WO2022267319A1 - 一种利用木质素基改性药液提高速生木材尺寸稳定性的方法 - Google Patents

一种利用木质素基改性药液提高速生木材尺寸稳定性的方法 Download PDF

Info

Publication number
WO2022267319A1
WO2022267319A1 PCT/CN2021/131998 CN2021131998W WO2022267319A1 WO 2022267319 A1 WO2022267319 A1 WO 2022267319A1 CN 2021131998 W CN2021131998 W CN 2021131998W WO 2022267319 A1 WO2022267319 A1 WO 2022267319A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
wood
fast
dimensional stability
growing wood
Prior art date
Application number
PCT/CN2021/131998
Other languages
English (en)
French (fr)
Inventor
王永贵
谢延军
于凡钧
陈雨彤
肖泽芳
王海刚
梁大鑫
Original Assignee
东北林业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北林业大学 filed Critical 东北林业大学
Publication of WO2022267319A1 publication Critical patent/WO2022267319A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/02Processes; Apparatus
    • B27K3/08Impregnating by pressure, e.g. vacuum impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/02Processes; Apparatus
    • B27K3/025Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/34Organic impregnating agents
    • B27K3/38Aromatic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/04Combined bleaching or impregnating and drying of wood
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K2240/00Purpose of the treatment
    • B27K2240/20Removing fungi, molds or insects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K2240/00Purpose of the treatment
    • B27K2240/90UV-protection

Definitions

  • the invention relates to a method for improving the dimensional stability of fast-growing wood.
  • my country is a Shaolin country, with a forest coverage rate of only 21.63%, far below the global average of 31%. More than half of my country's annual timber consumption is imported from abroad, and the contradiction between supply and demand of high-quality timber has become increasingly prominent.
  • the emergence of artificial fast-growing forests has greatly improved the situation of relatively insufficient resources, low quality, and uneven distribution.
  • the total amount of artificial fast-growing forests in my country ranks first in the world, providing sufficient raw materials for wood processing.
  • due to the rapid growth of fast-growing wood it has natural defects such as loose material, low strength, and poor dimensional stability, which are limited in actual production. Therefore, it is an important way to alleviate the shortage of wood and protect natural wood resources by improving the performance of wood through reasonable technical means to increase its utilization rate and commercial value.
  • Chemical modification is an important means to effectively improve the performance of low-quality plantations. It mainly takes wood cell units as the modification object, uses the theory of chemical modification of cell wall and cell cavity filling enhancement theory, and starts from the aspects of reactive modification of active groups of cell wall materials and microstructure. , to improve the macroscopic quality of low-quality plantations.
  • the relatively mature wood chemical modification methods include furfuryl alcohol modification, organic monomer modification, thermosetting resin modification and acetylation modification.
  • Most of the modified liquids required by these traditional methods belong to fossil resources, which are unsustainable.
  • the treatment materials have problems of high energy consumption, environmental pollution, and release of volatiles such as free formaldehyde, free phenol or acetic acid, which are harmful to the natural environment and human body. There is a health hazard. Therefore, it is urgent to prepare a green and renewable wood modification solution.
  • Lignin widely exists in various plant cells and is a renewable natural polymer with a three-dimensional network structure.
  • Industrial lignin is mainly produced in industries that use plant fibers as raw materials, such as pulp and paper, and most of it is used as fuel for combustion, resulting in a great waste of resources and environmental pollution.
  • Industrial lignin has the advantages of wide sources, low price, and environmental protection. It also contains active functional groups such as hydroxyl and carboxyl, and can undergo various chemical reactions.
  • the phenolic hydroxyl groups contained in lignin endow it with excellent potential as antibacterial, anti-ultraviolet and antiseptic materials. It has potential application value in the chemical modification of wood, but there are few reports on the treatment of wood with industrial lignin liquid at home and abroad. This is because the hydroxyl and carboxyl groups on lignin are difficult to react with wood cell wall macromolecules.
  • the invention aims to solve the problem of poor dimensional stability of the existing fast-growing wood, and provides a method for improving the dimensional stability of the fast-growing wood by using a lignin-based modification liquid.
  • a method for improving the dimensional stability of fast-growing wood by using a lignin-based modification liquid it is carried out according to the following steps:
  • Disperse industrial lignin in distilled water then adjust the pH to 13-14 to dissolve it, filter it with suction to obtain the filtrate, and adjust the pH of the filtrate to 2-3 under the condition of a water bath with a temperature of 50°C-80°C, and then The filtrate with a pH of 2 to 3 is left to settle for 12 to 24 hours to obtain settled lignin, and the settled lignin is washed with water until the pH of the washing solution is 4 to 6, and finally dried to obtain refined lignin;
  • the mass percentage of activated lignin in the lignin-based modification liquid is 5% to 15%; the mass percentage of the initiator in the lignin-based modification liquid is 0% to 10%;
  • the lignin-based modification solution is soaked into the dry fast-growing wood by using a vacuum pressure impregnation tank to obtain soaked wood,
  • the soaked wood is placed in the atmosphere and dried naturally until the moisture content is balanced to obtain the naturally dried wood;
  • the natural dried wood is gradually heated to 103°C to 105°C to remove free water in the wood, and the gradient temperature is Raise the temperature by 10°C to 30°C every day, keep warm after the temperature rise, and continue to raise the temperature on the next day under this condition; Under the condition of °C, keep warm for 12h-48h, and obtain the wood treated with the lignin-based modification chemical solution.
  • Industrial lignin is used as raw material to improve wood, which comes from the waste liquid of pulp and paper industry. It is rich in resources, low in price, environmentally friendly and renewable.
  • the acid anhydrides with double bonds are used to activate the lignin to form a more reactive group on the lignin to obtain an activated lignin liquid with certain crosslinking activity.
  • the prepared activated lignin solution is infiltrated into wood cells, and the activated lignin solution is fixed on the inner wall of the wood cell wall or filled in the cavity of the wood cell through drying, polymerization and other technical methods.
  • the activated lignin Since the activated lignin has a certain hydrophobicity, it can hinder the transmission of water in the wood pores and contact with the hydrophilic groups on the cell wall, thereby improving its dimensional stability, hydrophobicity and other properties.
  • the weight gain rate (WPG) of the wood treated with the activated lignin solution can reach 40%
  • the static contact angle (CA) of the treated wood can reach more than 110°
  • the expansion and contraction coefficient (S) can be as low as 5%
  • the expansion and contraction resistance coefficient can be as low as 5%.
  • ASE can reach 60%
  • anti-loss rate (L) can be as low as 8%.
  • the invention is used for a method for improving the dimensional stability of fast-growing wood by using a lignin-based modified chemical solution.
  • Fig. 1 is the untreated absolute dry fast-growing wood surface topography figure that comparative example two prepares;
  • Fig. 2 is the wood surface topography figure that the lignin-based modified medicinal liquid treatment prepared in embodiment four;
  • Fig. 3 is the static contact angle of the wood cross-section treated by the lignin-based modified chemical solution prepared in Example 1;
  • Fig. 4 is the scanning electron microscope picture of the untreated absolute dry fast-growing wood cross-section prepared by comparative example one;
  • Fig. 5 is the scanning electron microscope picture of the wood cross-section treated by the lignin-based modified chemical solution prepared in Example 1;
  • Fig. 6 is the scanning electron microscope picture of the wood cross-section treated by the lignin-based modified chemical solution prepared in Example 2;
  • Fig. 7 is the scanning electron microscope picture of the untreated absolute dry fast-growing wood cross-section prepared by comparative example two;
  • Fig. 8 is the scanning electron microscope picture of the wood cross-section treated by the lignin-based modified chemical solution prepared in Example 3;
  • Fig. 9 is a scanning electron microscope picture of a wood cross-section treated with a lignin-based modification solution prepared in Example 4.
  • this embodiment is a method for improving the dimensional stability of fast-growing wood by using a lignin-based modified liquid, which is carried out according to the following steps:
  • Disperse industrial lignin in distilled water then adjust the pH to 13-14 to dissolve it, filter it with suction to obtain the filtrate, and adjust the pH of the filtrate to 2-3 under the condition of a water bath with a temperature of 50°C-80°C, and then The filtrate with a pH of 2 to 3 is left to settle for 12 to 24 hours to obtain settled lignin, and the settled lignin is washed with water until the pH of the washing solution is 4 to 6, and finally dried to obtain refined lignin;
  • the mass percentage of activated lignin in the lignin-based modification liquid is 5% to 15%; the mass percentage of the initiator in the lignin-based modification liquid is 0% to 10%;
  • the lignin-based modification solution is soaked into the dry fast-growing wood by using a vacuum pressure impregnation tank to obtain soaked wood,
  • the soaked wood is placed in the atmosphere and dried naturally until the moisture content is balanced to obtain the naturally dried wood;
  • the natural dried wood is gradually heated to 103°C to 105°C to remove free water in the wood, and the gradient temperature is Raise the temperature by 10°C to 30°C every day, keep warm after the temperature rise, and continue to raise the temperature on the next day under this condition; Under the condition of °C, keep warm for 12h-48h, and obtain the wood treated with the lignin-based modification chemical solution.
  • the activated lignin is kept under the condition of 120° C. to 140° C. for 12 to 48 hours to undergo a polymerization reaction.
  • Step 4 of this embodiment one or a combination of blast drying, vacuum drying, high-temperature steam drying, and microwave drying is used to gradually increase the temperature of the naturally dried wood to 103°C to 105°C to remove free air in the wood. water.
  • the beneficial effect of this embodiment is that: industrial lignin is used as a raw material to improve wood, which is derived from the waste liquid of the pulp and paper industry, and its resources are abundant, low in price, environmentally friendly and renewable.
  • the acid anhydrides with double bonds are used to activate the lignin to form a more reactive group on the lignin to obtain an activated lignin liquid with certain crosslinking activity.
  • the prepared activated lignin liquid is infiltrated into the wood cells, and the activated lignin liquid is fixed on the inner wall of the wood cell wall or filled in the cavity of the wood cells through drying, polymerization and other technical methods.
  • the activated lignin Since the activated lignin has a certain hydrophobicity, it can hinder the transmission of water in the wood pores and contact with the hydrophilic groups on the cell wall, thereby improving its dimensional stability, hydrophobicity and other properties.
  • the weight gain rate (WPG) of the wood treated with the activated lignin solution can reach 40%
  • the static contact angle (CA) of the treated wood can reach more than 110°
  • the expansion and contraction coefficient (S) can be as low as 5%
  • the expansion and contraction resistance coefficient can be as low as 5%.
  • ASE can reach 60%
  • anti-loss rate (L) can be as low as 8%.
  • Embodiment 2 The difference between this embodiment and Embodiment 1 is that the industrial lignin described in step 1 is industrial alkali lignin or lignosulfonate. Others are the same as in the first embodiment.
  • Specific embodiment three the difference between this embodiment and specific embodiment one or two is that in step one, the industrial lignin is dispersed in distilled water, and then the sodium hydroxide solution or Potassium hydroxide solution with a concentration of 1mo/L-3mol/L adjusts the pH to 13-14 to dissolve it; in step 1, under the condition of a water bath with a temperature of 50°C-80°C, the mass percentage is 10%-15%. Hydrochloric acid, sulfuric acid with a mass percentage of 10% to 15% or phosphoric acid with a mass percentage of 10% to 15% adjusts the pH of the filtrate to 2 to 3. Others are the same as in the first or second embodiment.
  • the difference between this embodiment and one of the specific embodiments one to three is that the acid anhydride described in step two 1. is an unsaturated acid anhydride; the unsaturated acid anhydride is maleic anhydride, methacrylic anhydride, and Conic anhydride or succinic anhydride. Others are the same as the specific embodiments 1 to 3.
  • the difference between this embodiment and one of the specific embodiments one to four is that the volume ratio of the quality of the refined lignin described in step 2 1 to the dimethyl sulfoxide solution is 1g: (5 ⁇ 25) mL; the mol ratio of hydroxyl content and anhydrous pyridine in the refined lignin described in step two 1. is 1:(1 ⁇ 5); the mol ratio of hydroxyl content and anhydrous pyridine in the refined lignin described in step two 1. is 1: (1 ⁇ 10).
  • Others are the same as the specific embodiments 1 to 4.
  • the hydroxyl content of the refined lignin is calculated from the detection results of the nuclear magnetic resonance 31 P spectrum.
  • the difference between this embodiment and one of the specific embodiments one to five is: the centrifugation described in step 2 2 is specifically centrifuged at a speed of 8000r/min ⁇ 12000r/min for 5min ⁇ 30min; step 2 2.
  • the volume ratio of the reaction system and the poor solvent described in 2. is 1:(5 ⁇ 10); the quality of the lower layer product described in step 3. and the volume ratio of dimethyl sulfoxide is 1g:(5 ⁇ 10) mL.
  • Others are the same as one of the specific embodiments 1 to 5.
  • Embodiment 7 This embodiment differs from Embodiment 1 to Embodiment 6 in that the poor solvent described in step 2 2 is ethyl acetate or water. Others are the same as those in Embodiments 1 to 6.
  • Embodiment 8 The difference between this embodiment and one of Embodiments 1 to 7 is that the initiator described in step 3 is ammonium persulfate or potassium persulfate. Others are the same as those in Embodiments 1 to 7.
  • Embodiment 9 The difference between this embodiment and one of Embodiments 1 to 8 is that the dry fast-growing wood described in step 4 is specifically dried in a blast drying oven at a temperature of 103° C. for 12 hours. Others are the same as those in Embodiments 1 to 8.
  • Embodiment 10 This embodiment is different from Embodiment 1 to Embodiment 9 in that: the fast-growing wood is poplar, eucalyptus, basswood, Chinese fir or radiata pine. Others are the same as the specific embodiments 1 to 9.
  • a method for improving the dimensional stability of fast-growing wood by using a lignin-based modified liquid which is carried out according to the following steps:
  • Disperse 30g of industrial lignin in 100mL of distilled water then use a sodium hydroxide solution with a concentration of 2mol/L to adjust the pH to 13 to dissolve it, and filter it with medium-speed filter paper to obtain the filtrate.
  • the pH of the filtrate was adjusted to 3 by using 12% HCl by mass percentage, and then the filtrate with a pH of 3 was left to settle for 12 hours to obtain the settled lignin, and the settled lignin was washed with water to the pH value of the washing solution is 6, finally dried to obtain refined lignin;
  • the mass percentage of activated lignin in the lignin-based modified liquid is 15%;
  • the lignin-based modified liquid is soaked into the dry fast-growing wood by using a vacuum pressure impregnation tank to obtain soaked wood, and the soaked wood is placed in the atmosphere Naturally dry in the environment until the moisture content is balanced to obtain naturally dried wood; the natural dried wood is gradually heated to 103°C to remove free water in the wood.
  • the gradient temperature increase is 30°C per day, and the temperature is kept after the temperature rise. On the next day, the temperature was continued under this condition; after gradient heating, the temperature was raised from 103°C to 120°C, and kept at 120°C for 24 hours to obtain wood treated with lignin-based modified chemicals.
  • the hydroxyl content in the refined lignin is calculated from the detection results of the nuclear magnetic resonance 31 P spectrum.
  • the industrial lignin described in step 1 is specifically alkaline lignin produced by Xinyi Feihuang Chemical Co., Ltd.
  • step 2 2 The centrifugation described in step 2 2 is specifically centrifuged for 10 minutes at a rotational speed of 8000 r/min.
  • the mass purity of the dimethyl sulfoxide is 99.8%; the mass purity of the methacrylic anhydride is 94%.
  • the dry fast-growing wood described in Step 4 is specifically dried for 12 hours in a forced-air drying oven at a temperature of 103°C.
  • the fast-growing wood is poplar (20 ⁇ 20 ⁇ 10mm 3 ).
  • step 4 the time required for soaking the lignin-based modification solution into the dry fast-growing wood is 12 hours.
  • Example 2 The difference between this example and Example 1 is: 7.35g maleic anhydride and 12.05mL anhydrous pyridine are added in step 2 1; 49.4mL reaction system is added to 500mL ethyl acetate in step 2 2 The product is precipitated; in step 3, the activated lignin is dissolved in a dimethyl sulfoxide solution, and ammonium persulfate is added to obtain a lignin-based modified liquid; the mass of activated lignin in the lignin-based modified liquid is The percentage is 15%; the mass percentage of the initiator in the lignin-based modification liquid is 1%. Others are the same as in Embodiment 1.
  • the mass purity of the maleic anhydride is 99.5%; the mass purity of the ethyl acetate is 99.5%.
  • Embodiment 3 The difference between this embodiment and Embodiment 1 is that the fast-growing wood described in Step 4 is Chinese fir (20 ⁇ 20 ⁇ 10mm 3 ). Others are the same as in Embodiment 1.
  • Embodiment 4 The difference between this embodiment and Embodiment 2 is that the fast-growing wood described in Step 4 is Chinese fir (20 ⁇ 20 ⁇ 10mm 3 ). Others are the same as the second embodiment.
  • Comparative Example 1 A small poplar wood block with a size of 20 ⁇ 20 ⁇ 10 mm 3 was dried in a blast drying oven at 103° C. for 12 hours to obtain untreated absolute-dry fast-growing wood.
  • Comparative Example 2 Dry small pieces of Chinese fir with a size of 20 ⁇ 20 ⁇ 10 mm 3 in a forced-air drying oven at 103° C. for 12 hours to obtain untreated absolute-dry fast-growing wood.
  • Table 1 Static contact angles of three cut surfaces of wood (unit °)
  • Comparative example one Comparative example two Embodiment one Embodiment two Embodiment three Embodiment Four Cross-section 39.0 ⁇ 9.9 49.2 ⁇ 1.7 125.5 ⁇ 6.7 121.4 ⁇ 1.2 124.9 ⁇ 3.8 126.1 ⁇ 2.3 radial section 60.2 ⁇ 12 95.1 ⁇ 8.1 122.9 ⁇ 3.4 125.9 ⁇ 3.1 117.2 ⁇ 1.7 111.5 ⁇ 6.9 string section 57.9 ⁇ 8.9 70.3 ⁇ 5.6 125.7 ⁇ 5.8 115.1 ⁇ 5.1 124.5 ⁇ 3.1 122.1 ⁇ 1.2
  • the weight gain rate (WPG), the loss rate (L) and the anti-expansion and shrinkage coefficient (ASE) are carried out for the wood treated with the lignin-based modified chemical solution obtained by the untreated absolute dry fast-growing wood obtained in the first to the second control example and the embodiment one to four. ) test, the specific steps of the test are as follows:
  • Weight gain rate WPG (without water immersion) (M 2 -M 1 )/M 1 ⁇ 100%;
  • M 1 is the absolute-dry mass of untreated dry fast-growing wood
  • M 2 is the absolute-dry mass of wood treated with lignin-based modified chemical solution
  • the absolute dry weight is measured after drying the wood treated with the lignin-based modification liquid in a blast drying oven at a temperature of 103° C. for 12 hours.
  • Weight gain rate WPG (after water immersion) (M 3 -M 1 )/M 1 ⁇ 100%
  • M 1 is the absolute-dry mass of untreated absolute-dry fast-growing wood
  • M 3 is the absolute-dry mass of the absolute-dry wood block after water immersion
  • Liquid medicine loss rate L (M 2 -M 3 )/(M 2 -M 1 ) ⁇ 100%
  • M 2 is the absolute dry mass of wood treated with lignin-based modified chemical solution
  • M 3 is the absolute dry mass of wood block after water immersion
  • M 2 is the absolute dry mass of wood treated with lignin-based modified chemical solution
  • the dry mass of , M 1 is the dry mass of untreated fast-growing wood.
  • Anti-expansion coefficient ASE (S 2 -S 1 )/S 2 ⁇ 100%;
  • V 1 is the absolute dry volume of untreated dry fast-growing wood or wood treated with lignin-based modified chemical solution
  • V 2 is the volume of wood after water immersion
  • S 1 is the volume of wood treated with lignin-based modified chemical solution
  • S2 is the expansion and contraction coefficient of the untreated dry fast - growing wood
  • the absolute dry volume of the wood treated with the lignin-based modified chemical solution is the wood treated with the lignin-based modified chemical solution at The temperature is 103 ° C in a blast drying oven for 12 hours and measured.
  • the results of each group take the average value of the duplicates, and the results are shown in Table 2.
  • Table 2 Wood weight gain rate, loss rate, expansion and contraction coefficient and anti-expansion and contraction coefficient
  • the weight gain rate of the lignin-based modified chemical solution in wood can reach 47%, indicating that the chemical solution has a good impregnation effect in wood, and the weight gain rate does not decrease significantly after one week of water immersion. Its medicinal liquid loss rate is the lowest less than 10%. This is due to the fact that the modified lignin is insoluble in water, and the lignin-based modified liquid cross-links inside the wood to form macromolecules, which will not flow out of the wood pores with water, so it has good loss resistance .
  • the coefficients of expansion and contraction of the treated wood obtained in the examples are significantly lower, and the coefficient of tension and contraction can reach up to 60%, indicating that the lignin-based modification liquid can effectively improve the dimensional stability of wood.
  • the hydrophilic groups of lignin after modification are replaced by hydrophobic groups, and the hydrophobicity is improved; on the other hand, after cross-linking and curing in the wood pores, it adheres to the inner wall of the cell wall and the cell cavity, hindering the moisture Transmission in wood, so it can improve the dimensional stability of wood to a certain extent.
  • Fig. 1 is the topography of the untreated dry fast-growing wood prepared in Comparative Example 2
  • Fig. 2 is the topography of the wood treated with the lignin-based modified liquid prepared in Example 4.
  • lignin The Chinese fir treated with base-modified chemical solution has no obvious deformation, indicating that the chemical solution has not degraded the wood to a large extent; its color has deepened to a certain extent, which is because lignin will cause color change during the process of separation and preparation. Deepen, making the treated material appear dark brown.
  • Fig. 3 is the static contact angle of the wood cross-section treated with the lignin-based modification chemical solution prepared in Example 1. It can be seen that the wood surface has good hydrophobicity.
  • Fig. 4 is the scanning electron microscope picture of the cross-section of the untreated dry fast-growing wood prepared in Comparative Example 1
  • Fig. 5 is the scanning electron microscope picture of the wood cross-section treated with the lignin-based modified medicinal solution prepared in Example 1
  • Fig. 6 is Scanning electron microscope pictures of wood cross-sections treated with the lignin-based modification solution prepared in Example 2.
  • Figure 7 is a scanning electron microscope picture of a cross-section of untreated dry fast-growing wood prepared in Comparative Example 2
  • Figure 8 is a scanning electron microscope picture of a cross-section of wood treated with a lignin-based modified liquid prepared in Example 3
  • Figure 9 is Scanning electron microscope pictures of wood cross-sections treated with the lignin-based modification solution prepared in Example 4.
  • the treated wood has no obvious deformation compared with the untreated wood cell, indicating that the modified lignin does not damage the wood cell wall to a greater extent.
  • the cross-linked modified lignin is attached to the inner wall of the wood cell wall or filled in the cell cavity, which hinders the flow of water molecules in the wood to a certain extent.

Abstract

一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,本发明涉及一种提高速生木材尺寸稳定性的方法。本发明要解决现有速生木材尺寸稳定性差的问题。方法:一、工业木质素的预处理;二、活化木质素的制备;三、木质素基改性药液的配制;四、木质素基改性药液处理木材。本发明用于木质素基改性药液提高速生木材尺寸稳定性的方法。

Description

一种利用木质素基改性药液提高速生木材尺寸稳定性的方法 技术领域
本发明涉及一种提高速生木材尺寸稳定性的方法。
背景技术
我国属于少林国家,森林覆盖率仅为21.63%,远低于全球31%的平均水平。我国每年木材的用量一半以上靠国外进口,优质木材的供需矛盾也日益突出。人工速生林的出现极大改善了这种资源相对不足、质量不高、分布不均匀的情况,我国人工速生林的总量位居世界第一,为木材加工提供了充足的原材料。但速生材也正是由于生长迅速导致其存在材质疏松、强度低、尺寸稳定性差等天然缺陷,在实际生产中受限制。因此,通过合理的技术手段对木材性能进行改善,提高其利用率和商业价值,是缓解木材短缺、保护天然木材资源的重要途径。
化学改性是有效改善低质人工林性能的重要手段,主要以木材细胞单元为改性对象,运用细胞壁化学修饰和细胞腔填充增强理论,从细胞壁物质活性基团反应改性和微观构造方面着手,实现低质人工林宏观品质提升。目前较为成熟的木材化学改性方法有糠醇化改性、有机单体改性、热固性树脂改性和乙酰化改性等。这些传统方法所需改性药液大多属于化石资源,具有不可持续性,同时处理材存在着高耗能、污染环境、释放游离甲醛、游离酚或醋酸等挥发物的问题,对自然环境和人体健康存在危害。所以制备一种绿色环保、可再生的木材改性药液是迫切的。
木质素广泛存在于各种植物细胞中,是一种可再生、具有三维网络结构的天然高分子聚合物。工业木质素主要在制浆造纸等以植物纤维为原料的产业中被生产,大部分用作燃料燃烧,造成极大的资源浪费和环境污染。工业木质素具有来源广泛,价格低廉,绿色环保等优点,同时含有羟基、羧基等活性官能团,可以发生多种化学反应。此外木质素所含酚羟基赋予其可用作抗菌、抗紫外、防腐材料的优异潜能。在木材化学改性中具有潜在的应用价值,但是目前国内外关于工业木质素药液处理木材的报道较少,这是由于木质素上羟基和羧基很难与木材细胞壁大分子发生反应。
发明内容
本发明要解决现有速生木材尺寸稳定性差的问题,而提供一种利用木质素基改性药液提高速生木材尺寸稳定性的方法。
一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,它是按照以下步骤进 行的:
一、工业木质素的预处理:
将工业木质素分散于蒸馏水中,然后调节pH为13~14使其溶解,抽滤,得到滤液,在温度为50℃~80℃的水浴条件下,将滤液pH调节至2~3,然后将pH为2~3的滤液静置沉降12h~24h,得到沉降的木质素,以水为洗涤液洗涤沉降的木质素至洗涤液的pH值为4~6,最后干燥,得到精制木质素;
二、活化木质素的制备:
①、将精制木质素溶解于二甲基亚砜中,然后加热至温度为80℃~100℃,在温度为80℃~100℃的条件下,加入酸酐和无水吡啶,反应1h~3h,得到反应体系;
②、将反应体系加入到不良溶剂中析出产物,离心去除上清液,分离并干燥,得到下层产物;
③、将下层产物溶于二甲基亚砜中,得到含有活化木质素的溶液,将含有活化木质素的溶液重复步骤二②2次~5次,最后将下层产物干燥,得到活化木质素;
三、木质素基改性药液的配制:
将活化木质素溶解于二甲基亚砜溶液中,加入引发剂,得到木质素基改性药液;
所述的木质素基改性药液中活化木质素的质量百分数为5%~15%;所述的木质素基改性药液中引发剂的质量百分数为0%~10%;
四、木质素基改性药液处理木材:
在真空度为-0.1MPa~-0.05MPa及压力为0.1MPa~3.5MPa的条件下,利用真空加压浸渍罐,将木质素基改性药液浸透绝干的速生木材,得到浸透的木材,将浸透的木材置于大气环境中自然干燥直到含水率平衡,得到自然干燥后的木材;将自然干燥后的木材梯度升温至103℃~105℃除去木材中的自由水,所述的梯度升温为每天升温10℃~30℃,升温后保温,第二天以此条件继续升温;梯度升温后,再将温度由103℃~105℃升温至120℃~140℃,并在温度为120℃~140℃的条件下,保温12h~48h,得到木质素基改性药液处理的木材。
本发明的有益效果是:
以工业木质素为原料改良木材,来源于纸浆造纸行业的废液中,其资源丰富、价格低廉、环保可再生。利用带有双键的酸酐活化木质素,在木质素上形成反应活性更强的基团,得到具有一定交联活性的活化木质素药液。将制备的活化木质素药液渗透入木材细胞中,通过干燥、聚合等工艺方法,使活化的木质素药液固着在木 材细胞壁内壁上或者填充在木材细胞腔内。由于活化后的木质素具有一定的疏水性,能够阻碍水分在木材孔隙中的传输和与细胞壁上的亲水基团接触,从而提高其尺寸稳定性、疏水性等性能。活化木质素药液处理的木材增重率(WPG)能达40%,处理材的静态接触角(CA)可达110°以上,胀缩系数(S)可低至5%,抗胀缩系数(ASE)可达60%、抗流失率(L)可低至8%。
本发明用于一种利用木质素基改性药液提高速生木材尺寸稳定性的方法。
附图说明
图1为对照例二制备的未处理的绝干速生木材表面形貌图;
图2为实施例四制备的木质素基改性药液处理的木材表面形貌图;
图3为实施例一制备的木质素基改性药液处理的木材横切面的静态接触角;
图4为对照例一制备的未处理的绝干速生木材横切面扫描电子显微镜图片;
图5为实施例一制备的木质素基改性药液处理的木材横切面扫描电子显微镜图片;
图6为实施例二制备的木质素基改性药液处理的木材横切面扫描电子显微镜图片;
图7为对照例二制备的未处理的绝干速生木材横切面扫描电子显微镜图片;
图8为实施例三制备的木质素基改性药液处理的木材横切面扫描电子显微镜图片;
图9为实施例四制备的木质素基改性药液处理的木材横切面扫描电子显微镜图片。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式为一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,它是按照以下步骤进行的:
一、工业木质素的预处理:
将工业木质素分散于蒸馏水中,然后调节pH为13~14使其溶解,抽滤,得到滤液,在温度为50℃~80℃的水浴条件下,将滤液pH调节至2~3,然后将pH为2~3的滤液静置沉降12h~24h,得到沉降的木质素,以水为洗涤液洗涤沉降的木质素至洗涤液的pH值为4~6,最后干燥,得到精制木质素;
二、活化木质素的制备:
①、将精制木质素溶解于二甲基亚砜中,然后加热至温度为80℃~100℃,在温度为80℃~100℃的条件下,加入酸酐和无水吡啶,反应1h~3h,得到反应体系;
②、将反应体系加入到不良溶剂中析出产物,离心去除上清液,分离并干燥,得到下 层产物;
③、将下层产物溶于二甲基亚砜中,得到含有活化木质素的溶液,将含有活化木质素的溶液重复步骤二②2次~5次,最后将下层产物干燥,得到活化木质素;
三、木质素基改性药液的配制:
将活化木质素溶解于二甲基亚砜溶液中,加入引发剂,得到木质素基改性药液;
所述的木质素基改性药液中活化木质素的质量百分数为5%~15%;所述的木质素基改性药液中引发剂的质量百分数为0%~10%;
四、木质素基改性药液处理木材:
在真空度为-0.1MPa~-0.05MPa及压力为0.1MPa~3.5MPa的条件下,利用真空加压浸渍罐,将木质素基改性药液浸透绝干的速生木材,得到浸透的木材,将浸透的木材置于大气环境中自然干燥直到含水率平衡,得到自然干燥后的木材;将自然干燥后的木材梯度升温至103℃~105℃除去木材中的自由水,所述的梯度升温为每天升温10℃~30℃,升温后保温,第二天以此条件继续升温;梯度升温后,再将温度由103℃~105℃升温至120℃~140℃,并在温度为120℃~140℃的条件下,保温12h~48h,得到木质素基改性药液处理的木材。
本实施方式步骤四中在120℃~140℃条件下保持12~48h,使活化木质素发生聚合反应。
本实施方式步骤四中利用鼓风干燥、真空干燥、高温水蒸气干燥和微波干燥中的一种或其中几种组合,将自然干燥后的木材梯度升温至103℃~105℃除去木材中的自由水。
本实施方式的有益效果是:以工业木质素为原料改良木材,来源于纸浆造纸行业的废液中,其资源丰富、价格低廉、环保可再生。利用带有双键的酸酐活化木质素,在木质素上形成反应活性更强的基团,得到具有一定交联活性的活化木质素药液。将制备的活化木质素药液渗透入木材细胞中,通过干燥、聚合等工艺方法,使活化的木质素药液固着在木材细胞壁内壁上或者填充在木材细胞腔内。由于活化后的木质素具有一定的疏水性,能够阻碍水分在木材孔隙中的传输和与细胞壁上的亲水基团接触,从而提高其尺寸稳定性、疏水性等性能。活化木质素药液处理的木材增重率(WPG)能达40%,处理材的静态接触角(CA)可达110°以上,胀缩系数(S)可低至5%,抗胀缩系数(ASE)可达60%、抗流失率(L)可低至8%。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述的工业木质素为工业碱木质素或木质素磺酸盐。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是:步骤一中将工业木质素分散于蒸馏水中,然后利用浓度为1mo/L~3mol/L的氢氧化钠溶液或浓度为1mo/L~3mol/L的氢氧化钾溶液调节pH为13~14使其溶解;步骤一中在温度为50℃~80℃的水浴条件下,利用质量百分数为10%~15%的盐酸、质量百分数为10%~15%的硫酸或质量百分数为10%~15%的磷酸将滤液pH调节至2~3。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二①中所述的酸酐为不饱和酸酐;所述的不饱和酸酐为马来酸酐、甲基丙烯酸酐、衣康酸酐或丁二酸酐。其它与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二①中所述的精制木质素的质量与二甲基亚砜溶液的体积比为1g:(5~25)mL;步骤二①中所述的精制木质素中羟基含量与酸酐的摩尔比是1:(1~5);步骤二①中所述的精制木质素中羟基含量与无水吡啶的摩尔比是1:(1~10)。其它与具体实施方式一至四相同。
其中精制木质素羟基含量由核磁共振 31P谱检测结果计算获得。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二②中所述的离心具体为在转速为8000r/min~12000r/min的条件下离心5min~30min;步骤二②中所述的反应体系与不良溶剂的体积比为1:(5~10);步骤二③中所述的下层产物的质量与二甲基亚砜的体积比为1g:(5~10)mL。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二②中所述的不良溶剂为乙酸乙酯或水。其它与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤三中所述的引发剂为过硫酸铵或过硫酸钾。其它与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤四中所述的绝干的速生木材具体是将速生木材在温度为103℃的鼓风干燥箱里干燥12h。其它与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:所述的速生木材为杨木、桉木、椴木、杉木或辐射松。其它与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:
一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,它是按照以下步骤进行的:
一、工业木质素的预处理:
将30g工业木质素分散于100mL蒸馏水中,然后利用浓度为2mol/L的氢氧化钠溶液调节pH为13使其溶解,利用中速滤纸抽滤,得到滤液,在温度为60℃的水浴条件下,利用质量百分数为12%的HCl将滤液pH调节至3,然后将pH为3的滤液静置沉降12h,得到沉降的木质素,以水为洗涤液洗涤沉降的木质素至洗涤液的pH值为6,最后干燥,得到精制木质素;
二、活化木质素的制备:
①、将5g精制木质素溶解于25mL二甲基亚砜中,然后加热至温度为100℃,在温度为100℃的条件下,加入11.11mL甲基丙烯酸酐和12.05mL无水吡啶,反应1h,得到反应体系;
②、将53.16mL反应体系加入到500mL水中析出产物,离心去除上清液,分离并干燥,得到下层产物;
③、将5g下层产物溶于25mL二甲基亚砜中,得到含有活化木质素的溶液,将含有活化木质素的溶液重复步骤二②3次,最后将下层产物真空干燥,得到活化木质素;
三、木质素基改性药液的配制:
将活化木质素溶解于二甲基亚砜溶液中,得到木质素基改性药液;
所述的木质素基改性药液中活化木质素的质量百分数为15%;
四、木质素基改性药液处理木材:
在真空度为-0.05MPa及压力为0.75MPa的条件下,利用真空加压浸渍罐,将木质素基改性药液浸透绝干的速生木材,得到浸透的木材,将浸透的木材置于大气环境中自然干燥,直到含水率平衡,得到自然干燥后的木材;将自然干燥后的木材梯度升温至103℃除去木材中的自由水,所述的梯度升温为每天升温30℃,升温后保温,第二天以此条件继续升温;梯度升温后,再将温度由103℃升温至120℃,并在温度为120℃的条件下,保温24h,得到木质素基改性药液处理的木材。
其中精制木质素中羟基含量由核磁共振 31P谱检测结果计算获得。
步骤一中所述的工业木质素具体为新沂市飞皇化工有限公司的碱性木质素。
步骤二②中所述的离心具体为在转速为8000r/min的条件下离心10min。
所述的二甲基亚砜的质量纯度为99.8%;所述的甲基丙烯酸酐质量纯度为94%。
步骤四中所述的绝干的速生木材具体是将速生木材在温度为103℃的鼓风干燥箱里干燥12h。所述的速生木材为杨木(20×20×10mm 3)。
步骤四中将木质素基改性药液浸透绝干的速生木材所需时间为12h。
实施例二:本实施例与实施例一不同的是:步骤二①中加入7.35g顺丁烯二酸酐和12.05mL无水吡啶;步骤二②中将49.4mL反应体系加入到500mL乙酸乙酯中析出产物;步骤三中将活化木质素溶解于二甲基亚砜溶液中,加入过硫酸铵,得到木质素基改性药液;所述的木质素基改性药液中活化木质素的质量百分数为15%;所述的木质素基改性药液中引发剂的质量百分数为1%。其它与实施例一相同。
所述的顺丁烯二酸酐的质量纯度为99.5%;所述的乙酸乙酯的质量纯度为99.5%。
实施例三:本实施例与实施例一不同的是:步骤四中所述的速生木材为杉木(20×20×10mm 3)。其它与实施例一相同。
实施例四:本实施例与实施例二不同的是:步骤四中所述的速生木材为杉木(20×20×10mm 3)。其它与实施例二相同。
对照例一:将尺寸为20×20×10mm 3的杨木小木块在103℃鼓风干燥箱里干燥12h,得到未处理的绝干速生木材。
对照例二:将尺寸为20×20×10mm 3的杉木小木块在103℃鼓风干燥箱里干燥12h,得到未处理的绝干速生木材。
对对照例一至二得到未处理的绝干速生木材、实施例一至四得到的木质素基改性药液处理的木材进行三切面静态水接触角(CA)的测试(每组3个小木块,每个木块每面取3个重复点),各组结果取重复件的平均值,结果如表1所示。
表1:木材三切面静态接触角(单位°)
  对照例一 对照例二 实施例一 实施例二 实施例三 实施例四
横切面 39.0±9.9 49.2±1.7 125.5±6.7 121.4±1.2 124.9±3.8 126.1±2.3
径切面 60.2±12 95.1±8.1 122.9±3.4 125.9±3.1 117.2±1.7 111.5±6.9
弦切面 57.9±8.9 70.3±5.6 125.7±5.8 115.1±5.1 124.5±3.1 122.1±1.2
由表可知,与对照例相比,经过木质素基改性药液处理的木材三切面的静态接触角有20~90°的提升,均能达到110°以上,属于疏水状态,这为能够提升木材尺寸稳定性提供了有利条件。
对对照例一至二得到未处理的绝干速生木材、实施例一至四得到的木质素基改性药液处理的木材进行增重率(WPG)、流失率(L)和抗胀缩系数(ASE)测试,测试具体步骤如下:
1)将实施例一至四得到的木质素基改性药液处理的木材直接进行增重率的测试及计算(试件表面与年轮平行,每组10个小木块),得到WPG(未水浸),增重率通过以下 公式计算:
增重率WPG(未水浸)=(M 2-M 1)/M 1×100%;
式中:M 1是未处理的绝干速生木材的绝干质量,M 2是木质素基改性药液处理的木材的绝干质量;所述的木质素基改性药液处理的木材的绝干质量具体是将木质素基改性药液处理的木材在温度为103℃的鼓风干燥箱里干燥12h后测得。
2)将对照例一至二得到未处理的绝干速生木材、实施例一至四得到的木质素基改性药液处理的木材置于容器中,并施加重物以防止漂浮,然后倒入蒸馏水,在真空干燥箱内抽真空2h,取出常压浸泡7天,每24h换一次水。取出木材,得水浸后的木材,将水浸后的木材气干1周,然后放入鼓风干燥箱内梯度升温干燥:40℃、60℃、80℃和103℃各干燥12h,得到水浸后的绝干木块。分别对水浸后的木材和水浸后的绝干木块测量质量以及轴向、径向和弦向尺寸。
3)计算水浸后的增重率、药液流失率和处理木材的抗胀缩系数,公式如下:
增重率WPG(水浸后)=(M 3-M 1)/M 1×100%
式中:M 1是未处理的绝干速生木材的绝干质量,M 3是水浸后的绝干木块的绝干质量;
药液流失率L=(M 2-M 3)/(M 2-M 1)×100%
式中:M 2是木质素基改性药液处理的木材的绝干质量,M 3是水浸后的绝干木块的绝干质量,M 2是木质素基改性药液处理的木材的绝干质量,M 1是未处理的绝干速生木材的绝干质量。
胀缩系数S=(V 2-V 1)/V 1×100%;
抗胀缩系数ASE=(S 2-S 1)/S 2×100%;
式中:V 1是未处理的绝干速生木材或木质素基改性药液处理的木材的绝干体积,V 2是水浸后的木材体积,S 1是木质素基改性药液处理的木材的胀缩系数,S 2是未处理的绝干速生木材的胀缩系数,其中木质素基改性药液处理的木材的绝干体积是将木质素基改性药液处理的木材在温度为103℃的鼓风干燥箱里干燥12h测量得到。各组结果取重复件的平均值,结果如表2所示。
表2:木材增重率、流失率、胀缩系数和抗胀缩系数
Figure PCTCN2021131998-appb-000001
Figure PCTCN2021131998-appb-000002
由表可知,木质素基改性药液在木材中的增重率可达到47%,表明药液在木材中有较好的浸渍效果,并且在水浸一周后增重率没有显著的下降,其药液流失率最低不足10%。这由于改性后的木质素是不溶于水的,并且木质素基改性药液在木材内部发生交联形成大分子,不会随着水分从木材孔隙中流出,从而具有良好的抗流失性。
与对照例相比,实施例所得的处理材的胀缩系数都明显降低,抗张缩系数最高可以达到60%,说明木质素基改性药液可以有效提高木材的尺寸稳定性。一方面是由于改性后木质素的亲水基团被疏水基团取代,疏水性提升;另一方面,其在木材孔隙中交联固化后附着在细胞壁内壁上以及细胞腔内,阻碍了水分在木材中的传输,所以能够在一定程度上提高木材的尺寸稳定性。
图1为对照例二制备的未处理的绝干速生木材表面形貌图,图2为实施例四制备的木质素基改性药液处理的木材表面形貌图,由图可知,经过木质素基改性药液处理后的杉木没有明显的形变,说明药液没有对木材产生较大程度的降解;其颜色有一定的加深,这是由于木质素在分离、制备的过程中会造成颜色的加深,使得处理材显深咖色。
图3为实施例一制备的木质素基改性药液处理的木材横切面的静态接触角。可以看到木材表面具有较好的疏水性。
图4为对照例一制备的未处理的绝干速生木材横切面扫描电子显微镜图片,图5为实施例一制备的木质素基改性药液处理的木材横切面扫描电子显微镜图片,图6为实施例二制备的木质素基改性药液处理的木材横切面扫描电子显微镜图片。图7为对照例二制备的未处理的绝干速生木材横切面扫描电子显微镜图片,图8为实施例三制备的木质素基改性药液处理的木材横切面扫描电子显微镜图片,图9为实施例四制备的木质素基改性药液处理的木材横切面扫描电子显微镜图片。从电镜图中可以观察到处理后的木材相比于未处理的木材细胞没有明显的变形,说明改性木质素对木材细胞壁没有较大程度的破坏。交联后的改性木质素附着在木材细胞壁内壁上或填充在细胞腔里,一定程度上阻碍水分子在木材中的流动。

Claims (10)

  1. 一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,其特征在于它是按照以下步骤进行的:
    一、工业木质素的预处理:
    将工业木质素分散于蒸馏水中,然后调节pH为13~14使其溶解,抽滤,得到滤液,在温度为50℃~80℃的水浴条件下,将滤液pH调节至2~3,然后将pH为2~3的滤液静置沉降12h~24h,得到沉降的木质素,以水为洗涤液洗涤沉降的木质素至洗涤液的pH值为4~6,最后干燥,得到精制木质素;
    二、活化木质素的制备:
    ①、将精制木质素溶解于二甲基亚砜中,然后加热至温度为80℃~100℃,在温度为80℃~100℃的条件下,加入酸酐和无水吡啶,反应1h~3h,得到反应体系;
    ②、将反应体系加入到不良溶剂中析出产物,离心去除上清液,分离并干燥,得到下层产物;
    ③、将下层产物溶于二甲基亚砜中,得到含有活化木质素的溶液,将含有活化木质素的溶液重复步骤二②2次~5次,最后将下层产物干燥,得到活化木质素;
    三、木质素基改性药液的配制:
    将活化木质素溶解于二甲基亚砜溶液中,加入引发剂,得到木质素基改性药液;
    所述的木质素基改性药液中活化木质素的质量百分数为5%~15%;所述的木质素基改性药液中引发剂的质量百分数为0%~10%;
    四、木质素基改性药液处理木材:
    在真空度为-0.1MPa~-0.05MPa及压力为0.1MPa~3.5MPa的条件下,利用真空加压浸渍罐,将木质素基改性药液浸透绝干的速生木材,得到浸透的木材,将浸透的木材置于大气环境中自然干燥,直到含水率平衡,得到自然干燥后的木材;将自然干燥后的木材梯度升温至103℃~105℃除去木材中的自由水,所述的梯度升温为每天升温10℃~30℃,升温后保温,第二天以此条件继续升温;梯度升温后,再将温度由103℃~105℃升温至120℃~140℃,并在温度为120℃~140℃的条件下,保温12h~48h,得到木质素基改性药液处理的木材。
  2. 根据权利要求1所述的一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,其特征在于步骤一中所述的工业木质素为工业碱木质素或木质素磺酸盐。
  3. 根据权利要求1所述的一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,其特征在于步骤一中将工业木质素分散于蒸馏水中,然后利用浓度为1mo/L~3mol/L 的氢氧化钠溶液或浓度为1mo/L~3mol/L的氢氧化钾溶液调节pH为13~14使其溶解;步骤一中在温度为50℃~80℃的水浴条件下,利用质量百分数为10%~15%的盐酸、质量百分数为10%~15%的硫酸或质量百分数为10%~15%的磷酸将滤液pH调节至2~3。
  4. 根据权利要求1所述的一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,其特征在于步骤二①中所述的酸酐为不饱和酸酐;所述的不饱和酸酐为马来酸酐、甲基丙烯酸酐、衣康酸酐或丁二酸酐。
  5. 根据权利要求1所述的一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,其特征在于步骤二①中所述的精制木质素的质量与二甲基亚砜溶液的体积比为1g:(5~25)mL;步骤二①中所述的精制木质素中羟基含量与酸酐的摩尔比是1:(1~5);步骤二①中所述的精制木质素中羟基含量与无水吡啶的摩尔比是1:(1~10)。
  6. 根据权利要求1所述的一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,其特征在于步骤二②中所述的离心具体为在转速为8000r/min~12000r/min的条件下离心5min~30min;步骤二②中所述的反应体系与不良溶剂的体积比为1:(5~10);步骤二③中所述的下层产物的质量与二甲基亚砜的体积比为1g:(5~10)mL。
  7. 根据权利要求1所述的一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,其特征在于步骤二②中所述的不良溶剂为乙酸乙酯或水。
  8. 根据权利要求1所述的一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,其特征在于步骤三中所述的引发剂为过硫酸铵或过硫酸钾。
  9. 根据权利要求1所述的一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,其特征在于步骤四中所述的绝干的速生木材具体是将速生木材在温度为103℃的鼓风干燥箱里干燥12h。
  10. 根据权利要求9所述的一种利用木质素基改性药液提高速生木材尺寸稳定性的方法,其特征在于所述的速生木材为杨木、桉木、椴木、杉木或辐射松。
PCT/CN2021/131998 2021-06-24 2021-11-22 一种利用木质素基改性药液提高速生木材尺寸稳定性的方法 WO2022267319A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110705610.1A CN113305959B (zh) 2021-06-24 2021-06-24 一种利用木质素基改性药液提高速生木材尺寸稳定性的方法
CN202110705610.1 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022267319A1 true WO2022267319A1 (zh) 2022-12-29

Family

ID=77379969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131998 WO2022267319A1 (zh) 2021-06-24 2021-11-22 一种利用木质素基改性药液提高速生木材尺寸稳定性的方法

Country Status (2)

Country Link
CN (1) CN113305959B (zh)
WO (1) WO2022267319A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113305959B (zh) * 2021-06-24 2022-02-25 东北林业大学 一种利用木质素基改性药液提高速生木材尺寸稳定性的方法
CN114633331A (zh) * 2022-03-31 2022-06-17 东北林业大学 一种尺寸稳定、防霉的压缩橡胶木的制备方法
CN114685810A (zh) * 2022-05-06 2022-07-01 辽宁石油化工大学 分散酞菁颜料的羧基木质素衍生物的制备方法与应用
CN115556205B (zh) * 2022-10-21 2023-08-29 华南农业大学 一种木质素基木材增强防腐剂、制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105773767A (zh) * 2016-04-20 2016-07-20 江苏金聚合金材料有限公司 一种木材乙酰化及联产醋酸酯的方法
CN107972144A (zh) * 2017-11-23 2018-05-01 北京林业大学 一种基于碱木质素复合热处理改性木材的方法
CN110283472A (zh) * 2019-07-22 2019-09-27 浙江利帆家具有限公司 一种抗老化耐冲击改性木塑复合材料及其制备方法
CN112321843A (zh) * 2020-10-28 2021-02-05 杭州电子科技大学 一种木质素基聚羧酸及其制备方法
CN113305959A (zh) * 2021-06-24 2021-08-27 东北林业大学 一种利用木质素基改性药液提高速生木材尺寸稳定性的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0210215D0 (en) * 2002-05-03 2002-06-12 K C Shen Internat Ltd Method for making dimensionally stable composite products from lignocelluloses
EP2431101A1 (en) * 2010-09-16 2012-03-21 Tooling Invest A/S Method of working a workpiece with a coating of a lignin-derived substance, wooden element with a coating of such lignin-derived substance, and structures, interior or exterior, with such wooden element
CN104448340B (zh) * 2014-12-12 2016-08-17 南京林业大学 一种高吸油率可生物降解的木质素基微孔分子筛制备方法
CN105984006A (zh) * 2016-01-28 2016-10-05 阜南县天亿工艺品有限公司 一种防水阻燃木材硬化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105773767A (zh) * 2016-04-20 2016-07-20 江苏金聚合金材料有限公司 一种木材乙酰化及联产醋酸酯的方法
CN107972144A (zh) * 2017-11-23 2018-05-01 北京林业大学 一种基于碱木质素复合热处理改性木材的方法
CN110283472A (zh) * 2019-07-22 2019-09-27 浙江利帆家具有限公司 一种抗老化耐冲击改性木塑复合材料及其制备方法
CN112321843A (zh) * 2020-10-28 2021-02-05 杭州电子科技大学 一种木质素基聚羧酸及其制备方法
CN113305959A (zh) * 2021-06-24 2021-08-27 东北林业大学 一种利用木质素基改性药液提高速生木材尺寸稳定性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU HAIZHEN: "Multiscale Modifications on Dimensional Stability of Populus cathayana by Alkali Lignin", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, 15 April 2020 (2020-04-15), CN , XP093016961, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN113305959B (zh) 2022-02-25
CN113305959A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2022267319A1 (zh) 一种利用木质素基改性药液提高速生木材尺寸稳定性的方法
CN107088941B (zh) 一种编织用杞柳的改性处理方法
CN104985657B (zh) 增强型高温热处理木材及其制造方法
CN107972144B (zh) 一种基于碱木质素复合热处理改性木材的方法
CN105599085B (zh) 木材及棉纤维处理剂、其制备方法及应用
CN108407002B (zh) 一种磷化木材及其制备方法
CN113696291B (zh) 轻度糠醇改性协同密实化处理提升木材性能的方法
CN110655744B (zh) 一种纳米纤维素/硼砂/聚乙烯醇自愈合水凝胶的制备方法
CN107379179B (zh) 一种木材表面疏水处理方法
CN105751335B (zh) 一种新型改性木材及其制备方法
CN113787578B (zh) 石墨烯糠醇树脂浸渍改性杨木单板的制备方法
CN106426451A (zh) 一种人工速生林木材多功能化处理的方法
CN104004104A (zh) 一种苎麻纳米纤维素疏水化改性的方法
CN108998857A (zh) 一种耐腐蚀高强度新型纤维的制备方法
CN115340702A (zh) 一种表面热处理木材纤维骨架/聚二甲基硅氧烷弹性复合凝胶及其制备方法
CN110947368A (zh) 一种海藻酸钠-木质素复合凝珠的制备及其固化方法
AU2019101692A4 (en) Method for Modification of Fast Growing Wood Using Rosin-based Unsaturated Resin
CN108060577A (zh) 一种麻纤维增强树脂基复合材料的制备方法
CN114196165A (zh) 一种改性黄麻纤维增强生物基环氧树脂复合材料的制备方法
CN112157766A (zh) 一种松香基木材改性剂及其制备方法与应用
CN110978181A (zh) 一种生物基刚性单体改善速生木材性能的方法
CN112372780A (zh) 一种改善竹材轴向易发生层间断裂的加工工艺
CN115213992B (zh) 一种木竹材的改性方法及其应用
CN109693283A (zh) 一种树脂浸渍预处理木材制备功能性木材的方法
CN113352418B (zh) 一种增强木材纵向力学性能的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE