WO2022270030A1 - Power system operation plan support system, power system operation plan support method, and program - Google Patents

Power system operation plan support system, power system operation plan support method, and program Download PDF

Info

Publication number
WO2022270030A1
WO2022270030A1 PCT/JP2022/010169 JP2022010169W WO2022270030A1 WO 2022270030 A1 WO2022270030 A1 WO 2022270030A1 JP 2022010169 W JP2022010169 W JP 2022010169W WO 2022270030 A1 WO2022270030 A1 WO 2022270030A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration suppression
suppression index
improvement plan
voltage
power system
Prior art date
Application number
PCT/JP2022/010169
Other languages
French (fr)
Japanese (ja)
Inventor
準 板井
裕 小海
英佑 黒田
弘一 原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022270030A1 publication Critical patent/WO2022270030A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present invention relates to a power system operation plan support system, a power system operation plan support method, and a program.
  • the introduction of renewable energy power sources such as wind power and solar power is progressing with the aim of reducing carbon dioxide emissions.
  • the number of operating synchronous machines used for thermal power generation and hydroelectric power generation tends to decrease.
  • the synchronous machine described in this specification refers to a synchronous generator, a synchronous motor, or a synchronous phase modifier, and hereinafter collectively referred to as a synchronous machine.
  • Synchronous machines have the ability to keep the voltage of the power system constant, but renewable energy sources often do not have this ability. Therefore, it is feared that the capacity to maintain the voltage of the electric power system will decline due to the large-scale introduction of renewable energy power sources.
  • a decline in the voltage maintenance capability of the power system may affect the stability of the operating state of renewable energy sources and the stability of the power system.
  • many wind power generators connected to a power system via an inverter output active power and reactive power in amounts based on the magnitude of the voltage at the connection point of the wind power generator. Therefore, in a situation where the voltage maintenance capacity of the power system is low and the voltage at the connection point of the wind power generation is likely to change due to changes in the number of operating circuits of the transmission lines of the power system and changes in the output of the wind power generation, the voltage at the connection point of the wind power generation It is known that a change in voltage causes a change in the wind power output, which again causes a change in the voltage at the connection point of the wind power generator.
  • Patent Document 1 by measuring one or more of the voltage, active power, and reactive power at a connection point between a renewable energy farm composed of a plurality of renewable energy power generation systems and the power system, the power system Techniques for estimating strength are described.
  • Patent Document 1 determines the sensitivity of voltage to one or more of active power and reactive power, and determines the strength of the power system as a function of the sensitivity. It then dynamically determines one or more of the active power command value and the reactive power command value for the renewable energy farm based on the strength of the power system.
  • Patent Document 2 discloses a configuration in which the power generation output of the generator is controlled based on at least two types of measurement data received from the connection point between the generator and the power system, and based on at least two of the measurement data
  • the power system model is characterized by an equivalent power system voltage and an equivalent power system impedance.
  • at least two of the measurement data are used to calculate a value indicating the strength of the power system based on the power system model, and based on the value indicating the strength, the power generation output is controlled. technique is described.
  • Patent Document 3 describes a technique for determining a power system state such as a vulnerable state and controlling a power plant such as a wind power plant or a photovoltaic power plant in a manner appropriate to the power system state.
  • the technology described in Patent Document 3 measures the output parameters of generators such as wind power generation and solar power generation, determines the relationship between the measured output parameters, and determines the relationship between the measured output parameters. In order to prevent possible vibration phenomena in the power plant, the power plant is controlled according to the relationship.
  • Patent Literature 1 Patent Literature 2, and Patent Literature 3
  • the output of the renewable energy power source is controlled in order to prevent the generation of unstable vibration of the renewable energy power source.
  • the degree of contribution to the reduction of carbon dioxide emissions which is the purpose of introducing renewable energy sources, will be weakened. Therefore, in order to reduce the amount of carbon dioxide emissions, it is necessary to prevent the occurrence of unstable vibrations in renewable energy power sources by minimizing output suppression of renewable energy power sources.
  • An example of a method to prevent curtailment of renewable energy power sources is to reduce the impedance value of the power system as seen from the wind power generation connection point by increasing the number of transmission lines and transformer banks in operation. This approach may improve the ability to maintain voltage at the wind turbine connection and prevent the occurrence of unstable vibrations.
  • the present application includes a plurality of means for solving the above problems.
  • the power system to be calculated while satisfying the vibration suppression index standards of the system stability judgment standard data by inputting the vibration suppression index evaluation unit that outputs the evaluation results by the vibration suppression index and the evaluation results and the equipment data subject to operation status change. and a vibration suppression index improvement plan creation unit that creates an initial improvement plan that maximizes the total amount of output of the renewable energy power source specified in .
  • the power system operation plan support system of the present invention outputs an improvement plan that maximizes the total amount of renewable energy power output while satisfying the voltage standard of the system stability criterion data based on the initial improvement plan. and an output unit that outputs or displays information of the vibration suppression index evaluation unit, the vibration suppression index improvement plan creation unit, and the system voltage improvement plan creation unit.
  • the present invention by reducing the output suppression amount of the renewable energy power supply necessary to prevent the occurrence of unstable vibration of the renewable energy power supply due to the decrease in the voltage maintenance capability of the power system, the amount of carbon dioxide emissions can be further reduced.
  • a method is sought that can maximize the output of the renewable energy power supply while preventing both the occurrence of unstable vibrations in the renewable energy power supply and deviation of the voltage of the power system from the proper range. can reduce the time required for Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 1 It is a functional block diagram which shows the structural example of the electric power system operation plan assistance system of the 1st Embodiment of this invention. It is a figure which shows an example of the data structure of the system
  • FIG. 4 is a flow chart showing an example of overall processing of the power system operation plan support system according to the first embodiment of the present invention
  • 4 is a flow chart showing an example of processing of the vibration suppression index improvement plan creation unit 24 according to the first embodiment of the present invention
  • 4 is a flow chart showing an example of processing by a system voltage improvement plan creation unit 27 according to the first embodiment of the present invention
  • FIG. 4 is a diagram showing an example of a screen displaying a state of a future electric power system targeted for improvement of an operation plan and an improvement proposal for the operation plan according to the first embodiment of the present invention
  • It is a figure which shows an example of the screen which displays the effect by the improvement of the operation plan of the 1st Embodiment of this invention.
  • FIG. 3 is a functional block diagram showing a configuration example of a power system operation plan support system according to a second embodiment of the present invention
  • FIG. 5 is a block diagram showing a hardware configuration example of a power system operation plan support system according to a second embodiment of the present invention
  • FIG. 11 is a functional block diagram showing a configuration example of a power system operation plan support system according to a third embodiment of the present invention
  • FIG. 11 is a block diagram showing a hardware configuration example of a power system operation plan support system according to a third embodiment of the present invention
  • It is a flow chart which shows the example of the whole processing of the electric power system operation plan support system of the example of the 3rd embodiment of the present invention.
  • FIG. 1 shows the configuration viewed from the function of a power system operation plan support system 1 of the first embodiment.
  • the power system operation plan support system 1 includes input data D1 held in advance by the operator of the power system, a calculation unit 2 that creates an improvement plan for the power system operation plan based on the input data D1, and the input data D1 and calculation. It is composed of a display section 3 for displaying the contents of the section 2 .
  • the calculation unit 2 includes an analysis cross section creation unit 21, a vibration suppression index calculation unit 22, a vibration suppression index evaluation unit 23, a vibration suppression index improvement plan creation unit 24, a system voltage calculation unit 25, a system voltage evaluation unit 26, and a system voltage improvement unit. It is composed of a draft creation unit 27 and performs processing in this order.
  • the input data D1 consists of system configuration data D11, system operation plan data D12, system model data D13, calculation target data D14, system stability criterion data D15, and operation status change target facility data D16.
  • the details of the functions of the units 21 to 27 constituting the calculation unit 2 will be specifically explained in the explanation of the flow charts described later with reference to FIGS. 9 to 11.
  • the display unit 3 displays the analysis cross section, the vibration suppression index improvement plan, and the system voltage improvement plan created by the analysis cross section creation unit 21, the vibration suppression index improvement plan creation unit 24, and the system voltage improvement plan creation unit 27.
  • the display unit 3 may display calculation results and evaluation results of the vibration suppression index calculation unit 22, the vibration suppression index evaluation unit 23, the system voltage calculation unit 25, and the system voltage evaluation unit 26.
  • the operator selects which item to display.
  • the power system operation plan support system 1 is provided with the display unit 3 to display an example, but instead of the display unit 3, an output unit is provided to display each information via a network or the like. It may be output to the outside and displayed on the receiving terminal.
  • FIG. 2 shows an example of the data structure of the system configuration data D11 in the input data D1.
  • the system configuration data D11 stores information about transmission lines and synchronous machines that configure the power system.
  • the transmission line information includes detailed information on the characteristics of each transmission line, such as the number of lines, connection source busbar, connection destination busbar, resistance R, reactance X, and the like.
  • the information on the synchronous machines includes detailed information on characteristics such as link bus, number of parallel machines, rated capacity, rated output, reactance X, and the like.
  • the synchronous machine here is at least one of a synchronous generator, a synchronous motor, and a synchronous phase modifier, as already explained.
  • the system configuration data D11 includes information on the power transmission lines and synchronous machines that make up the power system, as well as information on loads, renewable energy power sources, transformers, phase modifying equipment, and the like. are stored regardless of their operational state.
  • FIG. 3 shows an example of the data structure of the system operation plan data D12 in the input data D1.
  • the system operation plan data D12 includes future plans for switching on and off circuit breakers used in transmission lines and transformers, future plans for active power output of synchronous machines, prediction data for active power consumption of loads, and the like. stored in time intervals.
  • the data held by the system operation plan data D12 includes not only the data shown in FIG. It also includes the active power output plan and reactive power output plan of the power system, and the operation plan of each bus voltage in the power system.
  • FIG. 4 shows an example of the data structure of the system model data D13 in the input data D1.
  • the system model data D13 stores details such as the model type and various constants, which are related information, regarding models of the synchronous machine (SG), the renewable energy power source (RES), and the load. Information on these models of synchronous machines, renewable energy sources, and loads is necessary for numerical analysis of electric power systems using computers and calculators.
  • the system model data D13 includes not only information on synchronous machines, renewable energy power sources, and loads, but also information on models such as transmission lines, transformers, and phase modifying equipment.
  • FIG. 5 shows an example of the data structure of calculation target data D14 in input data D1.
  • the calculation target data D14 stores information on the number of the bus for which the vibration suppression index is calculated by the vibration suppression index calculator 22 and the number of the bus for which the system voltage is calculated by the system voltage calculator 25. .
  • FIG. 6 shows an example of the data structure of the system stability criterion data D15 in the input data D1.
  • the system stability judgment reference data D15 includes a reference value (SCR lower limit) used for evaluation of the vibration suppression index in the vibration suppression index calculation unit 22 and a reference value (voltage upper limit) used for evaluation of the system voltage in the system voltage evaluation unit 26. value, voltage lower limit) is stored.
  • FIG. 7 shows an example of the data structure of the operation status change target facility data D16 in the input data D1.
  • the operation state change target equipment data D16 stores information about transmission lines, transformers, synchronous machines, etc., which are considered as improvement methods in the vibration suppression index improvement plan creation unit 24 and the system voltage improvement plan creation unit 27. .
  • the number of changeable operation circuits is stored for each change target transmission line.
  • the number of transformer banks the number of changeable banks is stored for each transformer to be changed.
  • the changeable number of parallel machines is stored for each synchronous machine to be changed.
  • a changeable tap ratio range is stored for each transformer to be changed.
  • the operation status change target equipment data D16 does not include information about system equipment that cannot be used as an improvement method due to some restrictions, such as transmission lines that cannot change the number of operating circuits from the existing operation plan due to work or maintenance. Marked as excluded and not stored.
  • the operation status change target equipment data D16 includes, for example, information related to power capacitors and shunt reactors subject to change in the number of inputs, and information related to synchronous machines subject to change in reactive power. and information about renewable energy sources whose active power output is subject to change.
  • FIG. 8 shows an example of the hardware configuration of the power system operation plan support system 1 of this embodiment.
  • the power system operation planning support system 1 includes program data D2a, a display unit 3, an input unit 4, a CPU (Central Processing Unit) 5, a memory 6, various input data D11 to D16, and a bus line connecting these 7.
  • the program data D2a and various input data D11 to D16 are stored, for example, in a non-volatile storage unit (not shown).
  • the program data D2a is composed of an analysis cross section creation program, a vibration suppression index calculation program, a vibration suppression index evaluation program, a vibration suppression index improvement plan creation program, a system voltage calculation program, a system voltage evaluation program, and a system voltage improvement plan creation program. .
  • the display unit 3 is composed of, for example, one or more of a display device, a printer device, a projector device, an audio output device, and the like.
  • the display unit 3 displays the input data D1 shown in FIG. An example of the display screen will be described later.
  • the input unit 4 is composed of, for example, one or more of a keyboard, a switch, a mouse, a touch panel, a voice input device, and the like.
  • the CPU 5 reads a program necessary for the processing of the calculation unit 2 from among various programs constituting the program data D2a and executes calculation.
  • the CPU 5 may be composed of one or more semiconductor chips, or may be composed of a computer or calculator.
  • the memory 6 is composed of a storage device such as a RAM (Random Access Memory), and stores programs read from the program data D2a, calculation result data created by the calculation unit 2, image data, and the like.
  • FIG. 9 is a flow chart showing the overall processing flow of the power system operation plan support system 1 in this embodiment.
  • the analysis section creation unit 21 uses the system configuration data D11, the system operation plan data D12, and the system model data D13 to create an analysis section of the power system in the future, for example, after 30 minutes or 1 hour (step S21). ).
  • the vibration suppression index calculator 22 uses the analysis cross section created in step S21 to calculate the vibration suppression index of the bus specified in the calculation target data D14 (step S22). That is, the vibration suppression index calculator 22 receives the analysis cross section of the electric power system and the calculation target data, and outputs the calculation result of the vibration suppression index.
  • the vibration suppression index here indicates at least one of the unstable vibration of the output and voltage of the renewable energy power source, or the voltage maintenance capability of the power system.
  • SCR Short Circuit Ratio
  • WSCR Weighted Short Circuit ratio
  • CSCR Composite Short Circuit Ratio
  • SCRIF Short Circuit Ratio with Interaction Factors
  • SDSCR Site-Dependent Short Circuit Ratio
  • SCRi is the SCR at the connection bus of the i-th renewable energy power supply
  • Vi is the voltage of the connection bus of the i-th renewable energy power supply
  • Zi is the connection bus of the i-th renewable energy power supply.
  • Pi is the active power output of the i-th renewable energy source
  • R is the set of all renewable energy source numbers.
  • Vi and Pi required for calculating the formula [Equation 1] can be obtained, for example, by executing a power flow calculation on the analysis cross section created in step S21. Also, Zi is obtained by referring to the analysis cross section created in step S21.
  • the vibration suppression index evaluation unit 23 performs vibration suppression index evaluation processing for evaluating whether or not the vibration suppression index calculated in step S22 satisfies the reference value using the system stability judgment reference data D14. (Step S23). If it is determined in step S23 that the reference value is satisfied (YES in step S23), the process proceeds to step S3, and the results obtained in steps S21 to S23 are displayed on the display unit 3.
  • FIG. 23 If it is determined in step S23 that the reference value is satisfied (YES in step S23), the process proceeds to step S3, and the results obtained in steps S21 to S23 are displayed on the display unit 3.
  • the vibration suppression index improvement plan creation unit 24 changes the operating state so that the vibration suppression index satisfies the reference value.
  • Vibration suppression index improvement plan creation processing for creating an improvement plan for the operation plan is performed using the target facility data D16 (step S24).
  • a specific example of the improvement plan creation procedure in step S24 will be described later.
  • the system voltage calculation unit 25 calculates the voltage of the bus designated by the calculation target data D14 using the analysis cross section created in step S21 and the operation plan improvement plan created in step S24 (step S25 ). It should be noted that the system voltage in step S24 is obtained by power flow calculation, for example.
  • step S26 uses the system stability criterion data D14 to evaluate whether or not the voltage calculated in step S25 is within an appropriate range (step S26). If it is evaluated as being within the appropriate range in step S26 (YES in step S26), the process proceeds to step S3, and the results obtained in steps S21 to S26 are displayed on the display section 3.
  • step S26 the system stability criterion data D14 to evaluate whether or not the voltage calculated in step S25 is within an appropriate range
  • step S26 if it is evaluated that the voltage is not within the proper range in step S26, that is, if the voltage standard of the system stability criterion data D14 is not satisfied (NO in step S26), the system voltage improvement plan creation unit 27
  • the operational state change target facility data D16 is used to create an improvement proposal for the operational plan (step S27).
  • step S27 A specific example of the improvement plan creation procedure in step S27 will be described later. After creating an improvement plan for the operation plan, the process moves to step S3, and the results obtained in steps S21 to S27 are displayed on the display unit 3.
  • the series of processes shown in FIG. 9 are periodically executed in a time span that allows the process to be completed, such as 10 minutes or 30 minutes.
  • the improvement plan is at least the number of operating circuits of transmission lines that make up the power system, the number of operating transformers, the number of operating synchronous machines (number of parallel machines), and the active power output of renewable energy power sources. It includes one or more operational plan changes as improvements.
  • the vibration suppression index improvement plan creation unit 24 solves an optimization problem for creating a vibration suppression index improvement plan using the calculation target data D14, the system stability judgment reference data D15, and the operation state change target equipment data D16.
  • An objective function, constraints, and decision variables are set (step S241).
  • Equation 2 SCR ref,i is the reference value of SCR at the connection bus of the i-th renewable energy power supply.
  • the decision variables for the formula [Formula 2] are the number of operating circuits of each transmission line in the power system, the number of banks of each transformer, the number of parallel synchronous machines, the tap ratio of each transformer, and each renewable energy power source. is the active power output Pi of .
  • the number of operating lines of transmission lines, the number of transformer banks, and the number of parallel synchronous machines cannot be reduced.
  • the transformer tap ratio and the active power output of the renewable energy power source cannot be increased.
  • the vibration suppression index improvement proposal creation unit 24 creates a power flow cross section of the electric power system for calculating the vibration suppression index using the analysis cross section created in step S21 (step S242).
  • the vibration suppression index improvement plan creation unit 24 selects one type of power system equipment parameters to be changed in order to improve the vibration suppression index (step S243).
  • the parameters to be changed are the number of operating lines of the transmission line of the power system, the number of transformer banks, the number of parallel synchronous machines, the transformer tap ratio, the regeneration Examples include the active power output of renewable energy sources.
  • step S243 the parameters are selected in the set selection order, and if there is no changeable parameter among the selected parameters, the parameters in the next order are selected.
  • the vibration suppression index improvement plan creation unit 24 determines the total amount of increase in the vibration suppression index in the connection bus of each renewable energy power source when each parameter belonging to the parameter class selected in step S243 is changed by a specified amount.
  • a value O sum,j is obtained by, for example, power flow calculation (step S244).
  • each parameter is said to be changed by a specified amount, but the amount by which the parameter is changed can be arbitrarily set by the power system operator through the input unit 4 .
  • Equation 3 The total amount of increment O sum,j is expressed, for example, by the formula [Equation 3].
  • SCR aft, ij represents the SCR at the connection bus of the i-th renewable energy power supply after changing the j-th power system equipment parameter by a specified amount.
  • SCR bef, ij represents the SCR in the connection bus of the i-th renewable energy power source before changing the j-th power system equipment parameter by a specified amount
  • P represents a set of all parameter numbers.
  • the vibration suppression index improvement plan creation unit 24 changes the parameter with the largest increase in the vibration suppression index Osum, j calculated in step S244 by the specified amount.
  • a vibration suppression index on the generatrix is calculated (step S245).
  • the vibration suppression index to be obtained here the value calculated when obtaining the total increase amount Osum,j of the vibration suppression index in step S244 may be used as it is.
  • the vibration suppression index improvement plan creation unit 24 evaluates whether or not each vibration suppression index obtained in step S245 is equal to or greater than a reference value (step S246). If it is evaluated in step S246 that it is equal to or greater than the reference value (YES in step S246), the vibration suppression index improvement plan creation unit 24 determines all the parameter changes made in step S245 as improvement plans, and starts the process. finish.
  • step S246 the vibration suppression index improvement plan creation unit 24 applies the last parameter change in step S245 to the vibration suppression index. It is reflected in the tidal flow cross section to be used (step S247). After that, the vibration suppression index improvement plan creation unit 24 returns to the process in step S243.
  • the system voltage improvement plan creation unit 27 performs a system voltage improvement plan creation process for creating an improvement plan for the bus voltage based on the calculation result of the system voltage calculation unit 25 and the voltage reference. It outputs improvement proposals.
  • the system voltage improvement plan creation unit 27 uses the calculation target data D14, the system stability judgment reference data D15, and the operation state change target facility data D16 to create the system voltage improvement plan. , constraints, and decision variables are set (step S260).
  • V j in the formula (4) is the magnitude of the voltage of the j-th bus
  • V LL, j is the lower limit of the proper range of the voltage of the j-th bus
  • V UL, j is the proper voltage of the j-th bus. Represents the upper value of the range.
  • N indicates a set of all busbar numbers.
  • the decision variables for the [Formula 4] formula are the number of power capacitors and shunt reactors to be turned on, the reactive power output of the synchronous machine, and the reactive power output of the renewable energy power supply. Power system equipment that adjusts reactive power in the power system has little effect on voltage maintenance capability of the power system due to changes in reactive power. Therefore, the voltage of the electric power system can be improved without deteriorating the vibration suppression index improved in step S24.
  • variables of the power system equipment that are considered to have a small adverse effect on the vibration suppression index may be included as decision variables for the [Equation 4] formula.
  • the number of operating lines of transmission lines, the number of transformer banks, the number of parallel synchronous machines, etc. may be included as decision variables on the condition that they are increased, the transformer tap ratio, the active power output of renewable energy power sources, etc. may be included as a decision variable provided that it is reduced.
  • the system voltage improvement plan creation unit 27 creates a power flow cross section of the power system for calculating the system voltage, using the analysis cross section created in step S21 and the vibration suppression index improvement plan created in step S24. (step S261).
  • the system voltage improvement proposal creation unit 27 selects one type of parameters of the power system equipment to be changed in order to improve the system voltage (step S262).
  • the parameters to be changed in step S262 are the same as the decision variables set in step S261, such as the number of power capacitors and shunt reactors to be turned on, the reactive power output of the synchronous machine, the transformer tap ratio, the reproducible Active power output and reactive power output of the energy source.
  • a step S262 selects the parameters in the set selection order, and if there is no changeable parameter among the selected parameters, selects the parameters in the next order.
  • the system voltage improvement plan creation unit 27 obtains the amount of change in each calculation target voltage when each parameter belonging to the parameter class selected in step S262 is changed by a unit amount, that is, the sensitivity, for example, by power flow calculation. (Step S263).
  • the unit amount to be changed means the minimum amount that each parameter can be changed. , one unit is the unit quantity.
  • the system voltage improvement plan creation unit 27 calculates the voltage deviation suppression amount V sum,j for each parameter using the values of each system voltage before and after the change of each parameter calculated in step S263, and calculates the voltage deviation The parameter with the maximum suppression amount V sum,j is selected (step S264).
  • V sum,j is expressed, for example, by the formula [Equation 5].
  • ⁇ V ij in the formula [Equation 5] is an index showing how much the magnitude of the i-th bus voltage approaches the appropriate range by changing the unit amount of the j-th power system equipment parameter.
  • V bef, ij indicates the magnitude of the i-th bus voltage before the j-th power system equipment parameter is changed by the unit amount
  • V aft, ij is the j-th power system equipment parameter changed by the unit amount. It shows the magnitude of the later i-th bus voltage.
  • the system voltage improvement plan creation unit 27 calculates the total voltage to be calculated and the voltage deviation suppression amount each time while changing the parameter selected in step S264 by unit amount within a changeable range (step S265).
  • the parameter selected in step S264 is the number of shunt reactors to be turned on
  • the voltage to be calculated is obtained by multiplying the sensitivity obtained in step S263 by a unit amount such as 2 units, 3 units, or 4 units. It is obtained by adding to the voltage before changing the parameter.
  • the voltage excursion suppression amount is obtained by multiplying the value of the formula [Equation 5] obtained in step S264 by a value for every unit amount.
  • step S266 determines whether or not there is a case in which all the voltages to be calculated fall within the proper range in step S265 (step S266). If there is a corresponding case in step S266 (YES in step S266), the parameter change performed in step S265 is reflected in the improvement plan, and the process ends.
  • step S266 if there is no corresponding case in step S266 (NO in step S266), the system voltage improvement proposal creation unit 27 selects the parameter change that maximizes the voltage deviation suppression amount among the parameter changes in step S265. is reflected in the improvement plan (step S267).
  • step S268 determines whether or not there are still system facilities that can be changed for system voltage improvement. If it is determined in step S268 that changeable system equipment remains (YES in step S268), the parameter change made in step S267 is reflected in the power flow cross section used for system voltage calculation (step S269). , the process returns to step S262. On the other hand, if it is determined in step S268 that there is no system equipment that can be changed (NO in step S268), the calculation of the optimization problem is terminated, and the process ends.
  • FIG. FIG. 12 is an example of a screen in which a display 31 of the state of the electric power system at a specific time in the future targeted for improvement of the operation plan and a display 32 of an improvement plan for the operation plan are arranged side by side.
  • the state of the power system is displayed 31 in the form of a system diagram display 31a and a tabular form 31b as the power flow state of the power system in the future and the operation status of various system facilities.
  • the display 32 of the operation plan improvement plan output by the calculation unit 2 is also performed in tabular form 32a to 31d.
  • a table 32a of the number of operating circuits of the transmission line a table 32b of the number of operating synchronous machines, a table 32c of the number of shunt reactors (ShR) input, and a Figure 32d shows a table 32d of Soyo facilities (SC) inputs.
  • SC Soyo facilities
  • FIG. 13 is an example of a screen of displays 33 and 34 showing the effect of improving the operation plan.
  • a display 33 before the operation plan improvement and a display 34 after the improvement by the operation plan improvement plan are arranged side by side.
  • a list 33a of renewable energy output, SCR, and SCR reference value, and a list 33b of voltage, upper limit value, and lower limit value of each bus line are shown.
  • a list 34a of renewable energy output, SCR, and SCR reference value, and a list 34b of voltage, upper limit value, and lower limit value of each bus are shown.
  • the power system operator can refer to the screen shown in FIG. 13 and consider whether or not to reflect the created operation plan improvement plan in the actual operation plan.
  • Information displayed by the display unit 3 is not limited to the examples shown in FIGS. 12 and 13 .
  • information of various input data D11 to D16, intermediate data generated during the processing of the vibration suppression index improvement plan creation unit 24 and the system voltage improvement plan creation unit 27, etc. can be displayed as necessary.
  • FIG. 14 shows a time-series waveform 101 of the active power output of the renewable energy power source before applying the power system operation plan support system of this embodiment, and the power system operation plan support system of this embodiment.
  • Fig. 10 compares time-series waveforms 102 of active power output of renewable energy power sources after
  • the output of the renewable energy power supply is unstable and oscillating, and the output suppression is required.
  • the time-series waveform 102 of the active power output of the renewable energy power supply after application the output of the renewable energy power supply is stable, and output suppression is unnecessary. In this manner, by applying the power system operation plan support system of the present embodiment, it is possible to prevent unstable oscillation of the active power output of the renewable energy power supply.
  • FIG. 15 compares the output state 201 of the renewable energy power source before application of the power system operation plan support system of the present embodiment and the output state 202 of the renewable energy power source after application.
  • the output of a part of the renewable energy power source was suppressed in order to prevent unstable vibration of the renewable energy power source.
  • the renewable energy output total value was 200 MW.
  • the power system operation planning support system of the present embodiment After applying the power system operation planning support system of the present embodiment, it is possible to prevent unstable vibration without suppressing the output of the renewable energy power source.
  • the value can be 300 MW.
  • the power system operation plan support system of this embodiment the total output of renewable energy power sources can be increased, and the amount of carbon dioxide emissions can be further reduced.
  • FIG. 16 to 18 the same reference numerals are given to the same components or the same steps as those in FIGS. 1 to 15 described in the first embodiment, and redundant description will be omitted.
  • FIG. 16 shows the configuration viewed from the function of the power system operation plan support system 1 of the second embodiment of the present invention.
  • instantaneous value analysis processing of the renewable energy power source is performed in order to determine whether or not unstable vibration of the renewable energy power source has occurred. It is an addition.
  • an unstable vibration determination unit 28 is added to the calculation unit 2, which is the power system operation plan of the first embodiment example shown in FIG. It differs from the support system 1.
  • the information of the evaluation result of the vibration suppression index evaluation unit 23 is supplied to the unstable vibration determination unit 28, and the unstable vibration determination unit 28 performs instantaneous value analysis processing of the renewable energy power source, Determine the presence or absence of Information on the presence or absence of unstable vibration determined by the unstable vibration determination unit 28 is supplied to the vibration suppression index improvement proposal creation unit 24 together with information on the evaluation result of the vibration suppression index evaluation unit 23 .
  • the system model data D13 additionally holds power system model data for instantaneous value analysis, and based on this, the analysis section creating unit 21 creates an analysis section for instantaneous value analysis.
  • Other configurations of the power system operation plan support system 1 shown in FIG. 16 are the same as those of the power system operation plan support system 1 shown in FIG. 1, so description thereof will be omitted.
  • FIG. 17 shows an example of the hardware configuration of the power system operation planning support system 1 according to the second embodiment of the present invention.
  • the power system operation plan support system 1 shown in FIG. 17 differs from the program data D2a of the power system operation plan support system 1 shown in FIG. 8 in that a renewable energy unstable vibration determination program is added as program data D2b. do.
  • the renewable energy unstable vibration determination program is read when the calculation unit 2 executes the unstable vibration determination unit 28 .
  • FIG. 18 is a flow chart showing the overall process flow of the power system operation plan support system 1 in the second embodiment of the present invention. Compared with the flow of processing in the first embodiment shown in FIG. 9, the flow of processing shown in FIG. is added by step S28 for confirming by instantaneous value analysis and step S29 for determining the presence or absence of unstable vibration of the renewable energy power source.
  • step S28 the unstable vibration determination unit 28 confirms the operating state of the renewable energy power supply by instantaneous value analysis (step S28).
  • step S29 the presence or absence of unstable vibration of the renewable energy power source is determined (step S29).
  • step S29 if there is no unstable vibration of the renewable energy power supply (NO in step S29), the process proceeds to step S3, and display processing is performed.
  • step S29 if there is unstable vibration of the renewable energy power source (YES in step S29), the process proceeds to step S24 to create a vibration suppression index improvement plan.
  • Other processes in the flowchart of FIG. 18 are executed in the same flow as in the flowchart of FIG.
  • the vibration suppression index improvement plan creation unit 24 may use instantaneous value analysis to determine whether or not the created improvement plan prevents unstable vibration.
  • FIGS. 19-21 a third embodiment of the present invention will be described with reference to FIGS. 19-21.
  • the same components or steps as those in FIGS. 1 to 18 described in the first and second embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the processing performed by the power system operation plan support system 1 is reduced by screening.
  • the improvement method is screened when creating an improvement plan for either or both of the vibration suppression index and the system voltage.
  • a screening method for example, improvement methods are narrowed down only to system equipment whose electrical distance from the bus line does not satisfy the reference value for the vibration suppression index, and whose electrical distance is equal to or less than a certain distance.
  • the electrical distance here is obtained using, for example, the magnitude of impedance between two points. This can reduce the amount of calculation required to create an improvement plan.
  • FIG. 19 shows the configuration viewed from the function of the power system operation plan support system 1 in the third embodiment of the present invention.
  • the power system operation plan support system 1 shown in FIG. 19 differs from the power system operation plan support system 1 shown in FIG. 1 in that screening reference data D17 is added to the input data D1.
  • the screening reference data D ⁇ b>17 becomes input data for the vibration suppression index improvement plan creation unit 24 and the system voltage improvement plan creation unit 27 .
  • FIG. 20 shows an example of the hardware configuration of the power system operation plan support system 1 according to the third embodiment of the present invention.
  • the power system operation plan support system 1 shown in FIG. 20 is provided with the screening reference data D17, and the change target facility screening program is added as the program data D2c. program data D2a.
  • the facility screening program to be changed is read when the calculation unit 2 executes either or both of the vibration suppression index improvement plan creation unit 24 and the system voltage improvement plan creation unit 27 .
  • FIG. 21 is a flow chart showing the overall process flow of the power system operation plan support system 1 according to the third embodiment of the present invention. Compared with the flow of processing in the first embodiment shown in FIG. 9, the flow of processing shown in FIG. A screening step S30 is added. Furthermore, a step S31 of screening a system voltage improvement method is added before the step S27 of creating a system voltage improvement plan. Only one of step S30 and step S31 may be used instead of both.
  • the vibration suppression index improvement plan creation unit 24 determines that the reference value is not satisfied in step S23 (NO in step S23)
  • the vibration suppression index improvement plan creation unit 24 screens the vibration suppression index improvement means using the screening reference data D17. (Step S30). Further, when the system voltage is not within the appropriate range in step S26 (NO in step S26), the system voltage improvement plan creation unit 27 screens the system voltage improvement means using the screening reference data D17 (step S31). .
  • Other processes are executed in the same flow as the flow chart shown in FIG.
  • the power system operation plan support system 1 creates an improvement plan on the premise that the power system, synchronous machine, and renewable energy power supply equipment are all existing equipment. I made it On the other hand, you may make it create the improvement plan when one of facilities is reinforced. For example, when increasing the number of renewable energy power sources connected to an existing power system, the power system operation plan support system 1 may examine whether or not vibration can be suppressed, and create an improvement plan. In this way, by creating an improvement plan for increasing power equipment, the power system operation plan support system 1 can examine whether or not the equipment reinforcement is appropriate.
  • FIGS. 1 and 8, etc. only those control lines and information lines that are considered necessary for explanation are shown, and not all control lines and information lines are necessarily shown on the product. No. In fact, it may be considered that almost all configurations are interconnected.
  • FIG. 8 and the like show the case where the power system operation plan support system is configured by a computer.
  • some or all of the functions performed by the power system operation planning support system may be realized by hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit).
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • it is an example to configure the power system operation plan support system 1 as one device for example, a device holding the input data D1 shown in FIG. may be configured and connected via a network, etc.
  • the program may be prepared in non-volatile storage or memory in the computer, or may be stored in an external memory, IC card, SD card, It may be placed on a recording medium such as an optical disk and transferred.

Abstract

This power system operation plan support system comprises: a vibration suppression index evaluation unit that outputs an evaluation result by a power system vibration suppression index created on the basis of system stability determination criteria data; a vibration suppression index improvement plan creation unit that uses the evaluation result and the data of a facility to be changed as inputs to create, while satisfying a vibration suppression index criteria, an initial improvement plan for maximizing the total amount of the outputs of renewable energy power supplies designated in a power system to be calculated; and a system voltage improvement plan creation unit that outputs, on the basis of the initial improvement plan, an improvement plan for maximizing the total amount of the outputs of the renewable energy power supplies while satisfying the voltage criteria of the system stability determination criteria data.

Description

電力系統運用計画支援システム、電力系統運用計画支援方法及びプログラムPOWER SYSTEM OPERATION PLANNING SUPPORT SYSTEM, POWER SYSTEM OPERATION PLANNING SUPPORT METHOD AND PROGRAM
 本発明は、電力系統運用計画支援システム、電力系統運用計画支援方法及びプログラムに関する。 The present invention relates to a power system operation plan support system, a power system operation plan support method, and a program.
 電力系統では、二酸化炭素の排出量削減などを目的に、風力発電や太陽光発電などの再生可能エネルギー電源の導入が進んでいる。それに伴って、火力発電や水力発電に用いられる同期機の運転台数は減少する傾向にある。ここで、本明細書で述べる同期機は、同期発電機、同期電動機、又は同期調相機を指し、以降はこれらを総称して同期機とする。同期機は電力系統の電圧を一定に維持する能力を有するが、再生可能エネルギー電源はこの能力を有しないことが多い。そのため、再生可能エネルギー電源の大量導入が進むことで、電力系統の電圧維持能力は低下することが懸念される。 In power systems, the introduction of renewable energy power sources such as wind power and solar power is progressing with the aim of reducing carbon dioxide emissions. Along with this, the number of operating synchronous machines used for thermal power generation and hydroelectric power generation tends to decrease. Here, the synchronous machine described in this specification refers to a synchronous generator, a synchronous motor, or a synchronous phase modifier, and hereinafter collectively referred to as a synchronous machine. Synchronous machines have the ability to keep the voltage of the power system constant, but renewable energy sources often do not have this ability. Therefore, it is feared that the capacity to maintain the voltage of the electric power system will decline due to the large-scale introduction of renewable energy power sources.
 電力系統の電圧維持能力の低下は、再生可能エネルギー電源の運転状態の安定性や、電力系統の安定性に影響を及ぼす場合がある。例えば、インバータを介して電力系統に接続する風力発電の多くは、風力発電の接続箇所における電圧の大きさなどに基づく量の有効電力、無効電力を出力する。そのため、電力系統の電圧維持能力が低く、風力発電の接続箇所の電圧が、電力系統の送電線の運用回線数変更や風力発電の出力変化によって変化しやすい状況下では、風力発電の接続箇所の電圧変化によって風力発電出力が変化し、それに伴って再び風力発電の接続箇所の電圧が変化することが知られている。 A decline in the voltage maintenance capability of the power system may affect the stability of the operating state of renewable energy sources and the stability of the power system. For example, many wind power generators connected to a power system via an inverter output active power and reactive power in amounts based on the magnitude of the voltage at the connection point of the wind power generator. Therefore, in a situation where the voltage maintenance capacity of the power system is low and the voltage at the connection point of the wind power generation is likely to change due to changes in the number of operating circuits of the transmission lines of the power system and changes in the output of the wind power generation, the voltage at the connection point of the wind power generation It is known that a change in voltage causes a change in the wind power output, which again causes a change in the voltage at the connection point of the wind power generator.
 その結果、風力発電の出力や電圧が一定値に収まらない不安定な振動を継続する現象が確認されている。風力発電は、風況の良い場所などに複数台がまとまって接続することが多いため、1台の風力発電の出力が不安定振動を引き起こすと、それに隣接する他の風力発電の出力にも不安定振動が波及し、最終的には電力系統全体が不安定になってしまう。 As a result, it has been confirmed that the output and voltage of wind power generation continue to experience unstable oscillations that do not fall within a certain value. Wind turbines are often connected together in locations with good wind conditions, so if the output of one wind turbine causes unstable vibrations, the output of other wind turbines adjacent to it will also be adversely affected. Stable vibration spreads, and eventually the entire power system becomes unstable.
 この問題を解決する技術として、特許文献1、特許文献2、特許文献3に記載されたものが知られている。
 特許文献1には、複数の再生可能エネルギー発電システムから構成される再生可能エネルギーファームと電力系統との接続点の電圧、有効電力、無効電力のうち一つ以上を計測することで、電力系統の強さを推定する技術が記載されている。
Techniques described in Patent Document 1, Patent Document 2, and Patent Document 3 are known as techniques for solving this problem.
In Patent Document 1, by measuring one or more of the voltage, active power, and reactive power at a connection point between a renewable energy farm composed of a plurality of renewable energy power generation systems and the power system, the power system Techniques for estimating strength are described.
 この特許文献1に記載された技術は、有効電力と無効電力のうち一つ以上に対する電圧の感度を決定し、感度の関数として電力系統の強さを決定するようにしている。そして、電力系統の強さに基づき、再生可能エネルギーファームの有効電力指令値と無効電力指令値のうち一つ以上を動的に決定している。 The technique described in Patent Document 1 determines the sensitivity of voltage to one or more of active power and reactive power, and determines the strength of the power system as a function of the sensitivity. It then dynamically determines one or more of the active power command value and the reactive power command value for the renewable energy farm based on the strength of the power system.
 また、特許文献2には、発電機と電力系統との接続点から受信した少なくとも2つの計測データ類に基づいて発電機の発電出力を制御する構成とし、計測データ類のうち少なくとも2つに基づいて電力系統のモデルを作成する技術に関する記載がある。ここで、電力系統モデルは、等価的な電力系統電圧と、等価的な電力系統インピーダンスによって特徴づけられている。また、特許文献2には、計測データ類のうち少なくとも2つを用いて、電力系統モデルに基づく電力系統の強さを示す値を計算し、強さを示す値に基づき、発電出力を制御する技術が記載されている。 In addition, Patent Document 2 discloses a configuration in which the power generation output of the generator is controlled based on at least two types of measurement data received from the connection point between the generator and the power system, and based on at least two of the measurement data There is a description of technology for creating a model of a power system using Here, the power system model is characterized by an equivalent power system voltage and an equivalent power system impedance. In addition, in Patent Document 2, at least two of the measurement data are used to calculate a value indicating the strength of the power system based on the power system model, and based on the value indicating the strength, the power generation output is controlled. technique is described.
 また、特許文献3には、脆弱な状態といった電力系統状態を決定し、風力発電プラントや太陽光発電プラントといった発電プラントを、電力系統状態に適切な形で制御するための技術が記載されている。ここで、特許文献3に記載の技術は、風力発電や太陽光発電といった発電機の出力パラメータを計測し、計測された出力パラメータ同士の関係性を決定し、電力系統の状態が脆弱な状況下で発電プラントにて発生する可能性のある振動現象を防止するために、関係性に応じて発電プラントを制御するようにしている。 In addition, Patent Document 3 describes a technique for determining a power system state such as a vulnerable state and controlling a power plant such as a wind power plant or a photovoltaic power plant in a manner appropriate to the power system state. . Here, the technology described in Patent Document 3 measures the output parameters of generators such as wind power generation and solar power generation, determines the relationship between the measured output parameters, and determines the relationship between the measured output parameters. In order to prevent possible vibration phenomena in the power plant, the power plant is controlled according to the relationship.
米国特許出願公開第2020/0328611号明細書U.S. Patent Application Publication No. 2020/0328611 米国特許出願公開第2019/0131795号明細書U.S. Patent Application Publication No. 2019/0131795 米国特許出願公開第2015/0361954号明細書U.S. Patent Application Publication No. 2015/0361954
 特許文献1、特許文献2、特許文献3に記載された技術では、再生可能エネルギー電源の不安定振動の発生を防ぐために、再生可能エネルギー電源の出力を制御している。
 これらの文献に記載されるように、再生可能エネルギー電源の出力抑制のみを講じる場合、再生可能エネルギー電源の出力を最大限に活用することができない。
 そのため、再生可能エネルギー電源の導入目的である二酸化炭素の排出量削減への貢献度合いが弱まってしまうことになる。したがって、二酸化炭素の排出量を削減するためには、再生可能エネルギー電源の出力抑制は極力行うことなく、再生可能エネルギー電源の不安定振動の発生を防ぐ必要がある。
In the techniques described in Patent Literature 1, Patent Literature 2, and Patent Literature 3, the output of the renewable energy power source is controlled in order to prevent the generation of unstable vibration of the renewable energy power source.
As described in these documents, if only curbing the output of renewable energy power is taken, the output of renewable energy power cannot be utilized to the maximum.
Therefore, the degree of contribution to the reduction of carbon dioxide emissions, which is the purpose of introducing renewable energy sources, will be weakened. Therefore, in order to reduce the amount of carbon dioxide emissions, it is necessary to prevent the occurrence of unstable vibrations in renewable energy power sources by minimizing output suppression of renewable energy power sources.
 再生可能エネルギー電源の出力抑制を防ぐ手法の一例としては、送電線や変圧器バンクの運用数増加によって、風力発電接続箇所からみた電力系統のインピーダンス値を減らすことが挙げられる。この手法により、風力発電接続箇所の電圧維持能力を高め、不安定振動の発生を予防できる場合がある。 An example of a method to prevent curtailment of renewable energy power sources is to reduce the impedance value of the power system as seen from the wind power generation connection point by increasing the number of transmission lines and transformer banks in operation. This approach may improve the ability to maintain voltage at the wind turbine connection and prevent the occurrence of unstable vibrations.
 しかしながら、再生可能エネルギー電源の出力抑制以外の対策を講じる場合、系統の運用機器の状態を変更するため、電力系統の電圧が運用上適切な範囲から逸脱することが懸念される。また、送電線や変圧器バンクの運用数などは、段階的な変更しかできないため、最適化問題などで適切な対策を算出することは数理的に困難であった。 However, if measures other than curbing the output of renewable energy power sources are taken, there is a concern that the voltage of the power system will deviate from the appropriate range for operation because the state of the operating equipment of the system will be changed. In addition, since the number of transmission lines and the number of transformer banks in operation can only be changed in stages, it was mathematically difficult to calculate appropriate countermeasures for optimization problems.
 このように従来技術では種々の問題があり、再生可能エネルギー電源の不安定振動の抑制と電力系統の電圧維持を両立しつつ、再生可能エネルギー電源の出力を最大限に活用することができる電力系統運用計画支援システム、電力系統運用計画支援方法及びプログラムを提供することが望まれていた。 As described above, there are various problems with the conventional technology, and a power system that can make the most of the output of the renewable energy power supply while simultaneously suppressing the unstable vibration of the renewable energy power supply and maintaining the voltage of the power system. It has been desired to provide an operation plan support system, power system operation plan support method and program.
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。
 本願は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、本発明の電力系統運用計画支援システムは、系統安定性判断基準データをもとに作成された電力系統の振動抑制指標による評価結果を出力する振動抑制指標評価部と、評価結果と運用状態変更対象設備データを入力として、系統安定性判断基準データの振動抑制指標基準を満たしつつ、計算対象となる電力系統で指定した再生可能エネルギー電源の出力の合計量を最大化する初期改善案を作成する振動抑制指標改善案作成部と、を備える。
 さらに、本発明の電力系統運用計画支援システムは、初期改善案をもとに、系統安定性判断基準データの電圧基準を満たしつつ再生可能エネルギー電源の出力の合計量を最大化する改善案を出力する系統電圧改善案作成部と、振動抑制指標評価部と振動抑制指標改善案作成部と系統電圧改善案作成部の情報を出力又は表示する出力部と、を備える。
In order to solve the above problems, for example, the configurations described in the claims are adopted.
The present application includes a plurality of means for solving the above problems. The power system to be calculated while satisfying the vibration suppression index standards of the system stability judgment standard data by inputting the vibration suppression index evaluation unit that outputs the evaluation results by the vibration suppression index and the evaluation results and the equipment data subject to operation status change. and a vibration suppression index improvement plan creation unit that creates an initial improvement plan that maximizes the total amount of output of the renewable energy power source specified in .
Furthermore, the power system operation plan support system of the present invention outputs an improvement plan that maximizes the total amount of renewable energy power output while satisfying the voltage standard of the system stability criterion data based on the initial improvement plan. and an output unit that outputs or displays information of the vibration suppression index evaluation unit, the vibration suppression index improvement plan creation unit, and the system voltage improvement plan creation unit.
 本発明によれば、電力系統の電圧維持能力の低下に起因する再生可能エネルギー電源の不安定振動の発生防止に必要な再生可能エネルギー電源の出力抑制量を削減することで、二酸化炭素の排出量をより削減することができる。
 また、本発明によれば、再生可能エネルギー電源の不安定振動の発生と電力系統の電圧の適正範囲逸脱の両方を防止しつつ、再生可能エネルギー電源の出力を最大限に活用可能な手法を求めるための必要な時間を低減することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, by reducing the output suppression amount of the renewable energy power supply necessary to prevent the occurrence of unstable vibration of the renewable energy power supply due to the decrease in the voltage maintenance capability of the power system, the amount of carbon dioxide emissions can be further reduced.
In addition, according to the present invention, a method is sought that can maximize the output of the renewable energy power supply while preventing both the occurrence of unstable vibrations in the renewable energy power supply and deviation of the voltage of the power system from the proper range. can reduce the time required for
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の第1の実施の形態例の電力系統運用計画支援システムの構成例を示す機能ブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a functional block diagram which shows the structural example of the electric power system operation plan assistance system of the 1st Embodiment of this invention. 本発明の第1の実施の形態例の系統構成データD11のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the system|strain structure data D11 of the 1st Embodiment of this invention. 本発明の第1の実施の形態例の系統運用計画データD12のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the system operation plan data D12 of the 1st Embodiment of this invention. 本発明の第1の実施の形態例の系統モデルデータD13のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the system model data D13 of the 1st Embodiment of this invention. 本発明の第1の実施の形態例の計算対象データD14のデータ構造の一例を示す図である。4 is a diagram showing an example of the data structure of calculation target data D14 according to the first embodiment of this invention; FIG. 本発明の第1の実施の形態例の系統安定性判断基準データD15のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the system stability criterion data D15 of the 1st Embodiment of this invention. 本発明の第1の実施の形態例の運用状態変更対象設備データD16のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the operation state change object equipment data D16 of the 1st Embodiment of this invention. 本発明の第1の実施の形態例の電力系統運用計画支援システムのハードウェアの構成例を示すブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the structural example of the hardware of the power system operation plan assistance system of the 1st Embodiment of this invention. 本発明の第1の実施の形態例の電力系統運用計画支援システムの全体の処理例を示すフローチャートである。4 is a flow chart showing an example of overall processing of the power system operation plan support system according to the first embodiment of the present invention; 本発明の第1の実施の形態例の振動抑制指標改善案作成部24の処理例を示すフローチャートである。4 is a flow chart showing an example of processing of the vibration suppression index improvement plan creation unit 24 according to the first embodiment of the present invention; 本発明の第1の実施の形態例の系統電圧改善案作成部27の処理例を示すフローチャートである。4 is a flow chart showing an example of processing by a system voltage improvement plan creation unit 27 according to the first embodiment of the present invention; 本発明の第1の実施の形態例の運用計画の改善対象とする将来電力系統の状態と、運用計画の改善案を表示する画面の一例を示す図である。FIG. 4 is a diagram showing an example of a screen displaying a state of a future electric power system targeted for improvement of an operation plan and an improvement proposal for the operation plan according to the first embodiment of the present invention; 本発明の第1の実施の形態例の運用計画の改善による効果を表示する画面の一例を示す図である。It is a figure which shows an example of the screen which displays the effect by the improvement of the operation plan of the 1st Embodiment of this invention. 本発明の第1の実施の形態例の再生可能エネルギー電源の不安定振動抑制効果の一例を示す図である。It is a figure which shows an example of the unstable vibration suppression effect of the renewable energy power supply of the 1st Embodiment of this invention. 本発明の第1の実施の形態例の再生可能エネルギー電源の出力量増加効果の一例を示す図である。It is a figure which shows an example of the output amount increase effect of the renewable energy power supply of the 1st Embodiment of this invention. 本発明の第2の実施の形態例の電力系統運用計画支援システムの構成例を示す機能ブロック図である。FIG. 3 is a functional block diagram showing a configuration example of a power system operation plan support system according to a second embodiment of the present invention; 本発明の第2の実施の形態例の電力系統運用計画支援システムのハードウェアの構成例を示すブロック図である。FIG. 5 is a block diagram showing a hardware configuration example of a power system operation plan support system according to a second embodiment of the present invention; 本発明の第2の実施の形態例の電力系統運用計画支援システムの全体の処理例を示すフローチャートである。It is a flow chart which shows the example of the whole processing of the electric power system operation plan support system of the 2nd embodiment example of the present invention. 本発明の第3の実施の形態例の電力系統運用計画支援システムの構成例を示す機能ブロック図である。FIG. 11 is a functional block diagram showing a configuration example of a power system operation plan support system according to a third embodiment of the present invention; 本発明の第3の実施の形態例の電力系統運用計画支援システムのハードウェアの構成例を示すブロック図である。FIG. 11 is a block diagram showing a hardware configuration example of a power system operation plan support system according to a third embodiment of the present invention; 本発明の第3の実施の形態例の電力系統運用計画支援システムの全体の処理例を示すフローチャートである。It is a flow chart which shows the example of the whole processing of the electric power system operation plan support system of the example of the 3rd embodiment of the present invention.
<第1の実施の形態例>
 以下、本発明の第1の実施の形態例を、図1~図15を参照して説明する。
[電力系統運用計画支援システムの構成]
 図1は、第1の実施の形態例の電力系統運用計画支援システム1の機能から見た構成を示す。
 電力系統運用計画支援システム1は、電力系統の運用者が予め保有する入力データD1と、入力データD1をもとに電力系統運用計画の改善案を作成する演算部2と、入力データD1と演算部2の内容を表示する表示部3から構成される。
<First Embodiment>
A first embodiment of the present invention will be described below with reference to FIGS. 1 to 15. FIG.
[Configuration of Power System Operation Planning Support System]
FIG. 1 shows the configuration viewed from the function of a power system operation plan support system 1 of the first embodiment.
The power system operation plan support system 1 includes input data D1 held in advance by the operator of the power system, a calculation unit 2 that creates an improvement plan for the power system operation plan based on the input data D1, and the input data D1 and calculation. It is composed of a display section 3 for displaying the contents of the section 2 .
 演算部2は、解析断面作成部21、振動抑制指標計算部22、振動抑制指標評価部23、振動抑制指標改善案作成部24、系統電圧計算部25、系統電圧評価部26、及び系統電圧改善案作成部27から構成され、この順に処理を行う。
 入力データD1は、系統構成データD11、系統運用計画データD12、系統モデルデータD13、計算対象データD14、系統安定性判断基準データD15、運用状態変更対象設備データD16からなる。
 なお、演算部2を構成する各部21~27の機能の詳細については、図9~図11で後述するフローチャートの説明において、具体的に説明する。
The calculation unit 2 includes an analysis cross section creation unit 21, a vibration suppression index calculation unit 22, a vibration suppression index evaluation unit 23, a vibration suppression index improvement plan creation unit 24, a system voltage calculation unit 25, a system voltage evaluation unit 26, and a system voltage improvement unit. It is composed of a draft creation unit 27 and performs processing in this order.
The input data D1 consists of system configuration data D11, system operation plan data D12, system model data D13, calculation target data D14, system stability criterion data D15, and operation status change target facility data D16.
The details of the functions of the units 21 to 27 constituting the calculation unit 2 will be specifically explained in the explanation of the flow charts described later with reference to FIGS. 9 to 11. FIG.
 表示部3は、解析断面作成部21、振動抑制指標改善案作成部24、及び系統電圧改善案作成部27で作成された解析断面、振動抑制指標改善案、系統電圧改善案を表示する。また、表示部3は、振動抑制指標計算部22、振動抑制指標評価部23、系統電圧計算部25、及び系統電圧評価部26での計算結果や評価結果を表示するようにしてもよい。いずれの項目を表示するかは、例えば操作者が選択する。
 なお、ここでは、電力系統運用計画支援システム1が表示部3を備えて、表示を行う例を示したが、表示部3の代わりに出力部を備えて、ネットワークなどを経由して各情報を外部に出力して、受信先の端末で表示するようにしてもよい。
The display unit 3 displays the analysis cross section, the vibration suppression index improvement plan, and the system voltage improvement plan created by the analysis cross section creation unit 21, the vibration suppression index improvement plan creation unit 24, and the system voltage improvement plan creation unit 27. FIG. Further, the display unit 3 may display calculation results and evaluation results of the vibration suppression index calculation unit 22, the vibration suppression index evaluation unit 23, the system voltage calculation unit 25, and the system voltage evaluation unit 26. For example, the operator selects which item to display.
Here, the power system operation plan support system 1 is provided with the display unit 3 to display an example, but instead of the display unit 3, an output unit is provided to display each information via a network or the like. It may be output to the outside and displayed on the receiving terminal.
[系統構成データ]
 図2は、入力データD1の中の系統構成データD11のデータ構造の例を示す。
 系統構成データD11には、電力系統を構成する送電線や同期機に関する情報が格納されている。送電線の情報には、送電線ごとに、回線数、接続元の母線、接続先の母線、抵抗R、リアクタンスXなどの特性の詳細な情報が含まれる。
 同期機の情報には、連携母線、並列台数、定格容量、定格出力、リアクタンスXなどの特性の詳細な情報が含まれる。なお、ここでの同期機は、既に説明したように、同期発電機、同期電動機、又は同期調相機の、少なくともいずれかである。
 また、図2には示していないが、系統構成データD11には、電力系統を構成する送電線や同期機に関する情報に加えて、負荷、再生可能エネルギー電源、変圧器、調相設備などに関する情報が、それらの運用状態に関わらずすべて格納されている。
[System configuration data]
FIG. 2 shows an example of the data structure of the system configuration data D11 in the input data D1.
The system configuration data D11 stores information about transmission lines and synchronous machines that configure the power system. The transmission line information includes detailed information on the characteristics of each transmission line, such as the number of lines, connection source busbar, connection destination busbar, resistance R, reactance X, and the like.
The information on the synchronous machines includes detailed information on characteristics such as link bus, number of parallel machines, rated capacity, rated output, reactance X, and the like. The synchronous machine here is at least one of a synchronous generator, a synchronous motor, and a synchronous phase modifier, as already explained.
Although not shown in FIG. 2, the system configuration data D11 includes information on the power transmission lines and synchronous machines that make up the power system, as well as information on loads, renewable energy power sources, transformers, phase modifying equipment, and the like. are stored regardless of their operational state.
[系統運用計画データ]
 図3は、入力データD1の中の系統運用計画データD12のデータ構造の例を示す。
 系統運用計画データD12には、送電線や変圧器などに用いる遮断器の入切の将来計画や、同期機の有効電力出力の将来計画、負荷の有効電力消費の予測データなどが、それぞれ決められた時間間隔で格納されている。なお、系統運用計画データD12が保有するデータには、図3に示すデータだけでなく、例えば同期機の並解列計画や無効電力出力計画、負荷の無効電力消費の予測データ、再生可能エネルギー電源の有効電力出力計画と無効電力出力計画、電力系統内の各母線電圧の運用計画なども含まれる。
[System operation plan data]
FIG. 3 shows an example of the data structure of the system operation plan data D12 in the input data D1.
The system operation plan data D12 includes future plans for switching on and off circuit breakers used in transmission lines and transformers, future plans for active power output of synchronous machines, prediction data for active power consumption of loads, and the like. stored in time intervals. The data held by the system operation plan data D12 includes not only the data shown in FIG. It also includes the active power output plan and reactive power output plan of the power system, and the operation plan of each bus voltage in the power system.
[系統モデルデータ]
 図4は、入力データD1の中の系統モデルデータD13のデータ構造の例を示す。
 系統モデルデータD13には、同期機(SG)や再生可能エネルギー電源(RES)、負荷のモデルに関して、関連する情報であるモデルタイプと各種定数などの詳細が格納されている。これらの同期機や再生可能エネルギー電源、負荷のモデルに関する情報は、コンピュータや計算機を用いた電力系統の数値解析を行う際に必要になる。
 なお、系統モデルデータD13には、同期機や再生可能エネルギー電源、負荷の情報に限らず、例えば送電線や変圧器、調相設備などのモデルに関する情報も含まれる。
[System model data]
FIG. 4 shows an example of the data structure of the system model data D13 in the input data D1.
The system model data D13 stores details such as the model type and various constants, which are related information, regarding models of the synchronous machine (SG), the renewable energy power source (RES), and the load. Information on these models of synchronous machines, renewable energy sources, and loads is necessary for numerical analysis of electric power systems using computers and calculators.
Note that the system model data D13 includes not only information on synchronous machines, renewable energy power sources, and loads, but also information on models such as transmission lines, transformers, and phase modifying equipment.
[計算対象データ]
 図5は、入力データD1の中の計算対象データD14のデータ構造の例を示す。
 計算対象データD14には、振動抑制指標計算部22における振動抑制指標の計算対象となる母線の番号や、系統電圧計算部25において系統電圧の計算対象となる母線の番号の情報が格納されている。
[Calculation target data]
FIG. 5 shows an example of the data structure of calculation target data D14 in input data D1.
The calculation target data D14 stores information on the number of the bus for which the vibration suppression index is calculated by the vibration suppression index calculator 22 and the number of the bus for which the system voltage is calculated by the system voltage calculator 25. .
[系統安定性判断基準データ]
 図6は、入力データD1の中の系統安定性判断基準データD15のデータ構造の例を示す。
 系統安定性判断基準データD15には、振動抑制指標計算部22における振動抑制指標の評価に用いる基準値(SCR下限値)と、系統電圧評価部26において系統電圧の評価に用いる基準値(電圧上限値、電圧下限値)に関する情報が格納されている。
[System stability criterion data]
FIG. 6 shows an example of the data structure of the system stability criterion data D15 in the input data D1.
The system stability judgment reference data D15 includes a reference value (SCR lower limit) used for evaluation of the vibration suppression index in the vibration suppression index calculation unit 22 and a reference value (voltage upper limit) used for evaluation of the system voltage in the system voltage evaluation unit 26. value, voltage lower limit) is stored.
[運用状態変更対象設備データ]
 図7は、入力データD1の中の運用状態変更対象設備データD16のデータ構造の例を示す。
 運用状態変更対象設備データD16には、振動抑制指標改善案作成部24や系統電圧改善案作成部27において改善の手法として考慮される送電線や変圧器、同期機などに関する情報が格納されている。
[Equipment data subject to operation status change]
FIG. 7 shows an example of the data structure of the operation status change target facility data D16 in the input data D1.
The operation state change target equipment data D16 stores information about transmission lines, transformers, synchronous machines, etc., which are considered as improvement methods in the vibration suppression index improvement plan creation unit 24 and the system voltage improvement plan creation unit 27. .
 例えば、送電線運用回線数の情報として、変更対象送電線ごとに、変更可能運用回線数が格納される。また、変圧器バンク数の情報として、変更対象変圧器ごとに、変更可能バンク数が格納される。また、同期機並列台数の情報として、変更対象同期機ごとに、変更可能並列台数が格納される。さらに、変圧タップの情報として、変更対象変圧器ごとに、変更可能タップ比範囲が格納される。 For example, as information on the number of transmission line operation circuits, the number of changeable operation circuits is stored for each change target transmission line. In addition, as information on the number of transformer banks, the number of changeable banks is stored for each transformer to be changed. Also, as information on the number of parallel synchronous machines, the changeable number of parallel machines is stored for each synchronous machine to be changed. Furthermore, as information on the transformer tap, a changeable tap ratio range is stored for each transformer to be changed.
 なお、運用状態変更対象設備データD16には、例えば作業やメンテナンスの関係で運用回線数を既存の運用計画から変更できない送電線など、何らかの制約により改善の手法として用いることができない系統設備に関する情報は除外済みとされ、格納されていない。
 また、運用状態変更対象設備データD16には、図7に示すデータだけでなく、例えば投入数の変更対象となる電力用コンデンサと分路リアクトルに関する情報や、無効電力の変更対象となる同期機に関する情報、及び有効電力出力の変更対象となる再生可能エネルギー電源に関する情報なども含まれる。
Note that the operation status change target equipment data D16 does not include information about system equipment that cannot be used as an improvement method due to some restrictions, such as transmission lines that cannot change the number of operating circuits from the existing operation plan due to work or maintenance. Marked as excluded and not stored.
In addition to the data shown in FIG. 7, the operation status change target equipment data D16 includes, for example, information related to power capacitors and shunt reactors subject to change in the number of inputs, and information related to synchronous machines subject to change in reactive power. and information about renewable energy sources whose active power output is subject to change.
[電力系統運用計画支援システムのハードウェア構成]
 図8は、本実施の形態例の電力系統運用計画支援システム1のハードウェア構成の例を示す。
 電力系統運用計画支援システム1は、プログラムデータD2a、表示部3、入力部4、CPU(Central Processing Unit:中央処理ユニット)5、メモリ6、及び各種入力データD11~D16と、これらを繋ぐバス線7により構成される。プログラムデータD2aと各種入力データD11~D16は、例えば不揮発性の記憶部(不図示)に記憶される。
[Hardware Configuration of Power System Operation Planning Support System]
FIG. 8 shows an example of the hardware configuration of the power system operation plan support system 1 of this embodiment.
The power system operation planning support system 1 includes program data D2a, a display unit 3, an input unit 4, a CPU (Central Processing Unit) 5, a memory 6, various input data D11 to D16, and a bus line connecting these 7. The program data D2a and various input data D11 to D16 are stored, for example, in a non-volatile storage unit (not shown).
 プログラムデータD2aは、解析断面作成プログラム、振動抑制指標計算プログラム、振動抑制指標評価プログラム、振動抑制指標改善案作成プログラム、系統電圧計算プログラム、系統電圧評価プログラム、系統電圧改善案作成プログラムから構成される。 The program data D2a is composed of an analysis cross section creation program, a vibration suppression index calculation program, a vibration suppression index evaluation program, a vibration suppression index improvement plan creation program, a system voltage calculation program, a system voltage evaluation program, and a system voltage improvement plan creation program. .
 表示部3は、例えば、ディスプレイ装置やプリンタ装置、プロジェクタ装置、音声出力装置などのうちいずれか一つ以上から構成される。
 表示部3は、図1の入力データD1と、演算部2により作成された演算結果の画像データなどを表示する。なお、表示画面の例は後述する。
 入力部4は、例えば、キーボード、スイッチ、マウス、タッチパネル、音声入力装置などのうちいずれか一つ以上から構成される。
The display unit 3 is composed of, for example, one or more of a display device, a printer device, a projector device, an audio output device, and the like.
The display unit 3 displays the input data D1 shown in FIG. An example of the display screen will be described later.
The input unit 4 is composed of, for example, one or more of a keyboard, a switch, a mouse, a touch panel, a voice input device, and the like.
 CPU5は、プログラムデータD2aを構成する各種プログラムの中から、演算部2の処理に必要なプログラムを読み込んで演算を実行する。CPU5は、一つまたは複数の半導体チップで構成してもよいし、または、コンピュータや計算機で構成してもよい。
 メモリ6は、例えばRAM(Random Access Memory)などの記憶装置から構成され、プログラムデータD2aから読み込まれたプログラムや、演算部2により作成された計算結果データ、画像データなどを記憶する。
The CPU 5 reads a program necessary for the processing of the calculation unit 2 from among various programs constituting the program data D2a and executes calculation. The CPU 5 may be composed of one or more semiconductor chips, or may be composed of a computer or calculator.
The memory 6 is composed of a storage device such as a RAM (Random Access Memory), and stores programs read from the program data D2a, calculation result data created by the calculation unit 2, image data, and the like.
[電力系統運用計画支援システムの全体の処理の流れ]
 図9は、本実施の形態例における電力系統運用計画支援システム1の全体の処理の流れを示すフローチャートである。
 まず、解析断面作成部21が、系統構成データD11と系統運用計画データD12と系統モデルデータD13を用いて、例えば30分後や1時間後といった将来の電力系統の解析断面を作成する(ステップS21)。
[Overall Processing Flow of Power System Operation Planning Support System]
FIG. 9 is a flow chart showing the overall processing flow of the power system operation plan support system 1 in this embodiment.
First, the analysis section creation unit 21 uses the system configuration data D11, the system operation plan data D12, and the system model data D13 to create an analysis section of the power system in the future, for example, after 30 minutes or 1 hour (step S21). ).
 次に、振動抑制指標計算部22は、ステップS21で作成した解析断面を用いて、計算対象データD14にて指定した母線の振動抑制指標を計算する(ステップS22)。つまり、振動抑制指標計算部22は、電力系統の解析断面と計算対象データを入力として振動抑制指標の計算結果を出力する。ここでの振動抑制指標は、少なくとも、再生可能エネルギー電源の出力や電圧の不安定振動、または、電力系統の電圧維持能力のいずれかを示すものである。
 振動抑制指標としては、既に知られたSCR(Short Circuit Ratio)、WSCR(Weighted Short Circuit ratio)、CSCR(Composite Short Circuit Ratio)、SCRIF(Short Circuit Ratio with Interaction Factors)、SDSCR(Site-Dependent Short Circuit Ratio)などのうちいずれか一つの指標が用いられる。
Next, the vibration suppression index calculator 22 uses the analysis cross section created in step S21 to calculate the vibration suppression index of the bus specified in the calculation target data D14 (step S22). That is, the vibration suppression index calculator 22 receives the analysis cross section of the electric power system and the calculation target data, and outputs the calculation result of the vibration suppression index. The vibration suppression index here indicates at least one of the unstable vibration of the output and voltage of the renewable energy power source, or the voltage maintenance capability of the power system.
As vibration suppression indices, already known SCR (Short Circuit Ratio), WSCR (Weighted Short Circuit ratio), CSCR (Composite Short Circuit Ratio), SCRIF (Short Circuit Ratio with Interaction Factors), SDSCR (Site-Dependent Short Circuit Ratio), etc., is used.
 これらの指標はいずれも、値が大きいほど、再生可能エネルギー電源の不安定振動が発生しにくいことを示すので、再生可能エネルギー電源の不安定振動の発生有無を判断する目安として用いられる。 For any of these indices, the larger the value, the less likely it is that unstable vibrations will occur in renewable energy power sources, so they are used as a guideline for determining whether or not unstable vibrations in renewable energy power sources have occurred.
 ここで、振動抑制指標の計算例として、SCRの計算式を[数1]式に示す。[数1]式において、SCRiはi番目の再生可能エネルギー電源の接続母線におけるSCR、Viはi番目の再生可能エネルギー電源の接続母線の電圧、Ziはi番目の再生可能エネルギー電源の接続母線からみた電力系統全体のインピーダンス、Piはi番目の再生可能エネルギー電源の有効電力出力、Rはすべての再生可能エネルギー電源の番号の集合を示す。 Here, as a calculation example of the vibration suppression index, the SCR calculation formula is shown in [Equation 1]. In the formula [Equation 1], SCRi is the SCR at the connection bus of the i-th renewable energy power supply, Vi is the voltage of the connection bus of the i-th renewable energy power supply, and Zi is the connection bus of the i-th renewable energy power supply. is the impedance of the entire power system viewed, Pi is the active power output of the i-th renewable energy source, and R is the set of all renewable energy source numbers.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 [数1]式を計算するために必要なViやPiは、例えば、ステップS21にて作成した解析断面に対し潮流計算を実行することで求めることができる。また、Ziは、ステップS21にて作成した解析断面を参照することで得られる。  Vi and Pi required for calculating the formula [Equation 1] can be obtained, for example, by executing a power flow calculation on the analysis cross section created in step S21. Also, Zi is obtained by referring to the analysis cross section created in step S21.
 次に、振動抑制指標評価部23は、系統安定性判断基準データD14を用いて、ステップS22にて計算した振動抑制指標が基準値を満たしているか否かを評価する振動抑制指標評価処理を行う(ステップS23)。ステップS23にて基準値を満たしていると評価された場合(ステップS23のYES)、ステップS3へ移り、表示部3にステップS21~S23で得られた結果を表示する。 Next, the vibration suppression index evaluation unit 23 performs vibration suppression index evaluation processing for evaluating whether or not the vibration suppression index calculated in step S22 satisfies the reference value using the system stability judgment reference data D14. (Step S23). If it is determined in step S23 that the reference value is satisfied (YES in step S23), the process proceeds to step S3, and the results obtained in steps S21 to S23 are displayed on the display unit 3. FIG.
 また、ステップS23にて基準値を満たしていないと評価された場合(ステップS23のNO)には、振動抑制指標が基準値を満たすために、振動抑制指標改善案作成部24が、運用状態変更対象設備データD16を用いて運用計画の改善案を作成する振動抑制指標改善案作成処理を行う(ステップS24)。なお、ステップS24の改善案作成手順の具体例については後述する。
 次に、系統電圧計算部25は、ステップS21にて作成した解析断面、ステップS24にて作成した運用計画改善案を用いて、計算対象データD14にて指定した母線の電圧を計算する(ステップS25)。なお、ステップS24における系統電圧は、例えば潮流計算などにより求められる。
Further, when it is evaluated that the reference value is not satisfied in step S23 (NO in step S23), the vibration suppression index improvement plan creation unit 24 changes the operating state so that the vibration suppression index satisfies the reference value. Vibration suppression index improvement plan creation processing for creating an improvement plan for the operation plan is performed using the target facility data D16 (step S24). A specific example of the improvement plan creation procedure in step S24 will be described later.
Next, the system voltage calculation unit 25 calculates the voltage of the bus designated by the calculation target data D14 using the analysis cross section created in step S21 and the operation plan improvement plan created in step S24 (step S25 ). It should be noted that the system voltage in step S24 is obtained by power flow calculation, for example.
 次に、系統電圧評価部26は、系統安定性判断基準データD14を用いて、ステップS25にて計算した電圧が適正範囲内にあるか否かを評価する(ステップS26)。
 ステップS26にて適正範囲内にあると評価された場合(ステップS26のYES)、ステップS3へ移り、表示部3にステップS21~S26で得られた結果を表示する。
Next, the system voltage evaluation unit 26 uses the system stability criterion data D14 to evaluate whether or not the voltage calculated in step S25 is within an appropriate range (step S26).
If it is evaluated as being within the appropriate range in step S26 (YES in step S26), the process proceeds to step S3, and the results obtained in steps S21 to S26 are displayed on the display section 3. FIG.
 一方、ステップS26にて適正範囲内にないと評価された場合、つまり系統安定性判断基準データD14の電圧基準を満たさない場合(ステップS26のNO)には、系統電圧改善案作成部27は、適正範囲外にあった電圧を適正範囲内に収めるために、運用状態変更対象設備データD16を用いて、運用計画の改善案を作成する(ステップS27)。なお、ステップS27における改善案作成手順の具体例については後述する。
 運用計画の改善案を作成した後、ステップS3へ移り、表示部3にステップS21~S27で得られた結果を表示する。
On the other hand, if it is evaluated that the voltage is not within the proper range in step S26, that is, if the voltage standard of the system stability criterion data D14 is not satisfied (NO in step S26), the system voltage improvement plan creation unit 27 In order to keep the voltage outside the proper range within the proper range, the operational state change target facility data D16 is used to create an improvement proposal for the operational plan (step S27). A specific example of the improvement plan creation procedure in step S27 will be described later.
After creating an improvement plan for the operation plan, the process moves to step S3, and the results obtained in steps S21 to S27 are displayed on the display unit 3. FIG.
 この図9に示した一連の処理は、例えば10分や30分など、処理が完了可能な時間幅で周期的に実行される。 The series of processes shown in FIG. 9 are periodically executed in a time span that allows the process to be completed, such as 10 minutes or 30 minutes.
[振動抑制指標改善案の作成手順]
 次に、図10のフローチャートを用いて、図9のフローチャートのステップS24における初期改善案である振動抑制指標改善案の作成手順の例を説明する。ここでの改善案は、電力系統を構成する送電線の運用回線数と、変圧器の運用数と、同期機の運転台数(並列台数)と、再生可能エネルギー電源の有効電力出力とのうち少なくとも1つ以上の運用計画の変更を、改善内容として含むものである。
[Procedure for creating vibration suppression index improvement plan]
Next, with reference to the flowchart of FIG. 10, an example of a procedure for creating a vibration suppression index improvement plan, which is an initial improvement plan in step S24 of the flowchart of FIG. 9, will be described. The improvement plan here is at least the number of operating circuits of transmission lines that make up the power system, the number of operating transformers, the number of operating synchronous machines (number of parallel machines), and the active power output of renewable energy power sources. It includes one or more operational plan changes as improvements.
 まず、振動抑制指標改善案作成部24は、計算対象データD14、系統安定性判断基準データD15、運用状態変更対象設備データD16を用いて、振動抑制指標改善案を作成するための最適化問題の目的関数、制約条件、決定変数を設定する(ステップS241)。 First, the vibration suppression index improvement plan creation unit 24 solves an optimization problem for creating a vibration suppression index improvement plan using the calculation target data D14, the system stability judgment reference data D15, and the operation state change target equipment data D16. An objective function, constraints, and decision variables are set (step S241).
 ここで、目的関数及び制約条件は、例えば[数2]式のようになる。[数2]式において、SCRref、iはi番目の再生可能エネルギー電源の接続母線におけるSCRの基準値である。 Here, the objective function and the constraint conditions are, for example, as shown in [Equation 2]. In [Equation 2], SCR ref,i is the reference value of SCR at the connection bus of the i-th renewable energy power supply.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、[数2]式に対する決定変数は、電力系統内の各送電線の運用回線数、各変圧器のバンク数、各同期機の並列台数、各変圧器のタップ比、各再生可能エネルギー電源の有効電力出力Piである。ただし、振動抑制指標を悪化させないようにするため、送電線の運用回線数、変圧器バンク数、同期機の並列台数は減らすことができない。逆に、変圧器タップ比、再生可能エネルギー電源の有効電力出力は増やすことができないものとする。 In addition, the decision variables for the formula [Formula 2] are the number of operating circuits of each transmission line in the power system, the number of banks of each transformer, the number of parallel synchronous machines, the tap ratio of each transformer, and each renewable energy power source. is the active power output Pi of . However, in order not to deteriorate the vibration suppression index, the number of operating lines of transmission lines, the number of transformer banks, and the number of parallel synchronous machines cannot be reduced. Conversely, it is assumed that the transformer tap ratio and the active power output of the renewable energy power source cannot be increased.
 次に、振動抑制指標改善案作成部24は、ステップS21にて作成した解析断面を用いて、振動抑制指標を計算するための電力系統の潮流断面を作成する(ステップS242)。 Next, the vibration suppression index improvement proposal creation unit 24 creates a power flow cross section of the electric power system for calculating the vibration suppression index using the analysis cross section created in step S21 (step S242).
 次に、振動抑制指標改善案作成部24は、振動抑制指標を改善するために変更する電力系統設備のパラメータ類を1種類選択する(ステップS243)。ここで、変更対象とするパラメータ類は、ステップS241にて設定した決定変数と同様に、電力系統の送電線の運用回線数、変圧器バンク数、同期機の並列台数、変圧器タップ比、再生可能エネルギー電源の有効電力出力などである。 Next, the vibration suppression index improvement plan creation unit 24 selects one type of power system equipment parameters to be changed in order to improve the vibration suppression index (step S243). Here, the parameters to be changed are the number of operating lines of the transmission line of the power system, the number of transformer banks, the number of parallel synchronous machines, the transformer tap ratio, the regeneration Examples include the active power output of renewable energy sources.
 なお、パラメータ類の選択順は、電力系統の運用者が入力部4を介して任意で設定することができる。ただし、ここでは、再生可能エネルギー電源の有効電力出力の最大化を目的関数として設定するため、再生可能エネルギー電源の有効電力出力の選択順は遅いことが望ましい。ステップS243では、設定された選択順にパラメータ類を選択し、選択したパラメータ類の中に変更可能なパラメータが存在しない場合に、次の順番のパラメータ類を選択している。 The order of selection of the parameters can be arbitrarily set by the operator of the power system via the input unit 4. However, since maximization of the active power output of the renewable energy power supply is set as the objective function here, it is desirable that the order of selection of the active power output of the renewable energy power supply be later. In step S243, the parameters are selected in the set selection order, and if there is no changeable parameter among the selected parameters, the parameters in the next order are selected.
 次に、振動抑制指標改善案作成部24は、ステップS243にて選択したパラメータ類に属する各パラメータを指定量だけ変更したときの、各再生可能エネルギー電源の接続母線における振動抑制指標の増加量合計値Osum、jを、例えば潮流計算などにより求める(ステップS244)。ここで、各パラメータを指定量だけ変更と述べているが、パラメータを変更する量は、電力系統の運用者が入力部4を介して任意で設定することができる。 Next, the vibration suppression index improvement plan creation unit 24 determines the total amount of increase in the vibration suppression index in the connection bus of each renewable energy power source when each parameter belonging to the parameter class selected in step S243 is changed by a specified amount. A value O sum,j is obtained by, for example, power flow calculation (step S244). Here, each parameter is said to be changed by a specified amount, but the amount by which the parameter is changed can be arbitrarily set by the power system operator through the input unit 4 .
 増加量合計値Osum、jは、例えば[数3]式のように表される。[数3]式において、SCRaft、ijはj番目の電力系統設備パラメータを指定量変更した後のi番目の再生可能エネルギー電源の接続母線におけるSCRを表す。また、SCRbef、ijはj番目の電力系統設備パラメータを指定量変更する前のi番目の再生可能エネルギー電源の接続母線におけるSCRを表し、Pはすべてのパラメータ番号の集合を表している。 The total amount of increment O sum,j is expressed, for example, by the formula [Equation 3]. In Equation 3, SCR aft, ij represents the SCR at the connection bus of the i-th renewable energy power supply after changing the j-th power system equipment parameter by a specified amount. Also, SCR bef, ij represents the SCR in the connection bus of the i-th renewable energy power source before changing the j-th power system equipment parameter by a specified amount, and P represents a set of all parameter numbers.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、振動抑制指標改善案作成部24は、ステップS244にて計算した振動抑制指標の増加量合計値Osum、jが最大のパラメータを指定量変更した際の、各再生可能エネルギー電源の接続母線における振動抑制指標を計算する(ステップS245)。ここで求める振動抑制指標は、ステップS244にて振動抑制指標の増加量合計値Osum、jを求める際に計算した値をそのまま用いてもよい。 Next, the vibration suppression index improvement plan creation unit 24 changes the parameter with the largest increase in the vibration suppression index Osum, j calculated in step S244 by the specified amount. A vibration suppression index on the generatrix is calculated (step S245). As the vibration suppression index to be obtained here, the value calculated when obtaining the total increase amount Osum,j of the vibration suppression index in step S244 may be used as it is.
 次に、振動抑制指標改善案作成部24は、ステップS245にて求めた各振動抑制指標がすべて基準値以上であるか否かを評価する(ステップS246)。ステップS246にて基準値以上であると評価された場合(ステップS246のYES)、振動抑制指標改善案作成部24は、ステップS245にて行ったすべてのパラメータ変更を改善案として決定し、処理を終了する。 Next, the vibration suppression index improvement plan creation unit 24 evaluates whether or not each vibration suppression index obtained in step S245 is equal to or greater than a reference value (step S246). If it is evaluated in step S246 that it is equal to or greater than the reference value (YES in step S246), the vibration suppression index improvement plan creation unit 24 determines all the parameter changes made in step S245 as improvement plans, and starts the process. finish.
 一方、ステップS246にて基準値以上でないと評価された場合(ステップS246のNO)には、振動抑制指標改善案作成部24は、ステップS245にて最後に行ったパラメータ変更を、振動抑制指標に用いる潮流断面に反映する(ステップS247)。その後、振動抑制指標改善案作成部24は、ステップS243での処理に戻る。 On the other hand, if it is evaluated that the value is not equal to or greater than the reference value in step S246 (NO in step S246), the vibration suppression index improvement plan creation unit 24 applies the last parameter change in step S245 to the vibration suppression index. It is reflected in the tidal flow cross section to be used (step S247). After that, the vibration suppression index improvement plan creation unit 24 returns to the process in step S243.
[系統電圧改善案の作成手順]
 次に、図11のフローチャートを用いて、図9のフローチャートのステップS27における系統電圧改善案の作成手順の例を説明する。系統電圧改善案作成部27は、以下に説明するように、系統電圧計算部25の計算結果と電圧基準をもとに母線電圧の改善案を作成する系統電圧改善案作成処理を行って、作成した改善案を出力するものである。
 まず、系統電圧改善案作成部27は、計算対象データD14、系統安定性判断基準データD15、運用状態変更対象設備データD16を用いて、系統電圧改善案を作成するための最適化問題の目的関数、制約条件、決定変数を設定する(ステップS260)。
[Procedure for creating system voltage improvement plan]
Next, with reference to the flowchart of FIG. 11, an example of the system voltage improvement plan creation procedure in step S27 of the flowchart of FIG. 9 will be described. As described below, the system voltage improvement plan creation unit 27 performs a system voltage improvement plan creation process for creating an improvement plan for the bus voltage based on the calculation result of the system voltage calculation unit 25 and the voltage reference. It outputs improvement proposals.
First, the system voltage improvement plan creation unit 27 uses the calculation target data D14, the system stability judgment reference data D15, and the operation state change target facility data D16 to create the system voltage improvement plan. , constraints, and decision variables are set (step S260).
 目的関数及び制約条件は、例えば[数4]式のようになる。[数4]式におけるVはj番目の母線の電圧の大きさ、VLL、jはj番目の母線の電圧の適正範囲の下限値、VUL、jはj番目の母線の電圧の適正範囲の上限値を表す。なお、Nはすべての母線番号の集合を示している。 The objective function and constraint conditions are, for example, as shown in [Equation 4]. V j in the formula (4) is the magnitude of the voltage of the j-th bus, V LL, j is the lower limit of the proper range of the voltage of the j-th bus, and V UL, j is the proper voltage of the j-th bus. Represents the upper value of the range. Note that N indicates a set of all busbar numbers.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、[数4]式に対する決定変数は、電力用コンデンサや分路リアクトルの投入数、同期機の無効電力出力、再生可能エネルギー電源の無効電力出力である。電力系統内の無効電力を調整する電力系統設備は、無効電力の変更による電力系統の電圧維持能力などへの影響が小さい。そのため、ステップS24で改善した振動抑制指標を悪化させることなく、電力系統の電圧を改善することができる。 Also, the decision variables for the [Formula 4] formula are the number of power capacitors and shunt reactors to be turned on, the reactive power output of the synchronous machine, and the reactive power output of the renewable energy power supply. Power system equipment that adjusts reactive power in the power system has little effect on voltage maintenance capability of the power system due to changes in reactive power. Therefore, the voltage of the electric power system can be improved without deteriorating the vibration suppression index improved in step S24.
 なお、[数4]式に対する決定変数として、上述した電力系統設備の情報の他に、振動抑制指標に与える悪影響が小さいと考えられる電力系統設備の変数を含めてもよい。すなわち、振動抑制指標に与える悪影響が少ないと考えられる改善方法を用いて、振動抑制指標基準と電圧基準の両方を満たしつつ再生可能エネルギー電源の出力合計量を最大化できる改善案を作成してもよい。
 例えば、送電線の運用回線数、変圧器バンク数、同期機の並列台数などは、増やすことを条件に決定変数として含めてもよいし、変圧器タップ比、再生可能エネルギー電源の有効電力出力などは、減らすことを条件に決定変数として含めてもよい。
In addition to the information on the power system equipment described above, variables of the power system equipment that are considered to have a small adverse effect on the vibration suppression index may be included as decision variables for the [Equation 4] formula. In other words, it is possible to create an improvement plan that maximizes the total output of renewable energy power sources while satisfying both the vibration suppression index standard and the voltage standard by using an improvement method that is considered to have little adverse effect on the vibration suppression index. good.
For example, the number of operating lines of transmission lines, the number of transformer banks, the number of parallel synchronous machines, etc. may be included as decision variables on the condition that they are increased, the transformer tap ratio, the active power output of renewable energy power sources, etc. may be included as a decision variable provided that it is reduced.
 次に、系統電圧改善案作成部27は、ステップS21にて作成した解析断面とステップS24にて作成した振動抑制指標改善案を用いて、系統電圧を計算するための電力系統の潮流断面を作成する(ステップS261)。
 次に、系統電圧改善案作成部27は、系統電圧を改善するために変更する電力系統設備のパラメータ類を1種類選択する(ステップS262)。なお、ステップS262で変更対象とするパラメータ類は、ステップS261にて設定した決定変数と同様に、電力用コンデンサや分路リアクトルの投入数、同期機の無効電力出力、変圧器タップ比、再生可能エネルギー電源の有効電力出力と無効電力出力である。
Next, the system voltage improvement plan creation unit 27 creates a power flow cross section of the power system for calculating the system voltage, using the analysis cross section created in step S21 and the vibration suppression index improvement plan created in step S24. (step S261).
Next, the system voltage improvement proposal creation unit 27 selects one type of parameters of the power system equipment to be changed in order to improve the system voltage (step S262). Note that the parameters to be changed in step S262 are the same as the decision variables set in step S261, such as the number of power capacitors and shunt reactors to be turned on, the reactive power output of the synchronous machine, the transformer tap ratio, the reproducible Active power output and reactive power output of the energy source.
 パラメータ類の選択順は、電力系統の運用者が入力部4を介して任意で設定することができる。ただし、ここでは、再生可能エネルギー電源の有効電力出力の最大化を目的関数として設定するため、再生可能エネルギー電源の有効電力出力の選択順は遅いことが望ましい。ステップS262は、設定された選択順にパラメータ類を選択し、選択したパラメータ類の中に変更可能なパラメータが存在しない場合に、次の順番のパラメータ類を選択する。 The order in which the parameters are selected can be arbitrarily set by the power system operator via the input unit 4. However, since maximization of the active power output of the renewable energy power supply is set as the objective function here, it is desirable that the order of selection of the active power output of the renewable energy power supply be later. A step S262 selects the parameters in the set selection order, and if there is no changeable parameter among the selected parameters, selects the parameters in the next order.
 次に、系統電圧改善案作成部27は、ステップS262にて選択したパラメータ類に属する各パラメータを単位量だけ変更したときの各計算対象電圧の変化量、すなわち感度を、例えば潮流計算などにより求める(ステップS263)。変更する単位量とは、各パラメータ類が変更可能な最小の量を意味し、例えば複数台が並列して電力系統内の同一母線に接続している分路リアクトルの投入数を変更する場合は、1台が単位量となる。 Next, the system voltage improvement plan creation unit 27 obtains the amount of change in each calculation target voltage when each parameter belonging to the parameter class selected in step S262 is changed by a unit amount, that is, the sensitivity, for example, by power flow calculation. (Step S263). The unit amount to be changed means the minimum amount that each parameter can be changed. , one unit is the unit quantity.
 次に、系統電圧改善案作成部27は、ステップS263で計算した、各パラメータの変更前後の各系統電圧の値を用いて、電圧逸脱抑制量Vsum、jをパラメータごとに計算し、電圧逸脱抑制量Vsum、jが最大のパラメータを選定する(ステップS264)。 Next, the system voltage improvement plan creation unit 27 calculates the voltage deviation suppression amount V sum,j for each parameter using the values of each system voltage before and after the change of each parameter calculated in step S263, and calculates the voltage deviation The parameter with the maximum suppression amount V sum,j is selected (step S264).
 電圧逸脱抑制量Vsum、jは、例えば[数5]式で表される。[数5]式におけるΔVijは、j番目の電力系統設備パラメータを単位量変更することで、i番目の母線電圧の大きさが適正範囲へどれだけ近づいたかを示す指標であり、[数6]式で表される。ここで、Vbef、ijはj番目の電力系統設備パラメータを単位量変更する前のi番目の母線電圧の大きさを示し、Vaft、ijはj番目の電力系統設備パラメータを単位量変更した後のi番目の母線電圧の大きさを示す。 The voltage excursion suppression amount V sum,j is expressed, for example, by the formula [Equation 5]. ΔV ij in the formula [Equation 5] is an index showing how much the magnitude of the i-th bus voltage approaches the appropriate range by changing the unit amount of the j-th power system equipment parameter. ] expression. Here, V bef, ij indicates the magnitude of the i-th bus voltage before the j-th power system equipment parameter is changed by the unit amount, and V aft, ij is the j-th power system equipment parameter changed by the unit amount. It shows the magnitude of the later i-th bus voltage.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 次に、系統電圧改善案作成部27は、ステップS264にて選定したパラメータを変更可能な範囲で単位量ずつ変化させながら、その都度全計算対象電圧と電圧逸脱抑制量を計算する(ステップS265)。例えば、ステップS264にて選定したパラメータが分路リアクトルの投入数である場合、計算対象電圧は、ステップS263で求めた感度に2台、3台、4台などの単位量おきの値を乗じ、パラメータ変更前の電圧に加算することで求められる。また、電圧逸脱抑制量は、ステップS264で求めた[数5]式の値に、同じく単位量おきの値を乗じることで求められる。 Next, the system voltage improvement plan creation unit 27 calculates the total voltage to be calculated and the voltage deviation suppression amount each time while changing the parameter selected in step S264 by unit amount within a changeable range (step S265). . For example, when the parameter selected in step S264 is the number of shunt reactors to be turned on, the voltage to be calculated is obtained by multiplying the sensitivity obtained in step S263 by a unit amount such as 2 units, 3 units, or 4 units. It is obtained by adding to the voltage before changing the parameter. Also, the voltage excursion suppression amount is obtained by multiplying the value of the formula [Equation 5] obtained in step S264 by a value for every unit amount.
 次に、系統電圧改善案作成部27は、すべての計算対象電圧が適正範囲内に収まるケースがステップS265にて存在したか否かを判断する(ステップS266)。ステップS266にて該当するケースが存在する場合(ステップS266のYES)、ステップS265にて行ったパラメータ変更を改善案に反映し、処理を終了する。 Next, the system voltage improvement plan creation unit 27 determines whether or not there is a case in which all the voltages to be calculated fall within the proper range in step S265 (step S266). If there is a corresponding case in step S266 (YES in step S266), the parameter change performed in step S265 is reflected in the improvement plan, and the process ends.
 一方、ステップS266にて該当するケースが存在しない場合(ステップS266のNO)には、系統電圧改善案作成部27は、ステップS265におけるパラメータ変化のうち、電圧逸脱抑制量が最大となったパラメータ変化を改善案に反映する(ステップS267)。 On the other hand, if there is no corresponding case in step S266 (NO in step S266), the system voltage improvement proposal creation unit 27 selects the parameter change that maximizes the voltage deviation suppression amount among the parameter changes in step S265. is reflected in the improvement plan (step S267).
 次に、系統電圧改善案作成部27は、系統電圧改善のために変更可能な系統設備がまだ残っているか否かを判断する(ステップS268)。ステップS268で変更可能な系統設備が残っていると判断された場合(ステップS268のYES)には、ステップS267にて行ったパラメータ変更を、系統電圧計算に用いる潮流断面に反映し(ステップS269)、ステップS262に戻る。
 一方、ステップS268で変更可能な系統設備が残っていないと判断された場合(ステップS268のNO)には、最適化問題の計算を打ち切り、処理を終了する。
Next, the system voltage improvement proposal creation unit 27 determines whether or not there are still system facilities that can be changed for system voltage improvement (step S268). If it is determined in step S268 that changeable system equipment remains (YES in step S268), the parameter change made in step S267 is reflected in the power flow cross section used for system voltage calculation (step S269). , the process returns to step S262.
On the other hand, if it is determined in step S268 that there is no system equipment that can be changed (NO in step S268), the calculation of the optimization problem is terminated, and the process ends.
[表示例]
 ここで、図12と図13を用いて表示部3における表示の一例について説明する。
 図12は、運用計画の改善対象とする将来の特定時刻での電力系統の状態の表示31と、運用計画の改善案の表示32を並べた画面の一例である。
 この例では、将来の電力系統の潮流状態や、各種系統設備の運用状態として、電力系統の状態の表示31を、系統図表示31aと表形式31bで行っている。
 また、演算部2が出力する運用計画改善案の表示32についても、表形式32a~31dで行っている。
 具体的には、運用計画改善案の表示32として、送電線の運用回線数の表32aと、同期機の運転台数の表32bと、分路リアクトル(ShR)の投入数の表32cと、調相洋設備(SC)の投入数の表32dとを示している。
[Display example]
Here, an example of the display on the display unit 3 will be described with reference to FIGS. 12 and 13. FIG.
FIG. 12 is an example of a screen in which a display 31 of the state of the electric power system at a specific time in the future targeted for improvement of the operation plan and a display 32 of an improvement plan for the operation plan are arranged side by side.
In this example, the state of the power system is displayed 31 in the form of a system diagram display 31a and a tabular form 31b as the power flow state of the power system in the future and the operation status of various system facilities.
Further, the display 32 of the operation plan improvement plan output by the calculation unit 2 is also performed in tabular form 32a to 31d.
Specifically, as the display 32 of the operation plan improvement plan, a table 32a of the number of operating circuits of the transmission line, a table 32b of the number of operating synchronous machines, a table 32c of the number of shunt reactors (ShR) input, and a Figure 32d shows a table 32d of Soyo facilities (SC) inputs.
 図13は、運用計画の改善による効果を示す表示33、34の画面の一例である。この例では、運用計画改善前の表示33と、運用計画改善案による改善後の表示34とを並べている。
 ここでは、運用計画改善前の表示33として、再生可能エネルギーの出力、SCR、SCR基準値の一覧33aと、各母線の電圧、上限値、下限値の一覧33bを示している。また、運用計画改善後の表示34として、再生可能エネルギーの出力、SCR、SCR基準値の一覧34aと、各母線の電圧、上限値、下限値の一覧34bとを示している。
FIG. 13 is an example of a screen of displays 33 and 34 showing the effect of improving the operation plan. In this example, a display 33 before the operation plan improvement and a display 34 after the improvement by the operation plan improvement plan are arranged side by side.
Here, as the display 33 before the operation plan improvement, a list 33a of renewable energy output, SCR, and SCR reference value, and a list 33b of voltage, upper limit value, and lower limit value of each bus line are shown. Further, as a display 34 after operation plan improvement, a list 34a of renewable energy output, SCR, and SCR reference value, and a list 34b of voltage, upper limit value, and lower limit value of each bus are shown.
 電力系統の運用者は、この図13に示す画面を参考に、作成された運用計画改善案を実際の運用計画に反映するか否かについて検討することができる。
 なお、表示部3が表示する情報は図12や図13の例に限らない。例えば、各種入力データD11~D16の情報や、振動抑制指標改善案作成部24や系統電圧改善案作成部27の処理途中で発生する中間データなども必要に応じて表示することができる。
The power system operator can refer to the screen shown in FIG. 13 and consider whether or not to reflect the created operation plan improvement plan in the actual operation plan.
Information displayed by the display unit 3 is not limited to the examples shown in FIGS. 12 and 13 . For example, information of various input data D11 to D16, intermediate data generated during the processing of the vibration suppression index improvement plan creation unit 24 and the system voltage improvement plan creation unit 27, etc. can be displayed as necessary.
[第1の実施の形態例による効果]
 ここで、図14と図15を用いて、本実施の形態例の電力系統運用計画支援システムによる効果を説明する。
 図14は、本実施の形態例の電力系統運用計画支援システムを適用する前の再生可能エネルギー電源の有効電力出力の時系列波形101と、本実施の形態例の電力系統運用計画支援システムを適用した後の再生可能エネルギー電源の有効電力出力の時系列波形102を比較したものである。
[Effects of First Embodiment]
14 and 15, the effects of the power system operation plan support system of this embodiment will be described.
FIG. 14 shows a time-series waveform 101 of the active power output of the renewable energy power source before applying the power system operation plan support system of this embodiment, and the power system operation plan support system of this embodiment. Fig. 10 compares time-series waveforms 102 of active power output of renewable energy power sources after
 適用前の再生可能エネルギー電源の有効電力出力の時系列波形101では、再生可能エネルギー電源の出力が不安定で振動しており、出力抑制が必要な状態になっている。
 これに対して、適用後の再生可能エネルギー電源の有効電力出力の時系列波形102では、再生可能エネルギー電源の出力が安定しており、出力抑制が不要な状態になる。このように、本実施の形態例の電力系統運用計画支援システムを適用することで、再生可能エネルギー電源の有効電力出力の不安定振動を防止することができる。
In the time-series waveform 101 of the active power output of the renewable energy power supply before application, the output of the renewable energy power supply is unstable and oscillating, and the output suppression is required.
On the other hand, in the time-series waveform 102 of the active power output of the renewable energy power supply after application, the output of the renewable energy power supply is stable, and output suppression is unnecessary. In this manner, by applying the power system operation plan support system of the present embodiment, it is possible to prevent unstable oscillation of the active power output of the renewable energy power supply.
 図15は、本実施の形態例の電力系統運用計画支援システムの適用前の再生可能エネルギー電源の出力状況201と、適用後の再生可能エネルギー電源の出力状況202とを比較したものである。
 本実施の形態例の電力系統運用計画支援システムを適用する前は、再生可能エネルギー電源の不安定振動を防止するために、再生可能エネルギー電源の一部を出力抑制していた。図15の例では、例えば再生可能エネルギー出力合計値が200MWであった。
FIG. 15 compares the output state 201 of the renewable energy power source before application of the power system operation plan support system of the present embodiment and the output state 202 of the renewable energy power source after application.
Before applying the power system operation plan support system of the present embodiment, the output of a part of the renewable energy power source was suppressed in order to prevent unstable vibration of the renewable energy power source. In the example of FIG. 15, for example, the renewable energy output total value was 200 MW.
 これに対して、本実施の形態例の電力系統運用計画支援システムを適用した後は、再生可能エネルギー電源の出力抑制をせずに不安定振動を防止することができ、例えば再生可能エネルギー出力合計値を300MWにすることができる。つまり、本実施の形態例の電力系統運用計画支援システムを適用することで、再生可能エネルギー電源の出力合計量が増え、二酸化炭素の排出量をより削減することが可能になる。 On the other hand, after applying the power system operation planning support system of the present embodiment, it is possible to prevent unstable vibration without suppressing the output of the renewable energy power source. The value can be 300 MW. In other words, by applying the power system operation plan support system of this embodiment, the total output of renewable energy power sources can be increased, and the amount of carbon dioxide emissions can be further reduced.
<第2の実施の形態例>
 次に、本発明の第2の実施の形態例を、図16~図18を参照して説明する。図16~図18において、第1の実施の形態例で説明した図1~図15と同一の構成要素又は同一のステップには同一の符号を付し、重複説明を省略する。
<Second Embodiment>
Next, a second embodiment of the present invention will be described with reference to FIGS. 16 to 18. FIG. 16 to 18, the same reference numerals are given to the same components or the same steps as those in FIGS. 1 to 15 described in the first embodiment, and redundant description will be omitted.
[電力系統運用計画支援システムの構成]
 図16は、本発明の第2の実施の形態例の電力系統運用計画支援システム1の機能から見た構成を示す。
 本実施の形態例の電力系統運用計画支援システム1では、再生可能エネルギー電源の不安定振動の発生有無を判断するため、振動抑制指標の評価に加え、再生可能エネルギー電源の瞬時値解析の処理を加えたものである。
[Configuration of Power System Operation Planning Support System]
FIG. 16 shows the configuration viewed from the function of the power system operation plan support system 1 of the second embodiment of the present invention.
In the power system operation plan support system 1 of the present embodiment, in addition to evaluating the vibration suppression index, instantaneous value analysis processing of the renewable energy power source is performed in order to determine whether or not unstable vibration of the renewable energy power source has occurred. It is an addition.
 そして、瞬時値解析の結果、再生可能エネルギー電源の不安定振動が確認された場合のみ、運用計画の改善案作成処理に進む。これにより、瞬時値解析の分だけ処理量が増加するが、再生可能エネルギー電源の不安定振動が発生しないにもかかわらず振動抑制指標が基準値を満たさないケースに対しては、改善案の作成処理を省略することができる。 Then, as a result of the instantaneous value analysis, only when unstable vibration of the renewable energy power source is confirmed, proceed to the improvement plan creation process for the operation plan. As a result, the amount of processing increases by the amount of instantaneous value analysis, but if the vibration suppression index does not meet the standard value even though the unstable vibration of the renewable energy power source does not occur, an improvement plan is created. processing can be omitted.
 図16に示すように、電力系統運用計画支援システム1は、演算部2において不安定振動判定部28が追加されている点が、図1に示す第1の実施の形態例の電力系統運用計画支援システム1と相違する。
 不安定振動判定部28には、振動抑制指標評価部23の評価結果の情報が供給されており、不安定振動判定部28は、再生可能エネルギー電源の瞬時値解析の処理を行い、不安定振動の有無を判定する。
 そして、不安定振動判定部28で判定した不安定振動の有無の情報が、振動抑制指標評価部23の評価結果の情報と共に振動抑制指標改善案作成部24に供給される。
As shown in FIG. 16, in the power system operation plan support system 1, an unstable vibration determination unit 28 is added to the calculation unit 2, which is the power system operation plan of the first embodiment example shown in FIG. It differs from the support system 1.
The information of the evaluation result of the vibration suppression index evaluation unit 23 is supplied to the unstable vibration determination unit 28, and the unstable vibration determination unit 28 performs instantaneous value analysis processing of the renewable energy power source, Determine the presence or absence of
Information on the presence or absence of unstable vibration determined by the unstable vibration determination unit 28 is supplied to the vibration suppression index improvement proposal creation unit 24 together with information on the evaluation result of the vibration suppression index evaluation unit 23 .
 なお、不安定振動判定部28での瞬時値解析の処理には、系統安定性判断基準データD15が保有するデータとして、不安定振動の発生有無を判断する基準が別途必要になる。
 また、不安定振動判定部28での瞬時値解析の処理には、瞬時値解析用の解析断面も必要となる。このため、系統モデルデータD13は、瞬時値解析用の電力系統モデルデータを追加で保有し、それに基づいて解析断面作成部21が瞬時値解析用の解析断面を作成する。
 図16に示す電力系統運用計画支援システム1のその他の構成は、図1に示す電力系統運用計画支援システム1と同様なので、説明は省略する。
In addition, for the instantaneous value analysis processing in the unstable vibration determination unit 28, a reference for determining whether or not unstable vibration has occurred is separately required as data held by the system stability determination reference data D15.
In addition, the analysis section for instantaneous value analysis is also required for the instantaneous value analysis processing in the unstable vibration determination unit 28 . Therefore, the system model data D13 additionally holds power system model data for instantaneous value analysis, and based on this, the analysis section creating unit 21 creates an analysis section for instantaneous value analysis.
Other configurations of the power system operation plan support system 1 shown in FIG. 16 are the same as those of the power system operation plan support system 1 shown in FIG. 1, so description thereof will be omitted.
[電力系統運用計画支援システムのハードウェア構成]
 図17は、本発明の第2の実施の形態例の電力系統運用計画支援システム1のハードウェア構成の例を示す。
 図17に示す電力系統運用計画支援システム1は、プログラムデータD2bとして、再エネ不安定振動判定プログラムが追加されている点が、図8に示す電力系統運用計画支援システム1のプログラムデータD2aと相違する。再エネ不安定振動判定プログラムは、演算部2が不安定振動判定部28を実行する際に読み込まれる。
[Hardware Configuration of Power System Operation Planning Support System]
FIG. 17 shows an example of the hardware configuration of the power system operation planning support system 1 according to the second embodiment of the present invention.
The power system operation plan support system 1 shown in FIG. 17 differs from the program data D2a of the power system operation plan support system 1 shown in FIG. 8 in that a renewable energy unstable vibration determination program is added as program data D2b. do. The renewable energy unstable vibration determination program is read when the calculation unit 2 executes the unstable vibration determination unit 28 .
[電力系統運用計画支援システムの全体の処理の流れ]
 図18は、本発明の第2の実施の形態例における電力系統運用計画支援システム1の全体の処理の流れを示すフローチャートである。図18に示す処理の流れは、図9に示す第1の実施の形態例における処理の流れと比べて、振動抑制指標の改善案を作成するステップS24の前に、再生可能エネルギー電源の運転状態を瞬時値解析で確認するステップS28と、再生可能エネルギー電源の不安定振動の有無を判定するステップS29が追加されている点である。
[Overall Processing Flow of Power System Operation Planning Support System]
FIG. 18 is a flow chart showing the overall process flow of the power system operation plan support system 1 in the second embodiment of the present invention. Compared with the flow of processing in the first embodiment shown in FIG. 9, the flow of processing shown in FIG. is added by step S28 for confirming by instantaneous value analysis and step S29 for determining the presence or absence of unstable vibration of the renewable energy power source.
 すなわち、ステップS23にて基準値を満たしていないと評価された場合(ステップS23のNO)、不安定振動判定部28は、再生可能エネルギー電源の運転状態を瞬時値解析で確認し(ステップS28)、再生可能エネルギー電源の不安定振動の有無を判定する(ステップS29)。このステップS29にて、再生可能エネルギー電源の不安定振動が無い場合(ステップS29のNO)、ステップS3に移り、表示処理が行われる。
 一方、ステップS29にて、再生可能エネルギー電源の不安定振動が有る場合(ステップS29のYES)、ステップS24の振動抑制指標改善案作成に移る。
 図18のフローチャートのその他の処理は、図9のフローチャートと同様の流れで実行される。
That is, when it is evaluated that the reference value is not satisfied in step S23 (NO in step S23), the unstable vibration determination unit 28 confirms the operating state of the renewable energy power supply by instantaneous value analysis (step S28). , the presence or absence of unstable vibration of the renewable energy power source is determined (step S29). In step S29, if there is no unstable vibration of the renewable energy power supply (NO in step S29), the process proceeds to step S3, and display processing is performed.
On the other hand, in step S29, if there is unstable vibration of the renewable energy power source (YES in step S29), the process proceeds to step S24 to create a vibration suppression index improvement plan.
Other processes in the flowchart of FIG. 18 are executed in the same flow as in the flowchart of FIG.
 以上説明したように、第2の実施の形態例における電力系統運用計画支援システム1によると、再生可能エネルギー電源の不安定振動が発生しないにもかかわらず振動抑制指標が基準値を満たさないケースに対しては、改善案の作成処理を省略することができる。
 なお、第2の実施の形態例では、改善案の作成要否を判断するために瞬時値解析を用いているが、使い方はこれに限らない。例えば、振動抑制指標改善案作成部24にて、作成した改善案が不安定振動を防止したか否かを判断するために瞬時値解析を用いてもよい。
As described above, according to the power system operation plan support system 1 in the second embodiment, even if the unstable vibration of the renewable energy power source does not occur, the vibration suppression index does not satisfy the reference value. In this case, the improvement proposal creation process can be omitted.
In the second embodiment, instantaneous value analysis is used to determine whether or not an improvement plan needs to be created, but the usage is not limited to this. For example, the vibration suppression index improvement plan creation unit 24 may use instantaneous value analysis to determine whether or not the created improvement plan prevents unstable vibration.
<第3の実施の形態例>
 次に、本発明の第3の実施の形態例を、図19~図21を参照して説明する。図19~図21においても、第1及び第2の実施の形態例で説明した図1~図18と同一の構成要素又は同一のステップには同一の符号を付し、重複説明を省略する。
 本実施の形態例の電力系統運用計画支援システム1では、電力系統運用計画支援システム1が行う処理を、スクリーニングによって軽減するようにしたものである。
<Third Embodiment>
Next, a third embodiment of the present invention will be described with reference to FIGS. 19-21. In FIGS. 19 to 21 as well, the same components or steps as those in FIGS. 1 to 18 described in the first and second embodiments are denoted by the same reference numerals, and redundant description is omitted.
In the power system operation plan support system 1 of this embodiment, the processing performed by the power system operation plan support system 1 is reduced by screening.
 すなわち、第3の実施の形態例では、振動抑制指標と系統電圧のうちいずれかまたは両方の改善案を作成する際に、改善方法をスクリーニングする。スクリーニング方法としては、例えば振動抑制指標が基準値を満たしていない母線からの電気的距離が一定の距離以下の系統設備のみに改善方法を絞り込む、などを行う。ここでの電気的距離は、例えば2地点間のインピーダンスの大きさなどを用いて求められる。これにより、改善案の作成に要する計算量を軽減することができる。 That is, in the third embodiment, the improvement method is screened when creating an improvement plan for either or both of the vibration suppression index and the system voltage. As a screening method, for example, improvement methods are narrowed down only to system equipment whose electrical distance from the bus line does not satisfy the reference value for the vibration suppression index, and whose electrical distance is equal to or less than a certain distance. The electrical distance here is obtained using, for example, the magnitude of impedance between two points. This can reduce the amount of calculation required to create an improvement plan.
[電力系統運用計画支援システムの構成]
 図19は、本発明の第3の実施の形態例における電力系統運用計画支援システム1の機能から見た構成を示す。
 図19に示す電力系統運用計画支援システム1は、入力データD1においてスクリーニング基準データD17が追加されている点が、図1に示す電力系統運用計画支援システム1と相違する。
 スクリーニング基準データD17は、振動抑制指標改善案作成部24や系統電圧改善案作成部27の入力データとなる。
[Configuration of Power System Operation Planning Support System]
FIG. 19 shows the configuration viewed from the function of the power system operation plan support system 1 in the third embodiment of the present invention.
The power system operation plan support system 1 shown in FIG. 19 differs from the power system operation plan support system 1 shown in FIG. 1 in that screening reference data D17 is added to the input data D1.
The screening reference data D<b>17 becomes input data for the vibration suppression index improvement plan creation unit 24 and the system voltage improvement plan creation unit 27 .
[電力系統運用計画支援システムのハードウェア構成]
 図20は、本発明の第3の実施の形態例の電力系統運用計画支援システム1のハードウェア構成の例を示す。
 図20に示す電力系統運用計画支援システム1は、スクリーニング基準データD17を備えると共に、プログラムデータD2cとして、変更対象設備スクリーニングプログラムが追加されている点が、図8に示す電力系統運用計画支援システム1のプログラムデータD2aと相違する。変更対象設備スクリーニングプログラムは、演算部2が振動抑制指標改善案作成部24と系統電圧改善案作成部27のうちいずれかまたは両方を実行する際に読み込まれる。
[Hardware Configuration of Power System Operation Planning Support System]
FIG. 20 shows an example of the hardware configuration of the power system operation plan support system 1 according to the third embodiment of the present invention.
The power system operation plan support system 1 shown in FIG. 20 is provided with the screening reference data D17, and the change target facility screening program is added as the program data D2c. program data D2a. The facility screening program to be changed is read when the calculation unit 2 executes either or both of the vibration suppression index improvement plan creation unit 24 and the system voltage improvement plan creation unit 27 .
[電力系統運用計画支援システムの全体の処理の流れ]
 図21は、本発明の第3の実施の形態例における電力系統運用計画支援システム1の全体の処理の流れを示すフローチャートである。図21に示す処理の流れは、図9に示す第1の実施の形態例における処理の流れと比べて、振動抑制指標の改善案を作成するステップS24の前に、振動抑制指標の改善方法をスクリーニングするステップS30が追加されている。さらに、系統電圧の改善案を作成するステップS27の前に、系統電圧の改善方法をスクリーニングするステップS31が追加されている。なお、ステップS30とステップS31は両方ではなく、いずれか一方のみを用いてもよい。
[Overall Processing Flow of Power System Operation Planning Support System]
FIG. 21 is a flow chart showing the overall process flow of the power system operation plan support system 1 according to the third embodiment of the present invention. Compared with the flow of processing in the first embodiment shown in FIG. 9, the flow of processing shown in FIG. A screening step S30 is added. Furthermore, a step S31 of screening a system voltage improvement method is added before the step S27 of creating a system voltage improvement plan. Only one of step S30 and step S31 may be used instead of both.
 すなわち、振動抑制指標改善案作成部24は、ステップS23にて基準値を満たしていないと評価された場合(ステップS23のNO)、スクリーニング基準データD17を用いて、振動抑制指標改善手段をスクリーニングする(ステップS30)。
 また、系統電圧改善案作成部27は、ステップS26で系統電圧が適正範囲では無い場合(ステップS26のNO)には、スクリーニング基準データD17を用いて、系統電圧改善手段をスクリーニングする(ステップS31)。
 その他の処理については、図9に示すフローチャートと同じ流れで実行される。
That is, when the vibration suppression index improvement plan creation unit 24 determines that the reference value is not satisfied in step S23 (NO in step S23), the vibration suppression index improvement plan creation unit 24 screens the vibration suppression index improvement means using the screening reference data D17. (Step S30).
Further, when the system voltage is not within the appropriate range in step S26 (NO in step S26), the system voltage improvement plan creation unit 27 screens the system voltage improvement means using the screening reference data D17 (step S31). .
Other processes are executed in the same flow as the flow chart shown in FIG.
 このように振動抑制指標の改善方法をスクリーニングする処理や、系統電圧の改善方法をスクリーニングする処理を行うことで、電力系統運用計画支援システム1が行う処理を軽減することができる。 By performing the process of screening the improvement method of the vibration suppression index and the process of screening the method of improving the system voltage in this way, the process performed by the power system operation planning support system 1 can be reduced.
<変形例>
 なお、ここまで説明した実施の形態例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
<Modification>
It should be noted that the embodiments described so far have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
 例えば、説明した各実施の形態例では、電力系統、同期機、再生可能エネルギー電源の設備が、いずれも既存の設備であることを前提として、電力系統運用計画支援システム1が改善案を作成するようにした。
 これに対して、いずれかの設備を増強した場合の改善案を作成するようにしてもよい。例えば、既存の電力系統に接続される再生可能エネルギー電源を増やした場合に、振動抑制が可能かどうかを電力系統運用計画支援システム1が検討して改善案を作成してもよい。
 このように、電力設備を増やす場合の改善案を作成することで、電力系統運用計画支援システム1として、設備増強が適正かどうかを検討することが可能になる。
For example, in each of the described embodiments, the power system operation plan support system 1 creates an improvement plan on the premise that the power system, synchronous machine, and renewable energy power supply equipment are all existing equipment. I made it
On the other hand, you may make it create the improvement plan when one of facilities is reinforced. For example, when increasing the number of renewable energy power sources connected to an existing power system, the power system operation plan support system 1 may examine whether or not vibration can be suppressed, and create an improvement plan.
In this way, by creating an improvement plan for increasing power equipment, the power system operation plan support system 1 can examine whether or not the equipment reinforcement is appropriate.
 また、図1や図8などに示す構成図では、制御線や情報線は説明上必要と考えられるものだけを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えても良い。
 また、上述した各実施の形態例では、電力系統運用計画支援システムをコンピュータで構成した場合を図8などに示した。これに対して、電力系統運用計画支援システムが行う機能の一部又は全部を、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などのハードウェアによって実現してもよい。
 また、電力系統運用計画支援システム1を1つの装置として構成するのは一例であり、例えば図1に示す入力データD1を保持する装置と、演算部2に相当する演算を行う装置とを個別に構成し、ネットワークなどで接続してもよい
In addition, in the configuration diagrams shown in FIGS. 1 and 8, etc., only those control lines and information lines that are considered necessary for explanation are shown, and not all control lines and information lines are necessarily shown on the product. No. In fact, it may be considered that almost all configurations are interconnected.
In addition, in each of the embodiments described above, FIG. 8 and the like show the case where the power system operation plan support system is configured by a computer. On the other hand, some or all of the functions performed by the power system operation planning support system may be realized by hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit).
Also, it is an example to configure the power system operation plan support system 1 as one device, for example, a device holding the input data D1 shown in FIG. may be configured and connected via a network, etc.
 なお、電力系統運用計画支援システム1をコンピュータなどの情報処理装置で構成した場合に、プログラムについては、コンピュータ内の不揮発性ストレージやメモリに用意する他に、外部のメモリ、ICカード、SDカード、光ディスク等の記録媒体に置いて、転送してもよい。 When the power system operation planning support system 1 is configured by an information processing device such as a computer, the program may be prepared in non-volatile storage or memory in the computer, or may be stored in an external memory, IC card, SD card, It may be placed on a recording medium such as an optical disk and transferred.
 1…電力系統運用計画支援システム、2…演算部、3…表示部、4…入力部、5…CPU、6…メモリ、7…バス線、21…解析断面作成部、22…振動抑制指標計算部、23…振動抑制指標評価部、24…振動抑制指標改善案作成部、25…系統電圧計算部、26…系統電圧評価部、27…系統電圧改善案作成部、28…不安定振動判定部、D1:入力データ、D2a,D2b,D2c…プログラムデータ、D11…系統構成データ、D12…系統運用計画データ、D13…系統モデルデータ、D14…計算対象データ、D15…系統安定性判断基準データ、D16…運用状態変更対象設備データ、D17…スクリーニング基準データ DESCRIPTION OF SYMBOLS 1... Power system operation plan support system, 2... Calculation part, 3... Display part, 4... Input part, 5... CPU, 6... Memory, 7... Bus line, 21... Analysis section preparation part, 22... Vibration suppression index calculation Part 23 Vibration suppression index evaluation unit 24 Vibration suppression index improvement plan creation unit 25 System voltage calculation unit 26 System voltage evaluation unit 27 System voltage improvement plan creation unit 28 Unstable vibration determination unit , D1: input data, D2a, D2b, D2c... program data, D11... system configuration data, D12... system operation plan data, D13... system model data, D14... data to be calculated, D15... system stability criteria data, D16 ... operation status change target equipment data, D17 ... screening reference data

Claims (13)

  1.  系統安定性判断基準データをもとに作成された電力系統の振動抑制指標による評価結果を出力する振動抑制指標評価部と、
     前記評価結果と運用状態変更対象設備データを入力として、前記系統安定性判断基準データの振動抑制指標基準を満たしつつ、計算対象となる電力系統で指定した再生可能エネルギー電源の出力の合計量を最大化する初期改善案を作成する振動抑制指標改善案作成部と、
     前記初期改善案をもとに、前記系統安定性判断基準データの電圧基準を満たしつつ前記再生可能エネルギー電源の出力の合計量を最大化する改善案を出力する系統電圧改善案作成部と、
     前記振動抑制指標評価部と前記振動抑制指標改善案作成部と前記系統電圧改善案作成部の情報を出力又は表示する出力部と、を備える
     電力系統運用計画支援システム。
    A vibration suppression index evaluation unit that outputs an evaluation result based on the vibration suppression index of the power system created based on the system stability criterion data;
    Using the evaluation result and the data of equipment subject to operation status change as input, the total amount of output of the renewable energy power source specified in the power system to be calculated is maximized while satisfying the vibration suppression index standard of the system stability judgment standard data. A vibration suppression index improvement plan creation department that creates an initial improvement plan to
    a system voltage improvement plan creation unit that outputs an improvement plan that maximizes the total amount of output of the renewable energy power source while satisfying the voltage standard of the system stability criterion data based on the initial improvement plan;
    An electric power system operation plan support system, comprising: an output unit that outputs or displays information of the vibration suppression index evaluation unit, the vibration suppression index improvement plan creation unit, and the system voltage improvement plan creation unit.
  2.  前記初期改善案は、電力系統を構成する送電線の運用回線数と、変圧器の運用数と、同期発電機の運転台数と、同期電動機の運転台数と、同期調相機の運転台数と、再生可能エネルギー電源の有効電力出力と、のうち少なくとも1つ以上の運用計画の変更を、改善内容として含む
     請求項1に記載の電力系統運用計画支援システム。
    The initial improvement plan includes the number of operating circuits of the transmission lines that make up the power system, the number of operating transformers, the number of operating synchronous generators, the number of operating synchronous motors, the number of operating synchronous phase modifiers, and regeneration 2. The power system operation plan support system according to claim 1, wherein a change in at least one of the active power output of the potential energy power source and the change in the operation plan are included as improvement contents.
  3.  前記系統電圧改善案作成部は、前記振動抑制指標に与える悪影響が少ないと考えられる改善方法を用いて、前記振動抑制指標基準と前記電圧基準の両方を満たしつつ再生可能エネルギー電源の出力合計量を最大化できる改善案を作成する
     請求項1に記載の電力系統運用計画支援システム。
    The system voltage improvement proposal creation unit uses an improvement method that is considered to have little adverse effect on the vibration suppression index, and calculates the total output amount of the renewable energy power source while satisfying both the vibration suppression index standard and the voltage standard. The power system operation plan support system according to claim 1, wherein an improvement plan that can be maximized is created.
  4.  前記振動抑制指標は、再生可能エネルギー電源の出力又は電圧の不安定振動、あるいは電力系統の電圧維持能力のいずれかを示す
     請求項1に記載の電力系統運用計画支援システム。
    2. The power system operation plan support system according to claim 1, wherein the vibration suppression index indicates either unstable vibration of the output or voltage of the renewable energy power source, or voltage maintenance capability of the power system.
  5.  前記振動抑制指標は、電力系統の解析断面と計算対象データを入力として振動抑制指標の計算結果を出力する振動抑制指標計算部により計算される
     請求項1に記載の電力系統運用計画支援システム。
    2. The power system operation plan support system according to claim 1, wherein the vibration suppression index is calculated by a vibration suppression index calculation unit that receives an analysis section of the power system and calculation target data and outputs a calculation result of the vibration suppression index.
  6.  前記解析断面は、系統構成データと系統運用計画データと系統モデルデータを入力として電力系統の解析断面を作成する解析断面作成部により作成される
     請求項5に記載の電力系統運用計画支援システム。
    6. The power system operation plan support system according to claim 5, wherein the analysis cross section is created by an analysis cross section creation unit that creates an analysis cross section of the power system by inputting system configuration data, system operation plan data, and system model data.
  7.  前記解析断面と前記振動抑制指標改善案と前記計算対象データを入力として前記電力系統の母線電圧を計算する系統電圧計算部を備える
     請求項5に記載の電力系統運用計画支援システム。
    6. The power system operation plan support system according to claim 5, further comprising a system voltage calculation unit that calculates a bus voltage of the power system using the analysis section, the vibration suppression index improvement plan, and the calculation target data as inputs.
  8.  前記系統電圧改善案作成部は、前記系統電圧計算部の計算結果と前記電圧基準をもとに前記母線電圧の改善案を出力する
     請求項7に記載の電力系統運用計画支援システム。
    The power system operation plan support system according to claim 7, wherein the system voltage improvement plan creation unit outputs the improvement plan for the bus voltage based on the calculation result of the system voltage calculation unit and the voltage reference.
  9.  前記系統電圧改善案作成部は、前記系統安定性判断基準データの電圧基準を満たさない場合に、運用状態変更対象設備データを入力として改善案を作成する
     請求項8に記載の電力系統運用計画支援システム。
    9. The power system operation plan support according to claim 8, wherein the system voltage improvement plan creation unit creates an improvement plan by inputting operation state change target facility data when the voltage standard of the system stability judgment standard data is not satisfied. system.
  10.  前記振動抑制指標改善案作成部は、前記系統安定性判断基準データの振動抑制指標基準を満たさない場合に、運用状態変更対象設備データを入力として改善案を作成する
     請求項1に記載の電力系統運用計画支援システム。
    The power system according to claim 1, wherein the vibration suppression index improvement plan creation unit creates an improvement plan by inputting operation state change target equipment data when the vibration suppression index criteria of the system stability criterion data are not satisfied. Operation planning support system.
  11.  前記出力部は、作成された改善案の情報を表示する
     請求項1~10のいずれか1項に記載の電力系統運用計画支援システム。
    The power system operation planning support system according to any one of claims 1 to 10, wherein the output unit displays information on the created improvement plan.
  12.  系統安定性判断基準データをもとに作成された電力系統の振動抑制指標による評価結果を出力する振動抑制指標評価処理と、
     前記評価結果と運用状態変更対象設備データを入力として、前記系統安定性判断基準データの振動抑制指標基準を満たしつつ、計算対象となる電力系統で指定した再生可能エネルギー電源の出力の合計量を最大化する初期改善案を作成する振動抑制指標改善案作成処理と、
     前記初期改善案をもとに、前記系統安定性判断基準データの電圧基準を満たしつつ前記再生可能エネルギー電源の出力の合計量を最大化する改善案を出力する系統電圧改善案作成処理と、
     前記振動抑制指標評価処理と前記振動抑制指標改善案作成処理と前記系統電圧改善案作成処理により得られた情報を出力又は表示する処理と、を含む
     電力系統運用計画支援方法。
    Vibration suppression index evaluation processing for outputting an evaluation result based on the vibration suppression index of the power system created based on the system stability criterion data;
    Using the evaluation result and the data of equipment subject to operation status change as input, the total amount of output of the renewable energy power source specified in the power system to be calculated is maximized while satisfying the vibration suppression index standard of the system stability judgment standard data. a vibration suppression index improvement plan creation process for creating an initial improvement plan for
    A system voltage improvement plan creation process for outputting an improvement plan that maximizes the total amount of output of the renewable energy power source while satisfying the voltage standard of the system stability criterion data based on the initial improvement plan;
    A power system operation plan support method, including: outputting or displaying information obtained by the vibration suppression index evaluation process, the vibration suppression index improvement plan creation process, and the system voltage improvement plan creation process.
  13.  電力系統運用計画支援を行う手順を、実装されたコンピュータに実行させるプログラムであり、
     系統安定性判断基準データをもとに作成された電力系統の振動抑制指標による評価結果を出力する振動抑制指標評価手順と、
     前記評価結果と運用状態変更対象設備データを入力として、前記系統安定性判断基準データの振動抑制指標基準を満たしつつ、計算対象となる電力系統で指定した再生可能エネルギー電源の出力の合計量を最大化する初期改善案を作成する振動抑制指標改善案作成手順と、
     前記初期改善案をもとに、前記系統安定性判断基準データの電圧基準を満たしつつ前記再生可能エネルギー電源の出力の合計量を最大化する改善案を出力する系統電圧改善案作成手順と、
     前記振動抑制指標評価手順と前記振動抑制指標改善案作成手順と前記系統電圧改善案作成手順により得られた情報を出力又は表示する手順と、を前記コンピュータに実行させる
     プログラム。
    A program that causes a computer installed to execute a procedure for supporting power system operation planning,
    A vibration suppression index evaluation procedure for outputting an evaluation result based on the power system vibration suppression index created based on the system stability criterion data;
    Using the evaluation result and the data of equipment subject to operation status change as input, the total amount of output of the renewable energy power source specified in the power system to be calculated is maximized while satisfying the vibration suppression index standard of the system stability judgment standard data. A vibration suppression index improvement plan creation procedure for creating an initial improvement plan to
    A system voltage improvement plan creating procedure for outputting an improvement plan that maximizes the total amount of output of the renewable energy power source while satisfying the voltage standard of the system stability criterion data based on the initial improvement plan;
    A program that causes the computer to execute a procedure for outputting or displaying information obtained by the vibration suppression index evaluation procedure, the vibration suppression index improvement plan creation procedure, and the system voltage improvement plan creation procedure.
PCT/JP2022/010169 2021-06-24 2022-03-09 Power system operation plan support system, power system operation plan support method, and program WO2022270030A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-105073 2021-06-24
JP2021105073A JP2023003787A (en) 2021-06-24 2021-06-24 Power system operation plan support system, power system operation plan support method, and program

Publications (1)

Publication Number Publication Date
WO2022270030A1 true WO2022270030A1 (en) 2022-12-29

Family

ID=84544883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010169 WO2022270030A1 (en) 2021-06-24 2022-03-09 Power system operation plan support system, power system operation plan support method, and program

Country Status (2)

Country Link
JP (1) JP2023003787A (en)
WO (1) WO2022270030A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002339A1 (en) * 2014-06-30 2016-01-07 株式会社日立製作所 Voltage stability monitoring device and method
JP2019030065A (en) * 2017-07-26 2019-02-21 株式会社東芝 Power system reliability evaluation system
WO2019207935A1 (en) * 2018-04-27 2019-10-31 株式会社日立製作所 Power system control system and power system control method
WO2020031416A1 (en) * 2018-08-10 2020-02-13 株式会社日立製作所 System operation supporting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002339A1 (en) * 2014-06-30 2016-01-07 株式会社日立製作所 Voltage stability monitoring device and method
JP2019030065A (en) * 2017-07-26 2019-02-21 株式会社東芝 Power system reliability evaluation system
WO2019207935A1 (en) * 2018-04-27 2019-10-31 株式会社日立製作所 Power system control system and power system control method
WO2020031416A1 (en) * 2018-08-10 2020-02-13 株式会社日立製作所 System operation supporting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUBARA, TAKUMI. HIRAGAMI, SHINYA. KAMBE, YUUMA. KURODA, EISUKE. HARA, KOICHI. KIKUCHI, KENICHI: "A Study on Improvement of Power System Transient Stability by Shedding Renewable Energy Sources", LECTURE PROCEEDINGS OF THE 2020 ANNUAL MEETING OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN (DVD-ROM) GENERAL LECTURE 6; MARCH 11-13, 2020, IEEJ, JP, 1 March 2020 (2020-03-01) - 13 March 2020 (2020-03-13), JP, pages 96 - 97, XP009543310 *

Also Published As

Publication number Publication date
JP2023003787A (en) 2023-01-17

Similar Documents

Publication Publication Date Title
EP2362977B1 (en) Voltage regulation optimization
EP2394347B1 (en) Integrated voltage and var optimization process for a distribution system
US8195338B2 (en) Reactive power optimization
Sang et al. Effective power flow control via distributed FACTS considering future uncertainties
CN101919134A (en) Event-based control system for wind turbine generators
Gbadamosi et al. Harmonic and power loss minimization in power systems incorporating renewable energy sources and locational marginal pricing
Esmaili et al. Congestion management in hybrid power markets using modified Benders decomposition
Sampath Kumar et al. Impact analysis of large power networks with high share of renewables in transient conditions
Mahmud et al. Improvement of system strength under high wind penetration: A techno-economic assessment using synchronous condenser and SVC
Raveendra et al. RFLSA control scheme for power quality disturbances mitigation in DSTATCOM with n-level inverter connected power systems
Ehsanbakhsh et al. Simultaneous siting and sizing of Soft Open Points and the allocation of tie switches in active distribution network considering network reconfiguration
WO2022270030A1 (en) Power system operation plan support system, power system operation plan support method, and program
Iweh et al. Assessment of the optimum location and hosting capacity of distributed solar PV in the southern interconnected grid (SIG) of Cameroon
Mohamed et al. Real-time model predictive control of battery energy storage active and reactive power to support the distribution network operation
Saxena et al. Marginal cost-based reactive power reinforcement using dynamic and static compensators
Biazzi et al. Technical and nontechnical energy loss estimation including volt/var control for active distribution systems
Misyris et al. Zero-inertia offshore grids: N-1 security and active power sharing
Achar et al. Self-filtering based on the fault ride-through technique using a robust model predictive control for wind turbine rotor current
Eftekharnejad The Impact of increased penetration of photovoltaic generation on smart grids
US20230187938A1 (en) Reactive power supplier control device and reactive power supplier control method
Tiwari et al. A computer package for multi-contingency constrained reactive power planning
Von Meier et al. Empiricism and collaboration on grid data analytics: the need for a new information ecosystem
Duarte Economic appraisal and cost-benefit analysis
Pavlovsky et al. Grids transfer capacity: calculation methodology and features
Mohamed et al. Optimal Number, Location and Sizing Of FACTS Devices For Optimal Power Flow Using Genetic Algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE