WO2022267483A1 - 用于直流电机的控制方法、装置和电机控制系统 - Google Patents

用于直流电机的控制方法、装置和电机控制系统 Download PDF

Info

Publication number
WO2022267483A1
WO2022267483A1 PCT/CN2022/075251 CN2022075251W WO2022267483A1 WO 2022267483 A1 WO2022267483 A1 WO 2022267483A1 CN 2022075251 W CN2022075251 W CN 2022075251W WO 2022267483 A1 WO2022267483 A1 WO 2022267483A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
pulse width
width modulation
speed
modulation signal
Prior art date
Application number
PCT/CN2022/075251
Other languages
English (en)
French (fr)
Inventor
段泽鹏
陈欢
胡伟
鞠焕文
王潘飞
宋述飞
Original Assignee
青岛海尔生物医疗科技有限公司
青岛海尔生物医疗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔生物医疗科技有限公司, 青岛海尔生物医疗股份有限公司 filed Critical 青岛海尔生物医疗科技有限公司
Publication of WO2022267483A1 publication Critical patent/WO2022267483A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • H02P7/2913Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Definitions

  • the present application relates to the technical field of motor drive control, for example, to a control method, device and motor control system for a DC motor.
  • centrifuges on the market, such as handheld centrifuges, have the characteristics of small size and low price, and their centrifugal force is mainly provided by the operation of a DC motor.
  • Centrifuges generally use a constant-speed startup method, that is, they can be started directly by providing a fixed voltage, but this solution is only suitable for centrifuges with low speed and low load. For high-speed centrifuges, they cannot be started directly.
  • closed-loop control is used to start the centrifuge, that is, the duty cycle of the controller output is adjusted through the real-time speed feedback of the speed sensor.
  • the starting current of the existing DC motor will reach 6 to 8 times of the rated current when it is started at a constant speed, which will cause damage to the shaft of the DC motor and reduce the service life of the DC motor.
  • this solution generally requires multiple field effect transistors and sensors to implement, resulting in complex control and high cost, and it is difficult to meet market demand.
  • Embodiments of the present disclosure provide a control method, device, motor control system and drive control circuit for a DC motor to solve the above technical problems.
  • control method includes:
  • the current pulse width modulation signal is maintained so that the rotation speed of the DC motor reaches the target rotation speed.
  • the adjusting the duty ratio of the pulse width modulation signal in real time according to the corresponding relationship between the duty ratio of the pulse width modulation signal and the working time of the DC motor includes:
  • the duty cycle of the pulse width modulation signal is adjusted in real time through the mathematical model, so as to adjust the rotation speed of the DC motor in real time.
  • the mathematical model is specifically:
  • the Duty is the duty cycle of the pulse width modulation signal
  • the h is the target working time
  • the k is the maximum duty cycle
  • the a is a constant calculated through the minimum duty cycle.
  • the correspondence between the rotational speed of the DC motor and the duty ratio of the pulse width modulation signal is obtained in the following manner:
  • control method further includes:
  • control device includes:
  • a rotational speed determination module configured to determine a target rotational speed of the DC motor
  • the duty cycle determination module is configured to, according to the corresponding relationship between the speed of the DC motor and the duty cycle of the pulse width modulation signal, when the target speed is greater than the maximum speed that can be directly started by the DC motor , determining a target duty cycle corresponding to the target speed;
  • the duty cycle adjustment module is configured to start the DC motor and make the speed of the DC motor reach the maximum speed that can be directly started, according to the duty cycle of the pulse width modulation signal and the working time of the DC motor The corresponding relationship between, real-time adjustment of the duty cycle of the pulse width modulation signal;
  • the duty ratio maintenance module is configured to maintain the current pulse width modulation signal when the current duty ratio of the pulse width modulation signal is equal to the target duty ratio, so that the rotation speed of the DC motor reaches the target speed.
  • the duty ratio determination module includes:
  • the first parameter acquisition unit is configured to acquire the target working time required for the DC motor to reach the maximum speed, and the maximum duty cycle of the pulse width modulation signal corresponding to the maximum speed of the DC motor;
  • the second parameter acquisition unit is configured to acquire the minimum duty cycle of the pulse width modulation signal corresponding to the maximum rotational speed of the DC motor that can be directly started;
  • a mathematical model construction unit configured to obtain a mathematical model between the duty cycle of the pulse width modulation signal and the working time of the DC motor according to the target working time, the minimum duty cycle and the maximum duty cycle;
  • the signal adjustment unit is configured to adjust the duty ratio of the pulse width modulation signal in real time through the mathematical model, so as to adjust the rotation speed of the DC motor in real time.
  • control device includes a processor and a memory storing program instructions, wherein the processor is configured to, when executing the program instructions, execute the Control methods for DC motors.
  • the motor control system includes a DC motor for implementing the method described in this application and the device described in this application, and the control device controls the rotation speed of the DC motor through a drive control circuit.
  • the drive control circuit includes a single-chip microcomputer, a triode, a P-type field effect transistor, and a DC motor for implementing the method described in the present application
  • the output end of the single-chip microcomputer is connected to the input end of the triode
  • the turn-on or cut-off of the triode is controlled by the pulse width modulation signal of the single-chip microcomputer, and the output terminal of the triode is connected with the input terminal of the P-type field effect transistor, so as to be controlled by the level signal of the triode.
  • the P-type field effect transistor is turned on or off, the output end of the P-type field effect transistor is connected to the DC motor, so as to control the DC motor through the P-type field effect transistor being turned on or off speed.
  • the control method, device, and motor control system for DC motors provided by the embodiments of the present disclosure can achieve the following technical effects: the application establishes a relationship between the rotation speed of the DC motor, the duty ratio of the pulse width modulation signal, and the working time.
  • the mapping relationship of the DC motor forms an open-loop control of the DC motor. In the case of no sensor feedback, the DC motor runs in a preset way and gradually reaches the target speed through soft start, thereby realizing a simple and reliable motor. control, reducing the electronic components required by the motor control system, reducing the hardware cost of the centrifuge, improving the cost performance of the centrifuge and the service life of the DC motor.
  • FIG. 1 is a schematic diagram of a control method for a DC motor provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of another control method for a DC motor provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of another control method for a DC motor provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of a mathematical model for a DC motor provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of a control device for a DC motor provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of another control device for a DC motor provided by an embodiment of the present disclosure.
  • FIG. 7 is a circuit diagram of a drive control circuit provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • the embodiment of the present disclosure provides a control method for a DC motor, especially for a brushed DC motor.
  • the brushed DC motor adopts mechanical commutation, the magnetic pole does not move, and the working mode of the coil rotates, which is different from the
  • the brushless DC motor adopts the electronic commutation of the field effect tube, the coil does not move, and the magnetic pole rotates.
  • the brushed DC motor described in this application can be mounted in a common centrifuge on the market, such as a hand-held centrifuge.
  • the control methods include:
  • electrical equipment such as a centrifuge equipped with a DC motor interacts with the user through an external input device, so that the motor control system can obtain the target speed of the DC motor set by the user, wherein the target speed is The value range is greater than 0 and less than or equal to the maximum rotational speed of the DC motor.
  • the motor control system of the present application will judge the size between the target speed and the direct-startable maximum speed of the DC motor, and when the target speed is greater than the direct-startable maximum speed of the DC motor In the case of the maximum speed, the motor control system will determine the target duty cycle corresponding to the target speed according to the correspondence between the current speed of the DC motor and the duty cycle of the pulse width modulation signal (Pulse Width Modulation, PWM), Among them, the duty ratio refers to the ratio of the high level of the pulse width modulation signal in one cycle, and the DC motor will correspond to different speeds under different duty ratios according to the pulse width modulation signal, that is, the DC motor is in a static state. The corresponding duty cycle is 0, and the corresponding duty cycle of the DC motor in the maximum speed state is 1 or 100%.
  • S103 Start the DC motor and make the speed of the DC motor reach the maximum speed that can be directly started, according to the corresponding relationship between the duty cycle of the pulse width modulation signal and the working time of the DC motor, in real time Adjusting the duty cycle of the pulse width modulation signal.
  • the motor control system of this application will obtain the maximum speed that can be directly started by the current DC motor through actual testing in advance, and the maximum speed that can be directly started refers to the maximum speed that the DC motor can directly start and reach , therefore, when the target speed is greater than the direct-startable maximum speed of the DC motor, the motor control system may directly start the DC motor and make the speed of the DC motor reach the direct-startable maximum speed, Then, according to the pre-calculated correspondence between the duty cycle of the pulse width modulation signal and the working time of the DC motor, according to time as an independent variable, the duty cycle of the pulse width modulation signal is a mapping relationship as a dependent variable , adjusting the duty ratio of the pulse width modulation signal in real time.
  • the motor control system of the present application adjusts the duty ratio of the pulse width modulation signal in real time, and when the adjusted duty ratio of the current pulse width modulation signal is equal to the target duty ratio, it indicates that the current The rotation speed of the DC motor corresponding to the duty ratio of the pulse width modulation signal is equal to the target rotation speed, so that the current pulse width modulation signal is maintained so that the rotation speed of the DC motor reaches the target rotation speed.
  • the open-loop control of DC motors is formed by constructing the mapping relationship between the rotational speed of the DC motor, the duty ratio of the pulse width modulation signal, and the working time , in the case of no sensor feedback, the DC motor can be operated according to the preset method and gradually reach the target speed through soft start, so as to realize simple and reliable motor control and reduce the electronic components required by the motor control system.
  • the hardware cost of the centrifuge is reduced, the cost performance of the centrifuge and the service life of the DC motor are improved.
  • the duty ratio of the pulse width modulation signal is adjusted in real time according to the corresponding relationship between the duty ratio of the pulse width modulation signal and the working time of the DC motor. than, including:
  • S201 Obtain a target working time required for the DC motor to reach a maximum rotational speed, and a maximum duty ratio of a pulse width modulation signal corresponding to the maximum rotational speed of the DC motor.
  • the motor control system of the present application obtains the target working time required for the DC motor to reach the maximum rotational speed, such as 4 seconds, 5 seconds or 6 seconds, etc., and the maximum rotational speed of the DC motor according to the needs of the user.
  • the maximum duty cycle of the pulse width modulation signal is usually 100%, and of course it can also be determined according to actual conditions.
  • the motor control system of the present application further obtains the directly startable
  • the maximum rotational speed corresponds to the minimum duty cycle of the pulse width modulation signal.
  • S203 Obtain a mathematical model between the duty cycle of the pulse width modulation signal and the working time of the DC motor according to the target working time length, the minimum duty cycle and the maximum duty cycle.
  • the motor control system of the present application can determine the mathematical model between the duty cycle of the pulse width modulation signal and the working time of the DC motor according to the user's requirements for the change of the rotational speed of the DC motor , and use the target working hours, the minimum duty cycle and the maximum duty cycle as parameters to specifically calculate the functional relationship corresponding to the mathematical model.
  • the mathematical model can specifically be:
  • the Duty is the duty cycle of the pulse width modulation signal
  • the h is the target working time
  • the k is the maximum duty cycle
  • the a is a constant calculated through the minimum duty cycle.
  • S204 Adjust the duty ratio of the pulse width modulation signal in real time through the mathematical model, so as to adjust the rotational speed of the DC motor in real time.
  • the present application adjusts the duty cycle of the pulse width modulation signal in real time through the mathematical model, so that the duty cycle of the pulse width modulation signal changes along the time axis according to a specific value, so that according to the change of the duty cycle
  • the rotating speed of the DC motor is adjusted in real time, and the soft start of the DC motor according to the needs of users is realized through open-loop control, which not only meets the needs of users, but also prolongs the service life of the DC motor.
  • the correspondence between the rotational speed of the DC motor and the duty ratio of the pulse width modulation signal is obtained in the following manner:
  • S301 Adjust the duty cycle of the pulse width modulation signal from zero, so as to gradually increase the rotation speed of the DC motor.
  • S302 Acquire a minimum duty cycle corresponding to the directly-startable maximum speed when the speed of the DC motor reaches the directly-startable maximum speed.
  • the duty cycle of the pulse width modulation signal is further gradually increased until the DC motor
  • the maximum speed corresponds to the maximum duty cycle of the pulse width modulation signal.
  • the speed of the DC motor duty cycle The maximum speed can be started directly Minimum duty cycle first speed 20% duty cycle second speed 30% duty cycle third speed 40% duty cycle fourth speed 50% duty cycle fifth speed 60% duty cycle sixth speed 70% duty cycle eighth speed 80% duty cycle ninth speed 90% duty cycle Maximum speed maximum duty cycle
  • the present application gradually determines the corresponding relationship between the rotational speed of the DC motor and the duty cycle of the pulse width modulation signal through actual testing by gradually adjusting the duty cycle from zero, which is beneficial to improve the duty cycle of the DC motor.
  • control method when the target rotational speed is less than or equal to the direct-startable maximum rotational speed of the DC motor, the control method further includes:
  • the motor control system of this application will judge the size between the target speed and the maximum speed that can be directly started of the DC motor, and when the target speed is less than or equal to the directly In the case of starting the maximum speed, the motor control system can directly start the DC motor and make the speed of the DC motor reach the target speed. In this way, it can quickly satisfy the user's requirements for starting the motor without damaging the DC motor. demand.
  • the motor control system of the present application first actually tests the corresponding relationship between the rotating speed of the DC motor and the duty cycle of the pulse width modulation signal, and obtains that the direct-startable maximum rotating speed of the DC motor is 4000 revolutions per minute and the corresponding minimum duty cycle is 25%, the maximum speed of the DC motor is 12000 revolutions per minute and the corresponding duty cycle is 100%, the duty cycle corresponding to the target speed of the DC motor is 90%, so the two parameter points (0, 25) and (5, 100) in the time-duty cycle coordinate system are obtained. , and finally gradually become flat and maintained, the mathematical model can be determined to be a quadratic function of one variable, and the vertex formula is:
  • the Duty is the duty cycle of the pulse width modulation signal
  • the h is the target working time (seconds)
  • the k is the maximum duty cycle (percentage)
  • the a is calculated by the minimum duty cycle constant
  • an embodiment of the present disclosure provides a control device for a DC motor, including:
  • the rotational speed determination module 501 is configured to determine the target rotational speed of the DC motor.
  • the duty cycle determination module 502 is configured to, in the case that the target speed is greater than the direct-startable maximum speed of the DC motor, according to the correspondence between the speed of the DC motor and the duty cycle of the pulse width modulation signal relationship, and determine the target duty cycle corresponding to the target speed.
  • the duty cycle adjustment module 503 is configured to start the DC motor and make the speed of the DC motor reach the maximum speed that can be directly started, according to the duty cycle of the pulse width modulation signal and the working speed of the DC motor The corresponding relationship between the times is used to adjust the duty cycle of the pulse width modulation signal in real time.
  • the duty cycle maintaining module 504 is configured to maintain the current pulse width modulation signal when the current duty cycle of the pulse width modulation signal is equal to the target duty cycle, so that the rotation speed of the DC motor reaches the specified the target speed.
  • the duty ratio adjustment module 503 includes:
  • the first data acquisition unit is configured to acquire the target working time required for the DC motor to reach the maximum speed, and the maximum duty cycle of the pulse width modulation signal corresponding to the maximum speed of the DC motor;
  • the second data acquisition unit is configured to acquire the minimum duty ratio of the pulse width modulation signal corresponding to the maximum rotational speed of the DC motor that can be directly started;
  • a model building unit configured to obtain a mathematical model between the duty cycle of the pulse width modulation signal and the working time of the DC motor according to the target working time, the minimum duty cycle and the maximum duty cycle;
  • the duty cycle adjustment unit is configured to adjust the duty cycle of the pulse width modulation signal in real time through the mathematical model, so as to adjust the speed of the DC motor in real time.
  • control device also includes:
  • the direct starting module is configured to start the DC motor and make the rotation speed of the DC motor reach the target rotation speed.
  • This application forms the open-loop control of the DC motor by constructing the mapping relationship between the rotational speed of the DC motor, the duty cycle of the pulse width modulation signal, and the working time.
  • the method makes the DC motor run according to the preset method and gradually reaches the target speed, thereby realizing simple and reliable motor control, reducing the electronic components required for the motor control system, reducing the hardware cost of the centrifuge, and improving the centrifuge. Cost performance and the service life of the DC motor.
  • an embodiment of the present disclosure provides a control device for a DC motor, including a processor (processor) 100 and a memory (memory) 101 .
  • the device may also include a communication interface (Communication Interface) 102 and a bus 103.
  • Communication interface 102 may be used for information transfer.
  • the processor 100 can call the logic instructions in the memory 101 to execute the control method for a DC motor in the above embodiments.
  • the above logic instructions in the memory 101 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes the program instructions/modules stored in the memory 101 to execute functional applications and data processing, that is, to realize the control method for the DC motor in the above-mentioned embodiments.
  • the memory 101 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 101 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides a motor control system, including a DC motor for implementing the method described in this application and the device described in this application, and the control device controls the rotation speed of the DC motor through a drive control circuit.
  • an embodiment of the present disclosure provides a drive control circuit, including a single-chip microcomputer (not shown in the figure), a transistor N2, a P-type field effect transistor IC1, and the DC motor CN2 as described above.
  • the output of the single-chip microcomputer terminal is connected with the input end of the triode N2, so as to control the conduction or cut-off of the triode N2 through the pulse width modulation signal of the single-chip microcomputer, that is, when the pulse width modulation signal is high level, the triode N2
  • the emitter and the collector of the triode N2 are turned on, and when the pulse width modulation signal is at a low level, the emitter and the collector of the triode N2 are cut off, and the output terminal of the triode N2 is connected to the P-type field effect transistor IC1
  • the input ends are connected to control the conduction or cut-off of the P-type field effect transistor IC1 through the level signal of the triode N2, that is, when the pulse width modulation signal is at a high
  • the drive control circuit further includes a resistor R17, a resistor R19, a resistor R13, a voltage regulator tube D2, and a capacitor C11.
  • the pin of the single-chip microcomputer for signal output is connected to the triode N2 through the resistor R17.
  • the base of the transistor N2 is connected to the base, the emitter of the transistor N2 is grounded, the collector of the transistor N2 is connected to the gate of the P-type field effect transistor IC1, and the single-chip microcomputer sends pulse width modulation signals of different frequencies to thereby Control the conduction or cut-off of the triode N2, when the pulse width modulation signal is high level, the emitter and collector of the triode N2 conduct, when the pulse width modulation signal is low level, the triode N2
  • the emitter and collector of the resistor R19 are cut off, one end of the resistor R19 is connected to the base of the transistor N2 and the other end is grounded, and one end of the resistor R13 is connected to the collector of the transistor N2 and the P-type field
  • the gates of the effect transistor IC1 are connected and the other end is connected to a 24V power supply, the three sources of the P-type field effect transistor IC1 are connected in parallel to the 24V power supply, and the four drains of the P-type field effect transistor
  • the drive control circuit further includes a fuse F1, one end of the fuse F1 is connected to the node after the four drains of the P-type field effect transistor IC1 are connected in parallel, and the other end is connected to the node of the DC motor CN2.
  • the positive pole is connected, and is used to fuse the fuse with the heat generated by itself when the current exceeds a specified value, so as to protect the drive control circuit.
  • An embodiment of the present disclosure provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned control method for a DC motor.
  • An embodiment of the present disclosure provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the The computer executes the above control method for a DC motor.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to make a computer device (which can be a personal computer, a server, or a network equipment, etc.) execute all or part of the steps of the control method described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprising a " does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the operations or steps corresponding to different blocks may also occur in a different order than disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

一种用于直流电机的控制方法,包括:确定直流电机的目标转速(S101);在目标转速大于直流电机的可直接启动最大转速的情况下,根据直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系,确定目标转速对应的目标占空比(S102);启动直流电机并使直流电机的转速达到可直接启动最大转速,根据脉冲宽度调制信号的占空比与直流电机的工作时间之间的对应关系,实时调整脉冲宽度调制信号的占空比(S103);在调整所得当前脉冲宽度调制信号的占空比等于目标占空比的情况下,维持当前脉冲宽度调制信号,以使直流电机的转速达到目标转速(S104)。

Description

用于直流电机的控制方法、装置和电机控制系统
本申请基于申请号为202110687955.9、申请日为2021年6月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电机驱动控制技术领域,例如涉及一种用于直流电机的控制方法、装置和电机控制系统。
背景技术
目前,市场上常见的离心机,例如掌上离心机,具有体积小,价格低的特点,其离心力主要由直流电机运转提供。离心机一般采用定速启动的启动方式,即通过提供固定电压来直接启动,但该方案仅适用于转速小且负载低的离心机。对于高速离心机,无法直接启动,一般采用闭环控制的启动方式,即通过速度传感器实时转速反馈来调整控制器输出的占空比。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
现有的直流电机在采用定速启动时的启动电流会达到额定电流的6至8倍,会对直流电机的转轴造成损坏,并会减少直流电机的使用寿命,同时,对于闭环控制的启动方式,该方案一般需要多个场效应管并配合传感器实现,导致控制复杂且成本较高,难以满足市场的需求。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于直流电机的控制方法、装置、电机控制系统和驱动控制电路,以解决上述技术问题。
在一些实施例中,所述控制方法包括:
确定直流电机的目标转速;
在所述目标转速大于所述直流电机的可直接启动最大转速的情况下,根据所述直流 电机的转速与脉冲宽度调制信号的占空比之间的对应关系,确定所述目标转速对应的目标占空比;
启动所述直流电机并使所述直流电机的转速达到所述可直接启动最大转速,根据所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的对应关系,实时调整所述脉冲宽度调制信号的占空比;
在调整所得当前脉冲宽度调制信号的占空比等于所述目标占空比的情况下,维持所述当前脉冲宽度调制信号,以使所述直流电机的转速达到所述目标转速。
可选地,所述根据所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的对应关系,实时调整所述脉冲宽度调制信号的占空比,包括:
获取所述直流电机达到最大转速所需要的目标工作时长,以及所述直流电机的最大转速对应脉冲宽度调制信号的最大占空比;
获取所述直流电机的可直接启动最大转速对应脉冲宽度调制信号的最小占空比;
根据所述目标工作时长、最小占空比和最大占空比,得到所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的数学模型;
通过所述数学模型实时调整所述脉冲宽度调制信号的占空比,以实时调整所述直流电机的转速。
可选地,所述数学模型具体为:
Duty=a(T-h) 2+k;
其中,所述Duty为脉冲宽度调制信号的占空比,所述h为目标工作时长,所述k为最大占空比,所述a为通过最小占空比计算出的常数。
可选地,按照以下方式获得所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系:
从零开始调整所述脉冲宽度调制信号的占空比,以使所述直流电机的转速逐渐升高;
在所述直流电机的转速达到所述可直接启动最大转速的情况下,获取所述可直接启动最大转速对应的最小占空比;
在所述最小占空比的基础上,逐渐增加所述脉冲宽度调制信号的占空比至所述直流电机的最大转速对应脉冲宽度调制信号的最大占空比;
获取所述直流电机在所述最小占空比与最大占空比之间对应不同占空比的转速,以得到所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系。
可选地,在所述目标转速小于等于所述直流电机的可直接启动最大转速的情况下, 所述控制方法还包括:
启动所述直流电机并使所述直流电机的转速达到所述目标转速。
在一些实施例中,所述控制装置包括:
转速确定模块,被配置为确定直流电机的目标转速;
占空比确定模块,被配置为在所述目标转速大于所述直流电机的可直接启动最大转速的情况下,根据所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系,确定所述目标转速对应的目标占空比;
占空比调整模块,被配置为启动所述直流电机并使所述直流电机的转速达到所述可直接启动最大转速,根据所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的对应关系,实时调整所述脉冲宽度调制信号的占空比;
占空比维持模块,被配置为在当前所述脉冲宽度调制信号的占空比等于所述目标占空比的情况下,维持当前脉冲宽度调制信号,以使所述直流电机的转速达到所述目标转速。
可选地,所述占空比确定模块包括:
第一参数获取单元,被配置为获取所述直流电机达到最大转速所需要的目标工作时长,以及所述直流电机的最大转速对应脉冲宽度调制信号的最大占空比;
第二参数获取单元,被配置为获取所述直流电机的可直接启动最大转速对应脉冲宽度调制信号的最小占空比;
数学模型构建单元,被配置为根据所述目标工作时长、最小占空比和最大占空比,得到所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的数学模型;
信号调整单元,被配置为通过所述数学模型实时调整所述脉冲宽度调制信号的占空比,以实时调整所述直流电机的转速。
在一些实施例中,所述控制装置包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行用于实现本申请所述方法的用于直流电机的控制方法。
在一些实施例中,所述电机控制系统包括用于实现本申请所述方法的直流电机和本申请所述的装置,所述控制装置通过驱动控制电路控制所述直流电机的转速。
在一些实施例中,所述驱动控制电路包括单片机、三极管、P型场效应管以及用于实现本申请所述方法的直流电机,所述单片机的输出端与所述三极管的输入端相连接,以通过所述单片机的脉冲宽度调制信号控制所述三极管的导通或截止,所述三极管的输出端与所述P型场效应管的输入端相连接,以通过所述三极管的电平信号控制所述P型 场效应管的导通或截止,所述P型场效应管的输出端与所述直流电机相连接,以通过所述P型场效应管的导通或截止控制所述直流电机的转速。
本公开实施例提供的用于直流电机的控制方法、装置和电机控制系统,可以实现以下技术效果:本申请通过构建直流电机的转速、脉冲宽度调制信号的占空比与工作时间三者之间的映射关系,形成了对直流电机的开环控制,在不需要传感器反馈的情况下,通过软启动的方式使直流电机按照预设的方式运转并逐渐达到目标转速,从而实现简单且可靠的电机控制,减少了电机控制系统所需的电子元件,降低了离心机的硬件成本,提高了离心机的性价比以及直流电机的使用寿命。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于直流电机的控制方法的示意图;
图2是本公开实施例提供的另一个用于直流电机的控制方法的示意图;
图3是本公开实施例提供的另一个用于直流电机的控制方法的示意图;
图4是本公开实施例提供的一个用于直流电机的数学模型的示意图;
图5是本公开实施例提供的一个用于直流电机的控制装置的示意图;
图6是本公开实施例提供的另一个用于直流电机的控制装置的示意图;
图7是本公开实施例提供的一个驱动控制电路的电路图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括” 和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
结合图1所示,本公开实施例提供一种用于直流电机的控制方法,尤其适用于有刷直流电机,有刷直流电机采用机械换向,磁极不动,线圈旋转的工作方式,区别于无刷直流电机采取场效应管电子换向,线圈不动,磁极旋转的工作方式,本申请所述的有刷直流电机可以搭载于市场上常见的离心机中,例如掌上离心机等,其中,所述控制方法包括:
S101:确定直流电机的目标转速。
在本技术方案中,搭载有直流电机的离心机等电器设备通过外部输入设备与用户进行交互,使得电机控制系统能够获取用户设定的所述直流电机的目标转速,其中,所述目标转速的取值范围为大于0且小于等于所述直流电机的最大转速。
S102:在所述目标转速大于所述直流电机的可直接启动最大转速的情况下,根据所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系,确定所述目标转速对应的目标占空比。
在本技术方案中,本申请的电机控制系统会对所述目标转速与所述直流电机的可直接启动最大转速之间的大小进行判断,在所述目标转速大于所述直流电机的可直接启动最大转速的情况下,电机控制系统会根据当前直流电机的转速与脉冲宽度调制信号(Pulse Width Modulation,PWM)的占空比之间的对应关系,确定所述目标转速对应的目标占空比,其中,占空比是指脉冲宽度调制信号在一个周期内高电平所占的比率,所述直流电机会根据脉冲宽度调制信号在不同占空比下对应不同的转速,即直流电机在静止状态下对应的占空比为0,直流电机在最大转速状态下对应的占空比为1或100%。
S103:启动所述直流电机并使所述直流电机的转速达到所述可直接启动最大转速,根据所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的对应关系,实时调整所述脉冲宽度调制信号的占空比。
在本技术方案中,本申请的电机控制系统会预先通过实际测试的方式,得到当前直流电机的可直接启动最大转速,所述可直接启动最大转速是指直流电机能够直接启动并到达的最大转速,因此,在所述目标转速大于所述直流电机的可直接启动最大转速的情 况下,电机控制系统可以直接启动所述直流电机并使所述直流电机的转速达到所述可直接启动最大转速,然后根据预先计算出的所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的对应关系,按照时间作为自变量,脉冲宽度调制信号的占空比作为因变量的映射关系,对所述脉冲宽度调制信号的占空比进行实时调整。
S104:在调整所得当前脉冲宽度调制信号的占空比等于所述目标占空比的情况下,维持所述当前脉冲宽度调制信号,以使所述直流电机的转速达到所述目标转速。
在本技术方案中,本申请的电机控制系统实时调整所述脉冲宽度调制信号的占空比,在调整所得当前脉冲宽度调制信号的占空比等于所述目标占空比的情况下,表示当前脉冲宽度调制信号的占空比对应的直流电机的转速等于所述目标转速,从而维持所述当前脉冲宽度调制信号,以使所述直流电机的转速达到所述目标转速。
采用本公开实施例提供的用于直流电机的控制方法,通过构建直流电机的转速、脉冲宽度调制信号的占空比与工作时间三者之间的映射关系,形成了对直流电机的开环控制,在不需要传感器反馈的情况下,通过软启动的方式使直流电机按照预设的方式运转并逐渐达到目标转速,从而实现简单且可靠的电机控制,减少了电机控制系统所需的电子元件,降低了离心机的硬件成本,提高了离心机的性价比以及直流电机的使用寿命。
在一些实施例中,结合图2所示,所述根据所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的对应关系,实时调整所述脉冲宽度调制信号的占空比,包括:
S201:获取所述直流电机达到最大转速所需要的目标工作时长,以及所述直流电机的最大转速对应脉冲宽度调制信号的最大占空比。
在本技术方案中,本申请的电机控制系统根据用户的需求获取所述直流电机达到最大转速所需要的目标工作时长,例如4秒、5秒或6秒等,以及所述直流电机的最大转速对应脉冲宽度调制信号的最大占空比,所述最大占空比通常情况下为100%,当然也可以根据实际情况确定。
S202:获取所述直流电机的可直接启动最大转速对应脉冲宽度调制信号的最小占空比。
在本技术方案中,本申请的电机控制系统根据所述步骤102中的所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系,进一步获取所述直流电机的可直接启动最大转速对应脉冲宽度调制信号的最小占空比。
S203:根据所述目标工作时长、最小占空比和最大占空比,得到所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的数学模型。
在本技术方案中,本申请的电机控制系统可以根据用户对于直流电机的转速的变化 情况的需求,确定所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的数学模型,并利用所述目标工作时长、最小占空比和最大占空比作为参数,具体计算出所述数学模型对应的函数关系。
可选地,在用户要求所述直流电机的转速的变化情况为先快后慢,并最后逐渐趋于平缓并保持,则所述数学模型具体可以为:
Duty=a(T-h) 2+k;
其中,所述Duty为脉冲宽度调制信号的占空比,所述h为目标工作时长,所述k为最大占空比,所述a为通过最小占空比计算出的常数。
S204:通过所述数学模型实时调整所述脉冲宽度调制信号的占空比,以实时调整所述直流电机的转速。
这样,本申请通过所述数学模型实时调整所述脉冲宽度调制信号的占空比,使得所述脉冲宽度调制信号的占空比沿时间轴,按照特定数值进行变化,从而根据占空比的变化实时调整所述直流电机的转速,通过开环控制的方式实现了按照用户的需求对直流电机的软起动,既满足了用户的使用需求,有延长了直流电机的使用寿命。
在一些实施例中,结合图3所示,按照以下方式获得所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系:
S301:从零开始调整所述脉冲宽度调制信号的占空比,以使所述直流电机的转速逐渐升高。
在本技术方案中,由于直流电机存在多种型号和规格,导致不同的直流电机在不同的占空比下对应的转速是不同的,故并不能直接确定出当前直流电机的可直接启动最大转速对应的最小占空比,因此,电机控制系统需要从零开始,逐渐调整所述脉冲宽度调制信号的占空比,以使所述直流电机的转速从零开始逐渐升高。
S302:在所述直流电机的转速达到所述可直接启动最大转速的情况下,获取所述可直接启动最大转速对应的最小占空比。
S303:在所述最小占空比的基础上,逐渐增加所述脉冲宽度调制信号的占空比至所述直流电机的最大转速对应脉冲宽度调制信号的最大占空比。
在本技术方案中,在通过实际测试的方式得到所述可直接启动最大转速对应的最小占空比的基础上,进一步逐渐增加所述脉冲宽度调制信号的占空比,直到所述直流电机的最大转速对应脉冲宽度调制信号的最大占空比为止。
S304:获取所述直流电机在所述最小占空比与最大占空比之间对应不同占空比的转速,以得到所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系。
在本技术方案中,通过不断获取所述直流电机在所述最小占空比与最大占空比之间对应不同占空比的转速,最终可以得到如下表1所示的所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系。
表1
直流电机的转速 占空比
可直接启动最大转速 最小占空比
第一转速 20%占空比
第二转速 30%占空比
第三转速 40%占空比
第四转速 50%占空比
第五转速 60%占空比
第六转速 70%占空比
第八转速 80%占空比
第九转速 90%占空比
最大转速 最大占空比
这样,本申请通过从零开始逐步调节占空比的方式,通过实际测试的方式逐渐确定出所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系,从而有利于提高开环控制的稳定性和可靠性。
在一些实施例中,在所述目标转速小于等于所述直流电机的可直接启动最大转速的情况下,所述控制方法还包括:
启动所述直流电机并使所述直流电机的转速达到所述目标转速。
在本技术方案中,本申请的电机控制系统会对所述目标转速与所述直流电机的可直接启动最大转速之间的大小进行判断,在所述目标转速小于等于所述直流电机的可直接启动最大转速的情况下,电机控制系统可以直接启动所述直流电机并使所述直流电机的转速达到所述目标转速,这样,能够在保证不损坏直流电机的情况下满足快速满足用户对于电机启动的需求。
在本申请的一个具体的应用实施例中,假设用户设定的所述直流电机的目标转速为10000转/每分钟,并且所述直流电机达到最大转速12000转/每分钟所需要的目标工作时长为5秒,此时,本申请的电机控制系统首先实际测试出所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系,得到所述直流电机的可直接启动最大转速为 4000转/每分钟且对应的最小占空比为25%、所述直流电机的最大转速12000转/每分钟且对应的占空比为100%,所述直流电机的目标转速对应的占空比为90%,于是得到时间-占空比坐标系中的两参数点(0,25)和(5,100),此时,在用户要求所述直流电机的转速的变化情况为先快后慢,并最后逐渐趋于平缓并保持的情况下,可以确定数学模型为一元二次函数,采用顶点式为:
Duty=a(T-h) 2+k;
其中,所述Duty为脉冲宽度调制信号的占空比,所述h为目标工作时长(秒),所述k为最大占空比(百分比),所述a为通过最小占空比计算出的常数;
将上述已知参数带入后,可以计算出a为-3,最终得到如图4所示的数学模型:
Duty=-3(T-5) 2+100;
将目标转速对应的占空比90%带入上述一元二次函数,可得T≈3.16秒,即所述直流电机将在到达所述可直接启动最大转速后的约3.16秒到达目标转速。
结合图5所示,本公开实施例提供一种用于直流电机的控制装置,包括:
转速确定模块501,被配置为确定直流电机的目标转速。
占空比确定模块502,被配置为在所述目标转速大于所述直流电机的可直接启动最大转速的情况下,根据所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系,确定所述目标转速对应的目标占空比。
占空比调整模块503,被配置为启动所述直流电机并使所述直流电机的转速达到所述可直接启动最大转速,根据所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的对应关系,实时调整所述脉冲宽度调制信号的占空比。
占空比维持模块504,被配置为在当前所述脉冲宽度调制信号的占空比等于所述目标占空比的情况下,维持当前脉冲宽度调制信号,以使所述直流电机的转速达到所述目标转速。
可选地,所述占空比调整模块503,包括:
第一数据获取单元,被配置为获取所述直流电机达到最大转速所需要的目标工作时长,以及所述直流电机的最大转速对应脉冲宽度调制信号的最大占空比;
第二数据获取单元,被配置为获取所述直流电机的可直接启动最大转速对应脉冲宽度调制信号的最小占空比;
模型构建单元,被配置为根据所述目标工作时长、最小占空比和最大占空比,得到所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的数学模型;
占空比调整单元,被配置为通过所述数学模型实时调整所述脉冲宽度调制信号的占 空比,以实时调整所述直流电机的转速。
可选地,所述控制装置还包括:
直接启动模块,被配置为启动所述直流电机并使所述直流电机的转速达到所述目标转速。
本申请通过构建直流电机的转速、脉冲宽度调制信号的占空比与工作时间三者之间的映射关系,形成了对直流电机的开环控制,在不需要传感器反馈的情况下,通过软启动的方式使直流电机按照预设的方式运转并逐渐达到目标转速,从而实现简单且可靠的电机控制,减少了电机控制系统所需的电子元件,降低了离心机的硬件成本,提高了离心机的性价比以及直流电机的使用寿命。
结合图6所示,本公开实施例提供一种用于直流电机的控制装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于直流电机的控制方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于直流电机的控制方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种电机控制系统,包含用于实现本申请所述方法的直流电机和本申请所述的装置,所述控制装置通过驱动控制电路控制所述直流电机的转速。
结合图7所示,本公开实施例提供一种驱动控制电路,包括单片机(图中未示出)、三极管N2、P型场效应管IC1以及如上所述的直流电机CN2,所述单片机的输出端与所述三极管N2的输入端相连接,以通过所述单片机的脉冲宽度调制信号控制所述三极管N2的导通或截止,即当所述脉冲宽度调制信号为高电平时,所述三极管N2的发射极与集电极导通,当所述脉冲宽度调制信号为低电平时,所述三极管N2的发射极与集电极 截止,所述三极管N2的输出端与所述P型场效应管IC1的输入端相连接,以通过所述三极管N2的电平信号控制所述P型场效应管IC1的导通或截止,即当所述脉冲宽度调制信号为高电平时,所述P型场效应管IC1导通,当所述脉冲宽度调制信号为低电平时,所述P型场效应管IC1截至,所述P型场效应管IC1的输出端与所述直流电机CN2相连接,以通过所述P型场效应管IC1的导通或截止控制所述直流电机CN2的转速,即当所述P型场效应管IC1导通时,所述直流电机CN2通电旋转,当所述P型场效应管IC1截至时,所述直流电机CN2无电空转。
可选的,所述驱动控制电路还包括电阻R17、电阻R19、电阻R13、稳压管D2和电容C11,具体而言,所述单片机用于信号输出的引脚通过所述电阻R17与三极管N2的基极相连接,所述三极管N2的发射极接地,所述三极管N2的集电极与所述P型场效应管IC1的栅极相连接,所述单片机通过发出不同频率的脉冲宽度调制信号从而控制三极管N2的导通或截止,当所述脉冲宽度调制信号为高电平时,所述三极管N2的发射极与集电极导通,当所述脉冲宽度调制信号为低电平时,所述三极管N2的发射极与集电极截止,所述电阻R19的一端与所述三极管N2的基极相连接且另一端接地,所述电阻R13的一端分别与所述三极管N2的集电极和所述P型场效应管IC1的栅极相连接且另一端接24V电源,所述P型场效应管IC1的三个源极并联后接24V电源,所述P型场效应管IC1的四个漏极并联后与所述直流电机CN2的正极相连接,所述直流电机CN2的负极接地,在所述三极管N2的发射极与集电极导通的情况下,所述P型场效应管IC1的漏级和源级同时导通,从而驱动所述直流电机CN2旋转,所述稳压管D2的负极与所述直流电机CN2的正极相连接且正极接地,所述电容C11的一端与所述直流电机CN2的正极相连接且另一端接地。
可选地,所述驱动控制电路还包括熔断器F1,所述熔断器F1的一端与P型场效应管IC1的四个漏极并联后的节点相连接,另一端与所述直流电机CN2的正极相连接,用于在电流超过规定值时,以本身产生的热量使熔体熔断,从而保护所述驱动控制电路。
应当注意的是,上述驱动控制电路的实现可以有多种方案,本申请不在此一一进行说明书,只要是能够实现脉冲宽度调制信号控制所述直流电机的转速即可。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于直流电机的控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于直流电机的控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述控制方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于直流电机的控制方法,其特征在于,包括:
    确定直流电机的目标转速;
    在所述目标转速大于所述直流电机的可直接启动最大转速的情况下,根据所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系,确定所述目标转速对应的目标占空比;
    启动所述直流电机并使所述直流电机的转速达到所述可直接启动最大转速,根据所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的对应关系,实时调整所述脉冲宽度调制信号的占空比;
    在调整所得当前脉冲宽度调制信号的占空比等于所述目标占空比的情况下,维持所述当前脉冲宽度调制信号,以使所述直流电机的转速达到所述目标转速。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的对应关系,实时调整所述脉冲宽度调制信号的占空比,包括:
    获取所述直流电机达到最大转速所需要的目标工作时长,以及所述直流电机的最大转速对应脉冲宽度调制信号的最大占空比;
    获取所述直流电机的可直接启动最大转速对应脉冲宽度调制信号的最小占空比;
    根据所述目标工作时长、最小占空比和最大占空比,得到所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的数学模型;
    通过所述数学模型实时调整所述脉冲宽度调制信号的占空比,以实时调整所述直流电机的转速。
  3. 根据权利要求2所述的方法,其特征在于,所述数学模型具体为:
    Duty=a(T-h) 2+k;
    其中,所述Duty为脉冲宽度调制信号的占空比,所述h为目标工作时长,所述k为最大占空比,所述a为通过最小占空比计算出的常数。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,按照以下方式获得所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系:
    从零开始调整所述脉冲宽度调制信号的占空比,以使所述直流电机的转速逐渐升高;
    在所述直流电机的转速达到所述可直接启动最大转速的情况下,获取所述可直接启 动最大转速对应的最小占空比;
    在所述最小占空比的基础上,逐渐增加所述脉冲宽度调制信号的占空比至所述直流电机的最大转速对应脉冲宽度调制信号的最大占空比;
    获取所述直流电机在所述最小占空比与最大占空比之间对应不同占空比的转速,以得到所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,在所述目标转速小于等于所述直流电机的可直接启动最大转速的情况下,所述控制方法还包括:
    启动所述直流电机并使所述直流电机的转速达到所述目标转速。
  6. 一种用于直流电机的控制装置,其特征在于,包括:
    转速确定模块,被配置为确定直流电机的目标转速;
    占空比确定模块,被配置为在所述目标转速大于所述直流电机的可直接启动最大转速的情况下,根据所述直流电机的转速与脉冲宽度调制信号的占空比之间的对应关系,确定所述目标转速对应的目标占空比;
    占空比调整模块,被配置为启动所述直流电机并使所述直流电机的转速达到所述可直接启动最大转速,根据所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的对应关系,实时调整所述脉冲宽度调制信号的占空比;
    占空比维持模块,被配置为在当前所述脉冲宽度调制信号的占空比等于所述目标占空比的情况下,维持当前脉冲宽度调制信号,以使所述直流电机的转速达到所述目标转速。
  7. 根据权利要求6所述的装置,其特征在于,所述占空比确定模块包括:
    第一参数获取单元,被配置为获取所述直流电机达到最大转速所需要的目标工作时长,以及所述直流电机的最大转速对应脉冲宽度调制信号的最大占空比;
    第二参数获取单元,被配置为获取所述直流电机的可直接启动最大转速对应脉冲宽度调制信号的最小占空比;
    数学模型构建单元,被配置为根据所述目标工作时长、最小占空比和最大占空比,得到所述脉冲宽度调制信号的占空比与所述直流电机的工作时间之间的数学模型;
    信号调整单元,被配置为通过所述数学模型实时调整所述脉冲宽度调制信号的占空比,以实时调整所述直流电机的转速。
  8. 一种用于直流电机的控制装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至5任一项所述的用于直流电机的控制方法。
  9. 一种电机控制系统,其特征在于,包括用于实现如权利要求1至5任一项所述方法的直流电机和如权利要求8所述的控制装置,所述控制装置通过驱动控制电路控制所述直流电机的转速。
  10. 一种驱动控制电路,其特征在于,包括单片机、三极管、P型场效应管以及用于实现如权利要求1至5任一项所述方法的直流电机,所述单片机的输出端与所述三极管的输入端相连接,以通过所述单片机的脉冲宽度调制信号控制所述三极管的导通或截止,所述三极管的输出端与所述P型场效应管的输入端相连接,以通过所述三极管的电平信号控制所述P型场效应管的导通或截止,所述P型场效应管的输出端与所述直流电机相连接,以通过所述P型场效应管的导通或截止控制所述直流电机的转速。
PCT/CN2022/075251 2021-06-21 2022-01-30 用于直流电机的控制方法、装置和电机控制系统 WO2022267483A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110687955.9A CN113395024B (zh) 2021-06-21 2021-06-21 用于直流电机的控制方法、装置和电机控制系统
CN202110687955.9 2021-06-21

Publications (1)

Publication Number Publication Date
WO2022267483A1 true WO2022267483A1 (zh) 2022-12-29

Family

ID=77623469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075251 WO2022267483A1 (zh) 2021-06-21 2022-01-30 用于直流电机的控制方法、装置和电机控制系统

Country Status (2)

Country Link
CN (1) CN113395024B (zh)
WO (1) WO2022267483A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113395024B (zh) * 2021-06-21 2022-11-15 青岛海特生物医疗有限公司 用于直流电机的控制方法、装置和电机控制系统
CN114123889A (zh) * 2021-11-29 2022-03-01 广州舒客实业有限公司 一种电机转速控制方法、系统、电子设备及存储介质
CN117097204B (zh) * 2023-10-20 2023-12-29 四川通安航天科技有限公司 一种基于旋转编码器检测的电机控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965675A (ja) * 1995-08-22 1997-03-07 Kokusan Denki Co Ltd 電動機の制御方法
CN1875539A (zh) * 2003-12-01 2006-12-06 罗姆股份有限公司 直流马达驱动装置
CN101372095A (zh) * 2007-08-24 2009-02-25 株式会社牧田 电动工具
CN108964538A (zh) * 2018-08-21 2018-12-07 成都芯源系统有限公司 一种电机控制系统及数字控制电机转速的方法
CN110165949A (zh) * 2019-05-15 2019-08-23 福建首松智能科技有限公司 一种连续式传菜机系统电机开环控制方法
CN111682811A (zh) * 2020-06-22 2020-09-18 深圳数联天下智能科技有限公司 一种直流电机控制电路及直流电机控制系统
CN113395024A (zh) * 2021-06-21 2021-09-14 青岛海特生物医疗有限公司 用于直流电机的控制方法、装置和电机控制系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206288A (en) * 1981-06-11 1982-12-17 Matsushita Electric Ind Co Ltd Speed setting device for sewing machine
JP4475903B2 (ja) * 2003-09-12 2010-06-09 サンデン株式会社 モータ制御装置
US8198843B2 (en) * 2008-06-17 2012-06-12 Asmo Co., Ltd. Motor control apparatus and motor control method
CN102769420B (zh) * 2012-03-05 2013-03-27 珠海格力电器股份有限公司 电机启动的控制方法和装置
US20150333675A1 (en) * 2014-05-16 2015-11-19 GM Global Technology Operations LLC Methods and systems to improve dc motor cooling fan efficiency with pulse width modulation frequency variation
CN105138028B (zh) * 2015-09-18 2018-09-18 珠海格力电器股份有限公司 吸油烟机的转速控制方法和装置
CN108880378B (zh) * 2018-07-04 2021-04-06 宁波工程学院 基于假定旋转坐标法的永磁同步电机启动控制方法
CN109742982B (zh) * 2019-02-01 2020-11-10 山东省科学院自动化研究所 一种功率可调的限功率控制方法及控制器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965675A (ja) * 1995-08-22 1997-03-07 Kokusan Denki Co Ltd 電動機の制御方法
CN1875539A (zh) * 2003-12-01 2006-12-06 罗姆股份有限公司 直流马达驱动装置
CN101372095A (zh) * 2007-08-24 2009-02-25 株式会社牧田 电动工具
CN108964538A (zh) * 2018-08-21 2018-12-07 成都芯源系统有限公司 一种电机控制系统及数字控制电机转速的方法
CN110165949A (zh) * 2019-05-15 2019-08-23 福建首松智能科技有限公司 一种连续式传菜机系统电机开环控制方法
CN111682811A (zh) * 2020-06-22 2020-09-18 深圳数联天下智能科技有限公司 一种直流电机控制电路及直流电机控制系统
CN113395024A (zh) * 2021-06-21 2021-09-14 青岛海特生物医疗有限公司 用于直流电机的控制方法、装置和电机控制系统

Also Published As

Publication number Publication date
CN113395024B (zh) 2022-11-15
CN113395024A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2022267483A1 (zh) 用于直流电机的控制方法、装置和电机控制系统
US10056851B2 (en) System and method for induction motor speed estimation using a soft starter system
TWI418135B (zh) 馬達控制方法與系統及其中之數位信號處理器
CN109751720B (zh) 一种空调外风机逆风启动控制方法、电路及空调器
US9543866B2 (en) Motor drive controller and method for detecting rotation state
CN104579020B (zh) Pg调速电机的启动控制方法和启动控制系统
CN109462352B (zh) 电机控制方法、装置和计算机可读存储介质
US9413276B2 (en) DC motor control over wide dynamic range
CN104467551B (zh) 一种无霍尔电机平稳启动方法
JPWO2005055410A1 (ja) 直流モータ駆動装置
CN109185191B (zh) 直流风机的启动控制方法及装置、室外机、空调器
CN104779854A (zh) 室外风机逆风拖动控制方法
CN203942468U (zh) 空调室外机中直流电机的逆风启动控制装置
WO2013131460A1 (zh) 电机启动的控制方法和装置
KR100289496B1 (ko) 고속모터의 센서리스 속도제어방법
CN103956940A (zh) 空调室外机中直流电机的逆风启动控制方法和控制装置
WO2024016612A1 (zh) 一种直流电机控制方法和存储介质
CN102522932B (zh) 空调直流无刷电机系统及其转速控制方法
CN109546909A (zh) 一种交流永磁同步电机转速追踪启动方法
CN111106768B (zh) 电机的启动控制方法及装置
CN208445505U (zh) 双频电机控制器
CN110332139A (zh) 风机调速控制方法、系统及电器设备
CN112994540A (zh) 电机控制方法、装置以及电机控制器和电机和家用电器
CN220254384U (zh) Ac电机调速装置及风扇
CN109936321A (zh) 一种永磁同步电机转子预定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22826992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22826992

Country of ref document: EP

Kind code of ref document: A1