WO2022269848A1 - Semiconductor laser - Google Patents

Semiconductor laser Download PDF

Info

Publication number
WO2022269848A1
WO2022269848A1 PCT/JP2021/023908 JP2021023908W WO2022269848A1 WO 2022269848 A1 WO2022269848 A1 WO 2022269848A1 JP 2021023908 W JP2021023908 W JP 2021023908W WO 2022269848 A1 WO2022269848 A1 WO 2022269848A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
layer
semiconductor laser
diffraction grating
active layer
Prior art date
Application number
PCT/JP2021/023908
Other languages
French (fr)
Japanese (ja)
Inventor
卓磨 相原
慎治 松尾
優 山岡
達郎 開
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023529358A priority Critical patent/JPWO2022269848A1/ja
Priority to PCT/JP2021/023908 priority patent/WO2022269848A1/en
Publication of WO2022269848A1 publication Critical patent/WO2022269848A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Definitions

  • the present invention relates to semiconductor lasers.
  • Non-Patent Document 1 a thin film lateral injection laser capable of wavelength multiplexing and low power consumption is expected.
  • PPR photon-photon resonance
  • the former changes with changes in operating environmental temperature, so in applications where the environmental temperature is extreme, it is necessary to change the injection conditions according to the environmental temperature, which complicates control and prevents stable use of PPR. becomes difficult.
  • the latter similarly has the problem that the control becomes complicated and it is difficult to use the PPR stably, and in addition, the power consumption of the heater is added, so that the power consumption as a whole increases.
  • the prior art has the problem that it is not easy to utilize photon-photon resonance.
  • the present invention has been made to solve the above problems, and aims to facilitate the use of photon-photon resonance.
  • a semiconductor laser comprises: a first clad layer formed on a substrate; an active layer formed on the first clad layer in a core shape extending in a waveguide direction; a p-type semiconductor layer and an n-type semiconductor layer formed in contact with the active layer; a second cladding layer formed on the active layer; and a diffraction grating in a resonator, wherein the resonator includes a first region and a second region having different pitches of the diffraction grating in the waveguide direction, The two regions are spaced apart in the waveguide direction.
  • a semiconductor laser according to the present invention includes a first clad layer formed on a substrate, an active layer formed on the first clad layer in a core shape extending in a waveguide direction, and an active layer comprising: a p-type semiconductor layer and an n-type semiconductor layer formed in contact with the active layer with a second cladding layer formed on the active layer; and a p-type semiconductor layer and a p-electrode connected to the n-type semiconductor layer. and an n-electrode, and an optical coupling layer formed in a core shape extending along the active layer and embedded in the first clad layer or the second clad layer so as to be capable of optically coupling with the active layer, 1.
  • a semiconductor laser having a diffraction grating in a resonator wherein the resonator includes a first region and a second region having different widths of an optical coupling layer in a direction perpendicular to a waveguiding direction. The regions are spaced apart in the waveguide direction.
  • the first region and the second region in which the stop band is modulated are provided in the resonator by changing the pitch of the diffraction grating. , the photon-photon resonance is readily available.
  • FIG. 1A is a cross-sectional view showing the configuration of a semiconductor laser according to Embodiment 1 of the present invention.
  • FIG. 1B is a plan view showing a partial configuration of the semiconductor laser according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram for explaining the diffraction grating 110 of the semiconductor laser according to Embodiment 1 of the present invention.
  • FIG. 3 is a band diagram showing how the stop band wavelength in the resonator is modulated by the modulation of the diffraction grating 110.
  • FIG. 4 is a characteristic diagram showing calculation results of the oscillation spectrum of the DFB laser having the stopband shown in FIG. FIG.
  • FIG. 5A is a characteristic diagram showing the calculation result of ⁇ using w2 and gap in FIG. 3 as parameters.
  • FIG. 5B is a characteristic diagram showing the calculation result of the threshold gain difference ⁇ gth using w2 and gap in FIG. 3 as parameters.
  • FIG. 6 is a cross-sectional view showing the configuration of another semiconductor laser according to Embodiment 1 of the present invention.
  • FIG. 7A is a cross-sectional view showing the configuration of a semiconductor laser according to Embodiment 2 of the present invention.
  • 7B is a plan view showing a partial configuration of a semiconductor laser according to Embodiment 2 of the present invention.
  • FIG. FIG. 8A is a cross-sectional view showing the configuration of a semiconductor laser according to Embodiment 3 of the present invention.
  • 8B is a plan view showing a partial configuration of a semiconductor laser according to Embodiment 3 of the present invention.
  • FIG. 8C is a plan view showing a partial configuration of a semiconductor laser according to Em
  • a semiconductor laser according to an embodiment of the present invention will be described below.
  • This semiconductor laser is a DFB (Distributed Feedback) laser comprising an active layer 103 formed in a core shape extending in the waveguide direction on a substrate 101 and having a diffraction grating 110 in the resonator.
  • DFB Distributed Feedback
  • This semiconductor laser first has a first clad layer 102 formed on a substrate 101 and an active layer 103 on the first clad layer 102 .
  • the substrate 101 is made of Si, for example, and the first clad layer 102 is made of silicon oxide, for example. It also has a p-type semiconductor layer 104 and an n-type semiconductor layer 105 formed in contact with the active layer 103 with the active layer 103 interposed therebetween. It also includes a second clad layer 106 formed on the active layer 103 , and a p-electrode 107 and an n-electrode 108 connected to the p-type semiconductor layer 104 and the n-type semiconductor layer 105 .
  • the p-type semiconductor layer 104 and the n-type semiconductor layer 105 are formed by introducing impurities into the semiconductor layer 109 made of InP, for example.
  • the active layer 103 is embedded in the semiconductor layer 109 between the p-type semiconductor layer 104 and the n-type semiconductor layer 105 .
  • diffraction grating 110 can be formed at the interface between semiconductor layer 109 and second cladding layer 106 .
  • the semiconductor laser according to Embodiment 1 includes a first region 121 and a second region 122 whose stopbands are modulated in the resonator, as shown in FIG. 1B.
  • the first region 121 and the second region 122 are spaced apart in the waveguide direction.
  • the first region 121 and the second region 122 modulate the stop band by changing the pitch of the diffraction grating 110 .
  • the first region 121 and the second region 122 have a different pitch of the diffraction grating 110 in the waveguide direction than the other regions.
  • the pitch of the diffraction grating 110 in the first region 121 is made larger than that in other regions, and the pitch of the diffraction grating 110 in the second region 122 is made smaller than those in other regions.
  • the pitch of the diffraction gratings 110 in the first region 121 can be twice the pitch of the diffraction gratings 110 in the second region 122 .
  • FIG. 1B is a plan view showing the configuration of the diffraction grating 110, and the waveguiding direction is the direction from the right to the left on the page of FIG. 1B.
  • a third region 123 and a fourth region 124 whose stopbands are modulated are provided at both ends of the resonator.
  • the third region 123 and fourth region 124 modulate the stop band by changing the duty ratio of the diffraction grating 110 .
  • the duty ratio of the diffraction grating 110 in the waveguide direction of the third region 123 on one end side and the fourth region 124 on the other end side in the resonator is higher than the duty ratio of the region inside the third region 123 and the fourth region 124. made smaller.
  • the pitch and duty ratio of the diffraction grating 110 are modulated as shown in FIG.
  • the stop band wavelength in the resonator is modulated as shown in FIG.
  • the stop band wavelength of the first region 121 with the increased pitch of the diffraction grating 110 shifts to the longer wavelength side.
  • the third region 123 and the fourth region 124 in which the duty ratio of the diffraction grating 110 is reduced have a narrow stop band width.
  • Figure 4 shows the calculation result of the oscillation spectrum of a DFB laser having a stop band as shown in Figure 3.
  • a dominant mode and a minor mode appear at adjacent wavelengths.
  • be the wavelength difference between the main mode and the sub mode.
  • DFB lasers basically oscillate at the wavelength of the dominant mode.
  • PPR photon-photon resonance
  • threshold gain difference between the primary mode and the secondary mode to prevent multimode oscillation.
  • PPR can be expressed without requiring an external resonator in addition to the DFB laser. Therefore, it is not necessary to match the phases of the light emitted from the DFB laser and the feedback light.
  • a phase adjustment mechanism for example, a heater
  • modulation regions of the first region 121 and the second region 122 and the third region 123 and the fourth region 124 of the diffraction grating 110 are modulated with smooth functions. This is because a sudden change in pitch or duty ratio increases the scattering loss.
  • Modulation functions include parabolic functions, Gaussian functions, Lorentzian functions, and the like.
  • an optical coupling layer 111 formed in a core shape extending along the active layer 103 and embedded in the first clad layer 102 in a state capable of optically coupling with the active layer 103 is further added.
  • the optical coupling layer 111 can be made of single crystal silicon, for example.
  • This semiconductor laser is a DFB laser having an active layer 103 formed in a core shape extending in the waveguide direction on a substrate 101 and having a diffraction grating 112 in the resonator.
  • This semiconductor laser first has a first clad layer 102 formed on a substrate 101 and an active layer 103 on the first clad layer 102 .
  • the substrate 101 is made of Si, for example, and the first clad layer 102 is made of silicon oxide, for example. It also has a p-type semiconductor layer 104 and an n-type semiconductor layer 105 formed in contact with the active layer 103 with the active layer 103 interposed therebetween. It also includes a second clad layer 106 formed on the active layer 103 , and a p-electrode 107 and an n-electrode 108 connected to the p-type semiconductor layer 104 and the n-type semiconductor layer 105 .
  • the p-type semiconductor layer 104 and the n-type semiconductor layer 105 are formed by introducing impurities into the semiconductor layer 109 made of InP, for example.
  • the active layer 103 is embedded in the semiconductor layer 109 between the p-type semiconductor layer 104 and the n-type semiconductor layer 105 .
  • an optical coupling layer 113 formed in a core shape extending along the active layer 103 is embedded in the first clad layer 102 so as to be optically coupled with the active layer 103 .
  • the optical coupling layer 113 can be made of single crystal silicon, for example.
  • the semiconductor laser according to the embodiment includes a first region 121 and a second region 122 whose stopbands are modulated in the resonator, as shown in FIG. 7B.
  • the first region 121 and the second region 122 are spaced apart in the waveguide direction.
  • the first region 121 and the second region 122 modulate the stopband by changing the width of the optical coupling layer 113 .
  • the first region 121 and the second region 122 are different from other regions in the width of the optical coupling layer 113 in the waveguide direction. Also, the width of the optical coupling layer 113 in the first region 121 is made larger than that in other regions, and the width of the optical coupling layer 113 in the second region 122 is made smaller than that in other regions. Note that FIG. 7B is a plan view showing the configuration of the optical coupling layer 113, and the direction from the right to the left on the paper surface of FIG. 7B is the waveguide direction.
  • a third region 123 and a fourth region 124 whose stopbands are modulated are provided at both ends of the resonator.
  • the third region 123 and fourth region 124 also modulate the stopband by changing the width of the optical coupling layer 113 .
  • the width of the optical coupling layer 113 in the waveguide direction of the third region 123 on one end side and the fourth region 124 on the other end side in the resonator is larger than the width of the region inside the third region 123 and the fourth region 124 . It is
  • the optical coupling layer 113 As described above, by providing the optical coupling layer 113 and changing the width of the optical coupling layer 113 in the first region 121, the second region 122, the third region 123, and the fourth region 124, the optical coupling layer 113 shown in FIG. As shown, the stopband wavelength in the cavity is modulated.
  • the width of the optical coupling layer 113 By changing the width of the optical coupling layer 113, the coupling coefficient of the diffraction grating 112 and the rate of optical confinement in the active layer 103 can be changed, and as described above, the stopband wavelength in the resonator can be modulated. can.
  • the stop band wavelength in the resonator can be modulated. can be expressed. Therefore, it is not necessary to match the phases of the light emitted from the DFB laser and the feedback light. As a result, in the second embodiment as well, the PPR is generated even if the current injection conditions are not specific for the DFB laser, so high-speed direct modulation is realized regardless of the operating environment. Moreover, since the second embodiment does not require a phase adjustment mechanism such as a heater, it is effective in reducing power consumption.
  • This semiconductor laser is a DFB laser having an active layer 103 formed in a core shape extending in the waveguide direction on a substrate 101 and having a diffraction grating 114 in the resonator.
  • This semiconductor laser first has a first clad layer 102 formed on a substrate 101 and an active layer 103 on the first clad layer 102 .
  • the substrate 101 is made of Si, for example, and the first clad layer 102 is made of silicon oxide, for example. It also has a p-type semiconductor layer 104 and an n-type semiconductor layer 105 formed in contact with the active layer 103 with the active layer 103 interposed therebetween. It also includes a second clad layer 106 formed on the active layer 103 , and a p-electrode 107 and an n-electrode 108 connected to the p-type semiconductor layer 104 and the n-type semiconductor layer 105 .
  • the p-type semiconductor layer 104 and the n-type semiconductor layer 105 are formed by introducing impurities into the semiconductor layer 109 made of InP, for example.
  • the active layer 103 is embedded in the semiconductor layer 109 between the p-type semiconductor layer 104 and the n-type semiconductor layer 105 .
  • an optical coupling layer 113 formed in a core shape extending along the active layer 103 is embedded in the first clad layer 102 so as to be optically coupled with the active layer 103 .
  • the optical coupling layer 113 can be made of single crystal silicon, for example.
  • the semiconductor laser according to the embodiment includes, as shown in FIG. 8B, a first region 121 and a second region 122 whose stopbands are modulated in the resonator.
  • the first region 121 and the second region 122 are spaced apart in the waveguide direction.
  • the first region 121 and the second region 122 modulate the stopband by changing the width of the optical coupling layer 113 .
  • the first region 121 and the second region 122 are different from other regions in the width of the optical coupling layer 113 in the waveguide direction. Also, the width of the optical coupling layer 113 in the first region 121 is made larger than that in other regions, and the width of the optical coupling layer 113 in the second region 122 is made smaller than that in other regions. Note that FIG. 8B is a plan view showing the configuration of the optical coupling layer 113, and the direction from the right to the left on the paper surface of FIG. 8B is the waveguide direction.
  • the third region 123 and the fourth region 124 whose stopbands are modulated are provided at both ends in the resonator.
  • the third region 123 and fourth region 124 modulate the stop band by changing the duty ratio of the diffraction grating 114 .
  • the duty ratio of the diffraction grating 114 in the waveguide direction of the third region 123 on one end side and the fourth region 124 on the other end side in the resonator is higher than the duty ratio of the region inside the third region 123 and the fourth region 124. made smaller.
  • the stop band wavelengths of the 3rd region 123 and the 4th region 124 are modulated.
  • the stop band wavelength in the resonator can be modulated. can be expressed. Therefore, it is not necessary to match the phases of the light emitted from the DFB laser and the feedback light.
  • the PPR is generated without the specific current injection conditions of the DFB laser, so high-speed direct modulation is realized regardless of the operating environment.
  • the third embodiment does not require a phase adjustment mechanism such as a heater, it is effective in reducing power consumption.
  • the first region and the second region in which the stop band is modulated are provided in the resonator by changing the pitch of the diffraction grating. etc., making photon-photon resonance readily available.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This semiconductor layer is a DFB laser comprising: on a substrate (101), an active layer (103) that extends in a waveguide direction and that is formed in a core shape; a diffraction grating (110) in the resonator; and, in the resonator, a first area (121) and a second area (122) the stop bands of which have been modulated. The first area (121) and the second area (122) are separated by a distance in the waveguide direction. The stop bands of the first area (121) and the second area (122) have been modulated by changing the pitch of the diffraction grating (110).

Description

半導体レーザsemiconductor laser
 本発明は、半導体レーザに関する。 The present invention relates to semiconductor lasers.
 インターネットなどにおける通信トラフィックの増加に伴い、情報伝送の高速・大容量化が求められている。特にデータセンタ内においては、小型・低コスト、低消費電力、高速変調可能な直接変調レーザが求められる。 With the increase in communication traffic on the Internet, etc., there is a demand for high-speed and large-capacity information transmission. Especially in data centers, direct modulation lasers that are compact, low cost, low power consumption, and capable of high-speed modulation are required.
 今後の大容量化に向けては、さらなるレーザの高速化および複数のレーザを用いた波長多重化、同時に低消費電力化が望まれる。この要求に対し、波長多重が可能かつ低消費電力な薄膜横方向注入型レーザが期待されている(非特許文献1)。 In order to increase the capacity in the future, it is desirable to further increase the laser speed, wavelength multiplex using multiple lasers, and reduce power consumption at the same time. In response to this demand, a thin film lateral injection laser capable of wavelength multiplexing and low power consumption is expected (Non-Patent Document 1).
 このレーザの高速化に向けて、光子-光子共鳴(PPR:photon-photon resonance)の利用が有用である。PPRとは、レーザに光のフィードバック機構を設けてなされる変調帯域拡大の技術であり、次の理由により変調帯域が拡大する。 The use of photon-photon resonance (PPR) is useful for increasing the speed of this laser. PPR is a technique for expanding the modulation band by providing a laser with an optical feedback mechanism, and the modulation band is expanded for the following reasons.
 例えば、分布帰還型(DFB)レーザにファブリペロー共振器を加えた構造を考える。レーザからの出射光は、ファブリペロー共振器から反射されレーザに光がフィードバックされる。このフィードバック光の位相が出射光の位相と同相の場合、レーザ内での光パワーは強め合い、共鳴的に光パワーは増強する。レーザの変調周波数がファブリペロー共振器の共振周波数と一致していれば、その変調周波数で変調度が高くなる。したがって、共振周波数と位相を適切に調整することで直接変調レーザの変調帯域を拡大することが可能となる。実際に、非特許文献2に示すように、PPRを利用することにより、高速な直接変調を実現している。 For example, consider a structure in which a Fabry-Perot resonator is added to a distributed feedback (DFB) laser. Light emitted from the laser is reflected from the Fabry-Perot resonator and fed back to the laser. When the phase of this feedback light is the same as the phase of the output light, the optical powers in the laser reinforce each other, and the optical power increases in resonance. If the modulation frequency of the laser matches the resonance frequency of the Fabry-Perot resonator, the degree of modulation increases at that modulation frequency. Therefore, it is possible to expand the modulation band of the directly modulated laser by appropriately adjusting the resonance frequency and phase. In fact, as shown in Non-Patent Document 2, high-speed direct modulation is realized by using PPR.
 しかしながら、上述した技術では、レーザからの出射光とフィードバック光の位相を同相にする必要があり、このためには、レーザの特定の電流注入条件、あるいはファブリペロー共振器の位相調整機構(例えばヒータ)が必要となる。 However, in the above-described technique, it is necessary to make the phases of the emitted light from the laser and the feedback light in phase. )Is required.
 前者は、動作環境温度の変化に対して変化するため、環境温度の激しい用途においては、環境温度に合わせて注入条件を変える必要があり、制御が複雑になるうえ安定的にPPRを利用することが難しくなる。後者も同様に、制御が複雑になるうえ安定的にPPRを利用することが難しく、加えてヒータでの消費電力が付加されるため全体としての消費電力は大きくなる問題がある。このように、従来技術では、光子-光子共鳴を利用することが容易ではないという問題があった。 The former changes with changes in operating environmental temperature, so in applications where the environmental temperature is extreme, it is necessary to change the injection conditions according to the environmental temperature, which complicates control and prevents stable use of PPR. becomes difficult. The latter similarly has the problem that the control becomes complicated and it is difficult to use the PPR stably, and in addition, the power consumption of the heater is added, so that the power consumption as a whole increases. Thus, the prior art has the problem that it is not easy to utilize photon-photon resonance.
 本発明は、以上のような問題点を解消するためになされたものであり、光子-光子共鳴が容易に利用できるようにすることを目的とする。 The present invention has been made to solve the above problems, and aims to facilitate the use of photon-photon resonance.
 本発明に係る半導体レーザは、基板の上に形成された第1クラッド層と、第1クラッド層の上に、導波方向に延在するコア形状に形成された活性層と、活性層を挾んで活性層に接して形成されたp型半導体層およびn型半導体層と、活性層の上に形成された第2クラッド層と、p型半導体層およびn型半導体層に接続するp電極およびn電極とを備え、共振器内に回折格子を備える半導体レーザであって、共振器内に、導波方向の回折格子のピッチが各々異なる第1領域および第2領域を備え、第1領域と第2領域とは、導波方向に間隔を開けて配置されている。 A semiconductor laser according to the present invention comprises: a first clad layer formed on a substrate; an active layer formed on the first clad layer in a core shape extending in a waveguide direction; a p-type semiconductor layer and an n-type semiconductor layer formed in contact with the active layer; a second cladding layer formed on the active layer; and a diffraction grating in a resonator, wherein the resonator includes a first region and a second region having different pitches of the diffraction grating in the waveguide direction, The two regions are spaced apart in the waveguide direction.
 また、本発明に係る半導体レーザは、基板の上に形成された第1クラッド層と、第1クラッド層の上に、導波方向に延在するコア形状に形成された活性層と、活性層を挾んで活性層に接して形成されたp型半導体層およびn型半導体層と、活性層の上に形成された第2クラッド層と、p型半導体層およびn型半導体層に接続するp電極およびn電極と、活性層と光結合可能な状態で第1クラッド層または第2クラッド層に埋め込まれて、活性層に沿って延在するコア形状に形成された光結合層とを備え、共振器内に回折格子を備える半導体レーザであって、共振器内に、導波方向に垂直な方向の光結合層の幅が各々異なる第1領域および第2領域を備え、第1領域と第2領域とは、導波方向に間隔を開けて配置されている。 A semiconductor laser according to the present invention includes a first clad layer formed on a substrate, an active layer formed on the first clad layer in a core shape extending in a waveguide direction, and an active layer comprising: a p-type semiconductor layer and an n-type semiconductor layer formed in contact with the active layer with a second cladding layer formed on the active layer; and a p-type semiconductor layer and a p-electrode connected to the n-type semiconductor layer. and an n-electrode, and an optical coupling layer formed in a core shape extending along the active layer and embedded in the first clad layer or the second clad layer so as to be capable of optically coupling with the active layer, 1. A semiconductor laser having a diffraction grating in a resonator, wherein the resonator includes a first region and a second region having different widths of an optical coupling layer in a direction perpendicular to a waveguiding direction. The regions are spaced apart in the waveguide direction.
 以上説明したように、本発明によれば、回折格子のピッチを変えるなどにより、共振器内にストップバンドが変調された第1領域および第2領域を備えるようにしたので、分布帰還型レーザなどにおいて、光子-光子共鳴が容易に利用できる。 As described above, according to the present invention, the first region and the second region in which the stop band is modulated are provided in the resonator by changing the pitch of the diffraction grating. , the photon-photon resonance is readily available.
図1Aは、本発明の実施の形態1に係る半導体レーザの構成を示す断面図である。FIG. 1A is a cross-sectional view showing the configuration of a semiconductor laser according to Embodiment 1 of the present invention. 図1Bは、本発明の実施の形態1に係る半導体レーザの一部構成を示す平面図である。FIG. 1B is a plan view showing a partial configuration of the semiconductor laser according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る半導体レーザの回折格子110を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the diffraction grating 110 of the semiconductor laser according to Embodiment 1 of the present invention. 図3は、回折格子110の変調により、共振器におけるストップバンド波長が変調される状態を示すバンド図である。FIG. 3 is a band diagram showing how the stop band wavelength in the resonator is modulated by the modulation of the diffraction grating 110. In FIG. 図4は、図3に示すストップバンドを有するDFBレーザの発振スペクトルの計算結果を示す特性図である。FIG. 4 is a characteristic diagram showing calculation results of the oscillation spectrum of the DFB laser having the stopband shown in FIG. 図5Aは、図3のw2およびgapをパラメータとしたΔλの計算結果を示す特性図である。FIG. 5A is a characteristic diagram showing the calculation result of Δλ using w2 and gap in FIG. 3 as parameters. 図5Bは、図3のw2およびgapをパラメータとした閾値利得差Δgthの計算結果を示す特性図である。FIG. 5B is a characteristic diagram showing the calculation result of the threshold gain difference Δgth using w2 and gap in FIG. 3 as parameters. 図6は、本発明の実施の形態1に係る他の半導体レーザの構成を示す断面図である。FIG. 6 is a cross-sectional view showing the configuration of another semiconductor laser according to Embodiment 1 of the present invention. 図7Aは、本発明の実施の形態2に係る半導体レーザの構成を示す断面図である。FIG. 7A is a cross-sectional view showing the configuration of a semiconductor laser according to Embodiment 2 of the present invention. 図7Bは、本発明の実施の形態2に係る半導体レーザの一部構成を示す平面図である。7B is a plan view showing a partial configuration of a semiconductor laser according to Embodiment 2 of the present invention. FIG. 図8Aは、本発明の実施の形態3に係る半導体レーザの構成を示す断面図である。FIG. 8A is a cross-sectional view showing the configuration of a semiconductor laser according to Embodiment 3 of the present invention. 図8Bは、本発明の実施の形態3に係る半導体レーザの一部構成を示す平面図である。8B is a plan view showing a partial configuration of a semiconductor laser according to Embodiment 3 of the present invention. FIG. 図8Cは、本発明の実施の形態3に係る半導体レーザの一部構成を示す平面図である。8C is a plan view showing a partial configuration of a semiconductor laser according to Embodiment 3 of the present invention. FIG.
 以下、本発明の実施の形態に係る半導体レーザについて説明する。 A semiconductor laser according to an embodiment of the present invention will be described below.
[実施の形態1]
 はじめに、本発明の実施の形態1に係る半導体レーザについて図1A、図1Bを参照して説明する。この半導体レーザは、基板101の上に、導波方向に延在するコア形状に形成された活性層103を備え、共振器内に回折格子110を備えるDFB(Distributed Feedback)レーザである。
[Embodiment 1]
First, a semiconductor laser according to Embodiment 1 of the present invention will be described with reference to FIGS. 1A and 1B. This semiconductor laser is a DFB (Distributed Feedback) laser comprising an active layer 103 formed in a core shape extending in the waveguide direction on a substrate 101 and having a diffraction grating 110 in the resonator.
 この半導体レーザは、まず、基板101の上に第1クラッド層102が形成され、第1クラッド層102の上に、活性層103を備える。基板101は、例えば、Siから構成され、第1クラッド層102は、例えば、酸化シリコンから構成されている。また、活性層103を挾んで活性層103に接して形成されたp型半導体層104およびn型半導体層105を備える。また、活性層103の上に形成された第2クラッド層106と、p型半導体層104およびn型半導体層105に接続するp電極107およびn電極108とを備える。 This semiconductor laser first has a first clad layer 102 formed on a substrate 101 and an active layer 103 on the first clad layer 102 . The substrate 101 is made of Si, for example, and the first clad layer 102 is made of silicon oxide, for example. It also has a p-type semiconductor layer 104 and an n-type semiconductor layer 105 formed in contact with the active layer 103 with the active layer 103 interposed therebetween. It also includes a second clad layer 106 formed on the active layer 103 , and a p-electrode 107 and an n-electrode 108 connected to the p-type semiconductor layer 104 and the n-type semiconductor layer 105 .
 この例では、p型半導体層104およびn型半導体層105は、例えば、InPからなる半導体層109に不純物を導入することで形成されている。また、p型半導体層104とn型半導体層105との間において、活性層103は、半導体層109に埋め込まれて形成されている。例えば、回折格子110は、半導体層109と第2クラッド層106との界面に形成することができる。 In this example, the p-type semiconductor layer 104 and the n-type semiconductor layer 105 are formed by introducing impurities into the semiconductor layer 109 made of InP, for example. Also, the active layer 103 is embedded in the semiconductor layer 109 between the p-type semiconductor layer 104 and the n-type semiconductor layer 105 . For example, diffraction grating 110 can be formed at the interface between semiconductor layer 109 and second cladding layer 106 .
 上述した構成に加え、実施の形態1に係る半導体レーザは、図1Bに示すように、共振器内に、ストップバンドが変調された第1領域121および第2領域122を備える。第1領域121と第2領域122とは、導波方向に間隔を開けて配置されている。第1領域121および第2領域122は、回折格子110のピッチを変えることで、ストップバンドを変調させている。 In addition to the configuration described above, the semiconductor laser according to Embodiment 1 includes a first region 121 and a second region 122 whose stopbands are modulated in the resonator, as shown in FIG. 1B. The first region 121 and the second region 122 are spaced apart in the waveguide direction. The first region 121 and the second region 122 modulate the stop band by changing the pitch of the diffraction grating 110 .
 第1領域121および第2領域122は、導波方向の回折格子110のピッチが他の領域とは異なるものとされている。また、第1領域121の回折格子110のピッチは、他の領域より大きくされ、第2領域122の回折格子110のピッチは、他の領域より小さくされている。例えば、第1領域121の回折格子110のピッチは、第2領域122の回折格子110のピッチの2倍とすることができる。なお、図1Bは、回折格子110の構成を示す平面図であり、図1Bの紙面右から左の方向が、導波方向となっている。 The first region 121 and the second region 122 have a different pitch of the diffraction grating 110 in the waveguide direction than the other regions. Also, the pitch of the diffraction grating 110 in the first region 121 is made larger than that in other regions, and the pitch of the diffraction grating 110 in the second region 122 is made smaller than those in other regions. For example, the pitch of the diffraction gratings 110 in the first region 121 can be twice the pitch of the diffraction gratings 110 in the second region 122 . Note that FIG. 1B is a plan view showing the configuration of the diffraction grating 110, and the waveguiding direction is the direction from the right to the left on the page of FIG. 1B.
 また、この例では、共振器内の両端に、ストップバンドが変調された第3領域123および第4領域124を備える。第3領域123および第4領域124は、回折格子110のデューティー比を変えることで、ストップバンドを変調させている。共振器内の一端側の第3領域123および他端側の第4領域124の導波方向の回折格子110のデューティー比は、第3領域123および第4領域124より内側の領域のデューティー比より小さくされている。 Also, in this example, a third region 123 and a fourth region 124 whose stopbands are modulated are provided at both ends of the resonator. The third region 123 and fourth region 124 modulate the stop band by changing the duty ratio of the diffraction grating 110 . The duty ratio of the diffraction grating 110 in the waveguide direction of the third region 123 on one end side and the fourth region 124 on the other end side in the resonator is higher than the duty ratio of the region inside the third region 123 and the fourth region 124. made smaller.
 回折格子110のピッチ(pitch)およびデューティー(duty)比は、図2に示すように変調している。この回折格子110の変調により、共振器におけるストップバンド波長は、図3に示す形に変調される。例えば、回折格子110のピッチを大きくした第1領域121のストップバンド波長は、長波側にシフトする。また、回折格子110のduty比を小さくした第3領域123、第4領域124は、ストップバンド幅が狭くなる。 The pitch and duty ratio of the diffraction grating 110 are modulated as shown in FIG. By modulating the diffraction grating 110, the stop band wavelength in the resonator is modulated as shown in FIG. For example, the stop band wavelength of the first region 121 with the increased pitch of the diffraction grating 110 shifts to the longer wavelength side. In addition, the third region 123 and the fourth region 124 in which the duty ratio of the diffraction grating 110 is reduced have a narrow stop band width.
 図3に示すようなストップバンドを有するDFBレーザの発振スペクトルの計算結果を図4に示す。図4に示すように、主モードおよびそれと隣接した波長で副モードが現れる。ここで、主モードと副モードとの波長差をΔλとする。基本的にDFBレーザは、主モードの波長で発振する。このレーザを直接変調した際、レーザの変調周波数がΔλと一致していれば、主モードと副モードが共振器内で強め合い、共鳴的に光パワーが増強するため、Δλと一致する変調周波数で変調度が高くなる。  Figure 4 shows the calculation result of the oscillation spectrum of a DFB laser having a stop band as shown in Figure 3. As shown in FIG. 4, a dominant mode and a minor mode appear at adjacent wavelengths. Here, let Δλ be the wavelength difference between the main mode and the sub mode. DFB lasers basically oscillate at the wavelength of the dominant mode. When this laser is directly modulated, if the modulation frequency of the laser matches Δλ, the main mode and the sub mode strengthen each other in the resonator, and the optical power is resonantly enhanced, so the modulation frequency matches Δλ , the degree of modulation increases.
 Δλの値は、図3のw2およびgapにより調整することができる。w2およびgapをパラメータとしたΔλの計算結果を図5Aに示す。図5Aに示すように、w2を-20nm程度(w1の符号が反転しかつ2倍程度)にすると、Δλが減少することが分かる。また、gapを大きくするとΔλが減少することが分かる。特にw2=-20nm、gap=30μmとすると、Δλ=0.8nm(Δf=100GHz)程度になることが分かる。これは変調帯域特性として、変調周波数100GHz付近において、光子-光子共鳴(PPR)により変調度が向上することを意味する。 The value of Δλ can be adjusted by w2 and gap in FIG. Calculation results of Δλ with w2 and gap as parameters are shown in FIG. 5A. As shown in FIG. 5A, it can be seen that Δλ decreases when w2 is set to approximately −20 nm (the sign of w1 is inverted and approximately doubled). Also, it can be seen that Δλ decreases when the gap is increased. In particular, when w2=−20 nm and gap=30 μm, Δλ=0.8 nm (Δf=100 GHz). As a modulation band characteristic, this means that the degree of modulation is improved by photon-photon resonance (PPR) near the modulation frequency of 100 GHz.
 また、マルチモード発振させないために主モードと副モードとの間で閾値利得差を与える必要がある。図5Bに示すように、w2=-20nm付近では、30cm-1程度の閾値利得差Δgthがあり、単一モード発振させるには十分な値である。 Also, it is necessary to provide a threshold gain difference between the primary mode and the secondary mode to prevent multimode oscillation. As shown in FIG. 5B, there is a threshold gain difference Δgth of about 30 cm −1 near w2=−20 nm, which is a sufficient value for single-mode oscillation.
 以上の構造では、DFBレーザとは別に外部共振器を必要とせずともPPRを発現することができる。このため、DFBレーザからの出射光とフィードバック光の位相を合わせる必要がなくなる。この結果、実施の形態1によれば、DFBレーザの特定の電流注入条件でなくともPPRが発現するため、動作環境によらず高速な直接変調が実現する。また、実施の形態1によれば、位相調整機構(例えばヒータなど)を必要としないため、低消費電力化に対して有効である。 With the above structure, PPR can be expressed without requiring an external resonator in addition to the DFB laser. Therefore, it is not necessary to match the phases of the light emitted from the DFB laser and the feedback light. As a result, according to Embodiment 1, since PPR is generated even if the current injection condition of the DFB laser is not specific, high-speed direct modulation is realized regardless of the operating environment. Moreover, according to Embodiment 1, since a phase adjustment mechanism (for example, a heater) is not required, it is effective in reducing power consumption.
 なお、回折格子110の第1領域121および第2領域122や、第3領域123および第4領域124の変調領域は、滑らかな関数で変調させる。これは、急激なピッチやduty比の変化は、散乱損失を増加させるためである。変調の関数としては、放物線関数、ガウス関数、ローレンツ関数など挙げられる。 The modulation regions of the first region 121 and the second region 122 and the third region 123 and the fourth region 124 of the diffraction grating 110 are modulated with smooth functions. This is because a sudden change in pitch or duty ratio increases the scattering loss. Modulation functions include parabolic functions, Gaussian functions, Lorentzian functions, and the like.
 なお、図6に示すように、活性層103と光結合可能な状態で第1クラッド層102に埋め込まれて、活性層103に沿って延在するコア形状に形成された光結合層111をさらに備えることができる。光結合層111は、例えば、単結晶シリコンから構成することができる。 As shown in FIG. 6, an optical coupling layer 111 formed in a core shape extending along the active layer 103 and embedded in the first clad layer 102 in a state capable of optically coupling with the active layer 103 is further added. be prepared. The optical coupling layer 111 can be made of single crystal silicon, for example.
[実施の形態2]
 次に、本発明の実施の形態2に係る半導体レーザについて図7A、図7Bを参照して説明する。この半導体レーザは、基板101の上に、導波方向に延在するコア形状に形成された活性層103を備え、共振器内に回折格子112を備えるDFBレーザである。
[Embodiment 2]
Next, a semiconductor laser according to Embodiment 2 of the present invention will be described with reference to FIGS. 7A and 7B. This semiconductor laser is a DFB laser having an active layer 103 formed in a core shape extending in the waveguide direction on a substrate 101 and having a diffraction grating 112 in the resonator.
 この半導体レーザは、まず、基板101の上に第1クラッド層102が形成され、第1クラッド層102の上に、活性層103を備える。基板101は、例えば、Siから構成され、第1クラッド層102は、例えば、酸化シリコンから構成されている。また、活性層103を挾んで活性層103に接して形成されたp型半導体層104およびn型半導体層105を備える。また、活性層103の上に形成された第2クラッド層106と、p型半導体層104およびn型半導体層105に接続するp電極107およびn電極108とを備える。 This semiconductor laser first has a first clad layer 102 formed on a substrate 101 and an active layer 103 on the first clad layer 102 . The substrate 101 is made of Si, for example, and the first clad layer 102 is made of silicon oxide, for example. It also has a p-type semiconductor layer 104 and an n-type semiconductor layer 105 formed in contact with the active layer 103 with the active layer 103 interposed therebetween. It also includes a second clad layer 106 formed on the active layer 103 , and a p-electrode 107 and an n-electrode 108 connected to the p-type semiconductor layer 104 and the n-type semiconductor layer 105 .
 この例では、p型半導体層104およびn型半導体層105は、例えば、InPからなる半導体層109に不純物を導入することで形成されている。また、p型半導体層104とn型半導体層105との間において、活性層103は、半導体層109に埋め込まれて形成されている。また、活性層103と光結合可能な状態で第1クラッド層102に埋め込まれて、活性層103に沿って延在するコア形状に形成された光結合層113を備える。光結合層113は、例えば、単結晶シリコンから構成することができる。 In this example, the p-type semiconductor layer 104 and the n-type semiconductor layer 105 are formed by introducing impurities into the semiconductor layer 109 made of InP, for example. Also, the active layer 103 is embedded in the semiconductor layer 109 between the p-type semiconductor layer 104 and the n-type semiconductor layer 105 . Further, an optical coupling layer 113 formed in a core shape extending along the active layer 103 is embedded in the first clad layer 102 so as to be optically coupled with the active layer 103 . The optical coupling layer 113 can be made of single crystal silicon, for example.
 上述した構成に加え、実施の形態に係る半導体レーザは、図7Bに示すように、共振器内に、ストップバンドが変調された第1領域121および第2領域122を備える。第1領域121と第2領域122とは、導波方向に間隔を開けて配置されている。第1領域121および第2領域122は、光結合層113の幅を変えることで、ストップバンドを変調させている。 In addition to the configuration described above, the semiconductor laser according to the embodiment includes a first region 121 and a second region 122 whose stopbands are modulated in the resonator, as shown in FIG. 7B. The first region 121 and the second region 122 are spaced apart in the waveguide direction. The first region 121 and the second region 122 modulate the stopband by changing the width of the optical coupling layer 113 .
 第1領域121および第2領域122は、導波方向の光結合層113の幅が他の領域とは異なるものとされている。また、第1領域121の光結合層113の幅は、他の領域より大きくされ、第2領域122の光結合層113の幅は、他の領域より小さくされている。なお、図7Bは、光結合層113の構成を示す平面図であり、図7Bの紙面右から左の方向が、導波方向となっている。 The first region 121 and the second region 122 are different from other regions in the width of the optical coupling layer 113 in the waveguide direction. Also, the width of the optical coupling layer 113 in the first region 121 is made larger than that in other regions, and the width of the optical coupling layer 113 in the second region 122 is made smaller than that in other regions. Note that FIG. 7B is a plan view showing the configuration of the optical coupling layer 113, and the direction from the right to the left on the paper surface of FIG. 7B is the waveguide direction.
 また、この例では、共振器内の両端に、ストップバンドが変調された第3領域123および第4領域124を備える。第3領域123および第4領域124も、光結合層113の幅を変えることで、ストップバンドを変調させている。共振器内の一端側の第3領域123および他端側の第4領域124の導波方向の光結合層113の幅は、第3領域123および第4領域124より内側の領域の幅より大きくされている。 Also, in this example, a third region 123 and a fourth region 124 whose stopbands are modulated are provided at both ends of the resonator. The third region 123 and fourth region 124 also modulate the stopband by changing the width of the optical coupling layer 113 . The width of the optical coupling layer 113 in the waveguide direction of the third region 123 on one end side and the fourth region 124 on the other end side in the resonator is larger than the width of the region inside the third region 123 and the fourth region 124 . It is
 上述したように、光結合層113を設け、さらに、光結合層113の幅を、第1領域121、第2領域122、第3領域123、第4領域124において変化させることで、図3に示すように、共振器におけるストップバンド波長が変調される。光結合層113の幅を変化させることで、回折格子112の結合係数や活性層103における光閉じ込めの割合を変化させることができ、上述したように、共振器におけるストップバンド波長を変調させることができる。 As described above, by providing the optical coupling layer 113 and changing the width of the optical coupling layer 113 in the first region 121, the second region 122, the third region 123, and the fourth region 124, the optical coupling layer 113 shown in FIG. As shown, the stopband wavelength in the cavity is modulated. By changing the width of the optical coupling layer 113, the coupling coefficient of the diffraction grating 112 and the rate of optical confinement in the active layer 103 can be changed, and as described above, the stopband wavelength in the resonator can be modulated. can.
 このように、実施の形態2においても、共振器におけるストップバンド波長を変調させることができるので、前述した実施の形態1と同様に、DFBレーザとは別に外部共振器を用いることなく、PPRを発現することができる。このため、DFBレーザからの出射光とフィードバック光の位相を合わせる必要がなくなる。この結果、実施の形態2においても、DFBレーザの特定の電流注入条件でなくともPPRが発現するため、動作環境によらず高速な直接変調が実現する。また、実施の形態2においても、例えばヒータなどの位相調整機構を必要としないため、低消費電力化に対して有効である。 Thus, in the second embodiment as well, the stop band wavelength in the resonator can be modulated. can be expressed. Therefore, it is not necessary to match the phases of the light emitted from the DFB laser and the feedback light. As a result, in the second embodiment as well, the PPR is generated even if the current injection conditions are not specific for the DFB laser, so high-speed direct modulation is realized regardless of the operating environment. Moreover, since the second embodiment does not require a phase adjustment mechanism such as a heater, it is effective in reducing power consumption.
[実施の形態3]
 次に、本発明の実施の形態3に係る半導体レーザについて図8A、図8B、図8Cを参照して説明する。この半導体レーザは、基板101の上に、導波方向に延在するコア形状に形成された活性層103を備え、共振器内に回折格子114を備えるDFBレーザである。
[Embodiment 3]
Next, a semiconductor laser according to Embodiment 3 of the present invention will be described with reference to FIGS. 8A, 8B, and 8C. This semiconductor laser is a DFB laser having an active layer 103 formed in a core shape extending in the waveguide direction on a substrate 101 and having a diffraction grating 114 in the resonator.
 この半導体レーザは、まず、基板101の上に第1クラッド層102が形成され、第1クラッド層102の上に、活性層103を備える。基板101は、例えば、Siから構成され、第1クラッド層102は、例えば、酸化シリコンから構成されている。また、活性層103を挾んで活性層103に接して形成されたp型半導体層104およびn型半導体層105を備える。また、活性層103の上に形成された第2クラッド層106と、p型半導体層104およびn型半導体層105に接続するp電極107およびn電極108とを備える。 This semiconductor laser first has a first clad layer 102 formed on a substrate 101 and an active layer 103 on the first clad layer 102 . The substrate 101 is made of Si, for example, and the first clad layer 102 is made of silicon oxide, for example. It also has a p-type semiconductor layer 104 and an n-type semiconductor layer 105 formed in contact with the active layer 103 with the active layer 103 interposed therebetween. It also includes a second clad layer 106 formed on the active layer 103 , and a p-electrode 107 and an n-electrode 108 connected to the p-type semiconductor layer 104 and the n-type semiconductor layer 105 .
 この例では、p型半導体層104およびn型半導体層105は、例えば、InPからなる半導体層109に不純物を導入することで形成されている。また、p型半導体層104とn型半導体層105との間において、活性層103は、半導体層109に埋め込まれて形成されている。また、活性層103と光結合可能な状態で第1クラッド層102に埋め込まれて、活性層103に沿って延在するコア形状に形成された光結合層113を備える。光結合層113は、例えば、単結晶シリコンから構成することができる。 In this example, the p-type semiconductor layer 104 and the n-type semiconductor layer 105 are formed by introducing impurities into the semiconductor layer 109 made of InP, for example. Also, the active layer 103 is embedded in the semiconductor layer 109 between the p-type semiconductor layer 104 and the n-type semiconductor layer 105 . Further, an optical coupling layer 113 formed in a core shape extending along the active layer 103 is embedded in the first clad layer 102 so as to be optically coupled with the active layer 103 . The optical coupling layer 113 can be made of single crystal silicon, for example.
 上述した構成に加え、実施の形態に係る半導体レーザは、図8Bに示すように、共振器内に、ストップバンドが変調された第1領域121および第2領域122を備える。第1領域121と第2領域122とは、導波方向に間隔を開けて配置されている。第1領域121および第2領域122は、光結合層113の幅を変えることで、ストップバンドを変調させている。 In addition to the configuration described above, the semiconductor laser according to the embodiment includes, as shown in FIG. 8B, a first region 121 and a second region 122 whose stopbands are modulated in the resonator. The first region 121 and the second region 122 are spaced apart in the waveguide direction. The first region 121 and the second region 122 modulate the stopband by changing the width of the optical coupling layer 113 .
 第1領域121および第2領域122は、導波方向の光結合層113の幅が他の領域とは異なるものとされている。また、第1領域121の光結合層113の幅は、他の領域より大きくされ、第2領域122の光結合層113の幅は、他の領域より小さくされている。なお、図8Bは、光結合層113の構成を示す平面図であり、図8Bの紙面右から左の方向が、導波方向となっている。 The first region 121 and the second region 122 are different from other regions in the width of the optical coupling layer 113 in the waveguide direction. Also, the width of the optical coupling layer 113 in the first region 121 is made larger than that in other regions, and the width of the optical coupling layer 113 in the second region 122 is made smaller than that in other regions. Note that FIG. 8B is a plan view showing the configuration of the optical coupling layer 113, and the direction from the right to the left on the paper surface of FIG. 8B is the waveguide direction.
 また、実施の形態3では、図8Cに示すように、共振器内の両端に、ストップバンドが変調された第3領域123および第4領域124を備える。第3領域123および第4領域124は、回折格子114のデューティー比を変えることで、ストップバンドを変調させている。共振器内の一端側の第3領域123および他端側の第4領域124の導波方向の回折格子114のデューティー比は、第3領域123および第4領域124より内側の領域のデューティー比より小さくされている。 In addition, in Embodiment 3, as shown in FIG. 8C, the third region 123 and the fourth region 124 whose stopbands are modulated are provided at both ends in the resonator. The third region 123 and fourth region 124 modulate the stop band by changing the duty ratio of the diffraction grating 114 . The duty ratio of the diffraction grating 114 in the waveguide direction of the third region 123 on one end side and the fourth region 124 on the other end side in the resonator is higher than the duty ratio of the region inside the third region 123 and the fourth region 124. made smaller.
 上述したように、第1領域121、第2領域122、第3領域123、第4領域124を設けることで、図3に示すように、共振器における第1領域121、第2領域122、第3領域123、第4領域124のストップバンド波長が変調される。 As described above, by providing the first region 121, the second region 122, the third region 123, and the fourth region 124, as shown in FIG. The stop band wavelengths of the 3rd region 123 and the 4th region 124 are modulated.
 このように、実施の形態3においても、共振器におけるストップバンド波長を変調させることができるので、前述した実施の形態1と同様に、DFBレーザとは別に外部共振器を用いることなく、PPRを発現することができる。このため、DFBレーザからの出射光とフィードバック光の位相を合わせる必要がなくなる。この結果、実施の形態3においても、DFBレーザの特定の電流注入条件でなくともPPRが発現するため、動作環境によらず高速な直接変調が実現する。また、実施の形態3においても、例えばヒータなどの位相調整機構を必要としないため、低消費電力化に対して有効である。 Thus, in the third embodiment as well, the stop band wavelength in the resonator can be modulated. can be expressed. Therefore, it is not necessary to match the phases of the light emitted from the DFB laser and the feedback light. As a result, in the third embodiment as well, the PPR is generated without the specific current injection conditions of the DFB laser, so high-speed direct modulation is realized regardless of the operating environment. Moreover, since the third embodiment does not require a phase adjustment mechanism such as a heater, it is effective in reducing power consumption.
 以上に説明したように、本発明によれば、回折格子のピッチを変えるなどにより、共振器内にストップバンドが変調された第1領域および第2領域を備えるようにしたので、分布帰還型レーザなどにおいて、光子-光子共鳴が容易に利用できるようになる。 As described above, according to the present invention, the first region and the second region in which the stop band is modulated are provided in the resonator by changing the pitch of the diffraction grating. etc., making photon-photon resonance readily available.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be implemented by those skilled in the art within the technical concept of the present invention. It is clear.
 101…基板、102…第1クラッド層、103…活性層、104…p型半導体層、105…n型半導体層、106…第2クラッド層、107…p電極、108…n電極、109…半導体層、110…回折格子。 DESCRIPTION OF SYMBOLS 101... Substrate 102... First clad layer 103... Active layer 104... P-type semiconductor layer 105... N-type semiconductor layer 106... Second clad layer 107... P-electrode 108... N-electrode 109... Semiconductor Layer, 110... Grating.

Claims (6)

  1.  基板の上に形成された第1クラッド層と、
     前記第1クラッド層の上に、導波方向に延在するコア形状に形成された活性層と、
     前記活性層を挾んで前記活性層に接して形成されたp型半導体層およびn型半導体層と、
     前記活性層の上に形成された第2クラッド層と、
     前記p型半導体層および前記n型半導体層に接続するp電極およびn電極と
     を備え、
     共振器内に回折格子を備える半導体レーザであって、
     前記共振器内に、導波方向の前記回折格子のピッチが他の領域とは異なる第1領域および第2領域を備え、
     前記第1領域と前記第2領域とは、導波方向に間隔を開けて配置され、
     前記第1領域の前記回折格子のピッチは、前記他の領域より大きくされ、
     前記第2領域の前記回折格子のピッチは、前記他の領域より小さくされている
     ことを特徴とする半導体レーザ。
    a first cladding layer formed on a substrate;
    an active layer formed in a core shape extending in a waveguide direction on the first cladding layer;
    a p-type semiconductor layer and an n-type semiconductor layer formed in contact with the active layer with the active layer interposed therebetween;
    a second clad layer formed on the active layer;
    A p-electrode and an n-electrode connected to the p-type semiconductor layer and the n-type semiconductor layer,
    A semiconductor laser comprising a diffraction grating in a cavity,
    The resonator includes a first region and a second region in which the pitch of the diffraction grating in the waveguide direction is different from other regions,
    the first region and the second region are spaced apart in a waveguide direction,
    the pitch of the diffraction grating in the first region is made larger than that in the other regions;
    A semiconductor laser, wherein the pitch of the diffraction grating in the second region is smaller than that in the other regions.
  2.  請求項1記載の半導体レーザにおいて、
     前記第1領域の前記回折格子のピッチは、前記第2領域の前記回折格子のピッチの2倍とされていることを特徴とする半導体レーザ。
    2. The semiconductor laser of claim 1, wherein
    A semiconductor laser according to claim 1, wherein the pitch of said diffraction grating in said first region is twice the pitch of said diffraction grating in said second region.
  3.  請求項1または2記載の半導体レーザにおいて、
     前記共振器内の一端側の第3領域および他端側の第4領域の導波方向の前記回折格子のデューティー比は、前記第3領域および前記第4領域より内側の領域のデューティー比より小さくされている
     ことを特徴とする半導体レーザ。
    3. The semiconductor laser according to claim 1, wherein
    The duty ratio of the diffraction grating in the waveguide direction of the third region on one end side and the fourth region on the other end side in the resonator is smaller than the duty ratio of the region inside the third region and the fourth region. A semiconductor laser characterized by:
  4.  基板の上に形成された第1クラッド層と、
     前記第1クラッド層の上に、導波方向に延在するコア形状に形成された活性層と、
     前記活性層を挾んで前記活性層に接して形成されたp型半導体層およびn型半導体層と、
     前記活性層の上に形成された第2クラッド層と、
     前記p型半導体層および前記n型半導体層に接続するp電極およびn電極と、
     前記活性層と光結合可能な状態で前記第1クラッド層または前記第2クラッド層に埋め込まれて、前記活性層に沿って延在するコア形状に形成された光結合層と
     を備え、
     共振器内に回折格子を備える半導体レーザであって、
     前記共振器内に、導波方向に垂直な方向の前記光結合層の幅が他の領域とは異なる第1領域および第2領域を備え、
     前記第1領域と前記第2領域とは、導波方向に間隔を開けて配置され、
     前記第1領域の前記光結合層の幅は、前記他の領域より大きくされ、
     前記第2領域の前記光結合層の幅は、前記他の領域より小さくされている
     ことを特徴とする半導体レーザ。
    a first cladding layer formed on a substrate;
    an active layer formed in a core shape extending in a waveguide direction on the first cladding layer;
    a p-type semiconductor layer and an n-type semiconductor layer formed in contact with the active layer with the active layer interposed therebetween;
    a second clad layer formed on the active layer;
    a p-electrode and an n-electrode connected to the p-type semiconductor layer and the n-type semiconductor layer;
    an optical coupling layer formed in a core shape extending along the active layer and embedded in the first clad layer or the second clad layer so as to be optically coupled with the active layer;
    A semiconductor laser comprising a diffraction grating in a cavity,
    The resonator includes a first region and a second region, the width of the optical coupling layer in the direction perpendicular to the waveguide direction being different from other regions,
    the first region and the second region are spaced apart in a waveguide direction,
    The width of the optical coupling layer in the first region is made larger than that in the other regions,
    A semiconductor laser, wherein the width of the optical coupling layer in the second region is smaller than that in the other region.
  5.  請求項4記載の半導体レーザにおいて、
     前記共振器内の一端側の第3領域および他端側の第4領域の前記光結合層の幅は、前記他の領域より大きくされている
     ことを特徴とする半導体レーザ。
    5. The semiconductor laser according to claim 4,
    A semiconductor laser according to claim 1, wherein widths of the optical coupling layer in a third region on one end side and a fourth region on the other end side in the resonator are larger than those of the other regions.
  6.  請求項4記載の半導体レーザにおいて、
     前記共振器内の一端側の第3領域および他端側の第4領域の導波方向の前記回折格子のデューティー比は、前記第3領域および前記第4領域より内側の領域のデューティー比より小さくされている
     ことを特徴とする半導体レーザ。
    5. The semiconductor laser according to claim 4,
    The duty ratio of the diffraction grating in the waveguide direction of the third region on one end side and the fourth region on the other end side in the resonator is smaller than the duty ratio of the region inside the third region and the fourth region. A semiconductor laser characterized by:
PCT/JP2021/023908 2021-06-24 2021-06-24 Semiconductor laser WO2022269848A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023529358A JPWO2022269848A1 (en) 2021-06-24 2021-06-24
PCT/JP2021/023908 WO2022269848A1 (en) 2021-06-24 2021-06-24 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023908 WO2022269848A1 (en) 2021-06-24 2021-06-24 Semiconductor laser

Publications (1)

Publication Number Publication Date
WO2022269848A1 true WO2022269848A1 (en) 2022-12-29

Family

ID=84545563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023908 WO2022269848A1 (en) 2021-06-24 2021-06-24 Semiconductor laser

Country Status (2)

Country Link
JP (1) JPWO2022269848A1 (en)
WO (1) WO2022269848A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100287A (en) * 1990-08-20 1992-04-02 Hitachi Ltd Semiconductor laser device
JPH11195838A (en) * 1997-11-07 1999-07-21 Nippon Telegr & Teleph Corp <Ntt> Distribution feedback type of semiconductor laser
JP2000068590A (en) * 1998-08-24 2000-03-03 Mitsubishi Electric Corp Distributed feedback semiconductor laser diode
WO2005124951A1 (en) * 2004-06-18 2005-12-29 The University Of Sheffield Dfb laser with lateral bragg gratings and facet bragg reflectors etches in one step
JP2007243019A (en) * 2006-03-10 2007-09-20 Fujitsu Ltd Optical semiconductor element
JP2014220388A (en) * 2013-05-08 2014-11-20 住友電気工業株式会社 Optical semiconductor element, optical semiconductor device, and control method for optical semiconductor element
JP2017107958A (en) * 2015-12-09 2017-06-15 日本電信電話株式会社 Semiconductor laser
WO2018070432A1 (en) * 2016-10-12 2018-04-19 古河電気工業株式会社 Semiconductor laser element
WO2021005700A1 (en) * 2019-07-09 2021-01-14 日本電信電話株式会社 Semiconductor optical element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100287A (en) * 1990-08-20 1992-04-02 Hitachi Ltd Semiconductor laser device
JPH11195838A (en) * 1997-11-07 1999-07-21 Nippon Telegr & Teleph Corp <Ntt> Distribution feedback type of semiconductor laser
JP2000068590A (en) * 1998-08-24 2000-03-03 Mitsubishi Electric Corp Distributed feedback semiconductor laser diode
WO2005124951A1 (en) * 2004-06-18 2005-12-29 The University Of Sheffield Dfb laser with lateral bragg gratings and facet bragg reflectors etches in one step
JP2007243019A (en) * 2006-03-10 2007-09-20 Fujitsu Ltd Optical semiconductor element
JP2014220388A (en) * 2013-05-08 2014-11-20 住友電気工業株式会社 Optical semiconductor element, optical semiconductor device, and control method for optical semiconductor element
JP2017107958A (en) * 2015-12-09 2017-06-15 日本電信電話株式会社 Semiconductor laser
WO2018070432A1 (en) * 2016-10-12 2018-04-19 古河電気工業株式会社 Semiconductor laser element
WO2021005700A1 (en) * 2019-07-09 2021-01-14 日本電信電話株式会社 Semiconductor optical element

Also Published As

Publication number Publication date
JPWO2022269848A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP5811273B2 (en) Optical element, optical transmitter element, optical receiver element, hybrid laser, optical transmitter
JP5206187B2 (en) Optical semiconductor device
US9312663B2 (en) Laser device, light modulation device, and optical semiconductor device
US7447246B2 (en) Q-modulated semiconductor laser
JP4942429B2 (en) Semiconductor tunable laser
US20080025358A1 (en) Carrier-suppressed optical pulse train generation method and mode-locked semiconductor laser diode for realizing this method
JP5100881B1 (en) Integrated semiconductor laser device
US10931085B2 (en) Super structure grating and tunable laser
US4726031A (en) Semiconductor laser
JP5545847B2 (en) Optical semiconductor device
US6519270B1 (en) Compound cavity reflection modulation laser system
US11418005B2 (en) Variable confinement hybrid oscillator power amplifier
KR100626270B1 (en) Widely Tunable Coupled-Ring Reflector Laser Diode
WO2022269848A1 (en) Semiconductor laser
JP7294453B2 (en) directly modulated laser
JP3246703B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
WO2023228403A1 (en) Optical device
WO2022130622A1 (en) Optical device
JP2019091780A (en) Semiconductor optical device
JP2019186446A (en) Semiconductor optical device
US20240039242A1 (en) Wavelength Tunable Laser
WO2023119366A1 (en) Semiconductor laser
WO2023119367A1 (en) Semiconductor laser
JP2018206901A (en) Optical transmitter
US20210255394A1 (en) Tunable vernier effect laser emission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947133

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529358

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947133

Country of ref document: EP

Kind code of ref document: A1