the “average composition ratio b” is the average value of the In composition ratios of both.
  • the total film thickness t of In b Ga (1 ⁇ b) N (0 ⁇ b ⁇ 1) of the first optical guide layer 13 and the second optical guide layer 15 is 350 nm.
  • the nitride semiconductor light emitting device 100 that prevents the generation of the fault layer 35 can be obtained.
  • This composition ratio is a value when the total film thickness t is 350 nm. Therefore, when the total film thickness t is set to another value, the average composition ratio b can be obtained by the above calculation.
  • the effect of the fault suppression layer 17 and the usefulness of the configuration of the nitride semiconductor light emitting device 100 having the configuration shown in FIG. 1 were substantiated by the test results shown in FIGS. Since the fault suppression layer 17 is for dividing the distortion of the lattice constant and relaxing the stress, the film thickness thereof should be 10 nm or more.
  • FIG. 5 to 8 are cross-sectional views of the laminated structure 101 viewed from the front end surface 31 side, which is the light emitting end surface.
  • the laminated structure 101 refers to the nitride semiconductor light emitting device 100 in the process of being formed by sequentially laminating GaN layers and the like.
  • Step of forming laminated structure First, on the (0001) C plane of the GaN substrate 11, as shown in FIG. 12. First optical guide layer 13 on first cladding layer 12, active layer 14 on first optical guide layer 13, second optical guide layer 15 on active layer 14, p-type on second optical guide layer 15 The electron barrier layer 16, the fault suppression layer 17 on the electron barrier layer 16, the p-type second cladding layer 18 on the fault suppression layer 17, and the p-type contact layer 19 on the second cladding layer 18 with a predetermined film Thick layers are sequentially laminated.
  • the first optical guide layer 13 and the second optical guide layer 15 are composed of In b Ga (1 ⁇ b) N (0 ⁇ b ⁇ 1) so that the average value of the composition ratio b is a predetermined value.
  • the electron barrier layer 16 controls the value of the composition ratio x of Al x Ga (1-x) N (0 ⁇ x ⁇ 1).
  • the second clad layer 18 controls the value of the composition ratio y consisting of Al y Ga (1 ⁇ y) N (0 ⁇ y ⁇ 1).
  • the fault suppression layer 17 has a composition ratio z of Al z Ga (1 ⁇ z) N (0 ⁇ z ⁇ y ⁇ 1) or In a Ga (1 ⁇ a) N (0 ⁇ a ⁇ 1).
  • the second cladding layer 18 and the contact layer 19 are etched in the thickness direction by dry etching to form the ridge portion 30 .
  • a pad layer 20A for forming the second electrode 20 is formed on the contact layer 19. Then, as shown in FIG. After the pad layer 20A is formed on the entire surface by vacuum deposition, a strip-shaped etching resist layer is formed on the pad layer 20A by photolithography. After removing the pad layer 20A not covered with the etching resist layer using aqua regia, the etching resist layer is removed. Through such steps, the laminated structure 101 shown in FIG. 7 can be obtained.
  • a strip-shaped second electrode 20 may be formed on the contact layer 19 by a lift-off method.
  • the second electrode 20 When patterning the second electrode 20, when the etching rate of the second electrode 20 is ER0 and the etching rate of the laminated structure 101 is ER1, ER0/ER1 ⁇ 1 ⁇ 10, preferably ER0/ER1. It is desirable to satisfy ⁇ 1 ⁇ 10 2 . When ER0/ER1 satisfies such a relationship, the second electrode 20 can be reliably patterned without etching the laminated structure 101 (or with slight etching).
  • the second electrode 20 As an etching mask, the second cladding layer 18 and the contact layer 19 are etched in the thickness direction by a dry etching method to form the ridge portion 30 .
  • RIE reactive ion etching
  • both side surfaces of the second clad layer 18 and the contact layer 19 are etched to form a side surface portion 30a. , 30a.
  • the laminated structure 101 shown in FIG. 8 can be obtained. Since the ridge portion 30 is formed by the self-alignment method using the second electrode 20 patterned in a band shape as an etching mask in this manner, misalignment may occur between the second electrode 20 and the ridge portion 30. No.
  • Step of forming insulating layer and first electrode an insulating film is laminated on the entire upper surface of the ridge portion 30, and the insulating film laminated on the second electrode 20 is removed. As a result, the upper surface 20 a of the second electrode 20 is exposed, and the insulating layer 21 is formed on both side surfaces 30 a of the ridge portion 30 .
  • a metal layer (not shown) may be formed on the insulating layer 21 in order to improve the heat dissipation and wire bondability of the nitride semiconductor light emitting device 100 and the wettability of the mounting solder joint material.
  • the back surface of the laminated structure 101 is polished so as to have a thickness suitable for cleaving and mounting.
  • an n-metal film is formed on the back surface by vapor deposition or sputtering, and a pattern is formed by lift-off, for example, to form a first electrode 10 that will serve as a cathode, as shown in FIG.
  • a laminated structure 101 is formed.
  • the wafer is cleaved in a cleaving process, inspected in an inspection process, and sorted into non-defective products and defective products.
  • the nitride semiconductor light-emitting device 100 selected as a good product by the inspection is sent to the mounting process, which is the next process.
  • the nitride semiconductor light emitting device 100 is packaged in a mounting process and subjected to a final inspection.
  • the nitride semiconductor light emitting device 100 according to this embodiment can be manufactured.
  • the manufacturing method of the embodiment of the nitride semiconductor light emitting device 100 according to the present disclosure has the steps as described above, it is possible to provide the high quality nitride semiconductor light emitting device 100 according to the present embodiment. .
  • the material semiconductor light emitting device 100 can be manufactured.
  • the present technology can also take the following configuration.
  • the fault suppression layer is formed of aluminum gallium nitride made of Al z Ga (1-z) N (0 ⁇ z ⁇ 1), or made of In a Ga (1-a) N (0 ⁇ a ⁇ 1)
  • the nitride semiconductor light-emitting device according to (1) above which is made of indium gallium nitride.
  • the first optical guide layer and the second optical guide layer are formed of indium gallium nitride made of In b Ga (1-b) N (0 ⁇ b ⁇ 1), and the average value of the composition ratio b and the total film of both
  • the electron barrier layer is formed of aluminum gallium nitride having a thickness of 5 nm or more and made of Al x Ga (1-x) N (0 ⁇ x ⁇ 1) doped with p-type impurities (1) to (6). ).

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The present invention provides a nitride semiconductor light emitting element which is prevented from the occurrence of a fault without causing deterioration in the laser characteristics, thereby having an improved production yield. This nitride semiconductor light emitting element comprises: a GaN substrate (11); a first cladding layer (12) which is superposed on the GaN substrate (11); a first light guide layer (13) which is superposed on the first cladding layer (12); an active layer (14) which is superposed on the first light guide layer (13); a second light guide layer (15) which is superposed on the active layer (14); an electron barrier layer (16) which is superposed on the second light guide layer (15); a fault suppression layer (17) which is superposed on the electron barrier layer (16); a second cladding layer (18) which is superposed on the fault suppression layer (17); and a contact layer (19) which is superposed on the second cladding layer (18). This nitride semiconductor light emitting element is configured such that the fault suppression layer (17) relaxes a stress due to a strain generated between an InGaN layer and an AlGaN layer.

Description

窒化物半導体発光素子Nitride semiconductor light emitting device
 本開示は、リッジを備えた窒化物半導体レーザ素子などの窒化物半導体発光素子に関する。 The present disclosure relates to a nitride semiconductor light emitting device such as a nitride semiconductor laser device having a ridge.
 一般照明の用途としての青~緑色発光ダイオード(LED:light emitting diode)、レーザディスプレイや車載用ヘッドライト光源等の用途向けとして、窒化物系化合物半導体を用いた純青色半導体レーザ(LD:Laser Diode)の開発が進められている。窒化物系化合物を用いた半導体発光素子の活性層は、一般的に、窒化アルミニウムインジウムガリウム(AlInGaN)系の量子井戸層が用いられており、活性層中のインジウム(In)の組成比率を上げることで青色帯の発光を得ることが可能となる。 Blue to green light emitting diodes (LED: light emitting diodes) for general lighting applications, pure blue semiconductor lasers (LD: Laser Diodes) using nitride compound semiconductors for applications such as laser displays and automotive headlight light sources ) are being developed. The active layer of a semiconductor light-emitting device using a nitride-based compound generally uses an aluminum indium gallium nitride (AlInGaN)-based quantum well layer, and the composition ratio of indium (In) in the active layer is increased. This makes it possible to obtain light emission in the blue band.
 窒化物半導体発光素子である半導体レーザ素子は、電流狭窄層を設けて活性層の電流の通路を狭めることで、しきい値電流密度を高くし、これによりしきい値電流自体を低下することができるストライプレーザが主流となっている。ストライプレーザは、活性層の上方のp側半導体層の上面にリッジ(Ridge:畝や尾根の意)を形成している。そして、リッジ上に陽極電極を形成して電気的接続がされている。 A semiconductor laser device, which is a nitride semiconductor light-emitting device, is provided with a current constriction layer to narrow the passage of current in the active layer, thereby increasing the threshold current density and thereby reducing the threshold current itself. Stripe lasers are the mainstream. A stripe laser has a ridge formed on the upper surface of the p-side semiconductor layer above the active layer. An anode electrode is formed on the ridge for electrical connection.
 また、窒化物半導体発光素子である半導体レーザ素子は、活性層からのエレクトロンオーバーフローを抑制するために、p型の窒化アルミニウムガリウム(AlGaN)からなる電子障壁層を具備するものがある。 In addition, some semiconductor laser devices, which are nitride semiconductor light emitting devices, have an electron barrier layer made of p-type aluminum gallium nitride (AlGaN) in order to suppress electron overflow from the active layer.
 エレクトロンオーバーフローとは、n側から供給される電子が活性層の量子井戸層で正孔と再結合により発光せず、p側層へ伝導してしまう現象である。かかるエレクトロンオーバーフローは、レーザの特性としては、発光効率の低下や温度特性の悪化を生じさせる。 Electron overflow is a phenomenon in which electrons supplied from the n-side do not emit light due to recombination with holes in the quantum well layer of the active layer and are conducted to the p-side layer. Such electron overflow causes a decrease in luminous efficiency and a deterioration in temperature characteristics as characteristics of the laser.
 そこで、エレクトロンオーバーフローを抑制させるために、p型層の中で最も井戸層に近い側に、井戸層に対して十分バンドギャップエネルギーの大きいAlGaNからなる電子障壁層を具備する技術が、例えば特許文献1により開示されている。 Therefore, in order to suppress electron overflow, a technique of providing an electron barrier layer made of AlGaN having a sufficiently large bandgap energy with respect to the well layer on the side of the p-type layer closest to the well layer is disclosed, for example, in Patent Documents. 1.
 しかしながら、先述した電子障壁層は、電圧悪化をさせないために、高濃度のp型ドーピングが必要である。しかし、電子障壁層を高濃度のドーパントにより形成すると、光学ロスによりしきい電流は悪化する。特に純青色半導体レーザ素子では光学ロス量に対するしきい電流の悪化が顕著となるため、大きな問題となる。 However, the aforementioned electron barrier layer requires high-concentration p-type doping in order not to deteriorate the voltage. However, forming the electron barrier layer with a high-concentration dopant worsens the threshold current due to optical loss. In particular, in a pure blue semiconductor laser device, the deterioration of the threshold current with respect to the amount of optical loss becomes remarkable, which poses a serious problem.
 また、光学ロスを減じようとしてドーピング濃度を低減させると電圧悪化が生じるとともに、十分な障壁効果が得られないという問題がある。そして、電子障壁層を排除してしまうと、先述のようにエレクトロンオーバーフローが発生し、発光効率や温度特性は悪化する。
 そこで、以上のようなトレードオフから、現状では、電子障壁層を具備するのが一般的となっている。
Further, if the doping concentration is reduced in an attempt to reduce the optical loss, there is a problem that the voltage deteriorates and a sufficient barrier effect cannot be obtained. If the electron barrier layer is eliminated, the electron overflow occurs as described above, and the luminous efficiency and temperature characteristics deteriorate.
Therefore, due to the trade-off as described above, at present, it is common to provide an electron barrier layer.
 一方、電子障壁層は、高いアルミニウム(Al)の組成比率を有するため、Inを含む光ガイド層との間の格子定数の差異による歪により応力が発生する。また、ウエーハを劈開する際に窒化物半導体発光素子のレーザ光の射出端面に機械的な力が加えられる。このような劈開時に力が加えられることにより、意図しない微細な段差(「断層」とも呼ばれている。)が活性層の近傍のレーザ光の射出端面に生じ、レーザ特性に対する影響や、製造時における歩留り悪化の要因になっている。 On the other hand, since the electron barrier layer has a high aluminum (Al) composition ratio, stress is generated due to strain due to the difference in lattice constant between the electron barrier layer and the optical guide layer containing In. In addition, when cleaving the wafer, a mechanical force is applied to the laser light exit facet of the nitride semiconductor light emitting device. Due to the force applied during such cleavage, an unintended minute step (also called a "fault") occurs on the laser light exit facet in the vicinity of the active layer. It is a factor of yield deterioration in
 このような格子定数の差異による歪や劈開時に加わる機械的な力に起因する段差を抑制するための先行技術が特許文献2に開示されている。
 具体的には、半導体基板と、半導体基板上に形成され、かつ第1導電型を有する下部クラッド層と、下部クラッド層上に形成された活性層と、活性層上に形成され、かつ第1導電型とは逆の第2導電型を有するキャップ層と、キャップ層上に形成された電流狭窄構造と、電流狭窄構造上に形成された上部電極層と、下部クラッド層と電気的に接続された下部電極層とを有する半導体発光素子が開示されている。そして、この半導体発光素子は活性層と電流狭窄構造との間に介在する段差閉じ込め層を含む。すなわち、活性層と電流狭窄構造との間に段差閉じ込め層を介在させることにより、段差の影響を閉じ込めるものである。ここで、「段差」とは、劈開端面に対して異なる面の角度方向に発生する凹凸やうねりのことをいうとされている(段落[0008]参照)。
Japanese Unexamined Patent Application Publication No. 2002-200003 discloses a prior art for suppressing the strain due to the difference in lattice constant and the step due to the mechanical force applied during cleavage.
Specifically, a semiconductor substrate, a lower clad layer formed on the semiconductor substrate and having a first conductivity type, an active layer formed on the lower clad layer, an active layer formed on the active layer and the first A cap layer having a second conductivity type opposite to the conductivity type, a current confinement structure formed on the cap layer, an upper electrode layer formed on the current confinement structure, and electrically connected to the lower clad layer. A semiconductor light emitting device having a lower electrode layer is disclosed. This semiconductor light emitting device includes a stepped confinement layer interposed between the active layer and the current confinement structure. That is, by interposing the step confinement layer between the active layer and the current confinement structure, the effect of the step is confined. Here, the "step" is said to mean unevenness or undulation that occurs in different angular directions on a plane with respect to the cleaved end face (see paragraph [0008]).
特開2006-165519号公報JP 2006-165519 A 特開2010-093128号公報JP 2010-093128 A
 しかしながら、特許文献1に開示された技術は、活性層内に電子を閉じ込めるために電子障壁を越えてオーバーフローする電子を低減させ、しきい電流が小さく、微分効率の高い、良好な特性を備える半導体発光素子を提供するものである。したがって、段差の発生を防止するものではない。
 また、特許文献2に開示された技術は、段差の影響を閉じ込めるものであり、段差(以下「断層」という。)そのものを生じさせないようにするものではない。
However, the technology disclosed in Patent Document 1 reduces the number of electrons that overflow beyond the electron barrier in order to confine electrons in the active layer, and has a small threshold current and a high differential efficiency. A light emitting device is provided. Therefore, it does not prevent the generation of the step.
Further, the technique disclosed in Patent Document 2 confines the influence of the step, and does not prevent the step (hereinafter referred to as "fault") itself from occurring.
 本開示は、これらの問題に鑑みてなされたものであり、電子障壁層の上部に断層抑制構造を形成することにより、エレクトロンオーバーフローを抑制して、レーザ特性の悪化を防止するとともに、歪による応力を緩和して断層の発生を防止し、製造時の歩留りを改善する窒化物半導体発光素子を提供することを目的とする。 The present disclosure has been made in view of these problems, and by forming a fault suppression structure on the upper part of the electron barrier layer, suppresses electron overflow, prevents deterioration of laser characteristics, and suppresses stress caused by strain. It is an object of the present invention to provide a nitride semiconductor light-emitting device capable of alleviating stress, preventing the occurrence of faults, and improving the yield during manufacturing.
 本開示は、上述の問題点を解消するためになされたものであり、その第1の態様は、窒化ガリウム(GaN)基板と、前記GaN基板上に積層された第1クラッド層と、前記第1クラッド層上に積層された第1光ガイド層と、前記第1光ガイド層上に積層された活性層と、前記活性層上に積層された第2光ガイド層と、前記第2光ガイド層上に積層された電子障壁層と、前記電子障壁層上に積層された断層抑制層と、前記断層抑制層上に積層された第2クラッド層と、前記第2クラッド層上に積層された、コンタクト層を有する窒化物半導体発光素子である。 The present disclosure has been made to solve the above problems, and a first aspect thereof includes a gallium nitride (GaN) substrate, a first clad layer laminated on the GaN substrate, and the first A first optical guide layer laminated on one clad layer, an active layer laminated on the first optical guide layer, a second optical guide layer laminated on the active layer, and the second optical guide An electron barrier layer laminated on a layer, a fault suppression layer laminated on the electron barrier layer, a second clad layer laminated on the fault suppression layer, and a layer laminated on the second clad layer , a nitride semiconductor light emitting device having a contact layer.
 また、第1の態様において、前記断層抑制層は、AlGa(1-z)N(0≦z<1)からなる窒化アルミニウムガリウムで形成され、又はInGa(1-a)N(0≦a≦1)からなる窒化インジウムガリウムで形成されてもよい。 In the first aspect, the fault suppression layer is formed of aluminum gallium nitride made of Al z Ga (1-z) N (0≦z<1), or In a Ga (1-a) N ( It may be made of indium gallium nitride satisfying 0≦a≦1.
 また、第1の態様において、前記断層抑制層は、AlGa(1-z)N(0≦z<y<1)において、z=0の組成比率で形成されてもよい。 In the first aspect, the fault suppression layer may be formed of Al z Ga (1−z) N (0≦z<y<1) with a composition ratio of z=0.
 また、第1の態様において、前記断層抑制層は、InGa(1-a)N(0≦a≦1)において、a=0の組成比率で形成されてもよい。 In the first aspect, the fault suppression layer may be formed of In a Ga (1−a) N (0≦a≦1) with a composition ratio of a=0.
 また、第1の態様において、前記断層抑制層は、厚さ10nm以上に形成されてもよい。 Further, in the first aspect, the fault suppression layer may be formed with a thickness of 10 nm or more.
 また、第1の態様において、前記第1光ガイド層及び第2光ガイド層は、InGa(1-b)N(0<b<1)からなる窒化インジウムガリウムで形成され、組成比率bの平均値と両者の総膜厚tとの積が7nm以上であってもよい。 Further, in the first aspect, the first optical guide layer and the second optical guide layer are formed of indium gallium nitride made of In b Ga (1−b) N (0<b<1), and the composition ratio is b and the total film thickness t of both may be 7 nm or more.
 また、第1の態様において、前記電子障壁層は、p型不純物ドープされたAlGa(1-x)N(0<x<1)からなる厚さ5nm以上の窒化アルミニウムガリウムで形成されてもよい。 In the first aspect, the electron barrier layer is formed of aluminum gallium nitride having a thickness of 5 nm or more and made of Al x Ga (1-x) N (0<x<1) doped with p-type impurities. good too.
 また、第1の態様において、前記第2クラッド層は、AlGa(1-y)N(0≦z<y<1)からなる窒化アルミニウムガリウムで形成されてもよい。 In the first aspect, the second clad layer may be made of aluminum gallium nitride made of Al y Ga (1-y) N (0≦z<y<1).
 上記の態様を取ることにより、エレクトロンオーバーフローを抑制して、レーザ特性の悪化を防止するとともに、歪による応力を緩和して断層の発生を防止し、製造時の歩留りを改善する窒化物半導体発光素子を提供することができる。 By taking the above aspect, a nitride semiconductor light-emitting device that suppresses electron overflow, prevents deterioration of laser characteristics, relieves stress due to distortion, prevents faults, and improves manufacturing yield. can be provided.
本開示に係る窒化物半導体発光素子の概略構造を示す断面図である。1 is a cross-sectional view showing a schematic structure of a nitride semiconductor light emitting device according to the present disclosure; FIG. 本開示に係る窒化物半導体発光素子の概略構造を示す平面図である。1 is a plan view showing a schematic structure of a nitride semiconductor light emitting device according to the present disclosure; FIG. 本開示に係る窒化物半導体発光素子の光ガイド層のInの平均組成比率と断層発生率との関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between the average composition ratio of In in the optical guide layer of the nitride semiconductor light-emitting device according to the present disclosure and the occurrence rate of faults; 本開示に係る窒化物半導体発光素子の光ガイド層の歪量と断層発生率との関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between the amount of strain in the optical guide layer and the occurrence rate of faults in the nitride semiconductor light emitting device according to the present disclosure; 本開示に係る窒化物半導体発光素子の製造方法の説明図である(その1)。1 is an explanatory diagram of a method for manufacturing a nitride semiconductor light emitting device according to the present disclosure (part 1); FIG. 本開示に係る窒化物半導体発光素子の製造方法の説明図である(その2)。FIG. 2 is an explanatory diagram of a method for manufacturing a nitride semiconductor light emitting device according to the present disclosure (Part 2); 本開示に係る窒化物半導体発光素子の製造方法の説明図である(その3)。FIG. 3 is an explanatory diagram of a method for manufacturing a nitride semiconductor light emitting device according to the present disclosure (part 3); 本開示に係る窒化物半導体発光素子の製造方法の説明図である(その4)。FIG. 4 is an explanatory diagram of a method for manufacturing a nitride semiconductor light emitting device according to the present disclosure (No. 4); 窒化物半導体発光素子において発生した断層を表す模式図である。FIG. 3 is a schematic diagram showing a fault generated in a nitride semiconductor light emitting device; 格子定数とバンドギャップエネルギーの関係を示す図である。It is a figure which shows the relationship between a lattice constant and bandgap energy.
 次に、図面を参照して、本開示を実施するための形態(以下、「実施形態」という。)を下記の順序で説明する。以下の図面において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は、模式的なものであり、各部の寸法の比率等は現実のものとは必ずしも一致しない。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。
 1.本開示に係る窒化物半導体発光素子の実施形態
 2.本開示に係る窒化物半導体発光素子の断層防止
 3.本開示に係る窒化物半導体発光素子の実施形態の製造方法
Next, with reference to the drawings, modes for carrying out the present disclosure (hereinafter referred to as "embodiments") will be described in the following order. In the following drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic, and the dimensional ratios and the like of each part do not necessarily match the actual ones. In addition, it goes without saying that there are portions with different dimensional relationships and ratios between the drawings.
1. Embodiment of nitride semiconductor light emitting device according to the present disclosure2. Fault prevention of the nitride semiconductor light emitting device according to the present disclosure3. Manufacturing Method of Embodiment of Nitride Semiconductor Light Emitting Device According to Present Disclosure
<1.本開示に係る窒化物半導体発光素子の実施形態>
 以下、図1及び図2に基づき、本開示に係る窒化物半導体発光素子100の実施形態について説明する。図1は、本開示に係る窒化物半導体発光素子100の光出射端面であるフロント端面31側から見た断面図である。本開示に係る窒化物半導体発光素子100は、図1及び図2に示すように、頂部にリッジ部30が突設されて、略凸状に形成されている。
<1. Embodiment of Nitride Semiconductor Light Emitting Device According to Present Disclosure>
An embodiment of a nitride semiconductor light emitting device 100 according to the present disclosure will be described below with reference to FIGS. 1 and 2. FIG. FIG. 1 is a cross-sectional view of a nitride semiconductor light emitting device 100 according to the present disclosure, viewed from a front facet 31 that is a light emitting facet. As shown in FIGS. 1 and 2, the nitride semiconductor light emitting device 100 according to the present disclosure has a ridge portion 30 protruding from the top and is formed in a substantially convex shape.
 リッジ部30は、コンタクト層19及び第2クラッド層18の両側面がRIE等のエッチングにより除去されて形成される。このリッジ部30の幅(共振器方向に直交する方向)は、例えば、500nm~100μmである。リッジ部30のフロント端面31とリア端面32との間に挟まれた領域は、反射鏡を形成している。すなわち、レーザ光をフロント端面31とリア端面32との間を往復させることで光を増幅する共振器を構成している。フロント端面31とリア端面32間の距離(共振器長)は、例えば50μm~3000μmである。 The ridge portion 30 is formed by removing both side surfaces of the contact layer 19 and the second clad layer 18 by etching such as RIE. The width of the ridge portion 30 (direction orthogonal to the resonator direction) is, for example, 500 nm to 100 μm. A region sandwiched between the front end face 31 and the rear end face 32 of the ridge portion 30 forms a reflector. In other words, a resonator that amplifies the light is formed by reciprocating the laser light between the front facet 31 and the rear facet 32 . The distance (resonator length) between the front facet 31 and the rear facet 32 is, for example, 50 μm to 3000 μm.
 リッジ部30の両側面部30a、30aは、絶縁層21で被覆されている。絶縁層21は、例えば、酸化ケイ素(SiO)及び窒化ケイ素(Si)で形成され、膜厚は、例えば、10nm~500nmである。 Both side surfaces 30a, 30a of the ridge portion 30 are covered with an insulating layer 21. As shown in FIG. The insulating layer 21 is made of, for example, silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ), and has a film thickness of, for example, 10 nm to 500 nm.
 窒化物半導体発光素子100は、GaN基板11の上に第1クラッド層12、第1光ガイド層13、活性層14、第2光ガイド層15、電子障壁層16、断層抑制層17、前記の第2クラッド層18及びコンタクト層19が順次積層されている。そして、GaN基板11の下面には陰極である第1電極10が形成され、コンタクト層19の上面には陽極である第2電極20が形成されている。 The nitride semiconductor light-emitting device 100 comprises a GaN substrate 11, a first clad layer 12, a first optical guide layer 13, an active layer 14, a second optical guide layer 15, an electron barrier layer 16, a fault suppressing layer 17, and the above-described A second cladding layer 18 and a contact layer 19 are sequentially laminated. A first electrode 10 that is a cathode is formed on the lower surface of the GaN substrate 11 , and a second electrode 20 that is an anode is formed on the upper surface of the contact layer 19 .
 GaN基板11は、窒化物半導体発光素子100を構成する各層を積層するための基盤をなすものである。 The GaN substrate 11 forms a base for laminating each layer constituting the nitride semiconductor light emitting device 100 .
 第1クラッド層12は、後述の活性層14から発する光を閉じ込めるために、低い屈折率を有するよう形成されている。第1クラッド層12は、例えば、n型のAlGaNからなっている。膜厚は、例えば1000nm以上ある。 The first clad layer 12 is formed to have a low refractive index in order to confine light emitted from the active layer 14, which will be described later. The first clad layer 12 is made of, for example, n-type AlGaN. The film thickness is, for example, 1000 nm or more.
 第1光ガイド層13は、n型の第1クラッド層12と活性層14との間に形成された両者の中間の屈折率を有する光を閉じ込めるための層である。第1光ガイド層13は、例えば、InGa(1-b)N(0<b<1)からなる窒化インジウムガリウム(InGaN)により形成されている。また、膜厚は、例えば150nm以上である。 The first optical guide layer 13 is a layer for confining light having a refractive index intermediate between the n-type first clad layer 12 and the active layer 14 and formed between them. The first optical guide layer 13 is made of, for example, indium gallium nitride (InGaN) made of In b Ga (1-b) N (0<b<1). Moreover, the film thickness is, for example, 150 nm or more.
 活性層14は、電子と正孔の再結合によりバンドギャップに対応した波長の光を発するInGaNなどにより形成された発光領域である。活性層14は、量子井戸(quantum well)構造の他、多重量子井戸(MQW:multi-quantum well)構造であってもよい。活性層14を多重量子井戸構造に形成することにより発光する層が増えるためレーザの発光強度を向上することができる。 The active layer 14 is a light-emitting region made of InGaN or the like that emits light with a wavelength corresponding to the bandgap by recombination of electrons and holes. The active layer 14 may have a multi-quantum well (MQW) structure as well as a quantum well structure. By forming the active layer 14 in a multi-quantum well structure, the number of light-emitting layers increases, so that the light emission intensity of the laser can be improved.
 第2光ガイド層15は、屈折率の差異により光を閉じ込める前記の第1光ガイド層13に対応して活性層14を挟むようにその上面に形成される光ガイド層である。第2光ガイド層15は、第1光ガイド層13と同様に、例えば、InGa(1-b)N(0<b<1)からなる窒化インジウムガリウム(InGaN)で形成されている。また、膜厚は、例えば、150nm以上である。第2光ガイド層15及び前記の第1光ガイド層13の組成比率bの平均値と、第1光ガイド層13及び第2光ガイド層15の総膜厚tとの積は7nm以上であってもよい。 The second optical guide layer 15 is an optical guide layer formed on the upper surface of the first optical guide layer 13 that confines light due to the difference in refractive index so as to sandwich the active layer 14 . Like the first optical guide layer 13, the second optical guide layer 15 is made of, for example, indium gallium nitride (InGaN) made of InbGa(1- b ) N (0<b<1). Moreover, the film thickness is, for example, 150 nm or more. The product of the average composition ratio b of the second optical guide layer 15 and the first optical guide layer 13 and the total film thickness t of the first optical guide layer 13 and the second optical guide layer 15 is 7 nm or more. may
 電子障壁層16は、活性層14からのエレクトロンオーバーフローを抑制し、活性層14でエレクトロンとホールとの再結合を促進するためのエネルギー障壁である。電子障壁層16は、例えば、AlGa(1-x)N(0<x<1)からなる窒化アルミニウムガリウム(AlGaN)で形成されている。電子障壁層16の膜厚は、例えば、5nmから10nmの極めて薄い層に成膜するのが望ましい。また、伝導帯のエネルギー障壁を高くするためにマグネシウム(Mg)を1019/cm以上ドープしている。 The electron barrier layer 16 is an energy barrier for suppressing electron overflow from the active layer 14 and promoting recombination of electrons and holes in the active layer 14 . The electron barrier layer 16 is made of, for example, aluminum gallium nitride (AlGaN) made of Al x Ga (1-x) N (0<x<1). The thickness of the electron barrier layer 16 is desirably a very thin layer of, for example, 5 nm to 10 nm. Also, magnesium (Mg) is doped at 10 19 /cm 3 or more in order to increase the energy barrier of the conduction band.
 断層抑制層17は、電子障壁層16の上面に積層された断層35の発生を防止するための層である。断層抑制層17は、例えば、AlGa(1-z)N(0≦z<y<1)からなる窒化アルミニウムガリウム(AlGaN)又はInGa(1-a)N(0≦a≦1)からなる窒化インジウムガリウム(InGaN)で形成されている。また、膜厚は、例えば、10nm以上であり、Mgを1018/cm以上ドープしてp型を構成している。 The fault suppression layer 17 is a layer for preventing occurrence of faults 35 laminated on the upper surface of the electron barrier layer 16 . The fault suppression layer 17 is, for example, aluminum gallium nitride (AlGaN) made of Al z Ga (1-z) N (0≦z<y<1) or In a Ga (1-a) N (0≦a≦1). ) is made of indium gallium nitride (InGaN). Also, the film thickness is, for example, 10 nm or more, and the p-type is configured by doping Mg at 10 18 /cm 3 or more.
 第2クラッド層18は、屈折率の差異により光を閉じ込める前記の第1光ガイド層13に対応して活性層14を第2光ガイド層15、電子障壁層16及び断層抑制層17とともに挟むように、断層抑制層17の上面に形成される層である。
 第2クラッド層18は、例えば、AlGa(1-y)N(0<y<1)からなる窒化アルミニウムガリウム(AlGaN)で形成されている。また、膜厚は、例えば、100nm以上であり、Mgを5×1018/cm以上ドープしてp型を構成している。
The second clad layer 18 sandwiches the active layer 14 with the second optical guide layer 15, the electron barrier layer 16 and the fault suppressing layer 17 in correspondence with the first optical guide layer 13 that confines light due to the difference in refractive index. 2 is a layer formed on the upper surface of the fault suppression layer 17 .
The second clad layer 18 is made of, for example, aluminum gallium nitride (AlGaN) made of Al y Ga (1-y) N (0<y<1). Also, the film thickness is, for example, 100 nm or more, and the p-type is configured by doping Mg at 5×10 18 /cm 3 or more.
 コンタクト層19は、第2クラッド層18の上面に積層され第2電極20と電気的に接続される層である。また、膜厚は、10nm以上であり、例えば、Mgを1021/cm以上ドープしたp型GaNの層を構成し、第2電極20とオーミック接続している。 The contact layer 19 is a layer laminated on the upper surface of the second clad layer 18 and electrically connected to the second electrode 20 . Moreover, the film thickness is 10 nm or more, and for example, a p-type GaN layer doped with Mg at 10 21 /cm 3 or more is configured and ohmic-connected to the second electrode 20 .
 第2電極20は、コンタクト層19の上面に積層されている。第2電極20は、後工程である実装工程において、例えば、少なくとも1本以上の金線(Au)などによりワイヤボンディング配線されるための陽極の電極である。
 また、第2電極20は、コンタクト層19及び第2クラッド層18の両側面がRIE等のエッチングにより除去されたリッジ部30の上面に形成されている。
The second electrode 20 is laminated on the upper surface of the contact layer 19 . The second electrode 20 is an anode electrode to be wire-bonded with, for example, at least one gold wire (Au) or the like in the subsequent mounting process.
The second electrode 20 is formed on the upper surface of the ridge portion 30 from which both side surfaces of the contact layer 19 and the second clad layer 18 are removed by etching such as RIE.
 絶縁層21は、第2電極20の上面20aを露出させ、それ以外のリッジ部30の両側面部30a、30aを被覆し、電気的絶縁をしている。そして、絶縁層21で被覆されていない第2電極20の上面20aは、前記のようにワイヤボンディング配線される。本開示に係る窒化物半導体発光素子100の構成は、以上のとおりである。 The insulating layer 21 exposes the upper surface 20a of the second electrode 20, covers the other side surfaces 30a, 30a of the ridge portion 30, and provides electrical insulation. The upper surface 20a of the second electrode 20 not covered with the insulating layer 21 is wire-bonded as described above. The configuration of the nitride semiconductor light emitting device 100 according to the present disclosure is as described above.
<2.本開示に係る窒化物半導体発光素子の断層防止>
[断層について]
 以上のように構成された本開示に係る窒化物半導体発光素子100の断層防止について、以下に説明する。
<2. Fault Prevention of Nitride Semiconductor Light Emitting Device According to Present Disclosure>
[About faults]
Fault prevention of the nitride semiconductor light emitting device 100 according to the present disclosure configured as described above will be described below.
 図9は、窒化物半導体発光素子100の劈開面であるフロント端面31に発生した断層35の模式図である。本図の破線に示すように、断層35は、リッジ部30の側面部30aからやや離れた第2クラッド層18の上面から袈裟斬り状に、左下方にかけて斜めから横方向に生じることが多い。このような、断層35の発生は、レーザの特性に対して影響を与え、製造時における歩留りを悪化させる要因となる。 FIG. 9 is a schematic diagram of a fault 35 generated in the front facet 31, which is the cleavage plane of the nitride semiconductor light emitting device 100. FIG. As indicated by the dashed line in this drawing, the fault 35 often occurs in a crosswise direction from the upper surface of the second cladding layer 18 slightly away from the side surface 30a of the ridge 30, diagonally to the lower left, in a horizontal direction. The occurrence of such a fault 35 affects the characteristics of the laser and becomes a factor of deteriorating the yield in manufacturing.
[断層の発生原因]
 このような断層35は、次のような理由により発生するものと考えられる。
 活性層14は、上下を第1光ガイド層13及び第2光ガイド層15で挟まれた構造をしている。第1光ガイド層13及び第2光ガイド層15は、GaNにInを加えたInGaN(正確には、第2光ガイド層15の「InGaN」は、例えば「InGa(1-b)N」等と表記すべきあるが、煩瑣であるときは、単に「InGaN」と表記する。以下、他の層の場合も同様とする。)で構成されている。GaNにInを加えたInGaN層を形成すると、その格子定数はGaN層に比べて大きくなる。このため、InGaN層には圧縮歪を生じる。
[Cause of fault]
Such a fault 35 is considered to occur for the following reasons.
The active layer 14 has a structure sandwiched between the first optical guide layer 13 and the second optical guide layer 15 above and below. The first optical guide layer 13 and the second optical guide layer 15 are composed of InGaN obtained by adding In to GaN (more precisely, "InGaN" of the second optical guide layer 15 is, for example, "In b Ga (1-b) N etc., but when it is complicated, it is simply written as "InGaN." When an InGaN layer is formed by adding In to GaN, its lattice constant becomes larger than that of the GaN layer. Therefore, compressive strain is generated in the InGaN layer.
 一方、第2光ガイド層15の上面に積層されている電子障壁層16及び第2クラッド層18は、GaNにAlを加えたAlGaN層で構成されている。GaNにAlを加えたAlGaN層を形成すると、その格子定数はGaNに比べて小さくなる。このため、AlGaN層には引張歪を生じる。 On the other hand, the electron barrier layer 16 and the second clad layer 18 laminated on the upper surface of the second optical guide layer 15 are composed of AlGaN layers in which Al is added to GaN. When an AlGaN layer is formed by adding Al to GaN, its lattice constant becomes smaller than that of GaN. Therefore, tensile strain is generated in the AlGaN layer.
 したがって、InをGaNに加えた第2光ガイド層15と、AlをGaNに加えた電子障壁層16との境界における歪は、前記の圧縮歪と引張歪の和になるため応力が最大となる。
 さらに、フロント端面31及びリア端面32には、ウエーハ(不図示)を劈開する際に力が加えられる。この格子定数が異なることに起因する歪による応力に加えて、劈開時に加えられる機械的な力が契機となって断層35が生じるものと考えられる。
Therefore, the strain at the boundary between the second optical guide layer 15 in which In is added to GaN and the electron barrier layer 16 in which Al is added to GaN is the sum of the compressive strain and the tensile strain, so the stress becomes maximum. .
Further, force is applied to the front end surface 31 and the rear end surface 32 when cleaving the wafer (not shown). In addition to the stress due to the strain resulting from the difference in lattice constant, it is considered that the fault 35 is caused by the mechanical force applied during cleavage.
 以上の内容について、さらに詳しく説明する。InGaN、GaN及びAlGaNのそれぞれの格子定数とバンドギャップエネルギーの関係は、図10に示すとおりである。すなわち、本図に示すように、GaN(51)に対してInN(52)は、バンドギャップエネルギーが小さく、格子定数は大きい。一方AlN(53)は、バンドギャップエネルギーが大きく、格子定数は小さい。したがって、InN(52)の波長は赤外域となり、AlN(53)の波長は紫外域となる。また、GaN(51)の波長は可視光域に近い紫外域となる。なお「GaN」等の半導体材料を示す化学記号の後にかっこ書で付した「(51)」等の数字は、本図に付した符号を示す。以下、他も同様とする。なお、図10は「光学第24巻第11号674頁図1」参照。 I will explain the above in more detail. FIG. 10 shows the relationship between the lattice constants and bandgap energies of InGaN, GaN, and AlGaN. That is, as shown in this figure, InN (52) has a smaller bandgap energy and a larger lattice constant than GaN (51). On the other hand, AlN(53) has a large bandgap energy and a small lattice constant. Therefore, the wavelength of InN (52) is in the infrared region, and the wavelength of AlN (53) is in the ultraviolet region. Also, the wavelength of GaN (51) is in the ultraviolet region close to the visible light region. The numerals such as "(51)" in parentheses after the chemical symbols indicating semiconductor materials such as "GaN" indicate the reference numerals in the figure. The same shall apply hereinafter. For FIG. 10, refer to "Optical Vol. 24, No. 11, p. 674, FIG. 1".
 本図より、InGaN(62)におけるInの組成比率を増やしていくと、可視光域の波長の光が得られることがわかる。したがって、活性層14はInの組成比率を調整することにより発光させる光の波長、すなわち発光色を調整することができる。しかし、Inの組成比率を増やしていくと格子定数はGaN(51)よりも大きくなってゆくため、圧縮歪は増加する。 From this figure, it can be seen that light with a wavelength in the visible light region can be obtained by increasing the composition ratio of In in InGaN (62). Therefore, the active layer 14 can adjust the wavelength of the emitted light, that is, the emission color, by adjusting the composition ratio of In. However, as the composition ratio of In increases, the lattice constant becomes larger than that of GaN (51), so the compressive strain increases.
 また、窒化物半導体発光素子100の陽極側はAlGaNが使用される、これは、レーザ発振をするための大電流を注入するには、GaNのバンドギャップよりも大きなエネルギーギャップを有する必要があるからである。すなわち、図10において、AlGaN(63)のAlの組成比率を増やしていくとエネルギーギャップを大きくすることができることがわかる。しかし、その反面、Alの組成比率を増やしていくと格子定数はGaN(51)よりも小さくなってゆくため、引張歪は増加する。 AlGaN is used on the anode side of the nitride semiconductor light-emitting device 100 because it must have an energy gap larger than the bandgap of GaN in order to inject a large current for laser oscillation. is. That is, in FIG. 10, it can be seen that the energy gap can be increased by increasing the composition ratio of Al in AlGaN (63). On the other hand, however, as the composition ratio of Al increases, the lattice constant becomes smaller than that of GaN (51), resulting in an increase in tensile strain.
 したがって、本図において、InGaN(62)とAlGaN(63)の格子定数の差は、InGaN(62)とGaN(51)との格子定数の差72と、GaN(51)とAlGaN(63)との格子定数の差73の合計値となり、きわめて大きな値となる。これが、第2クラッド層18で断層35が発生する主要な原因である。それに加えて、後述するウエーハの劈開時に加えられる力が断層35の発生の契機となっていると考えられる。 Therefore, in this figure, the difference in lattice constant between InGaN (62) and AlGaN (63) is the difference 72 in lattice constant between InGaN (62) and GaN (51) and the difference 72 in lattice constant between GaN (51) and AlGaN (63). is the total value of the lattice constant difference 73 of , which is a very large value. This is the main reason why faults 35 are generated in the second clad layer 18 . In addition, it is considered that the force applied when cleaving the wafer, which will be described later, triggers the generation of the fault 35 .
[断層の発生を防止する対応策]
 そこで、本開示に係る窒化物半導体発光素子100は、InGaN層である第1光ガイド層13及び第2光ガイド層15と、AlGaN層である第2クラッド層18との間に断層抑制層17を挿入するものである。すなわち、InGaN(62)とAlGaN(63)との格子定数の差(差72+差73)をInGaN層と断層抑制層17との格子定数の差と、断層抑制層17とAlGaN層との格子定数の差に分割して負担することにより、InGaN層とAlGaN層との境界に生じる歪に起因する応力の影響を抑制し、断層35の発生を防止するものである。
[Countermeasures to prevent the occurrence of faults]
Therefore, in the nitride semiconductor light emitting device 100 according to the present disclosure, the fault suppressing layer 17 is provided between the first optical guide layer 13 and the second optical guide layer 15, which are InGaN layers, and the second clad layer 18, which is an AlGaN layer. is inserted. That is, the difference in lattice constant between InGaN (62) and AlGaN (63) (difference 72+difference 73) is the difference in lattice constant between the InGaN layer and the fault suppression layer 17, and the lattice constant between the fault suppression layer 17 and the AlGaN layer. , the effect of the stress caused by the strain generated at the boundary between the InGaN layer and the AlGaN layer is suppressed, and the generation of the fault 35 is prevented.
 この格子定数の差72、73は、第1光ガイド層13及び第2光ガイド層15のInGa(1-b)N(0<b<1)における平均の組成比率bの値、電子障壁層16のAlGa(1-x)N(0<x<1)における組成比率xの値、第2クラッド層18のAlGa(1-y)N(0<y<1)における組成比率yの値を変えることによって調整することができる。
 また、断層抑制層17をAlGa(1-z)N(0≦z<y<1)(図10のAlGaN(63)に対応)又はInGa(1-a)N(0≦a≦1)(図10のInGaN(62)に対応)とすると、この場合における組成比率z又はaの値を変えることによって調整することができる。
The lattice constant difference 72, 73 is the value of the average composition ratio b in In b Ga (1−b) N (0<b<1) of the first optical guide layer 13 and the second optical guide layer 15, the electron The value of the composition ratio x in Al x Ga (1-x) N (0<x<1) of the barrier layer 16, the Al y Ga (1-y) N (0<y<1) of the second cladding layer 18 It can be adjusted by changing the value of the composition ratio y.
Further, the fault suppression layer 17 is made of Al z Ga (1-z) N (0≦z<y<1) (corresponding to AlGaN (63) in FIG. 10) or In a Ga (1-a) N (0≦a). If ≦1) (corresponding to InGaN (62) in FIG. 10), it can be adjusted by changing the value of the composition ratio z or a in this case.
 本開示に係る窒化物半導体発光素子100においては、上記の組成比率b、x及びyの値の全てを変更するとレーザの特性そのものに影響を及ぼすことになる。このため、効果のありそうな断層抑制層17の組成比率zの値又は組成比率aの値、及びInGaN層である第1光ガイド層13及び第2光ガイド層15のInの平均の組成比率bの値を変えることによって調整することとした。すなわち、図10において、GaN(51)を中心として、まずは、断層抑制層17のAlの組成比率zの値をパラメータとし、第1光ガイド層13及び第2光ガイド層15のInGaNにおけるInの平均の組成比率bの値を変えることによって、つまり本図におけるInGaN(62)を変化させながら断層35の発生を防止できる組成比率bの値を求めることとした。 In the nitride semiconductor light emitting device 100 according to the present disclosure, changing all of the above composition ratios b, x, and y will affect the laser characteristics themselves. For this reason, the value of the composition ratio z or the value of the composition ratio a of the fault suppression layer 17 that is likely to be effective, and the average composition ratio of In in the first optical guide layer 13 and the second optical guide layer 15, which are InGaN layers, It was decided to adjust by changing the value of b. That is, in FIG. 10, first, with GaN (51) as the center, the value of the Al composition ratio z of the fault suppressing layer 17 is used as a parameter, and the amount of In in the InGaN of the first optical guide layer 13 and the second optical guide layer 15 is calculated. By changing the value of the average composition ratio b, that is, by changing the InGaN (62) in this figure, the value of the composition ratio b that can prevent the generation of the fault 35 was obtained.
[歪による応力を軽減する構成]
 本開示に係る窒化物半導体発光素子100は、先述のとおり、InGa(1-b)N(0<b<1)からなる第2光ガイド層15の上部に積層されたAlGa(1-x)N(0<x<1)からなる電子障壁層16と、AlGa(1-y)N(0<y<1)からなる第2クラッド層18と、の間に、例えば、AlGa(1-z)N(0≦z<y<1)又はInGa(1-a)N層(0≦a≦1)からなる断層抑制層17を挿入するものである。
[Construction for Relieving Stress Due to Distortion]
As described above, the nitride semiconductor light emitting device 100 according to the present disclosure includes Al x Ga ( 1-x) N (0<x<1) and the second clad layer 18 of Al y Ga (1-y) N (0<y<1), for example , Al z Ga (1-z) N (0≦z<y<1) or In a Ga (1-a) N layer (0≦a≦1).
 すなわち、大きな圧縮歪を有するInGaNからなる第2光ガイド層15と、大きな引張歪を有するAlGaNからなる第2クラッド層18との間に、AlGaNからなる電子障壁層16を介して、断層抑制層17という歪の緩衝地帯を設けることにより断層35の発生そのものを防止するものである。 That is, between the second optical guide layer 15 made of InGaN having a large compressive strain and the second cladding layer 18 made of AlGaN having a large tensile strain, an electron barrier layer 16 made of AlGaN is interposed between the fault suppression layer. By providing a strain buffer zone 17, the generation of the fault 35 itself is prevented.
 ここで、本来は、断層抑制層17は、InGaN層とAlGaN層の境界である第2光ガイド層15と電子障壁層16との間に挿入すべきである。しかし、そのように配置すると、活性層14と電子障壁層16との間隔が広くなりすぎて、活性層14からのエレクトロンオーバーフローを抑制する効果が減退するという問題を生じる。 Here, originally, the fault suppression layer 17 should be inserted between the second optical guide layer 15 and the electron barrier layer 16, which is the boundary between the InGaN layer and the AlGaN layer. However, such arrangement causes a problem that the gap between the active layer 14 and the electron barrier layer 16 becomes too wide, and the effect of suppressing electron overflow from the active layer 14 is reduced.
 一方、電子障壁層16は、活性層14を超えてくる電子を止めるものであり、その膜厚は5nmあればよい。したがって、例えば、膜厚を5nmから10nmと極めて薄く成膜すれば電子障壁層16に生ずる歪による応力は、他と比べればそれほど大きくならない。また、薄く成膜するほど応力を少なくすることができる。そこで、電子障壁層16の膜厚を極めて薄く成膜することにより、InGaNからなる第2光ガイド層15の上面に積層された電子障壁層16と、AlGaNからなる第2クラッド層18との間に断層抑制層17を配置することとした。 On the other hand, the electron barrier layer 16 stops electrons passing over the active layer 14, and its film thickness should be 5 nm. Therefore, if the film thickness is extremely thin, for example, 5 nm to 10 nm, the stress due to strain generated in the electron barrier layer 16 is not so large as compared with others. Also, the thinner the film is, the less the stress can be. Therefore, by forming the electron barrier layer 16 with an extremely thin film thickness, the gap between the electron barrier layer 16 laminated on the upper surface of the second optical guide layer 15 made of InGaN and the second clad layer 18 made of AlGaN is reduced. It was decided to dispose the fault suppression layer 17 on the .
[断層防止効果]
 InGaN層とAlGaN層との間に生じる歪の軽減について対策した結果について図3及び図4により説明する。図3の横軸は、第1光ガイド層13及び第2光ガイド層15のInの平均の組成比率(%)である。また、縦軸は、断層発生率である。このグラフでは、断層抑制層17のAlGaN層におけるAlの組成比率(%)をパラメータに取っている。本図において、白丸はAlが7%、黒三角はAlが5%、そして黒丸はAlが0%である。
[Fault prevention effect]
3 and 4, the result of taking measures to reduce the strain generated between the InGaN layer and the AlGaN layer will be described. The horizontal axis of FIG. 3 represents the average composition ratio (%) of In in the first optical guide layer 13 and the second optical guide layer 15 . The vertical axis is the fault occurrence rate. In this graph, the composition ratio (%) of Al in the AlGaN layer of the fault suppression layer 17 is used as a parameter. In this figure, the white circles are 7% Al, the black triangles are 5% Al, and the black circles are 0% Al.
 本図において、断層抑制層17のAlの組成比率が7%である白丸は、第1光ガイド層13及び第2光ガイド層15のInの平均の組成比率が2.3%を超えると断層発生率が約62%まで急増することがわかる。
 また、断層抑制層17のAlの組成比率が5%である黒三角は、第1光ガイド層13及び第2光ガイド層15のInの平均の組成比率が2.1%程度から断層35が発生する。しかし、Inの組成比率を増やしても、断層発生率は約20%程度であり、白丸のように急増することはない。
In this figure, the white circle indicating that the Al composition ratio of the fault suppression layer 17 is 7% indicates that the fault occurs when the average In composition ratio of the first optical guide layer 13 and the second optical guide layer 15 exceeds 2.3%. It can be seen that the incidence increases rapidly to about 62%.
The black triangles where the Al composition ratio of the fault suppressing layer 17 is 5% indicate that the fault 35 is formed when the average In composition ratio of the first optical guide layer 13 and the second optical guide layer 15 is about 2.1%. Occur. However, even if the composition ratio of In is increased, the fault occurrence rate is about 20%, and does not increase rapidly as indicated by the white circles.
 また、断層抑制層17のAlの組成比率が0%である黒丸は、第1光ガイド層13及び第2光ガイド層15のInの平均の組成比率が2.5%から2.6%において断層発生率が略0%に近いことがわかる。
 すなわち、第1光ガイド層13及び第2光ガイド層15のInの平均の組成比率を略2.5%から2.6%とし、断層抑制層17のAlの組成比率を0%とすると断層35が発生しないことがわかった。
 この断層抑制層17のAlの組成比率を0%とすることは、断層抑制層17をGaN基板11と同じ組成物であるGaNに形成するということを意味する。
In addition, the black circles at which the Al composition ratio of the fault suppression layer 17 is 0% correspond to when the average In composition ratio of the first optical guide layer 13 and the second optical guide layer 15 is 2.5% to 2.6%. It can be seen that the fault occurrence rate is close to 0%.
That is, when the average composition ratio of In in the first optical guide layer 13 and the second optical guide layer 15 is set to approximately 2.5% to 2.6%, and the composition ratio of Al in the fault suppression layer 17 is set to 0%, the fault 35 was found not to occur.
Setting the Al composition ratio of the fault suppression layer 17 to 0% means that the fault suppression layer 17 is formed of GaN, which is the same composition as the GaN substrate 11 .
 図4の横軸は、第1光ガイド層13及び第2光ガイド層15の総膜厚t(nm)及びそのInの平均の組成比率bとの積である。これは、歪量となる。また、縦軸は、断層発生率である。このグラフでは、断層抑制層17のAlの組成比率(%)をパラメータに取っている。本図において、白丸はAlが7%、黒三角はAlが5%、そして黒丸はAlが0%である。 The horizontal axis of FIG. 4 is the product of the total film thickness t (nm) of the first optical guide layer 13 and the second optical guide layer 15 and the average composition ratio b of In. This becomes the amount of distortion. The vertical axis is the fault occurrence rate. In this graph, the Al composition ratio (%) of the fault suppression layer 17 is used as a parameter. In this figure, the white circles are 7% Al, the black triangles are 5% Al, and the black circles are 0% Al.
 本図において、断層抑制層17のAlの組成比率が7%である白丸は、歪量が約8nmを超えると断層発生率が約62%まで急増することがわかる。
 また、断層抑制層17のAlの組成比率が5%である黒三角は、歪量が約7nmを超えると断層35が発生する。しかし、歪量が増えても、断層発生率は約20%程度であり、白丸のように急増することはない。
 また、断層抑制層17のAlの組成比率が0%である黒丸は、歪量が約10.5nmにおいても断層発生率が略0%に近いことがわかる。
In this figure, it can be seen that for the white circles in which the Al composition ratio of the fault suppression layer 17 is 7%, the fault occurrence rate rapidly increases to about 62% when the strain amount exceeds about 8 nm.
Further, in the black triangle where the Al composition ratio of the fault suppression layer 17 is 5%, faults 35 are generated when the amount of strain exceeds about 7 nm. However, even if the amount of strain increases, the fault occurrence rate is about 20% and does not increase rapidly like the white circles.
Further, it can be seen that the black circles in which the Al composition ratio of the fault suppression layer 17 is 0% have a fault generation rate close to 0% even when the strain amount is approximately 10.5 nm.
 以上より、断層抑制層17のAlの組成比率が7%及び5%では、断層35が発生することがわかった。一方、Alの組成比率が0%の場合には、断層35が発生しにくいことがわかった。すなわち、断層抑制層17のAlGa(1-z)N(0≦z<y<1)において、z=0.0であることが望ましい。この場合の断層抑制層17は、Al0.0Ga(1-0.0)N、すなわちGaNとなる。ということは、InGa(1-a)N層(0≦a≦1)においてもa=0.0であるという結論が導かれる。
 つまり、断層抑制層17は、GaN基板11と同じ組成であるGaNに形成すればよいということがわかった。
 また、図4に示す結果より、歪量を7nm以下に規定すれば、断層35の発生を防止し得ると考えられる。
From the above, it has been found that the fault 35 occurs when the Al composition ratio of the fault suppression layer 17 is 7% and 5%. On the other hand, it was found that faults 35 are less likely to occur when the Al composition ratio is 0%. That is, it is desirable that z=0.0 in Al z Ga (1−z) N (0≦z<y<1) of the fault suppression layer 17 . The fault suppression layer 17 in this case is Al 0.0 Ga (1-0.0) N, that is, GaN. This leads to the conclusion that a=0.0 also in the In a Ga (1-a) N layer (0≦a≦1).
In other words, it was found that the fault suppression layer 17 should be formed of GaN having the same composition as the GaN substrate 11 .
Further, from the results shown in FIG. 4, it is considered that the occurrence of the fault 35 can be prevented by defining the amount of strain to 7 nm or less.
 ここで、「第1光ガイド層13及び第2光ガイド層15の総膜厚t(nm)×Inの平均の組成比率b」における「総膜厚t」とは、第1光ガイド層13及び第2光ガイド層15の両者の膜厚の合計値のことである。例えば、第1光ガイド層13の膜厚を175nm、第2光ガイド層15の膜厚を175nmとすると、両者の総膜厚tは、175+175=350nmとなる。また、「平均の組成比率b」とは、両者のInの組成比率の平均値のことである。 Here, the “total film thickness t” in “the total film thickness t (nm) of the first optical guide layer 13 and the second optical guide layer 15 × the average composition ratio b of In” and the total thickness of the second optical guide layer 15 . For example, if the film thickness of the first optical guide layer 13 is 175 nm and the film thickness of the second optical guide layer 15 is 175 nm, the total film thickness t of both is 175+175=350 nm. The “average composition ratio b” is the average value of the In composition ratios of both.
 次に、以上の試験結果をもとに、第1光ガイド層13及び第2光ガイド層15のInGa(1-b)N(0<b<1)の総膜厚tが350nmの場合における平均の組成比率bの値を求める。図4により求められた歪量は7nmであるから、上記式にt=350nmを代入すると、
t(350nm)×b=7nmとなる。
 この式より平均の組成比率bの値を求めると、b=7nm÷350nm=0.02 となる。
 したがって、InGa(1-b)Nの平均の組成比率bに0.02を代入すると、第1光ガイド層13及び第2光ガイド層15は、In0.02Ga0.98Nとなる。
Next, based on the above test results, the total film thickness t of In b Ga (1−b) N (0<b<1) of the first optical guide layer 13 and the second optical guide layer 15 is 350 nm. Find the value of the average composition ratio b in each case. Since the strain amount obtained from FIG. 4 is 7 nm, substituting t=350 nm into the above equation,
t(350 nm)×b=7 nm.
When the value of the average composition ratio b is obtained from this formula, b=7 nm/350 nm=0.02.
Therefore, when 0.02 is substituted for the average composition ratio b of In b Ga (1−b) N, the first optical guide layer 13 and the second optical guide layer 15 are composed of In 0.02 Ga 0.98 N and Become.
 すなわち、第1光ガイド層13及び第2光ガイド層15をIn0.02Ga0.98Nとし、断層抑制層17をAl0.0Ga(1-0.0)N=GaNとすることで、断層35の発生を防止する窒化物半導体発光素子100を得ることができる。
 この組成比率は、総膜厚tが350nmの場合の値である。したがって、総膜厚tを別の値にしたときは、平均の組成比率bは前記のような計算をすることによって求めることができる。
 以上のようにして、断層抑制層17の効果及び図1に示す構成の窒化物半導体発光素子100構成の有用性が、図3及び図4に示す試験結果より裏付けられた。
 なお、断層抑制層17は格子定数の歪を分割して応力を緩和するためのものであるため、その膜厚は10nm以上あればよい。
That is, the first optical guide layer 13 and the second optical guide layer 15 are made of In 0.02 Ga 0.98 N, and the fault suppressing layer 17 is made of Al 0.0 Ga (1−0.0) N=GaN. Thus, the nitride semiconductor light emitting device 100 that prevents the generation of the fault layer 35 can be obtained.
This composition ratio is a value when the total film thickness t is 350 nm. Therefore, when the total film thickness t is set to another value, the average composition ratio b can be obtained by the above calculation.
As described above, the effect of the fault suppression layer 17 and the usefulness of the configuration of the nitride semiconductor light emitting device 100 having the configuration shown in FIG. 1 were substantiated by the test results shown in FIGS.
Since the fault suppression layer 17 is for dividing the distortion of the lattice constant and relaxing the stress, the film thickness thereof should be 10 nm or more.
<3.本開示に係る窒化物半導体発光素子の実施形態の製造方法>
 本開示に係る窒化物半導体発光素子100の実施形態の製造方法の例について図5から図8により説明する。ここで、図5から図8は、積層構造体101を光出射端面であるフロント端面31側から見た断面図である。なお、本明細書において積層構造体101とは、GaN層等を順次積層してゆくことによる形成途中の窒化物半導体発光素子100をさす。
<3. Manufacturing Method of Embodiment of Nitride Semiconductor Light Emitting Device According to Present Disclosure>
An example of a manufacturing method of an embodiment of the nitride semiconductor light emitting device 100 according to the present disclosure will be described with reference to FIGS. 5 to 8. FIG. 5 to 8 are cross-sectional views of the laminated structure 101 viewed from the front end surface 31 side, which is the light emitting end surface. In this specification, the laminated structure 101 refers to the nitride semiconductor light emitting device 100 in the process of being formed by sequentially laminating GaN layers and the like.
[積層構造体の形成工程]
 先ず、GaN基板11の(0001)C面上に、有機金属気相成長(MOCVD:metal organic chemical vapor deposition)法により、図5に示すように、GaN基板11上にn型の第1クラッド層12、第1クラッド層12上に第1光ガイド層13、第1光ガイド層13上に活性層14、活性層14上に第2光ガイド層15、第2光ガイド層15上にp型の電子障壁層16、電子障壁層16上に断層抑制層17、断層抑制層17上にp型の第2クラッド層18、第2クラッド層18上に、p型のコンタクト層19を所定の膜厚に順次積層する。
[Step of forming laminated structure]
First, on the (0001) C plane of the GaN substrate 11, as shown in FIG. 12. First optical guide layer 13 on first cladding layer 12, active layer 14 on first optical guide layer 13, second optical guide layer 15 on active layer 14, p-type on second optical guide layer 15 The electron barrier layer 16, the fault suppression layer 17 on the electron barrier layer 16, the p-type second cladding layer 18 on the fault suppression layer 17, and the p-type contact layer 19 on the second cladding layer 18 with a predetermined film Thick layers are sequentially laminated.
 ここで、第1光ガイド層13及び第2光ガイド層15は、InGa(1-b)N(0<b<1)からなる組成比率bの平均値を所定の値となるように制御する。同様に、電子障壁層16は、AlGa(1-x)N(0<x<1)からなる組成比率xの値を制御する。第2クラッド層18は、AlGa(1-y)N(0<y<1)からなる組成比率yの値を制御する。断層抑制層17は、AlGa(1-z)N(0≦z<y<1)からなる組成比率zの値、又はInGa(1-a)N(0≦a≦1)からなる組成比率aの値を制御する。もっとも、上記の試験結果より、z=0又はa=0でよい。
 さらに、電子障壁層16、断層抑制層17、第2クラッド層18及びコンタクト層19をp型に形成するためにMg等のドーパントの注入量の制御を行う。
Here, the first optical guide layer 13 and the second optical guide layer 15 are composed of In b Ga (1−b) N (0<b<1) so that the average value of the composition ratio b is a predetermined value. Control. Similarly, the electron barrier layer 16 controls the value of the composition ratio x of Al x Ga (1-x) N (0<x<1). The second clad layer 18 controls the value of the composition ratio y consisting of Al y Ga (1−y) N (0<y<1). The fault suppression layer 17 has a composition ratio z of Al z Ga (1−z) N (0≦z<y<1) or In a Ga (1−a) N (0≦a≦1). The value of the composition ratio a is controlled. However, according to the above test results, z=0 or a=0.
Further, the injection amount of a dopant such as Mg is controlled in order to form the electron barrier layer 16, the fault suppressing layer 17, the second cladding layer 18 and the contact layer 19 into p-type.
[リッジ部の形成工程]
 次に、第2クラッド層18及びコンタクト層19を、ドライエッチング法により厚さ方向にエッチングして、リッジ部30を形成する。
[Process of forming ridge]
Next, the second cladding layer 18 and the contact layer 19 are etched in the thickness direction by dry etching to form the ridge portion 30 .
 具体的には、図6に示すように、先ず、コンタクト層19上に第2電極20を形成するためのPad層20Aを成膜する。真空蒸着法によりPad層20Aを全面に成膜した後、Pad層20A上に、フォトリソグラフィ技術により帯状のエッチング用レジスト層を形成する。そして、王水を用いて、エッチング用レジスト層に覆われていないPad層20Aを除去した後、エッチング用レジスト層を除去する。このような工程により、図7に示す積層構造体101を得ることができる。なお、リフトオフ法により、コンタクト層19上に帯状の第2電極20を形成してもよい。 Specifically, as shown in FIG. 6, first, a pad layer 20A for forming the second electrode 20 is formed on the contact layer 19. Then, as shown in FIG. After the pad layer 20A is formed on the entire surface by vacuum deposition, a strip-shaped etching resist layer is formed on the pad layer 20A by photolithography. After removing the pad layer 20A not covered with the etching resist layer using aqua regia, the etching resist layer is removed. Through such steps, the laminated structure 101 shown in FIG. 7 can be obtained. A strip-shaped second electrode 20 may be formed on the contact layer 19 by a lift-off method.
 なお、第2電極20のパターニングを行う際の、第2電極20のエッチングレートをER0、積層構造体101のエッチングレートをER1としたとき、ER0/ER1≧1×10、好ましくは、ER0/ER1≧1×102を満足することが望ましい。ER0/ER1がこのような関係を満足することで、積層構造体101をエッチングすること無く(あるいは、僅かなエッチングにより)、第2電極20を確実にパターニングすることができる。 When patterning the second electrode 20, when the etching rate of the second electrode 20 is ER0 and the etching rate of the laminated structure 101 is ER1, ER0/ER1≧1×10, preferably ER0/ER1. It is desirable to satisfy ≧1×10 2 . When ER0/ER1 satisfies such a relationship, the second electrode 20 can be reliably patterned without etching the laminated structure 101 (or with slight etching).
 次に、第2電極20をエッチング用マスクとして、第2クラッド層18及びコンタクト層19を、厚さ方向にドライエッチング法によりエッチングを行い、リッジ部30を形成する。具体的には、反応性イオンエッチング(RIE:Reactive Ion Etching)法により、第2電極20をエッチング用マスクとして用いて、第2クラッド層18及びコンタクト層19の両側面をエッチングし、側面部30a、30aを形成する。 Next, using the second electrode 20 as an etching mask, the second cladding layer 18 and the contact layer 19 are etched in the thickness direction by a dry etching method to form the ridge portion 30 . Specifically, by reactive ion etching (RIE: Reactive Ion Etching), using the second electrode 20 as an etching mask, both side surfaces of the second clad layer 18 and the contact layer 19 are etched to form a side surface portion 30a. , 30a.
 以上のような工程により、図8に示す積層構造体101を得ることができる。このように、帯状にパターニングされた第2電極20をエッチング用マスクとして用いてセルフアライン方式にてリッジ部30を形成するため、第2電極20とリッジ部30との間に合わせずれが生じることもない。 Through the steps described above, the laminated structure 101 shown in FIG. 8 can be obtained. Since the ridge portion 30 is formed by the self-alignment method using the second electrode 20 patterned in a band shape as an etching mask in this manner, misalignment may occur between the second electrode 20 and the ridge portion 30. No.
[絶縁層及び第1電極の形成工程]
 次に、リッジ部30の上面全体に絶縁膜を積層し、第2電極20上に積層された絶縁膜を除去する。これにより、第2電極20の上面20aを露出させるとともに、リッジ部30の両側面部30a、30a上に絶縁層21を形成する。
 なお、窒化物半導体発光素子100の放熱性及びワイヤボンド性、実装用ハンダ接合材などの濡れ性をよくするために、絶縁層21の上にメタル層(不図示)を形成してもよい。
[Step of forming insulating layer and first electrode]
Next, an insulating film is laminated on the entire upper surface of the ridge portion 30, and the insulating film laminated on the second electrode 20 is removed. As a result, the upper surface 20 a of the second electrode 20 is exposed, and the insulating layer 21 is formed on both side surfaces 30 a of the ridge portion 30 .
A metal layer (not shown) may be formed on the insulating layer 21 in order to improve the heat dissipation and wire bondability of the nitride semiconductor light emitting device 100 and the wettability of the mounting solder joint material.
 また、第1電極10の形成については、積層構造体101の裏面を、劈開及び実装に適する厚さになるように研磨する。研磨が終了すると、蒸着法やスパッタ法などで裏面にnメタル成膜を行い、例えばリフトオフ法でパターンを形成し、図8に示すように、陰極となる第1電極10を形成する。これにより積層構造体101を形成する。
 以上のような工程により、図1に示す窒化物半導体発光素子100が配列されたウエーハを得ることができる。
In forming the first electrode 10, the back surface of the laminated structure 101 is polished so as to have a thickness suitable for cleaving and mounting. After the polishing is completed, an n-metal film is formed on the back surface by vapor deposition or sputtering, and a pattern is formed by lift-off, for example, to form a first electrode 10 that will serve as a cathode, as shown in FIG. Thus, a laminated structure 101 is formed.
Through the steps described above, a wafer on which the nitride semiconductor light emitting devices 100 shown in FIG. 1 are arranged can be obtained.
[ウエーハの劈開、実装及び検査工程]
 次に、ウエーハは劈開工程において劈開され、検査工程において検査され、良品・不良品に選別される。検査により良品として選別された窒化物半導体発光素子100は、次工程である実装工程に送られる。窒化物半導体発光素子100は、実装工程においてパッケージ化され、最終検査される。このようにして、本実施形態に係る窒化物半導体発光素子100を製造することができる。
[Wafer Cleavage, Mounting and Inspection Process]
Next, the wafer is cleaved in a cleaving process, inspected in an inspection process, and sorted into non-defective products and defective products. The nitride semiconductor light-emitting device 100 selected as a good product by the inspection is sent to the mounting process, which is the next process. The nitride semiconductor light emitting device 100 is packaged in a mounting process and subjected to a final inspection. Thus, the nitride semiconductor light emitting device 100 according to this embodiment can be manufactured.
 本開示に係る窒化物半導体発光素子100の実施形態の製造方法は、以上のような工程となっているために、高品質な本実施形態に係る窒化物半導体発光素子100を提供することができる。 Since the manufacturing method of the embodiment of the nitride semiconductor light emitting device 100 according to the present disclosure has the steps as described above, it is possible to provide the high quality nitride semiconductor light emitting device 100 according to the present embodiment. .
 なお、上記の製造工程は、あくまでも一例であって、工程順序の入れ替えがあってもよい。また、新規な作業方法や加工方法又は新規な設備と置き換えてもよい。 It should be noted that the above manufacturing process is merely an example, and the order of the processes may be changed. Also, they may be replaced with new working methods, processing methods, or new equipment.
 以上のような製造工程をとることにより、エレクトロンオーバーフローを抑制して、レーザ特性の悪化を防止するとともに、歪による応力を緩和して断層35の発生を防止し、製造時の歩留りを改善する窒化物半導体発光素子100を製造することができる。 By adopting the manufacturing process as described above, the electron overflow is suppressed, the deterioration of the laser characteristics is prevented, the stress due to the strain is relieved, the occurrence of the fault 35 is prevented, and the yield at the time of manufacturing is improved. The material semiconductor light emitting device 100 can be manufactured.
 最後に、上述した各実施形態の説明は本開示の一例であり、本開示は上述の実施形態に限定されることはない。このため、上述した各実施形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。また、本明細書に記載された効果はあくまでも例示であって、これに限定されるものではなく、さらに他の効果があってもよい。 Finally, the description of each embodiment described above is an example of the present disclosure, and the present disclosure is not limited to the above-described embodiments. Therefore, it goes without saying that various modifications other than the above-described embodiments can be made in accordance with the design and the like within the scope of the technical concept of the present disclosure. Also, the effects described in this specification are merely examples, and the present invention is not limited to these, and there may be other effects.
 なお、本技術は以下のような構成も取ることができる。
(1)
 GaN基板と、
 前記GaN基板上に積層された第1クラッド層と、
 前記第1クラッド層上に積層された第1光ガイド層と、
 前記第1光ガイド層上に積層された活性層と、
 前記活性層上に積層された第2光ガイド層と、
 前記第2光ガイド層上に積層された電子障壁層と、
 前記電子障壁層上に積層された断層抑制層と、
 前記断層抑制層上に積層された第2クラッド層と、
 前記第2クラッド層上に積層されたコンタクト層と、
を有する窒化物半導体発光素子。
(2)
 前記断層抑制層は、AlGa(1-z)N(0≦z<1)からなる窒化アルミニウムガリウムで形成され、又はInGa(1-a)N(0≦a≦1)からなる窒化インジウムガリウムで形成された前記(1)に記載の窒化物半導体発光素子。
(3)
 前記断層抑制層は、AlGa(1-z)N(0≦z<y<1)において、z=0の組成比率で形成された前記(1)又は前記(2)に記載の窒化物半導体発光素子。
(4)
 前記断層抑制層は、InGa(1-a)N(0≦a≦1)において、a=0の組成比率で形成された前記(1)又は前記(2)に記載の窒化物半導体発光素子。
(5)
 前記断層抑制層は、厚さ10nm以上に形成された前記(1)から前記(4)の何れかに記載の窒化物半導体発光素子。
(6)
 前記第1光ガイド層及び第2光ガイド層は、InGa(1-b)N(0<b<1)からなる窒化インジウムガリウムで形成され、組成比率bの平均値と両者の総膜厚tとの積が7nm以上である前記(2)から前記(4)の何れかに記載の窒化物半導体発光素子。
(7)
 前記電子障壁層は、p型不純物ドープされたAlGa(1-x)N(0<x<1)からなる厚さ5nm以上の窒化アルミニウムガリウムで形成された前記(1)から前記(6)の何れかに記載の窒化物半導体発光素子。
(8)
 前記第2クラッド層は、AlGa(1-y)N(0<y<1)からなる窒化アルミニウムガリウムで形成された前記(1)から前記(7)の何れかに記載の窒化物半導体発光素子。
Note that the present technology can also take the following configuration.
(1)
a GaN substrate;
a first clad layer laminated on the GaN substrate;
a first optical guide layer laminated on the first cladding layer;
an active layer stacked on the first optical guide layer;
a second optical guide layer laminated on the active layer;
an electron barrier layer laminated on the second optical guide layer;
a fault suppression layer laminated on the electron barrier layer;
a second clad layer laminated on the fault suppression layer;
a contact layer laminated on the second cladding layer;
A nitride semiconductor light emitting device having
(2)
The fault suppression layer is formed of aluminum gallium nitride made of Al z Ga (1-z) N (0≦z<1), or made of In a Ga (1-a) N (0≦a≦1) The nitride semiconductor light-emitting device according to (1) above, which is made of indium gallium nitride.
(3)
The nitride according to (1) or (2) above, wherein the fault suppression layer is Al z Ga (1−z) N (0≦z<y<1) with a composition ratio of z=0. Semiconductor light emitting device.
(4)
The nitride semiconductor light emitting device according to (1) or (2), wherein the fault suppression layer is formed of In a Ga (1−a) N (0≦a≦1) with a composition ratio of a=0. element.
(5)
The nitride semiconductor light-emitting device according to any one of (1) to (4), wherein the fault suppressing layer has a thickness of 10 nm or more.
(6)
The first optical guide layer and the second optical guide layer are formed of indium gallium nitride made of In b Ga (1-b) N (0<b<1), and the average value of the composition ratio b and the total film of both The nitride semiconductor light-emitting device according to any one of (2) to (4), wherein the product with the thickness t is 7 nm or more.
(7)
The electron barrier layer is formed of aluminum gallium nitride having a thickness of 5 nm or more and made of Al x Ga (1-x) N (0<x<1) doped with p-type impurities (1) to (6). ).
(8)
The nitride semiconductor according to any one of (1) to (7), wherein the second clad layer is formed of aluminum gallium nitride composed of Al y Ga (1-y) N (0<y<1). light-emitting element.
 10  第1電極
 11  GaN基板
 12  第1クラッド層
 13  第1光ガイド層
 14  活性層
 15  第2光ガイド層
 16  電子障壁層
 17  断層抑制層
 18  第2クラッド層
 19  コンタクト層
 20  第2電極
 21  絶縁層
 30  リッジ部
 30a 側面部
 31  フロント端面
 32  リア端面
 35  断層
 51  GaNのバンドギャップエネルギーと格子定数
 52  InNのバンドギャップエネルギーと格子定数
 53  AlNのバンドギャップエネルギーと格子定数
 62  InGaNのバンドギャップエネルギーと格子定数
 63  AlGaNのバンドギャップエネルギーと格子定数
 72  GaNとInGaNの格子定数の差
 73  GaNとAlGaNの格子定数の差
 100 窒化物半導体発光素子
 101 積層構造体
 t   総膜厚
 a、b、x、y、z 組成比率
REFERENCE SIGNS LIST 10 first electrode 11 GaN substrate 12 first clad layer 13 first optical guide layer 14 active layer 15 second optical guide layer 16 electron barrier layer 17 fault suppression layer 18 second clad layer 19 contact layer 20 second electrode 21 insulating layer 30 Ridge Part 30a Side Part 31 Front End Face 32 Rear End Face 35 Fault 51 Bandgap Energy and Lattice Constant of GaN 52 Bandgap Energy and Lattice Constant of InN 53 Bandgap Energy and Lattice Constant of AlN 62 Bandgap Energy and Lattice Constant of InGaN 63 Band gap energy and lattice constant of AlGaN 72 Difference in lattice constant between GaN and InGaN 73 Difference in lattice constant between GaN and AlGaN 100 Nitride semiconductor light emitting device 101 Laminated structure t Total film thickness a, b, x, y, z Composition ratio

Claims (8)

  1.  GaN基板と、
     前記GaN基板上に積層された第1クラッド層と、
     前記第1クラッド層上に積層された第1光ガイド層と、
     前記第1光ガイド層上に積層された活性層と、
     前記活性層上に積層された第2光ガイド層と、
     前記第2光ガイド層上に積層された電子障壁層と、
     前記電子障壁層上に積層された断層抑制層と、
     前記断層抑制層上に積層された第2クラッド層と、
     前記第2クラッド層上に積層されたコンタクト層と、
    を有する窒化物半導体発光素子。
    a GaN substrate;
    a first clad layer laminated on the GaN substrate;
    a first optical guide layer laminated on the first cladding layer;
    an active layer stacked on the first optical guide layer;
    a second optical guide layer laminated on the active layer;
    an electron barrier layer laminated on the second optical guide layer;
    a fault suppression layer laminated on the electron barrier layer;
    a second clad layer laminated on the fault suppression layer;
    a contact layer laminated on the second cladding layer;
    A nitride semiconductor light emitting device having
  2.  前記断層抑制層は、AlGa(1-z)N(0≦z<1)からなる窒化アルミニウムガリウムで形成され、又はInGa(1-a)N層(0≦a≦1)からなる窒化インジウムガリウムで形成された請求項1に記載の窒化物半導体発光素子。 The fault suppression layer is formed of aluminum gallium nitride made of AlzGa(1- z ) N (0≤z<1), or from an InaGa (1-a) N layer (0≤a≤1) 2. The nitride semiconductor light-emitting device according to claim 1, which is made of indium gallium nitride.
  3.  前記断層抑制層は、AlGa(1-z)N(0≦z<y<1)において、z=0の組成比率で形成された請求項1に記載の窒化物半導体発光素子。 2. The nitride semiconductor light-emitting device according to claim 1, wherein said fault suppressing layer is formed in Al z Ga (1-z) N (0≦z<y<1) with a composition ratio of z=0.
  4.  前記断層抑制層は、InGa(1-a)N(0≦a≦1)において、a=0の組成比率で形成された請求項1に記載の窒化物半導体発光素子。 2. The nitride semiconductor light-emitting device according to claim 1, wherein said fault suppressing layer is formed of In a Ga (1-a) N (0≤a≤1) with a composition ratio of a=0.
  5.  前記断層抑制層は、厚さ10nm以上に形成された請求項1に記載の窒化物半導体発光素子。 The nitride semiconductor light-emitting device according to claim 1, wherein the fault suppression layer is formed to have a thickness of 10 nm or more.
  6.  前記第1光ガイド層及び第2光ガイド層は、InGa(1-b)N(0<b<1)からなる窒化インジウムガリウムで形成され、組成比率bの平均値と両者の総膜厚tとの積が7nm以上である請求項2に記載の窒化物半導体発光素子。 The first optical guide layer and the second optical guide layer are formed of indium gallium nitride made of In b Ga (1-b) N (0<b<1), and the average value of the composition ratio b and the total film of both 3. The nitride semiconductor light emitting device according to claim 2, wherein the product with the thickness t is 7 nm or more.
  7.  前記電子障壁層は、p型不純物ドープされたAlGa(1-x)N(0<x<1)からなる厚さ5nm以上の窒化アルミニウムガリウムで形成された請求項1に記載の窒化物半導体発光素子。 2. The nitride according to claim 1, wherein the electron barrier layer is formed of aluminum gallium nitride having a thickness of 5 nm or more and made of Al x Ga (1-x) N (0<x<1) doped with p-type impurities. Semiconductor light emitting device.
  8.  前記第2クラッド層は、AlGa(1-y)N(0<y<1)からなる窒化アルミニウムガリウムで形成された請求項1に記載の窒化物半導体発光素子。
     
    2. The nitride semiconductor light emitting device according to claim 1, wherein said second clad layer is made of aluminum gallium nitride made of Al y Ga (1-y) N (0<y<1).
PCT/JP2022/012132 2021-06-23 2022-03-17 Nitride semiconductor light emitting element WO2022270054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021104454 2021-06-23
JP2021-104454 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270054A1 true WO2022270054A1 (en) 2022-12-29

Family

ID=84544616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012132 WO2022270054A1 (en) 2021-06-23 2022-03-17 Nitride semiconductor light emitting element

Country Status (1)

Country Link
WO (1) WO2022270054A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066981A (en) * 2005-08-29 2007-03-15 Toshiba Corp Semiconductor device
JP2007235107A (en) * 2006-02-02 2007-09-13 Mitsubishi Electric Corp Semiconductor light-emitting device
JP2008187034A (en) * 2007-01-30 2008-08-14 Sharp Corp Group iii-v nitride semiconductor laser element
JP2009267231A (en) * 2008-04-28 2009-11-12 Rohm Co Ltd Nitride semiconductor laser
JP2010093128A (en) * 2008-10-09 2010-04-22 Nec Corp Semiconductor light emitting element
JP2013528948A (en) * 2010-05-28 2013-07-11 コーニング インコーポレイテッド GaN-based laser diodes with mismatched dislocations driven out of the active region
US8816319B1 (en) * 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
WO2019130655A1 (en) * 2017-12-26 2019-07-04 パナソニック株式会社 Nitride semiconductor laser element
WO2021172171A1 (en) * 2020-02-28 2021-09-02 ソニーグループ株式会社 Laser element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066981A (en) * 2005-08-29 2007-03-15 Toshiba Corp Semiconductor device
JP2007235107A (en) * 2006-02-02 2007-09-13 Mitsubishi Electric Corp Semiconductor light-emitting device
JP2008187034A (en) * 2007-01-30 2008-08-14 Sharp Corp Group iii-v nitride semiconductor laser element
JP2009267231A (en) * 2008-04-28 2009-11-12 Rohm Co Ltd Nitride semiconductor laser
JP2010093128A (en) * 2008-10-09 2010-04-22 Nec Corp Semiconductor light emitting element
JP2013528948A (en) * 2010-05-28 2013-07-11 コーニング インコーポレイテッド GaN-based laser diodes with mismatched dislocations driven out of the active region
US8816319B1 (en) * 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
WO2019130655A1 (en) * 2017-12-26 2019-07-04 パナソニック株式会社 Nitride semiconductor laser element
WO2021172171A1 (en) * 2020-02-28 2021-09-02 ソニーグループ株式会社 Laser element

Similar Documents

Publication Publication Date Title
US7756177B2 (en) Semiconductor light-emitting device
US7072374B2 (en) Ridge waveguide semiconductor laser diode
JP3897186B2 (en) Compound semiconductor laser
JP5963004B2 (en) Nitride semiconductor light emitting device
KR20100098565A (en) Semiconductor light-emitting device
JP6807541B2 (en) Semiconductor light emitting device
JP2007235107A (en) Semiconductor light-emitting device
WO2021206012A1 (en) Semiconductor laser device and method for manufacturing semiconductor laser device
WO2017017928A1 (en) Nitride semiconductor laser element
JPH08274414A (en) Nitride semiconductor laser element
US20110013659A1 (en) Semiconductor laser device and method of manufacturing the same
US20080175293A1 (en) Semiconductor laser device
WO2022270054A1 (en) Nitride semiconductor light emitting element
JP2013102043A (en) Semiconductor laser element and semiconductor laser element manufacturing method
JP2012134327A (en) Nitride semiconductor light-emitting element
US8526477B2 (en) Semiconductor light emitting device
JP3414680B2 (en) III-V nitride semiconductor laser
JP2003218469A (en) Nitride system semiconductor laser device
US10218152B1 (en) Semiconductor laser diode with low threshold current
JPH10303493A (en) Nitride semiconductor laser
JP2000277862A (en) Nitride semiconductor device
JP3278108B2 (en) Method for manufacturing nitride semiconductor laser element
JPH11224957A (en) Nitride group semiconductor light-emitting element and manufacture thereof
WO2023007837A1 (en) Nitride semiconductor light-emitting element
WO2024070351A1 (en) Nitride-based semiconductor light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE