WO2022267720A1 - 一种数据传输方法和通信装置 - Google Patents

一种数据传输方法和通信装置 Download PDF

Info

Publication number
WO2022267720A1
WO2022267720A1 PCT/CN2022/091804 CN2022091804W WO2022267720A1 WO 2022267720 A1 WO2022267720 A1 WO 2022267720A1 CN 2022091804 W CN2022091804 W CN 2022091804W WO 2022267720 A1 WO2022267720 A1 WO 2022267720A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
user experience
terminal
experience evaluation
evaluation mode
Prior art date
Application number
PCT/CN2022/091804
Other languages
English (en)
French (fr)
Inventor
曹佑龙
廖树日
陈二凯
徐瑞
窦圣跃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22827218.3A priority Critical patent/EP4319252A1/en
Priority to BR112023027377A priority patent/BR112023027377A2/pt
Publication of WO2022267720A1 publication Critical patent/WO2022267720A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44209Monitoring of downstream path of the transmission network originating from a server, e.g. bandwidth variations of a wireless network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • H04N21/2402Monitoring of the downstream path of the transmission network, e.g. bandwidth available
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/647Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
    • H04N21/64723Monitoring of network processes or resources, e.g. monitoring of network load
    • H04N21/64738Monitoring network characteristics, e.g. bandwidth, congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/647Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
    • H04N21/64784Data processing by the network

Definitions

  • the present application relates to the communication field, and more specifically, relates to a data transmission method and a communication device.
  • XR extended reality
  • VR virtual reality
  • AR augmented reality
  • MR mixed reality
  • XR video is composed of video frames that arrive periodically.
  • the transmission process of XR video can be to divide a picture frame of XR video into dozens of Internet protocol (internet protocol, IP) data packets at the network transmission layer, and transmit them to the core network, and then the IP data packets are then wirelessly accessed.
  • IP Internet protocol
  • Network radio access network
  • the present application provides a data transmission method and a communication device, so that a network device can accurately adjust communication behavior with a terminal according to user experience fed back by the terminal, thereby improving user experience.
  • the present application provides a data transmission method, which can be executed by a network device, or can also be executed by a component (such as a chip, a chip system, etc.) configured in the network device, and can also be implemented by Logic modules or software implementations of all or part of network device functions are not limited in this application.
  • the method includes: sending first information to the terminal, the first information is used to configure a user experience evaluation mode, the user experience evaluation mode is one of multiple user experience evaluation modes, and the user experience evaluation mode is used to evaluate the impact of network transmission on user experience receiving second information from the terminal, where the second information includes information on the impact of network transmission on user experience, and communicating with the terminal based on the second information.
  • the network device can use the first information to configure the user experience evaluation mode for the terminal to determine the impact of the network transmission status on the user experience, so that the terminal can obtain the impact of the network transmission status on the user based on the user experience evaluation mode configured by the network device.
  • Experience impact information configure the user experience evaluation mode for the terminal through the network device, so that the measurement method of each terminal on the user experience is controllable, and the network device can accurately adjust the communication with the terminal according to the impact of the network transmission on the user experience fed back by the terminal. Behavior, thereby improving system efficiency and improving user experience.
  • the first information is further used to configure parameters of the user experience evaluation mode.
  • the terminal may pre-store multiple user experience evaluation modes including undetermined parameters.
  • the network device sends the first information to the terminal, configures a user experience evaluation mode including undetermined parameters for the terminal, and configures parameters of the user experience evaluation mode.
  • Network devices can configure different parameters for different terminals according to different service requirements of different terminals, so as to meet the different needs of different terminals and bring better experience to users.
  • the method further includes: sending third information to the terminal, where the third information is used to configure parameters of the user experience evaluation mode.
  • the terminal may also pre-store multiple user experience evaluation modes including undetermined parameters.
  • the network device sends the first information to the terminal, configures the user experience evaluation mode including undetermined parameters for the terminal, and sends the third information to the terminal, configures the parameters of the user experience evaluation mode configured by the first information for the terminal.
  • Network devices can configure different parameters for different terminals according to different service requirements of different terminals, so as to meet the different needs of different terminals and bring better experience to users.
  • the user experience evaluation mode includes an image quality experience evaluation mode and an interactive experience evaluation mode.
  • the image quality experience evaluation mode is used to evaluate the impact of transmission errors on the image quality experience
  • the interactive experience evaluation mode Mode is used to evaluate the impact of transmission delay on interactive experience.
  • the impact of transmission errors on the image quality experience can be obtained through the image quality experience mode, and the impact of transmission delay on the interactive experience can be obtained through the interactive experience mode.
  • the user experience evaluation score does not reach the target evaluation score, it can be better judged whether it is Whether the transmission error has an impact on the user experience evaluation score, or the transmission delay has an impact on the user experience evaluation score, or both have an impact on the user experience evaluation score, and the communication behavior with the terminal can be adjusted in a targeted manner , thereby improving the user experience.
  • the information on the impact of network transmission on user experience includes image quality experience evaluation information and interactive experience evaluation information, and the image quality experience evaluation mode is used to determine the image quality experience evaluation information.
  • the interactive experience evaluation mode is used to determine the interactive experience evaluation information.
  • the image quality experience evaluation information is used to indicate the impact coefficient or evaluation score of the transmission error on the image quality experience
  • the interactive experience evaluation information is used to indicate the impact coefficient or evaluation score of the transmission delay on the interactive experience.
  • the network device may receive the image quality experience evaluation score or the influence coefficient of the transmission error on the image quality experience fed back by the terminal, and the interaction experience evaluation score or the influence coefficient of the transmission delay on the interactive experience.
  • the communication behavior with the terminal can be adjusted in a targeted manner, Thereby improving user experience.
  • the information on the influence of network transmission on user experience is used to indicate the quality evaluation score of the extended reality
  • the image quality experience evaluation mode and the interactive experience evaluation mode are used to determine the quality evaluation score of the extended reality.
  • the network device can receive the XR quality evaluation score fed back by the terminal.
  • the XR quality evaluation score can be obtained by the terminal based on the image quality experience evaluation score obtained by the image quality experience evaluation mode, and the interactive experience evaluation score obtained by the interactive experience mode. . In this way, when the XR quality evaluation score does not reach the target XR quality evaluation score, the communication behavior with the terminal can be adjusted in a targeted manner, thereby improving user experience.
  • communicating with the terminal based on the second information includes: based on the second information and a channel quality indicator (channel quality indicator, CQI), determining to communicate with the terminal A modulation and coding scheme (modulation and coding scheme, MCS) for communication, for communicating with the terminal based on the MCS.
  • CQI channel quality indicator
  • MCS modulation and coding scheme
  • the network device can determine the current MCS through the mapping relationship between the CQI and the MCS, adjust the MCS according to the second information, and communicate with the terminal based on the adjusted MCS, which can bring better user experience.
  • the present application provides a data transmission method, which can be performed by a terminal, or can also be performed by a component (such as a chip, a chip system, etc.) configured in the terminal, or can be implemented by all Or a logic module or software implementation of some terminal functions, which is not limited in this application.
  • a component such as a chip, a chip system, etc.
  • the method includes: receiving first information from a network device, and determining a user experience evaluation mode based on the first information, the user experience evaluation mode is one of multiple user experience evaluation modes, and the user experience evaluation mode is used to evaluate the impact of network transmission on users Influence on experience, sending second information to the network device, where the second information includes information on the influence of network transmission on user experience.
  • the terminal can receive the first information from the network device, and can determine the user experience evaluation mode based on the first information, and send the second information to the network device that includes information on the impact of network transmission on user experience, so that the network device Based on the second information, the communication behavior with the terminal can be adjusted in time, thereby improving user experience.
  • the method further includes: determining the impact of network transmission on user experience based on the user experience evaluation mode.
  • the method further includes: determining parameters of the user experience evaluation mode based on the first information.
  • the terminal may pre-store multiple user experience evaluation modes including undetermined parameters.
  • the terminal receives the first information from the network device, and based on the first information, the terminal determines a user experience evaluation mode including undetermined parameters and parameters of the user experience evaluation mode.
  • Different terminals may have different service requirements, so different terminals can obtain different parameters, so as to meet the service requirements of the terminal and bring a better experience to the user.
  • the method further includes: receiving third information from the network device; and determining parameters of the user experience evaluation mode based on the third information.
  • the terminal may also pre-store multiple user experience evaluation modes including undetermined parameters.
  • the terminal receives the first information from the network device, the terminal determines the user experience evaluation mode containing the undetermined parameters based on the first information, and the terminal receives the third information from the network device, and the terminal determines based on the third information that the user experience evaluation mode containing the undetermined parameters determined according to the first information Parameters for UX evaluation mode parameters.
  • Different terminals may have different service requirements, so different terminals can obtain different parameters, so as to meet the service requirements of the terminal and bring a better experience to the user.
  • the method further includes: determining the impact of network transmission on user experience based on the user experience evaluation mode and parameters of the user experience evaluation mode.
  • the user experience evaluation mode includes an image quality experience evaluation mode and an interactive experience evaluation mode.
  • the image quality experience evaluation mode is used to evaluate the impact of transmission errors on the image quality experience
  • the interactive experience evaluation mode Mode is used to evaluate the impact of transmission delay on interactive experience.
  • the terminal can obtain the impact of transmission errors on the image quality experience through the image quality experience mode, and the impact of transmission delay on the interactive experience through the interactive experience mode.
  • the user experience evaluation score does not reach the target evaluation score, it can better judge whether it is Does the transmission error have an impact on the user experience evaluation score, or does the transmission delay have an impact on the user experience evaluation score, or both have an impact on the user experience evaluation score, so that the network device can be based on the feedback information of the terminal? Adjust the communication behavior with the terminal in a targeted manner, thereby improving the user experience.
  • the information on the impact of network transmission on user experience includes image quality experience evaluation information and interactive experience evaluation information
  • the method further includes: determining the image quality based on the image quality experience evaluation mode Experience evaluation information; determine the interactive experience evaluation information based on the interactive experience evaluation mode.
  • the image quality experience evaluation information is used to indicate the impact coefficient or evaluation score of the transmission error on the image quality experience
  • the interactive experience evaluation information is used to indicate the impact coefficient or evaluation score of the transmission delay on the interactive experience.
  • the terminal may feed back the image quality experience evaluation score or the influence coefficient of the transmission error on the image quality experience, and the interaction experience evaluation score or the influence coefficient of the transmission delay on the interactive experience to the network device.
  • the network device can adjust the communication with the terminal in a targeted manner behavior, thereby improving the user experience.
  • the information on the impact of network transmission on user experience is used to indicate the quality evaluation score of the extended reality
  • the method further includes: determining based on the image quality experience evaluation mode and the interactive experience evaluation mode Extended Reality Quality Review Score.
  • the terminal may feed back the XR quality evaluation score to the network device, and the XR quality evaluation score may be obtained by combining the image quality experience evaluation score obtained by the terminal according to the image quality experience evaluation mode, and the interactive experience evaluation score obtained according to the interactive experience mode. In this way, when the XR quality evaluation score does not reach the target XR quality evaluation score, the communication behavior with the terminal can be adjusted in a targeted manner, thereby improving user experience.
  • the method further includes: receiving fourth information from the network device, where the fourth information is used to indicate an MCS, and the MCS is related to the second information and the CQI.
  • the CQI may be reported by the terminal to the network device, so that the network device can determine the current MCS according to the mapping relationship between the CQI and the MCS, and adjust the MCS according to the second information, and the terminal can receive the adjusted instruction from the network device
  • the fourth information of the MCS communicates with the network device based on the fourth information, which can bring better user experience.
  • the present application provides a communication device that can implement the method in the first aspect, any possible implementation manner of the first aspect, the second aspect, or any possible implementation manner of the second aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by software and/or hardware.
  • the device may be, for example, a terminal or a network device, or a chip, a chip system, or a processor that supports the terminal or network device to implement the above method, and may also be a logic module or a logic module that can realize all or part of the functions of the terminal or network device. software.
  • the present application provides a communication device, where the communication device includes a processor.
  • the processor is coupled with the memory, and can be used to execute the computer program in the memory, so as to realize the data transmission method in the first aspect, the second aspect, any possible implementation manner of the first aspect, and any possible implementation manner of the second aspect .
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the present application provides a system-on-a-chip, which includes at least one processor, configured to support the implementation of any of the above-mentioned first to second aspects and any possible implementation manners of the first to second aspects.
  • the functions involved for example, receiving or processing the data and/or information involved in the methods described above.
  • the chip system further includes a memory, the memory is used to store program instructions and data, and the memory is located inside or outside the processor.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a communication system, including the foregoing network device and terminal.
  • the present application provides a computer-readable storage medium, where a computer program (also referred to as code, or instruction) is stored on the computer storage medium, and when the computer program is run by a processor, the The method in the first aspect, the second aspect, any possible implementation manner of the first aspect, and any possible implementation manner of the second aspect is executed.
  • a computer program also referred to as code, or instruction
  • the present application provides a computer program product, the computer program product including: a computer program (also called code, or instruction), when the computer program is executed, the above-mentioned first aspect and the first The method in any possible implementation manner of the second aspect, the first aspect, and any possible implementation manner of the second aspect is executed.
  • a computer program also called code, or instruction
  • FIG. 1 is a schematic diagram of a communication system applicable to the data transmission method provided by the embodiment of the present application;
  • FIG. 2 is another schematic diagram of a communication system applicable to the data transmission method provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of transmission of XR video
  • Fig. 4 is a schematic diagram of a frame transmission process
  • Figure 5 is a schematic decomposition diagram of XR-average subjective opinion score (mean opinion score, MOS);
  • Fig. 6 is a schematic diagram of the neural network of the extended reality quality index (XR quality index, XQI) constructed based on the frame arrival situation;
  • XR quality index, XQI extended reality quality index
  • FIG. 7 is a schematic diagram of a neural network for scoring image quality experience based on frame transmission errors
  • FIG. 8 is a schematic diagram of a neural network for scoring interactive experience based on frame transmission delays
  • FIG. 9 is a schematic flow chart applicable to the data transmission method provided by the embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural block diagram of a terminal provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • 5G mobile communication systems for example: fifth generation (5th generation, 5G) mobile communication systems or new radio access technology (new radio access technology, NR).
  • 5G mobile communication system may include non-standalone networking (non-standalone, NSA) and/or standalone networking (standalone, SA).
  • the technical solution provided by this application can also be applied to machine type communication (machine type communication, MTC), inter-machine communication long-term evolution technology (long term evolution-machine, LTE-M), device-to-device (device-to-device, D2D) A network, a machine to machine (M2M) network, an Internet of things (IoT) network, or other networks.
  • MTC machine type communication
  • LTE-M long term evolution-machine
  • D2D device-to-device
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively referred to as the vehicle to other equipment (vehicle to X, V2X, X can represent anything) system
  • the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle Communication with infrastructure (vehicle to infrastructure, V2I), communication between vehicles and pedestrians (vehicle to pedestrian, V2P) or communication between vehicles and networks (vehicle to network, V2N), etc.
  • the network equipment may include all equipment with network transmission functions such as wireless access network equipment and core network equipment.
  • the network equipment will be described in detail below in conjunction with the scenarios shown in FIG. 1 and FIG. 2 . I won't go into details here.
  • the wireless access network device may be any device with a wireless transceiver function.
  • Radio access network equipment includes but not limited to: evolved Node B (evolved Node B, eNB), Node B (Node B, NB), radio network controller (radio network controller, RNC), base station controller (base station controller) , BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), access point in the wireless network system ( access point (AP), wireless relay node (radio relay node, RRN), wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, For example, NR, gNB in the system, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or, it can also
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc. If there are multiple network devices in the communication system, the multiple network devices can be base stations of the same type or different types of base stations; these multiple base stations can support the network of the same technology mentioned above, or can support Networks of the different technologies mentioned above.
  • the base station can communicate with the terminal, and can also communicate with the terminal through a relay station.
  • the network device can also be a wireless controller, a centralized unit, and/or a distributed unit in the wireless access network communication system.
  • the core network device may include a user plane function (UPF).
  • UPF user plane function
  • UPF is the data plane gateway, which can be used for packet routing and forwarding, or quality of service (QoS) processing of user plane data, etc.
  • User data can be connected to the network through this network element.
  • the core network device used to perform the functions of the following network devices may be, for example, a UPF or other network elements having the same or similar functions as the UPF.
  • the core network equipment may also include other core network functional network elements, for example, network exposure function (network exposure function, NEF), session management network element (session management function, SMF), policy control function network element (policy control function, PCF) and other network elements.
  • NEF network exposure function
  • SMF session management network element
  • policy control function network element policy control function
  • PCF policy control function network element
  • the network device may also be a cloud server or the like. This application does not make any limitation to this.
  • the terminal may be a device with a wireless transceiver function.
  • Terminals can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; terminals can also be deployed on water (such as ships, etc.); terminals can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • a terminal may be a device that provides voice/data connectivity to a user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • examples of some terminals can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile internet device (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), vehicle terminals, wireless terminals in self driving (self driving), remote medical (remote medical) Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular Telephones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing Devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in 5G networks or terminals in future evolved public land mobile networks (PLMN), etc.
  • mobile internet device mobile internet device, MID
  • virtual reality virtual reality
  • AR augmented reality
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • a terminal may sometimes also be referred to as terminal equipment, user equipment (UE), access terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device , user agent or user device, etc. Terminals can be fixed or mobile.
  • Terminals can be fixed or mobile.
  • Terminals can communicate with different network devices.
  • the terminal can communicate with multiple base stations of different technologies.
  • the terminal can communicate with the base station supporting the LTE network, and can also communicate with the base station supporting the 5G network. It can also support dual connection with the base station of the LTE network and the base station of the 5G network .
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to a data transmission method provided by an embodiment of the present application.
  • the communication system 100 includes a cloud server, a UPF, a base station, a terminal, and network elements such as NEF, SMF, and PCF.
  • the cloud server can decode and render the video source, etc.
  • the terminal can be devices such as head-mounted display XR glasses, video players, and holographic projectors.
  • data, instructions or signals can be transmitted from the cloud server to the UPF, and the UPF can transmit these data, signaling, instructions or signals to the terminal through the base station, and the terminal receives these data, signaling, instructions or signals Finally, some data or information can be fed back to the UPF through the base station, and the UPF transmits the data or information to the cloud server.
  • the cloud server, UPF or base station may have the functions of the network device in the embodiment of the present application.
  • the cloud server has the function of the network device in the embodiment of the present application. function, the first information, third information or fourth information sent by the cloud server can be forwarded to the terminal by intermediate network elements in the network transmission process such as UPF and base station.
  • the base station has the functions of the network device in the embodiment of the present application
  • the first information, third information or fourth information sent by the base station can be directly sent to the terminal.
  • the first information, the third information or the fourth information will be described in detail below, and will not be repeated here.
  • the specific forms of the network devices and terminals are not limited, and the communication system 100 and the above data transmission process are only exemplary and should not limit the present application.
  • FIG. 2 is a schematic diagram of a communication system 200 applicable to the data transmission method provided by the embodiment of the present application.
  • the communication system 200 includes a cloud server, a terminal, and a wireless fidelity (Wi-Fi) router or a Wi-Fi AP.
  • Wi-Fi wireless fidelity
  • the cloud server can send data, signaling, instructions or information to wireless access network devices such as Wi-Fi routers or Wi-Fi APs, and then these wireless access network devices send them to terminals. After receiving these data, signaling, instructions or information, some feedback data or information can be sent to the wireless network device, and the wireless network device can then send it to the cloud server.
  • the cloud server can transmit XR media data or ordinary video to the XR terminal through a Wi-Fi router or Wi-Fi AP, and the XR terminal can also send feedback information to the cloud server through the original path.
  • the cloud server or Wi-Fi router or Wi-Fi AP has the functions of the network device in the embodiment of the present application.
  • the first information, third information or fourth information sent by the cloud server can be forwarded to the terminal through the Wi-Fi router or Wi-Fi AP.
  • the Wi-Fi router or Wi-Fi AP has the functions of the network device in the embodiment of the present application
  • the first information, the third information or the fourth information sent by the Wi-Fi router or Wi-Fi AP can be directly sent to the terminal.
  • the first information, the third information or the fourth information will be described in detail below, and will not be repeated here.
  • the specific forms of the network devices and terminals are not limited, and the communication system 200 and the above data transmission process are only exemplary and should not limit the present application.
  • Fig. 3 is a schematic diagram of XR video transmission.
  • the XR video transmission shown in FIG. 3 may be a schematic diagram of transmission in, for example, the communication system 100 shown in FIG. 1 .
  • the XR video may consist of a plurality of video frames, and the XR video may be sent, for example, by the cloud server in FIG. 1 , that is, the above-mentioned cloud server may be the sending end of the XR video.
  • the receiving end of the XR video may be the terminal in FIG. 1 .
  • a picture frame of XR video can be divided into dozens of IP data packets at the network transport layer of the sending end, and transmitted to the core network, and then the IP data packets are transmitted to the receiving end through the RAN. It should be understood that the transmission process of the XR video shown in FIG. 3 is only exemplary, and should not impose any limitation on this application.
  • the present application provides a data transmission method.
  • the network device can configure the user experience evaluation mode for the terminal to determine the impact of the network transmission status on the user experience through the first information, and the terminal can configure the user experience evaluation mode based on the network device. Obtain information on the impact of network transmission conditions on user experience. This enables the network device to accurately adjust the communication behavior with the terminal according to the user experience fed back by the terminal, thereby improving the user experience.
  • Frame transmission error It can also be called error frame, and an error occurs during frame transmission. If one of the data packets included in a video frame is corrupted during transmission, the entire picture frame cannot be decoded correctly.
  • FDB maximum frame delay budget
  • FIG. 4 is a schematic diagram of a frame transmission process. As shown in Fig. 4, Fig. 4 shows the situation that 6 video frames arrive. Each video frame can be carried in multiple IP data packets, and each rectangular box in the figure can represent an IP data packet. It can be seen that there is an IP packet transmission error in the second frame in the figure, resulting in a transmission error in the second frame. There is an IP data packet transmission error in the fourth frame, resulting in a transmission error in the fourth frame, and the IP data packet in the fourth frame does not arrive at the time of processing and display, resulting in a delay in the transmission of the fourth frame. In the 5th frame, the IP data packet did not arrive at the time of processing and displaying, which caused the transmission delay of the 5th frame.
  • MOS Mean Subjective Opinion Score
  • Fig. 5 is a schematic exploded view of the XR-MOS. As shown in Figure 5, XR-MOS can be obtained from three perspectives: video source, network transmission and terminal. Wherein, network transmission may include two parts: access network transmission and core network transmission.
  • the cloud server can define the video source-MOS, and the influencing factors of the video source-MOS include: picture quality, frame rate, definition and audio quality, etc.;
  • the network device can define the network transmission-MOS, and the influencing factors of the network transmission-MOS include : The transmission capability, delay budget (packet delay budget, PDB) and packet error rate (packet error rate, PER) of the network side, etc.;
  • the terminal can define the terminal-MOS, and the influencing factors of the terminal-MOS include: the field of view supported by the terminal Angle (field of view, FOV) angle, terminal refresh rate, battery life, wearing comfort and cache processing capability, etc.
  • Extended reality quality evaluation score It can also be called the extended reality quality index (XQI).
  • the XQI proposed by this application is used to evaluate the impact of network transmission on user experience.
  • the basic principle is to use as much as possible statistical data available in network transmission and relevant information on the source and/or terminal side on the network transmission side to approximate the user's subjective experience evaluation of XR services.
  • the network transmission MOS is a subjective evaluation value of human beings, the network transmission-MOS cannot be directly obtained. Therefore, assuming that the video source-MOS and the terminal-MOS are known, XQI is proposed in order to obtain some statistics on the network side The data is used to make the calculated XQI fit better with the network transmission-MOS as much as possible.
  • the user experience XQI value can be obtained by integrating the image quality experience score and the interaction experience score.
  • the quality experience score is mainly related to source-related parameters such as packet errors in network transmission statistics, transmission block (transmission block, TB) errors, frame rate, and group of picture (GOP) size; interactive experience
  • the score is mainly related to the source or terminal related parameters such as packet arrival, packet delay, frame rate, GOP and terminal buffer processing capability of network transmission statistics.
  • the XQI can be defined in many different forms, for example, the XQI can be defined in different forms such as a formula, a neural network, or a table. It can also be understood that there are many different modes for obtaining the value of XQI, corresponding to the above-mentioned several forms can be formula mode, neural network mode or table mode, etc., and these modes can also be collectively referred to as user experience evaluation mode. It should be understood that the user experience evaluation mode is not limited to the above-mentioned formula mode, neural network mode, and table mode, and the user experience evaluation mode may also have other forms, which are not limited in this application.
  • XQI 1 can represent the quality experience score
  • the calculation formula of XQI 1 can be: ⁇ represents the calculation coefficient; FR represents the frame rate of the video frame (frame rate, FR), that is, the amount of data displayed in the video frame per second, for example, the number of frames per second (frames per second, FPS) is 60 frames; Rave represents The frame damage rate in each GOP calculates the average frame damage rate of all GOPs in the statistical period.
  • the calculation formula of the frame damage rate in a GOP can be Where N represents the size of the GOP, and i represents the frame position of the first transmission error in the current GOP.
  • XQI 2 can represent the interaction experience score, for example, the calculation formula of XQI 2 can be: ⁇ represents the calculation coefficient; FR represents the frame rate of the video frame; Q ave represents the average frame skip rate of all GOPs in the statistical period, and the calculation formula of the frame skip rate in a GOP can be M represents the number of skipped frames in the GOP, N represents the size of the GOP; T represents an N-dimensional vector, each element of which represents the time delay caused by the network transmission of each video frame in the GOP.
  • FIG. 6 is a schematic diagram of a neural network of an XQI constructed based on frame arrival conditions.
  • C 1 , C 2 , C 3 , C 4 , C 5 and C 6 in the figure represent weights, f 1 (e), f 2 (e), f 3 (e), f 4 (e), f 5 ( e) and f 6 (e) represent neurons.
  • a neuron is a node in a neural network, and each node may represent a specific output function.
  • FIG. 7 is a schematic diagram of a neural network of XQI 1 constructed based on frame transmission error conditions.
  • XQI 1 in the figure can represent the quality experience score
  • C 7 , C 8 , C 9 , C 10 , C 11 and C 12 represent weights
  • g 1 (e), g 2 (e), g 3 (e), g 4 (e), g 5 (e) and g 6 (e) represent neurons.
  • FIG. 8 is a schematic diagram of a neural network of XQI 2 constructed based on frame transmission delay.
  • XQI 2 in the figure can represent the interactive experience score
  • C 13 , C 14 , C 15 , C 16 , C 17 and C 18 represent weights
  • h 1 (e), h 2 (e), h 3 (e), h 4 (e), h5 (e) and h6 (e) represent neurons.
  • weights and neurons in the neural network diagrams shown in FIG. 6 , FIG. 7 and FIG. 8 are independent of each other and may be the same or different, which is not limited in the present application. It should also be understood that the neural network schematic diagrams in FIG. 6 , FIG. 7 and FIG. 8 are only exemplary and should not limit the present application. For example, in an actual implementation manner, the number of neurons may be more or less, and this application does not make any limitation thereto.
  • the frame transmission error and the frame transmission delay are considered comprehensively, that is, the value of XQI depends on the frame transmission error and the frame transmission delay.
  • Table 1 shows the corresponding relationship between the value of XQI and the situation of frame transmission error and frame transmission delay.
  • PER is used to approximate the situation of frame transmission error
  • PDB is used to approximate the situation of frame transmission demonstration.
  • the first row can represent different values of PDB
  • the first column can represent different values of PER
  • the second column to the sixth row and the sixth column can represent different PER values and different The value of XQI when the value of PDB corresponds. For example, when the PDB is "5 milliseconds (ms)" and the PER is "0.03", the value of the XQI can be found directly in the table as "82".
  • MCS Modulation and coding scheme
  • the CQI can indicate the quality of the current channel, and the CQI corresponds to the signal-to-noise ratio of the channel.
  • the CQI value ranges from 0 to 31. When the CQI value is 0, the channel quality is the worst; when the CQI value is 31, the channel quality is the best.
  • the common value range of CQI is 12-24.
  • the value of the CQI may be reported by the terminal to the network device. For example, Table 3 shows a possible correspondence between different values of CQI and modulation scheme, code rate and efficiency.
  • Table 3 different values of CQI may correspond to different modulation schemes, code rates and efficiencies.
  • Table 3 exemplarily lists modulation schemes such as “QPSK”, “16QAM” and “64QAM”, wherein “QPSK” means quadrature phase shift keying (quadrature phase shift keying, QPSK), and “QAM” means positive Quadrature amplitude modulation (QAM).
  • first, second, etc. are only for the convenience of distinguishing different objects, and should not constitute any limitation.
  • the first information, the second information, the third information, and the fourth information do not necessarily limit the order of sending, but are only used to distinguish the different contents contained in these information.
  • FIG. 9 is a schematic flowchart of a data transmission method 1000 applicable to the embodiment of the present application. As shown in FIG. 9 , the method 1000 may include step 1010 to step 1040 . Each step in the method 1000 is described in detail below.
  • step 1010 the network device sends first information to the terminal.
  • the terminal receives the first information from the network device.
  • the first information is used to configure the user experience evaluation mode.
  • the user experience evaluation mode is one of various user experience evaluation modes, and the user experience evaluation mode is used to evaluate the impact of network transmission on user experience.
  • XQI is used to evaluate the impact of network transmission on user experience, and there are many different modes for obtaining the value of XQI, for example, formula mode, neural network mode, or table mode.
  • XQI can be divided into two parts: image quality experience score and interactive experience score.
  • the user experience evaluation mode includes an image quality experience evaluation mode and an interactive experience evaluation mode.
  • the image quality experience evaluation mode is used to evaluate the impact of transmission errors on image quality experience
  • the interactive experience evaluation mode is used to evaluate the impact of transmission delay on interactive experience.
  • the terminal may pre-store multiple user experience evaluation modes.
  • the multiple user experience evaluation modes pre-stored by the terminal may be a user experience evaluation mode that integrates the impact of transmission errors on image quality experience and the impact of transmission delay on interactive experience, that is, storing and obtaining a value of XQI Various user experience evaluation modes.
  • each user experience evaluation mode in multiple user experience evaluation modes may correspond to an index value
  • the user experience evaluation mode and the index value may be stored on the terminal in the form of a table.
  • Table 4 shows the correspondence between various user experience evaluation modes and indexes.
  • the image quality experience evaluation mode and the interactive experience evaluation mode can also be configured separately.
  • Table 5 shows the correspondence between various image quality experience evaluation modes and indexes.
  • Table 6 shows the correspondence between various interactive experience evaluation modes and indexes.
  • the terminal After the terminal requests the XR service from the network device, and after the network device recognizes the XR service request of the terminal, it may send the first information to the terminal through signaling, and the first information may include an index value corresponding to a certain user experience evaluation mode, so as to Configure the user experience evaluation mode that the terminal can use.
  • the terminal may pre-store multiple user experience evaluation modes in other forms, and is not limited to storing the corresponding relationship between user experience evaluation modes and indexes in the form of tables such as Table 4, Table 5, and Table 6 above.
  • the coefficients or parameters in the formula mode and the neural network mode can be preset known specific values, such as ⁇ and ⁇ in the formula can be preset accurate value.
  • the first information may also be used to configure parameters of the user experience evaluation mode.
  • the first information may also include certain user experience evaluation modes. Concrete values of the parameters to be determined. That is, the first information may be used to indicate an index of a user experience evaluation mode and specific values of parameters to be determined contained in the user experience evaluation mode.
  • the network device may send third information to the terminal, where the third information is used to configure parameters of the user experience evaluation mode.
  • the terminal After the terminal requests the XR service from the network device, after the network device recognizes the XR service request of the terminal, it can send the first information to the terminal through signaling.
  • the first information can include a certain user experience evaluation mode, so as to configure the terminal to use
  • the network device can also send third information to the terminal through signaling, and the third information can be used to indicate the specific value of the parameters of the configured user experience evaluation mode containing undetermined parameters. Configure the parameters of the user experience evaluation mode including undetermined parameters that the terminal is designated to use.
  • the bearer signaling of the first information mentioned above may be radio resource control (radio resource control, RRC) signaling or downlink control information (downlink control information, DCI) or system information block (system information block, SIB), the signaling bearing the third information mentioned above may be RRC signaling or DCI.
  • RRC radio resource control
  • DCI downlink control information
  • SIB system information block
  • step 1020 the terminal determines a user experience evaluation mode based on the first information.
  • the terminal receives the first information from the network device, and may determine a user experience evaluation mode based on the first information.
  • the terminal may pre-store correspondences between various user experience evaluation modes and indexes without undetermined parameters in the form shown in Table 4.
  • the terminal receives the first information from the network device.
  • the first information may be used to indicate an index corresponding to a user experience evaluation mode without undetermined parameters, or the first information includes a certain user experience evaluation mode without undetermined parameters.
  • the index corresponding to the evaluation mode the terminal can determine a user experience evaluation mode that can be used without undetermined parameters according to the index.
  • the terminal may determine that the user experience evaluation mode is the formula mode: Wherein, the specific values of ⁇ and ⁇ are known.
  • the terminal may pre-store correspondences between various user experience evaluation modes and indexes including undetermined parameters in the form shown in Table 4.
  • the terminal receives the first information from the network device.
  • the first information can be used to indicate an index corresponding to a certain user experience evaluation mode containing undetermined parameters and specific values of undetermined parameters, or the first information includes some kind of undetermined parameters.
  • the index corresponding to the user experience evaluation mode of the undetermined parameters and the specific value of the undetermined parameter the terminal can determine a certain user experience evaluation mode including the undetermined parameter that can be used according to the index and the specific value of the undetermined parameter.
  • the terminal may determine the parameters of the user experience evaluation mode based on the first information.
  • the terminal may determine that the user experience evaluation mode is the formula mode: Among them, ⁇ and ⁇ are undetermined parameters.
  • the terminal may pre-store correspondences between various user experience evaluation modes and indexes including undetermined parameters in the form shown in Table 4.
  • the terminal receives the first information from the network device.
  • the first information may be used to indicate an index corresponding to a certain user experience evaluation mode containing undetermined parameters, or the first information includes a certain user experience evaluation mode containing undetermined parameters.
  • the terminal may determine a usable user experience evaluation mode including undetermined parameters according to the index.
  • the terminal also receives third information from the network device, the third information may indicate specific values of pending parameters of the user experience evaluation mode containing pending parameters determined based on the first information, or, the third information The specific values of the pending parameters of the user experience evaluation mode including the pending parameters determined based on the first information may be indicated, and the terminal may determine the parameters of the user experience evaluation mode based on the third information.
  • the terminal may also determine the impact of network transmission on user experience based on the user experience evaluation mode.
  • the terminal pre-stores correspondences between various user experience evaluation modes and indexes without undetermined parameters in the form shown in Table 4, and the terminal receives the first information from the network device, and based on the first information If the information determines a certain user experience evaluation mode without undetermined parameters, the terminal uses the user experience evaluation mode without undetermined parameters to determine the impact of network transmission on user experience.
  • the terminal may determine that the user experience evaluation mode is the formula mode: Wherein, the specific values of ⁇ and ⁇ are known, the terminal can determine the specific values of ⁇ and ⁇ based on the first information, and then use the formula to calculate the value of XQI, and the obtained value of XQI can represent the impact of network transmission on user experience.
  • the user experience evaluation mode determined by the terminal is a neural network mode: an XQI neural network constructed based on the arrival of frames, the terminal can use this neural network to obtain the value of XQI, and the obtained value of XQI can represent the impact of network transmission on user experience. Impact.
  • the terminal may also determine the impact of network transmission on user experience based on the user experience evaluation mode and parameters of the user experience evaluation mode.
  • the terminal pre-stores correspondences between multiple user experience evaluation modes and indexes containing undetermined parameters in the form shown in Table 4, and the terminal receives the first information from the network device, and based on the first
  • the terminal brings the parameter value into the user experience evaluation mode with undetermined parameters, and uses the user experience evaluation mode with undetermined parameters.
  • the user experience evaluation mode determines the impact of network transmission on user experience.
  • the terminal may determine that the user experience evaluation mode is the formula mode: Among them, ⁇ and ⁇ are undetermined parameters.
  • the terminal brings the specific values of ⁇ and ⁇ obtained based on the first information into the formula, and the terminal can use this formula to calculate the value of XQI.
  • the obtained value of XQI can represent the network transmission. Impact on user experience.
  • the terminal pre-stores the corresponding relationship between various user experience evaluation modes and indexes containing undetermined parameters in the form shown in Table 4, and the terminal receives the first information and the third information from the network device , and a certain user experience evaluation mode containing undetermined parameters is determined based on the first information, and the parameters of the user experience evaluation mode are determined based on the third information, the terminal brings the parameter value into the user experience evaluation mode containing undetermined parameters In the mode, use the user experience evaluation mode containing undetermined parameters to determine the impact of network transmission on user experience.
  • the terminal may determine that the user experience evaluation mode is the formula mode: Among them, ⁇ and ⁇ are undetermined parameters.
  • the terminal brings the specific values of ⁇ and ⁇ obtained based on the third information into the formula, and the terminal can use this formula to calculate the value of XQI.
  • the obtained value of XQI can represent the network transmission. Impact on user experience.
  • the network device may configure specific values of different parameters to be determined to the terminal through signaling according to different service requirements of each terminal. It can also be understood that the specific values of the parameters to be determined contained in or indicated in the first information or the third information sent by the network device to different terminals may be different.
  • step 1030 the terminal sends the second information to the network device.
  • the network device receives the second information from the terminal.
  • the second information includes information on the impact of network transmission on user experience.
  • the information on the impact of network transmission on user experience includes image quality experience evaluation information and interactive experience evaluation information.
  • the image quality experience evaluation mode is used to determine the image quality experience evaluation information
  • the interactive experience evaluation mode is used to determine the interactive experience evaluation information.
  • the information on the impact of network transmission on user experience is used to indicate the XR quality evaluation score, and the image quality experience evaluation mode and the interactive experience evaluation mode are used to determine the XR quality evaluation score.
  • the information on the impact of network transmission on user experience included in the second information sent by the terminal to the network device may be used to indicate the extended reality quality evaluation score. It can also be understood that the terminal sends the extended reality quality evaluation score to the network device, that is, the terminal sends the value of the XQI to the network device.
  • the terminal may first determine the XR quality evaluation score, that is, the terminal may first determine the value of the XQI. For example, the above-mentioned XQI value obtained by the terminal based on the first information or based on the first information and the third information is not repeated here for brevity.
  • the terminal may determine the extended reality quality evaluation score based on the image quality experience evaluation mode and the interaction experience evaluation mode.
  • the terminal pre-stores the corresponding relationship between various image quality experience evaluation modes and indexes without undetermined parameters in the form shown in Table 5, and pre-stores a variety of image quality experience evaluation modes without undetermined parameters in the form shown in Table 6.
  • the corresponding relationship between the interactive experience evaluation mode and the index the terminal receives the first information from the network device, the first information indicates that the index for determining the image quality experience evaluation mode is 1, and the index for determining the interactive experience evaluation mode is 2, then the terminal according to the index Determine the image quality experience mode as the formula mode: Among them, the specific value of ⁇ is known, and XQI 1 is calculated according to this formula; the terminal determines the interactive experience mode as the neural network mode according to the index: the neural network of XQI 2 constructed based on the frame transmission delay, and XQI is obtained based on the neural network 2 .
  • the second information sent by the terminal to the network device includes image quality experience evaluation information and interactive experience evaluation information, and the image quality experience evaluation information uses
  • the image quality experience evaluation information uses
  • the interactive experience evaluation information is used to indicate the influence coefficient or evaluation score of the transmission delay on the interactive experience.
  • the terminal sends to the network device an impact coefficient or evaluation score of transmission errors on image quality experience, and an impact coefficient or evaluation score of transmission delay on interactive experience.
  • the terminal can determine the image quality experience based on the image quality experience evaluation mode
  • the evaluation information is to determine the interactive experience evaluation information based on the interactive experience evaluation mode.
  • the calculation formula for the coefficient w 1 of transmission error on image quality experience can be:
  • frame 1, frame 3, and frame 6 can be displayed normally, frame 2 has a transmission error, frame 4 has a transmission error and delay in transmission, and frame 5 has a delay in transmission, in this case
  • the actual value of the corresponding XQI may be obtained based on the first information.
  • the value of XQI is XQI a
  • w 1 can be used to represent the impact of frame transmission errors on XQI; assuming that the frames in a statistical period are all received by the terminal within the delay constraint, then the first frame and the third frame , the 5th and 6th frames can be displayed normally, and the 2nd and 4th frames have transmission errors. Under this assumption, the value of XQI is XQI b .
  • w 2 can be used to indicate the impact of transmission delay on XQI Impact.
  • the terminal when the terminal determines the value of XQI, the value of XQI a , and the value of XQI b , the terminal sends to the network device the coefficient w 1 of the influence of transmission errors on image quality experience, and the coefficient of influence of transmission delay on interactive experience w 2 ; or, the terminal sends to the network device the influence coefficient w 1 of transmission errors on the image quality experience, and, the interactive experience evaluation score; or, the terminal sends the image quality experience evaluation score to the network device, and, the transmission delay affects the interactive experience The influence coefficient w 2 of ; or, the terminal sends the image quality experience evaluation score to the network device, and, the interaction experience evaluation score.
  • step 1040 the network device communicates with the terminal based on the second information.
  • the network device can adjust the communication behavior with the terminal, for example, reduce the MCS and/or increase the scheduling priority.
  • the network device may determine an MCS for communicating with the terminal based on the second information and the CQI, the terminal receives fourth information from the network device, the fourth information is used to indicate the MCS, and the MCS is related to the second information and the CQI, so Network devices and terminals can communicate based on MCS.
  • fourth information bearer signaling may be DCI.
  • the network device when the terminal sends an XQI value to the network device, the network device adjusts the communication behavior with the terminal based on the XQI value, and communicates with the terminal based on the adjusted communication behavior.
  • the network device may decrease the MCS and/or increase the scheduling priority, and communicate with the terminal based on the reduced MCS and/or the increased scheduling priority.
  • the reduced MCS can be determined by combining the XQI value and the CQI. For example, based on the formula: to determine the reduced MCS, where I 1 represents the current MCS index, I 2 represents the reduced MCS index, XQI 0 represents the value of the target XQI, and XQI represents the current XQI value.
  • the CQI value can be reported by the terminal to the network device.
  • the network device can first determine the current MCS index according to the mapping relationship between the CQI and the MCS. For example, if the value of CQI sent by the terminal is 3, the value of XQI is 70, and the value of target XQI is 80, at this time, according to Table 3, it can be determined that the current code rate is 193, and in Table 2, the code rate The MCS index corresponding to the speed 193 is 3, that is, the value of I 1 is 4, and the value of XQI 0 is 80, so the calculated I 2 is 2 according to the above formula.
  • the network device when the terminal sends w1 and w2 to the network device, the network device adjusts the communication behavior with the terminal based on w1 and w2 , and communicates with the terminal based on the adjusted communication behavior.
  • the network device can reduce the MCS according to the value of w1, and communicate with the terminal based on the reduced MCS; and/or, can increase the scheduling priority according to w2, and communicate with the terminal based on the adjusted scheduling priority.
  • the reduced MCS can be determined by combining the value of w 1 and the CQI. For example, based on the formula: to determine the reduced MCS, where I 1 represents the current MCS index, I 2 represents the reduced MCS index, and w 1 is the coefficient of influence of transmission errors on image quality experience.
  • the scheduling priority can be adjusted according to w 2 , the larger the value of w 2 , the greater the need to increase the scheduling priority; the smaller the value of w 2 , the smaller the need to increase the scheduling priority.
  • the network device when the terminal sends XQI 1 and XQI 2 to the network device, the network device adjusts the communication behavior with the terminal based on XQI 1 and XQI 2 , and communicates with the terminal based on the adjusted communication behavior.
  • the network device can reduce the MCS according to the value of XQI 1 , and communicate with the terminal based on the reduced MCS; and, the current value of XQI 2 is less than the target interaction experience evaluation score
  • the scheduling priority can be increased according to XQI 2 , and communication with the terminal can be performed based on the adjusted scheduling priority.
  • the reduced MCS can be determined by combining the XQI value and the CQI. For example, based on the formula: To determine the reduced MCS, where I 1 represents the current MCS index, I 2 represents the reduced MCS index, Indicates the target image quality experience evaluation score, and XQI 1 indicates the current image quality experience evaluation score.
  • Scheduling priority can be adjusted according to XQI 2 , XQI 2 and The greater the difference, the greater the need to increase the scheduling priority; XQI 2 and The smaller the difference, the smaller the need to increase the scheduling priority.
  • the network device can separately configure the interactive experience evaluation mode to the terminal through signaling, so that the terminal can determine the interactive experience evaluation score and feed back the interactive experience evaluation score to the network device;
  • the network device can also separately configure the image quality experience evaluation mode to the terminal through the information, so that the terminal can determine the image quality experience evaluation score and feed back the image quality experience evaluation score to the network device.
  • the network device can configure the user experience evaluation mode for the terminal to determine the impact of network transmission conditions on user experience through the first information, so that the terminal can obtain the user experience evaluation mode based on the network device configuration.
  • Information about the impact of network transmission conditions on user experience Therefore, configure the user experience evaluation mode for the terminal through the network device, so that the measurement method of each terminal on the user experience is controllable, and the network device can accurately adjust the communication with the terminal according to the impact of the network transmission on the user experience fed back by the terminal. Behavior, thereby improving system efficiency and improving user experience.
  • This method can also effectively and accurately measure the impact of network transmission quality on XR user experience, and then use the extended reality quality evaluation score, or the image quality experience evaluation score and/or interactive experience evaluation score to guide operators to build networks.
  • Fig. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1100 may include: a processing module 1110 and a transceiver module 1120.
  • the communication device 1100 can be used to execute the execution steps of the network device and/or the terminal in the data transmission method 1000 .
  • the transceiver module 1120 can be used to send the first information to the terminal; receive the second information from the terminal; the processing module 1110 and the transceiver module 1120 can The cooperation is used to communicate with the terminal based on the second information.
  • the first information is used to configure the user experience evaluation mode, which is one of multiple user experience evaluation modes, and the user experience evaluation mode is used to evaluate the impact of network transmission on user experience; the second information includes network transmission Information about the impact on user experience.
  • the first information is also used to configure parameters of the user experience evaluation mode.
  • the transceiving module 1120 is further configured to send third information to the terminal, where the third information is used to configure parameters of the user experience evaluation mode.
  • the user experience evaluation mode includes an image quality experience evaluation mode and an interactive experience evaluation mode
  • the image quality experience evaluation mode is used to evaluate the impact of transmission errors on the image quality experience
  • the interactive experience evaluation mode is used to evaluate The impact of transmission delay on interactive experience.
  • the information on the impact of network transmission on user experience includes the image quality experience evaluation information and the interaction experience evaluation information, and the image quality experience evaluation mode is used to determine the image quality experience evaluation information, The interaction experience evaluation mode is used for determining the interaction experience evaluation information.
  • the image quality experience evaluation information is used to indicate the impact coefficient or evaluation score of the transmission error on the image quality experience
  • the interaction experience evaluation information is used to indicate the impact coefficient or evaluation score of the transmission delay on the interactive experience.
  • the information on the impact of the network transmission on user experience is used to indicate the extended reality quality evaluation score
  • the image quality experience evaluation mode and the interaction experience evaluation mode are used for determining the extended reality quality evaluation score.
  • the processing module 1110 may be configured to determine an MCS for communicating with the terminal based on the second information and the CQI; the transceiver module 1120 may be configured to communicate with the terminal based on the MCS.
  • the transceiver module 1120 can be used to receive the first information from the network device and send the second information to the network device.
  • the processing module 1110 may be configured to determine a user experience evaluation mode based on the first information.
  • the user experience evaluation mode is one of multiple user experience evaluation modes, and the user experience evaluation mode is used to evaluate the impact of network transmission on user experience; the second information includes information on the impact of network transmission on user experience.
  • the processing module 1110 is further configured to determine the impact of the network transmission on user experience based on the user experience evaluation mode.
  • the processing module 1110 is further configured to determine parameters of the user experience evaluation mode based on the first information.
  • the receiving module 1120 is further configured to receive third information from the network device; the processing module 1110 is further configured to determine parameters of the user experience evaluation mode based on the third information.
  • the processing module 1110 is further configured to determine the impact of the network transmission on user experience based on the user experience evaluation mode and parameters of the user experience evaluation mode.
  • the user experience evaluation mode includes an image quality experience evaluation mode and an interactive experience evaluation mode
  • the image quality experience evaluation mode is used to evaluate the impact of transmission errors on the image quality experience
  • the interactive experience evaluation mode is used to evaluate The impact of transmission delay on interactive experience.
  • the information on the impact of network transmission on user experience includes the image quality experience evaluation information and the interaction experience evaluation information
  • the processing module 1110 is further configured to determine the image quality experience evaluation mode based on the image quality experience evaluation mode.
  • Quality experience evaluation information determining the interaction experience evaluation information based on the interaction experience evaluation mode.
  • the image quality experience evaluation information is used to indicate the impact coefficient or evaluation score of the transmission error on the image quality experience
  • the interaction experience evaluation information is used to indicate the impact coefficient or evaluation score of the transmission delay on the interactive experience.
  • the information on the impact of the network transmission on user experience is used to indicate the quality evaluation score of the extended reality
  • the processing module 1110 is further configured to determine the extended reality based on the image quality experience evaluation mode and the interaction experience evaluation mode. Realistic Quality Rating Score.
  • the receiving module 1120 is further configured to receive fourth information from the network device, where the fourth information is used to indicate an MCS, and the MCS is related to the second information and a channel quality indicator (CQI).
  • the fourth information is used to indicate an MCS
  • the MCS is related to the second information and a channel quality indicator (CQI).
  • CQI channel quality indicator
  • Fig. 11 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1200 may be used to realize the functions of the network device and/or the terminal in the above method.
  • the communication device 1200 may be a system on a chip.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the communications apparatus 1200 may include at least one processor 1210 configured to implement functions of a network device and/or a terminal in the method provided by the embodiment of the present application.
  • the processor 1210 can be used to send the first information to the terminal; receive the second information from the terminal; based on the second information, communicate with terminal to communicate.
  • the first information is used to configure the user experience evaluation mode, which is one of multiple user experience evaluation modes, and the user experience evaluation mode is used to evaluate the impact of network transmission on user experience;
  • the second information includes network transmission Information about the impact on user experience.
  • the processor 1210 can be used to receive the first information from the network device; determine the user experience evaluation mode based on the first information; send to the network device second information.
  • the user experience evaluation mode is one of multiple user experience evaluation modes, and the user experience evaluation mode is used to evaluate the impact of network transmission on user experience; the second information includes information on the impact of network transmission on user experience.
  • the communication device 1200 may also include at least one memory 1220 for storing program instructions and/or data.
  • the memory 1220 is coupled to the processor 1210 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1210 may operate in cooperation with the memory 1220 .
  • Processor 1210 may execute program instructions stored in memory 1220 . At least one of the at least one memory may be included in the processor.
  • the communication device 1200 may also include a communication interface 1230 for communicating with other devices through a transmission medium, so that devices used in the communication device 1200 can communicate with other devices.
  • the other device when the communication device 1200 is used to realize the function of the network device in the method provided by the embodiment of the present application, the other device may be a terminal; when the communication device 1200 is used to realize the function of the terminal in the method provided by the embodiment of the present application function, the other device may be a network device.
  • the communication interface 1230 may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing a transceiver function.
  • the processor 1210 can use the communication interface 1230 to send and receive data and/or information, and be used to implement the method performed by the network device and/or the terminal described in the embodiment corresponding to FIG. 9 .
  • a specific connection medium among the processor 1210, the memory 1220, and the communication interface 1230 is not limited.
  • the processor 1210 , the memory 1220 and the communication interface 1230 are connected through a bus 1240 .
  • the bus 1240 is represented by a thick line in FIG. 11 , and the connection manner between other components is only for schematic illustration and is not limited thereto.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 11 , but it does not mean that there is only one bus or one type of bus.
  • FIG. 12 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 1300 has the functions of the terminal shown in FIG. 9 , and the terminal 1300 can be applied to the communication system 100 shown in FIG. 1 or the communication system 200 shown in FIG. 2 .
  • the terminal 1300 includes a processor 1301 and a transceiver 1302 .
  • the terminal 1300 further includes a memory 1303 .
  • the processor 1301, the transceiver 1302 and the memory 1303 can communicate with each other through an internal connection path, and transmit control and/or data signals. Call and run the computer program to control the transceiver 1302 to send and receive signals.
  • the terminal device 1300 may further include an antenna 1304, configured to send the uplink data or uplink control signaling output by the transceiver 1302 through wireless signals.
  • the terminal 1300 further includes a Wi-Fi module 1311 for accessing a wireless network.
  • the processor 1301 and the memory 1303 may be combined into a processing device, and the processor 1301 is configured to execute the program codes stored in the memory 1303 to realize the above functions.
  • the memory 1303 may also be integrated in the processor 1301 , or be independent of the processor 1301 .
  • the processor 1301 may correspond to the processing module 1110 in FIG. 10 or the processor 1210 in FIG. 11 .
  • the above-mentioned transceiver 1302 may correspond to the transceiver module 1120 in FIG. 10 or the communication interface 1230 in FIG. 11 .
  • the transceiver 1302 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal 1300 may further include a power supply 1305, configured to provide power to various devices or circuits in the terminal 1300.
  • the terminal device 1300 may also include one or more of an input unit 1306, a display unit 1307, an audio circuit 1308, a camera 1309, a sensor 1310, etc.
  • the Audio circuitry may also include a speaker 1308a, a microphone 1308b, and the like.
  • the terminal 1300 shown in FIG. 12 can implement various procedures related to the terminal in the method embodiment shown in FIG. 9 .
  • the operations and/or functions of the various modules in the terminal 1300 are respectively for realizing the corresponding processes in the above method embodiments.
  • the processor 1301 can be used to execute the actions described in the above method embodiments implemented by the terminal, and the transceiver 1302 can be used to execute the above The actions described in the method embodiments that the terminal sends to or receives from the network device.
  • the transceiver 1302 can be used to execute the above The actions described in the method embodiments that the terminal sends to or receives from the network device.
  • FIG. 13 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • the base station 1400 has the function of the network device shown in FIG. 9 , and the base station 1400 can be applied to the communication system 100 shown in FIG. 1 .
  • the base station 1400 may include one or more radio frequency units, such as a remote radio unit (remote radio unit, RRU) 1410 and one or more baseband units (BBU) (also referred to as distributed units ( distributed unit, DU)) 1420.
  • the RRU 1410 may be called a transceiver unit, and may correspond to the transceiver module 1120 in FIG. 10 or the communication interface 1230 in FIG. 11 .
  • the RRU 1410 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and may include at least one antenna 1411 and a radio frequency unit 1412.
  • the RRU 1410 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or called receiver, receiving circuit), and the sending unit may correspond to a transmitter (or called transmitter, sending circuit).
  • the RRU 1410 part is mainly used for transmitting and receiving radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for performing the operation process of the network device in the above method embodiment, such as sending the first information and the third information to the terminal or fourth information etc.
  • the BBU 1420 part is mainly used for baseband processing, controlling the base station, and the like.
  • the RRU 1410 and the BBU 1420 may be physically set together, or physically separated, that is, a distributed base station.
  • the BBU 1420 is the control center of the base station, and can also be called a processing unit, which can correspond to the processing module 1110 in Figure 10 or the processor 1210 in Figure 11, and is mainly used to complete baseband processing functions, such as channel coding and multiplexing , modulation, spread spectrum, etc.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure related to the network device in the above method embodiment, for example, to generate the above first information, third information or fourth information and so on.
  • the BBU (processing unit) may be used to control the base station to execute the operation process related to the network device in the above method embodiment.
  • the BBU 1420 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may separately support wireless access networks of different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1420 also includes a memory 1421 and a processor 1422.
  • the memory 1421 is used to store necessary instructions and data.
  • the processor 1422 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation process related to the network device in the above method embodiment.
  • the memory 1421 and the processor 1422 may serve one or more boards. That is to say, memory and processors can be set independently on each single board. It may also be that multiple single boards share the same memory and processor. In addition, necessary circuits can also be set on each single board.
  • the base station 1400 shown in FIG. 13 can implement various processes involving network devices in the method embodiment shown in FIG. 9 .
  • the operations and/or functions of the various modules in the base station 1400 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the BBU 1420 can be used to execute the actions implemented internally by the network device, and the RRU 1410 can be used to perform the actions of sending, receiving and forwarding by the network device .
  • the RRU 1410 can be used to perform the actions of sending, receiving and forwarding by the network device .
  • the base station 1400 shown in FIG. 13 is only a possible form of an access network device, and should not constitute any limitation to this application.
  • the method provided in this application can be applied to other forms of network equipment.
  • it includes an active antenna unit (active antenna unit, AAU), and may also include a centralized unit (centralized, CU) and/or DU, or include a BBU and an adaptive radio unit (adaptive radio unit, ARU), or a BBU.
  • AAU active antenna unit
  • CU centralized unit
  • DU centralized, CU
  • BBU adaptive radio unit
  • ARU adaptive radio unit
  • the present application also provides a chip system, the chip system includes at least one processor, configured to implement the functions involved in the method performed by the network device and/or the terminal in the embodiment shown in FIG. 9 above, for example, receiving or Processing of data and/or information involved in the methods described above.
  • the chip system further includes a memory, the memory is used to store program instructions and data, and the memory is located inside or outside the processor.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application also provides a communication system, including the aforementioned access network device and terminal.
  • the present application also provides a computer-readable storage medium, on which a computer program (also referred to as code, or instruction) is stored, and when the computer program is run by a processor, the above-mentioned Figure 9 The method performed by the network device and/or the terminal in the illustrated embodiment is performed.
  • a computer program also referred to as code, or instruction
  • the present application also provides a computer program product, and the computer program product includes: a computer program (also referred to as code, or instruction), when the computer program is executed, the computer executes the network program in the embodiment shown in FIG. 9 . Methods performed by devices and/or terminals.
  • a computer program also referred to as code, or instruction
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other possible Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Program logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • unit may be used to denote a computer-related entity, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each functional unit may be fully or partially implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions (programs). When the computer program instructions (program) are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种数据传输方法和通信装置。该方法包括:网络设备向终端发送第一信息,终端接收第一信息,并基于第一信息确定用户体验评价模式,终端向网络设备发送第二信息,网络设备接收第二信息,并基于第二信息,与终端进行通信。其中,第一信息用于配置用户体验评价模式,用户体验评价模式是多种用户体验评价模式中的一种,用户体验评价模式用于评价网络传输对用户体验的影响,第二信息包含网络传输对用户体验的影响的信息。网络设备为终端配置用户体验评价模式,终端基于该用户体验评价模式得到网络传输状况对用户体验的影响信息,并反馈给网络设备,从而网络设备可以根据该反馈信息,及时调整与终端的通信行为,进而提高用户的体验感。

Description

一种数据传输方法和通信装置
本申请要求于2021年06月23日提交中国国家知识产权局、申请号为202110701156.2、申请名称为“一种数据传输方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更为具体地,涉及一种数据传输方法和通信装置。
背景技术
近年来,随着扩展现实(extended reality,XR)技术的不断进步和完善,相关产业得到了蓬勃的发展。如今,扩展现实技术已经进入到教育、娱乐、军事、医疗、环保、交通运输、公共卫生等各种与人们生产、生活息息相关的领域当中。XR是各种现实相关技术的总称,具体包括:虚拟现实(virtual reality,VR),增强现实(augmented reality,AR)和混合现实(mixed reality,MR)等。
XR视频是由周期性到达的视频帧构成。XR视频的传输过程可以是将XR视频的一幅画面帧,在网络传输层分成几十个的互联网协议(internet protocol,IP)数据包,传输到核心网,之后IP数据包再经过无线接入网(radio access network,RAN)传输到终端。由于网络传输的不确定性,可能会出现帧传输错误和帧传输延时等问题,从而影响用户的体验感受。
然而,由于不同终端对用户体验的衡量方式不同,网络设备无法精准地根据用户体验调整通信行为,导致系统效率较低,用户体验不佳。
发明内容
本申请提供了一种数据传输方法和通信装置,以使得网络设备能够根据终端反馈的用户体验,精准地调整与终端的通信行为,进而提高用户的体验感。
第一方面,本申请提供了一种数据传输方法,该方法可以由网络设备来执行,或者,也可以由配置在网络设备中的部件(如芯片、芯片系统等)执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现,本申请对此不作限定。
该方法包括:向终端发送第一信息,第一信息用于配置用户体验评价模式,用户体验评价模式是多种用户体验评价模式中的一种,用户体验评价模式用于评价网络传输对用户体验的影响,接收来自终端的第二信息,第二信息包含网络传输对用户体验的影响的信息,基于第二信息,与终端进行通信。
上述技术方案中,网络设备可以通过第一信息为终端配置用来确定网络传输状况对用户体验的影响的用户体验评价模式,使得终端可以基于网络设备配置的用户体验评价模式得到网络传输状况对用户体验的影响信息。因此,通过网络设备为终端配置 用户体验评价模式,使得各终端对用户体验的衡量方式可控,网络设备进而可以精准地根据终端反馈的网络传输对用户体验的影响,精准地调整与终端的通信行为,进而提高系统效率,提高用户的体验感。
结合第一方面,在某些可能的实现方式中,第一信息还用于配置用户体验评价模式的参数。
在这种实现方式中,终端可以预先存储多种含有待定参数的用户体验评价模式。
网络设备向终端发送第一信息,为终端配置含有待定参数的用户体验评价模式,并配置该用户体验评价模式的参数。网络设备可以根据不同终端的不同业务需求,为不同的终端配置不同参数,从而满足不同终端的不同需求,给用户的带来较好的体验感。
结合第一方面,在某些可能的实现方式中,该方法还包括:向终端发送第三信息,第三信息用于配置用户体验评价模式的参数。
在这种实现方式中,终端也可以预先存储多种含有待定参数的用户体验评价模式。
网络设备向终端发送第一信息,为终端配置含有待定参数的用户体验评价模式,且向终端发送第三信息,为终端配置通过第一信息配置的用户体验评价模式的参数。网络设备可以根据不同终端的不同业务需求,为不同的终端配置不同参数,从而满足不同终端的不同需求,给用户的带来较好的体验感。
结合第一方面,在某些可能的实现方式中,用户体验评价模式包括画质体验评价模式和交互体验评价模式,画质体验评价模式用于评价传输错误对画质体验的影响,交互体验评价模式用于评价传输延时对交互体验的影响。
通过画质体验模式可以得到传输错误对画质体验的影响,通过交互体验模式可以得到传输延时对交互体验的影响,当用户体验评价分数未达到目标评价分数时,可以更好地判断出是传输错误对用户体验评价分数产生了影响,还是传输延时对用户体验评价分数产生了影响,或者,还是两者都对用户体验评价分数产生了影响,可以有针对性地调整与终端的通信行为,进而提高用户的体验感。
结合第一方面,在某些可能的实现方式中,网络传输对用户体验的影响的信息包括画质体验评价信息和交互体验评价信息,画质体验评价模式用于画质体验评价信息的确定,交互体验评价模式用于交互体验评价信息的确定。
其中,画质体验评价信息用于指示传输错误对画质体验的影响系数或评价分数,交互体验评价信息用于指示传输延时对交互体验的影响系数或评价分数。
网络设备可以接收到终端反馈的画质体验评价分数或传输错误对画质体验的影响系数,以及,交互体验评价分数或传输延时对交互体验的影响系数。由此一来,可以当画质体验评价分数未达到目标画质体验评价分数时,和/或交互体验评价分数未到达目标交互体验评价分数时,可以有针对性地调整与终端的通信行为,进而提高用户的体验感。
结合第一方面,在某些可能的实现方式中,网络传输对用户体验的影响的信息用于指示扩展现实质量评价分数,画质体验评价模式和交互体验评价模式用于扩展现实质量评价分数的确定。
网络设备可以接收到终端反馈的扩展现实质量评价分数,扩展现实质量评价分数 可以是终端根据画质体验评价模式得到的画质体验评价分数,以及,根据交互体验模式得到的交互体验评价分数综合得到。由此一来,可以当扩展现实质量评价分数未达到目标扩展现实质量评价分数时,可以有针对性地调整与终端的通信行为,进而提高用户的体验感。
结合第一方面,在某些可能的实现方式中,基于所述第二信息,与终端进行通信,包括:基于第二信息和信道质量指示(channel quality indicator,CQI),确定用于与终端进行通信的调制编码方案(modulation and coding scheme,MCS),基于所述MCS与所述终端进行通信。
网络设备可以通过CQI与MCS的映射关系,确定当前的MCS,并根据第二信息调整MCS,基于调整后的MCS与终端进行通信,可以给用户带来更好的体验感。
第二方面,本申请提供了一种数据传输方法,该方法可以由终端来执行,或者,也可以由配置在终端中的部件(如,芯片、芯片系统等)执行,还可以由能实现全部或部分终端功能的逻辑模块或软件实现,本申请对此不作限定。
该方法包括:接收来自网络设备的第一信息,基于第一信息确定用户体验评价模式,用户体验评价模式是多种用户体验评价模式中的一种,用户体验评价模式用于评价网络传输对用户体验的影响,向网络设备发送第二信息,第二信息包含网络传输对用户体验的影响的信息。
上述技术方案中,终端可以接收来自网络设备的第一信息,并可以基于第一信息确定用户体验评价模式,并向网络设备发送包含网络传输对用户体验的影响信息的第二信息,使得网络设备可以基于第二信息,及时调整与终端的通信行为,进而提高用户的体验感。
结合第二方面,在某些可能的实现方式中,该方法还包括:基于用户体验评价模式确定网络传输对用户体验的影响。
结合第二方面,在某些可能的实现方式中,该方法还包括:基于第一信息确定用户体验评价模式的参数。
在这种实现方式中,终端可以预先存储多种含有待定参数的用户体验评价模式。
终端接收来自网络设备的第一信息,终端基于第一信息确定含有待定参数的用户体验评价模式以及该用户体验评价模式的参数。不同的终端可能会有不同业务需求,因此不同的终端可以获得不同的参数,从而满足该终端的业务需求,给用户的带来较好的体验感。
结合第二方面,在某些可能的实现方式中,该方法还包括:接收来自网络设备的第三信息;基于第三信息确定用户体验评价模式的参数。
在这种实现方式中,终端也可以预先存储多种含有待定参数的用户体验评价模式。
终端接收来自网络设备的第一信息,终端基于第一信息确定含有待定参数的用户体验评价模式,且终端接收来自网络设备的第三信息,终端基于第三信息确定根据第一信息确定的含有待定参数的用户体验评价模式的参数。不同的终端可能会有不同业务需求,因此不同的终端可以获得不同的参数,从而满足该终端的业务需求,给用户的带来较好的体验感。
结合第二方面,在某些可能的实现方式中,该方法还包括:基于用户体验评价模 式和用户体验评价模式的参数,确定网络传输对用户体验的影响。
结合第二方面,在某些可能的实现方式中,用户体验评价模式包括画质体验评价模式和交互体验评价模式,画质体验评价模式用于评价传输错误对画质体验的影响,交互体验评价模式用于评价传输延时对交互体验的影响。
终端可以通过画质体验模式得到传输错误对画质体验的影响,通过交互体验模式得到传输延时对交互体验的影响,当用户体验评价分数未达到目标评价分数时,可以更好地判断出是传输错误对用户体验评价分数产生了影响,还是传输延时对用户体验评价分数产生了影响,或者,还是两者都对用户体验评价分数产生了影响,以使得网络设备可以根据终端的反馈信息有针对性地调整与终端的通信行为,进而提高用户的体验感。
结合第二方面,在某些可能的实现方式中,网络传输对用户体验的影响的信息包括画质体验评价信息和交互体验评价信息,以及该方法还包括:基于画质体验评价模式确定画质体验评价信息;基于交互体验评价模式确定交互体验评价信息。
其中,画质体验评价信息用于指示传输错误对画质体验的影响系数或评价分数,交互体验评价信息用于指示传输延时对交互体验的影响系数或评价分数。
终端可以向网络设备反馈画质体验评价分数或传输错误对画质体验的影响系数,以及,交互体验评价分数或传输延时对交互体验的影响系数。由此一来,当画质体验评价分数未达到目标画质体验评价分数时,和/或交互体验评价分数未到达目标交互体验评价分数时,使得网络设备可以有针对性地调整与终端的通信行为,进而提高用户的体验感。
结合第二方面,在某些可能的实现方式中,网络传输对用户体验的影响的信息用于指示扩展现实质量评价分数,以及该方法还包括:基于画质体验评价模式和交互体验评价模式确定扩展现实质量评价分数。
终端可以向网络设备反馈扩展现实质量评价分数,扩展现实质量评价分数可以是终端根据画质体验评价模式得到的画质体验评价分数,以及,根据交互体验模式得到的交互体验评价分数综合得到。由此一来,可以当扩展现实质量评价分数未达到目标扩展现实质量评价分数时,可以有针对性地调整与终端的通信行为,进而提高用户的体验感。
结合第二方面,在某些可能的实现方式中,该方法还包括:接收来自网络设备的第四信息,第四信息用于指示MCS,MCS与第二信息和CQI相关。
其中,CQI可以是终端上报给网络设备的,以使得网络设备可以根据CQI与MCS的映射关系,确定当前的MCS,并根据第二信息调整MCS,终端可以接收来自网络设备发送的指示调整后的MCS的第四信息,并基于第四信息与网络设备进行通信,可以给用户带来更好的体验感。
第三方面,本申请提供了一种通信装置,可以实现上述第一方面、第一方面任一种可能的实现方式、第二方面、或第二方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。该装置例如可以为终端或网络设备,也可以为支持终端或网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以为能实现终端或网络设备的 全部或部分功能的逻辑模块或软件。
第四方面,本申请提供了一种通信装置,该通信装置包括处理器。该处理器与存储器耦合,可用于执行存储器中的计算机程序,以实现第一方面以及第二方面和第一方面任一种可能实现方式以及第二方面任一种可能实现方式中的数据传输方法。
可选地,该通信装置还包括存储器。
可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第五方面,本申请提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持实现上述第一方面至第二方面以及第一方面至第二方面任一种可能实现方式中所涉及的功能,例如,接收或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,本申请提供了一种通信系统,包括前述的网络设备和终端。
第七方面,本申请提供了一种计算机可读存储介质,所述计算机存储介质上存储有计算机程序(也可以称为代码,或指令),当所述计算机程序在被处理器运行时,使得上述第一方面以及第二方面和第一方面任一种可能实现方式以及第二方面任一种可能实现方式中的方法被执行。
第八方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得上述第一方面以及第二方面和第一方面任一种可能实现方式以及第二方面任一种可能实现方式中的方法被执行。
应当理解的是,本申请的第三方面至第八方面与本申请的第一方面和第二方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1是适用于本申请实施例提供的数据传输方法的通信系统的示意图;
图2是适用于本申请实施例提供的数据传输方法的通信系统的另一示意图;
图3是XR视频的传输示意图;
图4是帧传输过程的示意图;
图5是XR-平均主观意见分(mean opinion score,MOS)的示意性分解图;
图6是基于帧到达情况构建的扩展现实质量指数(XR quality index,XQI)的神经网络示意图;
图7是基于帧传输错误情况构建的画质体验评分的神经网络示意图;
图8是基于帧传输延时情况构建的交互体验评分的神经网络示意图;
图9是适用于本申请实施例提供的数据传输方法的流程示意图;
图10是本申请实施例提供的通信装置的示意性框图;
图11是本申请实施例提供的通信装置的另一示意性框图;
图12是本申请实施例提供的终端的结构示意性框图;
图13是本申请实施例提供的基站的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物)系统,例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请实施例中,网络设备可以包括无线接入网设备和核心网设备等所有具有网络传输功能的设备,下文中将结合图1和图2所示的场景来对网络设备做详细说明,此处暂且不做赘述。
其中,无线接入网络设备可以是任意一种具有无线收发功能的设备。无线接入网设备包括但不限于:演进型节点B(evolved Node B,eNB)、节点B(Node B,NB)、无线网络控制器(radio network controller,RNC)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU)、无线网络系统中的接入点(access point,AP)、无线中继节点(radio relay node,RRN)、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。可以理解,本申请中的无线接入网设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
基站可以是:宏基站、微基站、微微基站、小站、中继站、或气球站等。若通信系统中存在多个网络设备,则这多个网络设备可以为同一类型的基站,也可以为不同类型的基站;这多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以与终端进行通信,也可以通过中继站与终端进行通信。网络设备还可以是无线接入网络通信系统中的无线控制器、集中单元,和/或分布单元。核心网设备可以包括用户面网元(user plane function,UPF)。UPF即数据面网关, 可用于分组路由和转发、或用户面数据的服务质量(quality of service,QoS)处理等,用户数据可通过该网元接入到网络中。在本申请实施例中,用于执行下文网络设备的功能的核心网设备例如可以是UPF或者其他具有与UPF相同或相似功能的网元。
核心网设备还可以包括其他核心网的功能网元,例如,网络开放网元(network exposure function,NEF)、会话管理网元(session management function,SMF)、策略控制功能网元(policy control function,PCF)等网元。其中,NEF可以用于安全地向外部开放由3GPP网络功能提供的业务和能力等;SMF主要用于会话管理、终端的IP地址分配和管理、选择可管理用户平面功能、策略控制、或收费功能接口的终结点以及下行数据通知等;PCF可以用于指导网络行为的统一策略框架,为控制平面功能网元(例如SMF等)提供策略规则信息等。
网络设备还可以是云端服务器等。本申请对此不作任何限定。
在本申请实施例中,终端可以是一种具有无线收发功能的设备。终端可以部署在陆地上,包括室内或室外,手持、穿戴或车载;终端也可以部署在水面上(如轮船等);终端还可以部署在空中(例如飞机、气球和卫星上等)。终端可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、车载终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置等。终端可以是固定的,也可以是移动的。
终端可以与不同的网络设备通信。终端可以与不同技术的多个基站进行通信,例如,终端可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可 以支持与LTE网络的基站以及5G网络的基站的双连接。
应理解,本申请对网络设备和终端的具体形式均不作限定。
为了便于理解,以下结合图1和图2对适用于本申请实施例提供的数据传输方法的通信系统进行简单说明。
图1是适用于本申请实施例提供的数据传输方法的通信系统100的示意图。如图1所示,该通信系统100中包括云端服务器、UPF、基站、终端以及NEF、SMF、PCF等网元。云端服务器可以对视频源解码和渲染等。其中,终端可以是头显XR眼镜、视频播放器和全息投影仪等设备。
在上述通信系统100中,数据、指令或信号可以由云端服务器传输给UPF,UPF可以通过基站将这些数据、信令、指令或信号传输给终端,终端接收到这些数据、信令、指令或信号后,可以通过基站向UPF反馈一些数据或信息,UPF再将这些数据或信息传输到云端服务器。
应理解,在该通信系统100中,云端服务器、UPF或基站等可以具有本申请实施例中网络设备所具有的功能,例如,该通信系统100中,云端服务器具有本申请实施例中网络设备具有的功能,则云端服务器发出的第一信息、第三信息或第四信息可以由UPF和基站等网络传输过程中的中间网元转发给终端。又例如,该通信系统100中,基站具有本申请实施例中网络设备具有的功能,则基站发出的第一信息、第三信息或第四信息可以直接发送给终端。第一信息、第三信息或第四信息在下文中有详细的描述,此处暂不赘述。还应理解,在该通信系统100中,对网络设备和终端的具体形式均不作限定,该通信系统100以及上述数据传输过程只是示例性的,不应对本申请产生任何限定。
图2是适用于本申请实施例提供的数据传输方法的通信系统200的示意图。如图2所示,该通信系统200中包括云端服务器、终端以及无线保真(wireless fidelity,Wi-Fi)路由器或Wi-Fi AP。
在上述通信系统200中,云端服务器可以将数据、信令、指令或信息发送到Wi-Fi路由器或Wi-Fi AP等无线接入网设备,再由这些无线接入网设备发送给终端,终端接收到这些数据、信令、指令或信息,可以将一些反馈数据或信息发送到无线网络设备,无线网络设备可以再发送到云端服务器。例如,云端服务器可以将XR媒体数据或者普通视频通过Wi-Fi路由器或Wi-Fi AP等传送到XR终端,XR终端也可以将反馈信息通过原路发送给云端服务器。
应理解,在该通信系统200中,云端服务器或Wi-Fi路由器或Wi-Fi AP具有本申请实施例中网络设备所具有的功能。例如,云端服务器具有本申请实施例中网络设备所具有的功能,则云端服务器发出的第一信息、第三信息或第四信息可以通过Wi-Fi路由器或Wi-Fi AP转发给终端。又例如,Wi-Fi路由器或Wi-Fi AP具有本申请实施例中网络设备所具有的功能,则Wi-Fi路由器或Wi-Fi AP发出的第一信息、第三信息或第四信息可以直接发送给终端。第一信息、第三信息或第四信息在下文中有详细的描述,此处暂不赘述。还应理解,在该通信系统200中,对网络设备和终端的具体形式均不作限定,该通信系统200以及上述数据传输过程只是示例性的,不应对本申请产生任何限定。
图3为XR视频的传输示意图。图3所示的XR视频传输可以是在例如图1所示的通信系统100中传输的示意图。XR视频可以由多个视频帧构成,该XR视频例如可以是由图1中的云端服务器发送的,也即,上述云端服务器可以为该XR视频的发送端。与此对应,该XR的视频的接收端可以是图1中的终端。在图3中,XR视频的一个画面帧可以在发送端的网络传输层被分成几十个IP数据包,传输到核心网,之后IP数据包再经过RAN传输到接收端。应理解,图3中示出的XR视频的传输过程只是示例性的,不应对本申请产生任何限定。
由于网络传输的不确定性,可能会出现帧传输错误和帧传输延时等问题,从而影响用户的体验感受。然而,由于不同终端对用户体验的衡量方式不同,网络设备无法精准地根据用户体验调整通信行为,导致系统效率较低,用户体验不佳。
因此,本申请提供了一种数据传输方法,网络设备可以通过第一信息为终端配置用来确定网络传输状况对用户体验的影响的用户体验评价模式,终端可以基于网络设备配置的用户体验评价模式得到网络传输状况对用户体验的影响信息。使得网络设备能够根据终端反馈的用户体验,精准地调整与终端的通信行为,进而提高用户的体验感。
为了更好地理解本申请实施例提供的数据传输方法,首先对本申请中涉及到的术语作简单说明。
1、帧传输错误:也可以称为误帧,帧传输过程中发生错误。如果在传输过程中视频帧所包括的一个数据包出错,则整幅画面帧均无法正确解码。
2、帧传输延时:帧传输过程中发生的延时情况。例如,记每个帧的首包到达的时间为t1,尾包到达的时间为t2,则T=t2-t1可用于衡量该帧在网络侧的传输的时延,若该时延超过该帧的最大的帧时延预算(frame delay budget,FDB)和终端缓存处理能力时延的和,则会出现跳帧现象,即,给定参考位置的帧未到。
图4为帧传输过程的示意性图。如图4所示,图4示出了6个视频帧到达的情况。每个视频帧可以承载于多个IP数据包中,图中的每一个矩形框可以表示一个IP数据包。可以看到,图中的第2帧中存在IP数据包传输错误,导致第2帧传输错误。第4帧中存在IP数据包传输错误,导致第4帧传输错误,且第4帧还存在IP数据包在处理显示时刻未到达,导致第4帧传输延时。第5帧也存在IP数据包在处理显示时刻未到达,导致第5帧传输延时。
3、平均主观意见分(MOS):是目前普遍公认的语音视频质量主观测量方法,通过MOS可以得到比较真实的听觉视觉质量分数。
图5为XR-MOS的示意性分解图。如图5所示,可以从视频源、网络传输和终端三个角度获取XR-MOS。其中,网络传输可以包括接入网传输和核心网传输两部分。
一种可能的实现方式为:XR-MOS可以由视频源-MOS、网络传输-MOS和终端-MOS三部分以最简单的线性叠加得到,如:XR-MOS=视频源-MOS+网络传输-MOS+终端-MOS。
其中,云端服务器可以定义视频源-MOS,视频源-MOS的影响因素包括:画质、帧率、清晰度和音频质量等;网络设备可以定义网络传输-MOS,网络传输-MOS的影响因素包括:网络侧的传输能力、时延预算(packet delay budget,PDB)和误包率(packet  error rate,PER)等;终端可以定义终端-MOS,终端-MOS的影响因素包括:终端支持的视场角(field of view,FOV)角度、终端刷新率、续航能力、佩戴舒适度和缓存处理能力等。
应理解,图5中示出的XR-MOS的分解图只是示例性的,不应对本申请产生任何限定。
4、扩展现实质量评价分数:也可以称为扩展现实质量指数(XQI)。XQI是本申请提出的用于评价网络传输对用户体验的影响。其基本原则是在网络传输侧尽可能利用网络传输中可获得的统计数据和信源和/或终端侧的相关信息来逼近用户对XR业务的主观体验评价。换言之,由于网络传输MOS是人的主观评价值,网络传输-MOS不能直接获得,因此,假设在视频源-MOS和终端-MOS已知的情况下,提出XQI,以期通过获得网络侧的一些统计数据来使得计算出的XQI尽量与网络传输-MOS较好的拟合。
XQI可以分为两部分:画质体验评分和交互体验评分。也即,用户体验XQI值可以通过综合画质体验评分和交互体验评分得到。其中,画质体验评分主要与网络传输统计的包错误情况、传输块(transmission block,TB)错误情况、帧率、图像组(group of picture,GOP)的大小等信源相关参数相关;交互体验评分主要与网络传输统计的包达到情况、包时延、帧率、GOP和终端缓存处理能力等信源或终端相关参数相关。
XQI可以有多种不同的定义形式,例如,可以利用公式、神经网络或表格等不同的形式定义XQI。也可以理解为获得XQI的值可以有多种不同的模式,对应于上述的几种形式可以为公式模式、神经网络模式或表格模式等,这些模式也可以统称为用户体验评价模式。应理解,用户体验评价模式不限于上述公式模式、神经网络模式和表格模式,用户体验评价模式还可以有其他形式,本申请对此不作任何限定。
示例性地,用户体验评价模式为公式模式时,XQI的计算公式可以为:XQI=XQI 1+XQI 2
其中,XQI 1可以表示画质体验评分,例如,XQI 1的计算公式可以为:
Figure PCTCN2022091804-appb-000001
α表示计算系数;FR表示视频帧的帧率(frame rate,FR),即每秒中显示视频帧的数据量,例如每秒传输帧数(frames per second,FPS)为60帧;R ave表示每个GOP内的帧损伤率计算统计周期内所有GOP的平均帧损伤率。一个GOP内的帧损伤率的计算公式可以为
Figure PCTCN2022091804-appb-000002
其中N表示GOP的大小,i表示当前GOP中第一个传输错误的帧位置。
XQI 2可以表示交互体验评分,例如,XQI 2的计算公式可以为:
Figure PCTCN2022091804-appb-000003
β表示计算系数;FR表示视频帧的帧率;Q ave表示统计周期内所有GOP的平均跳帧率,一个GOP内的跳帧率的计算公式可以为
Figure PCTCN2022091804-appb-000004
M表示GOP内发生跳帧的数量,N表示GOP的大小;T表示一个N维的向量,其各个元素表示GOP内各个视频帧在网络传输所造成的时延。
也即,XQI的计算公式可以为:
Figure PCTCN2022091804-appb-000005
应理解,上述XQI、XQI 1、XQI 2、R ave和Q ave等的计算公式只是示例性的,不应对本申请产生任何限定。
示例性地,用户体验评价模式为神经网络模式时,可以利用一些典型视频集合经过网络传输后的帧的到达情况和相应的评分情况(例如,专家打分等形式)作为训练集,得到一个基于帧的到达情况,也即,综合考虑了帧传输错误情况和帧传输延时情况获取XQI的值的神经网络。例如,图6是基于帧的到达情况构建的XQI的神经网络示意图。图中的C 1、C 2、C 3、C 4、C 5和C 6表示权重,f 1(e)、f 2(e)、f 3(e)、f 4(e)、f 5(e)和f 6(e)表示神经元。应理解,神经元也就是神经网络中的节点,每个节点可以代表一种特定的输出函数。
当然,也可以分别根据帧传输错误情况和帧传输延时情况构建相应的神经网络模式。例如,图7是基于帧传输错误情况构建的XQI 1的神经网络示意图。图中的XQI 1可以表示画质体验评分,C 7、C 8、C 9、C 10、C 11和C 12表示权重,g 1(e)、g 2(e)、g 3(e)、g 4(e)、g 5(e)和g 6(e)表示神经元。又例如,图8是基于帧传输延时情况构建的XQI 2的神经网络示意图。图中的XQI 2可以表示交互体验评分,C 13、C 14、C 15、C 16、C 17和C 18表示权重,h 1(e)、h 2(e)、h 3(e)、h 4(e)、h 5(e)和h 6(e)表示神经元。
应理解,图6、图7和图8示出的各神经网络示意图中的权重和神经元是相互独立的,可以相同,也可以不同,本申请对此不作限定。还应理解,图6、图7和图8中的神经网络示意图仅为示例性的,不应对本申请产生任何限定。例如,在实际的实现方式中,神经元的个数可以更多或更少,本申请对此也不作任何限定。
示例性地,用户体验评价模式为表格模式时,综合考虑了帧传输错误情况和帧传输延时情况,也即,XQI的值取决于帧传输错误情况和帧传输延时情况。
例如,表1中示出了XQI的值与帧传输错误情况和帧传输延时情况的对应关系。
表1
Figure PCTCN2022091804-appb-000006
Figure PCTCN2022091804-appb-000007
表1中用PER来近似表征帧传输错误的情况,用PDB来近似表征帧传输演示的情况。在表1中,第一行可以表示PDB的不同取值,第一列可以表示PER的不同取值,第二行第二列到第六行第六列可以表示不同的PER取值和不同的PDB取值对应时,XQI的取值。例如,当PDB为“5毫秒(ms)”,且PER为“0.03”时,可以直接在表中找到XQI的值为“82”。
应理解,表1所示的用于表示PER、PDB与XQI的对应关系的形式只是示例性的,该对应关系并不限于表格来表征。还应理解,表中PER、PDB与XQI的对应值也只是示例性的,不应对本申请产生任何限定。
5、调制编码方案(MCS):MCS将所关注的影响通讯速率的因素作为表的列,将MCS索引作为行,形成一张速率表。所以,每一个MCS索引其实对应了一组参数下的物理传输速率。例如,表2中示出了MCS的不同索引与调制阶数、目标码速和频谱效率的一种可能的对应关系。
表2
Figure PCTCN2022091804-appb-000008
Figure PCTCN2022091804-appb-000009
6、信道质量指示(CQI):CQI能够表示当前信道质量的好坏,CQI与信道的信噪比大小相对应。CQI的取值范围为0~31,当CQI的取值为0时,信道质量最差;当CQI的取值为31时,信道质量最好。一般CQI常见的取值范围为12~24。CQI的值可以由终端上报给网络设备的。例如,表3中示出了CQI的不同值与调制方案、码速和效率的一种可能的对应关系。
表3
Figure PCTCN2022091804-appb-000010
在表3中,CQI的不同取值可以对应于不同的调制方案、码速和效率。表3中示例性地列举出了“QPSK”、“16QAM”和“64QAM”等调制方案,其中,“QPSK” 表示正交相移键控(quadrature phase shift keying,QPSK),“QAM”表示正交振幅调制(quadrature amplitude modulation,QAM)。
下面将结合附图对本申请实施例提供的数据传输方法做详细说明。
为方便理解,做出以下说明:
第一,第一、第二等仅为便于区分不同的对象,不应构成任何限定。例如,第一信息、第二信息、第三信息和第四信息,并不一定限定发送的先后顺序,而只是为了区分这些信息包含的内容不同。
图9是适用于本申请实施例提供的数据传输方法1000的流程示意图。如图9所示,该方法1000可以包括步骤1010至步骤1040。下面对方法1000中的各个步骤做详细说明。
在步骤1010中,网络设备向终端发送第一信息。相应地,终端接收来自网络设备的第一信息。
第一信息用于配置用户体验评价模式。用户体验评价模式是多种用户体验评价模式中的一种,用户体验评价模式用于评价网络传输对用户体验的影响。
前已述及,XQI用于评价网络传输对用户体验的影响,获得XQI的值可以有多种不同的模式,例如,公式模式、神经网络模式或表格模式等。
另外,前已述及,XQI可以分为两部分:画质体验评分和交互体验评分。用户体验评价模式包括画质体验评价模式和交互体验评价模式,画质体验评价模式用于评价传输错误对画质体验的影响,交互体验评价模式用于评价传输延时对交互体验的影响。
在一种可能的实现方式中,终端可以预先存储多种用户体验评价模式。
可选地,终端预先存储的多种用户体验评价模式可以为综合了传输错误对画质体验的影响和传输延时对交互体验的影响为一体的用户体验评价模式,即,存储获得XQI一个值的多种用户体验评价模式。
例如,多种用户体验评价模式中的每一种用户体验评价模式可以对应一个索引值,用户体验评价模式和索引值可以以表格的形式存储在终端上。
例如,表4中示出了多种用户体验评价模式与索引的对应关系。
表4
Figure PCTCN2022091804-appb-000011
当然,画质体验评价模式和交互体验评价模式也可以分开来配置。例如,表5示 出了多种画质体验评价模式与索引的对应关系。表6中示出了多种交互体验评价模式与索引的对应关系。
表5
Figure PCTCN2022091804-appb-000012
表6
Figure PCTCN2022091804-appb-000013
终端在向网络设备请求XR业务后,网络设备识别到终端XR业务请求后,可以通过信令向终端发送第一信息,第一信息可以包括某种用户体验评价模式对应的索引值,以此来配置终端可以使用的用户体验评价模式。
当然,终端也可以以其他的形式预先存储多种用户体验评价模式,并不限定于上述表4、表5和表6等表格的形式存储用户体验评价模式与索引的对应关系。
应理解,在表4、表5和表6中,公式模式和神经网络模式中的系数或参数可以是预先设定的已知的具体数值,如公式中的α和β可以是预先设定的具体数值。
可选地,第一信息还可以用于配置用户体验评价模式的参数。
若终端预先存储的多种用户体验评价模式为含有待定参数的用户体验评价模式,例如,公式模式和神经网络模式等中含有待定参数,则第一信息中还可以包括某种用户体验评价模式所含有的待定参数的具体取值。也即,第一信息中可以用于指示某种用户体验评价模式的索引和该用户体验评价模式中含有的待定参数的具体取值。
可选地,网络设备可以向终端发送第三信息,第三信息用于配置用户体验评价模式的参数。
终端在向网络设备请求XR业务后,网络设备识别到终端XR业务请求后,可以通过信令向终端发送第一信息,第一信息可以包括某种用户体验评价模式,以此来配置终端可以使用的含有待定参数的用户体验评价模式,网络设备还可以通过信令向终 端发送第三信息,第三信息可以用于指示配置的含有待定参数的用户体验评价模式的参数的具体数值,以此来配置该终端被指定使用的含有待定参数的用户体验评价模式的参数。
还应理解,上述述及到的第一信息的承载信令可以是无线资源控制(radio resource control,RRC)信令或下行控制信息(downlink control information,DCI)或系统信息块(system information block,SIB),上述述及到的第三信息的承载信令可以是RRC信令或DCI。本申请对此不作任何限定。
在步骤1020中,终端基于第一信息确定用户体验评价模式。
终端接收来自网络设备的第一信息,并可以基于第一信息确定用户体验评价模式。
一种可能的实现方式,终端可以以如表4所示的形式预先存储了多种不含待定参数的用户体验评价模式和索引的对应关系。终端接收来自网络设备的第一信息,此时第一信息可以用于指示某种不含待定参数的用户体验评价模式对应的索引,或者,第一信息中包括某种不含待定参数的用户体验评价模式对应的索引,终端可以根据索引确定可以使用的某种不含待定参数的用户体验评价模式。
例如,第一信息中指示出的索引为1,则对应于终端预先存储的表4中,终端可以确定用户体验评价模式为公式模式:
Figure PCTCN2022091804-appb-000014
其中,α和β的具体数值已知。
另一种可能的实现方式,终端可以以如表4所示的形式预先存储了多种含有待定参数的用户体验评价模式和索引的对应关系。终端接收来自网络设备的第一信息,此时第一信息可以用于指示某种含有待定参数的用户体验评价模式对应的索引和待定参数的具体取值,或者,第一信息中包括某种含有待定参数的用户体验评价模式对应的索引和待定参数的具体取值,终端可以根据索引和待定参数的具体取值确定可以使用的某种含有待定参数的用户体验评价模式。在这种实现方式中,终端可以基于第一信息确定用户体验评价模式的参数。
例如,第一信息中指示出的索引为1,则对应于终端预先存储的表4中,终端可以确定用户体验评价模式为公式模式:
Figure PCTCN2022091804-appb-000015
其中,α和β为待定参数。
又一种可能的实现方式,终端可以以如表4所示的形式预先存储了多种含有待定参数的用户体验评价模式和索引的对应关系。终端接收来自网络设备的第一信息,此时第一信息可以用于指示某种含有待定参数的用户体验评价模式对应的索引,或者,第一信息中包括某种含有待定参数的用户体验评价模式对应的索引,终端可以根据索引确定可以使用的某种含有待定参数的用户体验评价模式。在这种实现方式中,终端还接收来自网络设备的第三信息,第三信息可以指示基于第一信息确定的含有待定参数的用户体验评价模式的待定参数的具体取值,或,第三信息可以指示基于第一信息确定的含有待定参数的用户体验评价模式的待定参数的具体取值,终端可以基于第三信息确定用户体验评价模式的参数。
可选地,在步骤1030之前,终端还可以基于用户体验评价模式确定网络传输对用户体验的影响。
一种可能的实现方式,在终端以如表4所示的形式预先存储了多种不含待定参数的用户体验评价模式和索引的对应关系,终端接收来自网络设备的第一信息,并基于第一信息确定了某种不含待定参数的用户体验评价模式的情况下,终端使用该不含待定参数的用户体验评价模式确定网络传输对用户体验的影响。
例如,第一信息中指示出的索引为1,则对应于终端预先存储的表4中,终端可以确定用户体验评价模式为公式模式:
Figure PCTCN2022091804-appb-000016
其中,α和β的具体数值已知,终端可以基于第一信息确定α和β的具体取值,再使用该公式计算XQI的值,得到的XQI的值可以表征网络传输对用户体验的影响。
又例如,终端确定的用户体验评价模式为神经网络模式:基于帧的到达情况构建的XQI的神经网络,终端可以使用该神经网络得到XQI的值,得到的XQI的值可以表征网络传输对用户体验的影响。
可选地,在步骤1030之前,终端还可以基于用户体验评价模式和用户体验评价模式的参数,确定网络传输对用户体验的影响。
一种可能的实现方式,在终端以如表4所示的形式预先存储了多种含有待定参数的用户体验评价模式和索引的对应关系,终端接收来自网络设备的第一信息,并基于第一信息确定了某种含有待定参数的用户体验评价模式和的确定了用户体验评价模式的参数情况下,终端将参数值带入到该含有待定参数的用户体验评价模式中,使用该含有待定参数的用户体验评价模式确定网络传输对用户体验的影响。
例如,第一信息中指示出的索引为1,则对应于终端预先存储的表4中,终端可以确定用户体验评价模式为公式模式:
Figure PCTCN2022091804-appb-000017
其中,α和β为待定参数,终端将基于第一信息得到的α和β的具体取值带入到公式中,终端可以使用该公式计算XQI的值,得到的XQI的值可以表征网络传输对用户体验的影响。
另一种可能的实现方式,在终端以如表4所示的形式预先存储了多种含有待定参数的用户体验评价模式和索引的对应关系,终端接收来自网络设备的第一信息和第三信息,并基于第一信息确定了某种含有待定参数的用户体验评价模式,以及基于第三信息确定了用户体验评价模式的参数情况下,终端将参数值带入到该含有待定参数的用户体验评价模式中,使用该含有待定参数的用户体验评价模式确定网络传输对用户体验的影响。
例如,第一信息中指示出的索引为1,则对应于终端预先存储的表4中,终端可以确定用户体验评价模式为公式模式:
Figure PCTCN2022091804-appb-000018
其中,α和β为待定参数,终端将基于第三信息得到的α和β的具体取值带入到公式中,终端可以使用该公式计算XQI的值,得到的XQI的值可以表征网络传输对用户体验的影响。
应理解,对于不同的终端,网络设备可以根据各个终端不同的业务需求,通过信令向终端配置不同的待定参数的具体数值。也可以理解为,网络设备向不同的终端发送的第一信息或第三信息中包含或用于指示的待定参数的具体数值可以不同。
在步骤1030中,终端向网络设备发送第二信息。相应地,网络设备接收来自终端 的第二信息。
应理解,第二信息包含网络传输对用户体验的影响的信息。网络传输对用户体验的影响的信息包括画质体验评价信息和交互体验评价信息,画质体验评价模式用于画质体验评价信息的确定,交互体验评价模式用于交互体验评价信息的确定。网络传输对用户体验的影响的信息用于指示扩展现实质量评价分数,画质体验评价模式和交互体验评价模式用于扩展现实质量评价分数的确定。
一种可能的实现方式,终端向网络设备发送的第二信息所包含网络传输对用户体验的影响的信息可以用于指示扩展现实质量评价分数。也可以理解为,终端向网络设备发送扩展现实质量评价分数,也即,终端向网络设备发送XQI的值。
应理解,在终端向网络设备发送扩展现实质量评价分数之前,终端可以先确定扩展现实质量评价分数,也即,终端可以先确定XQI的值。例如,上述所述的终端基于第一信息或基于第一信息和第三信息得到的XQI的值,为了简洁,此处不再赘述。
可选地,终端可以基于画质体验评价模式和交互体验评价模式确定扩展现实质量评价分数。
例如,终端以如表5所示的形式预先存储了多种不含待定参数的画质体验评价模式和索引的对应关系,以及如表6所示的形式预先存储了多种不含待定参数的交互体验评价模式和索引的对应关系,终端接收来自网络设备的第一信息,第一信息指示出确定画质体验评价模式的索引为1,确定交互体验评价模式的索引为2,则终端根据索引确定画质体验模式为公式模式:
Figure PCTCN2022091804-appb-000019
其中,α的具体取值已知,根据该公式计算出XQI 1;终端根据索引确定交互体验模式为神经网络模式:基于帧传输延时情况构建的XQI 2的神经网络,基于该神经网络得到XQI 2。再根据终端预先存储的XQI与XQI 1和XQI 2的关系,例如上文述及到的公式:XQI=XQI 1+XQI 2,计算得到XQI的值,也即,得到扩展现实质量评价分数。
另一种可能的实现方式,终端向网络设备发送的第二信息,第二信息包含的网络传输对用户体验的影响的信息包括画质体验评价信息和交互体验评价信息,画质体验评价信息用于指示传输错误对画质体验的影响系数或评价分数,交互体验评价信息用于指示传输延时对交互体验的影响系数或评价分数。也可以理解为,终端向网络设备发送传输错误对画质体验的影响系数或评价分数,和,传输延时对交互体验的影响系数或评价分数。
应理解,在终端向网络设备发送传输错误对画质体验的影响系数或评价分数,和,传输延时对交互体验的影响系数或评价分数之前,终端可以基于画质体验评价模式确定画质体验评价信息,基于交互体验评价模式确定交互体验评价信息。
例如,终端在得到了XQI的值的情况下,假设在一个统计周期内所有的帧均接收正确的情况下XQI的值为XQI a,则传输错误对画质体验的影响系数w 1的计算公式可以为:
Figure PCTCN2022091804-appb-000020
又例如,终端在得到了XQI的值的情况下,假设在一个统计周期内所有的帧均在时延约束内被终端接收到的情况下,XQI的值为XQI b,则传输延时对交互体验的影响系数w 2的计算公式可以为:
Figure PCTCN2022091804-appb-000021
例如,在图4中,第1帧、第3帧和第6帧可以正常显示,第2帧传输错误,第4帧传输错误且传输延时,第5帧传输延时,在这种情况下可以基于第一信息得到对应的XQI的真实值。假设在一个统计周期内的帧均接收正确,则第1帧、第2帧、第3帧和第6帧可以正常显示,第4帧和第5帧传输延时,在这种假设的前提下,XQI的值为XQI a,此时w 1可以用于表示帧传输错误对XQI的影响;假设一个统计周期内的帧均在时延约束内被终端接收到,则第1帧、第3帧、第5帧和第6帧可以正常显示,第2帧和第4帧传输错误,在这种假设的前提下,XQI的值为XQI b,此时w 2可以用于表示传输延时对XQI的影响。
因此,在终端确定了XQI的值、XQI a的值和XQI b的值情况下,终端向网络设备发送传输错误对画质体验的影响系数w 1,和,传输延时对交互体验的影响系数w 2;或,终端向网络设备发送传输错误对画质体验的影响系数w 1,和,交互体验评价分数;或,终端向网络设备发送画质体验评价分数,和,传输延时对交互体验的影响系数w 2;或,终端向网络设备发送画质体验评价分数,和,交互体验评价分数。
应理解,上述述及到的公式
Figure PCTCN2022091804-appb-000022
Figure PCTCN2022091804-appb-000023
只是示例性的,不应对本申请产生任何限定。
在步骤1040中,网络设备基于第二信息,与终端进行通信。
网络设备根据终端发来的第二信息,可以调整与终端的通信行为,例如,降低MCS和/或提高调度优先级。
网络设备可以基于第二信息和CQI,确定用于与终端进行通信的MCS,终端接收来自网络设备的第四信息,第四信息用于指示MCS,MCS与所述第二信息和CQI相关,因此网络设备和终端可以基于MCS进行通信。
应理解,上述述及到的第四信息的承载信令可以是DCI。
一种可能的实现方式,当终端向网络设备发送的是XQI的值时,网络设备基于该XQI的值调整与终端的通信行为,基于调整后的通信行为与终端进行通信。
如果当前XQI的值小于目标XQI的值,网络设备则可以通过降低MCS和/或提高调度优先级,基于降低后的MCS和/或提高后的调度优先级与终端进行通信。
可以结合XQI的值和CQI来确定降低后的MCS。例如,可以根据公式:
Figure PCTCN2022091804-appb-000024
来确定降低后的MCS,其中,I 1表示当前的MCS索引,I 2表示降低后的MCS索引,XQI 0表示所述目标XQI的值,XQI表示当前XQI的值。
上文已述及,CQI的值可以由终端上报给网络设备,当网络设备接收到终端发来的CQI的值后,网络设备可以先根据CQI与MCS的映射关系,确定当前的MCS索引。例如,若终端发给CQI的值为3,XQI的值为70,而目标XQI的值为80时,此时,根据表3,可以确定当前的码速为193,而在表2中,码速193对应的MCS索引为3,即,I 1的取值为4,XQI 0的取值为80,则根据上述公式,计算得到的I 2为2。
XQI的值与XQI 0的差值越大,需要将调度优先级提高的幅度越大;XQI的值与XQI 0的差值越小,需要将调度优先级提高的幅度越小。
另一种可能的实现方式,当终端向网络设备发送的是w 1和w 2时,网络设备基于w 1和w 2调整与终端的通信行为,基于调整后的通信行为与终端进行通信。
网络设备可以根据w 1的值来降低MCS,基于降低后的MCS与终端进行通信;和/或,可以根据w 2提高调度优先级,基于调整后的调度优先级与终端进行通信。
可以结合w 1的值和CQI来确定降低后的MCS。例如,可以根据公式:
Figure PCTCN2022091804-appb-000025
来确定降低后的MCS,其中,I 1表示当前的MCS索引,I 2表示降低后的MCS索引,w 1为传输错误对画质体验的影响系数。
可以根据w 2调整调度优先级,w 2的值越大,需要将调度优先级提高的幅度越大;w 2的值越小,需要将调度优先级提高的幅度越小。
又一种可能的实现方式,当终端向网络设备发送的是XQI 1和XQI 2时,网络设备基于XQI 1和XQI 2调整与终端的通信行为,基于调整后的通信行为与终端进行通信。
如果当前XQI 1的值小于目标画质体验评价分数
Figure PCTCN2022091804-appb-000026
的值时,网络设备则可以根据XQI 1的值降低MCS,基于降低后的MCS与终端进行通信;以及,当前XQI 2的值小于目标交互体验评价分数
Figure PCTCN2022091804-appb-000027
的值时,可以根据XQI 2提高调度优先级,基于调整后的调度优先级与终端进行通信。
可以结合XQI的值和CQI来确定降低后的MCS。例如,可以根据公式:
Figure PCTCN2022091804-appb-000028
来确定降低后的MCS,其中,I 1表示当前的MCS索引,I 2表示降低后的MCS索引,
Figure PCTCN2022091804-appb-000029
表示所述目标画质体验评价分数,XQI 1表示当前画质体验评价分数。
可以根据XQI 2调整调度优先级,XQI 2
Figure PCTCN2022091804-appb-000030
的差值越大,需要将调度优先级提高的幅度越大;XQI 2
Figure PCTCN2022091804-appb-000031
的差值越小,需要将调度优先级提高的幅度越小。
应理解,在上述三种可能的实现方式中,述及到的公式
Figure PCTCN2022091804-appb-000032
Figure PCTCN2022091804-appb-000033
Figure PCTCN2022091804-appb-000034
只是示例性的,不应对本申请产生任何限定。
需要说明的,当画质体验评价分数已知时,网络设备可以通过信令,单独向终端配置交互体验评价模式,以便于终端确定交互体验评价分数,并将交互体验评价分数反馈给网络设备;当交互体验评价分数已知时,网络设备也可以通过信息,单独向终端配置画质体验评价模式,以便于终端确定画质体验评价分数,并将画质体验评价分数反馈给网络设备。
在本申请提出的数据传输方法中,网络设备可以通过第一信息为终端配置用来确定网络传输状况对用户体验的影响的用户体验评价模式,使得终端可以基于网络设备配置的用户体验评价模式得到网络传输状况对用户体验的影响信息。因此,通过网络设备为终端配置用户体验评价模式,使得各终端对用户体验的衡量方式可控,网络设备进而可以精准地根据终端反馈的网络传输对用户体验的影响,精准地调整与终端的通信行为,进而提高系统效率,提高用户的体验感。
该方法还可以有效、准确地衡量网络传输质量对XR用户体验的影响,进而利用扩展现实质量评价分数,或,画质体验评价分数和/或交互体验评价分数指导运营商建网,根据扩展现实质量评价分数,或,画质体验评价分数和/或交互体验评价分数进行调度优化、网络规划、网络优化和故障定位等。
图10是本申请实施例提供的通信装置的示意性框图。如图10所示,该通信装置 1100可以包括:处理模块1110和收发模块1120。该通信装置1100可以用于执行数据传输方法1000中网络设备和/或终端的执行步骤。
当该通信装置1100用于执行数据传输方法1100中网络设备的执行步骤时,其中,收发模块1120可用于向终端发送第一信息;接收来自终端的第二信息;处理模块1110和收发模块1120可合作用于基于第二信息,与终端进行通信。其中,第一信息用于配置用户体验评价模式,用户体验评价模式是多种用户体验评价模式中的一种,用户体验评价模式用于评价网络传输对用户体验的影响;第二信息包含网络传输对用户体验的影响的信息。
可选地,所述第一信息还用于配置所述用户体验评价模式的参数。
可选地,收发模块1120还用于向所述终端发送第三信息,所述第三信息用于配置所述用户体验评价模式的参数。
可选地,所述用户体验评价模式包括画质体验评价模式和交互体验评价模式,所述画质体验评价模式用于评价传输错误对画质体验的影响,所述交互体验评价模式用于评价传输延时对交互体验的影响。
可选地,所述网络传输对用户体验的影响的信息包括所述画质体验评价信息和所述交互体验评价信息,所述画质体验评价模式用于所述画质体验评价信息的确定,所述交互体验评价模式用于所述交互体验评价信息的确定。
可选地,所述画质体验评价信息用于指示传输错误对画质体验的影响系数或评价分数,所述交互体验评价信息用于指示传输延时对交互体验的影响系数或评价分数。
可选地,所述网络传输对用户体验的影响的信息用于指示扩展现实质量评价分数,所述画质体验评价模式和所述交互体验评价模式用于所述扩展现实质量评价分数的确定。
可选地,处理模块1110可用于基于所述第二信息和CQI,确定用于与所述终端进行通信的MCS;收发模块1120可用于基于所述MCS与所述终端进行通信。
当该通信装置1100用于执行数据传输方法1100中终端的执行步骤时,其中,收发模块1120可用于接收来自网络设备的第一信息;向网络设备发送第二信息。处理模块1110可用于基于第一信息确定用户体验评价模式。其中,用户体验评价模式是多种用户体验评价模式中的一种,用户体验评价模式用于评价网络传输对用户体验的影响;第二信息包含网络传输对用户体验的影响的信息。
可选地,处理模块1110还可用于基于所述用户体验评价模式确定所述网络传输对用户体验的影响。
可选地,处理模块1110还可用于基于所述第一信息确定所述用户体验评价模式的参数。
可选地,接收模块1120还可用于接收来自所述网络设备的第三信息;处理模块1110还可用于基于所述第三信息确定所述用户体验评价模式的参数。
可选地,处理模块1110还可用于基于所述用户体验评价模式和所述用户体验评价模式的参数,确定所述网络传输对用户体验的影响。
可选地,所述用户体验评价模式包括画质体验评价模式和交互体验评价模式,所述画质体验评价模式用于评价传输错误对画质体验的影响,所述交互体验评价模式用 于评价传输延时对交互体验的影响。
可选地,所述网络传输对用户体验的影响的信息包括所述画质体验评价信息和所述交互体验评价信息,以及处理模块1110还可用于基于所述画质体验评价模式确定所述画质体验评价信息;基于所述交互体验评价模式确定所述交互体验评价信息。
可选地,所述画质体验评价信息用于指示传输错误对画质体验的影响系数或评价分数,所述交互体验评价信息用于指示传输延时对交互体验的影响系数或评价分数。
可选地,所述网络传输对用户体验的影响的信息用于指示扩展现实质量评价分数,以及处理模块1110还可用于基于所述画质体验评价模式和所述交互体验评价模式确定所述扩展现实质量评价分数。
可选地,接收模块1120还可用于接收来自所述网络设备的第四信息,所述第四信息用于指示MCS,所述MCS与所述第二信息和信道质量指示CQI相关。
图11是本申请实施例提供的通信装置的另一示意性框图。该通信装置1200可用于实现上述方法中网络设备和/或终端的功能。该通信装置1200可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图11所示,该通信装置1200可以包括至少一个处理器1210,用于实现本申请实施例提供的方法中网络设备和/或终端的功能。
例如,当该通信装置1200用于实现本申请实施例提供的方法中网络设备的功能时,处理器1210可用于向终端发送第一信息;接收来自终端的第二信息;基于第二信息,与终端进行通信。其中,第一信息用于配置用户体验评价模式,用户体验评价模式是多种用户体验评价模式中的一种,用户体验评价模式用于评价网络传输对用户体验的影响;第二信息包含网络传输对用户体验的影响的信息。具体参见方法示例中的详细描述,此处不做赘述。
例如,该通信装置1200用于实现本申请实施例提供的方法中终端的功能时,处理器1210可用于接收来自网络设备的第一信息;基于第一信息确定用户体验评价模式;向网络设备发送第二信息。其中,用户体验评价模式是多种用户体验评价模式中的一种,用户体验评价模式用于评价网络传输对用户体验的影响;第二信息包含网络传输对用户体验的影响的信息。具体参见方法示例中的详细描述,此处不做赘述。
该通信装置1200还可以包括至少一个存储器1220,用于存储程序指令和/或数据。存储器1220和处理器1210耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1210可能和存储器1220协同操作。处理器1210可能执行存储器1220中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
该通信装置1200还可以包括通信接口1230,用于通过传输介质和其它设备进行通信,从而用于通信装置1200中的装置可以和其它设备进行通信。示例性地,当该通信装置1200用于实现本申请实施例提供的方法中网络设备的功能时,该其他设备可以是终端;当该通信装置1200用于实现本申请实施例提供的方法中终端的功能时,该其他设备可以是网络设备。所述通信接口1230例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。处理器1210可利用通信接口1230收发数据和/或信息,并用于实现图9对应的实施例中所述的网络设备和/或终端所执行的方法。
本申请实施例中不限定上述处理器1210、存储器1220以及通信接口1230之间的具体连接介质。本申请实施例在图11中以处理器1210、存储器1220以及通信接口1230之间通过总线1240连接。总线1240在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图12是本申请实施例提供的终端的结构示意图。该终端1300具有图9所示的终端的功能,该终端1300可应用于如图1所示的通信系统100或图2所示的通信系统200中。如图12所示,该终端1300包括处理器1301和收发器1302。可选地,该终端1300还包括存储器1303。其中,处理器1301、收发器1302和存储器1303之间可以通过内部连接通路互相通信,传输控制和/或数据信号,该存储器1303用于存储计算机程序,该处理器1301用于从该存储器1303中调用并运行该计算机程序,以控制该收发器1302收发信号。可选地,终端设备1300还可以包括天线1304,用于将收发器1302输出的上行数据或上行控制信令通过无线信号发送出去。可选地,该终端1300还包括Wi-Fi模块1311,用于接入无线网络中。
上述处理器1301可以和存储器1303可以合成一个处理装置,处理器1301用于执行存储器1303中存储的程序代码来实现上述功能。具体实现时,该存储器1303也可以集成在处理器1301中,或者独立于处理器1301。该处理器1301可以与图10中的处理模块1110或图11中的处理器1210对应。
上述收发器1302可以与图10中的收发模块1120或图11中的通信接口1230对应。收发器1302可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
可选地,上述终端1300还可以包括电源1305,用于给终端1300中的各种器件或电路提供电源。
除此之外,为了使得该终端设备设备的功能更加完善,该终端设备1300还可以包括输入单元1306、显示单元1307、音频电路1308、摄像头1309和传感器1310等中的一个或多个,所述音频电路还可以包括扬声器1308a、麦克风1308b等。
应理解,图12所示的终端1300能够实现图9所示方法实施例中涉及终端的各个过程。终端1300中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
当终端设备1300用于执行上文方法实施例中涉及终端的操作流程时,处理器1301可以用于执行前面方法实施例中描述的由终端内部实现的动作,而收发器1302可以用于执行前面方法实施例中描述的终端向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
图13是本申请实施例提供的基站的结构示意图。该基站1400具有图9所示的网络设备的功能,该基站1400可应用于如图1所示的通信系统100中。如图13所示,该基站1400可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1410和一个或多个基带单元(BBU)(也可称为分布式单元(distributed unit,DU)) 1420。所述RRU 1410可以称为收发单元,可以与图10中的收发模块1120或图11中的通信接口1230对应。可选地,该RRU 1410还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1411和射频单元1412。可选地,RRU 1410可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 1410部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如,用于执行上述方法实施例中关于网络设备的操作流程,如,向终端发送第一信息、第三信息或第四信息等。所述BBU 1420部分主要用于进行基带处理,对基站进行控制等。所述RRU 1410与BBU 1420可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1420为基站的控制中心,也可以称为处理单元,可以与图10中的处理模块1110或图11中的处理器1210对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述第一信息、第三信息或第四信息等。或,所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 1420可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1420还包括存储器1421和处理器1422。所述存储器1421用以存储必要的指令和数据。所述处理器1422用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1421和处理器1422可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图13所示的基站1400能够实现图9所示方法实施例中涉及网络设备的各个过程。基站1400中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
当基站1400用于执行上文方法实施例中涉及网络设备的操作流程时,BBU 1420可以用于执行由网络设备内部实现的动作,而RRU 1410可以用于执行网络设备发送、接收及转发的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图13所示出的基站1400仅为接入网设备的一种可能的形态,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他形态的网络设备。例如,包括有源天线单元(active antenna unit,AAU),还可以包括集中单元(centralized,CU)和/或DU,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU。本申请对于网络设备的具体形态不做限定。
本申请还提供了一种芯片系统,所述芯片系统包括至少一个处理器,用于实现上述图9所示实施例中网络设备和/或终端执行的方法中所涉及的功能,例如,接收或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存程序指 令和数据,存储器位于处理器之内或处理器之外。
该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请还提供了一种通信系统,包括前述的接入网设备和终端。
本申请还提供了一种计算机可读存储介质,所述计算机存储介质上存储有计算机程序(也可以称为代码,或指令),当所述计算机程序在被处理器运行时,使得上述图9所示实施例中网络设备和/或终端执行的方法被执行。
本申请还提供一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行图9所示实施例中网络设备和/或终端执行的方法。
本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。通过举例说明但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本说明书中使用的术语“单元”、“模块”等,可用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方 案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保 护范围为准。

Claims (22)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    向终端发送第一信息,所述第一信息用于配置用户体验评价模式,所述用户体验评价模式是多种用户体验评价模式中的一种,所述用户体验评价模式用于评价网络传输对用户体验的影响;
    接收来自所述终端的第二信息,所述第二信息包含网络传输对用户体验的影响的信息;
    基于所述第二信息,与所述终端进行通信。
  2. 如权利要求1所述的方法,其特征在于,所述第一信息还用于配置所述用户体验评价模式的参数。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第三信息,所述第三信息用于配置所述用户体验评价模式的参数。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述用户体验评价模式包括画质体验评价模式和交互体验评价模式,所述画质体验评价模式用于评价传输错误对画质体验的影响,所述交互体验评价模式用于评价传输延时对交互体验的影响。
  5. 如权利要求4所述的方法,其特征在于,所述网络传输对用户体验的影响的信息包括所述画质体验评价信息和所述交互体验评价信息,所述画质体验评价模式用于所述画质体验评价信息的确定,所述交互体验评价模式用于所述交互体验评价信息的确定。
  6. 如权利要求5所述的方法,其特征在于,所述画质体验评价信息用于指示传输错误对画质体验的影响系数或评价分数,所述交互体验评价信息用于指示传输延时对交互体验的影响系数或评价分数。
  7. 如权利要求4所述的方法,其特征在于,所述网络传输对用户体验的影响的信息用于指示扩展现实质量评价分数,所述画质体验评价模式和所述交互体验评价模式用于所述扩展现实质量评价分数的确定。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述基于所述第二信息,与所述终端进行通信,包括:
    基于所述第二信息和信道质量指示CQI,确定用于与所述终端进行通信的调制编码方案MCS;
    基于所述MCS与所述终端进行通信。
  9. 一种数据传输方法,其特征在于,所述方法包括:
    接收来自网络设备的第一信息;
    基于所述第一信息确定用户体验评价模式,所述用户体验评价模式是多种用户体验评价模式中的一种,所述用户体验评价模式用于评价网络传输对用户体验的影响;
    向所述网络设备发送第二信息,所述第二信息包含网络传输对用户体验的影响的信息。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    基于所述用户体验评价模式确定所述网络传输对用户体验的影响。
  11. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    基于所述第一信息确定所述用户体验评价模式的参数。
  12. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第三信息;
    基于所述第三信息确定所述用户体验评价模式的参数。
  13. 如权利要求11或12所述的方法,其特征在于,所述方法还包括:
    基于所述用户体验评价模式和所述用户体验评价模式的参数,确定所述网络传输对用户体验的影响。
  14. 如权利要求9至13中任一项所述的方法,其特征在于,所述用户体验评价模式包括画质体验评价模式和交互体验评价模式,所述画质体验评价模式用于评价传输错误对画质体验的影响,所述交互体验评价模式用于评价传输延时对交互体验的影响。
  15. 如权利要求14所述的方法,其特征在于,所述网络传输对用户体验的影响的信息包括所述画质体验评价信息和所述交互体验评价信息,以及
    所述方法还包括:
    基于所述画质体验评价模式确定所述画质体验评价信息;
    基于所述交互体验评价模式确定所述交互体验评价信息。
  16. 如权利要求15所述的方法,其特征在于,所述画质体验评价信息用于指示传输错误对画质体验的影响系数或评价分数,所述交互体验评价信息用于指示传输延时对交互体验的影响系数或评价分数。
  17. 如权利要求14所述的方法,其特征在于,所述网络传输对用户体验的影响的信息用于指示扩展现实质量评价分数,以及
    所述方法还包括:
    基于所述画质体验评价模式和所述交互体验评价模式确定所述扩展现实质量评价分数。
  18. 如权利要求9至17中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第四信息,所述第四信息用于指示调制编码方案MCS,所述MCS与所述第二信息和信道质量指示CQI相关。
  19. 一种通信装置,其特征在于,所述通信装置包括用于执行如权利要求1至8中任一项所述方法的模块,或者,所述通信装置包括用于执行如权利要求9至18中任一项所述方法的模块。
  20. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述通信装置执行如权利要求1至8中任一项所述的方法,或者,使得所述通信装置执行如权利要求9至18中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至8中任一项所述的方法,或者,使得所述计算机执行如权利要求9至18中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,包括程序代码,当所述程序代码在计算机上运行时,使得所述计算机实现如权利要求1至8中任一项所述的方法,或者,使得所述计算机实现如权利要求9至18中任一项所述的方法。
PCT/CN2022/091804 2021-06-23 2022-05-09 一种数据传输方法和通信装置 WO2022267720A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22827218.3A EP4319252A1 (en) 2021-06-23 2022-05-09 Data transmission method and communication apparatus
BR112023027377A BR112023027377A2 (pt) 2021-06-23 2022-05-09 Método de transmissão de dados, aparelho de comunicação e meio de armazenamento legível por computador

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110701156.2A CN115515161A (zh) 2021-06-23 2021-06-23 一种数据传输方法和通信装置
CN202110701156.2 2021-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/389,661 Continuation US20240187703A1 (en) 2021-06-23 2023-12-19 Data transmission method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022267720A1 true WO2022267720A1 (zh) 2022-12-29

Family

ID=84500113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091804 WO2022267720A1 (zh) 2021-06-23 2022-05-09 一种数据传输方法和通信装置

Country Status (4)

Country Link
EP (1) EP4319252A1 (zh)
CN (1) CN115515161A (zh)
BR (1) BR112023027377A2 (zh)
WO (1) WO2022267720A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783754A (zh) * 2010-02-23 2010-07-21 浪潮通信信息系统有限公司 一种互联网业务客户感知QoE的测量方法
CN102868666A (zh) * 2011-07-07 2013-01-09 北京东方文骏软件科技有限责任公司 基于用户体验交互的流媒体质量监测报告的实现方法
CN105897736A (zh) * 2016-05-17 2016-08-24 北京邮电大学 一种tcp视频流业务用户体验质量评估方法及装置
CN108965949A (zh) * 2018-07-27 2018-12-07 清华大学 一种视频业务中满足用户个性化体验的码率自适应方法
CN109005431A (zh) * 2018-09-18 2018-12-14 北京腾信创新网络营销技术股份有限公司 一种视频评估推荐系统
US20190364457A1 (en) * 2016-04-04 2019-11-28 Nokia Technologies Oy Context aware and adaptive qos/qoe target definition in 5g

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783754A (zh) * 2010-02-23 2010-07-21 浪潮通信信息系统有限公司 一种互联网业务客户感知QoE的测量方法
CN102868666A (zh) * 2011-07-07 2013-01-09 北京东方文骏软件科技有限责任公司 基于用户体验交互的流媒体质量监测报告的实现方法
US20190364457A1 (en) * 2016-04-04 2019-11-28 Nokia Technologies Oy Context aware and adaptive qos/qoe target definition in 5g
CN105897736A (zh) * 2016-05-17 2016-08-24 北京邮电大学 一种tcp视频流业务用户体验质量评估方法及装置
CN108965949A (zh) * 2018-07-27 2018-12-07 清华大学 一种视频业务中满足用户个性化体验的码率自适应方法
CN109005431A (zh) * 2018-09-18 2018-12-14 北京腾信创新网络营销技术股份有限公司 一种视频评估推荐系统

Also Published As

Publication number Publication date
BR112023027377A2 (pt) 2024-03-12
EP4319252A1 (en) 2024-02-07
CN115515161A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
RU2722395C1 (ru) Механизм регулировки задержки радиоинтерфейса
EP2675234B1 (en) Scheduling method, device and system based on quality of service
US20190174360A1 (en) Service transmission control method, related device, and communications system
WO2016161900A1 (zh) 一种进行数据传输的方法和设备
CN110351201A (zh) 一种数据处理方法及装置
WO2021196214A1 (zh) 传输方法、装置及计算机存储介质
JP2023126240A (ja) 指示情報送信方法、指示情報受信方法、デバイス、およびシステム
WO2021184217A1 (zh) 信道状态信息测量方法、装置及计算机存储介质
US20200336989A1 (en) System and Method for Uplink Power Control in a Communications System with Multi-Access Point Coordination
TW201740766A (zh) 通信方法、網路設備和終端設備
US20230188472A1 (en) Data transmission method and apparatus
US9241346B2 (en) Method and apparatus for data transmissions in a wireless network
WO2022267720A1 (zh) 一种数据传输方法和通信装置
US20230389051A1 (en) Methods for inter-ue resource coordination mechanism
US20240187703A1 (en) Data transmission method and communication apparatus
US20230021043A1 (en) HANDLING OVERLAPPING OF MULTIPLE PHYSICAL UPLINK SHARED CHANNELS (PUSCHs)
US20230125598A1 (en) Multi trp based scheduling of mixed type traffics
EP3589012A1 (en) Beam interference avoidance method and base station
CN109906646A (zh) 信息传输方法、基站和终端设备
WO2021142662A1 (zh) 资源配置方法、装置、通信设备及存储介质
JP2024521854A (ja) データ送信方法および通信装置
WO2015096016A1 (zh) 一种调度信息的传输方法、基站及用户设备
US20230422087A1 (en) Communication method and apparatus
WO2023103919A1 (zh) 数据传输方法和数据传输装置
WO2023116746A1 (zh) 一种波束确定方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022827218

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022827218

Country of ref document: EP

Effective date: 20231026

WWE Wipo information: entry into national phase

Ref document number: 2023573400

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023027377

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023027377

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231222