WO2022268001A1 - 废物处理系统电源功率控制方法 - Google Patents

废物处理系统电源功率控制方法 Download PDF

Info

Publication number
WO2022268001A1
WO2022268001A1 PCT/CN2022/099631 CN2022099631W WO2022268001A1 WO 2022268001 A1 WO2022268001 A1 WO 2022268001A1 CN 2022099631 W CN2022099631 W CN 2022099631W WO 2022268001 A1 WO2022268001 A1 WO 2022268001A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
crucible
opening
treatment system
Prior art date
Application number
PCT/CN2022/099631
Other languages
English (en)
French (fr)
Inventor
张生栋
郄东生
朱冬冬
鲜亮
刘丽君
李玉松
周慧
Original Assignee
中国原子能科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国原子能科学研究院 filed Critical 中国原子能科学研究院
Priority to EP22732378.9A priority Critical patent/EP4361546A1/en
Publication of WO2022268001A1 publication Critical patent/WO2022268001A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/20Arrangement of controlling, monitoring, alarm or like devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/14Processing by incineration; by calcination, e.g. desiccation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/305Glass or glass like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/308Processing by melting the waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the present application relates to the technical field of radioactive waste treatment, in particular to a power control method for a waste treatment system.
  • cold crucible vitrification technology has become a relatively advanced domestic and international radioactive waste treatment due to its advantages of high processing temperature, wide range of waste types, long service life of furnace, and easy decommissioning.
  • Craft means. Due to the limited volume of the cold crucible, when dealing with radioactive waste that mainly exists in a liquid state (that is, radioactive waste liquid), it is possible to pretreat the radioactive waste liquid in advance by equipping a calciner (such as a rotary calciner). This method is called the two-step cold crucible vitrification technique.
  • the main equipment of the two-step cold crucible vitrification technology includes a calciner and a cold crucible.
  • the calciner usually adopts a rotary calciner, and the rotary calciner includes a support, a furnace tube rotatably arranged on the support, a heating element for heating the furnace tube, a feed pipe communicated with the first end of the furnace tube, and a furnace tube connected to the first end of the furnace tube.
  • the second end of the furnace is connected to the discharge pipe, and the furnace pipe can rotate along its own axis.
  • the radioactive waste liquid and other additives enter the furnace tube through the feed pipe, and the furnace tube is heated by the heating element.
  • the furnace tube rotates along its own axis, and the radioactive waste liquid is gradually calcined and transformed into a solid powder material.
  • the cold crucible uses a power supply to generate a high-frequency (10 5 ⁇ 10 6 Hz) current, which is converted into an electromagnetic current through an induction coil and penetrates into the material to be processed, forming an eddy current to generate heat, and realizes direct heating and melting of the material to be processed.
  • the cold crucible mainly includes a cold crucible body and a melting heating structure.
  • the cold crucible body is a container composed of metal arc blocks or tubes through which cooling water passes (the shape of the container is mainly round or oval), and the melting heating structure includes winding.
  • An induction coil outside the cold crucible body and a high-frequency induction power supply electrically connected to the induction coil.
  • the material to be processed When the material to be processed is placed in the cold crucible, turn on the high-frequency induction power supply to energize the induction coil, convert the current into electromagnetic current through the induction coil, and enter the material to be processed through the wall of the cold crucible body, thereby The eddy current is formed inside the material to be processed to generate heat, thereby realizing the heating of the material to be processed.
  • the cold crucible When the cold crucible is working, cooling water is continuously fed into the metal arc block or tube, and the temperature of the molten material in the cold crucible is very high, generally as high as 2000°C or more, but the wall of the cold crucible remains at a relatively low temperature, generally Less than 200°C, so that the low-temperature area of the molten material close to the wall of the cold crucible body forms a layer of 2-3cm thick solid (cold wall), so it is called a "cold" crucible.
  • the application provides a radioactive waste treatment system, which includes a calcination device and a melting system.
  • the melting system includes a crucible and a power supply. The materials enter the crucible together for melting and form molten glass, and the power supply is used to provide electric energy to the crucible.
  • the radioactive waste treatment system further includes a power switching device, and the power switching device includes: a support for supporting at least two power supplies; a drive for driving the support to move to adjust the at least two power supplies.
  • Each power supply has a position corresponding to the crucible through the movement of the support member, and the power supply at the position corresponding to the crucible is used to provide electrical energy to the crucible.
  • the radioactive waste treatment system further includes a connection assembly
  • the power supply is electrically connected to the power supply connection part provided with the first opening
  • the crucible is electrically connected to the crucible connection part provided with the second opening
  • the connection assembly includes : a connecting piece passing through the first opening and the second opening, and having a first end protruding from the side of the first opening away from the second opening, and protruding from the first opening The second end of the second opening away from the side of the first opening; at least one eccentric wheel, each of which is rotatably connected to one of the first end and the second end, each The rotation of the eccentric wheel is used to realize the detachable connection between the power supply connection part and the crucible connection part together with the other of the first end and the second end, and the power supply connection part is connected to the crucible connection part.
  • the connection of the connecting portion of the crucible is used to transfer the electric energy of the power source to the crucible.
  • the radioactive waste treatment system further includes a crucible connecting device for the containing device, the containing device includes a containing part and a partition, and the partition part divides the inner space defined by the containing part into a first A subspace and a second subspace for accommodating the crucible, and the partition is provided with an opening for communicating with the first subspace and the second subspace
  • the crucible connection device includes: a mounting part, Installed at the opening to close the opening, the mounting part is provided with a mounting hole, and the mounting hole has a plurality of hole sections extending in different directions; the connecting part passes through the mounting hole partly, and To realize the electrical connection between the power supply and the crucible, so that the electric energy of the power supply can be transferred to the crucible through the connecting piece, so that the crucible can heat the radioactive materials.
  • the present application also provides a power control method for a power supply of a radioactive waste treatment system, the crucible is a cold crucible, wherein the control method includes: controlling the power supply of the induction coil of the cold crucible to start with initial power, the After the power supply is turned on, the induction coil generates an electromagnetic field in the cold crucible, so that the glass in the cold crucible begins to melt; after controlling the power supply to run at the initial power for a first predetermined time, the increasing the power until the power reaches a first predetermined power; after controlling the power supply to run at the first predetermined power for a second predetermined time, reducing the power of the power supply until the power is reduced to the first predetermined power Two predetermined powers: controlling the power supply to run at a second predetermined power until the glass is completely melted.
  • the present application also provides a power control method for a power supply of a radioactive waste treatment system, the crucible is a cold crucible, wherein the control method includes: controlling the power supply of the induction coil of the cold crucible to be turned on at a preset power, so After the power supply is turned on, the induction coil generates an electromagnetic field in the cold crucible, so that the glass in the cold crucible begins to melt; the power supply is controlled to run at the preset power until the glass is completely melted.
  • FIG. 1 is a schematic diagram of a first state of a power switching device according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of a second state of the power switching device according to Embodiment 1 of the present application.
  • FIG. 3 is a schematic diagram of a first state of a power switching device according to Embodiment 1 of the present application.
  • FIG. 4 is a schematic diagram of a second state of the power switching device according to Embodiment 1 of the present application.
  • Fig. 5 is a top view of the power switching device shown in Fig. 3;
  • FIG. 6 is a schematic structural diagram of a power supply according to Embodiment 2 of the present application.
  • Fig. 7 is a schematic structural diagram of a crucible according to Embodiment 2 of the present application.
  • connection assembly 8 is a cross-sectional view of the connection assembly, the power supply connection part and the crucible connection part in the first state according to Embodiment 2 of the present application;
  • connection assembly 9 is a cross-sectional view of the connection assembly, the power supply connection part and the crucible connection part in the second state according to Embodiment 2 of the present application;
  • FIG. 10 is a schematic structural diagram of a connection assembly according to Embodiment 2 of the present application.
  • Fig. 11 is a schematic structural diagram of a receiving device according to Embodiment 3 of the present application.
  • Fig. 12 is an assembly diagram of a receiving device, a power supply, a crucible and a crucible connecting device according to Embodiment 3 of the present application;
  • Fig. 13 is a schematic structural view of a crucible connecting device according to Embodiment 3 of the present application.
  • Fig. 14 is a cross-sectional view of a mounting part according to Embodiment 3 of the present application.
  • Fig. 15 is a cross-sectional view of another mounting part according to Embodiment 3 of the present application.
  • Fig. 16 is a schematic structural view of a cold crucible according to Embodiment 4 of the present application.
  • FIG. 17 is a flowchart of a power control method according to Embodiment 4 of the present application.
  • Fig. 18 is a schematic diagram of the first power variation with time according to Embodiment 4 of the present application.
  • Fig. 19 is a schematic diagram of the second power variation with time according to Embodiment 4 of the present application.
  • Fig. 20 is a schematic diagram of a third power variation with time according to Embodiment 4 of the present application.
  • Fig. 21 is a schematic diagram of a fourth power variation with time according to Embodiment 4 of the present application.
  • Fig. 22 is a schematic diagram of the fifth power variation with time according to Embodiment 4 of the present application.
  • FIG. 23 is a flowchart of a power control method according to Embodiment 5 of the present application.
  • An embodiment of the present application provides a radioactive waste treatment system.
  • the radioactive waste treatment system includes a calcination device and a melting system.
  • the melting system includes a crucible 300 and a power supply 200.
  • the radioactive waste enters the calcination device for calcination and transformation, and the obtained materials are then mixed with
  • the glass base material enters into the crucible 300 together for melting to form molten glass, and the power supply 200 is used to provide electric energy to the crucible 300 .
  • the radioactive waste treatment system also includes a power switching device 100 .
  • FIG. 1 is a schematic diagram of a first state of a power switching device 100 according to Embodiment 1 of the present application
  • FIG. 2 is a schematic diagram of a second state of the power switching device 100 according to Embodiment 1 of the present application. As shown in FIG. 1 and FIG. 2 , the first state and the second state represent different position states of the support member 110 .
  • the crucible can be a cold crucible.
  • the cold crucible uses a power supply to generate a high-frequency current, which is then converted into an electromagnetic current through an induction coil (which can be a high-frequency induction coil) and penetrates into the material to be heated to form an eddy current to generate heat, so as to realize the heating of the material.
  • Direct heat melting The cavity of the cold crucible is a container composed of metal arc-shaped blocks or tubes through which cooling water passes. The shape of the container is mainly round or oval. When the cold crucible is working, the cooling water is continuously passed through the metal tube.
  • the cold crucible does not require refractory materials and does not need electrode heating.
  • the solid shell formed can reduce the corrosion effect of the material on the cold crucible, prolong the service life of the cold crucible, and enable the cold crucible to process corrosive materials.
  • the feed port may be located at the bottom of the heating chamber.
  • the induction coil is fed with alternating current, and an alternating electromagnetic field is generated inside and around the induction coil. Since each metal tube of the cold crucible is insulated from each other, an induced current is generated in each tube, and the direction of the current on the cross-section of two adjacent tubes is opposite, and the direction of the magnetic field established between the tubes is the same, which is manifested as a magnetic field outward. Reinforcement effect. Therefore, every gap in the cold crucible is a strong magnetic field.
  • the cold crucible is like a strong current device, which gathers the magnetic force lines on the materials in the crucible, and the materials in the crucible are cut by the magnetic force lines of the alternating magnetic field. Due to the existence of induced electromotive force, a closed current loop will be formed in the thin layer of the melt surface of the material, and a large amount of heat will be generated due to the eddy current loop, thereby melting the material.
  • the cold crucible can be used in the two-step vitrification process.
  • the radioactive material to be treated is firstly pretreated in a rotary calciner and converted into a slurry or solid powder state, and then the pretreated The material and the glass base material are put into the cold crucible and melted into glass in the cold crucible, thereby avoiding the harm of radioactive substances to the environment.
  • the heat transfer process of the rotary calciner mainly includes three parts: the inside of the furnace, the wall of the furnace and the outside of the furnace.
  • the temperature in the rotary kiln is divided into several areas with different temperatures gradually rising.
  • the material lasts for a long time in the high temperature state in the kiln, the gas turbulence in the kiln is high, the stirring effect is good, and the gas and solid contact are good. It lasts for a long time at high temperature, which is conducive to the calcination of materials.
  • There are no moving mechanical components in the furnace the operation is stable, the control is convenient, continuous discharge can be realized, and the secondary waste generated is less.
  • the specific surface area of the oxide after calcination is large. , easy for subsequent curing.
  • the power switching device 100 includes a supporting member 110 and a driving member 120 .
  • the supporting member 110 is used to support at least two power sources 200 .
  • the driving member 120 is used to drive the support member 110 to move to adjust the positions of the at least two power sources 200, any one of the power sources 200 moves through the support member 110 to have a position corresponding to the crucible 300, which is in the same position as the crucible 300.
  • the power supply 200 at the position corresponding to the crucible 300 is used to provide electric energy to the crucible 300 .
  • the crucible 300 can only be supplied with electrical energy when the power supply 200 is in a position corresponding to the crucible 300 .
  • the power switching device 100 provided by the embodiment of the present application can quickly switch the power supply when the power supply to the crucible 300 fails, so that another power supply 200 can provide electric energy to the crucible 300, so as not to seriously affect the crucible 300 to the material. Heating process.
  • the power supply 200 may be a high-frequency power supply
  • the crucible may be a cold crucible.
  • the high-frequency power supply can provide high-frequency energy for heating the vitrified material in the cold crucible furnace.
  • the failure of the high-frequency power supply will cause the high-temperature glass melt in the water-cooled cold crucible furnace to cool down and solidify rapidly.
  • the embodiment of the present application adopts the way that two high-frequency power supplies are in hot standby with each other to ensure the continuous and stable operation of the cold crucible furnace.
  • the power switching device 100 may further include a mounting part 130, the mounting part 130 is used to install the support 110 and the driving part 120, and the driving part 120 is used to drive the support The member 110 moves relative to the mounting member 130 .
  • the entire power switching device 100 is easy to install and transport, improving user experience.
  • each of the power sources 200 has a first end close to the crucible 300, and the first end of the power source 200 at a position corresponding to the crucible 300 is used to communicate with the crucible 300.
  • the crucible 300 is electrically connected to provide the electric energy.
  • each of the power sources 200 also has a second end far away from the crucible 300, and the distance between the first ends of at least two adjacent power sources 200 is smaller than the first end. distance between the two ends.
  • the driving member 120 when switching the power supply 200 that supplies power to the crucible 300, the driving member 120 only needs to drive the supporting member 110 to move a small stroke, and at the same time, because the distance between the second ends is relatively large, it provides Larger space for maintaining the power supply 200 is provided, which is convenient for maintenance personnel to perform maintenance operations on the power supply 200.
  • the mounting part 130 includes a bottom plate 131 , a first side plate 132 and a second side plate 133 .
  • the first side plate 132 extends upward from the edge of the bottom plate 131 close to the crucible 300; the second side plate 133 extends upward from the edge of the bottom plate 131 away from the crucible 300; the first side plate 132 and the The second side plate 133 is used to limit the moving direction of the support member 110 . That is to say, the first side plate 132 and the second side plate 133 can guide the support member 110 to prevent the support member 110 from deviating from the moving track.
  • the bottom plate 131 includes a first edge and a second edge, and the arrangement direction of the first edge and the second edge is the same as that of the first side plate 132 and the second side.
  • the arrangement direction of the plates 133 is vertical.
  • the mounting member 130 may further include a mounting plate 134 extending upward from one of the first edge and the second edge for mounting the driving member 120 .
  • the mounting plate 134 connects the first side plate 132 and the second side plate 133 , thereby improving the structural strength of the entire power switching device 100 .
  • the installation part 130 may further include a stopper plate extending upward from the other of the first edge and the second edge, for supporting the supporting part 110 on the first edge and the second edge.
  • the moving distance in the arrangement direction of the second edge is limited, so as to prevent the supporting member from deviating from the moving track.
  • the supporting member 110 can be mounted on the mounting member 130 by being carried on the first side plate 132 and the second side plate 133 .
  • the installation and processing process of the power switching device 100 is simplified.
  • At least one of the power sources 200 has a portion directly above the first side plate 132 and/or the second side plate 133 , thereby ensuring the supporting effect on the power source 200 .
  • At least one of the power sources 200 includes at least one anti-skid pad, and the at least one anti-skid pad is disposed on the bottom of the power source 200 to reduce sliding friction between the power source 200 and the support member 110 . That is to say, the anti-slip mat can reduce the sliding between the power supply 200 and the supporting member 110 .
  • each power supply 200 can be composed of a rectifier cabinet and an inverter cabinet.
  • the two cabinets are connected by flexible cables.
  • the end of the inverter cabinet uses a water-cooled copper bar to output high-frequency current.
  • the main and backup inverter cabinets are fixed on On the supporting member 110 , the switching of the power supply for delivering electric energy to the crucible 300 is realized by the movement of the supporting member 110 .
  • the fast installation and disassembly of the power supply 200 and the crucible 300 can be realized through the connection components.
  • the power supply 200 is electrically connected to the power supply connection portion with a first opening
  • the crucible 300 is electrically connected to the power receiving connection portion with a second opening
  • the connection assembly includes a connecting piece and at least one eccentric wheel.
  • the connector passes through the first opening and the second opening, and has a first end protruding from a side of the first opening away from the second opening, and protruding from the second opening.
  • each of the eccentric wheels is connected to one of the first end and the second end in rotation, and the rotation of each of the eccentric wheels is used To realize the detachable connection between the power supply connection part and the power receiving connection part together with the other of the first end and the second end, and the connection between the power supply connection part and the power receiving connection part
  • the electric energy used to implement the power supply 200 is delivered to the crucible 300 .
  • One of the first end and the second end of the connecting assembly that is rotatably connected to each of the eccentric wheels is provided with a fixing hole.
  • the connecting assembly may further include a rotating shaft, which is fixed in the fixing hole and is rotatably connected with each of the eccentric wheels, so that each of the eccentric wheels is connected to the first end and the second end.
  • the at least one eccentric wheel may be a plurality of eccentric wheels extending along the axial direction of the rotating shaft.
  • the connection assembly may also include a first fixing piece and a force-bearing structure.
  • the first fixing member is fixedly connected to each of the eccentric wheels, the force-bearing structure is fixedly connected to the first fixing member, and is used to receive the external force that makes the first fixing member rotate, and the rotation of the first fixing member is used for Rotation of each of said eccentrics is achieved.
  • the force-receiving structure is detachably fixedly connected to the first fixing member.
  • the rotating shaft is provided with a limiting portion for restricting the movement of at least one eccentric wheel in the axial direction of the rotating shaft.
  • the connection assembly may further include at least one second fixing piece, each of the second fixing pieces is fixedly connected to the rotating shaft, and one of the power supply connection part and the power receiving connection part is close to the rotation shaft.
  • Embodiment 1 of the present application also provides a power switching device.
  • FIG. 3 is a schematic diagram of the first state of the power switching device according to Embodiment 1 of the present application;
  • FIG. 4 is a first state of the power switching device according to Embodiment 1 of the present application.
  • FIG. 5 is a top view of the power switching device shown in FIG. 3 .
  • the first state and the second state represent different position states of the support member 110 .
  • the power switching device includes any power switching device 100 described above, at least two power sources 200 and a crucible 300 .
  • the at least two power sources 200 are supported on the support member 110 of the power switching device 100 , and the crucible 300 receives power from the power source 200 at a position corresponding to the crucible 300 .
  • the at least two power sources 200 and the crucible 300 receives power from the power source 200 at a position corresponding to the crucible 300 .
  • the crucible 300 can only be supplied with electrical energy when the power supply 200 is in a position corresponding to the crucible 300 .
  • the power switching device provided by the embodiment of the present application can quickly switch the power supply when the power supply to the crucible 300 fails, so that another power supply 200 can provide electric energy to the crucible 300, so as not to seriously affect the heating of the material by the crucible 300 process.
  • the radioactive waste treatment system further includes a connection assembly 400 , the power supply 200 is electrically connected to the power connection part 210 with the first opening 211 opened, and the crucible 300 is electrically connected to the crucible connection part 310 with the second opening 311 .
  • FIG. 6 is a schematic structural diagram of a power supply 200 according to Embodiment 2 of the present application
  • FIG. 7 is a schematic structural diagram of a crucible 300 according to Embodiment 2 of the present application.
  • the connecting assembly 400 includes a connecting piece 410 and at least one eccentric wheel 420 .
  • the connecting piece 410 passes through the first opening 211 and the second opening 311 , and has a first end 411 protruding from the side of the first opening 211 away from the second opening 311 , and The second end 412 protrudes from the side of the second opening 311 away from the first opening 211 .
  • Each of the eccentric wheels 420 is rotationally connected with one of the first end 411 and the second end 412, and the rotation of each of the eccentric wheels 420 is used to connect with the first end 411 and the second end 412.
  • the other end 412 jointly realizes the detachable connection between the power supply connection part 210 and the crucible connection part 310, and the connection between the power supply connection part 210 and the crucible connection part 310 is used to realize the electric energy of the power supply 200 Transfer to the crucible 300.
  • FIG. 8 is a cross-sectional view of the connection assembly 400, the power supply connection part 210 and the crucible connection part 310 according to the second embodiment of the application in the first state
  • Fig. 9 is the connection assembly 400 and the power supply connection part 210 and the A cross-sectional view of the crucible connecting portion 310 in the second state
  • FIG. 10 is a schematic structural diagram of a connecting assembly 400 according to Embodiment 2 of the present application.
  • the eccentric wheel 420 has an end far away from its rotation center and an end close to its rotation center.
  • the power connection part 210 is connected to the crucible connection part 310, that is, the first state in FIG. 8 .
  • the detachment between the power supply connection part 210 and the crucible connection part 310 is made, that is, the second state in Fig. 9 .
  • the power supply connection part 210 and the crucible connection part 310 can be disassembled by rotating the eccentric wheel 420, so that the power supply 200 can be replaced to ensure that the crucible 300 can work normally. It is convenient to switch the power source 200 of the crucible 300 .
  • the crucible can be a cold crucible.
  • the cold crucible uses a power supply to generate a high-frequency current, which is then converted into an electromagnetic current through an induction coil (which can be a high-frequency induction coil) and penetrates into the material to be heated to form an eddy current to generate heat, so as to realize the heating of the material.
  • Direct heat melting The cavity of the cold crucible is a container composed of metal arc-shaped blocks or tubes through which cooling water passes. The shape of the container is mainly round or oval. When the cold crucible is working, the cooling water is continuously passed through the metal tube.
  • the cold crucible does not require refractory materials and does not need electrode heating.
  • the solid shell formed can reduce the corrosion effect of the material on the cold crucible, prolong the service life of the cold crucible, and enable the cold crucible to process corrosive materials.
  • the feed port may be located at the bottom of the heating chamber.
  • the induction coil is fed with alternating current, and an alternating electromagnetic field is generated inside and around the induction coil. Since each metal tube of the cold crucible is insulated from each other, an induced current is generated in each tube, and the direction of the current on the cross-section of two adjacent tubes is opposite, and the direction of the magnetic field established between the tubes is the same, which is manifested as a magnetic field outward. Reinforcement effect. Therefore, every gap in the cold crucible is a strong magnetic field.
  • the cold crucible is like a strong current device, which gathers the magnetic force lines on the materials in the crucible, and the materials in the crucible are cut by the magnetic force lines of the alternating magnetic field. Due to the existence of induced electromotive force, a closed current loop will be formed in the thin layer of the melt surface of the material, and a large amount of heat will be generated due to the eddy current loop, thereby melting the material.
  • the cold crucible can be used in the two-step vitrification process.
  • the radioactive material to be treated is firstly pretreated in a rotary calciner and converted into a slurry or solid powder state, and then the pretreated The material and the glass base material are put into the cold crucible and melted into glass in the cold crucible, thereby avoiding the harm of radioactive substances to the environment.
  • the heat transfer process of the rotary calciner mainly includes three parts: the inside of the furnace, the wall of the furnace and the outside of the furnace.
  • the temperature in the rotary kiln is divided into several areas with different temperatures gradually rising.
  • the material lasts for a long time in the high temperature state in the kiln, the gas turbulence in the kiln is high, the stirring effect is good, and the gas and solid contact are good. It lasts for a long time at high temperature, which is conducive to the calcination of materials.
  • There are no moving mechanical components in the furnace the operation is stable, the control is convenient, continuous discharge can be realized, and the secondary waste generated is less.
  • the specific surface area of the oxide after calcination is large. , easy for subsequent curing.
  • one of the first end 411 and the second end 412 that is rotationally connected to each of the eccentric wheels 420 is provided with a fixing hole
  • the connection assembly 400 also includes a rotating shaft 430 , the rotating shaft 430 is fixed in the fixing hole, and is rotatably connected with each of the eccentric wheels 420, so that each of the eccentric wheels 420 can rotate with one of the first end 411 and the second end 412 connect.
  • the at least one eccentric wheel 420 is a plurality of eccentric wheels 420 extending along the axial direction of the rotating shaft 430 .
  • the connecting assembly 400 further includes a first fixing member 440 and a force-bearing structure 450 , and the first fixing member 440 is fixedly connected to each of the eccentric wheels 420 .
  • the force bearing structure 450 is fixedly connected with the first fixing member 440, and is used to receive the external force that makes the first fixing member 440 rotate, and the rotation of the first fixing member 440 is used to realize the rotation of each of the eccentric wheels 420. rotate.
  • the fixing member 340 may be a fixing rod
  • the force-receiving structure 450 may be a handle, a bracelet, and the like. Therefore, it is convenient for the user to apply force, and the user experience is improved.
  • the force-bearing structure 450 is detachably fixedly connected to the first fixing member 440 . Thus, maintenance and replacement of the force-receiving structure 450 are facilitated.
  • the rotating shaft 430 is provided with a limiting portion for limiting the movement of at least one of the eccentric wheels 420 in the axial direction of the rotating shaft 430 .
  • the limiting portion can be a limiting protrusion or a groove, so as to prevent the eccentric wheel 420 from detaching from the rotating shaft 430 .
  • connection assembly 400 may further include at least one second fixing member, each of the second fixing members is fixedly connected to the rotation shaft 430, and the power connection part 210 and the crucible connection part 310 are close to the rotation shaft 430, so as to strengthen the fixation of the rotating shaft 430.
  • the at least one second fixing member is a plurality of second fixing members that are fixedly connected to different regions of the rotating shaft 430 in the axial direction, so as to ensure the fixing of different regions of the rotating shaft 430 Effect.
  • the plurality of second fixing pieces can be evenly arranged at equal intervals, so that when the number of second fixing pieces is constant, the connection strength in a certain area will not be too low.
  • the first opening 211 has a first opening and a second opening arranged along the arrangement direction of the first opening 211 and the second opening 311; the second opening 311 has a The opening 211 and the third opening and the fourth opening arranged in the arrangement direction of the second opening 311; the first opening 211 also has a fifth opening connecting part of the first opening and part of the second opening. opening, the second opening 311 also has a sixth opening that connects part of the third opening and part of the fourth opening, and the position of the fifth opening corresponds to the position of the sixth opening to provide the connection
  • the member 410 is separated from the passage outside the first opening 211 and the second opening 311 . Thus, it is convenient to install and disassemble the connection assembly 400 and the power supply connection part 210 and the crucible connection part 310 .
  • the embodiment of the present application also provides a crucible system, which includes a power supply 200 , a crucible 300 and any one of the connection components 400 described above.
  • the power supply 200 is electrically connected to the power connection part 210 with the first opening 211
  • the crucible 300 is electrically connected to the crucible connection part 310 with the second opening 311
  • the connection assembly 400 is used to realize the connection between the power connection part 210 and the crucible.
  • the detachable connection of the connection part 310 , the connection between the power supply connection part 210 and the crucible connection part 310 is used to transfer the electric energy of the power supply 200 to the crucible 300 .
  • the crucible 300 may include a cavity 320 and an inductor 330 .
  • the cavity 320 defines a heating cavity for heating materials.
  • the inductor 330 surrounds the heating chamber, and is configured to receive electric energy from the power supply 200 when the power supply connection part 210 is connected to the crucible connection part 310, so as to generate a change in the temperature of the material in the heating chamber. Magnetic field for heating.
  • the power supply connection part 210 and the crucible connection part 310 can be disassembled by rotating the eccentric wheel 420, so that the power supply 200 can be replaced to ensure that the crucible 300 can work normally. It is convenient to switch the power source 200 of the crucible 300 .
  • the embodiment of the present application firstly provides a crucible connecting device 600 for the containing device 500, the containing device 500 includes a containing part 510 and a partition 520, the partition 520 defines the interior of the containing part 510
  • the space is divided into a first subspace 511 for accommodating the power supply 200 and a second subspace 512 for accommodating the crucible 300, and the partition 520 is provided with an opening for communicating with the first subspace 511 and the second subspace 512. Hole 521.
  • Fig. 11 is a schematic structural view of the container device 500 according to the third embodiment of the present application
  • Fig. 12 is an assembly diagram of the container device 500, the power supply 200, the crucible 300 and the crucible connection device 600 according to the third embodiment of the present application
  • Fig. 13 is the assembly diagram according to the present application
  • the containing part 510 and the partition part 520 can be made of materials capable of shielding radioactive substances, for example, can be made of cement, concrete and other materials, so as to prevent the radioactive substances from entering the power supply 200 when the crucible 300 heats the radioactive materials. corresponding space. It can be understood that during the operation of the crucible 40, the operator may be required to operate the power supply, for example, to perform various operations such as control, adjustment, maintenance, switching, etc. If radioactive substances enter the space corresponding to the power supply 200, it will The life safety of the operator is threatened.
  • the crucible connecting device 600 includes a mounting part 610 and a connecting part.
  • the mounting part 610 is installed at the opening 521 to close the opening 521.
  • the mounting part 610 defines a mounting hole 613, and the mounting hole 613 has a plurality of hole segments extending in different directions.
  • the connector part passes through the installation hole 613, and is used to realize the electrical connection between the power source 200 and the crucible 300, so that the electric energy of the power source 200 is transmitted to the crucible 300 through the connector, so that all The crucible 300 heats the radioactive material.
  • the crucible connection device 600 provided by the embodiment of the present application can not only realize the electrical connection between the power source 200 and the crucible 300, but also prevent radioactive substances from entering the space corresponding to the power source 200 through multiple hole segments extending in different directions. , and the crucible connection device 600 is easy to install, and can conveniently realize electrical connection between the power supply 200 and the crucible 300 in different spaces.
  • the crucible 300 can be a cold crucible.
  • the cold crucible uses a power supply to generate a high-frequency current, which is then converted into an electromagnetic current through an induction coil (which can be a high-frequency induction coil) and penetrates into the material to be heated to form an eddy current to generate heat. direct heating and melting.
  • the cavity of the cold crucible is a container composed of metal arc-shaped blocks or tubes through which cooling water passes. The shape of the container is mainly round or oval. When the cold crucible is working, the cooling water is continuously passed through the metal tube.
  • the cold crucible does not require refractory materials and does not need electrode heating.
  • the solid shell formed can reduce the corrosion effect of the material on the cold crucible, prolong the service life of the cold crucible, and enable the cold crucible to process corrosive materials.
  • the feed port may be located at the bottom of the heating chamber.
  • the induction coil is fed with alternating current, and an alternating electromagnetic field is generated inside and around the induction coil. Since each metal tube of the cold crucible is insulated from each other, an induced current is generated in each tube, and the direction of the current on the cross-section of two adjacent tubes is opposite, and the direction of the magnetic field established between the tubes is the same, which is manifested as a magnetic field outward. Reinforcement effect. Therefore, every gap in the cold crucible is a strong magnetic field.
  • the cold crucible is like a strong current device, which gathers the magnetic force lines on the materials in the crucible, and the materials in the crucible are cut by the magnetic force lines of the alternating magnetic field. Due to the existence of induced electromotive force, a closed current loop will be formed in the thin layer of the melt surface of the material, and a large amount of heat will be generated due to the eddy current loop, thereby melting the material.
  • the cold crucible can be used in the two-step vitrification process.
  • the radioactive material to be treated is firstly pretreated in a rotary calciner and converted into a slurry or solid powder state, and then the pretreated The material and the glass base material are put into the cold crucible and melted into glass in the cold crucible, thereby avoiding the harm of radioactive substances to the environment.
  • the heat transfer process of the rotary calciner mainly includes three parts: the inside of the furnace, the wall of the furnace and the outside of the furnace.
  • the temperature in the rotary kiln is divided into several areas with different temperatures gradually rising.
  • the material lasts for a long time in the high temperature state in the kiln, the gas turbulence in the kiln is high, the stirring effect is good, and the gas and solid contact are good. It lasts for a long time at high temperature, which is conducive to the calcination of materials.
  • There are no moving mechanical components in the furnace the operation is stable, the control is convenient, continuous discharge can be realized, and the secondary waste generated is less.
  • the specific surface area of the oxide after calcination is large. , easy for subsequent curing.
  • the connectors may include a first sub-connector 620 , a second sub-connector 630 and a third sub-connector.
  • the first sub-connector 620 is disposed at one end of the mounting part 610 facing the first subspace 511 for electrical connection with the power source 200;
  • the second sub-connecting part 630 is disposed at the mounting part 610 facing the One end of the second sub-space 512 is used to electrically connect with the crucible 300;
  • the third sub-connector passes through the installation hole 613, and electrically connects the first sub-connector 620 and the second sub-connector 630.
  • This kind of connecting part has a simple structure, and it can be understood that the first sub-connecting part 620, the second sub-connecting part 630 and the third sub-connecting part can be integrally formed, thereby simplifying the assembly process.
  • the first sub-connector 620 , the second sub-connector 630 and the third sub-connector can all be wires, and the first sub-connector 620 can be directed from the installation part 610 to one end of the first subspace 511 Extending a certain length, the second sub-connecting part 630 can extend a certain length from the mounting part 610 toward one end of the second sub-space 512, so as to facilitate adjustment of the positions of the power supply 200 and the crucible 300, thereby improving user experience.
  • the installation hole 613 may have a first opening 611 and a second opening 612, the installation hole 613 communicates with the first subspace 511 through the first opening 611, the installation hole 613 communicates with the second subspace
  • the space 512 communicates through the second opening 612 .
  • the arrangement direction of the first opening 611 and the second opening 612 is different from the arrangement direction of the first subspace 511 and the second subspace 512 .
  • Fig. 14 is a cross-sectional view of a mounting part according to Embodiment 3 of the present application.
  • the plurality of hole segments include a first hole segment 414 having the first opening 611 and a second hole segment 415 having the second opening 612 , and the first hole segment 415 has the second opening 612 .
  • a hole segment 414 is adjacent to the second hole segment 415 . Therefore, while preventing radioactive substances from entering the space corresponding to the power supply 200 , the mounting part can also have a relatively simple structure, which is convenient for manufacturing and improves manufacturing efficiency.
  • the extending direction of the first hole segment 414 is different from the arrangement direction of the first subspace 511 and the second subspace 512 .
  • the extending direction of the second hole segment 415 is different from the arrangement direction of the first subspace 511 and the second subspace 512 .
  • the mounting member 610 may include a plurality of segments 416 corresponding to the plurality of hole segments, and the plurality of segments 416 are spliced to form the installation piece 610. That is, one section 416 is formed with one hole section, thereby facilitating the processing of the plurality of hole sections, and different numbers of sections 416 can be combined to accommodate separators 520 of different thicknesses.
  • Fig. 15 is a cross-sectional view of another mounting part according to Embodiment 3 of the present application.
  • the mount 610 may include a first sub-mount 417 and a second sub-mount 418 .
  • the first sub-installation part 417 defines a first sub-installation hole having a part of the first opening 611 and a part of the second opening 612 .
  • the second sub-installation part 418 defines a second sub-installation hole having another part of the first opening 611 and another part of the second opening 612 .
  • the first sub-installation part 417 and the second sub-installation part 418 are spliced to form the installation part 610, and the first sub-installation hole and the second sub-installation hole are spliced to form the installation hole 613 .
  • the processing of the plurality of hole segments is facilitated.
  • the crucible connection device 600 may further include a seal, which is arranged on the mounting part 610 at a position corresponding to the opening 521, so that the mounting part 610 passes through the The seal realizes a sealed connection with said partition 520 .
  • the seal can further prevent radioactive substances from entering the corresponding area of the power supply 200 .
  • the sealing member may be a rubber gasket or the like.
  • the embodiment of the present application also provides a material processing equipment for a container 500, the container 500 includes a container 510 and a partition 520, the partition 520 defines the internal space defined by the container 510 It is divided into a first subspace 511 and a second subspace 512 , and the partition 520 defines an opening 521 for communicating with the first subspace 511 and the second subspace 512 .
  • the material processing equipment includes a power source 200 , a crucible 300 and any crucible connecting device 600 described above.
  • the power supply 200 is disposed in the first subspace 511 , and the crucible 300 is disposed in the second subspace 512 .
  • the mounting part 610 of the crucible connecting device 600 is installed at the opening 521 to close the opening 521, and the connecting part of the crucible connecting device 600 is used to realize the electrical connection between the power source 200 and the crucible 300, The electric energy of the power supply 200 is transmitted to the crucible 300 through the connecting member, so that the crucible 300 can heat the radioactive material.
  • the material handling device provided by the embodiment of the present application can prevent radioactive substances from entering the space corresponding to the power supply 200 through multiple hole segments extending in different directions while realizing the electrical connection between the power supply 200 and the crucible 300 .
  • the crucible connection device 600 is easy to install, and can conveniently realize electrical connection between the power supply 200 and the crucible 300 in different spaces.
  • the embodiment of the present application also provides a material processing system.
  • the material processing system includes a receiving device 500 , a power source 200 , a crucible 300 and any one of the crucible connecting devices 600 described above.
  • the containing device 500 includes a containing part 510 and a partition 520, the partition 520 divides the internal space defined by the containing part 510 into a first subspace 511 and a second subspace 512, and the partition 520 is opened for use
  • the opening 521 connecting the first subspace 511 and the second subspace 512 .
  • the power supply 200 is disposed in the first subspace 511 .
  • the crucible 300 is disposed in the second subspace 512 .
  • the mounting part 610 of the crucible connecting device 600 is installed at the opening 521 to close the opening 521, and the connecting part of the crucible connecting device 600 is used to realize the electrical connection between the power supply 200 and the crucible 300. connected so that the electric energy of the power supply 200 is transmitted to the crucible 300 through the connecting piece, so that the crucible 300 can heat the radioactive materials.
  • the material processing system provided by the embodiment of the present application can prevent radioactive substances from entering the space corresponding to the power supply 200 through multiple hole segments extending in different directions while realizing the electrical connection between the power supply 200 and the crucible 300 .
  • the crucible connection device 600 is easy to install, and can conveniently realize electrical connection between the power supply 200 and the crucible 300 in different spaces.
  • the power control method provided by the embodiment of the present invention can be applied to the glass melting process in the vitrification of radioactive waste using a cold crucible.
  • This control method can be used in any power control method of the power source 200 of the radioactive waste treatment system described above, and the crucible 300 can be the cold crucible 10 .
  • Fig. 16 is a schematic structural view of a cold crucible according to Embodiment 4 of the present application. It includes a cold crucible 10, and an induction coil 12 surrounds the outside of the cold crucible 10, and the induction coil 12 is connected to a power source (not shown in the figure).
  • the power supply of the induction coil 12 can be turned on, so that the induction coil 12 generates an electromagnetic field in the cold crucible, and the heating material 30 generates heat or even burns under the action of the electromagnetic field, and the glass 20 is heated.
  • the material 30 starts to melt under the heating and forms a certain glass melt, which can gradually expand under the induction heating of the electromagnetic field until the glass 20 is completely melted.
  • the power of the power supply to the induction coil 12 can be controlled.
  • FIG. 17 is a flowchart of a power control method according to Embodiment 4 of the present application. As shown in FIG. 17, the method in this embodiment may include the following steps.
  • Step S110 controlling the power supply of the induction coil of the cold crucible to be turned on with the initial power, and the induction coil generates an electromagnetic field in the cold crucible after the power is turned on, so that the glass in the cold crucible begins to melt.
  • the power supply may be a high-frequency power supply, which is used to provide current to the induction coil 12 so that the induction coil 12 generates an electromagnetic field in the cold crucible 10 .
  • the greater the power of the power supply the greater the intensity of the electromagnetic field generated by the induction coil 12 .
  • the induction coil 12 can generate an electromagnetic field of initial strength in the cold crucible 10, under this electromagnetic field, the heating material 30 in the cold crucible 10 is heated by induction and burns , the generated heat heats the glass in contact with the heating material 30, so that the glass starts to melt and forms a certain glass melt.
  • the formed glass melt can also be heated by induction under the electromagnetic field and gradually expand.
  • the initial power P 0 can be selected according to the properties of the heating material, the properties of the glass and other conditions, and the specific value of the initial power P 0 is not limited in this embodiment.
  • Step S120 after controlling the power supply to run at the initial power for a first predetermined time, increase the power of the power supply until the power rises to a first predetermined power.
  • the first predetermined time t 1 may be determined based on the melting rate of the glass 20 in the cold crucible 10 .
  • the heating material 30 is heated to burn and the glass begins to melt, and when the heating material 30 is completely burnt out, no heat is provided to the glass, and the glass can only be melted under the induction heating of the electromagnetic field , the melting rate of the glass will decrease obviously at this time, and the power supply at this time is the initial power P 0 , which is not suitable for glass melting, and the melting rate of the glass will gradually decrease.
  • the power supply can be controlled to run at the initial power for a first predetermined time, and then the power of the power supply is increased, and the first predetermined time t 1 It can be determined according to the melting rate of the glass in the cold crucible 10 .
  • the power of the power supply can be increased until the power increases to the first predetermined power P1 . That is, when the power supply runs to the first predetermined time t1 , the melting rate of the glass is less than or equal to the preset rate threshold, at this time, the power of the power supply is increased so that the power of the power supply is suitable for glass melting, and then Increases the rate at which glass melts.
  • the preset rate threshold and the first predetermined power P1 can be reasonably selected according to actual production requirements, and this embodiment does not limit the preset rate threshold and the first predetermined power.
  • Step S130 after controlling the power supply to run at the first predetermined power for a second predetermined time, reduce the power of the power supply until the power is reduced to the second predetermined power.
  • control the power supply After increasing the power of the power supply to the first predetermined power P1, control the power supply to run at the first predetermined power P1 until the second predetermined time t2 , and then reduce the power of the power supply until the power is reduced to the second predetermined power P 2 .
  • the second predetermined time t 2 may be determined based on the temperature of the glass melt in the cold crucible 10 .
  • the power supply is operated at the first predetermined power P1
  • the glass in the cold crucible 10 is continuously melted to form a glass melt, and the temperature of the glass melt will continue to rise.
  • the power of the power supply can be reduced to slow down the rate of glass melting, so that the temperature of the glass melt in the cold crucible 10 will not continue to rise.
  • the power of the power supply can be reduced until the power is reduced to the second predetermined power P 2 . That is, when the power supply runs to the second predetermined time t2 , the temperature of the glass melt is greater than or equal to the preset rate threshold, at this time, the power of the power supply is reduced to slow down the rate of glass melting and prevent the glass from melting. The temperature of the melt is too high.
  • the preset temperature threshold and the second predetermined power P2 can be reasonably selected according to the design parameters of the cold crucible and actual production requirements, and this embodiment does not limit the preset temperature threshold and the second predetermined power.
  • Step S140 controlling the power supply to operate at a second predetermined power until the glass is completely melted.
  • the power supply can be controlled to operate at the second predetermined power P2 until the glass 20 in the cold crucible 10 is completely melted to complete the glass melting process.
  • the second predetermined power is greater than the initial power.
  • the power supply When the power supply operates at the initial power P 0 , it is mainly used for inductively heating the heating material in the cold crucible 10 .
  • the second predetermined power P 2 is set to be greater than the initial power P 0 , so that the power of the power supply is higher and suitable for the melting of glass, so that the glass can be melted at a faster rate while preventing the temperature of the glass melt from being too high .
  • the power consumption can be reduced, and the power supply does not continue to operate at a lower power , can balance the time consumption of glass melting and power consumption, and complete the glass melting process in the cold crucible in a shorter time and less power consumption, so as to start the melting of radioactive waste to be treated.
  • any method may be used to increase the power of the power supply until the power is increased to the first predetermined power P 1 .
  • increasing the power of the power supply until the power reaches a first predetermined power may include: directly adjusting the power of the power supply to the first predetermined power, or increasing the power of the power supply to the first predetermined power.
  • the power of the power supply is gradually increased to the first predetermined power.
  • any method may be used to control the power of the power supply to gradually increase, for example, stepwise increasing the power of the power supply to the first predetermined power , or, linearly increasing the power of the power supply to a first predetermined power at a first rate.
  • any method may be used to reduce the power of the power supply until the power is reduced to the second predetermined power P 2 .
  • the reducing the power of the power supply until the power is reduced to a second predetermined power may include: directly adjusting the power of the power supply to the second predetermined power, or reducing the power of the power supply to the second predetermined power.
  • the power of is gradually reduced to the second predetermined power.
  • any method may be used to control the power of the power supply to gradually reduce, for example, the power of the power supply is gradually reduced to the second predetermined power, or, The power of the power supply is linearly reduced to a second predetermined power at a second rate.
  • the heating material used in the glass melting process may be thermite or graphite material.
  • the power control method in this embodiment can be used not only in the process of melting glass raw materials, but also in the process of melting glass bodies.
  • the glass body is a glass body formed by cooling and solidifying glass raw materials or glass raw materials and radioactive waste to be treated in a cold crucible due to loss of a heating source.
  • FIG. 18 is a schematic diagram of a first power variation with time according to Embodiment 4 of the present application. As shown in FIG. 18, the power control method in this embodiment includes the following steps.
  • Step S111 controlling the power supply of the induction coil of the cold crucible to be turned on with an initial power P0 , and the induction coil generates an electromagnetic field in the cold crucible after the power is turned on, so that the glass in the cold crucible begins to melt.
  • Step S121 controlling the power supply to run at the initial power P 0 for a first predetermined time t 1 , and then directly adjusting the power of the power supply to the first predetermined power P 1 .
  • Step S131 After controlling the power supply to run at the first predetermined power P 1 for a second predetermined time t 2 , directly adjust the power of the power supply to the second predetermined power P 2 .
  • Step S141 controlling the power supply to operate at a second predetermined power P2 until the glass is completely melted.
  • first control the power supply to start with the initial power P 0 such as P 0 is 50kW
  • the first predetermined time t 1 can be based on the melting of the glass in the cold crucible The rate is determined, for example, it may be 20 minutes.
  • the power of the power supply is directly adjusted to the first predetermined power P1.
  • the first predetermined power can be selected according to the operating parameters of the cold crucible, glass properties, etc., for example, it can be 120kW , and then control the power supply to run at the first predetermined power P1 for a second predetermined time.
  • the second predetermined time t2 can be determined according to the temperature of the glass melt in the cold crucible, for example, it can be 60 minutes. Then the power of the power supply is directly adjusted to the second predetermined power P 2 , which can be selected according to the operating parameters of the cold crucible, glass properties, glass melt temperature and other conditions, for example, it can be 90kW. Finally, the power supply is controlled to run at the second predetermined power P2 until the glass in the cold crucible is completely melted.
  • FIG. 19 is a schematic diagram of a second power variation with time according to Embodiment 4 of the present application. As shown in FIG. 19 , the power control method in this embodiment includes the following steps.
  • Step S112 controlling the power supply of the induction coil of the cold crucible to be turned on with the initial power P0 , and the induction coil generates an electromagnetic field in the cold crucible after the power is turned on, so that the glass in the cold crucible begins to melt.
  • Step S122 After controlling the power supply to run at the initial power P 0 for a first predetermined time t 1 , linearly increase the power of the power supply to a first predetermined power P 1 at a first rate.
  • the power of the power supply can be controlled to increase linearly from the initial power P 0 to the first predetermined power P 1 , and the rate of power increase can be the first rate, for example, 10kW/min .
  • the first rate can be set according to actual production needs and operating parameters of the cold crucible, and is not limited in this implementation.
  • Step S132 controlling the power supply to run at the first predetermined power P 1 for a second predetermined time t 2 , then linearly reducing the power of the power supply to the second predetermined power P 2 at a second rate.
  • the power of the power supply can be controlled to decrease linearly from the first predetermined power P 1 to the second predetermined power P 2 , and the rate of power reduction can be the second rate, for example, 5kW/min .
  • the second rate can be set according to actual production needs and operating parameters of the cold crucible.
  • the second rate can be the same as the first rate or different from the first rate. In this implementation No restrictions are imposed.
  • Step S142 controlling the power supply to operate at a second predetermined power P2 until the glass is completely melted.
  • FIG. 20 is a schematic diagram of a third power variation with time according to Embodiment 4 of the present application.
  • the difference between the power control method in this embodiment and the second embodiment is that in step S122, the power of the power supply is increased until the power reaches the first predetermined power, using Different methods have been developed to control the power boost of the power supply.
  • the power of the power supply is stepped up to the first predetermined power P 1 .
  • the power of the control power supply is increased stepwise from the initial power P 0 to the first predetermined power P 1 , and the power of the control power supply can be increased by a predetermined value after each predetermined period of time , for example, increase 20kW every 2 minutes.
  • the predetermined time period and the predetermined value can be set according to the actual production needs and the operating parameters of the cold crucible.
  • the increased predetermined value can be the same, or It can be different, and there is no limitation in this implementation.
  • FIG. 21 is a schematic diagram of a fourth power variation with time according to Embodiment 4 of the present application.
  • the difference between the power control method in this embodiment and the first embodiment is that in step S131, the power of the power supply is reduced until the power is reduced to the second predetermined power, using different method of controlling the power reduction of the power supply.
  • the power of the power supply is linearly reduced to the second predetermined power P 2 at a second rate.
  • the power of the power supply can be controlled to decrease linearly from the first predetermined power P1 to the second predetermined power P2, and the rate of power reduction can be the second rate, for example, 5kW /min.
  • the second rate can be set according to actual production requirements and operating parameters of the cold crucible, and is not limited in this implementation.
  • Fig. 22 is a schematic diagram of a fifth power variation with time according to Embodiment 4 of the present application. As shown in FIG. 22, the power control method in this embodiment includes the following steps.
  • Step S115 controlling the power supply of the induction coil of the cold crucible to be turned on with the initial power P0 , and the induction coil generates an electromagnetic field in the cold crucible after the power is turned on, so that the glass in the cold crucible begins to melt.
  • Step S125 controlling the power supply to run at the initial power P 0 for a first predetermined time t 1 , and then stepping up the power of the power supply to the first predetermined power P 1 .
  • Step S135 controlling the power supply to run at the first predetermined power P 1 for a second predetermined time t 2 , and then reducing the power of the power supply to the second predetermined power P 2 stepwise.
  • the power of the control power supply is increased stepwise from the first predetermined power P 1 to the second predetermined power P 2 , and the power of the control power supply can be reduced after each predetermined time period.
  • the predetermined value is, for example, decreased by 10 kW every 3 minutes. It should be noted that the predetermined time period and the predetermined value can be set according to actual production needs and operating parameters of the cold crucible. In addition, in different time periods, the reduced predetermined value can be the same or can be Different, there is no limitation in this implementation.
  • Step S145 controlling the power supply to operate at a second predetermined power P2 until the glass is completely melted.
  • FIG. 23 is a flowchart of a power control method according to Embodiment 5 of the present application. As shown in FIG. 23 , the power control method in this implementation specifically includes the following steps.
  • Step S210 controlling the power supply of the induction coil of the cold crucible to be turned on at a preset power, and the induction coil generates an electromagnetic field in the cold crucible after the power is turned on, so that the glass in the cold crucible begins to melt.
  • Step S220 controlling the power supply to operate at the preset power until the glass is completely melted.
  • control the power supply of the induction coil 12 of the cold crucible to be turned on with a preset power and the induction coil 12 can generate an electromagnetic field with a preset intensity in the cold crucible 10, so
  • the heating material is inductively heated and burned under the action of the electromagnetic field to generate heat, and the generated heat heats the glass in contact with the heating material 30 to make the glass start to melt and form a certain glass melt.
  • the preset power is also suitable for melting the glass, and the formed glass melt can also be heated by induction under the electromagnetic field and gradually expand.
  • the power of the control power supply continues to operate at the preset power until the glass in the cold crucible is completely melted, and the glass melting process is completed to start melting the radioactive waste to be treated.
  • the preset power may be determined based on at least one of the property of the heating material, the added amount of the heating material, and the property of the glass. Under the same amount of addition, the heat generated by different heating materials is different, so the quality of glass that can be melted by different heating materials is also different, and the heat required for melting glasses with different properties is also different.
  • the preset power is determined according to the properties of the heating material, the amount of the heating material added, and the properties of the glass, so that the glass in the cold crucible can be completely melted under the preset power.
  • This embodiment controls the power supply to continue to operate at the preset power until the glass in the cold crucible is completely melted, which can reduce the time required for glass melting, and, in the process of glass melting, no operator is required to adjust the power of the power supply, reducing manual labor. Operation amount, using the power control method of this embodiment, can completely cool the glass melting process in the crucible in a short time and with less manual intervention.
  • the heating material may be thermite or graphite material.
  • the thermite includes a first metal and a second metal oxide mixed in proportion, and the first metal is more active than the second metal.
  • the first metal may include one of aluminum, magnesium and titanium, and the second metal oxide may include one of ferric oxide, ferric oxide and copper oxide.
  • the types of the first metal and the second metal oxide are not limited. In other embodiments, other types of metals and metal oxides may also be used.
  • the oxide of the second metal may also be It may be dichromium trioxide or manganese dioxide.
  • the first metal and the second metal oxide may be mixed according to the stoichiometric coefficient when the thermite undergoes thermite reaction as the molar ratio.
  • the ratios can also be used.
  • thermite When thermite is used as the heating material, there is no need to input oxygen into the cold crucible, the thermite can be gradually heated to combustion under the action of the electromagnetic field, and thermite reaction occurs, which can generate a large amount of heat, making The glass in contact with the thermite begins to melt, forming a definite glass melt.
  • thermite is used as the heating material.
  • Thermite is a good conductor of magnetic induction, and its dependence on a strong magnetic field is relatively weak.
  • the position in the crucible can be heated by induction to heat and melt the glass.
  • the graphite material may include graphite flakes, graphite rings, or graphite spheres.
  • the graphite material is gradually heated to burn under the action of the electromagnetic field, and the heat generated can melt the glass in contact with the graphite material and start to form a glass melt.
  • thermite used in this embodiment may be granular and/or powdery, and the graphite material may be a plurality of small-sized graphite spheres. Because the size of the heating material is small, it can be added into the cold crucible through the feeding port 13 provided on the cover body 11 of the cold crucible 10, and the heating material can be added into the cold crucible without completely disassembling the cold crucible. Simple, greatly reducing the operating procedures. In addition, when multiple graphite balls are used as the heating material, compared with large-sized materials such as graphite rings of the same mass, there is no need to input oxygen into the cold crucible, and multiple graphite balls can be heated under the action of the electromagnetic field and the air in the cold crucible. It is gradually heated to burn, and the operation is simple.
  • the glass 20 in the cold crucible 10 may be a glass raw material or a glass body.
  • the glass body is a glass body formed by cooling and solidifying glass raw material or glass raw material and radioactive waste to be treated in the cold crucible due to loss of heating source. During the vitrification process, it may be necessary to shut down due to failures, power outages, etc. At this time, the glass raw materials in the cold crucible may not be completely melted, or the glass raw materials and radioactive waste to be treated have not been completely melted, or the cold crucible There are unmelted glass raw materials and radioactive waste to be treated in the crucible.
  • the power control method in this embodiment can be used not only in the process of melting glass raw materials, but also in the process of melting glass bodies.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

一种废物处理系统电源功率控制方法,放射性废物处理系统包括煅烧装置和熔融系统,所述熔融系统包括坩埚和电源,放射性废物进入到所述煅烧装置中进行煅烧转形,得到的物料再与玻璃基料一同进入到所述坩埚中进行熔融并形成熔融玻璃,所述电源用于向所述坩埚提供电能。控制方法包括:控制电源以初始功率开启;控制所述电源以初始功率运行至第一预定时间后,将电源的功率升高,直至功率升高至第一预定功率;控制所述电源以所述第一预定功率运行至第二预定时间后,将所述电源的功率降低,直至所述功率降低至第二预定功率;控制所述电源以第二预定功率运行,直至所述玻璃完全熔融。

Description

废物处理系统电源功率控制方法 技术领域
本申请涉及放射性废物处理技术领域,具体涉及一种废物处理系统电源功率控制方法。
背景技术
目前,在核工业领域中,冷坩埚玻璃固化技术由于具有处理温度高、可处理废物类型广、熔炉使用寿命长、退役容易等优点,成为国内及国际上用于放射性废物处理采用的较为先进的工艺手段。由于冷坩埚的埚体的容积有限,在处理主要以液态存在的放射性废物(即放射性废液)时,可以通过配备一台煅烧炉(例如回转煅烧炉)提前对放射性废液进行预处理,这种方式被称为两步法冷坩埚玻璃固化技术。两步法冷坩埚玻璃固化技术的主要设备包括煅烧炉和冷坩埚。
煅烧炉通常采用回转煅烧炉,回转煅烧炉包括支架、可转动地设置在支架上的炉管、用于加热炉管的加热部件、与炉管的第一端连通的进料管及与炉管的第二端连通的出料管,炉管可沿自身轴线转动。放射性废液及其他添加剂通过进料管进入到炉管中,通过加热部件对炉管进行加热,与此同时炉管沿自身轴线进行转动,放射性废液逐渐被煅烧转形至固体粉末状物料。
冷坩埚是利用电源产生高频(10 5~10 6Hz)电流,再通过感应线圈转换成电磁流透入待处理物料,形成涡流产生热量,实现待处理物料的直接加热熔融。冷坩埚主要包括冷坩埚埚体和熔融加热结构,冷坩埚埚体是由通冷却水的金属弧形块或管组成的容器(容器形状主要有圆形或椭圆形),熔融加热结构包括缠绕在冷坩埚埚体的外侧的感应线圈和与感应线圈电性连接的高频感应电源。当待处理物料放置在冷坩埚埚体内后,打开高频感应电源向感应线圈通电,通过感应线圈将电流转换成电磁流并透过冷坩埚埚体的壁体进入待处理物料内部,从而在待处理物料内部形成涡流产生热量,进而实现对待处理物料的加热。冷坩埚工作时金属弧形块或管内连续通入冷却水,冷坩埚埚体内的熔融物的温度很高,一般可高达2000℃以上,但冷坩埚埚体的壁体仍保持较低温度,一般小于200℃,从而使熔融物靠近冷坩埚埚体的壁体的低温区域形成一 层2~3cm厚的固态物(冷壁),因此称为“冷”坩埚。
发明内容
本申请提供了一种放射性废物处理系统,其中,包括煅烧装置和熔融系统,所述熔融系统包括坩埚和电源,放射性废物进入到所述煅烧装置中进行煅烧转形,得到的物料再与玻璃基料一同进入到所述坩埚中进行熔融并形成熔融玻璃,所述电源用于向所述坩埚提供电能。
可选地,放射性废物处理系统还包括电源切换装置,所述电源切换装置包括:支撑件,用于支撑至少两个电源;驱动件,用于驱动所述支撑件移动,以调整所述至少两个电源的位置,任一个所述电源通过所述支撑件的移动具有与坩埚对应的位置,处于与所述坩埚对应的位置的所述电源用于向所述坩埚提供电能。
可选地,放射性废物处理系统还包括连接组件,所述电源电连接开设有第一开孔的电源连接部,所述坩埚电连接开设有第二开孔的坩埚连接部,所述连接组件包括:连接件,穿过所述第一开孔以及所述第二开孔,并具有伸出所述第一开孔远离所述第二开孔的一侧的第一端,以及伸出所述第二开孔远离所述第一开孔的一侧的第二端;至少一个偏心轮,每个所述偏心轮与所述第一端以及所述第二端中的一个转动连接,每个所述偏心轮的转动用于与所述第一端以及所述第二端中的另一个共同实现所述电源连接部与所述坩埚连接部的可拆卸连接,所述电源连接部与所述坩埚连接部的连接用于实现所述电源的电能传递至所述坩埚。
可选地,放射性废物处理系统还包括用于容纳装置的坩埚连接装置,所述容纳装置包括容纳件以及分隔件,所述分隔件将所述容纳件限定出的内部空间分隔为容纳电源的第一子空间以及容纳坩埚的第二子空间,且所述分隔件开设有用于连通所述第一子空间以及所述第二子空间的开孔,其中,所述坩埚连接装置包括:安装件,安装于所述开孔处,以封闭所述开孔,所述安装件开设有安装孔,所述安装孔具有延伸方向不同的多个孔段;连接件,部分穿过所述安装孔,用于实现所述电源与所述坩埚的电连接,以使所述电源的电能经所述连接件传递至所述坩埚,以使所述坩埚对放射性物料进行加热处理。
本申请还提供了一种用于放射性废物处理系统的电源的功率控制方法,所述坩埚为冷坩埚,其中,所述控制方法包括:控制冷坩埚的感应线圈的电源以初始功率开启, 所述电源开启后所述感应线圈在所述冷坩埚内产生电磁场,以使所述冷坩埚内的玻璃开始熔融;控制所述电源以所述初始功率运行至第一预定时间后,将所述电源的功率升高,直至所述功率升高至第一预定功率;控制所述电源以所述第一预定功率运行至第二预定时间后,将所述电源的功率降低,直至所述功率降低至第二预定功率;控制所述电源以第二预定功率运行,直至所述玻璃完全熔融。
本申请还提供了一种用于放射性废物处理系统的电源的功率控制方法,所述坩埚为冷坩埚,其中,所述控制方法包括:控制冷坩埚的感应线圈的电源以预设功率开启,所述电源开启后所述感应线圈在所述冷坩埚内产生电磁场,以使所述冷坩埚内的玻璃开始熔融;控制所述电源以所述预设功率运行,直至所述玻璃完全熔融。
附图说明
通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
图1是根据本申请实施例一的电源切换装置的第一状态的示意图;
图2是根据本申请实施例一的电源切换装置的第二状态的示意图;
图3是根据本申请实施例一的电源切换设备的第一状态的示意图;
图4是根据本申请实施例一的电源切换设备的第二状态的示意图;
图5是图3所示电源切换设备的俯视图;
图6是根据本申请实施例二的电源的结构示意图;
图7是根据本申请实施例二的坩埚的结构示意图;
图8是根据本申请实施例二的连接组件与电源连接部以及坩埚连接部在第一状态时的剖视图;
图9是根据本申请实施例二的连接组件与电源连接部以及坩埚连接部在第二状态时的剖视图;
图10是根据本申请实施例二的连接组件的结构示意图;
图11是根据本申请实施例三的容纳装置的结构示意图;
图12是根据本申请实施例三的容纳装置、电源、坩埚以及坩埚连接装置的装配图;
图13是根据本申请实施例三的坩埚连接装置的结构示意图;
图14是根据本申请实施例三的一个安装件的剖视图;
图15是根据本申请实施例三的另一个安装件的剖视图;
图16是根据本申请实施例四的冷坩埚的结构示意图;
图17是根据本申请实施例四的功率控制方法的流程图;
图18是根据本申请实施例四的第一种功率随时间变化的示意图;
图19是根据本申请实施例四的第二种功率随时间变化的示意图;
图20是根据本申请实施例四的第三种功率随时间变化的示意图;
图21是根据本申请实施例四的第四种功率随时间变化的示意图;
图22是根据本申请实施例四的第五种功率随时间变化的示意图;
图23是根据本申请实施例五的功率控制方法的流程图。
需要说明的是,附图并不一定按比例来绘制,而是仅以不影响读者理解的示意性方式示出。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一个实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。
本申请实施例提供了一种放射性废物处理系统,放射性废物处理系统包括煅烧装置和熔融系统,熔融系统包括坩埚300和电源200,放射性废物进入到煅烧装置中进行煅烧转形,得到的物料再与玻璃基料一同进入到坩埚300中进行熔融并形成熔融玻璃,电源200用于向坩埚300提供电能。
实施例一
放射性废物处理系统还包括电源切换装置100。图1是根据本申请实施例一的电源切换装置100的第一状态的示意图;图2是根据本申请实施例一的电源切换装置100的第二状态的示意图。如图1以及图2所示,第一状态以及第二状态表示支撑件110处于不同的位置状态。
可以理解地,坩埚可以为冷坩埚,冷坩埚是利用电源产生高频电流,再通过感应线圈(可以为高频感应线圈)转换成电磁流透入待加热物料内部形成涡流产生热量,实现物料的直接加热熔融。冷坩埚的腔体是由通冷却水的金属弧形块或管组成的容器,容器形状主要有圆形或椭圆形,冷坩埚工作时金属管内连续通冷却水,冷坩埚内熔融物的温度可高达2000℃以上,但腔体的壁面仍保持较低温度(一般小于200℃),使其在运行过程中物料在其内壁面形成低温区域形成一层固态的壳。冷坩埚不需要耐火材料,不用电极加热,形成的固态的壳可以减少物料对冷坩埚的腐蚀作用,延长冷坩埚的使用寿命,使得冷坩埚可以对腐蚀性物料进行处理,其中,冷坩埚的卸料口可以位于加热腔的底部。
冷坩埚工作时,感应线圈通入交变电流,在感应线圈内部和周围产生一个交变电磁场。由于冷坩埚的每根金属管之间彼此绝缘,所以每根管内都产生感应电流,相邻两管的截面上电流方向则相反,彼此在管间建立的磁场方向相同,向外表现为磁场增强效应。因此冷坩埚的每一缝隙处都是一个强磁场,冷坩埚如同强流器一样,将磁力线聚集到坩埚内的物料上,坩埚内的物料就被这个交变的磁场的磁力线所切割,坩埚内的物料中就产生感应电动势,由于感应电动势的存在,物料的熔体表面薄层内将形成封闭的电流回路,由于涡流回路产生大量的热,从而使物料熔化。
其中,冷坩埚可以用于两步法玻璃固化工艺,两步法玻璃固化工艺中,先使放射性待处理物料在回转煅烧炉中经过预处理,转化为泥浆或者固体粉末状态,然后将预处理后物料与玻璃基料一起加入冷坩埚,并在冷坩埚内熔融成玻璃,由此,可以避免放射性物质对环境的危害。
其中,回转煅烧炉传热过程主要包括炉内、炉壁和炉外三部分。回转炉内的温度依次分几个不同温度逐渐升高的区域,物料在炉内高温状态下持续时间长,炉内气体湍流程度高,搅拌效果好,且气、固体接触良好,物料在回转炉高温状态下持续时间长,有利于物料煅烧处理,炉内无移动的机械组件,操作稳定,控制方便,能实现连续出料,产生的二次废物较少,同时煅烧后的氧化物比表面积大,易于后续固化处理。
如图1以及图2所示,电源切换装置100包括支撑件110以及驱动件120。支撑件110用于支撑至少两个电源200。驱动件120用于驱动所述支撑件110移动,以调整所述至少两个电源200的位置,任一个所述电源200通过所述支撑件110的移动具有与坩埚300对 应的位置,处于与所述坩埚300对应的位置的所述电源200用于向所述坩埚300提供电能。
可以理解地,电源200处于与坩埚300对应的位置才能向坩埚300提供电能。通过本申请实施例提供的这种电源切换装置100可以在向坩埚300供电的电源故障时,快速切换电源,以使得另外一个电源200向坩埚300提供电能,从而不会严重影响坩埚300对物料的加热过程。
在本申请的一些实施例中,电源200可以为高频电源,坩埚可以为冷坩埚。可以理解地,高频电源可以为冷坩埚熔炉玻璃固化物料加热提供高频能量,高频电源的故障将会导致水冷冷坩埚熔炉内的高温玻璃熔体迅速降温凝固,为保障高频能量的供给,本申请的实施例采用两台高频电源互为热备的方式保证冷坩埚熔炉的连续稳定运行,该电源切换装置100实现两台高频电源到一路汇流排输出的快速切换。
在本申请的一些实施例中,电源切换装置100还可以包括安装件130,安装件130用于安装所述支撑件110以及所述驱动件120,且所述驱动件120用于驱动所述支撑件110相对于所述安装件130移动。由此,使得整个电源切换装置100便于安装、运输等,提升用户体验。
在本申请的一些实施例中,每个所述电源200具有靠近所述坩埚300的第一端,处于与所述坩埚300对应的位置的所述电源200的所述第一端用于与所述坩埚300电连接以提供所述电能。由此,减少电源200与坩埚300之间的走线的长度以及复杂程度,从而提升用户体验。
在本申请的一些实施例中,每个所述电源200还具有远离所述坩埚300的第二端,至少两个相邻的所述电源200的所述第一端间的距离小于所述第二端间的距离。
由此,使得在切换向坩埚300供电的电源200时,驱动件120只需要驱动所述支撑件110移动较少的行程,并且,同时由于所述第二端间的距离较大,因此,提供了较大的维修电源200的空间,便于维修人员进行维修电源200的操作。
在本申请的一些实施例中,所述安装件130包括底板131、第一侧板132以及第二侧板133。
第一侧板132由所述底板131靠近所述坩埚300的边缘向上延伸;第二侧板133由所述底板131远离所述坩埚300的边缘向上延伸;所述第一侧板132以及所述第二侧板133用于对所述支撑件110的移动方向进行限制。也就是说,所述第一侧板132以及所述第二侧板133可以对所述支撑件110进行导向,避免支撑件110脱离运动的轨迹。
在本申请的一些实施例中,所述底板131包括第一边缘以及第二边缘,所述第一边缘以及所述第二边缘的布置方向与所述第一侧板132以及所述第二侧板133的布置方向垂 直。所述安装件130还可以包括安装板134,安装板134由所述第一边缘以及所述第二边缘中的一个向上延伸,用于安装所述驱动件120。所述安装板134连接所述第一侧板132以及所述第二侧板133,由此,提高整个电源切换装置100的结构强度。
所述安装件130还可以包括止挡板,止挡板由所述第一边缘以及所述第二边缘中的另一个向上延伸,用于对所述支撑件110在所述第一边缘以及所述第二边缘的布置方向上的移动距离进行限制,从而避免支撑件脱离运动的轨迹。
所述支撑件110可以通过承载于所述第一侧板132以及所述第二侧板133以安装于所述安装件130。由此,简化了电源切换装置100的安装以及加工过程。
在本申请的一些实施例中,至少一个所述电源200具有位于所述第一侧板132和/或所述第二侧板133正上方的部分,由此,保证对电源200的支撑效果。
至少一个所述电源200包括至少一个防滑垫,所述至少一个防滑垫设置于所述电源200的底部,以减少所述电源200与所述支撑件110的滑动摩擦。也就是说,防滑垫可以减少所述电源200与所述支撑件110之间的滑动。
其中,每台电源200可以由整流机柜和逆变机柜组成,两机柜间使用柔性电缆连接,逆变机柜的末端采用水冷铜排的方式输出高频电流,主、备两台逆变机柜固定在支撑件110上,通过支撑件110的移动实现向坩埚300输送电能的电源的切换。
在一些实施例中,可以通过连接组件实现电源200与坩埚300的快速安装以及拆卸。所述电源200电连接开设有第一开孔的电源连接部,所述坩埚300电连接开设有第二开孔的受电连接部,其中,所述连接组件包括连接件以及至少一个偏心轮。连接件穿过所述第一开孔以及所述第二开孔,并具有伸出所述第一开孔远离所述第二开孔的一侧的第一端,以及伸出所述第二开孔远离所述第一开孔的一侧的第二端;每个所述偏心轮与所述第一端以及所述第二端中的一个转动连接,每个所述偏心轮的转动用于与所述第一端以及所述第二端中的另一个共同实现所述电源连接部与所述受电连接部的可拆卸连接,所述电源连接部与所述受电连接部的连接用于实现所述电源200的电能传递至所述坩埚300。连接组件的所述第一端以及所述第二端中与每个所述偏心轮转动连接的一个开设有固定孔。所述连接组件还可以包括旋转轴,旋转轴固定于所述固定孔,并与每个所述偏心轮转动连接,从而实现每个所述偏心轮与所述第一端以及所述第二端中的一个转动连接。所述至少一个偏心轮可以为沿所述旋转轴的轴线方向延伸的多个偏心轮。连接组件还可以包括第一固定件以及受力结构。第一固定件固定连接每个所述偏心轮,受力结构与所述第一固定件固定连接,用于接收使所述第一固定件旋转的外力,所述第一固定件的旋转用于实现每个所述偏心轮的旋转。在一些实施例中,所述受力结构与所述第一固定件可拆卸地固定连接。所述 旋转轴设置有限位部,用于限制至少一个所述偏心轮在所述旋转轴的轴线方向上的移动。连接组件还可以包括至少一个第二固定件,每个所述第二固定件固定连接所述旋转轴,以及,所述电源连接部与所述受电连接部中靠近所述旋转轴的一个。
本申请的实施例一还提供了一种电源切换设备,图3是根据本申请实施例一的电源切换设备的第一状态的示意图;图4是根据本申请实施例一的电源切换设备的第二状态的示意图;图5是图3所示电源切换设备的俯视图。如图3、图4以及图5所示,第一状态以及第二状态表示支撑件110处于不同的位置状态。
电源切换设备包括上述任一所述电源切换装置100、至少两个电源200以及坩埚300。所述至少两个电源200支撑于所述电源切换装置100的所述支撑件110,坩埚300从处于与所述坩埚300对应的位置的所述电源200接收电能。关于所述电源切换装置100、至少两个电源200以及坩埚300的其他相关内容可以参考前述实施例,此处不再赘述。
可以理解地,电源200处于与坩埚300对应的位置才能向坩埚300提供电能。通过本申请实施例提供的这种电源切换设备可以在向坩埚300供电的电源故障时,快速切换电源,以使得另外一个电源200向坩埚300提供电能,从而不会严重影响坩埚300对物料的加热过程。
实施例二
放射性废物处理系统还包括连接组件400,所述电源200电连接开设有第一开孔211的电源连接部210,所述坩埚300电连接开设有第二开孔311的坩埚连接部310。图6是根据本申请实施例二的电源200的结构示意图;图7是根据本申请实施例二的坩埚300的结构示意图。
所述连接组件400包括连接件410以及至少一个偏心轮420。连接件410穿过所述第一开孔211以及所述第二开孔311,并具有伸出所述第一开孔211远离所述第二开孔311的一侧的第一端411,以及伸出所述第二开孔311远离所述第一开孔211的一侧的第二端412。每个所述偏心轮420与所述第一端411以及所述第二端412中的一个转动连接,每个所述偏心轮420的转动用于与所述第一端411以及所述第二端412中的另一个共同实现所述电源连接部210与所述坩埚连接部310的可拆卸连接,所述电源连接部210与所述坩埚连接部310的连接用于实现所述电源200的电能传递至所述坩埚300。
图8是根据本申请实施例二的连接组件400与电源连接部210以及坩埚连接部310在第一状态时的剖视图;图9是根据本申请实施例二的连接组件400与电源连接部210以及坩埚连接部310在第二状态时的剖视图;图10是根据本申请实施例二的连接组件400的结构示意图。
可以理解地,偏心轮420具有远离其旋转中心的一端以及靠近其旋转中心的一端。当其转动得使得其远离其旋转中心的一端更靠近电源连接部210以及坩埚连接部310时,使得所述电源连接部210与所述坩埚连接部310连接,即图8中第一状态。当其转动得使得其靠近其旋转中心的一端更靠近电源连接部210以及坩埚连接部310时,使得所述电源连接部210与所述坩埚连接部310的可拆卸,即图9中第二状态。
若电源200产生故障,需要切换电源200时,通过转动偏心轮420,就可以使得所述电源连接部210与所述坩埚连接部310拆卸,从而可以更换电源200,以保障坩埚300能正常工作,便于实现坩埚300的电源200的切换。
可以理解地,坩埚可以为冷坩埚,冷坩埚是利用电源产生高频电流,再通过感应线圈(可以为高频感应线圈)转换成电磁流透入待加热物料内部形成涡流产生热量,实现物料的直接加热熔融。冷坩埚的腔体是由通冷却水的金属弧形块或管组成的容器,容器形状主要有圆形或椭圆形,冷坩埚工作时金属管内连续通冷却水,冷坩埚内熔融物的温度可高达2000℃以上,但腔体的壁面仍保持较低温度(一般小于200℃),使其在运行过程中物料在其内壁面形成低温区域形成一层固态的壳。冷坩埚不需要耐火材料,不用电极加热,形成的固态的壳可以减少物料对冷坩埚的腐蚀作用,延长冷坩埚的使用寿命,使得冷坩埚可以对腐蚀性物料进行处理,其中,冷坩埚的卸料口可以位于加热腔的底部。
冷坩埚工作时,感应线圈通入交变电流,在感应线圈内部和周围产生一个交变电磁场。由于冷坩埚的每根金属管之间彼此绝缘,所以每根管内都产生感应电流,相邻两管的截面上电流方向则相反,彼此在管间建立的磁场方向相同,向外表现为磁场增强效应。因此冷坩埚的每一缝隙处都是一个强磁场,冷坩埚如同强流器一样,将磁力线聚集到坩埚内的物料上,坩埚内的物料就被这个交变的磁场的磁力线所切割,坩埚内的物料中就产生感应电动势,由于感应电动势的存在,物料的熔体表面薄层内将形成封闭的电流回路,由于涡流回路产生大量的热,从而使物料熔化。
其中,冷坩埚可以用于两步法玻璃固化工艺,两步法玻璃固化工艺中,先使放射性待处理物料在回转煅烧炉中经过预处理,转化为泥浆或者固体粉末状态,然后将预处理后物料与玻璃基料一起加入冷坩埚,并在冷坩埚内熔融成玻璃,由此,可以避免放射性物质对环境的危害。
其中,回转煅烧炉传热过程主要包括炉内、炉壁和炉外三部分。回转炉内的温度依次分几个不同温度逐渐升高的区域,物料在炉内高温状态下持续时间长,炉内气体湍流程度高,搅拌效果好,且气、固体接触良好,物料在回转炉高温状态下持续时间长,有利于物料煅烧处理,炉内无移动的机械组件,操作稳定,控制方便,能实现连续出料,产生的二 次废物较少,同时煅烧后的氧化物比表面积大,易于后续固化处理。
在本申请的一些实施例中,所述第一端411以及所述第二端412中与每个所述偏心轮420转动连接的一个开设有固定孔,所述连接组件400还包括旋转轴430,旋转轴430固定于所述固定孔,并与每个所述偏心轮420转动连接,从而实现每个所述偏心轮420与所述第一端411以及所述第二端412中的一个转动连接。
在本申请的一些实施例中,所述至少一个偏心轮420为沿所述旋转轴430的轴线方向延伸的多个偏心轮420。由此,使得所述电源连接部210与所述坩埚连接部310连接时,可以提高连接的效果。
在本申请的一些实施例中,连接组件400还包括第一固定件440以及受力结构450,第一固定件440固定连接每个所述偏心轮420。受力结构450与所述第一固定件440固定连接,用于接收使所述第一固定件440旋转的外力,所述第一固定件440的旋转用于实现每个所述偏心轮420的旋转。
具体地,固定件340可以为固定杆,受力结构450可以为手柄、手环等。由此,便于用户施力,提升用户体验。
在本申请的一些实施例中,所述受力结构450与所述第一固定件440可拆卸地固定连接。由此,便于受力结构450的维修以及更换等。
在本申请的一些实施例中,所述旋转轴430设置有限位部,限位部用于限制至少一个所述偏心轮420在所述旋转轴430的轴线方向上的移动。具体地,限位部可以为限位凸起或凹槽,从而避免偏心轮420脱离旋转轴430。
连接组件400还可以包括至少一个第二固定件,每个所述第二固定件固定连接所述旋转轴430,以及,所述电源连接部210与所述坩埚连接部310中靠近所述旋转轴430的一个,从而加强对旋转轴430的固定。
在本申请的一些实施例中,所述至少一个第二固定件为固定连接所述旋转轴430的轴线方向上不同区域的多个第二固定件,从而保证对旋转轴430的不同区域的固定效果。所述多个第二固定件可以等间隔均匀布置,从而使得在第二固定件的数量一定时,不会有某个区域的连接强度过低。
所述第一开孔211具有沿所述第一开孔211以及所述第二开孔311的布置方向布置的第一开口以及第二开口;所述第二开孔311具有沿所述第一开孔211以及所述第二开孔311的布置方向布置的第三开口以及第四开口;所述第一开孔211还具有连接部分所述第一开口以及部分所述第二开口的第五开口,所述第二开孔311还具有连接部分所述第三开口以及部分所述第四开口的第六开口,所述第五开口与所述第六开口的位置对应,以提供所述 连接件410脱离至所述第一开孔211以及所述第二开孔311外的通道。由此,便于连接组件400与电源连接部210以及坩埚连接部310的安装以及拆卸。
本申请的实施例还提供了一种坩埚系统,坩埚系统包括电源200、坩埚300以及上述任一连接组件400。
电源200电连接开设有第一开孔211的电源连接部210,坩埚300电连接开设有第二开孔311的坩埚连接部310,连接组件400用于实现所述电源连接部210与所述坩埚连接部310的可拆卸连接,所述电源连接部210与所述坩埚连接部310的连接用于实现所述电源200的电能传递至所述坩埚300。关于所述电源200、坩埚300以及连接组件400的其他相关内容可以参考前述实施例,此处不再赘述。
所述坩埚300可以包括腔体320以及感应器330。所述腔体320限定出用于对物料进行加热的加热腔。所述感应器330环绕所述加热腔,并配置成在所述电源连接部210与所述坩埚连接部310连接时,接收来自所述电源200的电能,以产生对所述加热腔内的物料进行加热的磁场。
若电源200产生故障,需要切换电源200时,通过转动偏心轮420,就可以使得所述电源连接部210与所述坩埚连接部310拆卸,从而可以更换电源200,以保障坩埚300能正常工作,便于实现坩埚300的电源200的切换。
实施例三
本申请的实施例首先提供了一种用于容纳装置500的坩埚连接装置600,所述容纳装置500包括容纳件510以及分隔件520,所述分隔件520将所述容纳件510限定出的内部空间分隔为容纳电源200的第一子空间511以及容纳坩埚300的第二子空间512,且所述分隔件520开设有用于连通所述第一子空间511以及所述第二子空间512的开孔521。
图11是根据本申请实施例三的容纳装置500的结构示意图,图12是根据本申请实施例三的容纳装置500、电源200、坩埚300以及坩埚连接装置600的装配图,图13是根据本申请实施例三的坩埚连接装置600的结构示意图。
其中,容纳件510以及分隔件520可以由能够屏蔽放射性物质的材料制成,例如,可以由水泥、混凝土等材料制成,从而可以避免坩埚300对放射性物料进行加热处理时,放射性物质进入电源200对应的空间。可以理解地,在坩埚40的运行过程中,可能需要操作人员对电源进行操作,例如,进行控制、调整、维修、切换等各种操作,若,放射性物质进入电源200对应的空间,则会对操作人员的生命安全造成威胁。
所述坩埚连接装置600包括安装件610以及连接件。安装件610安装于所述开孔521处,以封闭所述开孔521,所述安装件610开设有安装孔613,所述安装孔613具有延伸 方向不同的多个孔段。连接件部分穿过所述安装孔613,用于实现所述电源200与所述坩埚300的电连接,以使所述电源200的电能经所述连接件传递至所述坩埚300,以使所述坩埚300对放射性物料进行加热处理。
本申请的实施例提供的这种坩埚连接装置600在实现所述电源200与所述坩埚300的电连接的同时,还能通过延伸方向不同的多个孔段避免放射性物质进入电源200对应的空间,且坩埚连接装置600安装方便,能便捷地使得不同空间的电源200以及坩埚300实现电连接。
可以理解地,坩埚300可以为冷坩埚,冷坩埚是利用电源产生高频电流,再通过感应线圈(可以为高频感应线圈)转换成电磁流透入待加热物料内部形成涡流产生热量,实现物料的直接加热熔融。冷坩埚的腔体是由通冷却水的金属弧形块或管组成的容器,容器形状主要有圆形或椭圆形,冷坩埚工作时金属管内连续通冷却水,冷坩埚内熔融物的温度可高达2000℃以上,但腔体的壁面仍保持较低温度(一般小于200℃),使其在运行过程中物料在其内壁面形成低温区域形成一层固态的壳。冷坩埚不需要耐火材料,不用电极加热,形成的固态的壳可以减少物料对冷坩埚的腐蚀作用,延长冷坩埚的使用寿命,使得冷坩埚可以对腐蚀性物料进行处理,其中,冷坩埚的卸料口可以位于加热腔的底部。
冷坩埚工作时,感应线圈通入交变电流,在感应线圈内部和周围产生一个交变电磁场。由于冷坩埚的每根金属管之间彼此绝缘,所以每根管内都产生感应电流,相邻两管的截面上电流方向则相反,彼此在管间建立的磁场方向相同,向外表现为磁场增强效应。因此冷坩埚的每一缝隙处都是一个强磁场,冷坩埚如同强流器一样,将磁力线聚集到坩埚内的物料上,坩埚内的物料就被这个交变的磁场的磁力线所切割,坩埚内的物料中就产生感应电动势,由于感应电动势的存在,物料的熔体表面薄层内将形成封闭的电流回路,由于涡流回路产生大量的热,从而使物料熔化。
其中,冷坩埚可以用于两步法玻璃固化工艺,两步法玻璃固化工艺中,先使放射性待处理物料在回转煅烧炉中经过预处理,转化为泥浆或者固体粉末状态,然后将预处理后物料与玻璃基料一起加入冷坩埚,并在冷坩埚内熔融成玻璃,由此,可以避免放射性物质对环境的危害。
回转煅烧炉传热过程主要包括炉内、炉壁和炉外三部分。回转炉内的温度依次分几个不同温度逐渐升高的区域,物料在炉内高温状态下持续时间长,炉内气体湍流程度高,搅拌效果好,且气、固体接触良好,物料在回转炉高温状态下持续时间长,有利于物料煅烧处理,炉内无移动的机械组件,操作稳定,控制方便,能实现连续出料,产生的二次废物较少,同时煅烧后的氧化物比表面积大,易于后续固化处理。
在本申请的一些实施例中,所述连接件可以包括第一子连接件620、第二子连接件630以及第三子连接件。第一子连接件620设置于所述安装件610朝向所述第一子空间511的一端,用于与所述电源200电连接;第二子连接件630设置于所述安装件610朝向所述第二子空间512的一端,用于与所述坩埚300电连接;第三子连接件穿过所述安装孔613,并电连接所述第一子连接件620以及所述第二子连接件630。这种连接件结构简单,可以理解地,第一子连接件620、第二子连接件630以及第三子连接件可以一体成型,从而简化装配流程。
其中,第一子连接件620、第二子连接件630以及第三子连接件可以都为导线,且第一子连接件620可以由所述安装件610朝向所述第一子空间511的一端延伸一定长度,第二子连接件630可以由所述安装件610朝向所述第二子空间512的一端延伸一定长度,从而便于对电源200以及坩埚300的位置进行调整,从而提升用户体验。
所述安装孔613可以具有第一开口611以及第二开口612,所述安装孔613与所述第一子空间511通过所述第一开口611连通,所述安装孔613与所述第二子空间512通过所述第二开口612连通。且所述第一开口611与所述第二开口612的布置方向不同于所述第一子空间511与所述第二子空间512的布置方向。
图14是根据本申请实施例三的一个安装件的剖视图。如图14所示,在一些实施例中,所述多个孔段包括具有所述第一开口611的第一孔段414以及具有所述第二开口612的第二孔段415,所述第一孔段414与所述第二孔段415相邻。由此,使得安装件在避免放射性物质进入电源200对应的空间的同时,还能具有相对简单的结构,便于制造,提高制造的效率。
在一些实施例中,所述第一孔段414的延伸方向不同于所述第一子空间511与所述第二子空间512的布置方向。在另一些实施例中,所述第二孔段415的延伸方向不同于所述第一子空间511与所述第二子空间512的布置方向。由此,使得所述多个孔段的整体长度较长,延长放射性物质进入电源200对应的区域的路径,避免放射性物质进入电源200对应的区域。
如图14所示,所述安装件610可以包括多个区段416,所述多个区段416与所述多个孔段一一对应,所述多个区段416通过拼接组成所述安装件610。即一个区段416形成有一个孔段,由此,便于所述多个孔段的加工,且不同数量的区段416可以组合以适应不同厚度的分隔件520。
图15是根据本申请实施例三的另一个安装件的剖视图。如图15所示,安装件610可以包括第一子安装件417以及第二子安装件418。
第一子安装件417限定出具有部分所述第一开口611以及部分所述第二开口612的第一子安装孔。第二子安装件418限定出具有另一部分所述第一开口611以及另一部分所述第二开口612的第二子安装孔。所述第一子安装件417与所述第二子安装件418通过拼接组成所述安装件610,并使所述第一子安装孔与所述第二子安装孔拼接组成所述安装孔613。由此,便于所述多个孔段的加工。
在本申请的一些实施例中,坩埚连接装置600还可以包括密封件,密封件设置于所述安装件610上与所述开孔521对应的位置处,以使所述安装件610通过所述密封件实现与所述分隔件520的密封连接。密封件可以进一步避免放射性物质进入电源200对应的区域。具体地,密封件可以为橡胶垫圈等。
本申请的实施例还提供了一种用于容纳装置500的物料处理设备,所述容纳装置500包括容纳件510以及分隔件520,所述分隔件520将所述容纳件510限定出的内部空间分隔为第一子空间511以及第二子空间512,且所述分隔件520开设有用于连通所述第一子空间511以及所述第二子空间512的开孔521。其中,所述物料处理设备包括电源200、坩埚300以及上述任一坩埚连接装置600。
电源200设置于所述第一子空间511,坩埚300设置于所述第二子空间512。坩埚连接装置600的安装件610安装于所述开孔521处,以封闭所述开孔521,所述坩埚连接装置600的连接件用于实现所述电源200与所述坩埚300的电连接,以使所述电源200的电能经所述连接件传递至所述坩埚300,以使所述坩埚300对放射性物料进行加热处理。
其中,容纳装置500、电源200、坩埚300等其他相关内容可以参照前述实施例,此处不再赘述。本申请的实施例提供的这种物料处理设置在实现所述电源200与所述坩埚300的电连接的同时,还能通过延伸方向不同的多个孔段避免放射性物质进入电源200对应的空间,且坩埚连接装置600安装方便,能便捷地使得不同空间的电源200以及坩埚300实现电连接。
本申请的实施例还提供了一种物料处理系统,物料处理系统包括容纳装置500、电源200、坩埚300以及上述任一坩埚连接装置600。
容纳装置500包括容纳件510以及分隔件520,所述分隔件520将所述容纳件510限定出的内部空间分隔为第一子空间511以及第二子空间512,且所述分隔件520开设有用于连通所述第一子空间511以及所述第二子空间512的开孔521。电源200设置于所述第一子空间511。坩埚300设置于所述第二子空间512。所述坩埚连接装置600的安装件610安装于所述开孔521处,以封闭所述开孔521,所述坩埚连接装置600的连接件用于实现所述电源200与所述坩埚300的电连接,以使所述电源200的电能经所述连接件传递至所 述坩埚300,以使所述坩埚300对放射性物料进行加热处理。
其中,容纳装置500、电源200、坩埚300等其他相关内容可以参照前述实施例,此处不再赘述。本申请的实施例提供的这种物料处理系统在实现所述电源200与所述坩埚300的电连接的同时,还能通过延伸方向不同的多个孔段避免放射性物质进入电源200对应的空间,且坩埚连接装置600安装方便,能便捷地使得不同空间的电源200以及坩埚300实现电连接。
实施例四
本发明实施例所提供的功率控制方法可以应用于采用冷坩埚进行放射性废物玻璃固化中的玻璃熔融过程。这种控制方法可以用于上述任一种放射性废物处理系统的电源200的功率控制方法,坩埚300可以为冷坩埚10。
图16是根据本申请实施例四的冷坩埚的结构示意图。其包括冷坩埚10,冷坩埚10外侧围绕有感应线圈12,感应线圈12与电源(图中未示出)连接。向冷坩埚10内加入玻璃20以及加热材料30后,可以开启感应线圈12的电源,以使感应线圈12在冷坩埚内产生电磁场,加热材料30在电磁场的作用下发热甚至燃烧,玻璃20在加热材料30的加热下开始熔融并形成一定的玻璃熔体,所述玻璃熔体可以在电磁场的感应加热下逐渐扩大至玻璃20完全熔融。在这一玻璃熔融的过程中,可以对感应线圈12的电源的功率进行控制。
图17是根据本申请实施例四的功率控制方法的流程图。如图17所示,本实施例中的方法,可以包括以下步骤。
步骤S110、控制冷坩埚的感应线圈的电源以初始功率开启,所述电源开启后所述感应线圈在所述冷坩埚内产生电磁场,以使所述冷坩埚内的玻璃开始熔融。
具体地,所述电源可以为高频电源,用于为感应线圈12提供电流以使感应线圈12在冷坩埚10内产生电磁场。一般地,电源的功率越大,感应线圈12所产生的电磁场的强度越大。控制冷坩埚10的感应线圈12的电源以初始功率P 0开启,感应线圈12可以在冷坩埚10内产生初始强度的电磁场,在该电磁场下,冷坩埚10内的加热材料30被感应加热并燃烧,其生成的热量对与加热材料30接触的玻璃进行加热,使玻璃开始熔融并形成一定的玻璃熔体。并且,形成的玻璃熔体也可以在该电磁场下被感应加热并逐渐扩大。其中,所述初始功率P 0可以根据加热材料的性质、玻璃的性质等条件进行选择,本实施例对初始功率P 0的具体数值并不进行限制。
步骤S120、控制所述电源以所述初始功率运行至第一预定时间后,将所述电源的功率升高,直至所述功率升高至第一预定功率。
当所述电源以初始功率P 0开启后,控制所述电源以该初始功率P 0运行至第一预定时 间t 1,然后将所述电源的功率升高,直至电源的功率升高至第一预定功率P 1
可选的,可以基于所述冷坩埚10内的玻璃20的熔融速率,来确定所述第一预定时间t 1。在所述电源以初始功率P 0运行时,加热材料30被加热至燃烧使玻璃开始熔融,当加热材料30完全燃尽后,不再提供热量给玻璃,玻璃只能在电磁场的感应加热下熔融,此时玻璃的熔融速率会明显减小,并且此时的电源功率为初始功率P 0,并不适于玻璃熔融,玻璃的熔融速率会逐渐减小。为了扩大玻璃熔体并且使玻璃快速熔融,以减少整个玻璃熔融过程的时间,可以控制所述电源以初始功率运行至第一预定时间后,将电源的功率升高,该第一预定时间t 1可以根据冷坩埚10内玻璃的熔融速率来确定。
具体地,当电源以所述初始速率P 0运行至所述玻璃的熔融速率小于或等于预设速率阈值时,可以将电源的功率升高,直至所述功率升高至第一预定功率P 1。即,电源运行至所述第一预定时间t 1时,所述玻璃的熔融速率小于或等于预设速率阈值,此时,将电源的功率升高,以使电源的功率适于玻璃熔融,进而加快玻璃熔融的速率。需要说明的是,预设速率阈值以及第一预定功率P 1可以根据实际的生产需求进行合理选择,本实施例对预设速率阈值和第一预定功率并不进行限制。
步骤S130、控制所述电源以所述第一预定功率运行至第二预定时间后,将所述电源的功率降低,直至所述功率降低至第二预定功率。
当将电源的功率升高至第一预定功率P 1后,控制所述电源以第一预定功率P 1运行至第二预定时间t 2,然后将所述电源的功率降低,直至所述功率降低至第二预定功率P 2
可选的,可以基于所述冷坩埚10内的玻璃熔体的温度,来确定所述第二预定时间t 2。当所述电源以第一预定功率P 1运行时,冷坩埚10内的玻璃不断的熔融形成玻璃熔体,并且玻璃熔体的温度会不断升高。为了防止冷坩埚10内的玻璃熔体的温度过高,可以降低电源的功率以减缓玻璃熔融的速率,使冷坩埚10内的玻璃熔体温度不再继续升高。
具体地,当电源以所述第一预定功率P 1运行至所述玻璃熔体的温度大于或等于预设温度阈值时,可以将电源的功率降低,直至所述功率降低至第二预定功率P 2。即,所述电源运行至所述第二预定时间t 2时,所述玻璃熔体的温度大于或等于预设速率阈值,此时,将电源的功率降低,以减缓玻璃熔融的速率,防止玻璃熔体的温度过高。需要说明的是,预设温度阈值以及第二预定功率P 2可以根据冷坩埚的设计参数以及实际的生产需求进行合理选择,本实施例对预设温度阈值和第二预定功率并不进行限制。
步骤S140、控制所述电源以第二预定功率运行,直至所述玻璃完全熔融。
当将所述电源的功率降低至第二预定功率P 2时,可以控制所述电源以所述第二预定功率P 2运行,直至冷坩埚10内的玻璃20完全熔融,以完成玻璃熔融过程。
在一些实施例中,所述第二预定功率大于所述初始功率。当电源以初始功率P 0运行时,主要是用于对冷坩埚10内的加热材料进行感应加热。将第二预定功率P 2设置为大于初始功率P 0,使电源的功率较高,并且适于玻璃的熔融,可以在防止玻璃熔体的温度过高的同时,使玻璃以较快的速率熔融。
采用本实施例中的方法对感应线圈的功率进行控制,由于在玻璃熔融过程中,电源并没有持续以较高的功率运行,可以减少电力的消耗,并且电源也没有持续以较低的功率运行,可以平衡玻璃熔融的用时和电力的消耗,以较短的时间和较少的电力消耗完成冷坩埚内的玻璃熔融过程,以启动对待处理的放射性废物的熔炼。
需要说明的是,可以采用任何方法将电源的功率升高,直至所述功率升高至第一预定功率P 1
可选的,所述将所述电源的功率升高,直至所述功率升高至第一预定功率,可以包括:将所述电源的功率直接调整为所述第一预定功率,或者,将所述电源的功率逐渐升高至第一预定功率。其中,将所述电源的功率逐渐升高至第一预定功率时,也可以采用任意方法来控制电源的功率逐渐升高,例如,将所述电源的功率阶梯式地升高至第一预定功率,或者,将所述电源的功率以第一速率线性地升高至第一预定功率。
同样地,也可以采用任何方法将电源的功率降低,直至所述功率降低至第二预定功率P 2
可选的,所述将所述电源的功率降低,直至所述功率降低至第二预定功率,可以包括:将所述电源的功率直接调整为所述第二预定功率,或者,将所述电源的功率逐渐降低至第二预定功率。其中,将所述电源的功率逐渐降低至第二预定功率时,也可以采用任意方法来控制电源的功率逐渐降低,例如,将所述电源的功率阶梯式地降低至第二预定功率,或者,将所述电源的功率以第二速率线性地降低至第二预定功率。
在一些实施方式中,玻璃熔融过程中所使用的加热材料可以为铝热剂或者石墨材料。
需要说明的是,本实施例中的功率控制方法不仅可以用于玻璃原料熔融过程中,还可以用于玻璃体的熔融过程中。其中玻璃体为玻璃原料或者玻璃原料和待处理放射性废物在冷坩埚内熔融后由于失去加热源而冷却固化形成的玻璃体。
图18是根据本申请实施例四的第一种功率随时间变化的示意图。如图18所示,本实施例中的功率控制方法包括以下步骤。
步骤S111、控制冷坩埚的感应线圈的电源以初始功率P 0开启,所述电源开启后所述感应线圈在所述冷坩埚内产生电磁场,以使所述冷坩埚内的玻璃开始熔融。
步骤S121、控制所述电源以所述初始功率P 0运行至第一预定时间t 1后,将所述电源 的功率直接调整为所述第一预定功率P 1
步骤S131、控制所述电源以所述第一预定功率P 1运行至第二预定时间t 2后,将所述电源的功率直接调整为所述第二预定功率P 2
步骤S141、控制所述电源以第二预定功率P 2运行,直至所述玻璃完全熔融。
具体地,首先控制电源以初始功率P 0开启,例如P 0为50kW,然后控制电源以该初始功率P 0运行至第一预定时间,该第一预定时间t 1可以根据冷坩埚内玻璃的熔融速率确定,例如可以为20分钟。在电源运行至第一预定时间t 1时,将电源的功率直接调整为第一预定功率P 1,该第一预定功率可以根据冷坩埚的运行参数、玻璃性质等进行选择,例如,可以为120kW,然后控制电源以该第一预定功率P 1运行至第二预定时间。该第二预定时间t 2可以根据冷坩埚内玻璃熔体的温度确定,例如可以为60分钟。接着将电源的功率直接调整为第二预定功率P 2,该第二预定功率可以根据冷坩埚的运行参数、玻璃性质、玻璃熔体温度等条件进行选择,例如,可以为90kW。最后控制电源以该第二预定功率P 2运行,直至冷坩埚内的玻璃完全熔融。
图19是根据本申请实施例四的第二种功率随时间变化的示意图。如图19所示,本实施例中的功率控制方法包括以下步骤。
步骤S112、控制冷坩埚的感应线圈的电源以初始功率P 0开启,所述电源开启后所述感应线圈在所述冷坩埚内产生电磁场,以使所述冷坩埚内的玻璃开始熔融。
步骤S122、控制所述电源以所述初始功率P 0运行至第一预定时间t 1后,将所述电源的功率以第一速率线性地升高至第一预定功率P 1
具体地,当电源运行至第一预定时间时,可以控制电源的功率从初始功率P 0线性升高至第一预定功率P 1,功率升高的速率可以为第一速率,例如,10kW/min。需要说明的是,所述第一速率可以根据实际的生产需要和冷坩埚的运行参数等条件进行设置,本实施中不进行限制。
步骤S132、控制所述电源以所述第一预定功率P 1运行至第二预定时间t 2后,将所述电源的功率以第二速率线性地降低至第二预定功率P 2
具体地,当电源运行至第二预定时间时,可以控制电源的功率从第一预定功率P 1线性降低至第二预定功率P 2,功率降低的速率可以为第二速率,例如,5kW/min。需要说明的是,所述第二速率可以根据实际的生产需要和冷坩埚的运行参数等条件进行设置,第二速率可以与所述第一速率相同,也可以不同于第一速率,本实施中不进行限制。
步骤S142、控制所述电源以第二预定功率P 2运行,直至所述玻璃完全熔融。
此外,本实施例中的其他过程与实施例一中的过程相同,此处,不再赘述。
图20是根据本申请实施例四的第三种功率随时间变化的示意图。如图20所示,本实施例中的功率控制方法与实施例二的不同之处在于,在步骤S122中,将电源的功率升高,直至所述功率升高至第一预定功率时,采用了不同的方法控制电源的功率升高。
在控制所述电源以所述初始功率P 0运行至第一预定时间t 1后,将所述电源的功率阶梯式地升高至第一预定功率P 1。具体地,当电源运行至第一预定时间时,控制电源的功率从初始功率P 0阶梯式地升高至第一预定功率P 1,可以每过一预定时间段后控制电源功率升高预定值,例如,每过2分钟升高20kW。需要说明的是,所述预定时间段和所述预定值可以根据实际的生产需要和冷坩埚的运行参数等条件进行设置,另外,在不同的时间段内,升高的预定值可以相同,也可以不同,本实施中不进行限制。
此外,本实施例中的其他过程与实施例二中的过程相同,此处,不再赘述。
图21是根据本申请实施例四的第四种功率随时间变化的示意图。如图21所示,本实施例中的功率控制方法与实施例一的不同之处在于,在步骤S131中,将电源的功率降低,直至所述功率降低至第二预定功率时,采用了不同的方法控制电源的功率降低。
当控制所述电源以所述第一预定功率P 1运行至第二预定时间t 2后,将所述电源的功率以第二速率线性地降低至第二预定功率P 2。具体地,当电源运行至第二预定时间t 2时,可以控制电源的功率从第一预定功率P 1线性降低至第二预定功率P 2,功率降低的速率可以为第二速率,例如,5kW/min。需要说明的是,所述第二速率可以根据实际的生产需要和冷坩埚的运行参数等条件进行设置,本实施中不进行限制。
此外,本实施例中的其他过程与实施例一中的过程相同,此处,不再赘述。
图22是根据本申请实施例四的第五种功率随时间变化的示意图。如图22所示,本实施例中的功率控制方法包括以下步骤。
步骤S115、控制冷坩埚的感应线圈的电源以初始功率P 0开启,所述电源开启后所述感应线圈在所述冷坩埚内产生电磁场,以使所述冷坩埚内的玻璃开始熔融。
步骤S125、控制所述电源以所述初始功率P 0运行至第一预定时间t 1后,将所述电源的功率阶梯式地升高至第一预定功率P 1
步骤S135、控制所述电源以所述第一预定功率P 1运行至第二预定时间t 2后,将所述电源的功率阶梯式地降低至第二预定功率P 2
具体地,当电源运行至第一预定时间时,控制电源的功率从第一预定功率P 1阶梯式地升高至第二预定功率P 2,可以在每过一预定时间段后控制电源功率降低预定值,例如,每过3分钟降低10kW。需要说明的是,所述预定时间段和所述预定值可以根据实际的生产需要和冷坩埚的运行参数等条件进行设置,另外,在不同的时间段内,降低的预定值可以 相同,也可以不同,本实施中不进行限制。
步骤S145、控制所述电源以第二预定功率P 2运行,直至所述玻璃完全熔融。
此外,本实施例中的其他过程与实施例三中的过程相同,此处,不再赘述。
实施例五
本发明实施例所提供的功率控制方法可以应用于采用冷坩埚进行放射性废物玻璃固化中的玻璃熔融过程。这种控制方法可以用于上述任一种放射性废物处理系统的电源200的功率控制方法,坩埚300可以为冷坩埚10。图23是根据本申请实施例五的功率控制方法的流程图。如图23所示,本实施的功率控制方法具体包括以下步骤。
步骤S210、控制冷坩埚的感应线圈的电源以预设功率开启,所述电源开启后所述感应线圈在所述冷坩埚内产生电磁场,以使所述冷坩埚内的玻璃开始熔融。
步骤S220、控制所述电源以所述预设功率运行,直至所述玻璃完全熔融。
具体地,在向所述冷坩埚10内加入玻璃和加热材料之后,控制冷坩埚的感应线圈12的电源以预设功率开启,感应线圈12可以在冷坩埚10内产生预设强度的电磁场,所述加热材料在所述电磁场的作用下被感应加热并燃烧并产生热量,其生成的热量对与加热材料30接触的玻璃进行加热,使玻璃开始熔融并形成一定的玻璃熔体。并且,该预设功率也适于对玻璃进行熔融,形成的玻璃熔体也可以在该电磁场下被感应加热并逐渐扩大。控制电源的功率持续以所述预设功率运行,直至冷坩埚内的玻璃完全熔融,即可完成玻璃熔融过程,以启动对待处理放射性废物的熔炼。
其中,可以基于所述加热材料的性质、所述加热材料的加入量以及所述玻璃的性质中的至少一种,来确定所述预设功率。在相同的加入量下,不同加热材料所产生的热量有所不同,从而不同的加热材料所能够熔融的玻璃质量也不同,并且不同性质的玻璃熔融所需的热量也不相同。根据所述加热材料的性质、所述加热材料的加入量以及所述玻璃的性质,来确定所述预设功率,使得冷坩埚内的玻璃能够在该预设功率下完全熔融。
本实施例控制电源持续以预设功率运行直至冷坩埚内的玻璃完全熔融,可以减少玻璃熔融所需的时间,并且,在玻璃熔融过程中,无需操作人员对电源的功率进行调整,减少了人工操作量,采用本实施例的功率控制方法,可以在较短的时间和较少的人工干预下完全冷坩埚内玻璃的熔融过程。
在一些实施方式中,所述加热材料可以为铝热剂或者石墨材料。其中,铝热剂包括按比例混合的第一金属和第二金属氧化物,并且第一金属比第二金属的性质活泼。第一金属可以包括铝、镁和钛中的一种,第二金属氧化物可以包括三氧化二铁、四氧化三铁和氧化铜中的一种。在本实施例中,对第一金属和第二金属氧化物的种类并不进行限制,在其他 实施方式中,也可以为其他种类的金属和金属氧化物,例如,第二金属的氧化物还可以为三氧化二铬或者二氧化锰等。此外,按比例混合第一金属和第二金属氧化物时,可以是按照所述铝热剂发生铝热反应时的化学计量系数为摩尔比来混合第一金属和第二金属氧化物。当然,在其他实施方式中,也可以采用其他比例。
当采用铝热剂作为加热材料时,无需向冷坩埚内输入氧气,铝热剂即可在电磁场的作用下被逐渐加热至燃烧,并发生铝热反应,铝热反应能够产生大量的热量,使得与铝热剂接触的玻璃开始熔融,形成一定的玻璃熔体。本实施例采用铝热剂作为加热材料,铝热剂是磁感应的良导体,其对强磁场的依赖性较弱,可以放置在冷坩埚中较为宽泛的磁场区域内,无需严格控制加热材料在冷坩埚内的放置位置,即可被感应加热以实现对玻璃的加热和熔融。
在一些实施方式中,所述石墨材料可以包括石墨片、石墨环或者石墨球。当采用石墨材料作为加热材料时,石墨材料在电磁场的作用下被逐渐加热至燃烧,产生的热量可以使与石墨材料接触的玻璃熔融,并开始形成玻璃熔体。
需要说明的是,本实施例中所使用的铝热剂可以为颗粒状和/或粉末状,石墨材料可以为小尺寸的多个石墨球。由于加热材料的尺寸较小,可以通过冷坩埚10的盖体11上所开设的投料口13加入到冷坩埚内,不需要完全拆开冷坩埚,即可将加热材料加入至冷坩埚内,操作简单,极大地减少了操作工序。此外,当采用多个石墨球作为加热材料时,相比于相同质量的石墨环等大尺寸材料,无需向冷坩埚内输入氧气,多个石墨球即可在电磁场和冷坩埚内空气的作用下被逐渐加热至燃烧,操作简单。
在一些实施方式中,所述冷坩埚10内的玻璃20可以是玻璃原料或者玻璃体。其中,玻璃体为玻璃原料或者玻璃原料和待处理放射性废物在冷坩埚内熔融后由于失去加热源而冷却固化形成的玻璃体。在玻璃固化过程中,可能出现由于故障、停电等原因不得不停机的情况,此时,冷坩埚内的玻璃原料可能未完全熔融,或者玻璃原料和待处理放射性废物还未熔炼完全,或者冷坩埚内残留有未熔炼完全的玻璃原料和待处理放射性废物,由于失去加热源,冷坩埚内的物质冷却固化而形成了玻璃体,而玻璃体的再次熔融较为困难。本实施例中的功率控制方法不仅可以用于玻璃原料熔融过程中,还可以用于玻璃体的熔融过程中。
对于本发明的实施例,还需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以权利要求的保护范围为准。

Claims (53)

  1. 一种放射性废物处理系统,其中,包括煅烧装置和熔融系统,所述熔融系统包括坩埚(300)和电源(200),放射性废物进入到所述煅烧装置中进行煅烧转形,得到的物料再与玻璃基料一同进入到所述坩埚(300)中进行熔融并形成熔融玻璃,所述电源(200)用于向所述坩埚(300)提供电能。
  2. 根据权利要求1所述的放射性废物处理系统,其中,还包括电源切换装置(100),所述电源切换装置(100)包括:
    支撑件(110),用于支撑至少两个电源(200);
    驱动件(120),用于驱动所述支撑件(110)移动,以调整所述至少两个电源(200)的位置,任一个所述电源(200)通过所述支撑件(110)的移动具有与坩埚(300)对应的位置,处于与所述坩埚(300)对应的位置的所述电源(200)用于向所述坩埚(300)提供电能。
  3. 根据权利要求2所述的放射性废物处理系统,其中,所述电源切换装置(100)还包括:
    安装件(130),用于安装所述支撑件(110)以及所述驱动件(120),且所述驱动件(120)用于驱动所述支撑件(110)相对于所述安装件(130)移动。
  4. 根据权利要求3所述的放射性废物处理系统,其中,
    每个所述电源(200)具有靠近所述坩埚(300)的第一端,处于与所述坩埚(300)对应的位置的所述电源(200)的所述第一端用于与所述坩埚(300)电连接以提供所述电能。
  5. 根据权利要求4所述的放射性废物处理系统,其中,
    每个所述电源(200)还具有远离所述坩埚(300)的第二端,至少两个相邻的所述电源(200)的所述第一端间的距离小于所述第二端间的距离。
  6. 根据权利要求3所述的放射性废物处理系统,其中,所述安装件(130)包括:
    底板(131);
    第一侧板(132),由所述底板(131)靠近所述坩埚(300)的边缘向上延伸;
    第二侧板(133),由所述底板(131)远离所述坩埚(300)的边缘向上延伸;
    所述第一侧板(132)以及所述第二侧板(133)用于对所述支撑件(110)的移动方向进行限制。
  7. 根据权利要求6所述的放射性废物处理系统,其中,所述底板(131)包括第一边缘以及第二边缘,所述第一边缘以及所述第二边缘的布置方向与所述第一侧板(132)以及所述第二侧板(133)的布置方向垂直;所述安装件(130)还包括:
    安装板(134),由所述第一边缘以及所述第二边缘中的一个向上延伸,用于安装所述驱动件(120)。
  8. 根据权利要求7所述的放射性废物处理系统,其中,
    所述安装板(134)连接所述第一侧板(132)以及所述第二侧板(133)。
  9. 根据权利要求7所述的放射性废物处理系统,其中,所述安装件(130)还包括:
    止挡板,由所述第一边缘以及所述第二边缘中的另一个向上延伸,用于对所述支撑件(110)在所述第一边缘以及所述第二边缘的布置方向上的移动距离进行限制。
  10. 根据权利要求6所述的放射性废物处理系统,其中,
    所述支撑件(110)通过承载于所述第一侧板(132)以及所述第二侧板(133)以安装于所述安装件(130)。
  11. 根据权利要求10所述的放射性废物处理系统,其中,
    至少一个所述电源(200)具有位于所述第一侧板(132)和/或所述第二侧板(133)正上方的部分。
  12. 根据权利要求2所述的放射性废物处理系统,其中,至少一个所述电源(200)包括:
    至少一个防滑垫,设置于所述电源(200)的底部,以减少所述电源(200)与所述支撑件(110)的滑动摩擦。
  13. 根据权利要求1所述的放射性废物处理系统,其中,还包括连接组件(400),所述电源(200)电连接开设有第一开孔(211)的电源连接部(210),所述坩埚(300)电连接开设有第二开孔(311)的坩埚连接部(310),所述连接组件(400)包括:
    连接件(410),穿过所述第一开孔(211)以及所述第二开孔(311),并具有伸出所述第一开孔(211)远离所述第二开孔(311)的一侧的第一端(411),以及伸出所述第二开孔(311)远离所述第一开孔(211)的一侧的第二端(412);
    至少一个偏心轮(420),每个所述偏心轮(420)与所述第一端(411)以及所述第二端(412)中的一个转动连接,每个所述偏心轮(420)的转动用于与所述第一端(411)以及所述第二端(412)中的另一个共同实现所述电源连接部(210)与所述坩埚连接部(310)的可拆卸连接,所述电源连接部(210)与所述坩埚连接部(310)的连接用于实现所述电源(200)的电能传递至所述坩埚(300)。
  14. 根据权利要求13所述的放射性废物处理系统,其中,所述第一端(411)以及所述第二端(412)中与每个所述偏心轮(420)转动连接的一个开设有固定孔,所述连接组件(400)还包括:
    旋转轴(430),固定于所述固定孔,并与每个所述偏心轮(420)转动连接,从而实现每个所述偏心轮(420)与所述第一端(411)以及所述第二端(412)中的一个转动连接。
  15. 根据权利要求14所述的放射性废物处理系统,其中,
    所述至少一个偏心轮(420)为沿所述旋转轴(430)的轴线方向延伸的多个偏心轮(420)。
  16. 根据权利要求15所述的放射性废物处理系统,其中,所述连接组件(400)还包括:
    第一固定件(440),固定连接每个所述偏心轮(420);
    受力结构(450),与所述第一固定件(440)固定连接,用于接收使所述第一固定件(440)旋转的外力,所述第一固定件(440)的旋转用于实现每个所述偏心轮(420)的旋转。
  17. 根据权利要求16所述的放射性废物处理系统,其中,
    所述受力结构(450)与所述第一固定件(440)可拆卸地固定连接。
  18. 根据权利要求14所述的放射性废物处理系统,其中,
    所述旋转轴(430)设置有限位部,用于限制至少一个所述偏心轮(420)在所述旋转轴(430)的轴线方向上的移动。
  19. 根据权利要求14所述的放射性废物处理系统,其中,所述连接组件(400)还包括:
    至少一个第二固定件,每个所述第二固定件固定连接所述旋转轴(430),以及,所述电源连接部(210)与所述坩埚连接部(310)中靠近所述旋转轴(430)的一个。
  20. 根据权利要求19所述的放射性废物处理系统,其中,
    所述至少一个第二固定件为固定连接所述旋转轴(430)的轴线方向上不同区域的多个第二固定件。
  21. 根据权利要求20所述的放射性废物处理系统,其中,
    所述多个第二固定件等间隔均匀布置。
  22. 根据权利要求13所述的放射性废物处理系统,其中,
    所述第一开孔(211)具有沿所述第一开孔(211)以及所述第二开孔(311)的布置方向布置的第一开口以及第二开口;
    所述第二开孔(311)具有沿所述第一开孔(211)以及所述第二开孔(311)的布置方向布置的第三开口以及第四开口;
    所述第一开孔(211)还具有连接部分所述第一开口以及部分所述第二开口的第五开口,所述第二开孔(311)还具有连接部分所述第三开口以及部分所述第四开口的第六开口,所述第五开口与所述第六开口的位置对应,以提供所述连接件(410)脱离至所述第一开孔(211)以及所述第二开孔(311)外的通道。
  23. 根据权利要求1所述的放射性废物处理系统,其中,还包括用于容纳装置(500)的坩埚连接装置(600),所述容纳装置(500)包括容纳件(510)以及分隔件(520),所述分隔件(520)将所述容纳件(510)限定出的内部空间分隔为容纳电源(200)的第一子空间(511)以及容纳坩埚(300)的第二子空间(512),且所述分隔件(520)开设有用 于连通所述第一子空间(511)以及所述第二子空间(512)的开孔(521),其中,所述坩埚连接装置(600)包括:
    安装件(610),安装于所述开孔(521)处,以封闭所述开孔(521),所述安装件(610)开设有安装孔(613),所述安装孔(613)具有延伸方向不同的多个孔段;
    连接件,部分穿过所述安装孔(613),用于实现所述电源(200)与所述坩埚(300)的电连接,以使所述电源(200)的电能经所述连接件传递至所述坩埚(300),以使所述坩埚(300)对放射性物料进行加热处理。
  24. 根据权利要求23所述的放射性废物处理系统,其中,所述连接件包括:
    第一子连接件(620),设置于所述安装件(610)朝向所述第一子空间(511)的一端,用于与所述电源(200)电连接;
    第二子连接件(630),设置于所述安装件(610)朝向所述第二子空间(512)的一端,用于与所述坩埚(300)电连接;
    第三子连接件,穿过所述安装孔(613),并电连接所述第一子连接件(620)以及所述第二子连接件(630)。
  25. 根据权利要求23所述的放射性废物处理系统,其中,所述安装孔(613)具有第一开口(611)以及第二开口(612),所述安装孔(613)与所述第一子空间(511)通过所述第一开口(611)连通,所述安装孔(613)与所述第二子空间(512)通过所述第二开口(612)连通;且
    所述第一开口(611)与所述第二开口(612)的布置方向,不同于,所述第一子空间(511)与所述第二子空间(512)的布置方向。
  26. 根据权利要求25所述的放射性废物处理系统,其中,
    所述多个孔段包括具有所述第一开口(611)的第一孔段(414)以及具有所述第二开口(612)的第二孔段(415),所述第一孔段(414)与所述第二孔段(415)相邻。
  27. 根据权利要求26所述的放射性废物处理系统,其中,
    所述第一孔段(414)的延伸方向,不同于,所述第一子空间(511)与所述第二子空间(512)的布置方向。
  28. 根据权利要求26所述的放射性废物处理系统,其中,
    所述第二孔段(415)的延伸方向,不同于,所述第一子空间(511)与所述第二子空间(512)的布置方向。
  29. 根据权利要求26所述的放射性废物处理系统,其中,所述安装件(610)包括:
    多个区段(416),所述多个区段(416)与所述多个孔段一一对应,所述多个区段(416)通过拼接组成所述安装件(610)。
  30. 根据权利要求26所述的放射性废物处理系统,其中,所述安装件(610)包括:
    第一子安装件(417),其限定出具有部分所述第一开口(611)以及部分所述第二开口(612)的第一子安装孔;
    第二子安装件(418),其限定出具有另一部分所述第一开口(611)以及另一部分所述第二开口(612)的第二子安装孔;
    所述第一子安装件(417)与所述第二子安装件(418)通过拼接组成所述安装件(610),并使所述第一子安装孔与所述第二子安装孔拼接组成所述安装孔(613)。
  31. 根据权利要求24所述的放射性废物处理系统,其中,
    所述第一子连接件(620)、所述第二子连接件(630)以及所述第三子连接件一体成型。
  32. 根据权利要求23所述的放射性废物处理系统,其中,所述坩埚连接装置(600)还包括:
    密封件,设置于所述安装件(610)上与所述开孔(521)对应的位置处,以使所述安装件(610)通过所述密封件实现与所述分隔件(520)的密封连接。
  33. 一种用于根据权利要求1至32中任一项所述的放射性废物处理系统的电源(200)的功率控制方法,所述坩埚(300)为冷坩埚(10),其中,所述控制方法包括:
    控制冷坩埚(10)的感应线圈的电源(200)以初始功率开启,所述电源(200)开启后所述感应线圈在所述冷坩埚(10)内产生电磁场,以使所述冷坩埚(10)内的玻璃开始 熔融;
    控制所述电源(200)以所述初始功率运行至第一预定时间后,将所述电源(200)的功率升高,直至所述功率升高至第一预定功率;
    控制所述电源(200)以所述第一预定功率运行至第二预定时间后,将所述电源(200)的功率降低,直至所述功率降低至第二预定功率;
    控制所述电源(200)以第二预定功率运行,直至所述玻璃完全熔融。
  34. 根据权利要求33所述的方法,其中,基于所述冷坩埚(10)内所述玻璃的熔融速率,确定所述第一预定时间。
  35. 根据权利要求34所述的方法,其中,
    所述电源(200)运行至所述第一预定时间时,所述熔融速率小于或等于预设速率阈值。
  36. 根据权利要求33所述的方法,其中,基于所述冷坩埚(10)内的玻璃熔体的温度,确定所述第二预定时间。
  37. 根据权利要求36所述的方法,其中,
    所述电源(200)运行至所述第二预定时间时,所述玻璃熔体的温度大于或等于预设温度阈值。
  38. 根据权利要求33-37任一项所述的方法,其中,所述将所述电源(200)的功率升高,直至所述功率升高至第一预定功率,包括:
    将所述电源(200)的功率直接调整为所述第一预定功率。
  39. 根据权利要求33-37任一项所述的方法,其中,所述将所述电源(200)的功率升高,直至所述功率升高至第一预定功率,包括:
    将所述电源(200)的功率逐渐升高至第一预定功率。
  40. 根据权利要求39所述的方法,其中,所述将所述电源(200)的功率逐渐升高至第一预定功率,包括:
    将所述电源(200)的功率阶梯式地升高至第一预定功率。
  41. 根据权利要求39所述的方法,其中,所述将所述电源(200)的功率逐渐升高至第一预定功率,包括:
    将所述电源(200)的功率以第一速率线性地升高至第一预定功率。
  42. 根据权利要求33-37任一项所述的方法,其中,所述将所述电源(200)的功率降低,直至所述功率降低至第二预定功率,包括:
    将所述电源(200)的功率直接调整为所述第二预定功率。
  43. 根据权利要求33-37任一项所述的方法,其中,所述将所述电源(200)的功率降低,直至所述功率降低至第二预定功率,包括:
    将所述电源(200)的功率逐渐降低至第二预定功率。
  44. 根据权利要求43所述的方法,其中,所述将所述电源(200)的功率逐渐降低至第二预定功率,包括:
    将所述电源(200)的功率阶梯式地降低至第二预定功率。
  45. 根据权利要求43所述的方法,其中,所述将所述电源(200)的功率逐渐降低至第二预定功率,包括:
    将所述电源(200)的功率以第二速率线性地降低至第二预定功率。
  46. 根据权利要求33所述的方法,其中,所述第二预定功率大于所述初始功率。
  47. 一种用于根据权利要求1至32中任一项所述的放射性废物处理系统的电源(200)的功率控制方法,所述坩埚(300)为冷坩埚(10),其中,所述控制方法包括:
    控制冷坩埚(10)的感应线圈的电源(200)以预设功率开启,所述电源(200)开启后所述感应线圈在所述冷坩埚(10)内产生电磁场,以使所述冷坩埚(10)内的玻璃开始熔融;
    控制所述电源(200)以所述预设功率运行,直至所述玻璃完全熔融。
  48. 根据权利要求47所述的方法,其中,向所述冷坩埚(10)内加入加热材料之后,控制所述冷坩埚(10)的感应线圈的电源(200)开启;
    其中,所述加热材料在所述电磁场的作用下产生热量使所述玻璃开始熔融;
    所述加热材料包括铝热剂或石墨材料。
  49. 根据权利要求48所述的方法,其中,
    所述铝热剂包括:按比例混合的第一金属和第二金属氧化物;
    所述第一金属比第二金属的性质活泼。
  50. 根据权利要求49所述的方法,其中,
    所述第一金属包括:铝、镁和钛中的一种;
    所述第二金属氧化物包括:三氧化二铁、四氧化三铁和氧化铜中的一种。
  51. 根据权利要求48所述的方法,其中,
    所述石墨材料包括:石墨片、石墨环或者石墨球。
  52. 根据权利要求48所述的方法,其中,基于所述加热材料的性质、所述加热材料的加入量、所述玻璃的性质中的至少一种,确定所述预设功率。
  53. 根据权利要求47-52任一项所述的方法,其中,所述玻璃包括:玻璃原料或者玻璃体;
    其中,所述玻璃体包括:所述玻璃原料或者所述玻璃原料和待处理物料在所述冷坩埚(10)内熔融后由于失去加热源而冷却固化形成的玻璃体。
PCT/CN2022/099631 2021-06-21 2022-06-17 废物处理系统电源功率控制方法 WO2022268001A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22732378.9A EP4361546A1 (en) 2021-06-21 2022-06-17 Power control method for power supply of waste treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110684847.6 2021-06-21
CN202110684847.6A CN113465378B (zh) 2021-06-21 2021-06-21 放射性废物处理系统及其电源的功率控制方法

Publications (1)

Publication Number Publication Date
WO2022268001A1 true WO2022268001A1 (zh) 2022-12-29

Family

ID=77868829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099631 WO2022268001A1 (zh) 2021-06-21 2022-06-17 废物处理系统电源功率控制方法

Country Status (3)

Country Link
EP (1) EP4361546A1 (zh)
CN (1) CN113465378B (zh)
WO (1) WO2022268001A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465378B (zh) * 2021-06-21 2022-06-28 中国原子能科学研究院 放射性废物处理系统及其电源的功率控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1239710A (zh) * 1969-07-07 1971-07-21
US6225519B1 (en) * 1997-12-12 2001-05-01 Terrabond, Ltd. Method and apparatus for treating a waste substance using a thermit reaction
CN105474326A (zh) * 2013-08-08 2016-04-06 阿雷瓦公司 用于焚烧、熔化和玻璃化有机和金属废物的方法和设施
CN107606946A (zh) * 2017-10-25 2018-01-19 睿为电子材料(天津)有限公司 一种高频等离子体在冷坩埚中启动熔化的装置和方法
CN109734286A (zh) * 2019-03-18 2019-05-10 中国核电工程有限公司 玻璃原料预热启熔方法和装置
CN113465378A (zh) * 2021-06-21 2021-10-01 中国原子能科学研究院 放射性废物处理系统及其电源的功率控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112212346A (zh) * 2020-10-23 2021-01-12 山东新博润环境技术有限公司 一种多种热源协同加热的等离子气化熔融炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1239710A (zh) * 1969-07-07 1971-07-21
US6225519B1 (en) * 1997-12-12 2001-05-01 Terrabond, Ltd. Method and apparatus for treating a waste substance using a thermit reaction
CN105474326A (zh) * 2013-08-08 2016-04-06 阿雷瓦公司 用于焚烧、熔化和玻璃化有机和金属废物的方法和设施
CN107606946A (zh) * 2017-10-25 2018-01-19 睿为电子材料(天津)有限公司 一种高频等离子体在冷坩埚中启动熔化的装置和方法
CN109734286A (zh) * 2019-03-18 2019-05-10 中国核电工程有限公司 玻璃原料预热启熔方法和装置
CN113465378A (zh) * 2021-06-21 2021-10-01 中国原子能科学研究院 放射性废物处理系统及其电源的功率控制方法

Also Published As

Publication number Publication date
CN113465378B (zh) 2022-06-28
EP4361546A1 (en) 2024-05-01
CN113465378A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2022268001A1 (zh) 废物处理系统电源功率控制方法
JP4593109B2 (ja) 金属を溶融させる方法及び装置
CN106910545B (zh) 一种用于放射性废液冷坩埚玻璃固化处理的启动方法
CN106524759B (zh) 一种连续熔炼金属粉末的微波设备
CN109734286A (zh) 玻璃原料预热启熔方法和装置
CN112212346A (zh) 一种多种热源协同加热的等离子气化熔融炉
CN107421328A (zh) 加热与搅拌互锁型电磁翻腾搅拌炉
CN207113586U (zh) 加热与搅拌互锁型电磁翻腾搅拌炉
CN206269584U (zh) 一种连续熔炼金属粉末的微波设备
CN102313447A (zh) 熔炼非金属高熔点氧化物的中频感应加热炉
CN1020953C (zh) 控弧式磁镜直流电弧炉
CN113321403A (zh) 用于熔融玻璃的方法和装置
CN105018740A (zh) 电磁感应加热熔融还原金属镁真空还原炉
RU2404272C1 (ru) Устройство для одновременного получения тугоплавких металлических и неметаллических материалов и возгонов
EP4244563A1 (en) Control method of stirring device and stirring device
CN113443814B (zh) 用于坩埚的电源切换装置及设备
CN111059898A (zh) 三角形等离子熔化炉
CN214064933U (zh) 一种多种热源协同加热的等离子气化熔融炉
KR102463656B1 (ko) 금속 제조 프로세스를 위한 노 어셈블리
US3108151A (en) Electric furnace
CN113432422B (zh) 坩埚连接装置及物料处理设备、系统
JPS6131876A (ja) なべ炉の運転確実性を高める方法並びに装置
CN215373477U (zh) 三角形等离子熔化炉
CN113461309B (zh) 功率控制方法
JPS6018271A (ja) 溶融金属用容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22732378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022732378

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022732378

Country of ref document: EP

Effective date: 20240122