WO2022130622A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2022130622A1
WO2022130622A1 PCT/JP2020/047451 JP2020047451W WO2022130622A1 WO 2022130622 A1 WO2022130622 A1 WO 2022130622A1 JP 2020047451 W JP2020047451 W JP 2020047451W WO 2022130622 A1 WO2022130622 A1 WO 2022130622A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical device
waveguide
region
passive waveguide
active region
Prior art date
Application number
PCT/JP2020/047451
Other languages
French (fr)
Japanese (ja)
Inventor
優 山岡
慎治 松尾
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/047451 priority Critical patent/WO2022130622A1/en
Priority to JP2022569666A priority patent/JPWO2022130622A1/ja
Publication of WO2022130622A1 publication Critical patent/WO2022130622A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to an optical device using a semiconductor laser.
  • a semiconductor laser which is a typical optical transmitter, can transmit a large-capacity signal over a long distance.
  • a semiconductor laser used in an information communication system first, there is an external modulation laser that modulates a signal by a modulator provided outside the semiconductor laser. Further, the semiconductor laser used in the information communication system includes a directly modulated laser that directly modulates the output light by modulating the current injected into the active region.
  • the direct modulation laser has features such as small size, low power consumption, and low cost compared to the external modulation laser. For this reason, the direct modulation laser is widely used as a transmitter of an information communication system for a relatively short distance in or between data centers.
  • the direct modulation laser has a problem that the modulation speed is slow because the modulation band is narrower than that of the external modulation laser. This is because when the current injection is increased for high-speed operation, the heat generation of the semiconductor laser active layer lowers the luminous efficiency and limits the increase in the modulation band.
  • the intrinsic band is regulated by the relaxation vibration frequency.
  • the direct modulation laser using PPR has a structure in which a distributed feedback type (DFB) laser active region and a passive waveguide responsible for a light feedback mechanism are connected adjacent to each other.
  • a laser active region is optically connected to one end of the passive waveguide. Further, both ends of the passive waveguide serve as reflection points (Non-Patent Document 2 and Non-Patent Document 3).
  • the laser beam generated in the laser active region interacts with the Fabry-Perot type resonance mode formed in the optical feedback region by the passive waveguide, and PPR is generated when the phase matching condition is satisfied.
  • the state of PPR is controlled by adjusting the phase by changing the refractive index due to the injected current.
  • the PPR frequency is approximately defined by the frequency difference between the laser oscillation mode and the Fabry-Pérot type resonant peak.
  • the frequency at which the response enhancement due to PPR occurs is defined within the free spectral range (FSR) defined by the length of the optical feedback region due to the passive waveguide.
  • FSR free spectral range
  • the length of the optical feedback region is limited to 300 ⁇ m in order to generate PPR at about 43 GHz. Phase control in this relatively long optical feedback region requires a large amount of power consumption.
  • Non-Patent Document 2 the waveguide length is 135 ⁇ m
  • Non-Patent Document 3 the waveguide length is 120 ⁇ m
  • a larger FSR is defined as compared with Non-Patent Document 1.
  • the PPR frequency determined by the frequency difference between the laser oscillation mode and the Fabry-Perot type resonance peak can be defined to be larger.
  • the phase change with respect to the wavelength change becomes gentle, so that relatively stable operation can be realized with respect to the injection current change and the temperature change.
  • Non-Patent Document 2 a laser using a PPR composed of a relatively short resonator
  • SOA semiconductor optical amplifier
  • the present invention has been made to solve the above problems, and the PPR frequency and the intensity of the reflected reflected light and the intensity of the output light that determine this response can be independently controlled.
  • the purpose is to do so.
  • the optical device has a distributed feedback type laser active region formed on a substrate and an optical device formed on a substrate and optically connected to one end of the laser active region in the waveguide direction.
  • an amplification region formed on the substrate and optically connected to one end of the reflection region, the frequency of the light generated in the laser active region and the frequency of the Fabry-Pérot mode of the passive waveguide.
  • Laser oscillation is performed using photon-photon resonance generated according to the difference.
  • the laser active region, the passive waveguide, the reflection region and the amplification region are provided, so that the PPR frequency and the intensity and output of the feedback reflected light that determines this response are provided.
  • the intensity of light can be controlled independently.
  • FIG. 1 is a configuration diagram showing a configuration of an optical device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of an optical device according to an embodiment of the present invention.
  • FIG. 3 is an explanatory diagram illustrating the generation of PPR.
  • FIG. 4 is a characteristic diagram showing the relationship between the length of the reflection region 103 and the reflectance.
  • FIG. 5 is a characteristic diagram showing an optical spectrum in each region when the reflectance of the reflection region 103 is changed.
  • FIG. 6 is an explanatory diagram illustrating a change in the optical spectrum after being amplified in the amplification region 104.
  • FIG. 7 is an explanatory diagram illustrating a state in which the S21 response regarding PPR increases due to amplification by the amplification region 104.
  • FIG. 8 is a cross-sectional view showing a partial configuration of another optical device according to the embodiment of the present invention.
  • FIG. 9A is a perspective view showing a partial configuration of another optical device according to the embodiment of the present invention.
  • FIG. 9B is a perspective view showing a partial configuration of another optical device according to the embodiment of the present invention.
  • This optical device has a distributed feedback type laser active region 101, a passive waveguide 102 optically connected to one end of the laser active region 101 in the waveguide direction, and optical to one end of the passive waveguide 102 in the waveguide direction.
  • the reflection region 103 is provided with the reflection region 103, and the amplification region 104 optically connected to one end of the reflection region 103 in the waveguide direction.
  • the passive waveguide 102 In the passive waveguide 102, reflection points 105 and 106, which are locations where reflection occurs, are formed at both ends in the waveguide direction. Further, the passive waveguide 102 has an optical waveguide structure, has a Fabry-Perot type resonator structure, and can form a Fabry-Perot (FP) mode. Further, the passive waveguide 102 can form a composite mode with the laser active region 101.
  • FP Fabry-Perot
  • the optical device includes, for example, a substrate 111 and a lower clad layer 112 formed on the substrate 111, as shown in FIG. Note that FIG. 2 shows a cross section parallel to the waveguide direction and perpendicular to the plane of the substrate 111.
  • the substrate 111 can be composed of, for example, InP which is made n-type by doping with Si. Further, the substrate 111 may be composed of, for example, GaAs, SiO 2 , Si, or SiC.
  • the lower clad layer 112 can be composed of, for example, an n-shaped InP. Further, the lower clad layer 112 may be composed of SiO 2 .
  • the active layer 113 is formed on the lower clad layer 112, and the diffraction grating 114 is formed on the active layer 113.
  • the active layer 113 can have, for example, a multiple quantum well structure made of InGaAsP or InGaAlAs. Further, the active layer 113 may have a bulk structure made of the above-mentioned material.
  • the diffraction grating 114 is composed of a concave portion and a convex portion adjacent to the concave portion, and these are arranged in the waveguide direction. In the diffraction grating 114, a portion (1/4 shift portion) whose phase is ⁇ inverted can be formed in a part (central portion) in the waveguide direction. The phase shift of this partial 1/4 shift section enables single-mode light emission at the Bragg wavelength.
  • the core 115 is formed.
  • the core 115 can be composed of, for example, InGaAlAs whose lattice constant in the plane direction of the substrate 111 is lattice-matched to InP.
  • the core 116 is formed, and the diffraction grating 117 can be formed on the core 116.
  • the core 115 can be composed of, for example, InGaAlAs whose lattice constant in the plane direction of the substrate 111 is lattice-matched to InP.
  • the diffraction grating 117 is composed of a concave portion and a convex portion adjacent to the concave portion, and these are arranged in the waveguide direction.
  • the reflection region 103 can have a DBR mirror structure, but the present invention is not limited to this, and the reflection region 103 can also be composed of a mere air gap, a ring resonator, or the like.
  • the active layer 118 is formed on the lower clad layer 112.
  • the active layer 118 can have, for example, a multiple quantum well structure made of InGaAsP or InGaAlAs.
  • An upper clad layer 119 is formed on the active layer 113, the core 115, the core 116, and the active layer 118.
  • the active layer 113 extends in the waveguide direction, and the shape of the cross section perpendicular to the waveguide direction is the same as that of the core 115.
  • the core 115 and the core 116 also extend in the waveguide direction.
  • the active layer 118 also extends in the waveguide direction, and the shape of the cross section perpendicular to the waveguide direction is the same as that of the core 116.
  • the upper clad layer 119 covers the active layer 113, the core 115, the core 116, and the active layer 118, and is formed on the lower clad layer 112.
  • the upper clad layer 119 can be composed of, for example, InP.
  • a part of the upper clad layer 119 above the active layer 113 is, for example, p-shaped. Further, the upper clad layer 119 in other regions including the upper part of the core 115 is i-type (non-doped).
  • the n-type lower clad layer 112, the i-type active layer 113, and the upper clad layer 119 are p-shaped regions. It can be laminated to form a so-called vertical n-ip structure.
  • a so-called longitudinal current injection type current injection structure can be configured by the p-type region of the lower clad layer 112 and the upper clad layer 119.
  • the current injection mechanism may be configured to include an n-type layer and a p-type layer arranged with the active layer 113 interposed therebetween. For example, an n-electrode is formed on the n-type layer, and a p-electrode is formed on the p-type layer. This is a so-called lateral current injection type current injection structure.
  • the laser active region 101 of the optical waveguide structure having the active layer 113 as the core and the passive waveguide 102 of the optical waveguide structure by the core 115 can be formed by directly joining each other.
  • the reflection point 105 is effectively formed for the light traveling from the passive waveguide 102 to the laser active region 101 by the reflection at the reflection portion by the diffraction grating 114 of the laser active region 101.
  • the position of the reflection point 105 configured in this way deviates from the boundary between the laser active region 101 and the passive waveguide 102 by the penetration depth of light.
  • the passive waveguide 102 of the optical waveguide structure formed by the core 115 and the reflection region 103 of the optical waveguide structure formed by the core 116 can be formed by directly joining each other.
  • the reflection point 106 is effectively formed for the light traveling from the passive waveguide 102 to the reflection region 103 due to the reflection at the reflection portion by the diffraction grating 117 of the reflection region 103.
  • the reflection point 105 and the reflection point 106 can be formed by another structure.
  • Each layer structure made of the above-mentioned compound semiconductor can be formed by, for example, epitaxial growth by a known organic metal vapor phase growth method or the like. Further, each core, each diffraction grating, and the like can be formed by processing (patterning) by a known lithography technique and etching technique.
  • spot size conversion structure in the light emitting portion of the optical device to reduce the optical coupling loss with the optical fiber or the external optical waveguide.
  • the spot size conversion structure it is possible to adiabatically shift the mode from the conversion core tapered as the distance from the connecting point to the spot size conversion core region.
  • this optical device uses photon-photon resonance (PPR) generated according to the frequency difference between the frequency of the light generated (oscillated) in the laser active region 101 and the frequency of the FP mode of the passive waveguide 102.
  • PPR photon-photon resonance
  • the PPR has a peak wavelength of the transmission spectrum 201 in the laser active region 101 (peak wavelength in the oscillation wavelength) and a peak wavelength of the transmission spectrum 202 in the passive waveguide 102 (peak wavelength in the FP mode). It occurs according to the frequency difference.
  • the PPR frequency is defined within the FSR, which is determined by the length of the passive waveguide 102.
  • the operating range of the desired PPR frequency can be obtained by adjusting the FSR by changing the length of the passive waveguide 102 according to the application.
  • the S21 response intensity at the PPR frequency increases as the area of the overlapping region 203 of each spectrum shown in FIG. 3 increases.
  • PPR can be expressed regardless of the length of the passive waveguide 102 in the waveguide direction.
  • a wide modulation band by PPR capable of high-speed direct modulation can be realized with a short element length, the effect of PPR can be stably exhibited, and the controllability is high. High-speed optical devices are feasible.
  • the reflection region 103 optically connected to the rear stage of the passive waveguide 102 makes it possible to adjust the optical feedback light intensity to the laser active region 101 of the front stage.
  • the reflection region 103 is a DBR mirror
  • the reflectance can be adjusted by changing the length (length in the waveguide direction) of the reflection region 103 as shown in FIG.
  • FIG. 5 shows an optical spectrum when the reflectance of the reflection region 103 is changed.
  • the transmission spectrum 202 expands to the transmission spectrum 202a, the light intensity of the feedback side mode increases, and the overlap area of the spectra increases only in the overlap region 204 shown in FIG. do.
  • FIG. 6 shows the optical spectrum after being amplified in the amplification region 104.
  • the transmission spectrum 201 expands to the transmission spectrum 201a
  • the transmission spectrum 202 expands to the transmission spectrum 202b
  • the effective optical spectrum overlapping region 205 increases.
  • FIG. 7 shows the S21 small signal response of the laser using PPR.
  • the frequency of the Fabry-Perot mode of the passive waveguide 102 can be adjusted by using a frequency adjustment mechanism.
  • the frequency adjustment mechanism can be composed of either injecting a current into the passive waveguide 102, controlling the temperature, or applying an electric field, and adjusts the frequency of the Fabry-Perot mode.
  • frequency control can be realized by providing a resistance heating type heater made of a metal such as tantalum as a temperature control mechanism.
  • the adjustment of the feedback light intensity changes the reflectance of the reflection region 103.
  • the desired reflectance can be controlled by changing the length of the reflection region 103 in the waveguide direction or by providing a heater on the reflection region 103 and adjusting the Bragg wavelength.
  • the reflection region 103 can be a simple air gap or a ring resonator.
  • the optical output can be amplified by, for example, injecting a current into the amplification region 104.
  • a DBR region 121 optically connected to the other end of the laser active region 101 in the waveguide direction may be further provided.
  • FIG. 8 shows a cross section parallel to the waveguide direction and perpendicular to the plane of the substrate 111. Further, in FIG. 8, the reflection region 103 and the amplification region 104 are omitted.
  • the core 122 is formed on the lower clad layer 112, and the diffraction grating 123 is formed on the core 122.
  • the core 122 can be composed of, for example, InGaAlAs.
  • the DBR region 121 By providing the DBR region 121 in this way, single mode can be realized as shown below without using phase shift.
  • a transmission peak on the short wave side of the laser active region 101 can be selected, and laser operation and band expansion by PPR can be performed.
  • the fringe peak on the longer wavelength side than the peak wavelength of the reflection spectrum of the DBR region 121 and the peak of the FP mode are concentrated in the stop band of the transmission spectrum in the laser active region 101.
  • most of the modes in the region slightly longer than the peak of the transmission spectrum, which is important for PPR expression are attenuated, and stable single-mode operation and PPR expression are possible.
  • the width of the passive waveguide 102 (core 115) on the side of the laser active region 101 (the width of the core 115 at the connection portion with the active layer 113) and the laser active region 101 of the passive waveguide 102 (core 115)?
  • the reflectance of the reflection points 105 and 106 can be adjusted by making the width of the reflection point 106 on the opposite side different, and the S21 response at the PPR frequency and the S21 response at the PPR frequency can be adjusted by the same principle as the enhancement of the PPR application shown in FIG. , PPR frequency can be adjusted.
  • the core 115 of the passive waveguide 102 is butt-coupled to the active layer 113 (core) of the laser active region 101 so that at least one of the thickness and the width is different from the active layer 113 (core), thereby reflecting these connection points. It can be point 105.
  • the connection point between the laser active region 101 and the passive waveguide 102 can be set as the reflection point 105.
  • the reflection point 105 can be formed by forming the active layer 113 with a multiple quantum structure made of InGaAlAs and the core 115 made of InGaAlAs or InGaAsP.
  • the reflection point 105 can also be formed by forming a groove extending in the direction intersecting the waveguide direction in the upper clad layer 119 at the connection point between the laser active region 101 and the passive waveguide 102. By forming such a groove, an inflection point of the refractive index is formed at this point, and the reflection point 105 can be obtained.
  • the difference in refractive index between the lower clad layer 112 and the upper clad layer 119a and the active layer 113 (core 115) can be increased, and the active layer can be increased. It will be possible to trap light more strongly in 113. Due to this stronger light confinement, the interaction between the light returned from the passive waveguide 102 and the light in the laser active region 101 can be further increased. As a result, the band can be increased by PPR without increasing the reflection return component from the laser active region 101.
  • a high reflectance (HR) coating is not required on the end face of the passive waveguide 102, and the structure can be easily formed. ..
  • HR high reflectance
  • the frequency difference between the transmission spectrum 201 in the laser active region 101 and the transmission spectrum 202 in the passive waveguide 102 is large. Even in this case, PPR is generated, so that it is possible to design to increase the band in the high frequency region.
  • the diffraction grating 114 having a large degree of refractive index modulation can be formed in the laser active region 101, the laser active region 101 by the diffraction grating 114 having a large coupling coefficient can be realized.
  • the width of the stopband of the laser active region 101 becomes large, so that most of the maximum peaks of the transmission spectrum of the passive waveguide 102 are contained in the stopband.
  • the instability of the laser operation due to the interference between the peak of the oscillated light in the laser active region 101 and the peak of the FP mode in the passive waveguide 102 is unlikely to occur.
  • the FP mode In a DFB laser with a small coupling coefficient of a general diffraction grating, the FP mode hardly enters the stop band of the DFB laser, so that operation instability is likely to occur due to interference between the FP mode and the DFB mode.
  • the operation can also be affected by adjusting the gain spectrum of the material constituting the active layer 113, but it is possible to select only the DFB and FP mode peaks, which are smaller than when the coupling coefficient is small. Therefore, single mode operation and stable operation (easiness of expression of mode hop and PPR) are possible.
  • the intensity of the return light (end face reflectance) from the passive waveguide 102 is defined by the structure.
  • the return light is appropriately amplified or attenuated during operation.
  • the shape (cross-sectional shape) of the core 115 of the passive waveguide 102 is changed.
  • the cross-sectional shape of the core 115 may be narrowed or widened, thickened or thinned with respect to the cross-sectional shape of the active layer 113.
  • the diameter of the core 115 may be reduced or increased as the distance from the active layer 113 increases.
  • the core 115a can be formed in which the shape of the cross section perpendicular to the waveguide direction is multi-staged in the thickness direction.
  • the shape of the cross section perpendicular to the waveguide direction may be multi-staged in the thickness direction, and the upper stage and the lower stage may be core 115b made of different materials.
  • the laser active region, the passive waveguide, the reflection region and the amplification region are provided, so that the PPR frequency and the intensity of the feedback reflected light that determines this response and the intensity of the reflected light are determined.
  • the intensity of the output light can be controlled independently.

Abstract

This optical device is equipped with a laser-active region (101) of the distributed feedback type, a passive waveguide (102) which is optically connected to one end of the laser-active region (101) in the guided wave direction, a reflection region (103) which is optically connected to the one end of the passive waveguide (102) in the guided wave direction, and an amplification region (104) which is optically connected to the one end of the reflection region (103) in the guided wave direction. A reflection point (105) and a reflection point (106), which are locations where a reflection is produced, are respectively formed on both ends of the passive waveguide (102) in the guided wave direction. In addition, the passive waveguide (102) is equipped with an optical waveguide structure, is configured as a resonator structure of the Fabry-Perot type, and is capable of Fabry-Perot mode formation.

Description

光デバイスOptical device
 本発明は、半導体レーザによる光デバイスに関する。 The present invention relates to an optical device using a semiconductor laser.
 近年データセンタにおけるデータトラフィックは、スマートフォンやクラウドサービスの普及とともに年々増大している。このデータトラフィックを支えるためには、光送信器の小型化、低消費電力化、低コスト化が重要となる。代表的な光送信器である半導体レーザは、大容量の信号を長距離に渡って伝送可能である。情報通信システムに用いられる半導体レーザには、まず、半導体レーザの外部に設けた変調器により信号を変調する外部変調レーザがある。また、情報通信システムに用いられる半導体レーザには、活性領域に注入する電流を変調させることで、直接的に出力光を変調する直接変調レーザがある。 In recent years, data traffic in data centers has been increasing year by year with the spread of smartphones and cloud services. In order to support this data traffic, it is important to reduce the size, power consumption, and cost of the optical transmitter. A semiconductor laser, which is a typical optical transmitter, can transmit a large-capacity signal over a long distance. As a semiconductor laser used in an information communication system, first, there is an external modulation laser that modulates a signal by a modulator provided outside the semiconductor laser. Further, the semiconductor laser used in the information communication system includes a directly modulated laser that directly modulates the output light by modulating the current injected into the active region.
 直接変調レーザは、外部変調レーザに比べて、小型、低消費電力、低コストなどの特長がある。このため、直接変調レーザは、データセンタ内、データセンタ間における比較的短距離向けの情報通信システムの送信器として広く用いられている。しかしながら、直接変調レーザは、外部変調レーザと比較して変調帯域が狭いため、変調速度が遅いという問題があった。これは、高速動作のために電流注入を大きくした場合、半導体レーザ活性層の発熱によって、発光効率が低下し、また、変調帯域の増加が制限されるからである。一般的なレーザでは、内因的な帯域は、緩和振動周波数によって律速される。 The direct modulation laser has features such as small size, low power consumption, and low cost compared to the external modulation laser. For this reason, the direct modulation laser is widely used as a transmitter of an information communication system for a relatively short distance in or between data centers. However, the direct modulation laser has a problem that the modulation speed is slow because the modulation band is narrower than that of the external modulation laser. This is because when the current injection is increased for high-speed operation, the heat generation of the semiconductor laser active layer lowers the luminous efficiency and limits the increase in the modulation band. In a typical laser, the intrinsic band is regulated by the relaxation vibration frequency.
 このような帯域制限の問題を解決するため、光子と光子の共鳴現象である光子-光子共鳴(Photon-Photon Resonance;PPR)を用いたレーザ構造が提案されている。PPRを利用した直接変調レーザにおいては、従来、応答が低下していた、緩和振動周波数よりも高い周波数領域に、新たな共鳴ピークを発現させることで、変調帯域の拡大を可能としている(非特許文献1、非特許文献2、非特許文献3)。 In order to solve such a problem of band limitation, a laser structure using photon-photon resonance (PPR), which is a resonance phenomenon between photons and photons, has been proposed. In the direct modulation laser using PPR, it is possible to expand the modulation band by expressing a new resonance peak in the frequency region higher than the relaxation vibration frequency, which has been conventionally degraded (non-patented). Document 1, Non-Patent Document 2, Non-Patent Document 3).
 PPRを利用した直接変調レーザでは、分布帰還型(Distributed Feedback;DFB)レーザ活性領域と、光の帰還機構を担うパッシブ導波路とが、隣接して接続された構造を有する。パッシブ導波路の一端に、レーザ活性領域が光学的に接続されている。また、パッシブ導波路の両端が反射点となる(非特許文献2,非特許文献3)。レーザ活性領域で生じるレーザ光は、パッシブ導波路による光帰還領域で形成されるファブリペロー型の共振モードと相互作用し、位相整合条件が満たされる場合にPPRが生じる。パッシブ導波路では、例えば、注入される電流による屈折率変化によって、位相を調整することで、PPRの状態を制御する。PPR周波数は、およそレーザ発振モードとファブリペロー型の共振ピークの周波数差で定義される。 The direct modulation laser using PPR has a structure in which a distributed feedback type (DFB) laser active region and a passive waveguide responsible for a light feedback mechanism are connected adjacent to each other. A laser active region is optically connected to one end of the passive waveguide. Further, both ends of the passive waveguide serve as reflection points (Non-Patent Document 2 and Non-Patent Document 3). The laser beam generated in the laser active region interacts with the Fabry-Perot type resonance mode formed in the optical feedback region by the passive waveguide, and PPR is generated when the phase matching condition is satisfied. In a passive waveguide, for example, the state of PPR is controlled by adjusting the phase by changing the refractive index due to the injected current. The PPR frequency is approximately defined by the frequency difference between the laser oscillation mode and the Fabry-Pérot type resonant peak.
 従って、PPRによる応答の増強が生じる周波数は、パッシブ導波路による光帰還領域の長さで規定される自由スペクトル範囲(Free Spectral Range:FSR)内に定義される。例えば、非特許文献1においては、約43GHzにおいてPPRを生じるために光帰還領域の長さは、300μmに限定されている。この比較的長い光帰還領域の位相制御には、大きな消費電力を要する。 Therefore, the frequency at which the response enhancement due to PPR occurs is defined within the free spectral range (FSR) defined by the length of the optical feedback region due to the passive waveguide. For example, in Non-Patent Document 1, the length of the optical feedback region is limited to 300 μm in order to generate PPR at about 43 GHz. Phase control in this relatively long optical feedback region requires a large amount of power consumption.
 ここで、例えば非特許文献2においては、導波路長を135μmとし、非特許文献3においては、導波路長を120μmとしており、非特許文献1と比較して、より大きなFSRが定義されている。このような構成とすることによって、レーザ発振モードとファブリペロー型の共振ピークの周波数差で決定するPPR周波数を、より大きく定義できる。さらに、上述した構成では、FSRが大きいために波長変化に対する位相変化が緩やかになるため、注入電流変化や温度変化に対して、比較的安定した動作が実現できる。 Here, for example, in Non-Patent Document 2, the waveguide length is 135 μm, and in Non-Patent Document 3, the waveguide length is 120 μm, and a larger FSR is defined as compared with Non-Patent Document 1. .. With such a configuration, the PPR frequency determined by the frequency difference between the laser oscillation mode and the Fabry-Perot type resonance peak can be defined to be larger. Further, in the above-described configuration, since the FSR is large, the phase change with respect to the wavelength change becomes gentle, so that relatively stable operation can be realized with respect to the injection current change and the temperature change.
 しかしながら、上記の技術では、位相制御によるPPR周波数の制御は可能であるものの、PPR周波数の制御と、PPR周波数における、レーザの電気─光応答(レーザS21)応答とを同時に制御することが困難である。また、比較的短共振器で構成されるPPRを用いたレーザ(非特許文献2)においては、光出力強度を補うために、例えば、利得媒質を用いた半導体光増幅器(Semiconductor Optical Amplifier;SOA)を用いて、出力光強度を補うことが必要になるものと考えられる。 However, with the above technique, although it is possible to control the PPR frequency by phase control, it is difficult to control the PPR frequency and the electric-optical response (laser S21) response of the laser at the same time at the PPR frequency. be. Further, in a laser using a PPR composed of a relatively short resonator (Non-Patent Document 2), in order to supplement the optical output intensity, for example, a semiconductor optical amplifier (SOA) using a gain medium is used. It is considered necessary to supplement the output light intensity by using.
 これらのように、従来技術においては、PPR周波数と、この応答を決定するフィードバックされる反射光の強さおよび出力光の強さとを、独立に制御できないという問題があった。 As described above, in the prior art, there is a problem that the PPR frequency and the intensity of the reflected reflected light and the intensity of the output light that determine this response cannot be controlled independently.
 本発明は、以上のような問題点を解消するためになされたものであり、PPR周波数と、この応答を決定するフィードバックされる反射光の強さおよび出力光の強さとが、独立に制御できるようにすることを目的とする。 The present invention has been made to solve the above problems, and the PPR frequency and the intensity of the reflected reflected light and the intensity of the output light that determine this response can be independently controlled. The purpose is to do so.
 本発明に係る光デバイスは、基板の上に形成された分布帰還型のレーザ活性領域と、基板の上に形成され、レーザ活性領域の導波方向の一端に光学的に接続され、導波方向の両端に反射点が形成された、光導波路構造によるファブリペロー型の共振器構造とされたパッシブ導波路と、基板の上に形成され、パッシブ導波路の一端に光学的に接続された反射領域と、基板の上に形成され、反射領域の一端に光学的に接続された増幅領域とを備え、レーザ活性領域で生成される光の周波数と、パッシブ導波路のファブリペローモードの周波数との周波数差に応じて発生する光子-光子共鳴を用いてレーザ発振させる。 The optical device according to the present invention has a distributed feedback type laser active region formed on a substrate and an optical device formed on a substrate and optically connected to one end of the laser active region in the waveguide direction. A passive waveguide having a Fabry-Pérot type resonator structure with an optical waveguide structure in which reflection points are formed at both ends of the substrate, and a reflection region formed on a substrate and optically connected to one end of the passive waveguide. And an amplification region formed on the substrate and optically connected to one end of the reflection region, the frequency of the light generated in the laser active region and the frequency of the Fabry-Pérot mode of the passive waveguide. Laser oscillation is performed using photon-photon resonance generated according to the difference.
 以上説明したように、本発明によれば、レーザ活性領域、パッシブ導波路に続き、反射領域および増幅領域を設けるので、PPR周波数と、この応答を決定するフィードバックされる反射光の強さおよび出力光の強さとが、独立に制御できる。 As described above, according to the present invention, the laser active region, the passive waveguide, the reflection region and the amplification region are provided, so that the PPR frequency and the intensity and output of the feedback reflected light that determines this response are provided. The intensity of light can be controlled independently.
図1は、本発明の実施の形態に係る光デバイスの構成を示す構成図である。FIG. 1 is a configuration diagram showing a configuration of an optical device according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る光デバイスの構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of an optical device according to an embodiment of the present invention. 図3は、PPRの発生について説明する説明図である。FIG. 3 is an explanatory diagram illustrating the generation of PPR. 図4は、反射領域103の長さと反射率との関係を示す特性図である。FIG. 4 is a characteristic diagram showing the relationship between the length of the reflection region 103 and the reflectance. 図5は、反射領域103の反射率を変更した場合の、各領域における光スペクトルを示す特性図である。FIG. 5 is a characteristic diagram showing an optical spectrum in each region when the reflectance of the reflection region 103 is changed. 図6は、増幅領域104で増幅された後の光スペクトルの変化を説明する説明図である。FIG. 6 is an explanatory diagram illustrating a change in the optical spectrum after being amplified in the amplification region 104. 図7は、増幅領域104による増幅でPPRに関するS21応答が増大する状態を説明する説明図である。FIG. 7 is an explanatory diagram illustrating a state in which the S21 response regarding PPR increases due to amplification by the amplification region 104. 図8は、本発明の実施の形態に係る他の光デバイスの一部構成を示す断面図である。FIG. 8 is a cross-sectional view showing a partial configuration of another optical device according to the embodiment of the present invention. 図9Aは、本発明の実施の形態に係る他の光デバイスの一部構成を示す斜視図である。FIG. 9A is a perspective view showing a partial configuration of another optical device according to the embodiment of the present invention. 図9Bは、本発明の実施の形態に係る他の光デバイスの一部構成を示す斜視図である。FIG. 9B is a perspective view showing a partial configuration of another optical device according to the embodiment of the present invention.
 以下、本発明の実施の形態に係る光デバイスについて図1を参照して説明する。この光デバイスは、分布帰還型のレーザ活性領域101と、レーザ活性領域101の導波方向の一端に光学的に接続されたパッシブ導波路102と、パッシブ導波路102の導波方向の一端に光学的に接続された反射領域103と、反射領域103の導波方向の一端に光学的に接続された増幅領域104とを備える。 Hereinafter, the optical device according to the embodiment of the present invention will be described with reference to FIG. This optical device has a distributed feedback type laser active region 101, a passive waveguide 102 optically connected to one end of the laser active region 101 in the waveguide direction, and optical to one end of the passive waveguide 102 in the waveguide direction. The reflection region 103 is provided with the reflection region 103, and the amplification region 104 optically connected to one end of the reflection region 103 in the waveguide direction.
 パッシブ導波路102は、導波方向の両端に、反射が発生する箇所である反射点105,反射点106が形成されている。また、パッシブ導波路102は、光導波路構造を備え、ファブリペロー型の共振器構造とされ、ファブリペロー(Fabry-Perot;FP)モードが形成可能とされている。また、パッシブ導波路102は、レーザ活性領域101との複合モードが形成可能とされている。 In the passive waveguide 102, reflection points 105 and 106, which are locations where reflection occurs, are formed at both ends in the waveguide direction. Further, the passive waveguide 102 has an optical waveguide structure, has a Fabry-Perot type resonator structure, and can form a Fabry-Perot (FP) mode. Further, the passive waveguide 102 can form a composite mode with the laser active region 101.
 この光デバイスは、例えば、図2に示すように、基板111と、基板111の上に形成された下部クラッド層112とを備える。なお、図2は、導波方向に平行で、基板111の面に垂直な断面を示している。基板111は、例えば、Siをドープすることでn型とされたInPから構成することができる。また、基板111は、例えば、GaAs,SiO2,Si,SiCから構成することもできる。下部クラッド層112は、例えば、n型とされたInPから構成することができる。また、下部クラッド層112は、SiO2から構成することもできる。 The optical device includes, for example, a substrate 111 and a lower clad layer 112 formed on the substrate 111, as shown in FIG. Note that FIG. 2 shows a cross section parallel to the waveguide direction and perpendicular to the plane of the substrate 111. The substrate 111 can be composed of, for example, InP which is made n-type by doping with Si. Further, the substrate 111 may be composed of, for example, GaAs, SiO 2 , Si, or SiC. The lower clad layer 112 can be composed of, for example, an n-shaped InP. Further, the lower clad layer 112 may be composed of SiO 2 .
 レーザ活性領域101において、下部クラッド層112の上に活性層113が形成され、活性層113の上には、回折格子114が形成されている。活性層113は、例えば、InGaAsPあるいはInGaAlAsからなる多重量子井戸構造とすることができる。また、活性層113は、上記材料によるバルク構造とすることもできる。回折格子114は、凹部および凹部に隣接する凸部から構成され、これらは導波方向に配列されている。なお、回折格子114には、導波方向の一部(中央部)に、位相がπ反転する部分(1/4シフト部)を形成することができる。この部分1/4シフト部の位相シフトにより、ブラッグ波長における単一モード発光が可能となる。 In the laser active region 101, the active layer 113 is formed on the lower clad layer 112, and the diffraction grating 114 is formed on the active layer 113. The active layer 113 can have, for example, a multiple quantum well structure made of InGaAsP or InGaAlAs. Further, the active layer 113 may have a bulk structure made of the above-mentioned material. The diffraction grating 114 is composed of a concave portion and a convex portion adjacent to the concave portion, and these are arranged in the waveguide direction. In the diffraction grating 114, a portion (1/4 shift portion) whose phase is π inverted can be formed in a part (central portion) in the waveguide direction. The phase shift of this partial 1/4 shift section enables single-mode light emission at the Bragg wavelength.
 また、パッシブ導波路102においては、コア115が形成されている。コア115は、例えば、基板111の平面方向の格子定数が、InPに格子整合するInGaAlAsから構成することができる。 Further, in the passive waveguide 102, the core 115 is formed. The core 115 can be composed of, for example, InGaAlAs whose lattice constant in the plane direction of the substrate 111 is lattice-matched to InP.
 また、反射領域103においては、コア116が形成され、コア116の上には、回折格子117を形成することができる。コア115は、例えば、基板111の平面方向の格子定数が、InPに格子整合するInGaAlAsから構成することができる。回折格子117は、凹部および凹部に隣接する凸部から構成され、これらは導波方向に配列されている。このように、反射領域103は、DBRミラー構造とすることができるが、これに限るものではなく、反射領域103は、単なる空気のギャップやリング共振器などから構成することもできる。 Further, in the reflection region 103, the core 116 is formed, and the diffraction grating 117 can be formed on the core 116. The core 115 can be composed of, for example, InGaAlAs whose lattice constant in the plane direction of the substrate 111 is lattice-matched to InP. The diffraction grating 117 is composed of a concave portion and a convex portion adjacent to the concave portion, and these are arranged in the waveguide direction. As described above, the reflection region 103 can have a DBR mirror structure, but the present invention is not limited to this, and the reflection region 103 can also be composed of a mere air gap, a ring resonator, or the like.
 また、増幅領域104には、下部クラッド層112の上に活性層118が形成されている。活性層118は、例えば、InGaAsPあるいはInGaAlAsからなる多重量子井戸構造とすることができる。 Further, in the amplification region 104, the active layer 118 is formed on the lower clad layer 112. The active layer 118 can have, for example, a multiple quantum well structure made of InGaAsP or InGaAlAs.
 活性層113、コア115、コア116、活性層118の上には、上部クラッド層119が形成されている。例えば、活性層113は、導波方向に延在し、導波方向に垂直な断面の形状が、コア115と同一とされている。同様に、コア115およびコア116も、導波方向に延在している。また、活性層118も、導波方向に延在し、導波方向に垂直な断面の形状が、コア116と同一とされている。また、上部クラッド層119は、活性層113、コア115、コア116、活性層118を覆って、下部クラッド層112の上に形成されている。上部クラッド層119は、例えば、InPから構成することができる。なお、活性層113の上部の上部クラッド層119の一部は、例えばp型とされている。また、コア115の上部を含めて他の領域の上部クラッド層119は、i型(ノンドープ)とされている。 An upper clad layer 119 is formed on the active layer 113, the core 115, the core 116, and the active layer 118. For example, the active layer 113 extends in the waveguide direction, and the shape of the cross section perpendicular to the waveguide direction is the same as that of the core 115. Similarly, the core 115 and the core 116 also extend in the waveguide direction. Further, the active layer 118 also extends in the waveguide direction, and the shape of the cross section perpendicular to the waveguide direction is the same as that of the core 116. Further, the upper clad layer 119 covers the active layer 113, the core 115, the core 116, and the active layer 118, and is formed on the lower clad layer 112. The upper clad layer 119 can be composed of, for example, InP. A part of the upper clad layer 119 above the active layer 113 is, for example, p-shaped. Further, the upper clad layer 119 in other regions including the upper part of the core 115 is i-type (non-doped).
 レーザ活性領域101においては、厚さ方向(基板111の平面の法線方向)に、n型の下部クラッド層112、i型の活性層113、上部クラッド層119のp型とされている領域が積層され、いわゆる縦型のn-i-p構造とすることができる。この場合、下部クラッド層112および上部クラッド層119のp型とされている領域により、いわゆる縦方向電流注入型の電流注入構造を構成することができる。また、レーザ活性領域101において、電流注入機構として、活性層113を挟んで配置されたn型層およびp型層を備える構成とすることもできる。例えば、n型層の上には、n電極が形成され、p型層の上には、p電極が形成された構成することができる。これは、いわゆる、横方向電流注入型の電流注入構造である。 In the laser active region 101, in the thickness direction (normal direction of the plane of the substrate 111), the n-type lower clad layer 112, the i-type active layer 113, and the upper clad layer 119 are p-shaped regions. It can be laminated to form a so-called vertical n-ip structure. In this case, a so-called longitudinal current injection type current injection structure can be configured by the p-type region of the lower clad layer 112 and the upper clad layer 119. Further, in the laser active region 101, the current injection mechanism may be configured to include an n-type layer and a p-type layer arranged with the active layer 113 interposed therebetween. For example, an n-electrode is formed on the n-type layer, and a p-electrode is formed on the p-type layer. This is a so-called lateral current injection type current injection structure.
 ここで、例えば、活性層113をコアとした光導波路構造のレーザ活性領域101と、コア115による光導波路構造のパッシブ導波路102とは、直接接合する形で形成することができる。この構成とすることで、レーザ活性領域101の回折格子114による反射部での反射により、パッシブ導波路102からレーザ活性領域101へ進行する光に対し、実効的に反射点105が形成される。このように構成される反射点105の位置は、光の侵入長分だけ、レーザ活性領域101とパッシブ導波路102との境界からずれる。 Here, for example, the laser active region 101 of the optical waveguide structure having the active layer 113 as the core and the passive waveguide 102 of the optical waveguide structure by the core 115 can be formed by directly joining each other. With this configuration, the reflection point 105 is effectively formed for the light traveling from the passive waveguide 102 to the laser active region 101 by the reflection at the reflection portion by the diffraction grating 114 of the laser active region 101. The position of the reflection point 105 configured in this way deviates from the boundary between the laser active region 101 and the passive waveguide 102 by the penetration depth of light.
 また、コア115による光導波路構造のパッシブ導波路102と、コア116による光導波路構造の反射領域103とは、直接接合する形で形成することができる。この構成とすることで、反射領域103の回折格子117による反射部での反射により、パッシブ導波路102から反射領域103へ進行する光に対し、実効的に反射点106が形成される。なお、他の構造により、反射点105,反射点106を形成することもできる。 Further, the passive waveguide 102 of the optical waveguide structure formed by the core 115 and the reflection region 103 of the optical waveguide structure formed by the core 116 can be formed by directly joining each other. With this configuration, the reflection point 106 is effectively formed for the light traveling from the passive waveguide 102 to the reflection region 103 due to the reflection at the reflection portion by the diffraction grating 117 of the reflection region 103. It should be noted that the reflection point 105 and the reflection point 106 can be formed by another structure.
 上述した化合物半導体による各層構成は、例えば、公知の有機金属気相成長法などによるエピタキシャル成長で形成することができる。また、公知のリソグラフィ技術およびエッチング技術により加工(パターニング)することで、各コアや、各回折格子などが形成できる。 Each layer structure made of the above-mentioned compound semiconductor can be formed by, for example, epitaxial growth by a known organic metal vapor phase growth method or the like. Further, each core, each diffraction grating, and the like can be formed by processing (patterning) by a known lithography technique and etching technique.
 なお光デバイスの光出射部に、光ファイバや外部の光導波路との光学的な結合損失を低減するためのスポットサイズ変換構造を設けることもできる。スポットサイズ変換構造は、接続する箇所より離れるほど先細りとされた変換コアから、断熱的にスポットサイズ変換用コア領域にモードを遷移させることが可能である。 It is also possible to provide a spot size conversion structure in the light emitting portion of the optical device to reduce the optical coupling loss with the optical fiber or the external optical waveguide. In the spot size conversion structure, it is possible to adiabatically shift the mode from the conversion core tapered as the distance from the connecting point to the spot size conversion core region.
 また、この光デバイスは、レーザ活性領域101で生成(発振)される光の周波数と、パッシブ導波路102のFPモードの周波数との周波数差に応じて発生する光子-光子共鳴(PPR)を用いてレーザ発振させる。PPRは、図3に示すように、レーザ活性領域101における透過スペクトル201のピーク波長(発振波長におけるピーク波長)と、パッシブ導波路102における透過スペクトル202のピーク波長(FPモードのピーク波長)との周波数差に応じて発生する。 Further, this optical device uses photon-photon resonance (PPR) generated according to the frequency difference between the frequency of the light generated (oscillated) in the laser active region 101 and the frequency of the FP mode of the passive waveguide 102. Laser oscillates. As shown in FIG. 3, the PPR has a peak wavelength of the transmission spectrum 201 in the laser active region 101 (peak wavelength in the oscillation wavelength) and a peak wavelength of the transmission spectrum 202 in the passive waveguide 102 (peak wavelength in the FP mode). It occurs according to the frequency difference.
 従って、PPR周波数は、パッシブ導波路102の長さで決定されるFSR内に定義される。用途に応じて、パッシブ導波路102の長さを変化させて、FSRを調整することで、所望のPPR周波数の動作範囲が得られる。なおPPR周波数におけるS21応答強度は、図3に示すそれぞれのスペクトルの重なり領域203の面積が大きいほど、大きくなる。なお、この光デバイスでは、パッシブ導波路102の導波方向の長さにかかわらず、PPRを発現させることができる。実施の形態に係る光デバイスによれば、高速直接変調が可能なPPRによる広い変調帯域を短い素子長で実現可能であり、PPRの効果を安定的に発現させることが可能となり、制御性の高い高速光デバイスが実現可能である。 Therefore, the PPR frequency is defined within the FSR, which is determined by the length of the passive waveguide 102. The operating range of the desired PPR frequency can be obtained by adjusting the FSR by changing the length of the passive waveguide 102 according to the application. The S21 response intensity at the PPR frequency increases as the area of the overlapping region 203 of each spectrum shown in FIG. 3 increases. In this optical device, PPR can be expressed regardless of the length of the passive waveguide 102 in the waveguide direction. According to the optical device according to the embodiment, a wide modulation band by PPR capable of high-speed direct modulation can be realized with a short element length, the effect of PPR can be stably exhibited, and the controllability is high. High-speed optical devices are feasible.
 ここで、パッシブ導波路102の後段に光接続された反射領域103によって、前段のレーザ活性領域101への光フィードバック光強度調節することが可能となる。例えば、反射領域103がDBRミラーの場合、図4に示すように、反射領域103の長さ(導波方向長さ)を変更することで、反射率を調整できる。 Here, the reflection region 103 optically connected to the rear stage of the passive waveguide 102 makes it possible to adjust the optical feedback light intensity to the laser active region 101 of the front stage. For example, when the reflection region 103 is a DBR mirror, the reflectance can be adjusted by changing the length (length in the waveguide direction) of the reflection region 103 as shown in FIG.
 図5に、反射領域103の反射率を変更した場合の光スペクトルを示す。反射領域103の反射率を上昇させると、透過スペクトル202が透過スペクトル202aに拡大し、フィードバックされるサイドモードの光強度が増大し、図5に示した重なり領域204だけ、スペクトルの重なり面積が増大する。 FIG. 5 shows an optical spectrum when the reflectance of the reflection region 103 is changed. When the reflectance of the reflection region 103 is increased, the transmission spectrum 202 expands to the transmission spectrum 202a, the light intensity of the feedback side mode increases, and the overlap area of the spectra increases only in the overlap region 204 shown in FIG. do.
 また、反射領域103の後段には、利得媒質である活性層118で構成される増幅領域104が設けられており、光強度を調節できる。図6は、増幅領域104で増幅された後の光スペクトルを示している。図6から明らかなように、光を増幅すると、透過スペクトル201が透過スペクトル201aに拡大し、透過スペクトル202が透過スペクトル202bに拡大し、実効的な光スペクトルの重なり領域205が増大する。 Further, in the subsequent stage of the reflection region 103, an amplification region 104 composed of an active layer 118 which is a gain medium is provided, and the light intensity can be adjusted. FIG. 6 shows the optical spectrum after being amplified in the amplification region 104. As is clear from FIG. 6, when light is amplified, the transmission spectrum 201 expands to the transmission spectrum 201a, the transmission spectrum 202 expands to the transmission spectrum 202b, and the effective optical spectrum overlapping region 205 increases.
 図7は、PPRを用いたレーザのS21小信号応答を示している。反射領域103の反射率を上げて実効的な光スペクトルの重なり領域205が増大した結果、PPR周波数におけるS21応答が増加する。 FIG. 7 shows the S21 small signal response of the laser using PPR. As a result of increasing the reflectance of the reflection region 103 and increasing the overlap region 205 of the effective optical spectrum, the S21 response at the PPR frequency increases.
 ところで、この光デバイスは、例えば、周波数調整機構を用いることで、パッシブ導波路102のファブリペローモードの周波数が調整可能である。周波数調整機構は、パッシブ導波路102に電流を注入する、温度を制御する、電界を印加するのいずれかから構成でき、ファブリペローモードの周波数を調整する。例えば、タンタルなどの金属から構成された抵抗加熱型のヒータを温度制御機構として設けることで、周波数制御が実現できる。さらに、フィードバック光強度の調整は、反射領域103の反射率を変更する。例えば、反射領域103の導波方向の長さを変更する、または反射領域103の上にヒータを設けて、ブラッグ波長を調整することで所望の反射率へと制御ができる。 By the way, in this optical device, for example, the frequency of the Fabry-Perot mode of the passive waveguide 102 can be adjusted by using a frequency adjustment mechanism. The frequency adjustment mechanism can be composed of either injecting a current into the passive waveguide 102, controlling the temperature, or applying an electric field, and adjusts the frequency of the Fabry-Perot mode. For example, frequency control can be realized by providing a resistance heating type heater made of a metal such as tantalum as a temperature control mechanism. Further, the adjustment of the feedback light intensity changes the reflectance of the reflection region 103. For example, the desired reflectance can be controlled by changing the length of the reflection region 103 in the waveguide direction or by providing a heater on the reflection region 103 and adjusting the Bragg wavelength.
 また、反射領域103は、単なる空気のギャップや、リング共振器とすることもできる。このような光デバイスの光出力が足りない場合は、増幅領域104に例えば電流注入するなどして、光出力を増幅可能である。これらの構成は、例えば、短い素子長で光出力が不足する場合に有効となる。 Further, the reflection region 103 can be a simple air gap or a ring resonator. When the optical output of such an optical device is insufficient, the optical output can be amplified by, for example, injecting a current into the amplification region 104. These configurations are effective, for example, when the optical output is insufficient with a short element length.
 これらの結果、この光デバイスによれば、PPRによる広い変調帯域と高い光出力を、さまざまな素子長で実現可能であり、また、PPRの効果を安定的に発現させることが可能となり、制御性の高い高速光デバイスが実現可能となる。 As a result, according to this optical device, a wide modulation band and high optical output by PPR can be realized with various element lengths, and the effect of PPR can be stably exhibited, and controllability can be achieved. High-speed optical devices with high speed can be realized.
 ところで、図8に示すように、レーザ活性領域101の導波方向の他端に光学的に接続されたDBR領域121をさらに備える構成とすることもできる。なお、図8は、導波方向に平行で、基板111の面に垂直な断面を示している。また、図8では、反射領域103、増幅領域104を省略している。DBR領域121は、下部クラッド層112の上に、コア122が形成され、コア122の上に回折格子123が形成されている。コア122は、例えば、InGaAlAsから構成することができる。 By the way, as shown in FIG. 8, a DBR region 121 optically connected to the other end of the laser active region 101 in the waveguide direction may be further provided. Note that FIG. 8 shows a cross section parallel to the waveguide direction and perpendicular to the plane of the substrate 111. Further, in FIG. 8, the reflection region 103 and the amplification region 104 are omitted. In the DBR region 121, the core 122 is formed on the lower clad layer 112, and the diffraction grating 123 is formed on the core 122. The core 122 can be composed of, for example, InGaAlAs.
 このようにDBR領域121を設けることで、位相シフトを用いることなく、以下に示すように、シングルモード化が実現できる。DBR領域121において、例えば、レーザ活性領域101の短波側の透過ピークを選択し、レーザ動作およびPPRによる帯域増大を行うことができる。この場合、レーザ活性領域101における透過スペクトルのストップバンド内に、DBR領域121の反射スペクトルのピーク波長より長波長側のフリンジピークやFPモードのピークが集中する。この結果、PPR発現に重要な透過スペクトルのピークよりもわずかに長波長側の領域のモードの多くが減衰され、安定的なシングルモード動作とPPR発現が可能となる。 By providing the DBR region 121 in this way, single mode can be realized as shown below without using phase shift. In the DBR region 121, for example, a transmission peak on the short wave side of the laser active region 101 can be selected, and laser operation and band expansion by PPR can be performed. In this case, the fringe peak on the longer wavelength side than the peak wavelength of the reflection spectrum of the DBR region 121 and the peak of the FP mode are concentrated in the stop band of the transmission spectrum in the laser active region 101. As a result, most of the modes in the region slightly longer than the peak of the transmission spectrum, which is important for PPR expression, are attenuated, and stable single-mode operation and PPR expression are possible.
 ところで、パッシブ導波路102(コア115)のレーザ活性領域101の側の幅(活性層113との接続部におけるコア115の幅)と、パッシブ導波路102(コア115)のレーザ活性領域101とは反対側の反射点106の幅とを異なる寸法とすることにより、反射点105と106の反射率を調節でき、図5に示したPPR応用の増強と同じ原理で、PPR周波数におけるS21応答、及び、PPR周波数を調節することが可能である。 By the way, what is the width of the passive waveguide 102 (core 115) on the side of the laser active region 101 (the width of the core 115 at the connection portion with the active layer 113) and the laser active region 101 of the passive waveguide 102 (core 115)? The reflectance of the reflection points 105 and 106 can be adjusted by making the width of the reflection point 106 on the opposite side different, and the S21 response at the PPR frequency and the S21 response at the PPR frequency can be adjusted by the same principle as the enhancement of the PPR application shown in FIG. , PPR frequency can be adjusted.
 次に、反射点105,反射点106の他の構成について説明する。例えば、パッシブ導波路102のコア115を、レーザ活性領域101の活性層113(コア)とは、厚さおよび幅の少なくとも1つが異なる構造として両者をバットカップルすることで、これらの接続箇所を反射点105とすることができる。 Next, other configurations of the reflection point 105 and the reflection point 106 will be described. For example, the core 115 of the passive waveguide 102 is butt-coupled to the active layer 113 (core) of the laser active region 101 so that at least one of the thickness and the width is different from the active layer 113 (core), thereby reflecting these connection points. It can be point 105.
 また、活性層113とコア115とを、各々異なる屈折率の材料から構成することでも、レーザ活性領域101とパッシブ導波路102との接続箇所を反射点105とすることができる。例えば、活性層113をInGaAlAsによる多重量子構造とし、コア115をInGaAlAsまたはInGaAsPから構成することで、反射点105が形成できる。 Further, by forming the active layer 113 and the core 115 from materials having different refractive indexes, the connection point between the laser active region 101 and the passive waveguide 102 can be set as the reflection point 105. For example, the reflection point 105 can be formed by forming the active layer 113 with a multiple quantum structure made of InGaAlAs and the core 115 made of InGaAlAs or InGaAsP.
 また、レーザ活性領域101とパッシブ導波路102との接続箇所の上部クラッド層119に、導波方向に交差する方向に延在する溝を形成することでも、反射点105が形成できる。このような溝を形成することで、この箇所に屈折率の変曲点が形成され、反射点105とすることができる。 Further, the reflection point 105 can also be formed by forming a groove extending in the direction intersecting the waveguide direction in the upper clad layer 119 at the connection point between the laser active region 101 and the passive waveguide 102. By forming such a groove, an inflection point of the refractive index is formed at this point, and the reflection point 105 can be obtained.
 上述した横方向電流注入型のレーザ活性領域101では、下部クラッド層112,上部クラッド層119aと、活性層113(コア115)との間の屈折率差を大きくすることが可能であり、活性層113へ、より強く光を閉じ込めることができるようになる。この、より強い光閉じ込めにより、パッシブ導波路102から帰還される光と、レーザ活性領域101での光との相互作用を、より大きくすることができる。これらのことにより、レーザ活性領域101からの反射戻り成分を大きくすること無く、PPRによる帯域増大を起こせる。 In the above-mentioned lateral current injection type laser active region 101, the difference in refractive index between the lower clad layer 112 and the upper clad layer 119a and the active layer 113 (core 115) can be increased, and the active layer can be increased. It will be possible to trap light more strongly in 113. Due to this stronger light confinement, the interaction between the light returned from the passive waveguide 102 and the light in the laser active region 101 can be further increased. As a result, the band can be increased by PPR without increasing the reflection return component from the laser active region 101.
 また、上述したように、強い光閉じ込めによりパッシブ導波路102の反射率を大きく取る必要がないため、パッシブ導波路102の端面に高反射率(HR)コートが不要となり、構造形成が容易となる。また、上述したように光閉じ込めが大きく、レーザ発振モードとサイドモードの相互作用が大きいと、レーザ活性領域101における透過スペクトル201と、パッシブ導波路102における透過スペクトル202との間の周波数差が大きい場合でもPPRが生じるため、高周波数領域での帯域増大を起こす設計が可能となる。 Further, as described above, since it is not necessary to take a large reflectance of the passive waveguide 102 due to strong light confinement, a high reflectance (HR) coating is not required on the end face of the passive waveguide 102, and the structure can be easily formed. .. Further, as described above, when the light confinement is large and the interaction between the laser oscillation mode and the side mode is large, the frequency difference between the transmission spectrum 201 in the laser active region 101 and the transmission spectrum 202 in the passive waveguide 102 is large. Even in this case, PPR is generated, so that it is possible to design to increase the band in the high frequency region.
 さらに、基板垂直(厚さ)方向への光閉じ込めをIII-V族半導体/絶縁体(空気やSiO2など)や屈折率の低い半導体(SiCやAlNなど)の屈折率差で実現する構造においては、レーザ活性領域101において、屈折率変調の度合いが大きい回折格子114が形成できるため、大きな結合係数を有する回折格子114によるレーザ活性領域101が実現できる。 Furthermore, in a structure that realizes light confinement in the vertical (thickness) direction of the substrate by the difference in refractive index between group III-V semiconductors / insulators (air, SiO 2 etc.) and semiconductors with low refractive index (SiC, AlN, etc.). Since the diffraction grating 114 having a large degree of refractive index modulation can be formed in the laser active region 101, the laser active region 101 by the diffraction grating 114 having a large coupling coefficient can be realized.
 回折格子114の結合係数が大きい場合、レーザ活性領域101のストップバンドの幅が大きくなるため、パッシブ導波路102の透過スペクトルの極大ピークの多くが、ストップバンドの中に収まる。この結果、レーザ活性領域101の発振光のピークとパッシブ導波路102におけるFPモードのピークの干渉によるレーザ動作の不安定化が生じにくい。 When the coupling coefficient of the diffraction grating 114 is large, the width of the stopband of the laser active region 101 becomes large, so that most of the maximum peaks of the transmission spectrum of the passive waveguide 102 are contained in the stopband. As a result, the instability of the laser operation due to the interference between the peak of the oscillated light in the laser active region 101 and the peak of the FP mode in the passive waveguide 102 is unlikely to occur.
 一般的な回折格子の結合係数が小さいDFBレーザでは、DFBレーザのストップバンドの中にFPモードがほとんど入らないため、FPモードとDFBモードの干渉による動作不安定が生じやすい。 In a DFB laser with a small coupling coefficient of a general diffraction grating, the FP mode hardly enters the stop band of the DFB laser, so that operation instability is likely to occur due to interference between the FP mode and the DFB mode.
 また、活性層113を構成する材料の利得(ゲイン)スペクトルを調整することでも動作に影響を与えることができるが、結合係数が小さい場合に比べて少ないDFBおよびFPモードピークのみを選択することができるため、シングルモード動作や安定的な(モードホップやPPRの発現容易性)動作が可能となる。 The operation can also be affected by adjusting the gain spectrum of the material constituting the active layer 113, but it is possible to select only the DFB and FP mode peaks, which are smaller than when the coupling coefficient is small. Therefore, single mode operation and stable operation (easiness of expression of mode hop and PPR) are possible.
 ところで、活性層113と、活性層113を上下に挟む層との間の屈折率差が大きく、回折格子114の結合係数が大きい場合、回折格子114による反射部での反射により形成される反射点105の反射率が高くなる。このため、この構成では、パッシブ導波路102による光帰還の強度を強くすることが可能となる。この結果、レーザ活性領域101の透過スペクトルと、パッシブ導波路102の透過スペクトルとの周波数差が大きい(応答を増強する周波数が高い)状態でもPPRが発現し、帯域増大が実現できる。 By the way, when the difference in refractive index between the active layer 113 and the layer sandwiching the active layer 113 above and below is large and the coupling coefficient of the diffraction grating 114 is large, the reflection point formed by the reflection by the diffraction grating 114 at the reflection portion. The reflectance of 105 becomes high. Therefore, in this configuration, it is possible to increase the intensity of optical feedback by the passive waveguide 102. As a result, PPR is expressed even in a state where the frequency difference between the transmission spectrum of the laser active region 101 and the transmission spectrum of the passive waveguide 102 is large (the frequency for enhancing the response is high), and the band can be increased.
 ところで、レーザ活性領域101で発振されるレーザ光と、パッシブ導波路102からの戻り光との結合を制御する上では、パッシブ導波路102からの戻り光強度(端面反射率)を、構造により規定する構成と、動作時に適宜戻り光を増幅または減衰させることで規定する構成とがある。端面反射率を構造により規定する構成としては、前述したように、パッシブ導波路102のコア115の形状(断面形状)を変化させる構成がある。例えば、コア115の断面視の形状について、活性層113の断面視の形状に対し、幅を狭めるまたは広げる、厚くするまたは薄くするなどがある。また、コア115の径を、活性層113から離れるほど小さくする、または大きくする構成とすることもできる。 By the way, in controlling the coupling between the laser light oscillated in the laser active region 101 and the return light from the passive waveguide 102, the intensity of the return light (end face reflectance) from the passive waveguide 102 is defined by the structure. There is a configuration in which the return light is appropriately amplified or attenuated during operation. As a configuration in which the end face reflectance is defined by the structure, as described above, there is a configuration in which the shape (cross-sectional shape) of the core 115 of the passive waveguide 102 is changed. For example, the cross-sectional shape of the core 115 may be narrowed or widened, thickened or thinned with respect to the cross-sectional shape of the active layer 113. Further, the diameter of the core 115 may be reduced or increased as the distance from the active layer 113 increases.
 また、図9Aに示すように、導波方向に垂直な断面の形状が、厚さ方向に多段とされているコア115aとすることもできる。また、図9Bに示すように、導波方向に垂直な断面の形状を厚さ方向に多段とし、上段と下段とを各々異なる材料から構成したコア115bとすることもできる。 Further, as shown in FIG. 9A, the core 115a can be formed in which the shape of the cross section perpendicular to the waveguide direction is multi-staged in the thickness direction. Further, as shown in FIG. 9B, the shape of the cross section perpendicular to the waveguide direction may be multi-staged in the thickness direction, and the upper stage and the lower stage may be core 115b made of different materials.
 以上に説明したように、本発明によれば、レーザ活性領域、パッシブ導波路に続き、反射領域および増幅領域を設けるので、PPR周波数と、この応答を決定するフィードバックされる反射光の強さおよび出力光の強さとが、独立に制御できるようになる。 As described above, according to the present invention, the laser active region, the passive waveguide, the reflection region and the amplification region are provided, so that the PPR frequency and the intensity of the feedback reflected light that determines this response and the intensity of the reflected light are determined. The intensity of the output light can be controlled independently.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be carried out by a person having ordinary knowledge in the art within the technical idea of the present invention. That is clear.
 101…レーザ活性領域、102…パッシブ導波路、103…反射領域、104…増幅領域、105…反射点、106…反射点。 101 ... Laser active region, 102 ... Passive waveguide, 103 ... Reflection region, 104 ... Amplification region, 105 ... Reflection point, 106 ... Reflection point.

Claims (8)

  1.  基板の上に形成された分布帰還型のレーザ活性領域と、
     前記基板の上に形成され、前記レーザ活性領域の導波方向の一端に光学的に接続され、導波方向の両端に反射点が形成された、光導波路構造によるファブリペロー型の共振器構造とされたパッシブ導波路と、
     前記基板の上に形成され、前記パッシブ導波路の一端に光学的に接続された反射領域と、
     前記基板の上に形成され、前記反射領域の一端に光学的に接続された増幅領域と
     を備え、
     前記レーザ活性領域で生成される光の周波数と、前記パッシブ導波路のファブリペローモードの周波数との周波数差に応じて発生する光子-光子共鳴を用いてレーザ発振させる
     ことを特徴とする光デバイス。
    A distributed feedback type laser active region formed on the substrate,
    A Fabry-Perot type cavity structure with an optical waveguide structure formed on the substrate, optically connected to one end in the waveguide direction of the laser active region, and reflection points formed at both ends in the waveguide direction. Passive waveguide and
    A reflective region formed on the substrate and optically connected to one end of the passive waveguide.
    An amplification region formed on the substrate and optically connected to one end of the reflection region is provided.
    An optical device characterized in that laser oscillation is performed using photon-photon resonance generated according to a frequency difference between the frequency of light generated in the laser active region and the frequency of the fabric perow mode of the passive waveguide.
  2.  請求項1記載の光デバイスにおいて、
     前記パッシブ導波路に電流を注入する、前記パッシブ導波路の温度を制御する、前記パッシブ導波路に電界を印加するのいずれかにより、前記パッシブ導波路のファブリペローモードの周波数を調整する周波数調整機構をさらに備えることを特徴とする光デバイス。
    In the optical device according to claim 1,
    A frequency adjustment mechanism that adjusts the frequency of the fabric perlow mode of the passive waveguide by either injecting a current into the passive waveguide, controlling the temperature of the passive waveguide, or applying an electric field to the passive waveguide. An optical device characterized by further provision.
  3.  請求項1または2記載の光デバイスにおいて、
     前記レーザ活性領域は、
     前記基板の平面方向に電流を注入する電流注入機構を備えることを特徴とする光デバイス。
    In the optical device according to claim 1 or 2.
    The laser active region is
    An optical device including a current injection mechanism that injects a current in the plane direction of the substrate.
  4.  請求項1~3のいずれか1項に記載の光デバイスにおいて、
     前記基板の上に形成され、前記レーザ活性領域の導波方向の他端に光学的に接続されたDBR領域をさらに備えることを特徴とする光デバイス。
    The optical device according to any one of claims 1 to 3.
    An optical device further comprising a DBR region formed on the substrate and optically connected to the other end of the laser active region in the waveguide direction.
  5.  請求項1~4のいずれか1項に記載の光デバイスにおいて、
     前記反射領域は、DBRミラー構造とされていることを特徴とする光デバイス。
    The optical device according to any one of claims 1 to 4.
    An optical device characterized in that the reflection region has a DBR mirror structure.
  6.  請求項1~5のいずれか1項に記載の光デバイスにおいて、
     前記パッシブ導波路のコアは、前記レーザ活性領域のコアとは、厚さおよび幅の少なくとも1つが異なることを特徴とする光デバイス。
    The optical device according to any one of claims 1 to 5.
    An optical device characterized in that the core of the passive waveguide differs from the core of the laser active region in at least one thickness and width.
  7.  請求項1~5のいずれか1項に記載の光デバイスにおいて、
     前記パッシブ導波路のコアは、導波方向に垂直な断面の形状が、厚さ方向に多段とされていることを特徴とする光デバイス。
    The optical device according to any one of claims 1 to 5.
    The core of the passive waveguide is an optical device characterized in that the shape of the cross section perpendicular to the waveguide direction is multi-staged in the thickness direction.
  8.  請求項4記載の光デバイスにおいて、
     前記パッシブ導波路の前記レーザ活性領域の側の幅と、前記パッシブ導波路の前記レーザ活性領域とは反対側の反射点の幅とが異なることを特徴とする光デバイス。
    In the optical device according to claim 4,
    An optical device characterized in that the width of the passive waveguide on the side of the laser active region and the width of the reflection point on the side of the passive waveguide opposite to the laser active region are different.
PCT/JP2020/047451 2020-12-18 2020-12-18 Optical device WO2022130622A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/047451 WO2022130622A1 (en) 2020-12-18 2020-12-18 Optical device
JP2022569666A JPWO2022130622A1 (en) 2020-12-18 2020-12-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047451 WO2022130622A1 (en) 2020-12-18 2020-12-18 Optical device

Publications (1)

Publication Number Publication Date
WO2022130622A1 true WO2022130622A1 (en) 2022-06-23

Family

ID=82059351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047451 WO2022130622A1 (en) 2020-12-18 2020-12-18 Optical device

Country Status (2)

Country Link
JP (1) JPWO2022130622A1 (en)
WO (1) WO2022130622A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033551A (en) * 2000-07-18 2002-01-31 Hitachi Ltd Device and system for optical transmission
JP2004158590A (en) * 2002-11-06 2004-06-03 Nippon Telegr & Teleph Corp <Ntt> Semiconductor pulsed light source
DE102006045876A1 (en) * 2006-09-23 2008-04-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Single-mode, directly modulateable semiconductor multi-section laser`s structural dimension and operating point determining method, involves examining large signal modulation characteristics for selected parameter set
US20120093178A1 (en) * 2010-10-14 2012-04-19 Electronics And Telecommunications Research Institute Wavelength tunable external cavity laser generating device
JP2017017077A (en) * 2015-06-26 2017-01-19 日本電信電話株式会社 Semiconductor laser light source
JP2017527121A (en) * 2014-09-08 2017-09-14 オクラロ テクノロジー リミテッド Monolithically integrated wavelength tunable semiconductor laser
JP2018006440A (en) * 2016-06-29 2018-01-11 日本電信電話株式会社 Semiconductor laser
JP2019204904A (en) * 2018-05-24 2019-11-28 日本電信電話株式会社 Semiconductor optical module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033551A (en) * 2000-07-18 2002-01-31 Hitachi Ltd Device and system for optical transmission
JP2004158590A (en) * 2002-11-06 2004-06-03 Nippon Telegr & Teleph Corp <Ntt> Semiconductor pulsed light source
DE102006045876A1 (en) * 2006-09-23 2008-04-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Single-mode, directly modulateable semiconductor multi-section laser`s structural dimension and operating point determining method, involves examining large signal modulation characteristics for selected parameter set
US20120093178A1 (en) * 2010-10-14 2012-04-19 Electronics And Telecommunications Research Institute Wavelength tunable external cavity laser generating device
JP2017527121A (en) * 2014-09-08 2017-09-14 オクラロ テクノロジー リミテッド Monolithically integrated wavelength tunable semiconductor laser
JP2017017077A (en) * 2015-06-26 2017-01-19 日本電信電話株式会社 Semiconductor laser light source
JP2018006440A (en) * 2016-06-29 2018-01-11 日本電信電話株式会社 Semiconductor laser
JP2019204904A (en) * 2018-05-24 2019-11-28 日本電信電話株式会社 Semiconductor optical module

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BARDELLA, P. ET AL.: "A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 19, no. 4, July 2013 (2013-07-01), pages 1 - 8, XP011508683, ISSN: 1077-260X, DOI: 10.1109/JSTQE.2013.2250260 *
MIEDA, SHIGERU ET AL.: "Ultra-wide-bandwidth optically controlled DFB laser with external cavity", IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 52, no. 6, June 2016 (2016-06-01), pages 1 - 7, XP011609574, ISSN: 0018-9197, DOI: 10.1109/JQE.2016.2557489 *

Also Published As

Publication number Publication date
JPWO2022130622A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
US6088376A (en) Vertical-cavity-surface-emitting semiconductor devices with fiber-coupled optical cavity
US7760782B2 (en) Distributed bragg reflector type directly modulated laser and distributed feed back type directly modulated laser
US6580740B2 (en) Semiconductor laser device having selective absorption qualities
US6252895B1 (en) Distributed feedback semiconductor laser in which light intensity distributions differ in different polarization modes, and driving method therefor
JPH0357288A (en) Device with semiconductor laser and using method of the same
US6628696B2 (en) Multi-channel DWDM transmitter based on a vertical cavity surface emitting laser
JP2003046190A (en) Semiconductor laser
US20040086012A1 (en) Coherent light source and method for driving the same
JP5189956B2 (en) Optical signal processing device
JP4905854B2 (en) Direct modulation tunable laser
JP5022015B2 (en) Semiconductor laser device and optical module using the same
JP3647656B2 (en) Optical functional element and optical communication device
JP2018060974A (en) Semiconductor optical integrated element
JP5001239B2 (en) Semiconductor tunable laser
WO2021117263A1 (en) Direct modulation laser
WO2022130622A1 (en) Optical device
JPH08298355A (en) Laser device
US6795623B2 (en) Optical cavity resonating over a continuous range of frequencies
US20050226283A1 (en) Single-mode semiconductor laser with integrated optical waveguide filter
JP6927153B2 (en) Semiconductor laser
JP3227701B2 (en) Mode-locked semiconductor laser
JP2002374037A (en) Semiconductor laser module, fiber-optic amplifier using the same and optical communication system
JP2011253977A (en) Dbr laser
JP4309636B2 (en) Semiconductor laser and optical communication device
WO2021148120A1 (en) Single-mode dfb laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966009

Country of ref document: EP

Kind code of ref document: A1