WO2022267767A1 - 自动化粒子植入系统、粒子链生成机构和穿刺设备 - Google Patents

自动化粒子植入系统、粒子链生成机构和穿刺设备 Download PDF

Info

Publication number
WO2022267767A1
WO2022267767A1 PCT/CN2022/093757 CN2022093757W WO2022267767A1 WO 2022267767 A1 WO2022267767 A1 WO 2022267767A1 CN 2022093757 W CN2022093757 W CN 2022093757W WO 2022267767 A1 WO2022267767 A1 WO 2022267767A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
puncture
implantation
puncture needle
needle
Prior art date
Application number
PCT/CN2022/093757
Other languages
English (en)
French (fr)
Inventor
赵�卓
孙洪雨
Original Assignee
武汉联影智融医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110707539.0A external-priority patent/CN115518305A/zh
Priority claimed from CN202220230592.6U external-priority patent/CN217310580U/zh
Priority claimed from CN202210102528.4A external-priority patent/CN116549868A/zh
Application filed by 武汉联影智融医疗科技有限公司 filed Critical 武汉联影智融医疗科技有限公司
Priority to EP22827265.4A priority Critical patent/EP4342526A1/en
Publication of WO2022267767A1 publication Critical patent/WO2022267767A1/zh
Priority to US18/395,508 priority patent/US20240131357A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • A61N2005/1011Apparatus for permanent insertion of sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems

Definitions

  • This specification relates to the technical field of medical devices, especially the automatic particle implantation system, particle chain generation mechanism and puncture equipment, which are used to implant radioactive particles.
  • Radioactive seed implantation treatment technology is to accurately implant radioactive seeds into the tumor body, and emit continuous and short-distance radiation through the miniature radioactive source, so that the tumor tissue is destroyed to the maximum extent, while the normal tissue is not damaged or only slightly damaged.
  • Radioactive seed implantation has the advantages of short cycle, low site equipment requirements, low price and less damage to adjacent healthy tissues.
  • the process of radioactive particle implantation is as follows: the doctor plans the radiation dose and the particle channel in the independent radiation planning system (Treatment Planning System, referred to as TPS) according to the scanned image of the patient, and then according to the planning result
  • TPS Independent Radi Planning System
  • Order radioactive particles from the radioactive particle manufacturer, and the ordering process takes 2 to 3 days.
  • the doctor After obtaining the radioactive particles, the doctor performs manual puncture according to the planning results, and sends the radioactive particles to the planned location.
  • This kind of radioactive seed implantation process has a long period, high time cost and low operation efficiency.
  • the first aspect of the embodiment of this specification discloses an automated particle implantation system, the system includes an active system and a driven system; wherein, the active system is configured to: acquire a scanned image of a scanning object; perform implantation according to the scanned image Radioactive seed implantation treatment plan planning, to obtain radioactive seed implantation treatment planning results; and according to the radioactive seed implantation treatment plan planning results, control the driven system to perform radioactive seed implantation operations .
  • the active system in order to acquire the scanned image of the scanned object, is further configured to: control a scanning device to scan the scanned object.
  • the active system in order to perform radioactive seed implantation treatment plan planning based on the scanned images to obtain radioactive seed implantation treatment plan planning results, is further configured to: according to the scanned images , target dose, and/or movement constraints of the manipulator to determine particle implantation path information.
  • the active system in order to determine particle implantation path information based on the scan image, target dose, and/or robotic arm motion constraints, is further configured to: a region of interest; and determining the particle implantation path information according to the region of interest, the target dose, and/or the movement constraints of the mechanical arm.
  • the active system in order to determine the particle implantation path information based on the region of interest, the target dose, and/or the motion constraints of the robotic arm, is further configured to : Acquiring initial particle implantation path information according to the size, shape and/or position of the region of interest, and/or the target dose; and performing the initial particle implantation according to the motion constraints of the mechanical arm The information of the implantation path is verified, and the information of the implantation path of the target particle corresponding to the scanning object is determined.
  • the active system in order to verify the initial particle implantation path information according to the motion constraints of the robotic arm and determine target particle implantation path information corresponding to the scanning object, the active system further It is configured to: if the verification is passed, use the initial particle implantation path information as the target particle implantation path information corresponding to the scanning object; , and/or the movement constraints of the mechanical arm to correct the initial particle implantation path information until the verification is passed, and the target particle implantation path information is obtained.
  • the particle implantation path information includes: the number of puncture needle assemblies, the needle insertion position of each puncture needle assembly, the target position of each puncture needle assembly, the The number of particles at the target position of the component, and/or the moving path of the mechanical arm.
  • the active system is further configured to: verify one or more of the particle implantation pathway information.
  • the driven system is configured to perform the radioactive seed implantation operation according to the planning result of the radioactive seed implantation treatment plan, including: moving the mechanical arm to the needle insertion position; making the puncture needle inserting the assembly into the needle and reaching the target position; implanting the radioactive particles; withdrawing from the puncture needle assembly; and moving the mechanical arm to the next needle insertion position, and replacing the next puncture needle assembly for seed implantation, until All the puncture needle assemblies in the radioactive seed implantation treatment planning results have completed the seed implantation.
  • the active system is further configured to: control the scanning device to scan the scanning object to Check the effect of the implant.
  • the driven system includes a piercing device including a piercing device tip and at least one piercing needle assembly mounted on the piercing device tip, the piercing device tip having a size and shape consistent with the piercing device tip. It is related to the number of the puncture needle assemblies, wherein the puncture needle assemblies are used to establish the particle implantation channel.
  • the active system includes a radiation planning module, and the radiation planning module is used to determine the number of particles according to the target dose;
  • the driven system includes a particle chain generation mechanism, and the particle chain generation mechanism is used to During the particle implantation operation, particle chains are formed in the particle implantation channel according to the number of particles and the occupying material.
  • the active system in order to control the slave system to perform the radioactive seed implantation operation according to the planning result of the radioactive seed implantation procedure, is further configured to: control the slave system to pass through The outer needle in the puncture device establishes a first particle implantation channel, and injects a first particle chain into the first particle implantation channel; and after establishing the first particle implantation channel, controls the slave The dynamic system establishes a second particle implantation channel through the inner needle in the puncture device, and injects a second particle chain into the second particle implantation channel.
  • the active system in order to perform radioactive seed implantation treatment plan planning based on the scanned images to obtain radioactive seed implantation treatment plan planning results, is further configured to: acquire the radioactive seed implantation treatment plan planning results through the scanning device The body surface position of the scanned object; and if the change of the body surface position within the preset time is greater than or equal to the preset change threshold, according to the current scan image, correct the planning result of the radioactive seed implantation treatment plan .
  • the active system includes a display device for displaying the scan image, the result of the radioactive seed implantation treatment plan, the remaining amount of the seed, and the slave At least one of the motion states of the system.
  • the second aspect of the embodiment of this specification discloses a particle chain generation mechanism, which is characterized in that the mechanism includes a storage unit and an implanted component; the storage unit is used to store at least two materials that form the particle chain, at least partly The implant component is passed through the storage unit and can selectively make the at least two materials in the storage unit orderly form particle chains.
  • the at least two materials include radioactive particles and space-occupied materials.
  • the storage unit includes a first material folder and a second material folder, the first material folder is used for storing the radioactive particles, and the second material folder is used for storing the place-occupying material.
  • the implant component is selectively connectable to the first material clip or the second material clip.
  • At least part of the implant assembly is rotatably connected to the storage unit to be selectively connected to the first material clip or the second material clip.
  • the implant assembly includes an implant sleeve and a push rod, the implant sleeve is rotatably connected to the storage unit, one end of the push rod extends into the implant sleeve, and With the rotation of the implant sleeve, at least two different included angles can be formed between the storage unit, corresponding to the first material clip or the second material clip.
  • the third aspect of the embodiment of this specification discloses a puncture device terminal, which is characterized in that it includes a switching frame and a switching frame driving mechanism; the switching frame driving mechanism includes a transmission assembly, and the transmission assembly is used to drive the puncture needle assembly to move to the needle port.
  • the puncture needle assembly is driven by the transmission assembly to move to the puncture needle interface through translation or rotation.
  • the switching frame is provided with a mounting slot, and the mounting slot is used for installing at least two puncture needle assemblies.
  • the cross-section of the installation groove is circular, helical or "J"-shaped.
  • the puncture needle driving device includes a particle chain generating mechanism and a trocar driving mechanism
  • the particle chain generating mechanism is used to provide particle chains for the puncture needle assembly
  • the The trocar driving mechanism is used to drive the puncture needle assembly to perform puncture.
  • the puncture needle assembly includes an outer needle and an inner needle, and the outer needle is sheathed outside the inner needle.
  • the puncture needle assembly further includes a first driving unit and a second driving unit, the first driving unit is connected to and drives the outer needle and the inner needle to puncture, and the second driving unit connecting and driving the inner needle to release the particle chain provided by the particle chain generating mechanism.
  • the fourth aspect of the embodiment of this specification discloses a puncture device end, which is characterized in that it includes a switching frame and a switching frame driving mechanism; the switching frame is provided with a mounting slot and a puncture needle interface connected to the mounting slot, The installation groove is used for installing at least one puncture needle assembly, and the switching frame driving mechanism is used for switching each of the puncture needle assemblies to the puncture needle interface.
  • the switching frame driving mechanism switches the path of each puncture needle assembly as a helical line.
  • the switch frame has a mounting surface with a helical section, and the mounting groove is disposed on the mounting surface.
  • the installation surface includes a first installation surface and a second installation surface, and the first installation surface and the second installation surface are respectively located inside and outside of the switch frame.
  • the position of the opening of the mounting surface corresponds to the position of the puncture needle interface, or the center position of the helix corresponds to the position of the puncture needle interface.
  • the fifth aspect of the embodiment of this specification discloses a puncture device end, which is characterized in that it includes: a switch frame, which is used to connect with the mechanical arm; at least two installation slots, the installation slots are set on the In the switching frame, and used to place at least two corresponding puncture needle assemblies; the switching frame driving mechanism, the switching frame driving mechanism is arranged in the switching frame, and used to drive the at least two puncture needle assemblies to switch; and The puncture needle driving assembly is used to drive the puncture needle assembly to perform the puncture action.
  • the switching frame is driven to rotate by the switching frame driving mechanism.
  • the switching frame driving mechanism includes a rotating shaft, a transmission unit and a driving member, the rotating shaft is fixedly passed through the switching frame, and the transmission unit is connected to the rotating shaft and the driving member.
  • the transmission unit includes at least one of synchronous belt transmission, chain transmission and gear transmission.
  • each puncture needle assembly includes an outer needle and an inner needle, the outer needle is accommodated in the installation slot, the inner needle is passed through the outer needle, and can Axial movement of the outer needle.
  • the puncture needle drive assembly includes a first drive unit and a second drive unit that are relatively independently arranged, the first drive unit drives the outer needle and the inner needle correspondingly, and the second drive unit corresponds to Drive the inner needle.
  • the first drive unit and the second drive unit are screw drive structures.
  • the first driving unit and the second driving unit are respectively electrically connected to the mechanical arm.
  • it also includes a first electrical interface, the first electrical interface is arranged on the switching frame, and one end of the first electrical interface is electrically connected to the first drive unit and the second electrical interface respectively. Two drive units, the other end of the first electrical interface is electrically connected to the mechanical arm.
  • the puncture needle driving assembly is arranged on the switching frame.
  • the at least two installation slots are driven by the switching frame driving mechanism.
  • the at least two installation grooves are arranged in a ring shape, a spiral line, or a "several" shape.
  • FIG. 1 is a flowchart of a radioactive seed implantation method according to an embodiment of the present specification.
  • Fig. 2 is a flowchart of a method for target dose and implant path planning according to an embodiment of the present specification.
  • Fig. 3 is a flowchart of a method for radioactive seed implantation according to an embodiment of the present specification.
  • Fig. 4 is a structural block diagram of an automated particle implantation robot system according to an embodiment of the present specification.
  • Fig. 5 is a flow chart of another radioactive seed implantation method according to an embodiment of the present specification.
  • FIG. 6 is a block diagram of an automated particle implantation system according to some embodiments of the present specification.
  • Fig. 7 is a block diagram of the hardware structure of the terminal of the radioactive particle implantation method according to the embodiment of this specification.
  • Fig. 8 is a schematic structural diagram of the particle chain generating mechanism in some embodiments of the present specification.
  • FIG. 9A is a schematic structural diagram of the second material folder in the particle chain generating mechanism shown in FIG. 8 .
  • FIG. 9B is a schematic structural diagram of a particle chain formed by the particle chain generating mechanism shown in FIG. 8 .
  • Fig. 10 is a schematic structural view of a puncture needle driving device in some embodiments of the present specification.
  • Fig. 11 is a schematic structural view of the puncture needle driving device shown in Fig. 10 after installation.
  • Fig. 12 is a schematic structural view of the puncture needle assembly in some embodiments of the present specification.
  • Fig. 13A and Fig. 13B are structural schematic diagrams of the end of the piercing device in some embodiments of the present specification.
  • Fig. 14 is a schematic structural view of the end of the piercing device in other embodiments of the present specification.
  • Fig. 15 is a schematic structural view of the end of the piercing device in other embodiments of the present specification.
  • Fig. 16 is a structural schematic diagram of the cross-section of the "ji"-shaped installation groove of the switch frame at the end of the puncture device shown in Fig. 13A and Fig. 13B.
  • Fig. 17 is a schematic diagram of the structure of the end of the piercing device in some embodiments of the present specification.
  • Fig. 12 Explanation of reference numerals in Fig. 12: 1200, puncture needle assembly; 1210, outer needle; 1220, inner needle; 1230, first drive unit; 1231, outer needle mounting frame; 1232, first card slot; 1233, outer needle gear 1234, the implantation port; 1240, the second drive unit; 1241, the telescopic positioning column; 1242, the inner needle gear; 1243, the inner needle installation frame;
  • Words such as “connection”, “connection”, “coupling” and similar words involved in this specification are not limited to physical or mechanical connection, but may include electrical connection, no matter it is direct or indirect.
  • “Multiple” referred to in this specification means greater than or equal to two.
  • "And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships. For example, “A and/or B” may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the terms “first”, “second”, and “third” involved in this specification are only used to distinguish similar objects, and do not represent a specific ordering of objects.
  • Words such as “connection”, “connection”, “coupling” and similar words involved in this specification are not limited to physical or mechanical connection, but may include electrical connection, no matter it is direct or indirect.
  • “Multiple” referred to in this specification means greater than or equal to two.
  • "And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships. For example, “A and/or B” may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the terms “first”, “second”, and “third” involved in this specification are only used to distinguish similar objects, and do not represent a specific ordering of objects.
  • the automated particle implantation system can implement radioactive particle implantation through an automated system.
  • the automated particle implantation system includes an active system and a driven system.
  • the driven system can communicate with the active system to realize the control of the active system to the driven system and transmit the force feedback information from the driven system to the active system.
  • the communication can be realized based on mobile signal, also can be realized based on wireless network, and can also be realized based on bluetooth technology.
  • FIG. 1 is a flow chart of the radioactive seed implantation method according to the embodiment of this specification. As shown in Figure 1, the method includes follows the steps below:
  • Step S110 the active system acquires the scanned image of the scanned object.
  • the implantation path needs to be planned.
  • the scanned image of the scanned object can be introduced to obtain the anatomical information of the scanned object in real time.
  • the active system can communicate with the scanning device.
  • the active system can send a control signal to the scanning device to control the scanning device to scan the scanning object in real time, wherein the scanning device It can be a Positron Emission Computed Tomography (abbreviated as PET) system, an electronic computed tomography (abbreviated as CT) system, a magnetic resonance imaging (Magnetic Resonance Imaging, abbreviated as MRI) system, and It can be a multimodal scanning system, such as PET-CT or PET-MR.
  • PET Positron Emission Computed Tomography
  • CT electronic computed tomography
  • MRI Magnetic Resonance Imaging
  • the tissue of the scanned object may be deformed, which may affect the implantation of the particles.
  • real-time scanning of the scanned object can help to correct the radioactive seed implantation treatment plan in real time, so as to achieve better treatment effect .
  • the scanning device after the scanning device generates the scanned image of the scanned object, it pre-stores the scanned image in the storage device.
  • the active system can communicate with the scanning device, and in the case of radioactive particle implantation, the active system obtains the scanned image of the scanned object from the storage device.
  • the scanning device may be a CT.
  • CT uses precisely collimated X-ray beams, ⁇ -rays, ultrasound, etc., together with highly sensitive detectors, to conduct cross-sectional scans one after another around a certain part of the scanning object.
  • the scanning time is fast, and the scanned images obtained by CT can be Provide accurate anatomical positioning of the lesion, which is more conducive to implantation path planning.
  • the scanning object is a patient who needs radioactive seed implantation.
  • step S120 the active system performs radioactive seed implantation treatment plan planning according to the scanned image to obtain a radioactive seed implantation treatment plan planning result.
  • the active system after the active system acquires the scan image, it can identify and locate the region of interest according to the anatomical information in the scan image, where the region of interest can be a lesion that needs to be punctured.
  • the algorithm for identifying the region of interest can be implemented by an image recognition algorithm, such as traditional machine learning or a neural network-based deep learning algorithm.
  • the active system may start planning the radioactive seed implantation treatment plan to obtain the radioactive seed implantation treatment plan planning result.
  • radioactive seed implantation treatment planning may include planning in two aspects, namely, target dose planning and seed implantation path planning.
  • the radiotherapy planning result refers to the target dose determined through the planning of the target dose and the particle implantation path determined through the planning of the particle implantation path.
  • the target dose in this specification refers to the radiation intensity of all radioactive particles that need to be implanted, as well as the number and location of the radioactive particles.
  • the target dose may include total radiation dose and/or localized radiation dose.
  • the total radiation dose refers to the radiation dose formed by all the radioactive particles received by the area of interest as a whole.
  • the local radiation dose refers to the radiation dose formed by injecting radioactive particles at each target position in the region of interest when the region of interest requires multiple puncture implants.
  • the target position refers to the position where the radioactive particles are to be implanted in the region of interest of the scanned object.
  • the target dose can be determined according to a doctor's prescription. In some embodiments, the target dose planning needs to meet the dose planning criteria, for example, normal human tissues outside the region of interest cannot be damaged.
  • the total radiation dose is related to the size of the region of interest.
  • the automated particle implantation system can set the initial value of the local radiation dose according to the total radiation dose and the size of the region of interest.
  • the initial value of the local radiation dose corresponding to each target position can be obtained by dividing the total radiation dose by the area of the region of interest and multiplying by the area of each target position.
  • the initial value of the local radiation dose of each target position ie, the initial local radiation dose
  • the initial local radiation dose may also be set or adjusted after obtaining the particle implantation path to obtain a target value of the local radiation dose (ie, a target local radiation dose).
  • a target value of the local radiation dose ie, a target local radiation dose.
  • the puncture component may be subject to some constraints and cannot reach part of the target position in the region of interest, it is necessary to remove the part of the target position that cannot be implanted with radioactive particles. Reselect the target positions in the remaining area of the region of interest and re-determine the target local radiation dose corresponding to each target position.
  • the implantation path may include moving the puncture needle assembly from the initial position through the robotic arm of the automated particle implantation system (for the robotic arm, refer to the slave hand in Figure 4 below, in some embodiments, the slave hand is the robotic arm)
  • the movement path to the needle insertion position may also include a puncture path for radioactive seed implantation. Therefore, some embodiments also need to consider the needle insertion position during planning.
  • the initial position refers to the position where the robotic arm of the automated particle implantation system is positioned when the object is scanned and the automated particle implantation system is ready.
  • the needle insertion position refers to the position of the robotic arm when the puncture needle assembly of the automated particle implantation system can directly perform puncture actions towards the corresponding target position.
  • the puncture path refers to the path along which the puncture needle in the puncture needle assembly at the needle insertion position travels from the beginning of extension to the corresponding target position.
  • radiation therapy planning results may include particle implantation path information.
  • the particle implantation path information may include: the number of puncture needle assemblies, the needle insertion position of each puncture needle assembly, the target point position of each puncture needle assembly, and the particles under the target point position of each puncture needle assembly. quantity, and/or the path of movement of the robotic arm.
  • the preset movement constraints of the robotic arm can provide a reference for the planning of the implant path.
  • the motion constraints of the robotic arm may refer to the constraints during the motion of the robotic arm.
  • the motion constraints of the robotic arm that need to be met for implant path planning may include that the implant path should avoid bone and human tissue when the robotic arm can move from the initial position to the needle insertion position and the robotic arm moves without collision , blood vessels and other important parts.
  • the implantation path may be jointly determined by the location of the region of interest, the total radiation dose, and/or the movement constraints of the robotic arm.
  • Step S130 the active system controls the slave system to perform radioactive seed implantation according to the results of radioactive seed implantation treatment planning.
  • the active system can control the slave system to move according to the target dose and/or implantation path to complete the radioactive particle implantation operation.
  • the automated particle implantation system can realize real-time planning of target dose and implantation path based on real-time scanning images through the above steps S110 to S130, thereby reducing operation time and improving operation efficiency.
  • the target dose planning and the path planning of the automated particle implantation system are independent of each other, which will cause the automated particle implantation system to fail to execute the particle implantation path that meets the dose planning, or the particle implantation path that the automated particle implantation system can execute.
  • the implantation path does not meet the target dose requirements, so it takes a long time to adjust or correct.
  • the traditional puncture process needs to be done manually by doctors. The operation process is complicated and time-consuming.
  • radioactive particles can only be prepared after the planning is completed and before the operation to avoid radioactive attenuation of the radioactive particles. Therefore, the radioactive particles cannot be obtained in advance. , patients need to wait for the preparation of radioactive particles, resulting in protracted surgical procedures.
  • the scanning device is controlled by the active system to obtain real-time scanning images of the scanned objects.
  • the active system organically combines target dose planning and particle implantation path planning according to the scanned images, reducing the adjustment of particle implantation paths during the planning process. It solves the problems of long period of radioactive seed implantation process, cumbersome operation process, high operation time cost and low operation efficiency in traditional technology.
  • the automated particle implantation system in this specification can realize the automatic implantation of radioactive particles based on the combination of the active system and the driven system, reduce operation time, and improve operation efficiency, so multiple implants can be completed in a short period of time. Taiwan surgery, so radioactive particles can be prepared in advance, without worrying about radioactive decay of radioactive particles.
  • this manual is based on the active system and the driven system, and does not require doctors to manually implant radioactive seeds, which can reduce the dependence on doctors' experience during radioactive seed implantation, simplify the surgical process, and further improve surgical efficiency.
  • the scanning device when the scanning device is CT, in the traditional technology, it is required to scan the CT first, and then the doctor performs blind puncture according to the scanned image, and then scans the object and then performs a CT scan to realize the needle insertion position verification, so Reciprocate until all the planned puncture needles are punctured, and finally perform manual seed implantation.
  • multiple CT scans are required during the implantation process to confirm that the seed implantation position is the planned position.
  • the scanned object can realize simultaneous CT scanning and radioactive seed implantation, reducing the CT scanning dose received by the scanned object during the radioactive seed implantation process, and improving the safety of the radioactive seed implantation process.
  • the active system may include a radiation planning module for achieving target dose planning and/or implant path planning, obtaining target dose (e.g., total radiation dose and/or local radiation dose) and/or or particle implantation path.
  • target dose e.g., total radiation dose and/or local radiation dose
  • Fig. 2 is a flowchart of a method for radiation dose and implant path planning according to an embodiment of the present specification. As shown in Figure 2, the method includes the following steps:
  • step S210 the active system acquires initial particle implantation path information according to the size, shape and/or position of the region of interest, and/or the target dose (for example, the total radiation dose).
  • the initial seed implantation route information may include an initial local radiation dose and/or an initial seed implantation route.
  • the active system can determine particle implantation path information based on scanned images, target dose, and/or movement constraints of the robotic arm. In some embodiments, the active system can first determine the region of interest in the acquired scanning image, and then determine the particle implantation path information according to the region of interest, target dose, and/or movement constraints of the mechanical arm. In some embodiments, the active system can directly acquire the scanned image of the region of interest manually determined from the memory, and then determine the particle implantation according to the region of interest in the scanned image, the target dose, and/or the movement constraints of the mechanical arm. Enter path information.
  • the active system can determine the particle implantation path information according to the scanned image, the target dose, the movement constraints of the robotic arm, and the additional conditions in the prescription issued by the doctor.
  • the additional conditions in the prescription issued by the doctor may refer to some guidance opinions made by the doctor in the prescription according to the physical condition of the scanned object. For example, if there is a healing wound next to the region of interest, then the doctor's guidance may be to implant radioactive seeds in the region of interest as far away from the wound as possible while meeting the radiotherapy requirements.
  • the active system can obtain initial particle implantation path information according to the size, shape and/or location of the region of interest, and/or the target dose. In some embodiments, the active system can acquire initial particle implantation path information according to the size, shape and/or position of the region of interest, and/or the target dose, and/or the distribution of target positions in the region of interest.
  • the distribution of target positions in the region of interest may refer to whether the target positions are distributed on the edge or center of the region of interest, whether they are concentrated or dispersed in the region of interest.
  • the active system plans the implantation path, it will first draw up an initial radiation dose and initial particle implantation path through TPS.
  • the initial radiation dose obtained by planning includes the total radiation dose and the initial local radiation dose.
  • the TPS system can plan the initial local radiation dose according to each needle insertion position as a reference after obtaining the total radiation dose.
  • the initial position of the mechanical arm of the driven system is the starting point of the initial particle implantation path
  • the position of the region of interest determines the end point of the initial particle implantation path
  • the end point of the initial particle implantation path is the initial target position
  • the size of the region of interest determines the total radiation dose
  • the location of the target for puncture in the region of interest determines the initial local radiation dose.
  • step S220 the active system verifies the initial particle implantation path information according to the movement constraints of the robotic arm, so as to determine the target particle implantation path information corresponding to the scanned object.
  • the target seed implantation route information may include the target local radiation dose and/or the target seed implantation route.
  • the active system can verify one or more of the particle implantation path information.
  • the initial particle implantation path may be unreachable by the robot arm or may collide during the movement along the path, after obtaining the total radiation dose, the initial local radiation dose, and the initial particle implantation path, it is necessary to obtain the total radiation dose, the initial local radiation dose and the initial particle implantation path.
  • the motion constraints of the arm are verified, so that the target particle implantation path meets the reachable requirements of the manipulator.
  • puncturing at different positions in the region of interest will affect the number of radioactive particles at the position, and then affect the initial local radiation dose corresponding to the position, so in the process of adjusting the initial particle implantation path, also The initial focal radiation dose needs to be adjusted accordingly.
  • multiple punctures may be required to complete all the radioactive seed implantation processes, so during multiple punctures, different needle insertion positions or target positions may correspond to different local radiation doses.
  • the region of interest is spherical, the local radiation dose at the center of the sphere is smaller than that at the edge, but the total radiation dose in the region of interest does not change.
  • the influence of the radiation dose received at the center of the sphere is not only the influence of the local radiation dose formed by the radioactive particles at the center of the sphere, but also the influence of the radioactive particles at the edge.
  • the embodiment of this specification is based on the radiation planning module in the active system. After obtaining the total radiation dose, the initial local radiation dose and the initial particle implantation path, the initial The particle implantation path is verified, and the target local radiation dose and target particle implantation path are quickly obtained. Compared with the problems existing in the traditional technology, that is, the total radiation dose, the initial local radiation dose, and the initial particle implantation path are planned in the planning department through TPS, and then the radiation planning is adjusted in the operation execution department, resulting in a long planning time. Long question, the embodiment of this specification unifies the motion constraints of the TPS and the robotic arm, which greatly reduces the planning time and improves the operation efficiency.
  • the active system when verifying the initial particle implantation path, if the verification is passed, uses the initial particle implantation path information as the target particle implantation path information corresponding to the scanning object; The region of interest, the target dose and/or the movement constraints of the manipulator correct the initial particle implantation path information until the verification is passed.
  • initial seed implantation route information may include initial local radiation dose and/or initial seed implantation route.
  • the active system may verify one or more of the initial particle implantation path information.
  • the initial particle implantation path when verifying the initial local radiation dose and/or the initial particle implantation path in the initial particle implantation path information, it is first judged whether the initial particle implantation path is unreachable and/or If there is a collision, the verification fails, and the initial particle implantation path in the initial particle implantation path information needs to be adjusted.
  • the needle position and/or target position adjusts the initial local radiation dose until the target local radiation dose and target particle implantation path are obtained.
  • the initial particle implantation path may be the movement path of the robotic arm.
  • the movement constraints of the robotic arm include: the robotic arm can be reached, there is no collision during the movement, and the puncture path for radioactive particle implantation after reaching the needle insertion position does not pass through bones, dangerous tissues, organs, blood vessels, etc.
  • the planning of both the total radiation dose and the local radiation dose needs to meet the prescribed dose, and the local radiation dose cannot exceed the standard, and at the same time meet the radiation requirements of the dose volume histogram (Dose Volume Histogram, referred to as DVH).
  • the operator when the planned initial particle implantation path needs to be adjusted, the operator can fine-tune the initial particle implantation path on the console of the active system, or the active system can adjust the initial particle implantation path according to the movement constraints of the mechanical arm. The conditions are gradually adjusted until the target particle implantation path information meets the motion constraints of the manipulator.
  • the initial particle implantation path and the initial local radiation dose can be verified and adjusted according to the region of interest and the movement constraints of the robotic arm to obtain the target local radiation dose and target particle implantation path, which improves the surgical effect.
  • the radioactive seed implantation operation it is also necessary to verify the implantation results of the radioactive seed, for example, to verify whether the radiation dose received at each target position in the region of interest reaches the prescribed dose, wherein receiving The radiation dose includes the local radiation dose corresponding to the target position and the radioactive influence on the target position caused by the local radiation doses of other target positions.
  • the doctor will give the prescribed dose as the target dose, and when the TPS performs operation planning, the prescribed dose is used as one of the constraints of the radiation dose planning.
  • One of the criteria for judging the success of radioactive seed implantation is that the radiation dose received by more than 95% of the region of interest reaches the prescribed dose.
  • the ideal situation is that the implantation conditions are exactly the same as the plan, but due to the patient’s breathing and other problems, the implantation process may deviate from the plan, so after the radioactive seed implantation is completed, Verify again to confirm whether more than 95% of the area of interest has reached the prescription dose requirements to evaluate the surgical effect.
  • the active system controls the scanning device to scan the scanning object to detect the effect of implantation, so as to achieve Evaluation of surgical effects.
  • the driven system further includes a piercing device including a piercing device end and at least one piercing needle assembly mounted on the piercing device end.
  • the size and configuration of the piercing device tip can be related to the number of piercing needle assemblies in the piercing device.
  • the puncture needle assembly is used to establish a particle implantation channel.
  • the particle implantation channel in some embodiments is established according to the puncture path in the planned particle implantation path.
  • the slave system is configured to perform the radioactive particle implantation operation according to the radiotherapy planning results, specifically: the slave hand of the slave system moves the mechanical arm to the planned needle insertion position under the control of the active system ; make the puncture needle assembly enter the needle, reach the target position, and establish the particle implantation channel; implant the particles, that is, implant the radioactive particles into the target position in the region of interest in the form of particle chains; exit the puncture needle assembly; The arm moves to the next needle insertion position, and replaces the next puncture assembly for radioactive seed implantation until all puncture needle assemblies in the treatment planning result of the radioactive seed implantation surgery complete the radioactive seed implantation.
  • the size and shape of the puncture device tip corresponds to the number of puncture needles in the puncture device, i.e., in the case of multiple puncture needle assemblies, the puncture device tip has multiple sizes and shapes to suit different interests. area. Specifically, there are two cases of different ROIs, one is ROIs in different parts in the same operation, and the other is ROIs in different parts in different operations. If there are regions of interest in different parts, the number of puncture needle assemblies is usually determined according to the planning requirements.
  • the number of puncture needle assemblies required by the region of interest varies from 2 to 40, if the end of the puncture device The design is fixed and can only be considered according to the maximum number of puncture needle components, which will increase the size of the end of the puncture device and cause waste in most clinical scenarios. Therefore, in some embodiments, according to the region of interest of different parts According to the demand for the number of radioactive particles, the size and shape of the end of the puncture device will be changed to adapt to the number of different puncture needle components, so as to save the operation cost.
  • the radiation planning module of the active system is also used to determine the number of radioactive particles according to the target dose (such as local radiation dose), and then the slave system obtains the number of radioactive particles through communication, wherein the number of radioactive particles The amount can be calculated based on the target dose (such as local radiation dose) and the radioactivity of a single radioactive particle.
  • the radioactive particle can be iodine-125.
  • the driven system includes a particle chain generating mechanism, which is used to form particle chains in the particle implantation channel according to the number of radioactive particles and the occupying materials during the implantation of radioactive particles.
  • the space-occupying material plays a role of space-filling during the formation of the particle chain, specifically, during the process of implanting the radioactive particles into the region of interest, the space between two radioactive particles is filled with the space-occupying material.
  • the space-occupying material in some embodiments is a biocompatible and degradable material, such as polycaprolactone.
  • the particle chain can be in any one of a straight line, an arc shape, a ring shape, a helical shape, a bifurcated shape, a cross shape, and a mesh structure, or a combination structure of any number of particle chains.
  • the radioactive particles that need to be implanted do not need to be placed in advance, and the particle chain is generated in real time by the particle chain generating mechanism during the operation process according to the target dose and the planning results of the implantation path, and is implanted through the particle implantation channel at one time.
  • the location of the target point into the region of interest greatly improves the operation efficiency and shortens the operation time, allowing doctors to concentrate multiple patients with the same operation in one day to complete the operation.
  • the automated particle implantation system can automatically count the number of radioactive particles implanted in each patient, avoid errors, and support the pre-operation reservation of the number of particles, so that the hospital can order a large number of radioactive particles in advance for use, saving radioactivity. The particle's order time.
  • the particle chain generation mechanism includes a first material folder and a second material folder.
  • the radioactive particles in this specification are stored in the first material folder
  • the placeholder materials are stored in the second material folder.
  • the material clip and the second material clip are both arranged at the end of the mechanical arm of the driven system.
  • the mechanical arm obtains radioactive particles and space-occupying materials from the first material clip and the second material clip respectively.
  • the radioactive seeds and space-occupying material are then sequentially implanted into the region of interest through the puncture device.
  • the number of radioactive seeds in the first material folder is more than one serving, so as to meet the operation requirement of continuously implanting multiple sets of radioactive seeds.
  • FIG. 3 is a flowchart of a method of radioactive seed implantation according to an embodiment of the present specification. As shown in Figure 3, the method includes the following steps:
  • Step S310 under the control of the active system, the driven system establishes the first particle implantation channel through the outer needle in the puncture device, and injects the first particle chain into the first particle implantation channel;
  • Step S320 after establishing the first particle implantation channel, the driven system establishes the second particle implantation channel through the inner needle in the puncture device, and injects the second particle chain into the second particle implantation channel.
  • the end of the puncture device is a multi-needle end, that is, the puncture device includes multiple puncture needle assemblies of the same or different sizes and/or shapes, and only one puncture needle assembly is used for each implantation.
  • the puncture needle in the puncture needle assembly includes an inner needle and an outer needle. After the entire puncture needle penetrates into the body of the scanning object, the inner needle comes out, and a particle implantation channel is formed inside the outer needle. Guided by the arm, the particles are implanted through the channel to reach the region of interest.
  • the inner needle can be a solid structure, and the cavity of the outer needle can be filled to prevent air from entering the cavity of the outer needle during the process of establishing the particle implantation channel.
  • the puncture device in some embodiments can complete multiple puncture tasks in one operation, improving operation efficiency.
  • the body surface position of the scanned object can be acquired by the scanning device.
  • the body surface position is the body surface position corresponding to the region of interest, and the body surface position can be obtained by an imaging device installed on the inner wall of the scanning device.
  • the imaging device performs body surface imaging on the scanned object; after the active system obtains the body surface imaging, it can calculate according to the body surface position, if the change of the body surface position within the preset time is greater than or equal to the preset change threshold, It is considered that the movement of the scanning object has affected the existing target dose and planning path. At this time, the active system corrects the target dose and implantation path according to the current scanning image, obtains a new target dose and implantation path, and reduces the surgical cost. Mistakes to improve surgical outcomes.
  • both the preset time and the preset change threshold in some embodiments can be set according to the doctor's experience, or can be simulated according to an algorithm.
  • the doctor can complete the operation control of the driven system through the active system according to his own experience. For example, after a large body movement of the scanned object, the resulting displacement is too large. Based on experience, the doctor can judge that the change of the body surface position within the preset time is obviously greater than the preset change threshold, and the active system will directly stop the movement from operation of the dynamic system.
  • the position information of the region of interest in the scanned image can also be obtained in real time.
  • the change of the position information of the region of interest is greater than or equal to the preset change threshold of the region of interest, the target dose and The implant path is corrected.
  • the implant path can be fine-tuned by the operator on the console of the active system, or gradually adjusted by the active system according to the motion constraints of the robotic arm.
  • the active system includes a display device for displaying scan images, radioactive seed implantation procedure planning results (e.g., seed implantation path), radioactive seed remaining, and motion of the driven system at least one of the states.
  • displaying the motion state of the driven system includes displaying the operating state and operating steps, prompting the operator for the next step of operation, and displaying the scanned images of radioactive particles in real time during the particle implantation process to guide the operator to complete the particle implantation
  • the surplus of radioactive seeds can assist the process planning of multiple radioactive seed implantation operations. For example, when the surplus of radioactive particles is sufficient, the radioactive seed implantation operation can be directly performed on the next scanning object.
  • This embodiment is based on a display device, which can provide images of part or the whole process of radioactive seed implantation, so that the radioactive seed implantation operation can be visualized and the difficulty of the operation can be reduced.
  • the coordinate system of the driven system needs to be registered with the coordinate system of the scanning device, so as to realize the alignment between the region of interest in the scanned image and the actual scanned object.
  • Region of interest for location mapping is to first obtain the first coordinates of the marker or other feature objects in the coordinate system of the driven system and the second coordinates in the coordinate system of the scanning device, and establish the following coordinate system based on the first coordinates and the second coordinates.
  • the position and spatial relationship between the coordinate system of the moving system and the coordinate system of the scanning device and then calculate the transformation matrix to complete the registration.
  • Ways to realize the registration process include magnetic registration (ie functional magnetic resonance image registration), optical registration (infrared light image registration and/or visible light image registration can be used), physical position registration, and the like.
  • FIG. 4 is a structural block diagram of the automated particle implantation robot system 40 according to an embodiment of this specification.
  • the automated particle implantation robotic system 40 includes: an automated particle implantation system 41 and a scanning device 42, wherein the automated particle implantation system 41 includes an active system 411 and a driven system 412; the active system 411 includes a first A processor 4111 and a master hand 4112.
  • the slave system 412 includes a slave hand 4121.
  • the slave hand 4121 is mechanically connected to the puncture device, and the scanning device 42 is communicatively connected to the first processor 4111; the first processor 4111 controls the scanning device 42 to obtain scans.
  • the scanned image of the object the first processor 4111 determines the target dose corresponding to the scanned object according to the region of interest in the scanned image, and determines the target dose corresponding to the scanned object according to the region of interest in the scanned image and the preset movement constraints of the mechanical arm.
  • the master hand 4112 controls the movement of the slave hand 4121 to implant a target dose of radioactive particles according to the particle implantation path.
  • main hand 4112 can be a robotic arm.
  • slave hand 4121 may be a different robotic arm than master hand 4112.
  • the automated particle implantation robot system 40 in some embodiments can realize real-time planning of the target dose and particle implantation path based on the scanned images, thereby reducing operation time and improving operation efficiency.
  • the target dose planning and the path planning of the automated particle implantation system are independent of each other, which will cause the automated particle implantation system to fail to execute the particle implantation path that meets the dose planning, or the particle implantation path that the automated particle implantation system can execute.
  • the implantation path does not meet the target dose requirements, so it takes a long time to adjust or correct.
  • the puncture process needs to be done manually by the doctor.
  • the operation process is complicated and time-consuming. Therefore, the radioactive particles can only be prepared after the planning is completed and before the operation to avoid the radioactive attenuation of the radioactive particles. Therefore, the radioactive particles cannot be obtained in advance. During each operation, Patients all need to wait for the preparation of radioactive seeds, resulting in prolonged surgical procedures.
  • the automated particle implantation system 41 in this specification is based on the combination of the active system 411 and the driven system 412 to realize the automatic implantation of radioactive particles, reduce operation time, improve operation efficiency, and can be completed in a short time Multiple surgeries. Therefore, radioactive particles can be collected in advance without worrying about the radioactive decay of the radioactive particles.
  • the slave system 412 can also include a second processor 4122, the first processor 4111 and the second processor 4122 are connected in communication, and the second processor 4122 is connected with the slave hand 4121, so as to realize the active system 411 pairing Control of driven system 412 .
  • the second processor 4122 can also control particle chains and multi-needle tips. Based on the communication connection between the second processor 4121 and the first processor 4111, the second processor 4122 controls the establishment of a particle implantation channel from the hand 4121 through the puncture device according to the target dose and the particle implantation path.
  • the automated particle implantation system can be the automated particle implantation system 41 for radioactive seed implantation in any of the above embodiments.
  • the driven system 412 can also include a puncture device, the puncture device has a puncture device end and at least one puncture needle assembly mounted on the puncture device end, the size and/or shape of the puncture device end is the same as that of the puncture device in the puncture device. It is related to the number of needle assemblies, wherein the puncture needle assemblies are used to establish the particle implantation channel.
  • the driven system 412 may include a particle chain generating mechanism, which is used to form particle chains in the particle implantation channel according to the quantity of radioactive particles and the occupying material during the implantation of radioactive particles.
  • active system 411 may include a display device.
  • the display device is used to display at least one of the scanning image, the radioactive seed implantation treatment planning result, the remaining amount of radioactive seed and the motion state of the driven system 412 .
  • FIG. 5 is a flow chart of another radioactive particle implantation method according to an embodiment of the specification. As shown in Figure 5, the method includes the following steps:
  • Step S510 controlling the scanning device to scan, and acquiring a scanned image of the scanned object
  • Step S520 determine the target dose corresponding to the scanned object according to the region of interest in the scanned image, and determine the particle implantation path corresponding to the scanned object according to the region of interest in the scanned image and the preset movement constraints of the robotic arm;
  • Step S530 controlling the radioactive seed implantation equipment to implant the radioactive seed with a radiation dose according to the implantation route.
  • the radioactive particle implantation method in some embodiments can be applied to an automated particle implantation system, where the active system of the automated particle implantation system scans the scanning device to achieve target dose and particle implantation path planning, and control radioactivity
  • the particle implantation device completes the particle implantation process.
  • the radioactive seed implantation equipment in some embodiments may be a slave system of an automated seed implantation system.
  • the target dose planning and the path planning of the automated particle implantation system are independent of each other, which will cause the automated particle implantation system to fail to execute the particle implantation path that meets the dose planning, or the particle implantation path that the automated particle implantation system can execute.
  • the implantation path does not meet the target dose requirements, so it takes a long time to adjust or correct.
  • the puncture process needs to be done manually by the doctor.
  • the operation process is complicated and time-consuming. Therefore, the radioactive particles can only be prepared after the planning is completed and before the operation to avoid the radioactive attenuation of the radioactive particles. Therefore, the radioactive particles cannot be obtained in advance. During each operation, Patients all need to wait for the preparation of radioactive seeds, resulting in prolonged surgical procedures.
  • the scanning device can be controlled by the active system to obtain the real-time scanning image of the scanning object.
  • the active system organically combines the target dose planning and the implantation path planning according to the scanning image, which solves the problems in the traditional technology.
  • the radioactive seed implantation process has a long cycle and cumbersome surgical procedures, resulting in high cost of surgical time and low surgical efficiency, reducing the time for adjusting the seed implantation path during the planning process and improving surgical efficiency.
  • the radioactive seed implantation method in some embodiments can be applied to the automated seed implantation system for radioactive seed implantation or the automated seed implantation robot system for radioactive seed implantation in any of the above embodiments.
  • the automated seed implantation system includes an active system and a slave system, the slave system and the active system are connected in communication, and the radioactive seed implantation method is controlled by the active system.
  • Active systems also allow for verification of target dose and implant path.
  • the driven system further includes a piercing device having a piercing device tip sized and configured to correspond to the number of piercing needle assemblies in the piercing device, wherein the piercing needle assemblies are used to establish particle implantation aisle.
  • the driven system includes a particle chain generating mechanism, which is used to form particle chains in the particle implantation channel according to the quantity of radioactive particles and the occupying material during the implantation of radioactive particles.
  • the active system includes a display device for displaying at least one of a scan image, a particle implantation path, a residual amount of radioactive particles, and a motion state of the driven system.
  • the automated particle implantation robotic system may include: an automated particle implantation system and a scanning device, wherein the automated particle implantation system may include an active system and a slave system; the active system may include a first processor and a master The hand, the slave system may include a slave hand, the slave hand is mechanically connected to the piercing device, and the scanning device is communicatively connected to the first processor.
  • Fig. 6 is a structural block diagram of an automated particle implantation system according to some embodiments of the present specification.
  • the automated particle implantation system can be distributed between an operation room and a scanning room.
  • the automated particle implantation system includes a scanning equipment, active and driven systems.
  • the scanning equipment includes a scanner and a console, and the scanner includes a scanning table and a frame, wherein the scanning table and the frame are located in the scanning room, and the console is located in the operating room.
  • the active system is located in the operating room and includes the main hand, radiation planning module and first processor.
  • the master hand is used to allow the operator to remotely control the slave hand in the scanning room in the operating room, so that under the guidance of the real-time scanning image, the multi-needle ends are sent to the planned target position and the establishment of the particle implantation channel is completed.
  • the radiation planning module includes TPS and robot path planning unit to realize the interactive verification and planning of radiation dose and implant path.
  • the first processor is used to communicate with the scanning device and the slave system respectively, so as to obtain the scanned image from the console, and realize the control of the scanner and the slave system.
  • the slave system is located in the scanning room, including the second processor, particle chain generating mechanism, slave hand and piercing device.
  • the second processor is used to communicate with the first processor, complete the control command from the active system, and transmit the force feedback signal of the resistance suffered by the slave hand to the main hand during the puncture process.
  • the second processor is also used to transmit control signals to the particle chain generation mechanism, the slave hand and the puncture device, so that the particle chain generation mechanism completes the production of the particle chain, makes the slave hand move according to the particle implantation path, makes the puncture device puncture, and completes the particle chain.
  • Implant channel establishment In some embodiments the slave hand is comprised of multiple robotic arms, and the piercing device has a multiple needle tip.
  • the scanning device is CT;
  • the first processor in the active system obtains the basic information of the scanned object, such as height, weight, gender, past medical history and other related information, and then controls the scanning device to scan the scanned object to obtain the scanned image.
  • the image identifies the region of interest.
  • the scanned image is transmitted to the active system through the console of the scanning device, and the format of the scanned image is a digital imaging and communications in medicine (Digital Imaging and Communications in Medicine, referred to as DICOM) format;
  • DICOM Digital Imaging and Communications in Medicine
  • the radiation planning module in the active system plans the total radiation dose, local radiation dose, and particle implantation path, specifically, verifying and summarizing the total radiation dose, initial local radiation dose, and initial particle implantation path obtained based on TPS. Correct until the target local radiation dose and the target particle implantation path that meet the dose planning criteria and the motion constraints of the manipulator are obtained;
  • the driven system obtains the target local radiation dose and the implantation path of the target particles through the second processor, and installs the multi-needle end and the radioactive particles at the end of the hand, wherein the number of local radioactive particles is determined according to the local radiation dose;
  • the slave hand moves to the target position determined by the target particle implantation path under the control of the main hand;
  • the multi-needle end passes through the puncture needle assembly to establish a particle implantation channel, place the particle chain in the particle implantation channel, and then pull out the puncture needle of the puncture needle assembly, wherein the particle chain is generated by the particle chain according to the radioactive particles and degradable particles. Formation of placeholder materials;
  • step S1 of some embodiments before the scanning device obtains the scanned image of the scanned object, it is necessary to register the coordinate system of the driven system with the coordinate system of the scanning device, so as to realize the region of interest in the scanned image and the actual scanning
  • the object's region of interest is positionally mapped.
  • the registration method is to first obtain the first coordinates of the marker or other feature objects in the coordinate system of the driven system and the second coordinates in the coordinate system of the scanning device, and establish the following coordinate system based on the first coordinates and the second coordinates.
  • the way to realize the registration process includes functional magnetic resonance image registration, infrared image registration, visible light image registration and/or physical position registration, etc.
  • the total radiation dose can be determined according to the radiation dose in the prescription prescribed by the doctor for the scanning object.
  • the automated particle implantation system in some embodiments can perform real-time local radiation dose and particle implantation path planning for the region of interest under the real-time guidance of the scanned image, and realize automatic implantation of radioactive particles at the same time. Based on the combination of scanning images, active system and driven system, the automatic operation of radioactive seed implantation is realized, which greatly reduces the dependence on doctor experience, and, based on real-time scanning images, the implantation of radioactive particles can be improved. Effect.
  • the automated particle implantation system in this specification can shorten the patient's waiting time, reduce the patient's cost of money and time, and at the same time improve the degree of matching between the final implantation result and the expected result.
  • the automated particle implantation system in this specification also reduces the operation time of a single operation and the required medical staff, and improves the operation efficiency. Based on the cooperation of the master hand and the slave hand, the particles can smoothly reach the planned target position, which greatly improves the accuracy of particle implantation.
  • each of the above-mentioned modules may be a function module or a program module, and may be realized by software or by hardware.
  • the above modules may be located in the same processor; or the above modules may be located in different processors in any combination.
  • FIG. 7 is a block diagram of the hardware structure of the terminal of the method for implanting radioactive particles according to the embodiment of this specification.
  • the terminal 70 may include one or more (only one is shown in FIG. 7) processors 702 (the processors 702 may include but not limited to processing devices such as microprocessor MCU or programmable logic device FPGA, etc.) and a memory 704 for storing data.
  • the terminal may further include a transmission device 706 and an input and output device 708 for communication functions.
  • the structure shown in FIG. 7 is only for illustration, and does not limit the structure of the above-mentioned terminal.
  • the terminal 70 may also include more or fewer components than those shown in FIG. 7, or have a different configuration than that shown in FIG.
  • the memory 704 can be used to store control programs, for example, software programs and modules of application software, such as the control program corresponding to the radioactive particle implantation method in the embodiment of this specification, the processor 702 runs the control program stored in the memory 704, thereby Executing various functional applications and data processing is to realize the above-mentioned method.
  • the memory 704 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 704 may further include a memory that is remotely located relative to the processor 702, and these remote memories may be connected to the terminal 70 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 706 is used to receive or transmit data via a network.
  • the specific example of the above network may include a wireless network provided by the communication provider of the terminal 70 .
  • the transmission device 706 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 706 may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • This embodiment also provides an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • the above-mentioned processor may be configured to execute the following steps through a computer program:
  • the active system controls the scanning device to scan, and obtains the scanned image of the scanned object
  • the active system determines the target dose corresponding to the scanned object according to the region of interest in the scanned image, and determines the particle implantation path corresponding to the scanned object according to the region of interest in the scanned image and the preset movement constraints of the robotic arm ;
  • the active system controls the movement of the driven system to implant the target dose of radioactive particles according to the particle implantation path.
  • the embodiments of the present specification may provide a storage medium for implementation.
  • a computer program is stored on the storage medium; when the computer program is executed by the processor, any radioactive particle implantation method in the above-mentioned embodiments is implemented.
  • the amount of radioactive seed chains used to treat lesions is usually not adjusted according to the individual's condition and injected into the radioactive seed chains, so that the amount of radioactive seed implants during the operation It cannot be accurately controlled according to the actual situation of each patient. Based on this, it is necessary to provide a particle chain generation mechanism and the end of the piercing device to solve this problem.
  • FIG. 8 is a schematic structural diagram of a particle chain generating mechanism 800 in some embodiments of this specification
  • Fig. 9A is a first material folder 811 in a particle chain generating mechanism in some embodiments of this specification.
  • FIG. 9B is a schematic structural diagram of the particle chain 813 formed by the particle chain generating mechanism 800 shown in FIG. 8 .
  • Some embodiments of this specification provide a particle chain generation mechanism 800, which is applied to the end effector of a surgical robot, especially the puncture needle drive device, so that the particle chain generation mechanism 800 can input Specific therapeutic drugs (such as particle chain 813), etc.
  • the particle chain generation mechanism 800 is used to implant the particle chain 813 into the puncture needle assembly through the trocar driving mechanism.
  • the particle chain generating mechanism 800 includes a storage unit 810 and an implant component 820 . At least part of the implant component 820 is passed through the storage unit 810, and can selectively form one or more materials in the storage unit 810 into a particle chain 813 in an orderly manner, and implant it into the puncture needle component.
  • the implant component 820 is partially installed in the storage unit 810 and outputs the particle chain 813 in the storage unit 810 .
  • the storage unit 810 is used for storing at least two kinds of materials forming the particle chain 813 .
  • the implant component 820 is used to output the materials in the storage unit 810 to the outside.
  • the material may include radioactive particles 813a and placeholder material 813b.
  • the implant component 820 can selectively output the materials in the storage unit 810 in an orderly manner according to the predetermined purpose, for example, the ratio between the radioactive particles 813a and the space-occupying materials 813b and the arrangement order of the two can all be in accordance with A preset purpose is formed (as shown in FIG. 9B ).
  • the particle chain generation mechanism 800 can form the particle chains 813 in an orderly manner, and the particle chain generation mechanism 800 can input the particle chains 813 according to the preset or real-time settings into the target site during the operation of the surgical robot.
  • the storage unit 810 and the implant component 820 can move relative to each other, so that the radioactive particles 813a and occupying materials 813b stored in different positions in the storage unit 810 can be selectively removed under the action of the implant component 820 output, and form particle chains 813 in an orderly manner.
  • the relative movement between the implant assembly 820 and the storage unit 810 may be in the form of translation or rotation, as long as the relative position between the implant assembly 820 and the storage unit 810 can be changed, and the implant assembly 820 can output correspondingly different materials.
  • the storage unit 810 can adopt a clip-type storage structure, and the implant assembly 820 can adopt a push rod 822 output structure, which can be set accordingly according to actual needs.
  • the storage unit 810 includes a first material folder 811 and a second material folder 812 .
  • the first material folder 811 is used for storing radioactive particles 813a; the second material folder 812 is used for storing human body degradable space-occupying materials 813b.
  • the first material clip 811 and the second material clip 812 can be stacked one above the other or arranged side by side, specifically according to the relative movement direction and movement form between the implant component 820 and the storage unit 810 .
  • the implant assembly 820 can be selectively connected to the first material holder 811 or the second material holder 812 through relative movement with the storage unit 810, so as to orderly remove the radioactive particles 813a or the second material holder 811 in the first material holder 811
  • the occupying material 813b in the second material holder 812 forms a particle chain 813 .
  • the first material clip 811 and/or the second material clip 812 may have a structure similar to that of a clip, wherein the structure of the second material clip 812 is shown in FIG. 9A .
  • the discharge opening of the second material folder 812 is provided with a limiting portion 8121, and the inside of the second material folder 812 is provided with an elastic member (the elastic member is not shown in FIG. .
  • the elastic member can be a spring structure, and the limiting portion 8121 is used to limit the space-occupied material 813b in the second material clip 812, so that the space-occupied material can be limited at the position of the discharge port without being completely disengaged.
  • Second material folder 812 .
  • the structure of the first material folder 811 may be the same as or similar to that of the second material folder 812 .
  • the storage unit 810 may also include more than three material folders, and correspondingly store more than three materials required to form the particle chain 813 .
  • At least part of the implant assembly 820 can be rotatably connected to the storage unit 810 so as to be selectively connected to the first material clip 811 or the second material clip 812 .
  • the rotational connection may be that part or all of the implant component 820 is connected to the casing of the storage unit 810 by rotating along its own rotation axis. Such arrangement not only facilitates the assembly between the implant component 820 and the storage unit 810, but also has a simple structure.
  • the implant assembly 820 can also slide relative to the storage unit 810 through the cooperation of slide rails and sliders, as long as the implant assembly 820 and the material clips used for storing different materials in the storage unit 810 can move relative to each other and output correspondingly. different materials.
  • the implant assembly 820 includes an implant sleeve 821 and a pusher 822 .
  • the implant sleeve 821 is connected to the storage unit 810; one end of the push rod 822 extends into the implant sleeve 821, and a plurality of different included angles can be formed between the push rod 822 and the storage unit 810 to correspond to the first A material folder 811 or a second material folder 812 .
  • the eccentric block 823 on the push rod 822 is used to push the materials (such as radioactive particles 813a or space-occupied materials 813b ) in different material folders out from the outlet.
  • an eccentric block 823 is disposed on the push rod 822 .
  • One end of the push rod 822 extends into the implant sleeve 821, and by rotating along the axis of the push rod 822, the eccentric block 823 corresponds to the discharge port of the first material clip 811 or the discharge port of the second material clip 812 .
  • the push rod 822 pushes the radioactive particles 813a or the occupying materials 813b in different regions of the first material holder 811 or the second material holder 812 to output the particle chain 813 formed by the radioactive particles 813a and/or the occupying materials 813b in an orderly manner.
  • the push rod 822 only pushes out one radioactive particle 813a or space-occupying material 813b each time. In this way, the implant assembly 820 has a simple structure and can effectively output different materials in the storage unit 810 .
  • the rotation of the push rod 822 and its axial movement are powered by the aforementioned driven system.
  • the particle chain generation mechanism 800 selectively forms the particle chain 813 to be implanted by the implant component 820, so that the particle chain 813 to be implanted can be adjusted and input according to individual cases, so that the particle chain 813 during the operation can be be precisely controlled.
  • Figure 10 is a schematic structural view of the puncture needle driving device 1000 in some embodiments of this specification.
  • Figure 11 is a schematic structural view of the puncture needle driving device 1000 shown in Figure 10 after installation. Schematic diagram of the structure of the puncture needle assembly 1200 in the embodiment.
  • Some embodiments of this specification also provide a puncture needle driving device 1000 .
  • the puncture needle driving device 1000 is used to drive the puncture needle assembly 1200 to perform a puncture action.
  • the puncture needle driving device 1000 includes the particle chain generating mechanism 800 and the trocar driving mechanism described above.
  • the trocar drive mechanism includes a first drive assembly 1010 and a second drive assembly 1020 .
  • the trocar driving mechanism is used to drive the puncture needle assembly to perform the puncture action.
  • the particle chain generation mechanism 800 may be mounted inside the trocar drive mechanism. In some embodiments, a part of the particle chain generating mechanism 800 can extend out of the trocar driving mechanism, as shown in FIG.
  • the protruding part is the second material clip 812 of the particle chain generating mechanism 800 .
  • the particle chain generation mechanism 800 is used to provide the particle chain 813 for the puncture needle assembly 1200 .
  • the trocar drive mechanism is used to output the particle chain 813 in the puncture needle assembly 1200 from the output channel 1015 to the target site.
  • the particle chain 813 in the puncture needle assembly 1200 can be output from the output channel 1015 on the first driving assembly 1010 .
  • the particle chain generating mechanism 800 can also be of other structures, as long as it can realize inputting materials such as the particle chain 813 into the puncture needle assembly 1200 .
  • introducer needle assembly 1200 may include an outer needle 1210 and an inner needle 1220 .
  • the outer needle 1210 is sheathed outside the inner needle 1220 .
  • the particle chain generation mechanism 800 is provided in the first driving assembly 1010 .
  • the particle chain generating mechanism 800 can input the formed particle chain 813 into the outer needle 1210 of the puncture needle assembly 1200 .
  • the outer needle 1210 is correspondingly connected to the first driving assembly 1010
  • the inner needle 1220 is correspondingly connected to the second driving assembly 1020 .
  • the first driving assembly 1010 can drive the operation of the puncture needle assembly 1200 ; the second driving assembly 1020 independently drives the inner needle 1220 of the puncture needle assembly 1200 .
  • the first driving assembly 1010 can drive the puncture needle assembly 1200 to run, so that the outer needle 1210 and the inner needle 1220 of the puncture needle assembly 1200 enter the target position together;
  • the axial movement of the needle 1210 pushes the particle chain 813 located in the inner cavity of the outer needle 1210 out of the outer needle 1210 to achieve the purpose of treating the target site at the target site. With such arrangement, materials such as the particle chain 813 in the puncture needle assembly 1200 can be freely released to the target position.
  • the puncture needle assembly 1200 further includes a first driving unit 1230 and a second driving unit 1240 .
  • the first driving unit 1230 is respectively connected to the first driving assembly 1010 and the outer needle 1210, and under the action of the first driving assembly 1010, drives the outer needle 1210 and the inner needle 1220 of the puncture needle assembly 1200 to puncture to the target position at the same time;
  • the unit 1240 is respectively connected to the second drive assembly 1020 and the inner needle 1220 , and drives the inner needle 1220 to release the particle chain 813 under the action of the second drive assembly 1020 .
  • the puncture needle assembly 1200 further includes a first driving unit 1230 and a second driving unit 1240 connected to each other.
  • the first driving unit 1230 includes an outer needle mounting frame 1231 and an outer needle gear 1233;
  • the outer needle gear 1233 is connected to the outer needle mounting frame 1231 and connected to the outer needle 1210; Parts of the components mesh with each other.
  • the outer needle gear 1233 is used to connect the first driving assembly 1010 and the outer needle 1210 to drive the outer needle 1210 and the inner needle 1220 disposed in the outer needle 1210 .
  • the second driving unit 1240 includes an inner needle mounting frame 1243 and an inner needle gear 1242 .
  • the inner needle gear 1242 is connected to the inner needle mounting frame 1243 and is used to drive the inner needle 1220, and the inner needle gear 1242 is engaged with some components of the second drive assembly 1020 to drive the inner needle 1220 to push out the particle chain 813 in the outer needle 1210 Needle tubing to outer needle 1210.
  • the inner needle gear 1242 is connected to the end of the inner needle 1220 , specifically, the inner needle gear 1242 is connected to the end of the inner needle 1220 in a sleeve manner.
  • the outer needle gear 1233 drives the outer needle 1210 using a similar principle. Such setting facilitates the puncture needle driving device 1000 to accurately output the particle chain 813 in the puncture needle assembly 1200 to the target position.
  • the inner needle mounting frame 1243 and the outer needle mounting frame 1231 are stacked and engaged with each other. And the inner needle mounting frame 1243 is installed on the side of the outer needle mounting frame 1231 relatively away from the outer needle 1210 and the inner needle 1220 .
  • the inner needle gear 1242 further drives the inner needle 1220 to move along the axial direction of the outer needle 1210, and pushes the particle chain 813 in the outer needle 1210 out Needle 1210, and reach the target position.
  • the outer needle gear 1233 driven by the puncture needle driving device 1000 can drive the outer needle to rotate and insert the needle, thereby effectively reducing the resistance during the needle inserting process and reducing the difficulty of inserting the needle.
  • the inner needle gear 1242 driven by the puncture needle driving device 1000 can drive the inner needle to rotate and enter the needle, thereby effectively reducing the resistance during the implantation process and reducing the difficulty of implanting particles.
  • the inner needle gear 1242 is mounted on a side of the inner needle mounting frame 1243 relatively away from the outer needle mounting frame 1231 .
  • Introducer needle assembly 1200 also includes a needle cartridge.
  • the outer needle 1210, the inner needle 1220, the first driving unit 1230 and the second driving unit 1240 are all disposed in the needle box. Such arrangement facilitates the overall replacement of the puncture needle assembly 1200 during the operation.
  • the end of the inner needle gear 1242 relatively far away from the inner needle mounting frame 1243 is provided with a telescopic positioning column 1241 .
  • the telescopic positioning column 1241 cooperates with the positioning groove at the corresponding position of the needle box to ensure the stability and puncture accuracy of the outer needle 1210, the inner needle 1220, the first driving unit 1230 and the second driving unit 1240 during surgical puncture.
  • the outer needle mounting frame 1231 defines a first locking slot 1232 .
  • the first housing 1011 of the trocar driving mechanism is correspondingly provided with a first engaging portion 1013; the first engaging portion 1013 extends into the first engaging groove 1232 to position the outer needle 1210 on the first driving assembly of the trocar driving mechanism 1010.
  • the inner needle mounting frame 1243 defines a second locking slot 1244 .
  • the second driving assembly 1020 is correspondingly provided with a second engaging portion 1023 .
  • the second locking portion 1023 extends into the second locking slot 1244 to position the inner needle 1220 on the second driving assembly 1020 of the trocar driving mechanism.
  • the outer pin gear 1233 and the inner pin gear 1242 are correspondingly meshed with the first driving assembly 1010 and the second driving assembly 1020 .
  • Such arrangement facilitates the docking of the first driving unit 1230 and/or the second driving unit 1240 to the corresponding first driving assembly 1010 and the second driving assembly 1020 .
  • first card slot 1232 and the second card slot 1244 can be provided, as long as the outer pin gear 1233 and the inner pin gear 1242 can be respectively connected with the corresponding first drive assembly 1010 and the second driving component 1020 are engaged with each other.
  • the outer needle mount 1231 defines an implantation port 1234 .
  • the implant port 1234 communicates with the outer needle 1210 .
  • the outer needle 1210 communicates with the particle chain generation mechanism 800 through the implantation port 1234 and the output channel 1015 on the first drive unit 1010 .
  • Such setting enables the particle chain 813 of the particle chain generating mechanism 800 or the corresponding material to be input into the outer needle 1210 smoothly.
  • the first driving assembly 1010 includes a first housing 1011 , a first gear 1014 and a first motor (not shown in the figure).
  • the first gear 1014 can be driven to rotate by the first motor.
  • the first gear 1014 is installed in the first housing 1011 and meshes with the outer needle gear 1233 to drive the outer needle 1210 of the puncture needle assembly 1200 .
  • the second driving assembly 1020 includes a second housing 1021 , a second gear 1024 and a second motor (not shown in the figure).
  • the second gear 1024 can be driven to rotate by the second motor.
  • the second gear 1024 is installed in the second housing 1021 and meshes with the inner needle gear 1242 to drive the inner needle 1220 of the puncture needle assembly 1200 .
  • the work of the first motor and the second motor is respectively controlled by the second processor in the aforementioned driven system.
  • first driving assembly 1010 and/or the second driving assembly 1020 can be arranged in other structures, or only one of a set of the two can be arranged.
  • the particle chain generation mechanism 800 is disposed in the first housing 1011 .
  • the first housing 1011 is opened with an output channel 1015 communicating with the outer needle 1210 .
  • the particle chain generation mechanism 800 communicates with the outer needle 1210 through the output channel 1015 and the implantation port 1234 .
  • the output channel 1015 communicates with the implantation port 1234 of the first casing 1011, so that the particle chain generation mechanism 800 can pass the particle chain 813 through the output channel 1015 and implant Port 1234 inputs to outer needle 1210.
  • the trocar driving mechanism is further provided with a first telescopic module 1012 and a second telescopic module 1022 .
  • the first telescopic module 1012 is correspondingly provided with the above-mentioned first driving assembly 1010 ; the second telescopic module 1022 is correspondingly provided with the above-mentioned second driving assembly 1020 .
  • the first telescopic assembly and the second telescopic assembly cooperate to align and connect the first driving assembly 1010 and the second driving assembly 1020 to the outer needle gear 1233 and the inner needle gear 1242 of the puncture needle assembly 1200 .
  • the extension and retraction of the first telescopic module 1012 and the extension and retraction of the second telescopic module 1022 are respectively controlled by the second processor in the aforementioned slave system.
  • the first telescopic module 1012 as an example, when the second processor in the driven system controls the first telescopic module 1012 to be retracted into the first housing 1011, the first gear 1014 of the first drive assembly 1010 and the outer pin gear 1233, the first drive assembly 1010 is separated from the first drive unit 1230; at this time, the puncture needle assembly 1200 is completely replaced with a new set of puncture needle assemblies 1200.
  • the first retractable mechanism extends out of the first casing 1011, and the first gear 1014 and the outer needle gear 1233 are meshed with each other.
  • the first drive assembly 1010 and the first drive unit 1230 is engaged.
  • the working principle of the second telescopic module 1022 is similar to that of the first telescopic module 1012 , and will not be repeated here. Such arrangement facilitates the separation and docking of the trocar driving mechanism and the puncture needle assembly 1200 , so that the puncture needle assembly 1200 as a whole is easy to replace.
  • FIG. 13A and Fig. 13B are schematic structural diagrams of the end of the puncture device in some embodiments of this specification.
  • Fig. 14 is a schematic structural diagram of the end of the puncture device in other embodiments of this specification.
  • the structure schematic diagram of the switching frame 1310 at the end of the puncture device FIG. 16 is a structural schematic diagram of the cross-section of the "J"-shaped installation groove 1311 of the switch frame 1310 at the end of the puncture device shown in FIG. 13A.
  • the embodiment of the present specification also provides a puncture device end.
  • the end of the puncture device includes a puncture needle driving device 1000 and a puncture needle assembly 1200 .
  • the puncture needle driving device 1000 is installed on the lead screw structure 1330 . Both ends of the lead screw structure 1330 are installed on the mounting frame 41221 of the slave hand 4122, as shown in FIG. 13B .
  • the puncture needle driving device 1000 is installed on two lead screw structures 1330 through an internal thread structure.
  • the two lead screw structures 1330 can be driven to rotate by a motor, but the puncture needle driving device 1000 does not rotate, and the puncture needle driving device 1000 moves in the longitudinal direction of the lead screw structure 1330 .
  • the puncture needle driving device 1000 is aligned and capable of driving the puncture needle assembly 1200 for puncture.
  • the end of the puncture device further includes a switching frame 1310 and a switching frame driving mechanism 1320 .
  • the switching frame 1310 is installed on the mounting frame 42111 of the slave hand 4122 . At least two sets of puncture needle assemblies 1200 are installed in the switching frame 1310 .
  • the switching frame 1310 is provided with a puncture needle interface 1312 docked with the puncture needle driving device 1000 , as shown in FIG. 13A .
  • the switching frame driving mechanism 1320 switches each puncture needle assembly 1200 to the puncture needle interface 1312 .
  • the first telescopic module 1012 and the second telescopic module 1022 cooperate to connect with the puncture needle assembly 1200 of the puncture needle interface 1312 .
  • the puncture needle driving device 1000 can move along the axial direction of the lead screw structure 1330, and at the same time drive the puncture needle assembly 1200 docked with the first telescopic module 1012 and/or the second telescopic module 1022 to move along the lead screw. Axial movement of structure 1330.
  • the switch frame drive mechanism 1320 includes a transport assembly.
  • the transmission assembly is used to drive the puncture needle assembly 1200 to move to the puncture needle interface 1312 .
  • the transmission component can be selected from at least one of synchronous belt transmission, gear transmission or chain transmission according to actual needs. And synchronous belt transmission, gear transmission or chain transmission can adopt existing transmission structure.
  • the puncture needle assembly 1200 moves to the puncture needle interface through translation or rotation driven by the transmission assembly.
  • a mounting slot 1311 is opened on the switching frame.
  • the installation groove 1311 is used for installing at least one puncture needle assembly 1200 .
  • the cross-section of the installation groove 1311 can be circular (as shown in FIG. 14 ), helical (as shown in FIG. 15 ) or “Ji” (as shown in FIG. 13A and FIG. 16 ), corresponding to The switching rack 1421 in the embodiment shown in FIG. 14 , the switching rack 1310 in the embodiment shown in FIG. 15 , and the switching rack 1310 in the embodiment shown in FIG. 13A .
  • a plurality of puncture needle assemblies 1200 are evenly arranged in the installation groove 1311 .
  • the shape of the installation groove 1311 can be selected according to the actual requirements of the actual operation.
  • the cross section of the installation slot 1311 is ring-shaped, and the switching frame 1310 has a mounting surface with a ring-shaped cross-section.
  • the installation groove 1311 is provided on the annular installation surface.
  • the puncture needle assembly 1200 disposed in the installation groove 1311 can rotate around the central axis of the ring-shaped installation surface under the drive of the switching frame driving mechanism 1320 , so as to continuously perform the purpose of puncturing with multiple needles.
  • the switching frame driving mechanism 1320 is installed on the mounting frame 41221 of the slave hand 4122 .
  • the puncture needle assembly 1200 can move longitudinally along the lead screw structure 1330 under the drive of the puncture needle driving device 1430 on the lead screw structure 1330 .
  • the lead screw structure 1330 can be installed on the mounting bracket 41221 of the slave hand 4122 .
  • the path through which the switching frame driving mechanism 1320 switches each puncture needle assembly 1200 may be a helical line.
  • the switch frame 1310 has a mounting surface 1510 with a helical section.
  • the installation groove 1311 is disposed on the installation surface 1510 . In this way, the puncture needle assembly 1200 disposed in the installation groove 1311 can move continuously according to the trajectory of the installation surface 1510 , so as to continuously perform the purpose of puncturing with multiple needles.
  • the mounting surface 1510 includes a first mounting surface 1510a and a second mounting surface 1510b.
  • the first installation surface 1510 a and the second installation surface 1510 b are located on the inner side and the outer side of the switching frame 1310 respectively.
  • the inner side of the switch frame 1310 refers to the side facing the center of the helix; the outer side of the switch frame 1310 refers to the side away from the center of the helix. With such arrangement, enough puncture needle assemblies 1200 can be accommodated.
  • the puncture needle assembly 1200 can move along the helical mounting surface 1510 driven by the switching frame driving mechanism 1320, and can move from the first mounting surface 1510a to the second mounting surface 1510b, or from the second mounting surface 1510a to the second mounting surface 1510b. 1510b moves to the first mounting surface 1510a.
  • the installation groove 1311 can be provided on the first installation surface 1510a and the second installation surface 1510b through the track structure, and the installation grooves 1311 on the first installation surface 1510a and the second installation surface 1510b can be connected end to end, around The mounting surface 1510 of the helix moves sequentially.
  • the opening position 1520 of the mounting surface 1510 of the helix may correspond to the position of the puncture needle hub 1312 .
  • Opening locations 1520 may include, without limitation, the locations shown in FIG. 15 .
  • the switching frame driving mechanism 1320 drives the standby puncture needle assembly 1200 to move from the installation groove 1311 to the opening position 1520 of the helix.
  • the switching frame driving mechanism 1320 rotates the used puncture needle assembly 1200 from the opening position 1520 of the installation surface 1510 of the helix into the installation groove 1311 .
  • the central position 1530 of the helix corresponds to the position of the puncture needle hub 1312 .
  • the switching frame driving mechanism 1320 drives the puncture needle assembly 1200 to move to the center position 1530 of the helix. And the switching frame driving mechanism 1320 turns the used puncture needle assembly 1200 away from the center position 1530 of the helix.
  • An exemplary operation of the piercing device tip is as follows.
  • the puncture needle assembly 1200 is translated to the position corresponding to the puncture needle driving device 1000 with the assistance of the transmission assembly of the switch frame driving mechanism 1320
  • the first telescopic module 1012 and the second telescopic module 1022 in the puncture needle driving device 1000 are docked with the first slot 1232 and the second slot 1244 respectively.
  • the puncture needle assembly 1200 punctures according to the planned path and establishes an implantation channel.
  • the inner needle 1220 exits the outer needle 1210 under the action of the second driving assembly 1020; then, the materials in the particle chain generation mechanism 800, under the action of the push rod 822, orderly generate particle chains according to the pre-planned chain 813, and implant the outer needle 1210 through the implantation channel established; in the inner needle 1220, under the action of the second drive assembly 1020, the particle chain 813 in the outer needle 1210 is pushed out of the outer needle 1210 and transported to the target point Location.
  • the outer needle 1210 is withdrawn with the assistance of the corresponding first driving assembly 1010, thereby completing the particle implantation of the needle track. Then the first telescopic module 1012 and the second telescopic module 1022 in the puncture needle driving device 1000 are separated from the puncture needle assembly 1200, and the puncture needle assembly 1200 is recovered and released; the next puncture needle assembly 1200 is assisted by the transmission assembly After arriving at the corresponding position of the puncture needle driving device 1000 , repeat the above steps until the particle implantation of part or all of the puncture needle assemblies 1200 in the switching frame 1310 is completed.
  • the end of the puncture device provided in some embodiments of the present specification, by setting the switching rack 1310 of the switchable puncture needle assembly 1200 and the corresponding puncture drive device 1000, enables the end of the puncture device to perform multiple punctures on the established puncture channel at the same position. Needle, so as to enhance the therapeutic effect, to avoid the problem that the position of the target point of the particle chain 813 of the puncture needle assembly 1200 is shifted due to multiple needle insertions.
  • the working process of the end of the puncturing device can refer to the working process of the aforementioned end of the puncturing device, which are basically the same.
  • This specification also provides a surgical robot (not shown in the figure), which includes the particle chain generation mechanism 800 described in any of the above embodiments or includes the end of the puncture device described in any of the above embodiments.
  • the target position of the puncture needle assembly 1200 is prone to position shift due to multiple needle insertions, and then It affects the treatment effect of the operation; in addition, it also increases the cost of the entire robotic arm system and prolongs the operation time, and increases the risk of the operation, which greatly affects the quality and effect of the operation. Therefore, it is necessary to provide a piercing device end for this problem. Therefore, some embodiments of the present specification provide a puncture device end of a surgical robot, which is used to perform surgical actions on a target site.
  • the end of the puncture device of the surgical robot may include a switching frame 1310 , a switching frame driving mechanism (refer to the structure jointly formed by marks 1710 , 1720 , and 1730 in FIG. 17 ) and a puncture needle driving assembly 1000 .
  • a switching frame 1310 the structure jointly formed by marks 1710 , 1720 , and 1730 in FIG. 17
  • a puncture needle driving assembly 1000 may be included in the end of the puncture device of the surgical robot.
  • At least two installation slots 1311 are disposed in the switching frame 1310 .
  • At least two installation slots 1311 are driven by the switching frame driving mechanism.
  • At least two mounting slots 1311 are used to place a plurality of corresponding puncture needle assemblies 1200;
  • the switch frame driving mechanism is connected to the switch frame 1310, and can drive the switch frame 1310 to rotate so that at least two puncture needle assemblies 1200 are switched;
  • the puncture needle drives The assembly 1000 is arranged on the switching frame 1310; the puncture needle driving assembly 1000 is used to drive the puncture needle assembly 1200 to perform the puncture action.
  • the puncture needle assembly 1200 is installed in the installation groove 1311 . Under the action of the switching frame driving mechanism, the puncture needle assemblies 1200 can be switched to the electrical interface 1740 corresponding to the mechanical arm one by one.
  • the piercing device tip may also include an electrical interface 1740 .
  • One end of the electrical interface 1740 is electrically connected to the mechanical arm, and the other end is electrically connected to the puncture needle drive assembly 1000 , serving as an electrical and control signal transmission channel between the mechanical arm of the puncture robot and the puncture needle drive assembly 1000 .
  • the electrical connection between the electrical interface 1740 and the puncture needle driving assembly 1000 is a detachable plug-in method, that is, the electrical interface 1740 can be connected to different puncture needle driving assemblies 1000 that are transferred to the corresponding position. Make an electrical connection.
  • the electrical interface 1740 disconnects the electrical connection with the puncture needle drive assembly 1000, and waits for the next puncture needle drive assembly 1000 to be electrically connected. connect.
  • each needle assembly 1200 is connected to a needle drive assembly 1000 .
  • At least two installation grooves 1311 can be arranged in a ring shape, a spiral shape, or a "several" shape.
  • the switching frame 1310 can be a hollow cylindrical structure, at least two installation slots 1311 can be arranged around the inner wall of the switching frame 1310, and the at least two installation slots 1311 can form a ring connected end to end, and accommodate A plurality of corresponding introducer needle assemblies 1200 .
  • Each puncture needle assembly 1200 can be switched to the electrical interface 1740 corresponding to the mechanical arm one by one along the circular trajectory of the installation groove 1311 under the action of the switching frame driving mechanism.
  • At least two installation slots 1311 can be arranged in a spiral shape along the radially outward direction of the axis center of the switching frame 1310, and each installation slot 1311 accommodates a corresponding puncture needle assembly 1200, each puncture needle assembly 1200
  • the needle assembly 1200 can be switched to the electrical interface 1740 corresponding to the mechanical arm one by one along the spiral track of the installation groove 1311 under the action of the switching frame driving mechanism.
  • the switch frame 1310 can be set as a hollow "several" shape structure, at least two installation grooves 1311 are arranged along the inner wall of the switch frame 1310, and at least two installation grooves 1311 form a "several" shape corresponding to the switch frame 1310. ”-shaped trajectory, and accommodate a plurality of corresponding puncture needle assemblies 1200.
  • Each puncture needle assembly 1200 can be switched to the electrical interface 1740 corresponding to the mechanical arm one by one along the "six"-shaped track of the installation groove 1311 under the action of the switching frame driving mechanism.
  • the switching frame 1310 can be set as a hollow rectangular structure, and at least two installation slots 1311 can be arranged along the inner wall of the switching frame 1310 to form a "mouth"-shaped structure corresponding to the switching frame 1310, and accommodate multiple corresponding The puncture needle assembly 1200 of the.
  • Each puncture needle assembly 1200 can be switched to the electrical interface 1740 corresponding to the mechanical arm one by one along the "mouth"-shaped track of the installation groove 1311 under the action of the switching frame driving mechanism.
  • the switching frame driving mechanism may include a rotating shaft 1710 , a transmission unit 1720 and a driving member 1730 .
  • the rotating shaft 1710 can be fixedly mounted on the switching frame 1310 for driving the puncture needle assembly 1200 to drive.
  • the transmission unit is connected with the rotating shaft 1710 and the driving member 1730 , and is used to transmit the power of the driving member 1730 .
  • the rotating shaft 1710 can rotate under the action of the driving member 1730, and the transmission unit 1720 drives the corresponding puncture needle assembly 1200 on the switching frame 1310 to be transmitted to the interface corresponding to the mechanical arm.
  • the transmission unit 1720 may include at least one of synchronous belt transmission, chain transmission, and gear transmission. Limited to the transmission mode of some embodiments. Multiple transmission modes expand the application scenarios, so that the transmission unit 1720 can be selected as at least one of synchronous belt transmission, chain transmission and gear transmission to meet the requirements of the working environment.
  • Each introducer needle assembly 1200 can include an outer needle 1210 and an inner needle 1220 .
  • the outer needle is accommodated in the corresponding installation groove 1311 , and the inner needle 1220 passes through the outer needle 1210 and can move along the axial direction of the outer needle 1210 at the target position.
  • the inner needle 1220 can independently perform the second puncturing action inside the outer needle 1210 to push out the medical agent to be injected from the inner of the outer needle 1210 . Therefore, when the medical medicine to be injected is radiopharmaceutical, the user of the puncture needle can avoid contact with the radiopharmaceutical and cause damage to his own health.
  • the introducer needle assembly 1200 may be connected to the introducer needle drive assembly 1000 .
  • the puncture needle driving assembly 1000 can drive the puncture needle assembly 1200 to move, and can independently drive the inner needle 1220 to move.
  • the puncture needle driving assembly 1000 can adopt an existing driving structure, such as motor driving and the like.
  • the puncture needle driving assembly 1000 may include a first driving unit 1230 and a second driving unit 1240 that are relatively independently arranged, the first driving unit 1230 corresponds to driving the puncture needle assembly 1200 , and the second driving unit 1240 corresponds to driving the inner needle 1220 .
  • the second driving unit 1240 can independently drive the inner needle 1220 without affecting the state of the outer needle 1210, so that the inner needle 1220 can move along the axial direction of the outer needle 1210 inside the outer needle 1210, and push out the drug to be injected. potion.
  • the first driving unit 1230 and/or the second driving unit 1240 is a screw drive structure. In this way, the transmission efficiency of the screw drive structure is higher, and the deformation during transmission is small, which ensures the structural stability of the first driving unit 1230 and/or the second driving unit 1240 .
  • first driving unit 1230 and the second driving unit 1240 are electrically connected to the robotic arm, so that the robotic arm can directly control the first driving unit 1230 and the second driving unit 1240 .
  • the piercing device tip may also include an electrical interface 1740 .
  • One end of the electrical interface 1740 is electrically connected to the first driving unit 1230 of the puncture needle driving assembly 1000 and the second driving unit 1240 of the puncture needle driving assembly 1000 respectively, and the other end is electrically connected to the mechanical arm.
  • the mechanical arm will move the switching rack 1310 to a designated position, and then drive a plurality of puncture needle assemblies 1200 to switch through the switching rack drive mechanism 1320, and select the puncture needle After assembly 1200, the first driving unit 1230 will release the outer needle 1210.
  • the second driving unit 1240 drives the inner needle 1220 to complete the puncturing action inside the outer needle 1210 and push out the drug to be injected.
  • One puncture action after that, the switching frame drive mechanism 1320 will switch the puncture needle assembly 1200, and switch the selected puncture needle assembly 1200 for the second puncture to the designated position, and then each drive unit will complete the second puncture Action, this action is similar to the first puncture action, and will not be repeated here.
  • the end of the puncture device is equipped with a movable switch frame 1310, so that multiple puncture needle assemblies 1200 installed in the switch frame 1310 can be quickly switched to the target site, so that the puncture The end of the device is on the established puncture channel at the same position, enabling multiple needle insertions, thereby enhancing the therapeutic effect and saving operation time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Radiation-Therapy Devices (AREA)
  • Nuclear Medicine (AREA)

Abstract

一种自动化粒子植入系统(41),包括主动系统(411)和从动系统(412);其中,主动系统(411)被配置为:获取扫描对象的扫描图像(S110);根据扫描图像进行放射性粒子植入术式治疗计划规划,以获得放射性粒子植入术式治疗计划规划结果(S120);以及根据放射性粒子植入术式治疗计划规划结果,控制从动系统(412)执行放射性粒子植入操作(S130)。说明书实施例还记载一种粒子链生成机构和一种穿刺设备末端。

Description

自动化粒子植入系统、粒子链生成机构和穿刺设备
优先权声明
本申请要求于2021年06月24日提交的申请号为CN202110707539.0、标题为“用于放射性粒子植入的手术机器人和手术机器人系统”的优先权,于2022年01月27日提交的申请号为CN202210102528.4、标题为“手术机器人粒子植入机构、机械手末端设备及手术机器人”的优先权,以及于2022年01月27日提交的申请号为CN202220230592.6、标题为“手术机器人的末端机构及手术机器人”的优先权,其内容全部并入本文。
技术领域
本说明书涉及医疗器械技术领域,特别是自动化粒子植入系统、粒子链生成机构以及穿刺设备,用于植入放射性粒子。
背景技术
放射性粒子植入治疗技术为将放射性粒子准确植入瘤体内,通过微型放射源发出持续、短距离的放射线,使肿瘤组织遭受最大限度杀伤,而正常组织不损伤或只有微小损伤。放射性粒子植入具有周期短、场地设备要求低、价格便宜以及对邻近健康组织伤害小的优点。在传统技术中,放射性粒子植入的过程为:医生根据病人的扫描图像在独立的放射规划系统(Treatment Planning System,简称为TPS)中进行放射剂量的规划以及粒子通道的规划,然后根据规划结果向放射性粒子厂家进行放射性粒子订购,订购过程为2至3天。在获取到放射性粒子之后,医生根据规划结果进行手动穿刺,并将放射性粒子送至规划位置。这种放射性粒子植入过程周期较长、时间成本较高、手术效率较低。
目前,针对放射性粒子植入过程存在的周期较长、手术过程繁琐、手术时间成本较高、手术效率较低的问题,尚未提出有效的解决方案。因此,有必要提供自动化粒子植入系统、粒子链生成机构和穿刺设备。
发明内容
本说明书实施例的第一方面公开了一种自动化粒子植入系统,所述系统包括主动系统和从动系统;其中,主动系统被配置为:获取扫描对象的扫描图像;根据所述扫描图像进行放射性粒子植入术式治疗计划规划,以获得放射性粒子植入术式治疗计划规划结果;以及根据所述放射性粒子植入术式治疗计划规划结果,控制所述从动系统执行放射性粒子植入操作。
在一些实施例中,为了获取所述扫描对象的所述扫描图像,所述主动系统还被配置为:控制扫描设备对所述扫描对象进行扫描。
在一些实施例中,为了根据所述扫描图像进行放射性粒子植入术式治疗计划规划,以获得放射性粒子植入术式治疗计划规划结果,所述主动系统还被配置为:根据所述扫描图像、目标剂量、和/或机械臂的运动约束条件,确定粒子植入路径信息。
在一些实施例中,为了根据所述扫描图像、目标剂量、和/或机械臂的运动约束条件,确定粒子植入路径信息,所述主动系统还被配置为:确定所述扫描图像中的感兴趣区域;以及根据所述感兴趣区域、所述目标剂量、和/或所述机械臂的所述运动约束条件,确定所述粒子植入路径信息。
在一些实施例中,为了根据所述感兴趣区域、所述目标剂量、和/或所述机械臂的所述运动约束条件,确定所述粒子植入路径信息,所述主动系统还被配置为:根据所述感兴趣区域的大小、形状和/或位置、和/或所述目标剂量,获取初始粒子植入路径信息;以及根据所述机械臂的所述运动约束条件对所述初始粒子植入路径信息进行验证,确定与所述扫描对象对应的目标粒子植入路径信息。
在一些实施例中,为了根据所述机械臂的所述运动约束条件对所述初始粒子植入路径信息进行验证,确定与所述扫描对象对应的目标粒子植入路径信息,所述主动系统还被配置为:若验证通过,将所述初始粒子植入路径信息作为与所述扫描对象对应的所述目标粒子植入路径信息;若验证不通过,根据所述感兴趣区域、所述目标剂量、和/或所述机械臂的所述运动约束条件对所述初始粒子植入路径信息进行修正,直到验证通过,得到所述目标粒子植入路径信息。
在一些实施例中,所述粒子植入路径信息包括:穿刺针组件数量、每个所述穿刺针组件的入针位置、每个所述穿刺针组件的靶点位置、每个所述穿刺针组件的所述靶点位置下的粒子数量、和/或所述机械臂的移动路径。
在一些实施例中,所述主动系统还被配置为:对所述粒子植入路径信息中的一种或多种进行验证。
在一些实施例中,所述从动系统被配置为根据所述放射性粒子植入术式治疗计划规划结果执行所述放射性粒子植入操作,包括:将机械臂移动至入针位置;使穿刺针组件入针,到达靶点位置;植入所述放射性粒子;退出所述穿刺针组件;以及将所述机械臂移动至下一个入针位置,并换下一个穿刺针组件进行粒子植入,直至所述放射性粒子植入术式治疗计划规划结果中的所有穿刺针组件都完成粒子植入。
在一些实施例中,所述主动系统还被配置为:在所述放射性粒子植入术式治疗计划规划结果中的所有穿刺针组件都完成粒子植入后,控制扫描设备扫描所述扫描对象以检测植入的效果。
在一些实施例中,所述从动系统包括穿刺设备,所述穿刺设备包括穿刺设备末端和安装在所述穿刺设备末端上的至少一个穿刺针组件,所述穿刺设备末端的尺寸和形态与所述穿刺针组件的数量有关,其中,所述穿刺针组件用于建立粒子植入通道。
在一些实施例中,所述主动系统包括放射规划模块,所述放射规划模块用于根据目标剂量确定粒子数量;所述从动系统包括粒子链生成机构,所述粒子链生成机构用于在放射性粒子植入操作中,在所述粒子植入通道中根据所述粒子数量与占位材料形成粒子链。
在一些实施例中,为了根据所述放射性粒子植入术式治疗计划规划结果,控制所述从动系统执行放射性粒子植入操作,所述主动系统还被配置为:控制所述从动系统通过所述穿刺设备中的外针建立第一粒子植入通道,并在所述第一粒子植入通道中注入第一粒子链;以及在建立所述第一粒子植入通道后,控制所述从动系统通过所述穿刺设备中的内针建立第二粒子植入通道,并在所述第二粒子植入通道中注入第二粒子链。
在一些实施例中,为了根据所述扫描图像进行放射性粒子植入术式治疗计划规划,以获得放射性粒子植入术式治疗计划规划结果,所述主动系统还被配置为:通过扫描设备获取所述扫描对象的体表位置;以及若所述体表位置在预设时间内的变化量大于或等于预设变化阈值,根据当前的扫描图像,修正所述放射性粒子植入术式治疗计划规划结果。
在一些实施例中,所述主动系统包括显示设备,所述显示设备用于显示所述扫描图像、所述放射性粒子植入术式治疗计划规划结果、所述粒子的余量以及所述从动系统的运动状态中的至少一个。
本说明书实施例的第二方面公开了一种粒子链生成机构,其特征在于,所述机构包括存储单元和植入组件;所述存储单元用于存放形成粒子链的至少两种物料,至少部分所述植入组件穿设于所述存储单元内并能够选择性地使位于所述存储单元内的所述至少两种物料有序地形成粒子链。
在一些实施例中,所述至少两种物料包括放射性粒子和占位材料。
在一些实施例中,所述存储单元包括第一物料夹和第二物料夹,所述第一物料夹用于存放所述放射性粒子,所述第二物料夹用于存放所述占位材料。
在一些实施例中,所述植入组件能够选择性地连接于所述第一物料夹或所述第二物料 夹。
在一些实施例中,至少部分所述植入组件可转动地连接于所述存储单元,以选择性地连接于所述第一物料夹或所述第二物料夹。
在一些实施例中,所述植入组件包括植入套管和推杆,所述植入套管转动连接于所述存储单元,所述推杆的一端伸入所述植入套管内,并随所述植入套管的转动与存储单元之间能够形成至少两个不同夹角,以对应于所述第一物料夹或所述第二物料夹。
本说明书实施例的第三方面公开了一种穿刺设备末端,其特征在于,包括切换架、切换架驱动机构;所述切换架驱动机构包括传送组件,所述传送组件用于驱动穿刺针组件运动至穿刺针接口。
在一些实施例中,所述穿刺针组件在所述传送组件的驱动下通过平移或旋转的方式运动至所述穿刺针接口。
在一些实施例中,所述切换架开设有安装槽,所述安装槽用于装设至少两个所述穿刺针组件。
在一些实施例中,所述安装槽的截面为环形、螺旋线或“几”字形。
在一些实施例中,还包括穿刺针驱动装置,所述穿刺针驱动装置包括粒子链生成机构和套针驱动机构,所述粒子链生成机构用于为所述穿刺针组件提供粒子链,所述套针驱动机构用于驱动所述穿刺针组件执行穿刺动作。
在一些实施例中,所述穿刺针组件包括外针和内针,所述外针套设于所述内针外。
在一些实施例中,所述穿刺针组件还包括第一驱动单元和第二驱动单元,所述第一驱动单元连接并驱动所述外针及所述内针进行穿刺,所述第二驱动单元连接并驱动所述内针释放所述粒子链生成机构提供的所述粒子链。
本说明书实施例的第四方面公开了一种穿刺设备末端,其特征在于,包括切换架和切换架驱动机构;所述切换架开设有安装槽和与所述安装槽相连通的穿刺针接口,所述安装槽用于安装至少一个穿刺针组件,所述切换架驱动机构用于切换各个所述穿刺针组件至所述穿刺针接口。
在一些实施例中,所述切换架驱动机构切换各个所述穿刺针组件的路径为螺旋线。
在一些实施例中,所述切换架具有截面为螺旋线的安装面,所述安装槽设置在所述安装面上。
在一些实施例中,所述安装面包括第一安装面和第二安装面,所述第一安装面和所述第二安装面分别位于所述切换架的内侧和外侧。
在一些实施例中,所述安装面的开口位置对应所述穿刺针接口的位置,或所述螺旋线的中心位置对应所述穿刺针接口的位置。
本说明书实施例的第五方面公开了一种穿刺设备末端,其特征在于,包括:切换架,所述切换架用于与机械臂连接;至少两个安装槽,所述安装槽设置于所述切换架内,并用于放置对应的至少两个穿刺针组件;切换架驱动机构,所述切换架驱动机构设置在所述切换架内,并用于驱动所述至少两个穿刺针组件进行切换;以及穿刺针驱动组件,所述穿刺针驱动组件用于驱动所述穿刺针组件执行穿刺动作。
在一些实施例中,所述切换架在所述切换架驱动机构的驱动下转动。
在一些实施例中,所述切换架驱动机构包括转轴、传动单元和驱动件,所述转轴固定穿设于所述切换架上,所述传动单元与所述转轴和所述驱动件连接。
在一些实施例中,所述传动单元包括同步带传动、链传动、齿轮传动中的至少一种。
在一些实施例中,每个所述穿刺针组件包括外针和内针,所述外针容置于所述安装槽内,所述内针穿设于所述外针内,并能够沿所述外针的轴向运动。
在一些实施例中,所述穿刺针驱动组件包括相对独立设置的第一驱动单元和第二驱动单元,所述第一驱动单元对应驱动所述外针和内针,所述第二驱动单元对应驱动所述内针。
在一些实施例中,所述第一驱动单元和所述第二驱动单元为丝杠传动结构。
在一些实施例中,所述第一驱动单元和所述第二驱动单元分别电性连接于所述机械臂。
在一些实施例中,还包括第一电气接口,所述第一电气接口设置于所述切换架上,且所述第一电气接口的一端分别电连接于所述第一驱动单元和所述第二驱动单元,所述第一电气接口的另一端电连接于所述机械臂。
在一些实施例中,所述穿刺针驱动组件设置在所述切换架上。
在一些实施例中,所述至少两个安装槽在所述切换架驱动机构的驱动下传动。
在一些实施例中,所述至少两个安装槽排列成环形、螺旋线或“几”字形。
附图说明
此处所说明的附图用来提供对本说明书的进一步理解,构成本说明书的一部分,本说明书的示意性实施例及其说明用于解释本说明书,并不构成对本说明书的不当限定。
图1是根据本说明书实施例的放射性粒子植入方法的流程图。
图2是根据本说明书实施例的目标剂量和植入路径规划的方法的流程图。
图3是根据本说明书实施例的放射性粒子植入的方法的流程图。
图4是根据本说明书实施例的自动化粒子植入机器人系统的结构框图。
图5是根据本说明书实施例的另一种放射性粒子植入方法的流程图。
图6是根据本说明书一些实施例的自动化粒子植入系统的结构框图。
图7是本说明书实施例的放射性粒子植入方法的终端的硬件结构框图。
图8是本说明书一些实施例中粒子链生成机构的结构示意图。
图9A是图8所示粒子链生成机构中的第二物料夹的结构示意图。
图9B是通过图8所示粒子链生成机构形成的粒子链的结构示意图。
图10是本说明书一些实施例中穿刺针驱动装置的结构示意图。
图11是图10所示穿刺针驱动装置安装后的结构示意图。
图12是本说明书一些实施例中穿刺针组件的结构示意图。
图13A、图13B是本说明书一些实施例中穿刺设备末端的结构示意图。
图14是本说明书另一些实施例中穿刺设备末端的结构示意图。
图15是本说明书另一些实施例中穿刺设备末端的结构示意图。
图16是图13A、图13B所示穿刺设备末端中切换架的“几”字形安装槽截面的结构示意图。
图17是本说明书一些实施例中穿刺设备末端的结构示意图。
图4的附图标记说明:40、自动化粒子植入机器人系统;41、自动化粒子植入系统;42、扫描设备;411、主动系统;412、从动系统;4111、第一处理器;4112、主手;4121、从手;4122、第二处理器。
图7的附图标记说明:70、放射性粒子植入方法的终端;702、处理器;704、存储器;706、传输设备;708、输入输出设备。
图8的附图标记说明:800、粒子链生成机构;810、存储单元;811、第一物料夹;812、第二物料夹;820、植入组件;821、植入套管;822、推杆;823、偏心块。
图9A的附图标记说明:813b、占位材料;8121、限位部。
图9B的附图标记说明:813、粒子链;813a、放射性粒子;813b、占位材料。
图10、图11的附图标记说明:1000、穿刺针驱动装置;1010、第一驱动组件;1011、第一壳体;1015、输出通道;1013、第一卡接部;1014、第一齿轮;1020、第二驱动组件;1021、第二壳体;1023、第二卡接部;1024、第二齿轮;1012、第一伸缩模组;1022、第二伸缩模组;800、粒子链生成机构。
图12的附图标记说明:1200、穿刺针组件;1210、外针;1220、内针;1230、第一驱动单元;1231、外针安装架;1232、第一卡槽;1233、外针齿轮;1234、植入口;1240、 第二驱动单元;1241、伸缩定位柱;1242、内针齿轮;1243、内针安装架;1244、第二卡槽。
图13A、图13B的附图标记说明:1310、切换架;1311、安装槽;1312、穿刺针接口;1320、切换架驱动机构;1330、丝杠结构;1200、穿刺针组件;1000、穿刺针驱动装置;4122、从手;41221、安装架。
图14的附图标记说明:1310、切换架;1320、切换架驱动机构;1330、丝杠结构;1000、穿刺针驱动装置;1311、安装槽;4122、从手。
图15的附图标记说明:1510、安装面;1520、开口位置;1530、螺旋线的中心位置;1510a、第一安装面;1510b、第二安装面。
图16的附图标记说明:1200、穿刺针组件。
图17的附图标记说明:1710、转轴;1720、传动单元;1730、驱动件;1740、电气接口;1310、切换架;1311、安装槽;1000、穿刺针驱动组件。
具体实施方式
为了使本说明书的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本说明书进行描述和说明。应当理解,此处所描述的具体实施例仅仅用以解释本说明书,并不用于限定本说明书。基于本说明书提供的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本说明书保护的范围。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本说明书公开的内容相关的本领域的普通技术人员而言,在本说明书揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本说明书公开的内容不充分。
在本说明书中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本说明书的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域普通技术人员显式地和隐式地理解的是,本说明书所描述的实施例在不冲突的情况下,可以与其它实施例相结合。
除非另作定义,本说明书所涉及的技术术语或者科学术语应当为本说明书所属技术领域内具有一般技能的人士所理解的通常意义。本说明书所涉及的“一”、“一个”、“一种”、“该”等类似词语并不表示数量限制,可表示单数或复数。本说明书所涉及的术语“包括”、“包含”、“具有”以及它们任何变形,意图在于覆盖不排他的包含;例如包含了一系列步骤或模块(单元)的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可以还包括没有列出的步骤或单元,或可以还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。本说明书所涉及的“连接”、“相连”、“耦接”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电气的连接,不管是直接的还是间接的。本说明书所涉及的“多个”是指大于或者等于两个。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本说明书所涉及的术语“第一”、“第二”、“第三”等仅仅是区别类似的对象,不代表针对对象的特定排序。
为了使本说明书的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本说明书进行描述和说明。应当理解,此处所描述的具体实施例仅仅用以解释本说明书,并不用于限定本说明书。基于本说明书提供的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本说明书保护的范围。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本说明书公开的内容相关的本领域的普通技术人员而言,在本说明书揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本说明书公开的内容不充分。
在本说明书中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本说明书的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相 同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域普通技术人员显式地和隐式地理解的是,本说明书所描述的实施例在不冲突的情况下,可以与其它实施例相结合。
除非另作定义,本说明书所涉及的技术术语或者科学术语应当为本说明书所属技术领域内具有一般技能的人士所理解的通常意义。本说明书所涉及的“一”、“一个”、“一种”、“该”等类似词语并不表示数量限制,可表示单数或复数。本说明书所涉及的术语“包括”、“包含”、“具有”以及它们任何变形,意图在于覆盖不排他的包含;例如包含了一系列步骤或模块(单元)的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可以还包括没有列出的步骤或单元,或可以还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。本说明书所涉及的“连接”、“相连”、“耦接”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电气的连接,不管是直接的还是间接的。本说明书所涉及的“多个”是指大于或者等于两个。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本说明书所涉及的术语“第一”、“第二”、“第三”等仅仅是区别类似的对象,不代表针对对象的特定排序。
一些实施例中提供的自动化粒子植入系统,可以通过自动化系统实现放射性粒子植入。该自动化粒子植入系统包括主动系统和从动系统,从动系统可以与主动系统通信连接,实现主动系统对从动系统的控制,以及传递从动系统对主动系统的力反馈信息,其中,通信过程可以基于移动信号实现,也可以基于无线网络实现,还可以基于蓝牙技术实现。
自动化粒子植入系统在进行放射性粒子植入时,可以实现一种放射性粒子植入方法,图1是根据本说明书实施例的放射性粒子植入方法的流程图,如图1所示,该方法包括如下步骤:
步骤S110,主动系统获取扫描对象的扫描图像。
在放射性粒子植入过程中,需要对植入路径进行规划,为了能够实时地规划粒子植入路径,在一些实施例中可以引入扫描对象的扫描图像,以实时获取扫描对象的解剖信息。
一些实施例中,主动系统可以与扫描设备通信连接,在需要进行放射性粒子植入的情况下,主动系统可以向扫描设备发送控制信号,以控制扫描设备对扫描对象进行实时扫描,其中,扫描设备可以为正电子发射计算机断层显像(Positron Emission Computed Tomography,简称为PET)系统,电子计算机断层扫描(Computed Tomography,简称为CT)系统、磁共振成像(Magnetic Resonance Imaging,简称为MRI)系统,还可以为多模态扫描系统,例如PET-CT或者PET-MR等。例如,扫描对象的组织产生形变后,可能会影响粒子的植入,因此,通过对扫描对象进行实时扫描,有助于实时校正放射性粒子植入术式治疗计划规划,以便取得更好的治疗效果。一些实施例中,扫描设备生成扫描对象的扫描图像后,将扫描图像预存到存储设备中。主动系统可以与扫描设备通信连接,在需要进行放射性粒子植入的情况下,主动系统从存储设备中获取扫描对象的扫描图像。
一些实施例中,扫描设备可以为CT。CT利用精确准直的X线束、γ射线、超声波等,与灵敏度极高的探测器一同围绕扫描对象的某一部位进行一个接一个的断面扫描,扫描时间快,且通过CT得到的扫描图像可以提供病灶的精确解剖定位,更有利于植入路径规划。其中,扫描对象为需要进行放射性粒子植入的患者。
步骤S120,主动系统根据扫描图像进行放射性粒子植入术式治疗计划规划,以获得放射性粒子植入术式治疗计划规划结果。
一些实施例中,主动系统获取到扫描图像之后,可以根据扫描图像中的解剖信息识别定位感兴趣区域,其中,该感兴趣区域可以为需要进行穿刺的病灶。具体地,识别感兴趣区域的算法,可以通过图像识别算法实现,例如传统的机器学习或者基于神经网络的深度学习算法。
一些实施例中,在获取感兴趣区域的位置后,主动系统可以开始进行放射性粒子植入术式治疗计划规划,以获得放射性粒子植入术式治疗计划规划结果。
一些实施例中,放射性粒子植入术式治疗计划规划可以包括两方面的规划,即目标剂量规划以及粒子植入路径规划。一些实施例中,放射治疗规划结果指的是经过目标剂量的规划所确定的目标剂量以及经过粒子植入路径的规划所确定的粒子植入路径。
一些实施例中,本说明书的目标剂量指的是需要植入的所有放射性粒子的放射强度,以及放射性粒子的数量和位置。一些实施例中,目标剂量可以包括总放射剂量和/或局部放射剂量。总放射剂量指的是感兴趣区域总体接受的所有的放射性粒子形成的放射剂量。局部放射剂量指的是在感兴趣区域需要进行多次穿刺植入的情况下,在感兴趣区域中的每个靶点位置注入的放射性粒子所形成的放射剂量。靶点位置指的是扫描对象的感兴趣区域中待植入放射性粒子的位置。
一些实施例中,目标剂量可以根据医生的处方进行确定。一些实施例中,目标剂量规划需要满足剂量规划标准,例如,不能损害感兴趣区域之外的正常人体组织。
一些实施例中,总放射剂量与感兴趣区域的大小有关。一些实施例中,自动化粒子植入系统在根据医生的处方确定总放射剂量之后,可以根据总放射剂量和感兴趣区域的大小设置局部放射剂量的初始值。例如,可以通过将总放射剂量除以感兴趣区域的面积再乘以每个靶点位置的面积,即可得到每个靶点位置所对应的局部放射剂量的初始值。又例如,可以通过将总放射剂量除以感兴趣区域内的靶点位置的数量,即可得到各个靶点位置的局部放射剂量的初始值(即初始局部放射剂量)。
在一些实施例中,初始局部放射剂量也可以在得到粒子植入路径之后再进行设置或者调整,得到局部放射剂量的目标值(即目标局部放射剂量)。例如,在得到粒子植入路径后,由于穿刺组件可能会受到一些约束而不能到达感兴趣区域的部分靶点位置,则需要将不能植入放射性粒子的该部分靶点位置的区域去除,在感兴趣区域的剩余区域中重新选择靶点位置并重新确定每个靶点位置对应的目标局部放射剂量。
植入路径可以包括通过自动化粒子植入系统的机械臂(关于机械臂,可以参考后面图4中的从手,在一些实施例中,从手即为机械臂)将穿刺针组件从初始位置移动到入针位置的移动路径。在一些实施例中,粒子植入路径还可以包括进行放射性粒子植入的穿刺路径。因此,一些实施例在规划时还需要考虑入针位置。初始位置指的是扫描对象和自动化粒子植入系统准备就绪时,自动化粒子植入系统的机械臂所在的位置。入针位置指的是自动化粒子植入系统的穿刺针组件可以朝向相对应的靶点位置直接执行穿刺动作时机械臂所在的位置。穿刺路径指的是在入针位置的穿刺针组件中的穿刺针从开始伸出一直到达相对应的靶点位置所经过的路径。
一些实施例中,放射治疗规划结果可以包括粒子植入路径信息。一些实施例中,粒子植入路径信息可以包括:穿刺针组件数量、每个穿刺针组件的入针位置、每个穿刺针组件的靶点位置、每个穿刺针组件的靶点位置下的粒子数量、和/或机械臂的移动路径。
一些实施例中,预设的机械臂的运动约束条件可以为植入路径的规划提供参考。机械臂的运动约束条件可以指机械臂运动过程中的限制条件。例如,植入路径规划需满足的机械臂的运动约束条件可以包括机械臂可以从初始位置移动到达入针位置且机械臂移动过程中无碰撞的情况下,植入路径应该避开骨头、人体组织、血管等重要部分。一些实施例中,植入路径可以由感兴趣区域的位置、总放射剂量和/或机械臂的运动约束条件共同决定。
步骤S130,主动系统根据放射性粒子植入术式治疗计划规划结果,控制从动系统进行放射性粒子植入操作。
在对目标剂量和/或植入路径规划完成之后,主动系统可以根据目标剂量和/或植入路径控制从动系统进行运动,完成放射性粒子植入操作。
一些实施例中,自动化粒子植入系统可以通过上述步骤S110至步骤S130,可以基于 实时的扫描图像实现对目标剂量和植入路径的实时规划,从而减少手术时间,提高手术效率。在传统技术中,目标剂量规划和自动化粒子植入系统的路径规划是相互独立的,会导致自动化粒子植入系统无法执行满足剂量规划的粒子植入路径,或者自动化粒子植入系统可执行的粒子植入路径不符合目标剂量要求,所以需要较长时间进行调整或修正。且传统穿刺过程需要医生手动完成,手术过程复杂,耗时长,所以放射性粒子仅能在规划完成后、手术之前进行制备,避免放射性粒子的放射性衰减,所以无法提前获取到放射性粒子,每次手术时,患者都需要等待放射性粒子的制备,导致手术过程延长。本说明书中通过主动系统控制扫描设备,可以得到扫描对象实时的扫描图像,同时主动系统根据扫描图像将目标剂量规划和粒子植入路径规划有机结合,减少了规划过程中对粒子植入路径的调整时间,解决了传统技术中放射性粒子植入过程周期较长、手术过程繁琐、导致手术时间成本较高、手术效率较低的问题。在一些实施例中,本说明书中的自动化粒子植入系统可以基于主动系统和从动系统的结合,实现放射性粒子的自动化植入,减少手术时间,提高手术效率,因此在短时间内可以完成多台手术,所以放射性粒子可以提前采备,而不必担心放射性粒子的放射性衰减。
在一些实施例中,本说明书基于主动系统和从动系统,不需要医生手动将放射性粒子植入,可以降低放射性粒子植入过程中对医生经验的依赖,简化手术过程,进一步提高手术效率。
在一些实施例中,在扫描设备为CT的情况下,传统技术中,需要扫描对象先扫CT,然后医生根据扫描图像进行盲穿,接着扫描对象再进行CT扫描以实现入针位置验证,如此往复直至所有规划的穿刺针穿刺完成,最后再进行手动粒子植入,同样的,植入过程中也需要进行多次CT扫描来确认粒子植入的位置为规划位置。一些实施例中,扫描对象可以实现CT扫描和放射性粒子植入同步进行,减少扫描对象在放射性粒子植入过程中接收到的CT扫描剂量,提高放射性粒子植入过程的安全性。
在一些实施例中,主动系统可以包括放射规划模块,放射规划模块用于实现目标剂量规划和/或植入路径规划,,获取目标剂量(例如,总放射剂量和/或局部放射剂量)和/或粒子植入路径。
图2是根据本说明书实施例的放射剂量和植入路径规划的方法的流程图。如图2所示,该方法包括如下步骤:
步骤S210,主动系统根据感兴趣区域的大小、形状和/或位置,和/或目标剂量(例如,总放射剂量),获取初始粒子植入路径信息。初始粒子植入路径信息可以包括初始局部放射剂量和/或初始粒子植入路径。
一些实施例中,主动系统可以根据扫描图像、目标剂量、和/或机械臂的运动约束条件,确定粒子植入路径信息。一些实施例中,主动系统可以先确定所获取的扫描图像中的感兴趣区域,然后根据感兴趣区域、目标剂量、和/或机械臂的运动约束条件确定粒子植入路径信息。一些实施例中,主动系统可以从存储器中直接获取已经经过人工确定了感兴趣区域的扫描图像,然后根据扫描图像中的感兴趣区域、目标剂量、和/或机械臂的运动约束条件确定粒子植入路径信息。一些实施例中,主动系统可以根据扫描图像、目标剂量、机械臂的运动约束条件以及医生开具的处方中所附加的条件,确定粒子植入路径信息。医生开具的处方中所附加的条件可以指医生针对扫描对象的身体状况而在处方中作出的一些指导意见。例如,感兴趣区域旁边有一处正在愈合的伤口,那么,医生的指导意见可以为在感兴趣区域内植入放射性粒子时在满足放射治疗要求时尽可能远离该伤口。
一些实施例中,主动系统可以根据感兴趣区域的大小、形状和/或位置,和/或目标剂量,获取初始粒子植入路径信息。一些实施例中,主动系统可以根据感兴趣区域的大小、形状和/或位置、和/或目标剂量,和/或感兴趣区域中的靶点位置的分布情况,获取初始粒子植入路径信息。感兴趣区域中的靶点位置的分布情况可以指靶点位置是分布在感兴趣区域的边缘还是中心,是集中分布还是分散分布在感兴趣区域内。
主动系统在对植入路径进行规划时,会通过TPS先拟定一个初始放射剂量和初始粒子植入路径。规划得到的初始放射剂量包括总放射剂量和初始局部放射剂量,TPS系统在规划时,在得到总放射剂量之后,可以根据各个入针位置规划初始局部放射剂量作为参考。具体地,从动系统的机械臂的初始位置为初始粒子植入路径的起点,感兴趣区域的位置决定初始粒子植入路径的终点,初始粒子植入路径的终点即为初始的靶点位置,感兴趣区域的大小决定总放射剂量,对感兴趣区域进行穿刺的靶点位置决定初始局部放射剂量。
步骤S220,主动系统根据机械臂的运动约束条件,对初始粒子植入路径信息进行验证,以确定与扫描对象对应的目标粒子植入路径信息。
目标粒子植入路径信息可以包括目标局部放射剂量和/或目标粒子植入路径。
主动系统可以对粒子植入路径信息中的一种或多种进行验证。
由于初始粒子植入路径可能会存在机械臂不可到达或者在沿着路径移动的过程中可能发生碰撞的情况,所以在得到总放射剂量、初始局部放射剂量和初始粒子植入路径之后,需要根据机械臂的运动约束条件进行验证,使得目标粒子植入路径满足机械臂可到达的要求。在一些实施例中,在感兴趣区域的不同位置进行穿刺会影响该位置下放射性粒子的数量,进而影响与该位置对应的初始局部放射剂量,所以在调整初始粒子植入路径的过程中,也需要相应地调整初始局部放射剂量。具体地,对于同一感兴趣区域,可能需要多次穿刺才能完成所有的放射性粒子植入过程,所以在多次穿刺过程中,不同的入针位置或靶点位置可能会对应不同的局部放射剂量。例如,在感兴趣区域为球形的情况下,球心处的局部放射剂量小于边缘处的局部放射剂量,但感兴趣区域中总的放射剂量不会改变。需要说明的是,球心处接收到的放射剂量的影响,除球心处放射性粒子形成的局部放射剂量的影响之外,还有边缘处放射性粒子的影响。
通过上述步骤S210和步骤S220,本说明书实施例基于主动系统中的放射规划模块,在得到总放射剂量、初始局部放射剂量和初始粒子植入路径之后,可以直接通过机械臂的运动约束条件对初始粒子植入路径进行验证,快速得到目标局部放射剂量和目标粒子植入路径。相对于传统技术中存在的问题,即,先在规划科室通过TPS进行总放射剂量、初始局部放射剂量和初始粒子植入路径的规划,然后在手术执行科室对放射规划进行调整,导致规划时间较长的问题,本说明书实施例将TPS与机械臂的运动约束条件统一,大大减少了规划时间,提高了手术效率。
一些实施例中,在对初始粒子植入路径进行验证时,若验证通过,主动系统将初始粒子植入路径信息作为与扫描对象对应的目标粒子植入路径信息;若验证不通过,主动系统根据感兴趣区域、目标剂量和/或机械臂的运动约束条件对初始粒子植入路径信息进行修正,直到验证通过。一些实施例中,初始粒子植入路径信息可以包括初始局部放射剂量和/或初始粒子植入路径。一些实施例中,主动系统可以对初始粒子植入路径信息中的一种或多种进行验证。
具体地,在对初始粒子植入路径信息中的初始局部放射剂量和/或初始粒子植入路径进行验证时,先根据机械臂的运动约束条件判断初始粒子植入路径是否存在不可到达和/或碰撞的情况,若存在,则验证不通过,需要调整初始粒子植入路径信息中的初始粒子植入路径,在对初始粒子植入路径进行调整之后,根据目标剂量和感兴趣区域的新的入针位置和/或靶点位置调整初始局部放射剂量,直至得到目标局部放射剂量和目标粒子植入路径。一些实施例中,初始粒子植入路径可以为机械臂的移动路径。其中,机械臂的运动约束条件包括:机械臂可到达、运动过程无碰撞,到达入针位置后进行放射性粒子植入的穿刺路径不穿过骨头、危险组织、器官、血管等。总放射剂量和局部放射剂量的规划均需满足处方剂量,并且局部放射剂量不能超标,同时符合放射要求的剂量体积直方图(Dose Volume Histogram,简称为DVH)。
一些实施例中,在规划好的初始粒子植入路径需要调整的情况下,可以由操作者在主 动系统的控制台对初始粒子植入路径进行微调,也可以由主动系统根据机械臂的运动约束条件逐步调整,直至目标粒子植入路径信息满足机械臂的运动约束条件。一些实施例中,可以根据感兴趣区域和机械臂的运动约束条件对初始粒子植入路径以及初始局部放射剂量进行验证和调整,得到目标局部放射剂量和目标粒子植入路径,提高了手术效果。
另一些实施例中,在放射性粒子植入手术结束之后,还需要对放射性粒子的植入结果进行验证,例如验证感兴趣区域每个靶点位置处接收的放射剂量是否达到处方剂量,其中,接收的放射剂量包括与该靶点位置对应的局部放射剂量和其他靶点位置的局部放射剂量对该靶点位置造成的放射性影响。具体地,在放射性粒子植入前,医生会给出处方剂量作为目标剂量,TPS进行手术规划时,该处方剂量作为放射剂量规划的约束条件之一。放射性粒子植入成功的判定标准之一为感兴趣区域95%以上的区域接收到的放射剂量达到处方剂量。
在放射性粒子植入过程中,理想情况是植入时的条件与规划时完全相同,但由于病人呼吸等问题,植入过程可能会与规划时出现偏差,因此需要在放射性粒子植入完成之后,再次进行验证,确认感兴趣区域是否95%以上的区域已经达到处方剂量要求,以对手术效果进行评估。一些实施例中,在放射性粒子植入术式治疗计划规划结果中的所有穿刺针组件都完成粒子植入后,主动系统控制扫描设备可以对扫描对象进行扫描以检测植入的效果,从而实现对手术效果的评估。
一些实施例中,从动系统还包括穿刺设备,该穿刺设备包括穿刺设备末端和安装在穿刺设备末端上的至少一个穿刺针组件。穿刺设备末端的尺寸和形态可以与穿刺设备中穿刺针组件的数量有关。其中,穿刺针组件用于建立粒子植入通道。一些实施例中的粒子植入通道根据规划好的粒子植入路径中的穿刺路径建立。一些实施例中,从动系统被配置为根据放射治疗规划结果执行放射性粒子植入操作,具体为:从动系统的从手在主动系统的控制下,将机械臂移动到达所规划的入针位置;使穿刺针组件入针,到达靶点位置,建立起粒子植入通道;植入粒子,即将放射性粒子以粒子链的形式植入感兴趣区域中的靶点位置;退出穿刺针组件;将机械臂移动到下一个入针位置,并换下一个穿刺组件进行放射性粒子植入,直至放射性粒子植入术式治疗计划规划结果中的所有穿刺针组件都完成放射性粒子植入。
一些实施例中,穿刺设备末端的尺寸和形态与穿刺设备中穿刺针的数量对应,即在具有多个穿刺针组件的情况下,穿刺设备末端具有多种尺寸和形态,以适应不同的感兴趣区域。具体地,不同的感兴趣区域有两种情况,一种为同一次手术存在不同部位的感兴趣区域,另一种为不同手术中不同部位的感兴趣区域。若存在不同部位的感兴趣区域,通常情况下穿刺针组件的数量根据规划需求确定,由于感兴趣区域所需要的穿刺针组件的数量在2根到40根的范围内变化,如果穿刺设备末端的设计固定不变,只能按照穿刺针组件的最大数量进行考虑,则会增大穿刺设备末端的尺寸,同时在多数临床场景下会造成浪费,因此一些实施例中,依据不同部位的感兴趣区域对放射性粒子的粒子数量的需求,穿刺设备末端的尺寸和形态会有所变化以适应不同的穿刺针组件的数量,以节约手术成本。
在一些实施例中,主动系统的放射规划模块还用于根据目标剂量(例如局部放射剂量)确定放射性粒子的粒子数量,然后从动系统通过通信获取放射性粒子的粒子数量,其中,放射性粒子的粒子数量可以根据目标剂量(例如局部放射剂量)与单个放射性粒子的放射性计算得到,通常情况下,放射性粒子可以选择碘125。一些实施例中,从动系统包括粒子链生成机构,粒子链生成机构用于在放射性粒子植入操作中,在粒子植入通道中根据放射性粒子的粒子数量与占位材料形成粒子链。该占位材料在粒子链形成的过程中起占位填充的作用,具体地,在将放射性粒子植入感兴趣区域的过程中,两颗放射性粒子之间由占位材料填充。一些实施例中的占位材料为具有生物相容性且能够降解的材料,例如聚己内酯。在一些实施例中,粒子链可以呈直线形、圆弧形、环形、螺旋状、分叉形、十字形、网状中的任意一种结构或者任意多条粒子链的组合结构。一些实施例中,需要植入的放射性粒子不需要提前摆好位置,粒子链在手术过程之中由粒子链生成机构根据目标剂量和植入路径的规划结果实时产生, 一次性通过粒子植入通道植入感兴趣区域的靶点位置,大大提高手术效率,缩短手术时间,可以使得医生将多个同类术式的病人集中于一天完成手术。另一方面,自动化粒子植入系统可以自动对每个病人植入的放射性粒子进行计数,避免出错,能够支持对粒子数量的术前预定,从而可以使得医院提前大量订购放射性粒子进行使用,节省放射性粒子的订购时间。
在一些实施例中,粒子链生成机构包括第一物料夹和第二物料夹,例如,本说明书中的放射性粒子存储在第一物料夹中,占位材料存储在第二物料夹中,第一物料夹和第二物料夹均设置于从动系统的机械臂的末端,在需要进行粒子链植入时,机械臂分别从第一物料夹和第二物料夹中获取放射性粒子和占位材料,然后依次将放射性粒子和占位材料通过穿刺设备植入感兴趣区域。通常情况下,第一物料夹中的放射性粒子的粒子数量多于一人份,以满足连续进行多台放射性粒子植入的手术需求。
在一些实施例中,图3是根据本说明书实施例的放射性粒子植入的方法的流程图。如图3所示,该方法包括如下步骤:
步骤S310,在主动系统的控制下,从动系统通过穿刺设备中的外针建立第一粒子植入通道,并在第一粒子植入通道中注入第一粒子链;
步骤S320,在建立第一粒子植入通道之后,从动系统通过穿刺设备中的内针建立第二粒子植入通道,并在第二粒子植入通道中注入第二粒子链。
一些实施例中的穿刺设备末端为多针末端,即穿刺设备上包括多种尺寸和/或形态相同或不同的穿刺针的穿刺针组件,每次植入只用到一个穿刺针组件。在完成该穿刺针组件的穿刺及放射性粒子植入之后,拔出该穿刺针组件的穿刺针,并切换至下一穿刺针组件建立新的粒子植入通道,重复穿刺过程直至完成所有的放射性粒子植入通道的建立,并完成放射性粒子的植入。
本说明书中,穿刺针组件中的穿刺针包括内针和外针,在整个穿刺针穿刺至扫描对象体内后,内针脱出,外针内部形成粒子植入通道,粒子链在从动系统的机械臂的引导下,通过该粒子植入通道到达感兴趣区域。一些实施例中,内针可以为实心结构,对外针的空腔进行填充,可以在建立粒子植入通道过程中防止空气进入外针的空腔。
通过上述步骤S310至步骤S320,一些实施例中的穿刺设备可以在一次手术中完成多次穿刺任务,提高手术效率。
在一些实施例中,如果扫描对象的位置出现变化或者呼吸过大,则需要对已规划的目标剂量和粒子植入路径进行调整,因此一些实施例中需要对扫描对象的位姿进行实时检测,避免扫描对象移动导致已规划的目标剂量和粒子植入路径失效。具体可以为:通过扫描设备获取扫描对象的体表位置,一些实施例中的体表位置为与感兴趣区域对应的体表位置,该体表位置可以通过安装在扫描设备内壁的成像装置获取,例如,成像装置对扫描对象进行体表成像;主动系统在获取该体表成像之后,可以根据体表位置进行计算,若体表位置在预设时间内的变化量大于或者等于预设变化阈值,则认为扫描对象的移动已经对已有的目标剂量和规划路径造成影响,此时,主动系统根据当前的扫描图像,修正目标剂量和植入路径,获取新的目标剂量和植入路径,降低手术失误,改善手术效果。
需要说明的是,一些实施例中的预设时间和预设变化阈值均可以根据医生的经验进行设置,也可以根据算法进行模拟。一些实施例中,在扫描对象的位移过大时,医生也可以根据自身经验通过主动系统完成对从动系统的操作控制。例如,扫描对象的身体有大动作之后,产生的位移过大,医生根据经验可以判断出体表位置在预设时间内的变化量很明显地大于预设变化阈值,则直接通过主动系统中止从动系统的操作。
在另一些实施例中,也可以实时获取扫描图像中感兴趣区域的位置信息,在感兴趣区域的位置信息的变化大于或者等于预设的感兴趣区域位置变化阈值时,同样需要对目标剂量和植入路径进行修正。具体地,可以由操作者在主动系统的控制台对植入路径进行微调,也可以由主动系统根据机械臂的运动约束条件逐步调整。
在一些实施例中,主动系统包括显示设备,该显示设备用于显示扫描图像、放射性粒子植入术式治疗计划规划结果(例如粒子植入路径)、放射性粒子的余量以及从动系统的运动状态中的至少一个。具体地,显示从动系统的运动状态包括显示操作状态和操作步骤,提示操作者下一步的操作方式,以及在粒子植入的过程中实时显示放射性粒子的扫描图像从而引导操作者完成粒子植入过程,放射性粒子的余量可以辅助多台放射性粒子植入手术的进程规划,例如,在放射性粒子的余量充足的情况下,可以直接对下一个扫描对象实施放射性粒子植入手术。本实施例基于显示设备,可以提供放射性粒子植入的部分或者整个过程的画面,使得放射性粒子植入手术可视化,降低手术难度。
在一些实施例中,在扫描设备获取扫描对象的扫描图像之前,还需要将从动系统的坐标系与扫描设备的坐标系进行配准,以实现扫描图像中的感兴趣区域与实际扫描对象的感兴趣区域进行位置对应。具体地,配准方法为,首先获取标记物或其他特征物件在从动系统的坐标系中的第一坐标与扫描设备的坐标系下的第二坐标,基于第一坐标和第二坐标建立从动系统的坐标系与扫描设备的坐标系之间的位置和空间联系,然后计算转换矩阵,完成配准。实现配准过程的方式包括磁配准(即功能磁共振图像配准)、光配准(可以为红外光图像配准和/或可见光图像配准)、物理位置配准等。
本说明书还提供了另一种用于放射性粒子植入的自动化粒子植入机器人系统40,图4是根据本说明书实施例的自动化粒子植入机器人系统40的结构框图。如图4所示,该自动化粒子植入机器人系统40包括:自动化粒子植入系统41和扫描设备42,其中,自动化粒子植入系统41包括主动系统411和从动系统412;主动系统411包括第一处理器4111和主手4112,从动系统412包括从手4121,从手4121与穿刺设备机械连接,扫描设备42与第一处理器4111通信连接;第一处理器4111控制扫描设备42获取扫描对象的扫描图像;第一处理器4111根据扫描图像中的感兴趣区域确定与扫描对象对应的目标剂量,根据扫描图像中的感兴趣区域和预设的机械臂的运动约束条件,确定与扫描对象对应的粒子植入路径;主手4112控制从手4121进行运动,以按照粒子植入路径植入目标剂量的放射性粒子。一些实施例中,主手4112可以为机械臂。在一些实施例中,从手4121可以为与主手4112不同的机械臂。
一些实施例中的自动化粒子植入机器人系统40基于扫描图像可以实现对目标剂量和粒子植入路径的实时规划,从而减少手术时间,提高手术效率。
在传统技术中,目标剂量规划和自动化粒子植入系统的路径规划是相互独立的,会导致自动化粒子植入系统无法执行满足剂量规划的粒子植入路径,或者自动化粒子植入系统可执行的粒子植入路径不符合目标剂量要求,所以需要较长时间进行调整或修正。且穿刺过程需要医生手动完成,手术过程复杂,耗时长,所以放射性粒子仅能在规划完成后、手术之前进行制备,避免放射性粒子的放射性衰减,所以无法提前获取到放射性粒子,每次手术时,患者都需要等待放射性粒子的制备,导致手术过程延长。
本说明书中,通过主动系统411控制扫描设备42,可以得到扫描对象实时的扫描图像,同时主动系统411根据扫描图像将放射剂量规划和植入路径规划有机结合,减少规划过程中对植入路径的调整时间。在一些实施例中,本说明书中的自动化粒子植入系统41基于主动系统411和从动系统412的结合,实现放射性粒子的自动化植入,减少手术时间,提高手术效率,在短时间内可以完成多台手术。因此,放射性粒子可以提前采备,而不必担心放射性粒子的放射性衰减。
在一些实施例中,从动系统412还可以包括第二处理器4122,第一处理器4111和第二处理器4122通信连接,第二处理器4122和从手4121连接,以实现主动系统411对从动系统412的控制。一些实施例中,第二处理器4122还可以控制粒子链和多针末端。基于第二处理器4121和第一处理器4111的通信连接,第二处理器4122根据目标剂量和粒子植入路径控制从手4121通过穿刺设备建立粒子植入通道。
一些实施例中,自动化粒子植入系统可以为上述任一实施例中的用于放射性粒子植入 的自动化粒子植入系统41。
在一些实施例中,从动系统412还可以包括穿刺设备,穿刺设备具有穿刺设备末端和安装在穿刺设备末端上的至少一个穿刺针组件,穿刺设备末端的尺寸和/或形态与穿刺设备中穿刺针组件的数量有关,其中,穿刺针组件用于建立粒子植入通道。
在一些实施例中,从动系统412可以包括粒子链生成机构,粒子链生成机构用于在放射性粒子植入过程中,在粒子植入通道中根据放射性粒子的数量与占位材料形成粒子链。
在一些实施例中,主动系统411可以包括显示设备。显示设备用于显示扫描图像、放射性粒子植入术式治疗计划规划结果、放射性粒子的余量以及从动系统412的运动状态中的至少一个。
本说明书还提供了一种放射性粒子植入方法,图5是根据本说明书实施例的另一种放射性粒子植入方法的流程图。如图5所示,该方法包括如下步骤:
步骤S510,控制扫描设备进行扫描,并获取扫描对象的扫描图像;
步骤S520,根据扫描图像中的感兴趣区域确定与扫描对象对应的目标剂量,根据扫描图像中的感兴趣区域和预设的机械臂的运动约束条件,确定与扫描对象对应的粒子植入路径;
步骤S530,控制放射性粒子植入设备按照植入路径植入放射剂量的放射性粒子。
一些实施例中的放射性粒子植入方法,可以应用于自动化粒子植入系统中,由自动化粒子植入系统的主动系统对扫描设备进行扫描,实现目标剂量和粒子植入路径的规划,并控制放射性粒子植入设备完成粒子植入过程。具体地,一些实施例中的放射性粒子植入设备可以为自动化粒子植入系统的从动系统。
在传统技术中,目标剂量规划和自动化粒子植入系统的路径规划是相互独立的,会导致自动化粒子植入系统无法执行满足剂量规划的粒子植入路径,或者自动化粒子植入系统可执行的粒子植入路径不符合目标剂量要求,所以需要较长时间进行调整或修正。且穿刺过程需要医生手动完成,手术过程复杂,耗时长,所以放射性粒子仅能在规划完成后、手术之前进行制备,避免放射性粒子的放射性衰减,所以无法提前获取到放射性粒子,每次手术时,患者都需要等待放射性粒子的制备,导致手术过程延长。
通过上述步骤S510至步骤S530,本说明书中通过主动系统控制扫描设备,可以得到扫描对象实时的扫描图像,同时主动系统根据扫描图像将目标剂量规划和植入路径规划有机结合,解决了传统技术中放射性粒子植入过程周期较长,手术过程繁琐,导致手术时间成本较高,手术效率较低的问题,减少规划过程中对粒子植入路径的调整时间,提高了手术效率。
一些实施例中的放射性粒子植入方法,可以应用于上述任一实施例中用于放射性粒子植入的自动化粒子植入系统或者用于放射性粒子植入的自动化粒子植入机器人系统。
具体地,自动化粒子植入系统包括主动系统和从动系统,从动系统与主动系统通信连接,放射性粒子植入方法由主动系统控制完成。主动系统还可以对目标剂量和植入路径进行验证。
在一些实施例中,从动系统还包括穿刺设备,穿刺设备具有穿刺设备末端,穿刺设备末端的尺寸和形态与穿刺设备中穿刺针组件的数量对应,其中,穿刺针组件用于建立粒子植入通道。
在一些实施例中,从动系统包括粒子链生成机构,粒子链生成机构用于在放射性粒子植入过程中,在粒子植入通道中根据放射性粒子的数量与占位材料形成粒子链。
在一些实施例中,主动系统包括显示设备,显示设备用于显示扫描图像、粒子植入路径、放射性粒子的余量以及从动系统的运动状态中的至少一个。
在一些实施例中,自动化粒子植入机器人系统可以包括:自动化粒子植入系统和扫描设备,其中,自动化粒子植入系统可以包括主动系统和从动系统;主动系统可以包括第一处理器和主手,从动系统可以包括从手,从手与穿刺设备机械连接,扫描设备与第一处理器通 信连接。
需要说明的是,在上述流程中或者附图的流程图中示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图6是根据本说明书一些实施例的自动化粒子植入系统的结构框图,如图6所示,该自动化粒子植入系统可以分布于操作间和扫描间,具体地,自动化粒子植入系统包括扫描设备、主动系统和从动系统。扫描设备包括扫描仪和控制台,该扫描仪包括扫描床和机架,其中扫描床和机架位于扫描间,控制台位于操作间。主动系统位于操作间,包括主手、放射规划模块和第一处理器。主手用于使得操作者在操作间内远程操控处于扫描间内的从手,从而在实时扫描图像的引导之下将多针末端送至规划的靶点位置并完成粒子植入通道的建立。放射规划模块包括TPS和机器人路径规划单元,实现放射剂量和植入路径的互动验证和规划。第一处理器用于分别和扫描设备以及从动系统进行通信,以获取来自于控制台的扫描图像,并实现对扫描仪和从动系统的控制。从动系统位于扫描间,包括第二处理器、粒子链生成机构、从手和穿刺设备。具体地,第二处理器用于和第一处理器进行通信,完成来自于主动系统的控制命令,并将从手在穿刺过程中所受到的阻力的力反馈信号传递至主手,同时,第二处理器还用于向粒子链生成机构、从手和穿刺设备传递控制信号,使得粒子链生成机构完成粒子链的制作,使得从手按照粒子植入路径进行运动,使得穿刺设备进行穿刺,完成粒子植入通道的建立。一些实施例中的从手由多个机械臂构成,穿刺设备具有多针末端。
一些实施例中的自动化粒子植入系统在进行放射性粒子植入时,实现如下步骤:
S1,从动系统与扫描设备进行配准,一些实施例中,扫描设备为CT;
S2,主动系统中的第一处理器获取扫描对象的基本信息,例如身高、体重、性别、既往病史等相关信息,然后控制扫描设备对扫描对象进行扫描,获取扫描图像,第一处理器基于扫描图像识别感兴趣区域,一些实施例中扫描图像通过扫描设备的控制台传输至主动系统,且扫描图像的格式为医学数字成像和通信(Digital Imaging and Communications in Medicine,简称为DICOM)格式;
S3,主动系统中的放射规划模块对总放射剂量、局部放射剂量和粒子植入路径进行规划,具体为,对基于TPS得到的总放射剂量、初始局部放射剂量和初始粒子植入路径进行验证和修正,直到得到满足剂量规划标准和机械臂的运动约束条件的目标局部放射剂量和目标粒子植入路径;
S4,从动系统通过第二处理器获取目标局部放射剂量和目标粒子植入路径,在从手末端安装多针末端和放射性粒子,其中,局部的放射性粒子的数量根据局部放射剂量确定;
S5,在对手术室进行无菌布置和对扫描对象进行麻醉之后,从手在主手的控制下运动至由目标粒子植入路径确定的靶点位置;
S6,多针末端通过穿刺针组件建立粒子植入通道,在粒子植入通道中放置粒子链,然后拔出穿刺针组件的穿刺针,其中,粒子链由粒子链生成机构根据放射性粒子和可降解的占位材料形成;
S7,换至下一个穿刺针组件,从手移动至下一个入针位置,直到所有的穿刺任务完成;
S8,通过扫描图像确认放射性粒子的植入效果,在植入完成后,主动系统和从动系统复位,完成手术。
一些实施例的步骤S1中,在扫描设备获取扫描对象的扫描图像之前,还需要将从动系统的坐标系与扫描设备的坐标系进行配准,以实现扫描图像中的感兴趣区域与实际扫描对象的感兴趣区域进行位置对应。具体地,配准方法为,首先获取标记物或其他特征物件在从动系统的坐标系中的第一坐标与扫描设备的坐标系下的第二坐标,基于第一坐标和第二坐标建立从动系统的坐标系与扫描设备的坐标系之间的位置和空间联系,然后计算转换矩阵,完成配准。实现配准过程的方式包括功能磁共振图像配准、红外光图像配准、可见光图像配准 和/或物理位置配准等。
一些实施例的步骤S2中,总放射剂量可以根据医生为扫描对象所开的处方中的放射剂量进行确定。
一些实施例中的自动化粒子植入系统可以在扫描图像的实时引导下对感兴趣区域进行实时的局部放射剂量和粒子植入路径的规划,同时实现放射性粒子的自动植入。基于扫描图像、主动系统和从动系统的结合,实现放射性粒子植入的自动化操作,极大程度地降低了对于医生经验的依赖程度,并且,基于实时的扫描图像,可以提高放射性粒子的植入效果。
在一些实施例中,由于实现了自动化操作,本说明书中的自动化粒子植入系统可以缩短病人的等待时间,减少病人金钱及时间的耗费,同时提高最终植入结果与预期结果的匹配程度。
更在一些实施例中,本说明书中的自动化粒子植入系统还减少了单台手术的手术时间以及所需医护人员,提高手术效率。基于主手和从手的配合,可以使得粒子能够顺利地到达规划的靶点位置,极大地提高粒子植入的准确性。
需要说明的是,上述各个模块可以是功能模块也可以是程序模块,既可以通过软件来实现,也可以通过硬件来实现。对于通过硬件来实现的模块而言,上述各个模块可以位于同一处理器中;或者上述各个模块还可以按照任意组合的形式分别位于不同的处理器中。
本说明书提供的方法可以在终端、计算机或者类似的运算装置中执行。以运行在终端上为例,图7为本说明书实施例的放射性粒子植入方法的终端的硬件结构框图。如图7所示,终端70可以包括一个或多个(图7中仅示出一个)处理器702(处理器702可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器704,可选地,上述终端还可以包括用于通信功能的传输设备706以及输入输出设备708。本领域普通技术人员可以理解,图7所示的结构仅为示意,其并不对上述终端的结构造成限定。例如,终端70还可包括比图7中所示更多或者更少的组件,或者具有与图7所示不同的配置。
存储器704可用于存储控制程序,例如,应用软件的软件程序以及模块,如本说明书实施例中的放射性粒子植入方法对应的控制程序,处理器702通过运行存储在存储器704内的控制程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器704可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器704可进一步包括相对于处理器702远程设置的存储器,这些远程存储器可以通过网络连接至终端70。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输设备706用于经由一个网络接收或者发送数据。上述的网络具体实例可包括终端70的通信供应商提供的无线网络。在一个实例中,传输设备706包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输设备706可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
本实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在一些实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
Y1,主动系统控制扫描设备进行扫描,并获取扫描对象的扫描图像;
Y2,主动系统根据扫描图像中的感兴趣区域确定与扫描对象对应的目标剂量,根据扫描图像中的感兴趣区域和预设的机械臂的运动约束条件,确定与扫描对象对应的粒子植入路径;
Y3,主动系统控制从动系统进行运动,以按照粒子植入路径植入目标剂量的放射性粒 子。
结合上述实施例中的放射性粒子植入方法,本说明书实施例可提供一种存储介质来实现。该存储介质上存储有计算机程序;该计算机程序被处理器执行时实现上述实施例中的任意一种放射性粒子植入方法。
现有的穿刺针植入手术中,用于治疗病灶的放射性粒子链通常植入量不能根据个案的病情有针对性地调整并输入放射性粒子链,从而使得手术过程中的放射性粒子的植入量无法根据每个病患的实际情况而得到精准的控制。基于此,有必要针对该问题,提供一种粒子链生成机构以及穿刺设备末端。
请参阅图8及图9A、图9B,图8为本说明书一些实施例中粒子链生成机构800的结构示意图,图9A为本说明书中一些实施例中粒子链生成机构中的第一物料夹811或第二物料夹812的结构示意图,图9B为通过图8所示粒子链生成机构800形成的粒子链813的结构示意图。
本说明书一些实施例提供一种粒子链生成机构800,应用于手术机器人的末端执行装置中,特别是穿刺针驱动装置中,使得粒子链生成机构800能够为目标部位(例如靶向病灶处)输入特定的治疗药物(例如粒子链813)等。
粒子链生成机构800用于通过套针驱动机构向穿刺针组件植入粒子链813。粒子链生成机构800包括存储单元810以及植入组件820。至少部分植入组件820穿设于存储单元810内,并能够选择性地使位于存储单元810内的一种或多种物料有序地形成粒子链813,并植入穿刺针组件内。植入组件820部分安装于存储单元810内,并将存储单元810内的粒子链813输出。存储单元810用于存放形成粒子链813的至少两种物料。植入组件820用于将存储单元810内的物料输出至外部。物料可以包括放射性粒子813a以及占位材料813b。其中,植入组件820能够选择性地将存储单元810内的物料按照既定预设目的有序地输出,例如放射性粒子813a与占位材料813b之间的比例以及两者的排列顺序等均能够按照预设目的形成(如图9B所示)。如此设置,便能够使粒子链生成机构800有序地形成粒子链813,并使粒子链生成机构800在手术机器人的操作过程中将按照预先或即时设定的粒子链813输入目标部位。
具体地,存储单元810与植入组件820之间能够相对运动,从而使存储于存储单元810内不同位置处的放射性粒子813a及占位材料813b能够在植入组件820的作用下被选择性地输出,并有序形成粒子链813。植入组件820与存储单元810之间的相对运动可以是平移或转动等运动形式,只要能够使得植入组件820与存储单元810之间的相对位置发生改变,并使植入组件820能够对应输出不同的物料即可。在一些实施例中,存储单元810可采用弹夹式存储结构,植入组件820可采用推杆822输出结构,具体可根据实际需求而相应设置。
在一些实施例中,存储单元810包括第一物料夹811及第二物料夹812。第一物料夹811用于存放放射性粒子813a;第二物料夹812用于存放人体可降解的占位材料813b。一些实施例中,第一物料夹811及第二物料夹812可上下叠设或并排设置,具体可根据植入组件820与存储单元810之间的相对运动方向及运动形式而相应设置。植入组件820能够通过与存储单元810之间的相对运动而选择性地连接于第一物料夹811或第二物料夹812,以有序地将第一物料夹811内的放射性粒子813a或第二物料夹812内的占位材料813b形成粒子链813。
一些实施例中,第一物料夹811和/或第二物料夹812可以具有类似于弹夹结构,其中第二物料夹812的结构如图9A所示。第二物料夹812的出料口设置有限位部8121,第二物料夹812内部设有将其中的占位材料813b推向出料口的弹性件(该弹性件在图9A中未示出)。在一些实施例中,弹性件可以为弹簧结构,限位部8121用于对第二物料夹812中的占位材料813b进行限位,将占位材料限制在出料口位置而不会完全脱离第二物料夹812。第一物料夹811的结构可以与第二物料夹812的结构相同或相似。
可以理解,在一些替代性的实施例中,存储单元810还可以包括三个以上的物料夹,并对应存储三种以上所需要形成粒子链813的物料。
在一些实施例中,至少部分植入组件820能够转动地连接于存储单元810,以选择性地连接于第一物料夹811或第二物料夹812。其中转动连接的方式可以是植入组件820的部分或全部通过沿着其自身转轴转动的方式连接于存储单元810的壳体内。如此设置,不仅便于植入组件820与存储单元810之间的组装,且结构简单。
当然,植入组件820还能够通过滑轨及滑块的配合与存储单元810相对滑动,只要能够使植入组件820与存储单元810用于存储不同物料的物料夹之间能够相对运动并对应输出不同的物料即可。
在一些实施例中,植入组件820包括植入套管821及推杆822。植入套管821连接于存储单元810;推杆822的一端伸入植入套管821内,并通过推杆822的转动与存储单元810之间能够形成多个不同夹角,以对应于第一物料夹811或第二物料夹812。推杆822上的偏心块823用于将不同物料夹中的物料(例如放射性粒子813a或占位材料813b)从出料口推出。一些实施例中,推杆822上设置有偏心块823。推杆822的一端伸入植入套管821内,并通过沿着推杆822轴心的转动以使偏心块823对应于第一物料夹811出料口或第二物料夹812的出料口。推杆822通过推动第一物料夹811或第二物料夹812不同区域内的放射性粒子813a或占位材料813b,以有序输出放射性粒子813a及/或占位材料813b形成的粒子链813。推杆822每一次只推出一颗放射性粒子813a或占位材料813b。如此设置,植入组件820的结构简单,且能够有效地将存储单元810内的不同物料输出。推杆822的转动及沿着其自身轴向的移动,由前述从动系统提供动力。
该粒子链生成机构800通过将植入组件820可选择性地形成待植入的粒子链813,使得待植入的粒子链813能够依据个案调整并输入,从而使得手术过程中的粒子链813能够得到精准地控制。
请参阅图10至图12,图10为本说明书一些实施例中穿刺针驱动装置1000的结构示意图,图11为图10所示穿刺针驱动装置1000安装后的结构示意图,图12为本说明书一些实施例中穿刺针组件1200的结构示意图。
本说明书一些实施例还提供一种穿刺针驱动装置1000。穿刺针驱动装置1000用于驱动穿刺针组件1200执行穿刺动作。穿刺针驱动装置1000包括上述的粒子链生成机构800及套针驱动机构。在一些实施例中,套针驱动机构包括第一驱动组件1010及第二驱动组件1020。套针驱动机构用于驱动穿刺针组件执行穿刺动作。一些实施例中,粒子链生成机构800可以安装在套针驱动机构内部。一些实施例中,粒子链生成机构800的一部分可以伸出套针驱动机构外面,如图11所示,伸出部分为粒子链生成机构800的第二物料夹812。粒子链生成机构800用于为穿刺针组件1200提供粒子链813。套针驱动机构用于将穿刺针组件1200内的粒子链813从输出通道1015输出至目标部位。一些实施例中,粒子链生成机构800安装在套针驱动机构内部时,穿刺针组件1200内的粒子链813可以从第一驱动组件1010上的输出通道1015输出。
可以理解,在一些替代性的实施例中,粒子链生成机构800还可以为其他结构,只要能够实现为穿刺针组件1200输入粒子链813等物料即可。
对应地,穿刺针组件1200可以包括外针1210和内针1220。外针1210套设于内针1220外。其中,第一驱动组件1010内设有粒子链生成机构800。粒子链生成机构800能够将形成的粒子链813输入至穿刺针组件1200的外针1210中。
外针1210对应连接于第一驱动组件1010,内针1220对应连接于第二驱动组件1020。第一驱动组件1010能够驱动穿刺针组件1200的运行;第二驱动组件1020独立地驱动穿刺针组件1200的内针1220。第一驱动组件1010能够带动穿刺针组件1200运行,以使穿刺针组件1200的外针1210和内针1220一起进入靶点位置;第二驱动组件1020能够带动穿刺针组 件1200的内针1220相对外针1210的轴向移动,并将位于外针1210的内腔的粒子链813推出外针1210,以达到治疗靶点位置的目标部位的目的。如此设置,穿刺针组件1200内的粒子链813等物料能够自如地释放至靶点位置。
在一些实施例中,穿刺针组件1200还包括第一驱动单元1230及第二驱动单元1240。第一驱动单元1230分别连接第一驱动组件1010及外针1210,并在第一驱动组件1010的作用下驱动穿刺针组件1200的外针1210及内针1220同时穿刺至靶点位置;第二驱动单元1240分别连接第二驱动组件1020及内针1220,并在第二驱动组件1020的作用下驱动内针1220释放粒子链813。
具体地,穿刺针组件1200还包括相互连接的第一驱动单元1230及第二驱动单元1240。其中,第一驱动单元1230包括外针安装架1231及外针齿轮1233;外针齿轮1233连接于外针安装架1231,并连接于外针1210;且外针齿轮1233与第一驱动组件1010中的部分元件相互啮合。外针齿轮1233用于连接第一驱动组件1010及外针1210,以驱动外针1210及设置于外针1210中的内针1220。其中,第二驱动单元1240包括内针安装架1243及内针齿轮1242。内针齿轮1242连接于内针安装架1243并用于驱动内针1220,且内针齿轮1242与第二驱动组件1020的部分元件相互啮合,以驱动内针1220将外针1210内的粒子链813推出至外针1210的针管。具体地,内针齿轮1242与内针1220的端部连接,具体地,内针齿轮1242与内针1220的端部以套接方式连接。内针齿轮1242与内针1220之间具有如丝杆般的结构,使得内针1220能够沿外针1210的轴向运动。同理,外针齿轮1233采用类似的原理驱动外针1210。如此设置,便于穿刺针驱动装置1000精准地将穿刺针组件1200内的粒子链813输出至靶点位置。
在一些实施例中,内针安装架1243及外针安装架1231相互叠设并卡接。且内针安装架1243安装于外针安装架1231相对远离外针1210及内针1220的一侧。当外针齿轮1233带动外针1210及内针1220穿刺至靶点位置时,内针齿轮1242进一步带动内针1220沿外针1210的轴向运动,并将外针1210中的粒子链813推出外针1210,并到达靶点位置。在穿刺过程中,外针齿轮1233在穿刺针驱动装置1000的驱动下可以带动外针旋转进针,从而可以有效减小进针过程中的阻力,降低进针难度。在粒子植入过程中,内针齿轮1242在穿刺针驱动装置1000的驱动下可以带动内针旋转进针,从而可以有效减小植入过程中的阻力,降低植入粒子的难度。
在一些实施例中,内针齿轮1242安装于内针安装架1243相对远离外针安装架1231的一侧。穿刺针组件1200还包括针盒。外针1210、内针1220、第一驱动单元1230及第二驱动单元1240均设置于针盒内。如此设置,便于穿刺针组件1200在手术过程中的整体替换。且为了进一步使穿刺针组件1200的外针1210及内针1220在穿刺时不发生偏离,内针齿轮1242相对远离内针安装架1243的端部设有伸缩定位柱1241。该伸缩定位柱1241与针盒对应位置的定位槽相互配合,以使外针1210、内针1220、第一驱动单元1230及第二驱动单元1240在手术穿刺时的稳定性及穿刺准确性。
在一些实施例中,外针安装架1231开设第一卡槽1232。套针驱动机构的第一壳体1011对应设置第一卡接部1013;第一卡接部1013伸入第一卡槽1232内,以将外针1210定位于套针驱动机构的第一驱动组件1010。内针安装架1243开设第二卡槽1244。第二驱动组件1020对应设置第二卡接部1023。第二卡接部1023伸入第二卡槽1244内,以将内针1220定位于套针驱动机构的第二驱动组件1020。当上述两个卡接的位置相互卡接时,外针齿轮1233及内针齿轮1242分别对应啮合于第一驱动组件1010及第二驱动组件1020。如此设置,便于第一驱动单元1230及/或第二驱动单元1240对接至对应的第一驱动组件1010及第二驱动组件1020。
可以理解,在一些替代性的实施例中,第一卡槽1232及第二卡槽1244可以仅设置一者,只要能够实现外针齿轮1233及内针齿轮1242分别与对应的第一驱动组件1010及第二驱 动组件1020相互啮合即可。
在一些实施例中,外针安装架1231开设植入口1234。植入口1234连通于外针1210。植入口1234在第一驱动单元1230对准至第一驱动组件1010时,外针1210通过植入口1234、第一驱动组件1010上的输出通道1015与粒子链生成机构800相连通。如此设置,使得粒子链生成机构800的粒子链813或对应的物料能够顺利输入至外针1210。
在一些实施例中,第一驱动组件1010包括第一壳体1011、第一齿轮1014以及第一电机(在图中未示出)。第一齿轮1014可以由第一电机驱动转动。第一齿轮1014安装于第一壳体1011内并与外针齿轮1233相啮合,以驱动穿刺针组件1200的外针1210。第二驱动组件1020包括第二壳体1021、第二齿轮1024以及第二电机(在图中未示出)。第二齿轮1024可以由第二电机驱动转动。第二齿轮1024安装于第二壳体1021内并与内针齿轮1242相啮合,以驱动穿刺针组件1200的内针1220。第一电机和第二电机的工作分别由前述从动系统中的第二处理器进行控制。
可以理解,第一驱动组件1010及/或第二驱动组件1020能够设置成其他结构,或仅设置一组两者中的其中一组。
在一些实施例中,粒子链生成机构800设置于第一壳体1011内。第一壳体1011开设有输出通道1015,连通于外针1210。粒子链生成机构800通过输出通道1015、植入口1234连通于外针1210。当第一驱动组件1010与第一驱动单元1230相互对接时,输出通道1015连通第一壳体1011的植入口1234,从而使粒子链生成机构800能够将粒子链813通过输出通道1015及植入口1234输入至外针1210。
在一些实施例中,套针驱动机构对应还设有第一伸缩模组1012以及第二伸缩模组1022。第一伸缩模组1012对应设有上述的第一驱动组件1010;第二伸缩模组1022对应设有上述的第二驱动组件1020。第一伸缩组件及第二伸缩组件配合,用于将第一驱动组件1010及第二驱动组件1020对准并连接至穿刺针组件1200的外针齿轮1233及内针齿轮1242。第一伸缩模组1012的伸出、缩回以及第二伸缩模组1022的伸出、缩回,分别由前述从动系统中的第二处理器进行控制。以第一伸缩模组1012为例,当从动系统中的第二处理器控制第一伸缩模组1012收入至第一壳体1011时,第一驱动组件1010的第一齿轮1014与外针齿轮1233相分离,则第一驱动组件1010与第一驱动单元1230处于分离状态;此时,穿刺针组件1200整体替换成新的一组穿刺针组件1200。当新的穿刺针组件1200替换完成后,第一伸缩机构伸出第一壳体1011,并使第一齿轮1014与外针齿轮1233相互啮合,此时第一驱动组件1010与第一驱动单元1230处于接合状态。第二伸缩模组1022与第一伸缩模组1012的工作原理相近,在此不做赘述。如此设置,便于套针驱动机构与穿刺针组件1200之间的分离及对接,从而使穿刺针组件1200整体便于更换。
请参阅图13A至图16,图13A、图13B为本说明书一些实施例中穿刺设备末端的结构示意图,图14为本说明书另一些实施例中穿刺设备末端的结构示意图,图15为本说明书另一些实施例中穿刺设备末端中切换架1310的结构示意图,图16为图13A所示穿刺设备末端中切换架1310的“几”字形安装槽1311截面的结构示意图。
如图13A、图13B所示,本说明书实施例还提供一种穿刺设备末端。穿刺设备末端包括穿刺针驱动装置1000及穿刺针组件1200。
关于穿刺针驱动装置1000的具体结构,可以参考前面关于图10、图11中穿刺针驱动装置1000的说明内容。穿刺针驱动装置1000安装在丝杠结构1330上。丝杠结构1330的两端安装在从手4122的安装架41221上,如图13B所示。一些实施例中,穿刺针驱动装置1000通过内螺纹结构安装在两根丝杠结构1330上。一些实施例中,可以通过电机驱动两根丝杠结构1330转动,而穿刺针驱动装置1000不发生转动,穿刺针驱动装置1000在丝杠结构1330的纵向上移动。
关于穿刺针组件1200的结构,可以参考前面关于图12的说明内容。穿刺针驱动装置 1000对准并能够驱动穿刺针组件1200进行穿刺。
在一些实施例中,穿刺设备末端还包括切换架1310及切换架驱动机构1320。一些实施例中,所述切换架1310安装在从手4122的安装架42111上。切换架1310内安装至少两组穿刺针组件1200。且切换架1310开设有与穿刺针驱动装置1000对接的穿刺针接口1312,如图13A。切换架驱动机构1320切换各个穿刺针组件1200至穿刺针接口1312。第一伸缩模组1012及第二伸缩模组1022配合,用于对接穿刺针接口1312的穿刺针组件1200。在穿刺过程中,穿刺针驱动装置1000可以沿着丝杠结构1330的轴向移动,同时带动与第一伸缩模组1012和/或第二伸缩模组1022对接的穿刺针组件1200沿着丝杠结构1330的轴向移动。
在一些实施例中,切换架驱动机构1320包括传送组件。传送组件用于驱动穿刺针组件1200运动至穿刺针接口1312。传送组件可以根据实际需求而选用同步带传动、齿轮传动或链传动的至少一种。而同步带传动、齿轮传动或链传动可采用现有的传动结构。一些实施例中,穿刺针组件1200在传送组件的驱动下通过平移或旋转的方式运动至穿刺针接口。
一些实施例中,切换架上开设有安装槽1311。安装槽1311用于装设至少一个穿刺针组件1200。在一些实施例中,安装槽1311的截面可以为环形(如图14所示)、螺旋线(如图15所示)或“几”字形(如图13A及图16所示),分别对应于图14所示实施例中的切换架1421、图15所示实施例中的切换架1310、图13A所示实施例中的切换架1310。安装槽1311内均匀地布设多个穿刺针组件1200。安装槽1311的形状可以根据实际手术的实际需求而进行选择。
如图14所示,在一些实施例中,安装槽1311的截面为环形,切换架1310具有截面为环形的安装面。安装槽1311设置在环形安装面上。设置于安装槽1311内的穿刺针组件1200能够在切换架驱动机构1320的驱动下绕环形安装面的中心轴转动,进而能够持续执行多针穿刺的目的。切换架驱动机构1320安装在从手4122的安装架41221上。穿刺针组件1200可以在丝杠结构1330上的穿刺针驱动装置1430的驱动下沿丝杠结构1330的纵向移动。丝杠结构1330可以安装在从手4122的安装架41221上。
一些实施例中,切换架驱动机构1320切换各个穿刺针组件1200的路径可以为螺旋线。如图15所示,在一些实施例中,切换架1310具有截面为螺旋线的安装面1510。安装槽1311设置在安装面1510上。如此设置,设置于安装槽1311内的穿刺针组件1200能够根据安装面1510的轨迹连续运动,进而能够持续执行多针穿刺的目的。
在一些实施例中,如图15所示,安装面1510包括第一安装面1510a和第二安装面1510b。第一安装面1510a和第二安装面1510b分别位于切换架1310的内侧和外侧。切换架1310的内侧是指朝向螺旋线中心的一侧;切换架1310的外侧是指背离螺旋线中心的一侧。如此设置,能够容纳足够多的穿刺针组件1200。在一些实施例中,穿刺针组件1200能够在切换架驱动机构1320的驱动下沿螺旋线的安装面1510移动,可以从第一安装面1510a移动到第二安装面1510b,或者从第二安装面1510b移动到第一安装面1510a。在一些实施例中,安装槽1311可以通过履带结构设置在第一安装面1510a和第二安装面1510b上,第一安装面1510a和第二安装面1510b上的安装槽1311可以首尾相连,绕着螺旋线的安装面1510依次移动。
在一些实施例中,在一些实施例中,螺旋线的安装面1510的开口位置1520可以对应穿刺针接口1312的位置。开口位置1520可以包括而不限于图15中所示位置。当螺旋线的安装面1510的开口位置1520对应为穿刺针接口1312的位置时,切换架驱动机构1320驱动待用的穿刺针组件1200自安装槽1311运动至螺旋线的开口位置1520。且切换架驱动机构1320将使用后的穿刺针组件1200自螺旋线的安装面1510的开口位置1520回转至安装槽1311内。
或者,在另外一些实施例中,螺旋线的中心位置1530对应穿刺针接口1312的位置。当螺旋线的中心位置1530对应为穿刺针接口1312的位置时,切换架驱动机构1320驱动待用的穿刺针组件1200运动至螺旋线的中心位置1530。且切换架驱动机构1320将使用后的穿刺 针组件1200转离螺旋线的中心位置1530。
穿刺设备末端的示例性工作过程如下。当从动系统的第二处理器控制从手4122将穿刺设备末端移动到达指定的目标位置时,穿刺针组件1200在切换架驱动机构1320的传送组件的辅助下平移至与穿刺针驱动装置1000相匹配的位置,穿刺针驱动装置1000中的第一伸缩模组1012及第二伸缩模组1022分别与第一卡槽1232及第二卡槽1244中进行对接。穿刺针组件1200整体在针盒的保护下及穿刺针驱动装置1000的驱动下,按照规划好的路径进行穿刺并建立植入通道。
植入通道建立完成之后,内针1220在第二驱动组件1020的作用下退出外针1210;然后粒子链生成机构800中的物料,在推杆822的作用下有序地生成依据预先规划的粒子链813,并通过所建立的植入通道植入外针1210;内针1220内再在第二驱动组件1020的作用下将外针1210中的粒子链813推出外针1210,并输送至靶点位置。
待粒子链813植入完成之后,外针1210在对应第一驱动组件1010的辅助下退出,从而完成该针道的粒子植入。然后穿刺针驱动装置1000中的第一伸缩模组1012及第二伸缩模组1022与穿刺针组件1200相分离,并回收释放该穿刺针组件1200;下一穿刺针组件1200在传送组件的辅助下到达穿刺针驱动装置1000的对应位置,重复以上步骤,直至完成切换架1310内部分或所有的穿刺针组件1200的粒子植入。
本说明书一些实施例提供的穿刺设备末端,通过设置可切换穿刺针组件1200的切换架1310及对应的穿刺驱动装置1000,使得穿刺设备末端在同一位置已建立的穿刺通道上,能够进行多次进针,从而增强治疗效果,以避免穿刺针组件1200的粒子链813靶点位置因多次进针而发生位置偏移而产生的问题。
穿刺设备末端的工作过程可以参考前述穿刺设备末端的工作过程,二者基本相同。
本说明书还提供一种手术机器人(图未示),包括上述任一实施例所述的粒子链生成机构800或包括上述任一实施例所述的穿刺设备末端。
现有的机械臂中,通过多个机械臂夹持多个穿刺针的方式来完成多针穿刺的相关术式,穿刺针组件1200的目标位置因多次进针而容易发生位置偏移,进而影响手术的治疗效果;此外也增加了整个机械臂系统的成本以及延长了手术的时间,而且会增加手术的风险性,极大地影响了手术的质量和效果。因此,有必要针对该问题,提供一种穿刺设备末端。因此,本说明书一些实施例提供一种手术机器人的穿刺设备末端,用于对目标部位执行手术动作。
如图17所示,手术机器人的穿刺设备末端可以包括切换架1310、切换架驱动机构(可以参考图17中标记1710、1720、1730共同形成的结构)以及穿刺针驱动组件1000。切换架1310内设有至少两个安装槽1311。至少两个安装槽1311在切换架驱动机构的驱动下传动。至少两个安装槽1311用于放置多个对应的穿刺针组件1200;切换架驱动机构连接于切换架1310,并能够驱动切换架1310转动从而使得至少两个穿刺针组件1200进行切换;穿刺针驱动组件1000设置在切换架1310上;穿刺针驱动组件1000用于驱动穿刺针组件1200执行穿刺动作。穿刺针组件1200安装于安装槽1311内。在切换架驱动机构的作用下,穿刺针组件1200能够一一切换至与机械臂对应的电气接口1740处。穿刺设备末端还可以包括电气接口1740。电气接口1740的一端电连接于机械臂,另一端电连接于穿刺针驱动组件1000,作为穿刺机器人的机械臂与穿刺针驱动组件1000之间的电气及控制信号传输通道。一些实施例中,电气接口1740与穿刺针驱动组件1000之间的电连接方式为可拆分的插接方式,即,电气接口1740可以与传送到与其对应的位置处的不同穿刺针驱动组件1000实现电连接。当与穿刺针驱动组件1000连接的穿刺针组件1200完成穿刺、植入粒子的操作后,电气接口1740断开与穿刺针驱动组件1000之间的电连接,等待与下一个穿刺针驱动组件1000电连接。
一些实施例中,每个穿刺针组件1200均连接有一个穿刺针驱动组件1000。
一些实施例中,至少两个安装槽1311可以排列成环形、螺旋形或“几”字形。
在一些实施例中,切换架1310可以为内部中空的圆柱形结构,至少两个安装槽1311 可以环绕切换架1310的内壁设置,至少两个安装槽1311可以形成一个首尾衔接的圆环,并容纳多个对应的穿刺针组件1200。各个穿刺针组件1200能够在切换架驱动机构的作用下,沿着安装槽1311的圆环轨迹一一切换至与机械臂对应的电气接口1740处。
在另一些实施例中,至少两个安装槽1311可以沿着切换架1310的轴心径向向外的方向呈螺旋形设置,每个安装槽1311内均容纳对应的穿刺针组件1200,各个穿刺针组件1200能够在切换架驱动机构的作用下,沿着安装槽1311的螺旋形轨迹一一切换至与机械臂对应的电气接口1740处。
在一些实施例中,切换架1310可以设置为中空的“几”字形结构,至少两个安装槽1311沿着切换架1310的内壁设置,至少两个安装槽1311组成对应于切换架1310的“几”字形轨迹,并容纳多个对应的穿刺针组件1200。各个穿刺针组件1200能够在切换架驱动机构的作用下,沿着安装槽1311的“几”字形轨迹一一切换至与机械臂对应的电气接口1740处。
在一些实施例中,切换架1310可以设置为中空的矩形结构,至少两个安装槽1311可以沿着切换架1310的内壁设置,组成对应切换架1310的“口”字形结构,并容纳多个对应的穿刺针组件1200。各个穿刺针组件1200能够在切换架驱动机构的作用下,沿着安装槽1311的“口”字形轨迹一一切换至与机械臂对应的电气接口1740处。
切换架驱动机构的结构可以参考图14中的切换架驱动机构1320及相关说明。在一些实施例中,切换架驱动机构可以包括转轴1710、传动单元1720和驱动件1730。转轴1710可以固定穿设于切换架1310上,用于带动穿刺针组件1200传动。传动单元与转轴1710与驱动件1730连接,并用于传递驱动件1730的动力。
具体地,转轴1710可以在驱动件1730的作用下转动,通过传动单元1720带动切换架1310上对应的穿刺针组件1200传动至与机械臂对应的接口处。
在一些实施例中,传动单元1720可以包括设置为同步带传动、链传动、齿轮传动的至少一种,传动单元的设置仅需要实现驱动件1730和转轴1710之间的动力传递即可,而不限于一些实施例的传动方式。多种传动方式扩展了应用场景,使传动单元1720能够适应工作环境的要求选择设置为同步带传动、链传动、齿轮传动的至少一种。
每个穿刺针组件1200可以包括外针1210和内针1220。外针容置于对应的安装槽1311内,内针1220穿设于外针1210内,并能够在目标位置沿着外针1210的轴向运动。
如此设置,当外针1210完成穿刺动作后,内针1220能够在外针1210的内部独立进行第二次穿刺动作,将需要注射的医疗药剂从外针1210的内部推出。从而可以避免当需要注射的医疗药剂为放射性药剂时,穿刺针的使用者可以避免与放射性药剂接触,对自身健康造成损害。
穿刺针组件1200可以连接有穿刺针驱动组件1000。穿刺针驱动组件1000能够驱动穿刺针组件1200运动,并且能够独立地驱动内针1220运动。
在一些实施例中,穿刺针驱动组件1000可以采用现有的驱动结构,例如电机驱动等。
具体地,穿刺针驱动组件1000可以包括相对独立设置的第一驱动单元1230和第二驱动单元1240,第一驱动单元1230对应驱动穿刺针组件1200,第二驱动单元1240对应驱动内针1220。以此,第二驱动单元1240能够独立驱动内针1220,而不会影响到外针1210的状态,从而实现内针1220能够在外针1210内部沿着外针1210的轴向运动,推出待注射的药剂。
在一些实施例中,第一驱动单元1230及/或第二驱动单元1240为丝杆传动结构。如此设置,丝杆传动结构的传动效率更高,传动时形变小,保证了第一驱动单元1230及/或第二驱动单元1240的结构稳定性。
更近一步地,第一驱动单元1230及第二驱动单元1240分别电性连接于机械臂,从而使机械臂可以直接控制第一驱动单元1230及第二驱动单元1240。
穿刺设备末端还可以包括电气接口1740。电气接口1740的一端分别电连接于穿刺针 驱动组件1000的第一驱动单元1230和穿刺针驱动组件1000的第二驱动单元1240,另一端电连接于机械臂。
在一些实施例的手术机器人的穿刺设备末端的工作过程中,首先机械臂会将切换架1310移动至指定位置,再通过切换架驱动机构1320驱动多个穿刺针组件1200进行切换,选定穿刺针组件1200后,第一驱动单元1230会释放外针1210,在外针1210完成穿刺动作后,第二驱动单元1240驱动内针1220在外针1210的内部完成穿刺动作,推出待注射的药剂,至此完成第一次的穿刺动作;此后,切换架驱动机构1320会切换穿刺针组件1200,将选定的将进行第二次穿刺的穿刺针组件1200切换至指定位置,再由各个驱动单元完成第二次穿刺动作,此动作与第一次穿刺动作类似,在此不作赘述。
相较于现有技术,本说明书一些实施例提供的穿刺设备末端通过设置可活动的切换架1310,以使安装于切换架1310内的多个穿刺针组件1200能够快速切换至目标部位,使得穿刺设备末端在同一位置已建立的穿刺通道上,能够多次进针,从而增强治疗效果并节省了手术时间。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本说明书的几种实施例,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本说明书构思的前提下,还可以做出若干变形和改进,这些都属于本说明书的保护范围。因此,本说明书专利的保护范围应以所附权利要求为准。

Claims (45)

  1. 一种自动化粒子植入系统(41),其特征在于,所述系统包括主动系统(411)和从动系统(412);其中,主动系统(411)被配置为:
    获取扫描对象的扫描图像;
    根据所述扫描图像进行放射性粒子植入术式治疗计划规划,以获得放射性粒子植入术式治疗计划规划结果;以及
    根据所述放射性粒子植入术式治疗计划规划结果,控制所述从动系统(412)执行放射性粒子植入操作。
  2. 根据权利要求1所述的系统,其特征在于,为了获取所述扫描对象的所述扫描图像,所述主动系统(411)还被配置为:
    控制扫描设备(42)对所述扫描对象进行扫描。
  3. 根据权利要求1所述的系统,其特征在于,为了根据所述扫描图像进行放射性粒子植入术式治疗计划规划,以获得放射性粒子植入术式治疗计划规划结果,所述主动系统(411)还被配置为:
    根据所述扫描图像、目标剂量、和/或机械臂的运动约束条件,确定粒子植入路径信息。
  4. 根据权利要求3所述的系统,其特征在于,为了根据所述扫描图像、目标剂量、和/或机械臂的运动约束条件,确定粒子植入路径信息,所述主动系统(411)还被配置为:
    确定所述扫描图像中的感兴趣区域;以及
    根据所述感兴趣区域、所述目标剂量、和/或所述机械臂的所述运动约束条件,确定所述粒子植入路径信息。
  5. 根据权利要求4所述的系统,其特征在于,为了根据所述感兴趣区域、所述目标剂量、和/或所述机械臂的所述运动约束条件,确定所述粒子植入路径信息,所述主动系统(411)还被配置为:
    根据所述感兴趣区域的大小、形状和/或位置、和/或所述目标剂量,获取初始粒子植入路径信息;以及
    根据所述机械臂的所述运动约束条件对所述初始粒子植入路径信息进行验证,确定与所述扫描对象对应的目标粒子植入路径信息。
  6. 根据权利要求5所述的系统,其特征在于,为了根据所述机械臂的所述运动约束条件对所述初始粒子植入路径信息进行验证,确定与所述扫描对象对应的目标粒子植入路径信息,所述主动系统(411)还被配置为:
    若验证通过,将所述初始粒子植入路径信息作为与所述扫描对象对应的所述目标粒子植入路径信息;
    若验证不通过,根据所述感兴趣区域、所述目标剂量、和/或所述机械臂的所述运动约束条件对所述初始粒子植入路径信息进行修正,直到验证通过,得到所述目标粒子植入路径信息。
  7. 根据权利要求3所述的系统,其特征在于,所述粒子植入路径信息包括:穿刺针组件数量、每个所述穿刺针组件的入针位置、每个所述穿刺针组件的靶点位置、每个所述穿刺针组件的所述靶点位置下的粒子数量、和/或所述机械臂的移动路径。
  8. 根据权利要求7所述的系统,其特征在于,所述主动系统(411)还被配置为:
    对所述粒子植入路径信息中的一种或多种进行验证。
  9. 根据权利要求1所述的系统,其特征在于,所述从动系统(412)被配置为根据所述放射性粒子植入术式治疗计划规划结果执行所述放射性粒子植入操作,包括:
    将机械臂移动至入针位置;
    使穿刺针组件入针,到达靶点位置;
    植入所述粒子;
    退出所述穿刺针组件;以及
    将所述机械臂移动至下一个入针位置,并换下一个穿刺针组件进行粒子植入,直至所述放射性粒子植入术式治疗计划规划结果中的所有穿刺针组件都完成粒子植入。
  10. 根据权利要求1所述的系统,其特征在于,所述主动系统(411)还被配置为:
    在所述放射性粒子植入术式治疗计划规划结果中的所有穿刺针组件都完成粒子植入后,控制扫描设备(42)扫描所述扫描对象以检测植入的效果。
  11. 根据权利要求1所述的系统,其特征在于,所述从动系统(412)包括穿刺设备,所述穿刺设备包括穿刺设备末端和安装在所述穿刺设备末端上的至少一个穿刺针组件,所述穿刺设备末端的尺寸和形态与所述穿刺针组件的数量有关,其中,所述穿刺针组件用于建立粒子植入通道。
  12. 根据权利要求11所述的系统,其特征在于,所述主动系统(411)包括放射规划模块,所述放射规划模块用于根据目标剂量确定粒子数量;所述从动系统(412)包括粒子链生成机构,所述粒子链生成机构用于在放射性粒子植入操作中,在所述粒子植入通道中根据所述粒子数量与占位材料形成粒子链。
  13. 根据权利要求11所述的系统,其特征在于,为了根据所述放射性粒子植入术式治疗计划规划结果,控制所述从动系统(412)执行放射性粒子植入操作,所述主动系统(411)还被配置为:
    控制所述从动系统(412)通过所述穿刺设备中的外针建立第一粒子植入通道,并在所述第一粒子植入通道中注入第一粒子链;以及
    在建立所述第一粒子植入通道后,控制所述从动系统(412)通过所述穿刺设备中的内针建立第二粒子植入通道,并在所述第二粒子植入通道中注入第二粒子链。
  14. 根据权利要求1所述的系统,其特征在于,为了根据所述扫描图像进行放射性粒子植入术式治疗计划规划,以获得放射性粒子植入术式治疗计划规划结果,所述主动系统(411)还被配置为:
    通过扫描设备(42)获取所述扫描对象的体表位置;以及
    若所述体表位置在预设时间内的变化量大于或等于预设变化阈值,根据当前的扫描图像,修正所述放射性粒子植入术式治疗计划规划结果。
  15. 根据权利要求1所述的系统,其特征在于,所述主动系统(411)包括显示设备,所述显示设备用于显示所述扫描图像、所述放射性粒子植入术式治疗计划规划结果、所述粒子的余量以及所述从动系统(412)的运动状态中的至少一个。
  16. 一种粒子链生成机构(800),其特征在于,所述机构包括存储单元(810)和植入组件(820);所述存储单元(810)用于存放形成粒子链(813)的至少两种物料,至少部分所述植入组件(820)穿设于所述存储单元(810)内并能够选择性地使位于所述存储单元(810) 内的所述至少两种物料有序地形成粒子链(813)。
  17. 根据权利要求16所述的机构,其特征在于,所述至少两种物料包括放射性粒子(813a)和占位材料(813b)。
  18. 根据权利要求17所述的机构,其特征在于,所述存储单元(810)包括第一物料夹(811)和第二物料夹(812),所述第一物料夹(811)用于存放所述放射性粒子(813a),所述第二物料夹(812)用于存放所述占位材料(813b)。
  19. 根据权利要求18所述的机构,其特征在于,所述植入组件(820)能够选择性地连接于所述第一物料夹(811)或所述第二物料夹(812)。
  20. 根据权利要求19所述的机构,其特征在于,至少部分所述植入组件(820)可转动地连接于所述存储单元(810),以选择性地连接于所述第一物料夹(811)或所述第二物料夹(812)。
  21. 根据权利要求19所述的机构,其特征在于,所述植入组件(820)包括植入套管(821)和推杆(822),所述植入套管(821)转动连接于所述存储单元(810),所述推杆(822)的一端伸入所述植入套管(821)内,并随所述植入套管(821)的转动与存储单元(810)之间能够形成至少两个不同夹角,以对应于所述第一物料夹(811)或所述第二物料夹(812)。
  22. 一种穿刺设备末端,其特征在于,包括切换架(1310)、切换架驱动机构(1320);所述切换架驱动机构(1320)包括传送组件,所述传送组件用于驱动穿刺针组件(1200)运动至穿刺针接口(1312)。
  23. 根据权利要求22所述的穿刺设备末端,其特征在于,所述穿刺针组件(1200)在所述传送组件的驱动下通过平移或旋转的方式运动至所述穿刺针接口(1312)。
  24. 根据权利要求22所述的穿刺设备末端,其特征在于,所述切换架(1310)开设有安装槽(1311),所述安装槽(1311)用于装设至少两个所述穿刺针组件(1200)。
  25. 根据权利要求24所述的穿刺设备末端,其特征在于,所述安装槽(1311)的截面为环形、螺旋线或“几”字形。
  26. 根据权利要求22所述的穿刺设备末端,其特征在于,还包括穿刺针驱动装置(1000),所述穿刺针驱动装置(1000)包括粒子链生成机构(800)和套针驱动机构,所述粒子链生成机构(800)用于为所述穿刺针组件(1200)提供粒子链(813),所述套针驱动机构用于驱动所述穿刺针组件(1200)执行穿刺动作。
  27. 根据权利要求26所述的穿刺设备末端,其特征在于,所述穿刺针组件(1200)包括外针(1210)和内针(1220),所述外针(1210)套设于所述内针(1220)外。
  28. 根据权利要求27所述的穿刺设备末端,其特征在于,所述穿刺针组件(1200)还包括第一驱动单元(1230)和第二驱动单元(1240),所述第一驱动单元(1230)连接并驱动所述外针(1210)及所述内针(1220)进行穿刺,所述第二驱动单元(1240)连接并驱动所述内针(1220)释放所述粒子链生成机构(800)提供的所述粒子链(813)。
  29. 一种穿刺设备末端,其特征在于,包括切换架(1310)和切换架驱动机构(1320);所 述切换架(1310)开设有安装槽(1311)和与所述安装槽(1311)相连通的穿刺针接口(1312),所述安装槽(1311)用于安装至少一个穿刺针组件(1200),所述切换架驱动机构(1320)用于切换各个所述穿刺针组件(1200)至所述穿刺针接口(1312)。
  30. 根据权利要求29所述的穿刺设备末端,其特征在于,所述切换架驱动机构(1320)切换各个所述穿刺针组件(1200)的路径为螺旋线。
  31. 根据权利要求30所述的穿刺设备末端,其特征在于,所述切换架(1310)具有截面为螺旋线的安装面(1510),所述安装槽(1311)设置在所述安装面(1510)上。
  32. 根据权利要求31所述的穿刺设备末端,其特征在于,所述安装面(1510)包括第一安装面(1510a)和第二安装面(1510b),所述第一安装面(1510a)和所述第二安装面(1510b)分别位于所述切换架(1310)的内侧和外侧。
  33. 根据权利要求31所述的穿刺设备末端,其特征在于,所述安装面(1510)的开口位置对应所述穿刺针接口(1312)的位置,或所述螺旋线的中心位置(1530)对应所述穿刺针接口(1312)的位置。
  34. 一种穿刺设备末端,其特征在于,包括:
    切换架(1310),所述切换架(1310)用于与机械臂连接;
    至少两个安装槽(1311),所述安装槽(1311)设置于所述切换架(1310)内,并用于放置对应的至少两个穿刺针组件(1200);
    切换架驱动机构(1320),所述切换架驱动机构(1320)设置在所述切换架(1310)内,并用于驱动所述至少两个穿刺针组件(1200)进行切换;以及
    穿刺针驱动装置(1000),所述穿刺针驱动装置(1000)用于驱动所述穿刺针组件(1200)执行穿刺动作。
  35. 根据权利要求34所述的穿刺设备末端,其特征在于,所述切换架(1310)在所述切换架驱动机构(1320)的驱动下转动。
  36. 根据权利要求35所述的穿刺设备末端,其特征在于,所述切换架驱动机构(1320)包括转轴(1710)、传动单元(1720)和驱动件(1730),所述转轴(1710)固定穿设于所述切换架(1310)上,所述传动单元(1720)与所述转轴(1710)和所述驱动件(1730)连接。
  37. 根据权利要求36所述的穿刺设备末端,其特征在于,所述传动单元(1720)包括同步带传动、链传动、齿轮传动中的至少一种。
  38. 根据权利要求34所述的穿刺设备末端,其特征在于,每个所述穿刺针组件(1200)包括外针(1210)和内针(1220),所述外针(1210)容置于所述安装槽(1311)内,所述内针(1220)穿设于所述外针(1210)内,并能够沿所述外针(1210)的轴向运动。
  39. 根据权利要求38所述的穿刺设备末端,其特征在于,所述穿刺针驱动装置(1000)包括相对独立设置的第一驱动单元(1230)和第二驱动单元(1240),所述第一驱动单元(1230)对应驱动所述外针(1210)和所述内针(1220),所述第二驱动单元(1240)对应驱动所述内针(1220)。
  40. 根据权利要求39所述的穿刺设备末端,其特征在于,所述第一驱动单元(1230)和所 述第二驱动单元(1240)为丝杠传动结构。
  41. 根据权利要求39所述的穿刺设备末端,其特征在于,所述第一驱动单元(1230)和所述第二驱动单元(1240)分别电性连接于所述机械臂。
  42. 根据权利要求41所述的穿刺设备末端,其特征在于,还包括电气接口(1740),所述电气接口(1740)设置于所述切换架(1310)上,且所述电气接口(1740)的一端分别电连接于所述第一驱动单元(1230)和所述第二驱动单元(1240),所述电气接口(1740)的另一端电连接于所述机械臂。
  43. 根据权利要求34所述的穿刺设备末端,其特征在于,所述穿刺针驱动装置(1000)设置在所述切换架(1310)上。
  44. 根据权利要求34所述的穿刺设备末端,其特征在于,所述至少两个安装槽(1311)在所述切换架驱动机构(1320)的驱动下传动。
  45. 根据权利要求34所述的穿刺设备末端,其特征在于,所述至少两个安装槽(1311)排列成环形、螺旋线或“几”字形。
PCT/CN2022/093757 2021-06-24 2022-05-19 自动化粒子植入系统、粒子链生成机构和穿刺设备 WO2022267767A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22827265.4A EP4342526A1 (en) 2021-06-24 2022-05-19 Automated particle implantation system, particle chain generation mechanism, and puncture device
US18/395,508 US20240131357A1 (en) 2021-06-24 2023-12-23 Automated particle implantation systems, particle chain generating mechanisms, and puncture devices

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110707539.0 2021-06-24
CN202110707539.0A CN115518305A (zh) 2021-06-24 2021-06-24 用于放射性粒子植入的手术机器人和手术机器人系统
CN202220230592.6U CN217310580U (zh) 2022-01-27 2022-01-27 手术机器人的末端机构及手术机器人
CN202220230592.6 2022-01-27
CN202210102528.4 2022-01-27
CN202210102528.4A CN116549868A (zh) 2022-01-27 2022-01-27 手术机器人粒子植入机构、机械手末端设备及手术机器人

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/395,508 Continuation US20240131357A1 (en) 2021-06-24 2023-12-23 Automated particle implantation systems, particle chain generating mechanisms, and puncture devices

Publications (1)

Publication Number Publication Date
WO2022267767A1 true WO2022267767A1 (zh) 2022-12-29

Family

ID=84544090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093757 WO2022267767A1 (zh) 2021-06-24 2022-05-19 自动化粒子植入系统、粒子链生成机构和穿刺设备

Country Status (3)

Country Link
US (1) US20240131357A1 (zh)
EP (1) EP4342526A1 (zh)
WO (1) WO2022267767A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001085A1 (en) * 2010-06-30 2012-01-05 Hitachi, Ltd. Treatment planning system, device for calculating a scanning path and particle therapy system
CN108721769A (zh) * 2018-06-22 2018-11-02 山东大学第二医院 一种放射性粒子链植入装置
CN109907825A (zh) * 2019-03-25 2019-06-21 天津大学 混合现实引导的近距离粒子手术植入系统
CN110141778A (zh) * 2019-04-02 2019-08-20 成都真实维度科技有限公司 瘤体内放射性粒子源总数量获取、放射性粒子源布源和针道路径规划方法
CN110478628A (zh) * 2019-08-03 2019-11-22 安徽工程大学 临床截石位靶向粒子植入机器人人机安全交互系统及方法
CN110547867A (zh) * 2018-05-31 2019-12-10 上海联影医疗科技有限公司 机械臂的控制方法、装置、设备、存储介质和系统
CN111839727A (zh) * 2020-07-10 2020-10-30 哈尔滨理工大学 基于增强现实的前列腺粒子植入路径可视化方法及系统
CN112220557A (zh) * 2019-06-30 2021-01-15 苏州理禾医疗技术有限公司 用于颅脑穿刺的手术导航及机器臂装置及定位方法
WO2021011499A1 (en) * 2019-07-12 2021-01-21 The Board Of Regents Of The University Of Texas Independent stereotactic radiotherapy dose calculation and treatment plan verification
CN112957605A (zh) * 2021-01-29 2021-06-15 四川省肿瘤医院 一种放射性粒子植入方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001085A1 (en) * 2010-06-30 2012-01-05 Hitachi, Ltd. Treatment planning system, device for calculating a scanning path and particle therapy system
CN110547867A (zh) * 2018-05-31 2019-12-10 上海联影医疗科技有限公司 机械臂的控制方法、装置、设备、存储介质和系统
CN108721769A (zh) * 2018-06-22 2018-11-02 山东大学第二医院 一种放射性粒子链植入装置
CN109907825A (zh) * 2019-03-25 2019-06-21 天津大学 混合现实引导的近距离粒子手术植入系统
CN110141778A (zh) * 2019-04-02 2019-08-20 成都真实维度科技有限公司 瘤体内放射性粒子源总数量获取、放射性粒子源布源和针道路径规划方法
CN112220557A (zh) * 2019-06-30 2021-01-15 苏州理禾医疗技术有限公司 用于颅脑穿刺的手术导航及机器臂装置及定位方法
WO2021011499A1 (en) * 2019-07-12 2021-01-21 The Board Of Regents Of The University Of Texas Independent stereotactic radiotherapy dose calculation and treatment plan verification
CN110478628A (zh) * 2019-08-03 2019-11-22 安徽工程大学 临床截石位靶向粒子植入机器人人机安全交互系统及方法
CN111839727A (zh) * 2020-07-10 2020-10-30 哈尔滨理工大学 基于增强现实的前列腺粒子植入路径可视化方法及系统
CN112957605A (zh) * 2021-01-29 2021-06-15 四川省肿瘤医院 一种放射性粒子植入方法

Also Published As

Publication number Publication date
EP4342526A1 (en) 2024-03-27
US20240131357A1 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
CN108883294B (zh) 用于在整个放射治疗中监视结构运动的系统和方法
Podder et al. AAPM and GEC‐ESTRO guidelines for image‐guided robotic brachytherapy: report of Task Group 192
JP4627872B2 (ja) 異物の生体内配置のための最小侵襲性療法の手順計画
CN103347454B (zh) 用于递送植入物,例如在肺中经支气管镜植入标记物的递送导管和方法
ES2550631T3 (es) Sistema de administración de fluido médico con varita equipada con RFID
EP3148643B1 (en) Systems for brachytherapy planning based on imaging data
US11801024B2 (en) Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
EP2667780B1 (en) Image acquisition optimization
JP2012506724A (ja) 治療計画のための連続的最適化
EP2080136A1 (en) Method and apparatus for optimizing a computer assisted surgical procedure
CN102319117A (zh) 基于磁导航融合实时超声信息的大血管内介入物植入系统
CN101530338A (zh) 使用机器人x线装置进行心脏瓣膜介入手术的方法和设备
AU2019415870B2 (en) Medical robot
CN109907825B (zh) 混合现实引导的近距离粒子手术植入系统
CN109330687A (zh) 一种手术机器人系统
CN112316318A (zh) 一种图像引导放射治疗的摆位引导系统和方法
WO2022267767A1 (zh) 自动化粒子植入系统、粒子链生成机构和穿刺设备
CN113856067A (zh) 一种多模态数据融合的放疗位置确定方法及辅助机器人系统
EP3184148A1 (en) Device for percutaneous interstitial brachytherapy
WO2023107384A1 (en) Image guided robotic spine injection system
CN115518305A (zh) 用于放射性粒子植入的手术机器人和手术机器人系统
US11529738B2 (en) Control system and a method for operating a robot
WO2024000266A1 (zh) 一种图像引导放射治疗系统及其方法
WO2019141262A1 (en) Bone fracture reduction device and system
CN117942151A (zh) 医疗导航设备、医疗透视设备和医疗透视处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022827265

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022827265

Country of ref document: EP

Effective date: 20231222

NENP Non-entry into the national phase

Ref country code: DE