WO2017185850A1 - 热水供给系统及具有其的空调器 - Google Patents

热水供给系统及具有其的空调器 Download PDF

Info

Publication number
WO2017185850A1
WO2017185850A1 PCT/CN2017/073068 CN2017073068W WO2017185850A1 WO 2017185850 A1 WO2017185850 A1 WO 2017185850A1 CN 2017073068 W CN2017073068 W CN 2017073068W WO 2017185850 A1 WO2017185850 A1 WO 2017185850A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
condenser
hot water
supply system
heating
Prior art date
Application number
PCT/CN2017/073068
Other languages
English (en)
French (fr)
Inventor
潘俊
郑波
梁祥飞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2017185850A1 publication Critical patent/WO2017185850A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/18Details or features not otherwise provided for combined with domestic apparatus
    • F24F2221/183Details or features not otherwise provided for combined with domestic apparatus combined with a hot-water boiler

Definitions

  • the present invention relates to the field of air conditioning equipment, and in particular to a hot water supply system and an air conditioner having the same.
  • the temperature of the water entering and leaving the casing heat exchanger (the condensing heat exchanger of the heat pump water heater) is 35 ° C, respectively. 40 ° C.
  • the temperature of the refrigerant entering and leaving the casing heat exchanger was 70 ° C and 36 ° C, respectively. It can be seen that there is a 30 ° C heat exchange temperature difference between the hot water outlet of the casing heat exchanger (water temperature 40 ° C), that is, the inlet of the refrigerant (refrigerant temperature 70 ° C).
  • This method of using the high temperature and large temperature difference of the exhaust gas to heat the low temperature hot water is disadvantageous to the performance of the heat pump water heater.
  • a notable feature of heat pump water heaters is that energy efficiency (output heat output to input power ratio) is high when heating low temperature hot water, and energy efficiency is low when heating high temperature hot water.
  • the high-temperature refrigerant exhaust temperature can originally generate a part of high-temperature hot water with high energy efficiency, but it is used to heat low-temperature hot water, and when the water temperature is gradually increased, it requires more power (low Energy efficiency) to produce this part of hot water.
  • the distribution of refrigerant temperature and hot water temperature in the heat exchanger of the existing circulating heat pump water heater is shown in Fig. 1.
  • the existing circulating heat pump water heater does not make reasonable use of the high temperature refrigerant exhaust, and there is a problem that the circulating heat pump water heater system has low energy efficiency.
  • the main object of the present invention is to provide a hot water supply system and an air conditioner having the same, which solves the problem of low energy efficiency of the heating system in the prior art.
  • a hot water supply system including: a compressor having an intake port and an exhaust port; a first condenser, an inlet of the first condenser and a compressor
  • the exhaust port is in communication; the second condenser, the inlet of the second condenser is in communication with the outlet of the first condenser; the evaporator, the inlet of the evaporator is in communication with the outlet of the second condenser, and the outlet and suction of the evaporator
  • the gas port is connected; the water tank has a drain port and a water inlet; the heating pipe is connected between the drain port and the water inlet, and the second condenser and the first condenser sequentially exchange heat with the heating pipe to increase the heating pipe.
  • the temperature of the inner water is a compressor having an intake port and an exhaust port; a first condenser, an inlet of the first condenser and a compressor
  • the exhaust port is in communication; the second condenser, the inlet of the second
  • the heating pipeline includes: a first heating section that performs heat exchange with the first condenser; a second heating section, the second heating section is in communication with the first heating section, and the second heating section is in heat with the second condenser exchange.
  • the diameter of the first heating section is smaller than the diameter of the portion of the heating pipeline other than the first heating section.
  • the heating pipeline further includes: a first return water pipeline, the water inlet of the first return water pipeline is connected to the heating pipeline, and the water inlet of the first return water pipeline is located between the first heating section and the second heating section The water outlet of the first return water pipeline is connected to the water tank.
  • the hot water supply system further includes: a first valve disposed on the heating pipe and located between the first condenser and the water inlet of the first return water pipe.
  • a second valve is disposed on the first return pipe.
  • the hot water supply system further includes: a second return water pipeline, the water inlet of the second return water pipeline is connected to the heating pipeline, and the water inlet of the second return water pipeline is located at the first heating section and the second heating section The water outlet of the second return water line is connected to the water tank.
  • a third valve is disposed on the second return pipe.
  • the distance between the water inlet and the bottom of the water tank is greater than the distance between the water outlet and the bottom.
  • the water outlet of the first return water pipeline and the water outlet of the second return water pipeline are disposed between the water outlet and the water inlet.
  • the distance between the water outlet of the second return water pipeline and the bottom of the water tank is greater than the distance between the water outlet of the first return water pipeline and the bottom of the water tank.
  • a water pump is disposed on the heating pipeline, and the water pump is disposed between the water outlet and the second condenser.
  • an air conditioner including a hot water supply system, which is the above-described hot water supply system.
  • the hot water supply system includes a compressor, a first condenser, a second condenser, a passing water tank, and a heating pipeline.
  • the compressor has an intake port and an exhaust port.
  • the inlet of the first condenser is in communication with the exhaust port of the compressor.
  • the inlet of the second condenser is in communication with the outlet of the first condenser.
  • the inlet of the evaporator is in communication with the outlet of the second condenser, and the outlet of the evaporator is in communication with the suction port.
  • the heating line is heated by two heaters, effectively utilizing the heat source in the hot water supply system. Since the water in the water tank is heated twice, the temperature of the water in the water tank is effectively increased.
  • FIG. 1 is a schematic view showing a distribution of a refrigerant temperature and a hot water temperature along a heat exchanger tube process in a hot water supply system of the prior art
  • Figure 2 is a schematic view showing the distribution of the refrigerant temperature and the hot water temperature along the heat exchanger tube according to the hot water supply system of the present invention
  • Figure 3 is a schematic view showing the structure of the first embodiment of the hot water supply system of Figure 2;
  • FIG. 4 is a block diagram showing the structure of the second embodiment of the hot water supply system of Figure 2;
  • Fig. 5 is a view showing the structure of a third embodiment of the hot water supply system of Fig. 2.
  • Compressor 20, first condenser; 30, second condenser; 40, evaporator; 50, water tank; 60, heating pipeline; 61, first heating section; 62, second heating section; First return water pipeline; 64, second return water pipeline; 71, first valve; 72, second valve; 73, third valve; 80, water pump; 90, throttling device.
  • a hot water supply system includes a compressor 10, a first condenser 20, a second condenser 30, a pass water tank 50, and a heating line 60.
  • the compressor 10 has an intake port and an exhaust port.
  • the inlet of the first condenser 20 is in communication with the exhaust port of the compressor 10.
  • the inlet of the second condenser 30 is in communication with the outlet of the first condenser 20.
  • the inlet of the evaporator 40 is in communication with the outlet of the second condenser 30, and the outlet of the evaporator 40 is in communication with the suction port.
  • the water tank 50 has a drain port and a water inlet.
  • the heating line 60 is connected between the drain port and the water inlet, and the second condenser 30 and the first condenser 20 sequentially exchange heat with the heating line 60 to increase the temperature of the water in the heating line 60.
  • the heating pipe 60 communicating with the water tank 50 is heated by the two heaters, effectively utilizing the heat source in the hot water supply system. Since the water in the water tank 50 is heated twice, the temperature of the water in the water tank 50 is effectively increased.
  • the hot water supply system utilizes the high-temperature exhaust gas generated in the system reasonably and effectively, and uses the high-temperature and high-pressure gas to heat the hot water having high temperature, thereby effectively improving the energy efficiency of the hot water supply system.
  • the heating line 60 includes a first heating section 61 and a second heating section 62.
  • the first heating section 61 exchanges heat with the first condenser 20.
  • the second heating section 62 is in communication with the first heating section 61, and the second heating section 62 is in heat exchange with the second condenser 30.
  • This arrangement makes it possible to effectively reheat the water in the heating line 60, which in turn effectively increases the temperature of the water in the heating line 60, and discharges the heated water into the water tank 50 to provide domestic water.
  • A denotes a drain line at the use end of the water tank 50
  • B in Figs. 3 to 5 denotes a water source line which is introduced into the water tank 50 from the outside.
  • the diameter of the first heating section 61 is smaller than the diameter of the portion of the heating conduit 60 other than the first heating section 61.
  • This arrangement prevents a large amount of hot water heated by the second condenser 30 from entering the first condenser 20 for reheating. Since the temperature of the relatively small amount of water is increased higher under the condition that the amount of heating of the first condenser 20 is constant, that is, the heat of a small amount of water increases the temperature faster. This arrangement effectively increases the temperature of the water in the water tank 50, and further satisfies the needs of the user.
  • Fig. 1 is a heat exchange heat exchange effect diagram of the hot water supply system in the prior art.
  • the same refrigerant pair is the same
  • the water amount of water is heated, and it is apparent that the effect of using the hot water supply system in this embodiment is remarkably superior to that of the prior art.
  • the heating line 60 further includes a first return water line 63.
  • the water inlet of the first return water pipe 63 is in communication with the heating pipe 60.
  • the water inlet of the first return water pipe 63 is located between the first heating section 61 and the second heating section 62, and the water outlet of the first return water pipe 63. It is in communication with the water tank 50.
  • the hot water heated by the second condenser 30 can be discharged into the water tank 50 to increase the temperature of the mixed water in the water tank 50, and only a small amount of water heated by the second condenser 30 is allowed to enter the first heating section 61. Heating is performed such that the temperature of the small amount of water heated by the first condenser 20 is greatly increased, and the hot water of the portion is discharged into the water tank 50 and used for domestic water, thereby effectively improving the hot water.
  • the practicality of the supply system is performed such that the temperature of the small amount of water heated by the first condenser 20 is greatly increased, and the hot water of the portion is
  • the hot water supply system further includes a first valve 71.
  • the first valve 71 is disposed on the heating pipe 60 and between the first condenser 20 and the water inlet of the first return water pipe 63.
  • Such an arrangement may not set the diameter of the first heating section 61 to be smaller than the diameter of the second heating section 62, as long as the amount of heating water heated by the first condenser 20 can be controlled by controlling the degree of opening of the first valve 71.
  • Such a setting can control the hot water of different water temperatures required according to the actual needs of the user, that is, when high temperature hot water is required, the first valve 71 can be closed, and only a small amount of water is allowed to be heated through the first valve 71.
  • the opening degree of the first valve 71 can be opened.
  • a first valve 71 (manual valve or electric valve) is added to the second water branch after the second condenser 30. The temperature of the second water is adjusted by opening the size of the valve to change the high temperature return water temperature. This achieves controllability of the water temperature in the water tank 50, further increasing the utility of the hot water supply system.
  • a second valve 72 is disposed on the first return water line 63. This arrangement further achieves controllability of the water temperature in the water tank 50, making the system more convenient to use.
  • the hot water supply system further includes a second return water line 64.
  • the water inlet of the second return water line 64 is in communication with the heating line 60.
  • the water inlet of the second return water line 64 is located between the first heating section 61 and the second heating section 62, and the water outlet of the second return water line 64. It is in communication with the water tank 50.
  • a third valve 73 is disposed on the second return water line 64. This arrangement can heat the hot water in the water tank 50 through the two different water levels after the second condenser 30 is heated.
  • the first water branch after the second condenser 30 is subdivided into two paths, and the second valve 72 and the third valve 73 are added.
  • the second valve 72 is closed, the third valve 73 is opened, and heating is performed by using hot water stratification to further improve the energy efficiency of the water heater. .
  • the hot water outlet is hot water, it is necessary to heat the hot water.
  • the second valve 72 is opened and the third valve 73 is closed to prevent the hot water outlet from flowing out of the hot water having a too low temperature.
  • the distance between the water inlet and the bottom of the water tank 50 is greater than the distance between the water outlet and the bottom.
  • the water outlet of the first return water line 63 and the water outlet of the second return water line 64 are disposed between the drain port and the water inlet.
  • the purpose of limiting the position of the water inlet, that is, the high temperature water return port, is that the high temperature hot water will rise in the water tank 50 due to the low temperature of the hot water.
  • the high-temperature hot water that avoids secondary heating is mixed with the medium- and low-temperature hot water in the water tank 50 during the ascending process, so that the high-temperature water return port is placed in the upper portion of the water tank.
  • the distance between the water outlet of the second return water line 64 and the bottom of the water tank 50 is greater than the distance between the water outlet of the first return water line 63 and the bottom of the water tank 50.
  • This arrangement further prevents the secondary heating hot water from being mixed with the medium and low temperature hot water in the water tank 50 during the ascending process, effectively ensuring that the user end has sufficient hot water supply.
  • a water pump 80 is disposed on the heating line 60, and the water pump 80 is disposed between the drain port and the second condenser 30.
  • Such an arrangement can effectively ensure that water in the water tank 50 can be delivered to the first condenser 20 and the second condenser 30 in time for heat exchange.
  • the hot water supply system is a heat pump water heater system, and the system includes a refrigerant circulation loop and a hot water circulation loop.
  • the refrigerant circuit is closed by the compressor 10, the first condenser 20, the second condenser 30, the throttling device 90, the evaporator 40 (which may also be an air-cooled heat exchanger), and the related refrigerant pipelines are connected end to end. Loop.
  • the hot water circuit is connected by the water tank 50, the water pump 80, the first condenser 20, the second condenser 30 and the related pipelines in an end-to-end manner to form a closed loop.
  • the refrigerant circuit and the tank 50 side circuit are coupled and exchanged by the first condenser 20 and the second condenser 30.
  • the compressor 10 and the water pump 80 are turned on.
  • the refrigerant circulates along the path of the compressor 10, the first condenser 20, the second condenser 30, the expansion device 90, the evaporator 40, and the compressor 10.
  • the circulating hot water is pumped by the water pump 80 to the second condenser 30 and heated to rise to a certain temperature, divided into two paths, and the first path directly returns to the water tank 50.
  • the second path is sent to the first condenser 20 for further heating and returned to the water tank 50 from the high temperature return port located at the upper portion of the water tank 50.
  • the ideal temperature distribution of the refrigerant and hot water in the first condenser 20 and the second condenser 30 is as shown in FIG. That is, the refrigerant releases gaseous sensible heat in the first condenser 20, and in the second condenser 30, the refrigerant releases latent heat of condensation and sensible heat of the liquid. Since the gaseous sensible heat of the refrigerant is much smaller than the latent heat, the heat exchange capacity of the second condenser 30 is greater than the heat exchange capacity of the first condenser 20.
  • the refrigerant is sequentially exchanged by the two condensers, and the entire circulating hot water is heated in the second condenser 30, and the high temperature exhaust gas is used in the first condenser 20 after heating.
  • a part of the circulating hot water is heated twice.
  • the hot water supply system can generate a part of high-temperature hot water in an energy-efficient manner while heating the low-temperature hot water, thereby improving the system energy efficiency of the heat pump water heater, making it more energy-saving, and effectively improving the water temperature of the hot water in the water tank 50.
  • the hot water supply system in the above embodiment can also be used in the technical field of air conditioner equipment.
  • an air conditioner including a hot water supply system, which is the above embodiment.
  • Hot water supply system includes a compressor 10, a first condenser 20, a second condenser 30, a pass water tank 50, and a heating line 60.
  • the compressor 10 has an intake port and an exhaust port.
  • the inlet of the first condenser 20 is in communication with the exhaust port of the compressor 10.
  • the inlet of the second condenser 30 is in communication with the outlet of the first condenser 20.
  • the inlet of the evaporator 40 is in communication with the outlet of the second condenser 30, and the outlet of the evaporator 40 is in communication with the suction port.
  • the water tank 50 has a drain port and a water inlet.
  • Heating pipe 60 is connected to the drain between the inlet and the water inlet, the second condenser 30 and the first condenser 20 sequentially exchange heat with the heating line 60 to increase the temperature of the water in the heating line 60.
  • the air conditioner heats the water tank 50 through two heaters on the heating line 60 that communicates with the water tank 50, effectively utilizing the heat source in the hot water supply system. Since the water in the water tank 50 is heated twice, the temperature of the water in the water tank 50 is effectively increased.
  • the hot water supply system utilizes the high-temperature exhaust gas generated in the system reasonably and effectively, and uses the high-temperature and high-pressure gas to heat the hot water having high temperature, thereby effectively improving the energy efficiency of the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种热水供给系统及具有其的空调器,其中热水供给系统包括:压缩机(10),具有吸气口和排气口;第一冷凝器(20),第一冷凝器(20)的进口与压缩机(10)的排气口相连通;第二冷凝器(30),第二冷凝器(30)的进口与第一冷凝器(20)的出口相连通;蒸发器(40),蒸发器(40)的进口与第二冷凝器(30)的出口相连通,蒸发器(40)的出口与吸气口相连通;水箱(50),具有排水口和进水口;加热管路(60),连接于排水口和进水口之间,第二冷凝器(30)和第一冷凝器(30)依次与加热管路(60)进行热交换以增加加热管路(60)内水的温度。

Description

热水供给系统及具有其的空调器 技术领域
本发明涉及空调设备技术领域,具体而言,涉及一种热水供给系统及具有其的空调器。
背景技术
现有技术中,循环式热泵热水器中,水与制冷剂通过冷凝换热器(套管换热器、板式换热器、或其它形式的制冷剂—水换热器)进行一次换热,水在换热器中一次升温4℃~7℃,制冷剂则直接从排气高温状态一次冷却至过冷低温状态,制冷剂换热前后温度变化较大。
在现有循环式热泵热水器的某个加热瞬间(水箱中热水需要从15℃升温至55℃),水进出套管换热器(热泵热水器的冷凝换热器)的温度分别为35℃,40℃。制冷剂进出套管换热器的温度分别为70℃,36℃。可以看出,在套管换热器的热水出口(水温40℃),即制冷剂的入口(制冷剂温度70℃),两者之间存在30℃换热温差。这种使用排气高温大温差加热低温热水的方式对热泵热水器性能是不利的。热泵热水器的一个显著特点是:加热低温热水时能效(输出制热量与输入功率比值)高,加热高温热水时能效低。在加热低温热水时,高温的制冷剂排气温度本来可以以高能效产生一部分高温热水,却用来加热低温热水,而当水温逐渐升高时,却需要耗费更多的功率(低能效)来产生这部分高温热水。现有循环式热泵热水器换热器中制冷剂温度、热水温度沿程分布如图1所示。
因此,现有的循环式热泵热水器未对高温的制冷剂排气进行合理利用,存在循环式热泵热水器系统运行能效低的问题。
发明内容
本发明的主要目的在于提供一种热水供给系统及具有其的空调器,以解决现有技术中供热系统能效低的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种热水供给系统,包括:压缩机,具有吸气口和排气口;第一冷凝器,第一冷凝器的进口与压缩机的排气口相连通;第二冷凝器,第二冷凝器的进口与第一冷凝器的出口相连通;蒸发器,蒸发器的进口与第二冷凝器的出口相连通,蒸发器的出口与吸气口相连通;水箱,具有排水口和进水口;加热管路,连接于排水口和进水口之间,第二冷凝器和第一冷凝器依次与加热管路进行热交换以增加加热管路内水的温度。
进一步地,加热管路包括:第一加热段,与第一冷凝器进行热交换;第二加热段,第二加热段与第一加热段相连通,第二加热段与第二冷凝器进行热交换。
进一步地,第一加热段的管径小于加热管路的除第一加热段以外部分的管径。
进一步地,加热管路还包括:第一回水管路,第一回水管路的进水口与加热管路相连通,第一回水管路的进水口位于第一加热段和第二加热段之间,第一回水管路的出水口与水箱相连通。
进一步地,热水供给系统还包括:第一阀门,设置于加热管路上并位于第一冷凝器与第一回水管路的进水口之间。
进一步地,第一回水管路上设置有第二阀门。
进一步地,热水供给系统还包括:第二回水管路,第二回水管路的进水口与加热管路相连通,第二回水管路的进水口位于第一加热段和第二加热段之间,第二回水管路的出水口与水箱相连通。
进一步地,第二回水管路上设置有第三阀门。
进一步地,进水口与水箱的底部的距离大于排水口与底部的距离。
进一步地,第一回水管路的出水口与第二回水管路的出水口设置于排水口与进水口之间。
进一步地,第二回水管路的出水口与水箱的底部的距离大于第一回水管路的出水口与水箱的底部的距离。
进一步地,加热管路上设置有水泵,水泵设置在排水口与第二冷凝器之间。
根据本发明的另一方面,提供了一种空调器,包括热水供给系统,热水供给系统为上述的热水供给系统。
应用本发明的技术方案,热水供给系统包括压缩机、第一冷凝器、第二冷凝器、通过将水箱以及加热管路。压缩机具有吸气口和排气口。第一冷凝器的进口与压缩机的排气口相连通。第二冷凝器的进口与第一冷凝器的出口相连通。蒸发器的进口与第二冷凝器的出口相连通,蒸发器的出口与吸气口相连通。加热管路通过两个加热器进行加热,有效地利用了热水供给系统中的热源。由于水箱中的水经过两次加热,有效地提高了水箱内水的温度。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了现有技术中的热水供给系统的制冷剂温度与热水温度沿换热器管程分布示意图;
图2示出了根据本发明的热水供给系统的制冷剂温度与热水温度沿换热器管程分布示意图;
图3示出了图2中的热水供给系统的实施例一的结构示意图;
图4示出了图2中的热水供给系统的实施例二的结构示意图;以及
图5示出了图2中的热水供给系统的实施例三的结构示意图。
其中,上述附图包括以下附图标记:
10、压缩机;20、第一冷凝器;30、第二冷凝器;40、蒸发器;50、水箱;60、加热管路;61、第一加热段;62、第二加热段;63、第一回水管路;64、第二回水管路;71、第一阀门;72、第二阀门;73、第三阀门;80、水泵;90、节流装置。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如图2和图3所示,根据本发明的一个实施例,提供了一种热水供给系统。该系统包括压缩机10、第一冷凝器20、第二冷凝器30、通过将水箱50以及加热管路60。压缩机10具有吸气口和排气口。第一冷凝器20的进口与压缩机10的排气口相连通。第二冷凝器30的进口与第一冷凝器20的出口相连通。蒸发器40的进口与第二冷凝器30的出口相连通,蒸发器40的出口与吸气口相连通。水箱50具有排水口和进水口。加热管路60连接于排水口和进水口之间,第二冷凝器30和第一冷凝器20依次与加热管路60进行热交换以增加加热管路60内水的温度。
在本实施例中,与水箱50相连通的加热管路60通过两个加热器进行加热,有效地利用了热水供给系统中的热源。由于水箱50中的水经过两次加热,有效地提高了水箱50内水的温度。该热水供给系统合理有效地利用了系统中产生的高温排气气体,并将该高温高压气体用来加热具有高温的热水,有效地提高了热水供给系统的能效。
如图3所示,加热管路60包括第一加热段61和第二加热段62。第一加热段61与第一冷凝器20进行热交换。第二加热段62与第一加热段61相连通,第二加热段62与第二冷凝器30进行热交换。这样设置使得能够有效地对加热管路60中的水进行二次加热,继而有效的增加了加热管路60中水的温度,再将经加热后的水排入水箱50内以提供生活用水。在图3中,A表示水箱50使用端的排水管路,图3至图5中的B表示的是从外界引入水箱50的水源管路。
再请参照图3所示,第一加热段61的管径小于加热管路60的除第一加热段61以外部分的管径。这样设置避免经第二冷凝器30加热后的大量热水再进入第一冷凝器20中进行再次加热。因为在第一冷凝器20加热量一定的条件下,加热相对较少量的水的温度会上升的更高,即少量水的获取热量提高温度的速度会更快。这样设置有效地大幅度提高水箱50内的水的温度,进一步地满足了用户的需求。
本实施例中的热水供给系统对热水换热的效果与现有技术相比如图1和图2所示,图1为现有技术中热水供给系统的制热水换热效果图。从图中可以看出,经过相同制冷剂对相同 水量的水进行加热,显然使用本实施例中的热水供给系统的效果明显优于现有技术中热水供给的效果。
在本实施例中,加热管路60还包括第一回水管路63。第一回水管路63的进水口与加热管路60相连通,第一回水管路63的进水口位于第一加热段61和第二加热段62之间,第一回水管路63的出水口与水箱50相连通。这样设置可以将经第二冷凝器30加热后的热水排入水箱50中以增加水箱50中混合水的温度,只允许经第二冷凝器30加热后的少量水进入第一加热段61中进行加热,使得该少量的水经过第一冷凝器20加热后的温度得到极大限度的提高,再将该部分的高温热水排入水箱50中并用于生活用水,有效地提高了该热水供给系统的实用性。
如图4所示,根据本发明的第二实施例,热水供给系统还包括第一阀门71。第一阀门71设置于加热管路60上并位于第一冷凝器20与第一回水管路63的进水口之间。这样设置可以不将第一加热段61的管径设置成小于第二加热段62的管径,只要通过控制第一阀门71的打开程度就能控制通入第一冷凝器20加热的加热水量。这样设置可以根据用户的实际需求进行控制所需不同水温的热水,即当需要高温热水时,可以将第一阀门71关小,只允许少量的水通过第一阀门71进行加热。反之,如果需要温度低一点的热水温度,可以通过开大第一阀门71的打开程度。在第二冷凝器30之后的第二路水支路上增加第一阀门71(手动阀或者电动阀)。通过打开阀门的大小来调节第二路水的流量大小,从而改变高温回水温度。这样实现了水箱50中水温的可控性,进一步地增加了该热水供给系统的实用性。
由于第二冷凝器30中换热量小,为了使用第一冷凝器20对热水进行加热能够有足够的温升,可以通过限制流量大小的方式例如通过选用更细的管路或者在管路中使用压降节流装置对其进行限流已达到增加温度的目的。
如图5所示,第一回水管路63上设置有第二阀门72。这样设置进一步地实现了水箱50中水温的可控性,使得该系统使用起来更加方便。
请在参照图5所示,热水供给系统还包括第二回水管路64。第二回水管路64的进水口与加热管路60相连通,第二回水管路64的进水口位于第一加热段61和第二加热段62之间,第二回水管路64的出水口与水箱50相连通。第二回水管路64上设置有第三阀门73。这样设置可以将经过第二冷凝器30加热后热水经过两个不同水位对水箱50中的热水进行加热。把第二冷凝器30之后的第一路水支路再分为两路,并增加第二阀门72与第三阀门73。当水箱50的热水出口处(图3至图5中的A处)没有热水使用时,第二阀门72关闭,第三阀门73打开,使用热水分层方式进行加热进一步提高热水器的能效。当热水出口有热水使用时而需要加热热水时。第二阀门72打开,第三阀门73关闭,防止热水出口流出温度过低的热水。
如图3至图5所示,进水口与水箱50的底部的距离大于排水口与底部的距离。第一回水管路63的出水口与第二回水管路64的出水口设置于排水口与进水口之间。对进水口即高温回水口的位置进行限定目的在于:由于高温热水密度较低,高温热水在水箱50中会上浮,为 了避免二次加热的高温热水在上升过程中与水箱50中的中、低温热水混合,因此高温回水口置于水箱的上部。
优选地,第二回水管路64的出水口与水箱50的底部的距离大于第一回水管路63的出水口与水箱50的底部的距离。这样设置进一步的避免了二次加热的高温热水在上升过程中与水箱50中的中、低温热水混合,有效地保证了用户端具有充足的热水供应量。
如图5所示,加热管路60上设置有水泵80,水泵80设置在排水口与第二冷凝器30之间。这样设置能够有效地保证水箱50中的水能够及时地输送至第一冷凝器20和第二冷凝器30中进行热交换。
该热水供给系统为热泵热水器系统,该系统包含制冷剂循环回路与热水循环回路。
制冷剂回路由压缩机10、第一冷凝器20、第二冷凝器30、节流装置90、蒸发器40(也可以是风冷换热器)及相关制冷剂管路首尾依次连接组成的闭合回路。
热水回路由水箱50、水泵80、第一冷凝器20、第二冷凝器30及相关管路首尾依次相连组成闭合回路。
制冷剂回路与水箱50侧回路通过第一冷凝器20、第二冷凝器30进行耦合换热。
当热泵热水器开始制热水时,压缩机10、水泵80开启。制冷剂沿路径为压缩机10、第一冷凝器20、第二冷凝器30、节流装置90、蒸发器40、压缩机10循环。循环热水经水泵80泵送至第二冷凝器30中被加热上升一定温度,分成两路,第一路直接返回水箱50。第二路被送至第一冷凝器20进一步加热后从位于水箱50上部的高温回水口返回水箱50。
制冷剂与热水在第一冷凝器20、第二冷凝器30中沿程理想的温度分布如图2所示。即在第一冷凝器20中制冷剂释放出气态显热,在第二冷凝器30中,制冷剂释放冷凝潜热与液态显热。由于制冷剂的气态显热量远小于潜热量,第二冷凝器30的换热容量要大于第一冷凝器20的换热容量。
在该热水供给系统中制冷剂依次通过两个冷凝器进行换热,在第二冷凝器30中对整路循环热水进行加热,在第一冷凝器20中利用高温排气对加热之后的一部分循环热水进行二次加热。该热水供给系统在加热低温热水的同时能够以高能效方式先产生一部分高温热水,从而提高热泵热水器的系统能效,使之更加节能,有效提高了水箱50中热水的水温。
上述实施例中的热水供给系统还可以用在空调器设备技术领域,根据本发明的另一方面,提供了一种空调器,包括热水供给系统,热水供给系统为上述实施例中的热水供给系统。该系统包括压缩机10、第一冷凝器20、第二冷凝器30、通过将水箱50以及加热管路60。压缩机10具有吸气口和排气口。第一冷凝器20的进口与压缩机10的排气口相连通。第二冷凝器30的进口与第一冷凝器20的出口相连通。蒸发器40的进口与第二冷凝器30的出口相连通,蒸发器40的出口与吸气口相连通。水箱50具有排水口和进水口。加热管路60连接于排水口 和进水口之间,第二冷凝器30和第一冷凝器20依次与加热管路60进行热交换以增加加热管路60内水的温度。
该空调器通过与水箱50相连通的加热管路60上的两个加热器对水箱50进行加热,有效地利用了热水供给系统中的热源。由于水箱50中的水经过两次加热,有效地提高了水箱50内水的温度。该热水供给系统合理有效地利用了系统中产生的高温排气气体,并将该高温高压气体用来加热具有高温的热水,有效地提高了空调器的能效。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种热水供给系统,其特征在于,包括:
    压缩机(10),具有吸气口和排气口;
    第一冷凝器(20),所述第一冷凝器(20)的进口与所述压缩机(10)的排气口相连通;
    第二冷凝器(30),所述第二冷凝器(30)的进口与所述第一冷凝器(20)的出口相连通;
    蒸发器(40),所述蒸发器(40)的进口与所述第二冷凝器(30)的出口相连通,所述蒸发器(40)的出口与所述吸气口相连通;
    水箱(50),具有排水口和进水口;
    加热管路(60),连接于所述排水口和所述进水口之间,所述第二冷凝器(30)和所述第一冷凝器(20)依次与所述加热管路(60)进行热交换以增加所述加热管路(60)内水的温度。
  2. 根据权利要求1所述的热水供给系统,其特征在于,所述加热管路(60)包括:
    第一加热段(61),与所述第一冷凝器(20)进行热交换;
    第二加热段(62),所述第二加热段(62)与所述第一加热段(61)相连通,所述第二加热段(62)与所述第二冷凝器(30)进行热交换。
  3. 根据权利要求2所述的热水供给系统,其特征在于,所述第一加热段(61)的管径小于所述加热管路(60)的除所述第一加热段(61)以外部分的管径。
  4. 根据权利要求2所述的热水供给系统,其特征在于,所述加热管路(60)还包括:
    第一回水管路(63),所述第一回水管路(63)的进水口与所述加热管路(60)相连通,所述第一回水管路(63)的进水口位于所述第一加热段(61)和所述第二加热段(62)之间,所述第一回水管路(63)的出水口与所述水箱(50)相连通。
  5. 根据权利要求4所述的热水供给系统,其特征在于,所述热水供给系统还包括:
    第一阀门(71),设置于所述加热管路(60)上并位于所述第一冷凝器(20)与所述第一回水管路(63)的进水口之间。
  6. 根据权利要求5所述的热水供给系统,其特征在于,所述第一回水管路(63)上设置有第二阀门(72)。
  7. 根据权利要求5所述的热水供给系统,其特征在于,所述热水供给系统还包括:
    第二回水管路(64),所述第二回水管路(64)的进水口与所述加热管路(60)相连通,所述第二回水管路(64)的进水口位于所述第一加热段(61)和所述第二加热段(62) 之间,所述第二回水管路(64)的出水口与所述水箱(50)相连通。
  8. 根据权利要求7所述的热水供给系统,其特征在于,所述第二回水管路(64)上设置有第三阀门(73)。
  9. 根据权利要求7所述的热水供给系统,其特征在于,所述进水口与所述水箱(50)的底部的距离大于所述排水口与所述底部的距离。
  10. 根据权利要求9所述的热水供给系统,其特征在于,所述第一回水管路(63)的出水口与所述第二回水管路(64)的出水口设置于所述排水口与所述进水口之间。
  11. 根据权利要求7所述的热水供给系统,其特征在于,所述第二回水管路(64)的出水口与所述水箱(50)的底部的距离大于所述第一回水管路(63)的出水口与所述水箱(50)的底部的距离。
  12. 根据权利要求1所述的热水供给系统,其特征在于,所述加热管路(60)上设置有水泵(80),所述水泵(80)设置在所述排水口与所述第二冷凝器(30)之间。
  13. 一种空调器,包括热水供给系统,其特征在于,所述热水供给系统为权利要求1至12中任一项所述的热水供给系统。
PCT/CN2017/073068 2016-04-25 2017-02-07 热水供给系统及具有其的空调器 WO2017185850A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610266146.XA CN105890084B (zh) 2016-04-25 2016-04-25 热水供给系统及具有其的空调器
CN201610266146.X 2016-04-25

Publications (1)

Publication Number Publication Date
WO2017185850A1 true WO2017185850A1 (zh) 2017-11-02

Family

ID=56705494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073068 WO2017185850A1 (zh) 2016-04-25 2017-02-07 热水供给系统及具有其的空调器

Country Status (2)

Country Link
CN (1) CN105890084B (zh)
WO (1) WO2017185850A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114857633A (zh) * 2022-03-30 2022-08-05 中冶西北工程技术有限公司 一种太阳能集热供热系统
WO2022267814A1 (zh) * 2021-06-21 2022-12-29 中山市爱美泰电器有限公司 一种耦合热泵热水器的温控系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105890084B (zh) * 2016-04-25 2019-03-15 珠海格力电器股份有限公司 热水供给系统及具有其的空调器
CN107763726B (zh) * 2017-11-17 2023-10-27 珠海格力电器股份有限公司 热泵系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017426A (ja) * 2004-07-05 2006-01-19 Kansai Electric Power Co Inc:The ヒートポンプ式蒸気・温水発生装置
KR20070096993A (ko) * 2007-08-28 2007-10-02 오은영 히트펌프를 이용한 냉난방 및 급탕장치
CN201382558Y (zh) * 2009-01-22 2010-01-13 深圳市天盛卡诺能源技术有限公司 一种具有高温加热装置的热泵热水器
JP2016065701A (ja) * 2014-09-26 2016-04-28 東芝キヤリア株式会社 ヒートポンプ式加熱機及びその運転方法
CN105890084A (zh) * 2016-04-25 2016-08-24 珠海格力电器股份有限公司 热水供给系统及具有其的空调器
CN205619483U (zh) * 2016-04-25 2016-10-05 珠海格力电器股份有限公司 热水供给系统及具有其的空调器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532725A (zh) * 2009-04-03 2009-09-16 谢勇 热泵热水器
CN201637107U (zh) * 2010-02-05 2010-11-17 广东美的电器股份有限公司 带水箱的热泵热水机
CN103344041B (zh) * 2013-06-28 2019-01-08 海尔集团公司 水循环热泵热水器的控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017426A (ja) * 2004-07-05 2006-01-19 Kansai Electric Power Co Inc:The ヒートポンプ式蒸気・温水発生装置
KR20070096993A (ko) * 2007-08-28 2007-10-02 오은영 히트펌프를 이용한 냉난방 및 급탕장치
CN201382558Y (zh) * 2009-01-22 2010-01-13 深圳市天盛卡诺能源技术有限公司 一种具有高温加热装置的热泵热水器
JP2016065701A (ja) * 2014-09-26 2016-04-28 東芝キヤリア株式会社 ヒートポンプ式加熱機及びその運転方法
CN105890084A (zh) * 2016-04-25 2016-08-24 珠海格力电器股份有限公司 热水供给系统及具有其的空调器
CN205619483U (zh) * 2016-04-25 2016-10-05 珠海格力电器股份有限公司 热水供给系统及具有其的空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022267814A1 (zh) * 2021-06-21 2022-12-29 中山市爱美泰电器有限公司 一种耦合热泵热水器的温控系统
CN114857633A (zh) * 2022-03-30 2022-08-05 中冶西北工程技术有限公司 一种太阳能集热供热系统

Also Published As

Publication number Publication date
CN105890084B (zh) 2019-03-15
CN105890084A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
US10197306B2 (en) Heat pump system, heat pump unit using the same, and method for controlling multiple functional modes thereof
CN203132034U (zh) 一种实验室高精度恒温恒湿空调装置
WO2017185850A1 (zh) 热水供给系统及具有其的空调器
JP6454405B2 (ja) ヒートポンプを具える給湯及び暖房及び空調複合システム
WO2014101225A1 (en) Heat pump water heater
CN109751795B (zh) 热泵系统及其控制方法
CN204787425U (zh) 一种制取高温热水的循环系统
CN202177213U (zh) 辅助加热型热泵热水器
CN106705231A (zh) 空调室内机组件、冷媒循环系统及其控制方法、控制装置
CN105890225A (zh) 一种部分热回收型空调冷热水及生活热水联合供应系统
CN204063403U (zh) 一种空调热泵热水器系统
CN101922800A (zh) 一种逆流式多级冷凝热泵热水器
KR101461519B1 (ko) 이원 냉동사이클 히트펌프시스템의 제어방법
CN105115089B (zh) 空调系统
CN209484880U (zh) 一种回温式热泵系统
CN109882911B (zh) 一种耦合热泵型热力站
CN201852358U (zh) 多功能热泵装置
CN102022856A (zh) 制冷、制热、生活热水多功能一体机
CN203880998U (zh) 热泵系统
CN203964446U (zh) 热水发生装置
KR102042218B1 (ko) 히트 펌프
CN203024403U (zh) 能回收污水余热的热泵热水器
JP2011214750A (ja) ヒートポンプ装置
CN105698303A (zh) 一种用于老化房的冷却系统
CN205002379U (zh) 一种超低温一次加热式热泵热水机

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788506

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788506

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788506

Country of ref document: EP

Kind code of ref document: A1