WO2022267814A1 - 一种耦合热泵热水器的温控系统 - Google Patents

一种耦合热泵热水器的温控系统 Download PDF

Info

Publication number
WO2022267814A1
WO2022267814A1 PCT/CN2022/095415 CN2022095415W WO2022267814A1 WO 2022267814 A1 WO2022267814 A1 WO 2022267814A1 CN 2022095415 W CN2022095415 W CN 2022095415W WO 2022267814 A1 WO2022267814 A1 WO 2022267814A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
temperature control
heat pump
control system
heat exchange
Prior art date
Application number
PCT/CN2022/095415
Other languages
English (en)
French (fr)
Inventor
童风喜
曾少环
郑双名
李桃
Original Assignee
中山市爱美泰电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110688151.0A external-priority patent/CN113294912B/zh
Priority claimed from CN202210151922.7A external-priority patent/CN114576746A/zh
Application filed by 中山市爱美泰电器有限公司 filed Critical 中山市爱美泰电器有限公司
Priority to US18/572,810 priority Critical patent/US20240288187A1/en
Priority to EP22827311.6A priority patent/EP4357694A1/en
Publication of WO2022267814A1 publication Critical patent/WO2022267814A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the invention relates to a temperature control system coupled with a heat pump water heater, more specifically, the invention relates to a temperature control system coupled with a heat pump water heater using circulating water.
  • Water heaters usually use heat pump water heaters.
  • Heat pump water heater also known as air source heat pump water heater, that is, air energy water heater, its working principle is very similar to that of an air conditioner. It uses a small amount of electric energy to drive the compressor to run, and the high-pressure liquid working medium evaporates into a gaseous state in the evaporator after passing through the expansion valve. , and absorb a large amount of heat energy from the air; the gaseous working medium is compressed by the compressor into a high-temperature, high-pressure liquid working medium, and then enters the condenser to release heat and heat the water....
  • Such continuous heating cycle can heat the water to 50°C-65°C.
  • consuming 1 part of electric energy to drive the compressor can simultaneously absorb and transfer about 4 parts of heat from the ambient air to the water. Therefore, compared with ordinary electric water heaters, air energy water heaters can save nearly 3/4 of the electric energy. That is, ordinary electric water heaters consume 4Kw.h of electric energy to produce hot water, and air energy water heaters only need 1Kw.h of electricity.
  • a temperature control system which can not only provide the domestic hot water required for daily life, but also regulate the indoor ambient temperature, occupy a small space, and save electric energy.
  • the purpose of the present invention is to provide a temperature control system utilizing circulating water coupled with a heat pump water heater, so as to solve the problems of indoor hot water supply and room temperature adjustment at one time.
  • the present invention provides a temperature control system utilizing circulating water coupled to a heat pump water heater, the temperature control system comprising:
  • a heat exchange host the heat exchange host is provided with a heat exchanger and a cooling system
  • a water supply pipeline which communicates with the adopted heat exchanger
  • a water return pipeline, at least one room temperature control device is installed in parallel between the water return pipeline and the water supply pipeline;
  • the heat pump water heater includes a temperature rise water tank, a heat pump evaporator and a compressor; wherein, the temperature rise water tank is provided with a heat exchange tube, and the two ends of the heat exchange tube are respectively connected with the heat pump evaporator and the compressor; the heat exchange tube An expansion valve is provided between the heat pump evaporator; the heat pump evaporator is connected to the compressor and coupled to the return water pipe or the water supply pipe; the temperature rise water tank is provided with a cold water inlet and a hot water outlet;
  • a buffer water tank is respectively connected with the end of the return water pipe and the heat exchanger, and a circulating water body is arranged in the buffer water tank, the water supply pipe and the return water pipe;
  • the water pump is arranged on the water supply pipeline or the water return pipeline.
  • the heat exchange main engine adjusts the temperature of the circulating water body, so that water of a certain temperature flows out from the water supply pipe, and then the indoor temperature can be adjusted through various room temperature control devices, and then the water temperature changes and flows back through the return water pipe After entering the buffer water tank, it continues to flow into the heat exchange host for temperature adjustment cycle, while the heat pump evaporator on the heat pump water heater is coupled to the return water pipe or water supply pipe, and the heat pump evaporator absorbs the heat of the circulating water body in it to make the heat pump evaporate
  • the temperature of the heat medium in the device rises and the temperature of the circulating water body drops, and then the water in the temperature-rising water tank is heated through the compressor and the heat exchange tube to provide domestic hot water; the heat pump water heater originally required an independent outdoor host, and the use of In the form of coupling, the outdoor main unit of the heat pump water heater can be replaced by the heat exchange main unit through the circulating water body, so that the room temperature adjustment system and the hot water supply system share one heat
  • the circulating water body itself has a certain energy storage capacity. Even when the heat exchange host is not working, the circulating water body can still have a large thermal energy storage, which can be used by the heat pump water heater, making the whole more energy-saving.
  • the heat pump evaporator on the heat pump water heater reduces the water temperature of the circulating water body, and since summer itself needs to output low-temperature water, the coupling can reduce the burden on the heat exchange host;
  • the heat pump water heater will increase the burden on the heat exchange host, the heating capacity of the heat exchange host itself is stronger than the cooling capacity.
  • the power of the heat exchange host has enough surplus, so the heat pump water heater can also be used very Balance the four seasons burden of the heat exchange main engine, make the four seasons power of the heat exchange main engine more balanced, so as to make the overall performance more balanced.
  • the heat exchange host may include a heat exchange evaporator, a four-way valve, a heat exchange compressor and an electronic expansion valve; wherein, one end of the heat exchange evaporator is connected to the four-way valve, The other end is connected to the electronic expansion valve, and the other end of the electronic expansion valve is connected to the heat exchanger; the two ports of the heat exchange compressor are respectively connected to the four-way valve, and the four-way valve is connected to the heat exchanger Pass.
  • the heat exchange tube can be fixed in a spiral shape in the temperature rise water tank.
  • the buffer water tank can be arranged at the bottom of the heat exchange host to make the whole structure more compact.
  • multiple room temperature control devices may include at least one fan coil unit and/or at least one floor heater, so that the fan coil unit can be used to provide cold air for multiple rooms in hot weather, In cold weather, floor heating can be used to heat multiple rooms.
  • the heat pump evaporator can be coupled in series to the return water pipeline.
  • the temperature control system may further include a branch branch, which is connected in parallel with the return water pipeline or the water supply pipeline, wherein the heat pump evaporator is arranged in the branch branch.
  • the advantage of setting up the diversion branch is that it can reduce the water resistance of the return pipe or the water inlet pipe, and balance the water pressure of the return water pipe or the water inlet pipe and the diversion branch, so that the temperature control system can be kept at a high performance. And easy to install.
  • the diameter of the diversion branch is smaller than that of the return water pipe or the water supply pipe.
  • the temperature control system can further include a pressure regulating valve, which can be set on the return water pipeline or the water supply pipeline, wherein, the shunt branch communicates with the return water pipeline or the water supply pipeline at both ends of the pressure regulating valve.
  • the above-mentioned pressure regulating valve can be a mechanical valve or an electric valve; if the pressure regulating valve is an electric valve, it is more convenient to link it with the heat pump water heater.
  • the temperature control system may further include a three-way valve, which is arranged on the return water pipeline or the water supply pipeline and communicated with one end of the diversion branch.
  • the heat pump evaporator is coupled to the return water pipe or the water supply pipe.
  • the outdoor main unit of the heat pump water heater is replaced by the heat exchange main unit through the circulating water body, so that the room temperature adjustment system and the hot water supply
  • the system shares one heat exchanging host, thereby saving space, and multiple households can share one heat exchanging host; in a sense, the temperature control system of the present invention can be regarded as a heat pump air conditioner coupled with a heat pump water heater, and through Setting up the diversion branch can reduce the water resistance of the return water pipe or the water inlet pipe, thereby balancing the water pressure of the return water pipe or the water inlet pipe and the diversion branch, and ensuring that the entire temperature control system is at a higher efficiency.
  • Fig. 1 is the structural representation of the first embodiment of the present invention
  • Fig. 2 is a partially enlarged schematic diagram of place A in Fig. 1;
  • Fig. 3 is the structural representation of the second embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a third embodiment of the present invention.
  • orientation descriptions such as up, down, front, back, left, right, etc. indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only In order to facilitate the description of the present invention and simplify the description, it does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as limiting the present invention.
  • Fig. 1 to Fig. 2 it shows a specific embodiment of the temperature control system utilizing circulating water coupling heat pump water heater of the present invention
  • the temperature control system in this specific embodiment includes:
  • a heat exchange host 1 the heat exchange host 1 is provided with a heat exchanger 11 and a cooling system;
  • a water supply pipeline 2 the water supply pipeline 2 communicates with the heat exchanger 11;
  • a return water pipe 3, at least one room temperature control device such as 41, 42, etc. is installed in parallel between the return water pipe 3 and the water supply pipe 2;
  • Heat pump water heater 6 this heat pump water heater 6 comprises temperature rise water tank 61, heat pump evaporator 63 and compressor 64; 64 is connected; an expansion valve 67 is arranged between the heat exchange tube 62 and the heat pump evaporator 63, the heat pump evaporator 63 is connected with the compressor 64, and the heat pump evaporator 63 is coupled to the return water pipe 3 or the water supply pipe 2, and the temperature rise
  • the water tank is provided with a cold water inlet 65 and a hot water outlet 66;
  • a buffer water tank the buffer water tank is connected with the end of the heat exchanger 11 and the return water pipeline 3, and a circulating water body is arranged in the buffer water tank, the water supply pipeline 2 and the return water pipeline 3;
  • a water pump, the water pump is arranged on the water supply pipeline 2 or the water return pipeline 3 .
  • the heat exchange host 1 adjusts the temperature of the circulating water body, so that water at a certain temperature flows out from the water supply pipe 2, and then the indoor temperature can be adjusted through the room temperature control device, and then the water temperature changes and returns to the buffer water tank through the return water pipe 3
  • the heat pump evaporator 63 on the heat pump water heater 6 is coupled to the return water pipe 3 or the water supply pipe 2, and the heat pump evaporator 63 absorbs the heat of the circulating water body in it, so that the heat pump
  • the temperature of the heat medium in the evaporator 63 rises and the water temperature of the circulating water body drops, and then the water in the temperature-rising water tank 61 is heated through the compressor 64 and the heat exchange tube 62, thereby providing domestic hot water
  • the heat pump water heater 6 originally needs An independent outdoor host, and in the form of coupling, the outdoor host of the heat pump water heater 6 is replaced by the heat exchange host 1 through the circulating water body, so that the room temperature adjustment system and
  • the circulating water body itself has a certain energy storage capacity, even when the heat exchange host 1 is not working, the circulating water body can still have relatively large thermal energy storage, which can be used by the heat pump water heater 6, so that the whole is more energy-saving .
  • the heat pump evaporator 63 on the heat pump water heater 6 reduces the water temperature of the circulating water body, and since summer itself needs to output low-temperature water, the coupling can instead reduce the heat exchange host 1.
  • the heat pump water heater 6 will increase the burden on the heat exchange host 1, the heating capacity of the heat exchange host 1 itself is stronger than the cooling capacity.
  • the power of the heat exchange host 1 has enough surplus, so through The heat pump water heater 6 can also well balance the four-season burden of the heat-exchange host 1, so that the four-season power of the heat-exchange host 1 is more balanced.
  • the heat pump evaporator 63 is preferably coupled in series to the return water pipeline 3, the heat pump evaporator 63 can also be coupled in series to the water supply pipeline 2, and the heat pump evaporator 63 can also be coupled to the return water pipeline 3 in parallel and the water supply pipeline 2, the specific selection is determined according to the use requirements and installation requirements.
  • the heat exchange host 1 includes a heat exchange evaporator 12, a four-way valve 15, a heat exchange compressor 13 and an electronic expansion valve 14; one end of the heat exchange evaporator 12 communicates with the four-way valve 15; the heat exchange evaporator The other end of 12 is connected with the electronic expansion valve 14; the other end of the electronic expansion valve 14 is connected with the heat exchanger 11, and the two ports of the compressor 64 are respectively connected with the four-way valve 15, and the four-way valve 15 is connected with the heat exchanger Device 11 is connected.
  • the heat exchange tube 62 can be fixed in the temperature rise water tank 61 in a spiral shape, and the heat exchange tube 62 can also be coiled on the outer surface of the temperature rise water tank 61 in a spiral shape, and the specific implementation method can be selected in real time according to production requirements.
  • the buffer water tank can be arranged at the bottom of the heat exchange host 1 .
  • the room temperature control device may be a fan coil unit 41 and/or floor heating 42 .
  • Fig. 3 shows another specific embodiment of the temperature control system using circulating water coupling heat pump water heater in the present invention, wherein the temperature control system includes a heat exchange host 1, a water supply pipeline 2, a return water pipeline 3, a temperature control device 4, Buffer water tank 5 and heat pump water heater 6; heat exchange host 1 includes heat exchanger 11 and cooling system; structure of heat pump water heater 6 is shown in Figure 2, also includes temperature rise water tank 61, heat pump evaporator 63 and compressor 64, temperature rise water tank 61 is provided with a heat exchange tube 62, and the two ends of the heat exchange tube 62 are respectively connected with the heat pump evaporator 63 and the compressor 64; the heat pump evaporator 63 is connected with the compressor 64, and the heat pump evaporator 63 is coupled to the return water pipe 3 or On the water supply pipeline 2, a cold water inlet and a hot water outlet are provided on the temperature rise water tank; the heat pump evaporator 63 is coupled to the return water pipeline 3 or the water supply pipeline 2; at least one room temperature
  • the heat exchanger 11 and the heat pump evaporator 63 adopt a double-channel heat exchange method;
  • the temperature control device 4 is a room temperature control device and can be a fan coil unit and/or floor heating;
  • the temperature control system shown in Figure 3 also includes a shunt branch 7;
  • the branch branch 7 is connected in parallel with the return water pipe 3, and the heat pump evaporator 63 is arranged on the branch branch.
  • the diameter of the shunt branch 7 matches the diameter of the return water pipe to ensure unimpeded return water, and the flow of the shunt branch matches the energy of the heat pump evaporator 63 .
  • Such technical scheme has eliminated prior art and is directly connected in series with backwater pipeline 3, thus affects the defective of circulation.
  • Part of the return pipe 3 and the branch branch 7 can be used as an integral part, and the installation is quick and convenient when installed by consumers;
  • the split branch 7 includes a split liquid inlet pipe and a split liquid outlet pipe, the split liquid inlet pipe is connected to the inlet end of the heat pump evaporator 63 , and the split outlet pipe is connected to the liquid outlet end of the heat pump evaporator 63 .
  • the diameter of the diversion branch is smaller than that of the return water pipe or the water supply pipe.
  • the temperature control system shown in FIG. 3 can also include a pressure regulating valve 8, which is arranged on the return water pipe 3 or the water supply pipe 2, and the shunt branch communicates with the return water pipe or the water supply pipe at both ends of the pressure regulating valve 8.
  • the shunt branch 7 and the pressure regulating valve 8 are made into one part, which is convenient for installation during use and installation.
  • the pressure regulating valve 8 can be a mechanical valve; the pressure regulating valve and the shunt branch 7 constitute parallel components, which are produced in batches according to the corresponding requirements of batches and functions;
  • the pressure regulating valve 8 can also be an electric valve, and the pressure regulating valve 8 and the heat pump water heater 6 are linked. With such a structure, when the heat pump water heater 6 is working, the flow and pressure of the branch branch 7 are automatically increased, and when the work is stopped, the flow and pressure of the branch branch 7 are automatically decreased. That is, the heat pump water heater 6 is in working and static state, and the flow and pressure of the branch branch 7 are switched.
  • FIG 4 shows another specific implementation of the temperature control system using circulating water coupling heat pump water heater of the present invention, which is basically the same as the temperature control system shown in Figure 3, but this embodiment also includes a three-way valve 9,
  • the three-way valve 9 is arranged on the return water pipeline 3 or the water supply pipeline 2 and communicates with one end of the branch branch 7 , and the heat pump evaporator 63 is arranged on the branch branch 7 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本发明公开了一种水系统耦合的热泵热水器和温控总成,包括换热主机、换热器、供水管道、回水管道、室温控制装置、热泵热水器、缓冲水箱和水泵;热泵热水器上包括温升水箱、热泵蒸发器和压缩机,热泵蒸发器耦合于回水管道或供水管道上,通过耦合的形式,将热泵热水器的室外主机通过循环水体由换热主机进行代劳,从而使室温调节系统和热水供应系统共用一个换热主机,进而节省空间占用,而且可以多户共用一台换热主机,对于公寓、出租屋等居住房具有显著的意义。

Description

一种耦合热泵热水器的温控系统 技术领域
本发明涉及一种耦合热泵热水器的温控系统,更具体地讲,本发明涉及一种利用循环水耦合热泵热水器的温控系统。
背景技术
为了舒适的生活,人们往往需要安装空调、地暖、热水器等设备来调节室温以及提供使用的热水。热水器通常会选用热泵热水器。
热泵热水器,也称为空气源热泵热水器,即空气能热水器,其工作原理与空调器极为相似,采用少量的电能驱动压缩机运行,高压的液态工质经过膨胀阀后在蒸发器内蒸发为气态,并从空气中吸收大量的热能;气态工质被压缩机压缩成为高温、高压的液态工质,然后进入冷凝器放热而把水加热....如此不断地循环加热,可以把水加热至50℃-65℃。在这一过程中,消耗1份的电能驱动压缩机运行,可同时从环境空气中吸收转移约4份的热量到水中。因此,相对于普通的电热水器来说,空气能热水器可以节约近3/4的电能。即普通电热水器消耗4Kw.h电能产出的热水,使用空气能热水器只需要1Kw.h电就可以了。
而上述的这些设备都需要独立的室外主机来与环境进行热量交换,但是在公寓、出租屋等特殊居住地,由于整体空间较小,很难安装下如此多的室外主机,安装、维护困难,导致用户生活不够便利。
因此,有必要提供一种温控系统,其既能提供日常生活所需的生活热水,又能调节室内环境温度,而且占用空间小、节约电能。
发明内容
本发明的目的是提供一种利用循环水耦合热泵热水器的温控系统,从而一次性地解决室内热水供应和室温调节的问题。
为了实现本发明的发明目的,本发明提供了一种利用循环水耦合热泵热水器的温控系统,该温控系统包括:
换热主机,该换热主机上设置有换热器和散热系统;
供水管道,该供水管道与所采用的换热器相连通;
回水管道,该回水管道与供水管道之间并联安装有至少一个室温控制装置;
热泵热水器,该热泵热水器包括温升水箱、热泵蒸发器和压缩机;其中,温升水箱上设置有换热管,该换热管两端分别与热泵蒸发器和压缩机相连通;换热管与热泵蒸发器之间设置有膨胀阀;热泵蒸发器与压缩机相连通,并耦合至回水管道或供水管道上;温升水箱上设置有冷水入口和热水出口;
缓冲水箱,该缓冲水箱分别与回水管道末端和换热器相连通,缓冲水箱、供水管道和回水管道内设置有循环水体;
水泵,该水泵设置于供水管道或回水管道上。
在上述的技术方案中,换热主机对循环水体进行温度调节,使一定温度的水从供水管道流出,然后通过各室温控制装置可 以对室内温度进行调节,之后水温发生变化并通过回水管道回流至缓冲水箱内之后继续流动至换热主机内进行调温循环,而热泵热水器上的热泵蒸发器耦合至回水管道或供水管道上,热泵蒸发器吸收其内的循环水体的热量,使热泵蒸发器内的热媒温度升高并使循环水体水温下降,然后通过压缩机和换热管对温升水箱内的水进行加热,以提供生活热水;热泵热水器原本需要一个独立的室外主机,利用耦合的形式,可将热泵热水器的室外主机通过循环水体由换热主机进行代劳,使室温调节系统和热水供应系统共用一个换热主机,从而节省空间占用,且多户可以共用一台换热主机,对于公寓、出租屋这种性质的居住房具有显著意义。同时,循环水体本身就具有一定的蓄能能力,即使换热主机不工作的状态下,循环水体依然能具备较大的热能储能,供热泵热水器使用,使整体也更为节能。在夏天对换热主机功率要求较大的情况下,热泵热水器上的热泵蒸发器使循环水体的水温降低,而由于夏天本身就需要输出低温水体,因此耦合反而可以减轻换热主机的负担;在冬天,虽然热泵热水器会增大换热主机的负担,但换热主机本身的制热能力就强于制冷能力,冬天换热主机的的功率有足够的富余,因此通过热泵热水器也可以很好的平衡换热主机的四季负担,使换热主机的四季功率更加均衡,从而使整体效能更加均衡。
优选地,在上述本发明的技术方案中,换热主机可以包括换热蒸发器、四通阀、换热压缩机和电子膨胀阀;其中,换热蒸发器的一端与四通阀相连通,另一端与电子膨胀阀相连通, 而电子膨胀阀的另一端则连通至换热器上;换热压缩机的两个端口分别与四通阀相连通,而四通阀又与换热器相连通。
作为上述技术方案的进一步改进,换热管可以呈螺旋状固定于温升水箱内。
作为上述技术方案的进一步改进,缓冲水箱可以设置于换热主机底部,以使整个结构更为紧凑。
在本发明的技术方案中,室温控制装置优选为多个,例如可以包括至少一个的风机盘管和/或至少一个的地暖,从而在天热时可以利用风机盘管为多个房间提供冷风,而在天冷时可以利用地暖为多个房间供热。
作为上述技术方案的进一步改进,热泵蒸发器可串联耦合至回水管道上。
在本发明的技术方案中,温控系统还可以进一步包括分流支路,该分流支路与回水管道或供水管道并联,其中,热泵蒸发器设在分流支路。
设立分流支路的优点是,可以降低回水管道或进水管道的水阻力,平衡了回水管道或进水管道及分流支路的水压力,从而可以保持温控系统处于较高的效能,而且方便安装。
在本发明设立分流支路的技术方案中,优选地,分流支路的直径小于回水管道或供水管道直径。
在本发明设立分流支路的技术方案中,为了更好地控制水循环回路以及系统的压力,温控系统还可以进一步包括压力调节阀,该压力调节阀可以设在回水管道或供水管道上,其中,分流支路与压力 调节阀两端的回水管道或供水管道连通。
上述的压力调节阀可以为机械式阀,也可以为电动式阀;如果压力调节阀选用电动式阀,则更便于使其与热泵热水器联动。
在本发明设立分流支路的技术方案中,温控系统还可以进一步包括三通阀,该三通阀设在回水管道或供水管道上、且与分流支路的一端连通。
本发明的温控系统将热泵蒸发器耦合于回水管道或供水管道上,通过耦合的形式,将热泵热水器的室外主机通过循环水体由换热主机进行代劳,从而使室温调节系统和热水供应系统共用一个换热主机,进而节省空间占用,而且可以多户共用一台换热主机;从某种意义讲,本发明的温控系统可以看作是一种耦合热泵热水器的热泵空调,而且通过设置分流支路,可以降低回水管道或进水管道的水阻力,从而平衡回水管道或进水管道及分流支路的水压力,保证整个温控系统处于较高的效能。
下面结合附图说明和具体实施方式,对本发明做进一步解释说明。但本领域技术人员可以理解的是,本发明并非局限于这些具体的实施方式;凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相关的技术领域,均包括在本发明的专利保护范围内。
附图说明
图1为本发明第一实施方式的结构示意图;
图2为图1中A处局部放大示意图;
图3是本发明第二实施方式的结构示意图;
图4是本发明第三实施方式的结构示意图。
具体实施方式
下面将详细描述本发明的具体实施方式,附图中示出了本发明的优选实施例。附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图1至图2,其显示了本发明利用循环水耦合热泵热水器的温控系统的一具体实施方式,该具体实施方式中温控系 统包括:
换热主机1,该换热主机1上设置有换热器11和散热系统;
供水管道2,该供水管道2与换热器11相连通;
回水管道3,该回水管道3与供水管道2之间并联安装有至少一个室温控制装置如41、42等;
热泵热水器6,该热泵热水器6包括温升水箱61、热泵蒸发器63和压缩机64;温升水箱61上设置有换热管62,换热管62两端分别与热泵蒸发器63和压缩机64相连通;换热管62与热泵蒸发器63之间设置有膨胀阀67,热泵蒸发器63与压缩机64相连通,热泵蒸发器63耦合至回水管道3或供水管道2上,温升水箱上设置有冷水入口65和热水出口66;
缓冲水箱,该缓冲水箱与换热器11以及回水管道3末端相连通,缓冲水箱、供水管道2和回水管道3内设置有循环水体;
水泵,该水泵设置于供水管道2或回水管道3上。
换热主机1对循环水体进行温度调节,使一定温度的水从供水管道2流出,然后通过室温控制装置可以对室内温度进行调节,之后水温发生变化并通过回水管道3回流至缓冲水箱内之后继续流动至换热主机1内进行调温循环;热泵热水器6上的热泵蒸发器63耦合至回水管道3或供水管道2上,热泵蒸发器63吸收其内的循环水体的热量,从而使热泵蒸发器63内的热媒温度升高并使循环水体的水温下降,然后通过压缩机64和换热管62对温升水箱61内的水进行加热,从而提供生活热水;热泵热水器6原本需要一个独立的室外主机,而通过耦合的形 式,将热泵热水器6的室外主机通过循环水体由换热主机1进行代劳,从而使室温调节系统和热水供应系统共用一个换热主机1,进而节省空间占用,而且可以多户共用一台换热主机1。
由于循环水体本身就具有一定的蓄能能力,即使在换热主机1不工作的状态下,循环水体依然能具备较大的热能储能,可供热泵热水器6使用,从而使整体也更为节能。
在夏天对换热主机1功率要求较大的情况下,热泵热水器6上的热泵蒸发器63使循环水体的水温降低,而由于夏天本身就需要输出低温水体,因此耦合反而可以减轻换热主机1的负担;而冬天虽然热泵热水器6会增大换热主机1的负担,但是换热主机1本身的制热能力就强于制冷能力,在冬天换热主机1的功率有足够的富余,因此通过热泵热水器6也可很好地平衡换热主机1的四季负担,使换热主机1的四季功率更加均衡。
在上述的方案中,优选热泵蒸发器63串联耦合至回水管道3上,热泵蒸发器63也可以串联耦合至供水管道2上,热泵蒸发器63也可以通过并联的形式耦合至回水管道3和供水管道2上,具体选择根据使用需求和安装需求来决定。
进一步地,换热主机1包括换热蒸发器12、四通阀15、换热压缩机13和电子膨胀阀14;换热蒸发器12的一端与四通阀15相连通,;换热蒸发器12的另一端与电子膨胀阀14相连通;电子膨胀阀14的另一端连通至换热器11上,压缩机64的两个端口分别与四通阀15相连通,四通阀15与换热器11相连通。
优选地,换热管62可以呈螺旋状固定于温升水箱61内, 换热管62也可以呈螺旋状盘绕于温升水箱61的外表面,具体的实施方式根据生产需求来实时选择。
作为一种更具体的实施方案,缓冲水箱可以设置于换热主机1底部。
作为另一种更具体的实施方案,室温控制装置可以为风机盘管41和/或地暖42。
图3所示为本发明利用循环水耦合热泵热水器的温控系统的另一具体实施方式,其中,温控系统包括换热主机1、供水管路2、回水管道3、温控装置4、缓冲水箱5和热泵热水器6;换热主机1包括换热器11和散热系统;热泵热水器6结构如图2所示,也包括温升水箱61、热泵蒸发器63和压缩机64,温升水箱61上设置有换热管62,换热管62两端分别与热泵蒸发器63和压缩机64相连通;热泵蒸发器63与压缩机64相连通,热泵蒸发器63耦合至回水管道3或供水管道2上,温升水箱上设置有冷水入口和热水出口;热泵蒸发器63耦合至回水管道3或供水管道2上;回水管道3与供水管道2之间并联安装有至少一个室温控制装置4;
换热器11和热泵蒸发器63采用的双流道换热方式;温控装置4为室温控制装置可以为风机盘管和/或地暖;
图3所示的温控系统还包括分流支路7;
该分流支路7与回水管道3并联,热泵蒸发器63设在分流支路上。分流支路7的直径和回水管道的直径匹配,确保回水畅通,分流支路的流量和热泵蒸发器63的能量匹配。这样的技术 方案消除了现有技术直接串联在回水管道3、从而影响循环的缺陷。回水管道3的局部和分流支路7可以作为一个整体部件,消费者安装时,安装快捷方便;
或者说:分流支路7包括分流进液管和分流出液管,分流进液管与热泵蒸发器63进流端连接,分流出管与热泵蒸发器63的出液端连通。
可选择地,分流支路的直径小于回水管道或供水管道直径。
图3所示的温控系统还可包括压力调节阀8,压力调节阀8设在回水管道3或供水管道2上,分流支路与压力调节阀8两端的回水管道或供水管道连通。分流支路7和压力调节阀8制成一个部件,使用安装时,安装方便。
压力调节阀8可以为机械式阀;压力调节阀和分流支路7构成并联部件,根据批次、功能相应要求,成批量生产;
压力调节阀8也可以为电动式阀,压力调节阀8和热泵热水器6联动。采用这样的结构,在热泵热水器6的工作时,分流支路7的流量及压力自动增加,停止工作时,分流支路7的流量及压力自动减少。即,热泵热水器6工作、静止状态,分流支路7的流量及压力转换。
图4所示所示为本发明利用循环水耦合热泵热水器的温控系统的再一具体实施方式,其与图3所示的温控系统基本相同,但本实施方式还包括三通阀9,三通阀9设在回水管道3或供水管道2上且与分流支路7的一端连通,热泵蒸发器63设在分流支路7上。
尽管说明给出和描述了本发明的部分具体实施方式,本领域的普 通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型。

Claims (12)

  1. 一种利用循环水耦合热泵热水器的温控系统,该系统包括:
    换热主机(1),该换热主机(1)上设置有换热器(11)和散热系统;
    供水管道(2),该供水管道(2)与所述换热器(11)相连通;
    回水管道(3),该回水管道(3)与所述供水管道(2)之间并联安装有至少一个室温控制装置;
    热泵热水器(6),该热泵热水器(6)包括温升水箱(61)、热泵蒸发器(63)和压缩机(64),所述温升水箱(61)上设置有换热管(62),所述换热管(62)两端分别与所述热泵蒸发器(63)和所述压缩机(64)相连通,所述换热管(62)与所述热泵蒸发器(63)之间设置有膨胀阀(67),所述热泵蒸发器(63)与所述压缩机(64)相连通,所述热泵蒸发器(63)耦合至所述回水管道(3)或供水管道(2)上,所述温升水箱(61)上设置有冷水入口(65)和热水出口(66);
    缓冲水箱(50),该缓冲水箱(50)分别与所述换热器(11)以及所述回水管道(3)末端相连通,所述缓冲水箱(50)、供水管道(2)和回水管道(3)内设置有循环水体;以及
    水泵,该水泵设置于供水管道(2)或回水管道(3)上。
  2. 如权利要求1所述的温控系统,其中:
    所述的换热主机(1)包括换热蒸发器(12)、四通阀(15)、换热压缩机(13)和电子膨胀阀(14);所述换热蒸发器(12)的一端与四通阀(15)相连通,另一端与所述电子膨胀阀(14)相连通;所述电子膨胀阀(14)的另一端连通至所述换热器(11)上;所述换热压缩机(13)的两个端口分别与所述四通阀(15)相连通;所述四通阀(15)进一步与所述换热器(11)相连通。
  3. 如权利要求1所述的温控系统,其中,所述的换热管(62)呈螺旋状固定于所述温升水箱(61)内。
  4. 如权利要求1所述的温控系统,其中,所述的缓冲水箱(50)设置于换热主机(1)底部。
  5. 如权利要求1所述的温控系统,其中,所述的室温控制装置为风机盘管(41)和/或地暖(42)。
  6. 如权利要求1所述的温控系统,其中,所述的热泵蒸发器(6)串联耦合至回水管道(3)上。
  7. 如权利要求1所述的温控系统,其中,所述的温控系统还包括分流支路(7),该分流支路(7)与所述回水管道(3) 或供水管道(2)并联,所述的热泵蒸发器(63)设在所述的分流支路(7)上。
  8. 如权利要求7所述的温控系统,其中,所述的分流支路(7)的直径小于所述回水管道(3)或供水管道(2)的直径。
  9. 如权利要求7或8所述的温控系统,其中,所述的温控系统还包括压力调节阀(8),该压力调节阀(8)设在所述回水管道(3)或供水管道(2)上、且所述分流支路(7)与该压力调节阀(8)两端的回水管道或供水管道连通。
  10. 如权利要求9所述的温控系统,其中,所述的压力调节阀(8)为机械式阀。
  11. 如权利要求9所述的温控系统,其中,所述的压力调节阀(8)为电动式阀,该压力调节阀与所述热泵热水器(6)是联动的。
  12. 如权利要求7或8所述的温控系统,其中,所述的温控系统还包括三通阀(9),该三通阀(9)设在所述回水管道(3)或供水管道(2)上且与所述分流支路(7)的一端连通。
PCT/CN2022/095415 2021-06-21 2022-05-27 一种耦合热泵热水器的温控系统 WO2022267814A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/572,810 US20240288187A1 (en) 2021-06-21 2022-05-27 Temperature control system coupled with heat pump water heater
EP22827311.6A EP4357694A1 (en) 2021-06-21 2022-05-27 Temperature control system coupled with heat pump water heater

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110688151.0A CN113294912B (zh) 2021-06-21 2021-06-21 一种水系统耦合的热泵热水器和温控总成
CN202110688151.0 2021-06-21
CN202210151922.7 2022-02-18
CN202210151922.7A CN114576746A (zh) 2022-02-18 2022-02-18 一种耦合热泵热水器的热泵空调

Publications (1)

Publication Number Publication Date
WO2022267814A1 true WO2022267814A1 (zh) 2022-12-29

Family

ID=84544101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095415 WO2022267814A1 (zh) 2021-06-21 2022-05-27 一种耦合热泵热水器的温控系统

Country Status (3)

Country Link
US (1) US20240288187A1 (zh)
EP (1) EP4357694A1 (zh)
WO (1) WO2022267814A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070828A1 (ja) * 2008-12-16 2010-06-24 三菱電機株式会社 ヒートポンプ給湯装置およびその運転方法
CN202092363U (zh) * 2011-03-29 2011-12-28 海尔集团公司 多功能空调热水系统
WO2014101662A1 (zh) * 2012-12-25 2014-07-03 Chen Jianliang 即热式热水器
CN204460699U (zh) * 2015-02-06 2015-07-08 湖南城建职业技术学院 一种可全季使用的空气源热泵热水系统
CN104833087A (zh) * 2015-04-30 2015-08-12 南京理工大学 复叠式中高温空气源热泵热水机组
WO2017185850A1 (zh) * 2016-04-25 2017-11-02 珠海格力电器股份有限公司 热水供给系统及具有其的空调器
CN206755581U (zh) * 2017-05-16 2017-12-15 浙江正理生能科技有限公司 一种复叠式热泵热水器
CN113294912A (zh) * 2021-06-21 2021-08-24 中山市爱美泰电器有限公司 一种水系统耦合的热泵热水器和温控总成

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070828A1 (ja) * 2008-12-16 2010-06-24 三菱電機株式会社 ヒートポンプ給湯装置およびその運転方法
CN202092363U (zh) * 2011-03-29 2011-12-28 海尔集团公司 多功能空调热水系统
WO2014101662A1 (zh) * 2012-12-25 2014-07-03 Chen Jianliang 即热式热水器
CN204460699U (zh) * 2015-02-06 2015-07-08 湖南城建职业技术学院 一种可全季使用的空气源热泵热水系统
CN104833087A (zh) * 2015-04-30 2015-08-12 南京理工大学 复叠式中高温空气源热泵热水机组
WO2017185850A1 (zh) * 2016-04-25 2017-11-02 珠海格力电器股份有限公司 热水供给系统及具有其的空调器
CN206755581U (zh) * 2017-05-16 2017-12-15 浙江正理生能科技有限公司 一种复叠式热泵热水器
CN113294912A (zh) * 2021-06-21 2021-08-24 中山市爱美泰电器有限公司 一种水系统耦合的热泵热水器和温控总成

Also Published As

Publication number Publication date
EP4357694A1 (en) 2024-04-24
US20240288187A1 (en) 2024-08-29

Similar Documents

Publication Publication Date Title
CN203011004U (zh) 单元式空调地暖机
CN102425882A (zh) 热回收多联热泵空调热水机加地板采暖系统
CN106642443A (zh) 一种分体低温变频三联供热泵系统及其控制器
CN102313397A (zh) 热回收多联热泵空调热水机系统
CN110160115A (zh) 双源热泵系统
CN104180459B (zh) 空调系统
CN113294912B (zh) 一种水系统耦合的热泵热水器和温控总成
CN207990847U (zh) 全效型空气源热泵系统
CN203478692U (zh) 一种全热回收家用多联机系统
CN102853490B (zh) 管道冷热循环系统
CN201382506Y (zh) 中央空调系统
CN101382354A (zh) 双功效全天候高温水-水热泵热水机组
WO2022267814A1 (zh) 一种耦合热泵热水器的温控系统
CN206929902U (zh) 一种太阳能空气源热泵三联供系统
CN105509336A (zh) 真空管式太阳能热泵热水系统
CN104344600A (zh) 整体式多功能舒适系统
CN101440999B (zh) 带有空调的安全快速空气源热水器
CN202709357U (zh) 管道冷热循环系统
CN203011003U (zh) 空气源热泵热水空调机组
CN201569213U (zh) 高效三联供空调热泵热水器
CN205579825U (zh) 一种基于节能型太阳能空气源热泵三联供系统
CN118168071B (zh) 双向热平衡能量回收型储能节能空调主机及工作流程
CN219531053U (zh) 热泵式空调系统
CN211876357U (zh) 一种具有电加热功能的新型空气能热水器
CN109579186A (zh) 一种具有水力模块的多联机系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022827311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18572810

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022827311

Country of ref document: EP

Effective date: 20240116