WO2022267311A1 - 构建地貌地图的方法、装置、电子设备和可读存储介质 - Google Patents

构建地貌地图的方法、装置、电子设备和可读存储介质 Download PDF

Info

Publication number
WO2022267311A1
WO2022267311A1 PCT/CN2021/131179 CN2021131179W WO2022267311A1 WO 2022267311 A1 WO2022267311 A1 WO 2022267311A1 CN 2021131179 W CN2021131179 W CN 2021131179W WO 2022267311 A1 WO2022267311 A1 WO 2022267311A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
landform
vector graphics
image
categories
Prior art date
Application number
PCT/CN2021/131179
Other languages
English (en)
French (fr)
Inventor
张军军
曾益
侯小培
Original Assignee
北京百度网讯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京百度网讯科技有限公司 filed Critical 北京百度网讯科技有限公司
Priority to US17/755,172 priority Critical patent/US11893685B2/en
Priority to KR1020237007587A priority patent/KR20230044520A/ko
Priority to JP2023514789A priority patent/JP2023540730A/ja
Priority to EP21881338.4A priority patent/EP4174785A4/en
Publication of WO2022267311A1 publication Critical patent/WO2022267311A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/40Document-oriented image-based pattern recognition
    • G06V30/42Document-oriented image-based pattern recognition based on the type of document
    • G06V30/422Technical drawings; Geographical maps

Definitions

  • the present disclosure relates to the field of computer technology, in particular to the field of image processing technology.
  • Provided are a method, a device, an electronic device and a readable storage medium for constructing a topographic map.
  • a method for constructing a topographic map including: acquiring an image to be processed, obtaining a grayscale image of the image to be processed; Classify to obtain binary images corresponding to different landform categories; extract the contours of the patterns in the binary image, and use the extracted contours as vector graphics to obtain a set of vector graphics; according to the position information, the The vector graphics corresponding to the same geomorphic category in the vector graphics collection are merged, and the first geomorphic map is obtained according to the merging results corresponding to different geomorphic categories; using the preset geomorphic style, the vector graphics corresponding to different geomorphic categories in the first geomorphic map are merged. Mapping is performed, and the mapping result is used as the second topography map.
  • a device for constructing a topographic map including: an acquisition unit, configured to acquire an image to be processed, and obtain a grayscale image of the image to be processed; a first processing unit, configured to obtain a grayscale image of the image to be processed; Classify each pixel in the grayscale image to obtain binary images corresponding to different landform categories; the extraction unit is used to extract the outline of the spots in the binary image, and extract the extracted spots The outline is used as a vector graphic to obtain a vector graphic set; the merging unit is used to merge the vector graphics corresponding to the same landform category in the vector graphic set according to the position information, and obtain the first landform map according to the merged results corresponding to different landform categories; The mapping unit is configured to map the vector graphics corresponding to different landform categories in the first landform map by using a preset landform style, and use the mapping result as the second landform map.
  • an electronic device including: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores information that can be used by the at least one processor Instructions executed by the at least one processor to enable the at least one processor to perform the method as described above.
  • a non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause the computer to execute the method as described above.
  • a computer program product comprising a computer program which, when executed by a processor, implements the method as described above.
  • the image to be processed is first converted into vector data, and then the vector data is converted into a topographical map, which realizes the automation of the construction of the topographical map and improves the accuracy of the constructed topographical map and currentness.
  • FIG. 1 is a schematic diagram according to a first embodiment of the present disclosure
  • FIG. 2 is a schematic diagram according to a second embodiment of the present disclosure.
  • Fig. 3a is a schematic diagram according to a third embodiment of the present disclosure.
  • Fig. 3b is a schematic diagram according to a fourth embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram according to a fifth embodiment of the present disclosure.
  • Fig. 5 is a block diagram of an electronic device used to implement the method for constructing a topographic map according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram according to a first embodiment of the present disclosure. As shown in Figure 1, the method for constructing the topographic map of the present embodiment may specifically include the following steps:
  • the geomorphic map completes the conversion from vector data to the geomorphic map, which can realize the automation of the geomorphic map construction, and improves the accuracy and current situation of the constructed geomorphic map.
  • remote sensing images can be obtained as images to be processed, and the data type of the obtained images to be processed is raster data; in addition, the number of images to be processed obtained by executing S101 in this embodiment It can be one sheet or multiple sheets.
  • downsampling and remapping may be performed on the image to be processed, so as to convert the color image to be processed into a grayscale image; in the obtained grayscale image, Each pixel has a different gray value.
  • the corresponding relationship between the grayscale value and the landform category can be set in advance, and the landform category corresponding to the pixel can be determined through the grayscale value of the pixel.
  • the optional implementation method that can be adopted is: determine the grayscale image The gray value of each pixel in the gray value; for each gray value, the gray value of the pixel with this gray value in the gray image is set to 1, and the gray value of other pixels is set to 0, and the corresponding gray value The binary image of the value; the landform category corresponding to the gray value is used as the landform category of the binary image.
  • this embodiment classifies each pixel in the grayscale image according to the grayscale value, multiple binary images corresponding to different landform categories can be obtained based on the classification results, so that different landforms can be distinguished, and the classification of pixels belonging to The purpose of processing data of different geomorphic categories separately.
  • the following content may also be included: determining a binary image corresponding to a preset landform category; Binary image processing.
  • this embodiment first determines the binary image whose landform category is "water body”, and then Then, dilate and expand the determined binary image.
  • the specific processing of specific landforms can be realized by means of preset landform categories, so that the landforms of the preset landform categories can be highlighted in the constructed landform map.
  • the speckle in this embodiment is an area formed by pixels with a gray value of 1 in the binary image.
  • preprocessing such as opening operation and median filtering can be performed on the binary image; Fragmented spots are connected into pieces; the median filter of the binary image can remove sporadic pixels in the binary image and smooth the edges of the spots.
  • the following content may also be included: according to the coordinates of each pixel in the contour of the pattern, calculate the first coordinate of the contour, for example, calculate the wgs84 coordinate of the contour; Convert one coordinate to the second coordinate, for example, convert wgs84 coordinates to Baidu 09 coordinates, so as to realize the conversion and coordinate encryption of outline coordinates.
  • this embodiment restores each vector graphics in the obtained vector graphics set according to the location information, and restores each vector graphics to its actual location, and the obtained first landform map contains the corresponding landform categories. vector graphics.
  • the following content may also be included: changing the landform category of the vector graphics whose area is smaller than the first preset threshold in the first landform map to be adjacent to it The geomorphic category of vector graphics whose area is larger than the second preset threshold.
  • this embodiment can change the landscape category of the vector graphics with a small area in the first landscape map, so that the landscape category of the vector graphics with a small area is the same as that of the adjacent large-area vector graphics, Thus, the accuracy and consistency of the constructed first geomorphic map are further improved.
  • the preset landform patterns used in this embodiment correspond to different landform categories, that is, different landform categories have different landform styles, and the preset landform styles may include landform colors, landform shapes, and other styles.
  • the following content may also be included: for two vector graphics that intersect in the second topographic map, display the vector graphics with a smaller area on the larger one. over vector graphics.
  • small-area vector graphics are displayed on top of large-area vector graphics, so as to ensure that the small-area vector graphics will not be blocked, thereby ensuring the integrity of the second landform map. sex.
  • the vector graphics of different landform categories correspond to different landform styles, so that different landform categories can be displayed in the second landform map.
  • FIG. 2 is a schematic diagram according to a second embodiment of the present disclosure. As shown in Figure 2, the method for constructing the topographical map of this embodiment may further include the following steps after performing S105 to obtain the second topographical map:
  • the known map base map is obtained to be superimposed on the second landform map, and all the landforms in the second landform map are superimposed.
  • the included geomorphic information is superimposed on the map base map, so that the obtained third geomorphic map contains map information such as geomorphic information and road information, thereby realizing the fine construction of the geomorphic map.
  • S201 when S201 is executed to obtain the map base map, it may be obtained from a known map database, and then the obtained map base map is used as a template for superposition.
  • the optional implementation method that can be adopted is: setting different scales; The map is superimposed on the second topography map; the superposition results corresponding to different scales are used as a third topography map, so that the third topography map can display topography information at different scales.
  • the optional implementation method that can be adopted is: determine the superimposition method corresponding to the current scale: use the determined superposition method to obtain the superposition Vector graphics in the result, set the terrain category of each vector graphics in the overlay result.
  • This embodiment can pre-set the superimposition mode corresponding to different scales.
  • the superposition mode corresponding to the scale can be the intersection and difference between the map base map and the second topographical map; for example, the scale When it is 1:1000km or above, the superposition method corresponding to this scale can be the intersection between the map base map and the second topographic map.
  • the processing method corresponding to the superimposed mode can be used to set the geomorphic category of each vector graphic in the superimposed result.
  • the geomorphological category of the vector graphics that take the intersection can be set as the geomorphic category of the vector graphics in the second geomorphic map;
  • the topography category of the vector graphics with the largest area adjacent to it; in this embodiment, the topography category of the non-intersecting vector graphics can be set as the topography category of the vector graphics closest to it in the overlay result.
  • Fig. 3a is a schematic diagram according to the third embodiment of the present disclosure.
  • the image in Fig. 3a is a grayscale image of the image to be processed;
  • Fig. 3b is a schematic diagram according to the fourth embodiment of the present disclosure, and the images in Fig. 3b are corresponding to different landform categories
  • the binary image of , the white area in each binary image is the patch.
  • FIG. 4 is a schematic diagram according to a fifth embodiment of the present disclosure. As shown in Figure 4, the device 400 for constructing a topographic map in this embodiment includes:
  • the acquiring unit 401 is configured to acquire an image to be processed, and obtain a grayscale image of the image to be processed;
  • the first processing unit 402 is configured to classify each pixel in the grayscale image according to the grayscale value to obtain binary images corresponding to different landform categories;
  • the extraction unit 403 is configured to extract the contour of the speckle in the binary image, and use the extracted contour of the speckle as a vector graphic to obtain a set of vector graphics;
  • the merging unit 404 is configured to merge the vector graphics corresponding to the same landform category in the vector graphics set according to the location information, and obtain the first landform map according to the merging results corresponding to different landform categories;
  • the mapping unit 405 is configured to use a preset landscape style to map the vector graphics corresponding to different landscape categories in the first landscape map, and use the mapping result as the second landscape map.
  • the acquiring unit 401 can acquire a remote sensing image as the image to be processed, and the data type of the acquired image to be processed is raster data; in addition, the number of images to be processed acquired by the acquiring unit 401 can be one , can also be multiple.
  • the acquisition unit 401 When the acquisition unit 401 obtains the grayscale image of the image to be processed, it can perform downsampling processing and remapping processing on the image to be processed, thereby converting the color image to be processed into a grayscale image; in the obtained grayscale image, each pixel have different grayscale values.
  • the first processing unit 402 classifies each pixel in the obtained grayscale image according to the grayscale value to obtain binary values corresponding to different landform categories image.
  • the corresponding relationship between the grayscale value and the landform category can be set in advance, and the landform category corresponding to the pixel can be determined through the grayscale value of the pixel.
  • an optional implementation method that can be adopted is: determine the grayscale image The gray value of each pixel in the gray value; for each gray value, the gray value of the pixel with this gray value in the gray image is set to 1, and the gray value of other pixels is set to 0, and the corresponding gray value The binary image of the value; the landform category corresponding to the gray value is used as the landform category of the binary image.
  • the first processing unit 402 classifies each pixel in the grayscale image according to the grayscale value, multiple binary images corresponding to different landform categories can be obtained based on the classification results, so that different landforms can be distinguished, and the realization of The purpose of separate processing of data belonging to different geomorphic categories.
  • the device 400 for constructing a landform map in this embodiment also includes a second processing unit 406, which is used to execute the following content after the first processing unit 402 obtains binary images corresponding to different landform categories: determine the image corresponding to the preset landform category Binary image: process the determined binary image using a processing method corresponding to the preset landform category.
  • the second processing unit 406 can implement specific processing for specific landforms by means of preset landform categories, so as to highlight the landforms of the preset landform category in the constructed landform map.
  • the extraction unit 403 extracts the outlines of the spots in the obtained binary image, and uses the extracted outlines of the spots as vector graphics , to obtain a set of vector graphics; wherein, the speckle in this embodiment is the area formed by pixels with a gray value of 1 in the binary image.
  • the extracting unit 403 Before the extracting unit 403 extracts the speckle contours of the speckles in the binary image, it can also perform preprocessing such as opening operation and median filtering on the binary image; The spots are connected into slices; median filtering is performed on the binary image to remove sporadic pixels in the binary image and smooth the edges of the spots.
  • preprocessing such as opening operation and median filtering on the binary image
  • the spots are connected into slices; median filtering is performed on the binary image to remove sporadic pixels in the binary image and smooth the edges of the spots.
  • the extracting unit 403 may also include the following content: according to the coordinates of each pixel in the contour of the spot, calculate the first coordinate of the contour, for example, calculate the wgs84 coordinate of the contour; the calculated first coordinate Convert to second coordinates, for example, convert wgs84 coordinates to Baidu 09 coordinates, so as to realize the conversion and coordinate encryption of outline coordinates.
  • the merging unit 404 combines the vector graphics corresponding to the same landform category in the vector graphics set according to the position information, and obtains the first landform map according to the merging results corresponding to different landform categories .
  • the merging unit 404 restores each vector graphics in the obtained vector graphics set according to the location information, and restores each vector graphics to its actual location, and the obtained first landform map contains information corresponding to different landform categories. vector graphics.
  • the apparatus 400 for constructing a landform map in this embodiment also includes a first adjustment unit 407, which is used to execute the following content after the merging unit 404 obtains the first landform map according to the merging results corresponding to different landform categories:
  • the geomorphic category of the vector graphics whose area is smaller than the first preset threshold is changed to the geomorphic category of the adjacent vector graphics whose area is larger than the second preset threshold.
  • the first adjustment unit 407 can change the landscape category of the vector graphics with a small area in the first landscape map, so that the landscape category of the vector image with a small area and the landscape category of the adjacent large-area vector graphics The same, thus further improving the accuracy and consistency of the first constructed topographic map.
  • the mapping unit 405 uses the preset landform style to map the vector graphics corresponding to different landform categories in the first landform map, and use the mapping result as the second landform map .
  • the preset landscape styles used in the mapping unit 405 correspond to different landscape categories, that is, different landscape categories have different landscape styles, and the preset landscape styles may include landscape colors, landscape shapes, and other styles.
  • the apparatus 400 for constructing a topographical map in this embodiment also includes a second adjustment unit 408, which is used to execute the following content after the mapping unit 405 uses the mapping result as the second topographical map: for two intersecting cases in the second topographical map A vector graphic, and display the smaller vector graphic on top of the larger vector graphic.
  • the second adjustment unit 408 displays the small-area vector graphics on the large-area vector graphics according to the intersection of the vector graphics, so as to ensure that the small-area vector graphics will not be blocked, thereby ensuring that the second landform map integrity.
  • the device 400 for constructing a topographical map in this embodiment also includes a superposition unit 409, which is used to execute the following content after the mapping unit 405 uses the mapping result as the second topographical map: obtain the map base map as a template, and use the second topographical map as a template. Mask; superimpose the map base map with the second topography map, and use the superposition result as the third topography map.
  • a superposition unit 409 which is used to execute the following content after the mapping unit 405 uses the mapping result as the second topographical map: obtain the map base map as a template, and use the second topographical map as a template.
  • Mask superimpose the map base map with the second topography map, and use the superposition result as the third topography map.
  • the superimposing unit 409 When the superimposing unit 409 obtains the map base map, it may obtain it from a known map database, and then use the obtained map base map as a template to perform superimposition.
  • an optional implementation method that can be adopted is: setting different scales; The second topography map is superimposed; the superposition results corresponding to different scales are used as the third topography map, so that the third topography map can display topography information at different scales.
  • an optional implementation method that can be adopted is: determine the superposition method corresponding to the current scale: use the determined superposition method to obtain the superposition result vector graphics, set the terrain category of each vector graphics in the overlay result.
  • the superimposing unit 409 when the superimposing unit 409 sets the topography category of each vector graphics in the superposition result, it may use a processing method corresponding to the superposition mode to set the topography category of each vector graphics in the superposition result.
  • the acquisition, storage and application of the user's personal information involved are in compliance with relevant laws and regulations, and do not violate public order and good customs.
  • the present disclosure also provides an electronic device, a readable storage medium, and a computer program product.
  • FIG. 5 it is a block diagram of an electronic device according to a method for constructing a topographic map according to an embodiment of the present disclosure.
  • Electronic device is intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframes, and other suitable computers.
  • Electronic devices may also represent various forms of mobile devices, such as personal digital processing, cellular telephones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions, are by way of example only, and are not intended to limit implementations of the disclosure described and/or claimed herein.
  • the device 500 includes a computing unit 501 that can execute according to a computer program stored in a read-only memory (ROM) 502 or loaded from a storage unit 508 into a random-access memory (RAM) 503. Various appropriate actions and treatments. In the RAM 503, various programs and data necessary for the operation of the device 500 can also be stored.
  • the computing unit 501 , ROM 502 and RAM 503 are connected to each other through a bus 504 .
  • An input/output (I/O) interface 505 is also connected to the bus 504 .
  • the I/O interface 505 includes: an input unit 506, such as a keyboard, a mouse, etc.; an output unit 507, such as various types of displays, speakers, etc.; a storage unit 508, such as a magnetic disk, an optical disk, etc. ; and a communication unit 509, such as a network card, a modem, a wireless communication transceiver, and the like.
  • the communication unit 509 allows the device 500 to exchange information/data with other devices over a computer network such as the Internet and/or various telecommunication networks.
  • the computing unit 501 may be various general-purpose and/or special-purpose processing components having processing and computing capabilities. Some examples of computing units 501 include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), various dedicated artificial intelligence (AI) computing chips, various computing units that run machine learning model algorithms, digital signal processing processor (DSP), and any suitable processor, controller, microcontroller, etc.
  • the calculation unit 501 executes various methods and processes described above, such as a method of constructing a topographical map. For example, in some embodiments, a method of constructing a topographical map may be implemented as a computer software program tangibly embodied on a machine-readable medium, such as storage unit 508 .
  • part or all of the computer program may be loaded and/or installed on the device 500 via the ROM 502 and/or the communication unit 509 .
  • the computer program When the computer program is loaded into the RAM 503 and executed by the computing unit 501, one or more steps of the method for constructing a topographical map described above can be performed.
  • the computing unit 501 may be configured to execute the method for constructing a topographic map in any other suitable manner (for example, by means of firmware).
  • Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, systems integrated circuits, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips system (SOC), complex programmable logic device (CPLD), computer hardware, firmware, software, and/or a combination thereof.
  • FPGAs field programmable gate arrays
  • ASICs application specific integrated circuits
  • ASSPs application specific standard products
  • SOC systems on chips system
  • CPLD complex programmable logic device
  • computer hardware firmware, software, and/or a combination thereof.
  • programmable processor can be special-purpose or general-purpose programmable processor, can receive data and instruction from storage system, at least one input device, and at least one output device, and transmit data and instruction to this storage system, this at least one input device, and this at least one output device an output device.
  • Program codes for implementing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, a special purpose computer, or other programmable data processing devices, so that the program codes, when executed by the processor or controller, make the functions/functions specified in the flow diagrams and/or block diagrams Action is implemented.
  • the program code may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM compact disk read only memory
  • magnetic storage or any suitable combination of the foregoing.
  • the systems and techniques described herein can be implemented on a computer having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user. ); and a keyboard and pointing device (eg, a mouse or a trackball) through which a user can provide input to the computer.
  • a display device e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or a trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and can be in any form (including Acoustic input, speech input or, tactile input) to receive input from the user.
  • the systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN) and the Internet.
  • a computer system may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • the server can be a cloud server, also known as a cloud computing server or cloud host, which is a host product in the cloud computing service system to solve the problem of traditional physical host and VPS service ("Virtual Private Server", or "VPS”) Among them, there are defects such as difficult management and weak business scalability.
  • the server can also be a server of a distributed system, or a server combined with a blockchain.
  • steps may be reordered, added or deleted using the various forms of flow shown above.
  • each step described in the present disclosure may be executed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution disclosed in the present disclosure can be achieved, no limitation is imposed herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Remote Sensing (AREA)
  • Computer Graphics (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Processing Or Creating Images (AREA)
  • Image Analysis (AREA)
  • Instructional Devices (AREA)

Abstract

本公开提供了一种构建地貌地图的方法、装置、电子设备和可读存储介质,涉及图像处理技术领域。构建地貌地图的方法包括:获取待处理图像,得到所述待处理图像的灰度图像;根据灰度值对所述灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像;提取所述二值图像中图斑的图斑轮廓,将所提取的图斑轮廓作为矢量图形,得到矢量图形集合;根据位置信息,将所述矢量图形集合中对应同一地貌类别的矢量图形进行合并,根据对应不同地貌类别的合并结果得到第一地貌地图;使用预设的地貌样式,对所述第一地貌地图中对应不同地貌类别的矢量图形进行映射,将映射结果作为第二地貌地图。

Description

构建地貌地图的方法、装置、电子设备和可读存储介质
本申请要求了申请日为2021年06月22日,申请号为202110694174.2发明名称为构建地貌地图的方法、装置、电子设备和可读存储介质”的中国专利申请的优先权。
技术领域
本公开涉及计算机技术领域,尤其涉及图像处理技术领域。提供了一种构建地貌地图的方法、装置、电子设备和可读存储介质。
背景技术
目前的地图应用中,在25km-1000km比例尺下没有地图信息的表达,缺乏地貌信息。现有技术在构建包含地貌信息时地图时,存在人工制图成本较高、地貌特征准确性较低的问题。
发明内容
根据本公开的第一方面,提供了一种构建地貌地图的方法,包括:获取待处理图像,得到所述待处理图像的灰度图像;根据灰度值对所述灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像;提取所述二值图像中图斑的图斑轮廓,将所提取的图斑轮廓作为矢量图形,得到矢量图形集合;根据位置信息,将所述矢量图形集合中对应同一地貌类别的矢量图形进行合并,根据对应不同地貌类别的合并结果得到第一地貌地图;使用预设的地貌样式,对所述第一地貌地图中对应不同地貌类别的矢量图形进行映射,将映射结果作为第二地貌地图。
根据本公开的第二方面,提供了一种构建地貌地图的装置,包括:获取单元,用于获取待处理图像,得到所述待处理图像的灰度图像;第一处理单元,用于根据灰度值对所述灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像;提取单元,用于提取所述二值图像中图斑的图斑轮廓,将所提取的图斑轮廓作为矢量图形,得到矢量图形集合;合并单元,用于根据位置信息,将所述矢量图形集合中对应同一地貌类别的矢量图形进行合并,根据对应不同地貌类别的合并结果得到第 一地貌地图;映射单元,用于使用预设的地貌样式,对所述第一地貌地图中对应不同地貌类别的矢量图形进行映射,将映射结果作为第二地貌地图。
根据本公开的第三方面,提供了一种电子设备,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的方法。
根据本公开的第四方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行如上所述的方法。
根据本公开的第五方面,提供了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如上所述的方法。
由以上技术方案可以看出,本实施例首先将待处理图像转换为矢量数据,然后再将矢量数据转换为地貌地图,实现了构建地貌地图时的自动化,提升了所构建的地貌地图的准确性与现势性。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
附图用于更好地理解本方案,不构成对本公开的限定。其中:
图1是根据本公开第一实施例的示意图;
图2是根据本公开第二实施例的示意图;
图3a是根据本公开第三实施例的示意图;
图3b是根据本公开第四实施例的示意图;
图4是根据本公开第五实施例的示意图;
图5是用来实现本公开实施例的构建地貌地图的方法的电子设备的框图。
具体实施方式
以下结合附图对本公开的示范性实施例做出说明,其中包括本公开 实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和机构的描述。
图1是根据本公开第一实施例的示意图。如图1所示,本实施例的构建地貌地图的方法,具体可以包括如下步骤:
S101、获取待处理图像,得到所述待处理图像的灰度图像;
S102、根据灰度值对所述灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像;
S103、提取所述二值图像中图斑的图斑轮廓,将所提取的图斑轮廓作为矢量图形,得到矢量图形集合;
S104、根据位置信息,将所述矢量图形集合中对应同一地貌类别的矢量图形进行合并,根据对应不同地貌类别的合并结果得到第一地貌地图;
S105、使用预设的地貌样式,对所述第一地貌地图中对应不同地貌类别的矢量图形进行映射,将映射结果作为第二地貌地图。
本实施例的地貌地图的构建方法,在根据待处理图像得到对应不同地貌类别的二值图像之后,提取各二值图像中图斑的图斑轮廓来得到矢量图形集合,完成栅格数据到矢量数据的转换,然后再将矢量图形集合中的各矢量图形进行合并以得到第一地貌地图,最后使用预设的地貌样式对第一地貌地图中的各矢量图形进行映射,将所得到的第二地貌地图作为待处理图像的地貌地图的构建结果,完成矢量数据到地貌地图的转换,能够实现构建地貌地图时的自动化,提升了所构建的地貌地图的准确性与现势性。
本实施例在执行S101获取待处理图像时,可以获取遥感图像作为待处理图像,所获取的待处理图像的数据类型为栅格数据;另外,本实施例执行S101所获取的待处理图像的数量可以为一张,也可以为多张。
本实施例在执行S101得到待处理图像的灰度图像时,可以对待处理图像进行降采样处理与重映射处理,从而将彩色的待处理图像转换为灰度图像;所得到的灰度图像中,各像素具有不同的灰度值。
本实施例在执行S101得到待处理图像的灰度图像之后,执行S102 根据灰度值对所得到的灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像。
本实施例可以预先设置灰度值与地貌类别之间的对应关系,通过像素的灰度值即可确定该像素所对应的地貌类别。
因此,本实施例在执行S102根据灰度值对所得到的灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像时,可以采用的可选实现方式为:确定灰度图像中各像素的灰度值;针对每个灰度值,将灰度图像中具有该灰度值的像素的灰度值设置为1,其他像素的灰度值设置为0,得到对应该灰度值的二值图像;将与该灰度值对应的地貌类别作为该二值图像的地貌类别。
也就是说,本实施例根据灰度值对灰度图像中的各像素进行分类之后,基于分类结果即可得到对应不同地貌类别的多张二值图像,从而能够区分不同的地貌,实现对属于不同地貌类别的数据进行单独处理的目的。
本实施例在执行S102得到对应不同地貌类别的二值图像之后,还可以包含以下内容:确定对应于预设地貌类别的二值图像;使用与预设地貌类别对应的处理方式,对所确定的二值图像进行处理。
举例来说,若本实施例中的预设地貌类别为“水体”,若与“水体”对应的处理方式为膨胀扩展,则本实施例首先确定地貌类别为“水体”的二值图像,然后再对所确定的二值图像进行膨胀扩展的处理。
也就是说,本实施例通过预设地貌类别的方式,能够实现对于特定地貌的特定处理,从而在所构建的地貌地图中突出该预设地貌类别的地貌。
本实施例在执行S102得到对应不同地貌类别的二值图像之后,执行S103提取所得到的二值图像中图斑的图斑轮廓,将所提取的图斑轮廓作为矢量图形,得到矢量图形集合;其中,本实施例中的图斑即为二值图像中灰度值为1的像素所构成的区域。
本实施例在执行S103提取二值图像中图斑的图斑轮廓之前,还可以对二值图像进行开运算、中值滤波等预处理;对二值图像进行开运算,能够将二值图像中零碎的图斑连接成片;对二值图像进行中值滤波,可以去除二值图像中的零星像素,并平滑图斑的边缘。
另外,本实施例在执行S103提取得到图斑轮廓之后,还可以包含以下内容:根据图斑轮廓中各像素的坐标,计算轮廓的第一坐标,例如计算轮廓的wgs84坐标;将计算得到的第一坐标转换为第二坐标,例如将wgs84坐标转换为百度09坐标,从而实现轮廓坐标的转换与坐标加密。
本实施例在执行S103得到矢量图形集合之后,执行S104根据位置信息,将矢量图形集合中对应同一地貌类别的矢量图形进行合并,根据对应不同地貌类别的合并结果得到第一地貌地图。
也就是说,本实施例根据位置信息对所得到的矢量图形集合中的各矢量图形进行还原,将各矢量图形还原到其所在的实际位置,所得到的第一地貌地图中包含对应不同地貌类别的矢量图形。
本实施例在执行S103根据对应不同地貌类别的合并结果得到第一地貌地图之后,还可以包含以下内容:将第一地貌地图中面积小于第一预设阈值的矢量图形的地貌类别改变为与其邻接的面积大于第二预设阈值的矢量图形的地貌类别。
也就是说,本实施例能够对第一地貌地图中面积较小的矢量图形的地貌类别进行改变,使得该面积较小的矢量图像的地貌类别与其邻接的大面积的矢量图形的地貌类别相同,从而进一步提升了所构建的第一地貌地图的准确性与一致性。
本实施例在执行S104得到第一地貌地图之后,执行S105使用预设的地貌样式,对第一地貌地图中对应不同地貌类别的矢量图形进行映射,将映射结果作为第二地貌地图。
本实施例中所使用的预设的地貌样式与不同的地貌类别相对应,即不同的地貌类别会有着不同的地貌样式,预设的地貌样式中可以包含地貌颜色、地貌形状等样式。
本实施例在执行S105将映射结果作为第二地貌地图之后,还可以包含以下内容:针对第二地貌地图中存在相交情况的两个矢量图形,将面积较小的矢量图形显示在面积较大的矢量图形之上。
也就是说,本实施例针对矢量图形的相交情况,将小面积的矢量图形在大面积矢量图形之上进行显示,从而确保小面积的矢量图形不会被遮挡,从而确保第二地貌地图的完整性。
本实施例执行S105所得到的第二地貌地图中,不同地貌类别的矢量 图形对应于不同的地貌样式,使得该第二地貌地图中能够显示不同的地貌类别。利用本实施例所提供的上述方法,实现了地貌地图的自动构建,并且能够提升所构建的地貌地图的准确性与现势性。
图2是根据本公开第二实施例的示意图。如图2所示,本实施例的构建地貌地图的方法,在执行S105得到第二地貌地图之后,还可以包括如下步骤:
S201、获取地图底图作为模板,将所述第二地貌地图作为掩膜;
S202、将所述地图底图与所述第二地貌地图进行叠加,将叠加结果作为第三地貌地图。
由于本实施例所得到的第二地貌地图中仅显示了不同类别的地貌,缺乏道路等信息,因此通过获取已知的地图底图来与第二地貌地图进行叠加,将第二地貌地图中所包含的地貌信息叠加到地图底图上,使得所得到的第三地貌地图中包含地貌信息、道路信息等地图信息,从而实现地貌地图的精细化构建。
本实施例在执行S201获取地图底图时,可以从已知的地图数据库中获取,进而将所获取的地图底图为模板来进行叠加。
本实施例在执行S202将地图底图与第二地貌地图进行叠加,将叠加结果作为第三地貌地图时,可以采用的可选实现方式为:设置不同的比例尺;分别将对应同一比例尺的地图底图与第二地貌地图进行叠加;将对应不同比例尺的叠加结果作为第三地貌地图,从而使得该第三地貌地图能够在不同的比例尺下均能够显示地貌信息。
本实施例在执行S202分别将对应同一比例尺的地图底图与第二地貌地图进行叠加时,可以采用的可选实现方式为:确定与当前比例尺对应的叠加方式:使用所确定的叠加方式得到叠加结果中的矢量图形,设置叠加结果中各矢量图形的地貌类别。
本实施例可以预先设置不同的比例尺对应的叠加方式,例如比例尺为1:500km时,与该比例尺对应的叠加方式可以为取地图底图与第二地貌地图之间的交集与差集;例如比例尺为1:1000km及以上时,与该比例尺对应的叠加方式可以为取地图底图与第二地貌地图之间的交集。
另外,本实施例在执行S202设置叠加结果中各矢量图形的地貌类别时,可以使用与叠加方式所对应的处理方式,来设置叠加结果中各矢量 图形的地貌类别。
举例来说,本实施例可以将取交集的矢量图形的地貌类别设置为第二地貌地图中该矢量图形的地貌类别;本实施例可以将取差集的矢量图形的地貌类别设置为叠加结果中与其相接的最大面积的矢量图形的地貌类别;本实施例可以将无交集的矢量图形地貌类别设置为叠加结果中与其最近的矢量图形的地貌类别。
图3a是根据本公开第三实施例的示意图,图3a中的图像为待处理图像的灰度图像;图3b是根据本公开第四实施例的示意图,图3b中的图像为对应不同地貌类别的二值图像,每个二值图像中的白色区域即为图斑。
图4是根据本公开第五实施例的示意图。如图4所示,本实施例的构建地貌地图的装置400,包括:
获取单元401、用于获取待处理图像,得到所述待处理图像的灰度图像;
第一处理单元402、用于根据灰度值对所述灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像;
提取单元403、用于提取所述二值图像中图斑的图斑轮廓,将所提取的图斑轮廓作为矢量图形,得到矢量图形集合;
合并单元404、用于根据位置信息,将所述矢量图形集合中对应同一地貌类别的矢量图形进行合并,根据对应不同地貌类别的合并结果得到第一地貌地图;
映射单元405、用于使用预设的地貌样式,对所述第一地貌地图中对应不同地貌类别的矢量图形进行映射,将映射结果作为第二地貌地图。
获取单元401在获取待处理图像时,可以获取遥感图像作为待处理图像,所获取的待处理图像的数据类型为栅格数据;另外,获取单元401所获取的待处理图像的数量可以为一张,也可以为多张。
获取单元401在得到待处理图像的灰度图像时,可以对待处理图像进行降采样处理与重映射处理,从而将彩色的待处理图像转换为灰度图像;所得到的灰度图像中,各像素具有不同的灰度值。
本实施例在由获取单元401得到待处理图像的灰度图像之后,由第一处理单元402根据灰度值对所得到的灰度图像中的各像素进行分类, 得到对应不同地貌类别的二值图像。
本实施例可以预先设置灰度值与地貌类别之间的对应关系,通过像素的灰度值即可确定该像素所对应的地貌类别。
因此,第一处理单元402在根据灰度值对所得到的灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像时,可以采用的可选实现方式为:确定灰度图像中各像素的灰度值;针对每个灰度值,将灰度图像中具有该灰度值的像素的灰度值设置为1,其他像素的灰度值设置为0,得到对应该灰度值的二值图像;将与该灰度值对应的地貌类别作为该二值图像的地貌类别。
也就是说,第一处理单元402根据灰度值对灰度图像中的各像素进行分类之后,基于分类结果即可得到对应不同地貌类别的多张二值图像,从而能够区分不同的地貌,实现对属于不同地貌类别的数据进行单独处理的目的。
本实施例的构建地貌地图的装置400中还包含第二处理单元406,用于在第一处理单元402得到对应不同地貌类别的二值图像之后,执行以下内容:确定对应于预设地貌类别的二值图像;使用与预设地貌类别对应的处理方式,对所确定的二值图像进行处理。
也就是说,第二处理单元406通过预设地貌类别的方式,能够实现对于特定地貌的特定处理,从而在所构建的地貌地图中突出该预设地貌类别的地貌。
本实施例在由第一处理单元402得到对应不同地貌类别的二值图像之后,由提取单元403提取所得到的二值图像中图斑的图斑轮廓,将所提取的图斑轮廓作为矢量图形,得到矢量图形集合;其中,本实施例中的图斑即为二值图像中灰度值为1的像素所构成的区域。
提取单元403在提取二值图像中图斑的图斑轮廓之前,还可以对二值图像进行开运算、中值滤波等预处理;对二值图像进行开运算,能够将二值图像中零碎的图斑连接成片;对二值图像进行中值滤波,可以去除二值图像中的零星像素,并平滑图斑的边缘。
另外,提取单元403在提取得到图斑轮廓之后,还可以包含以下内容:根据图斑轮廓中各像素的坐标,计算轮廓的第一坐标,例如计算轮廓的wgs84坐标;将计算得到的第一坐标转换为第二坐标,例如将wgs84 坐标转换为百度09坐标,从而实现轮廓坐标的转换与坐标加密。
本实施例在由提取单元403得到矢量图形集合之后,由合并单元404根据位置信息,将矢量图形集合中对应同一地貌类别的矢量图形进行合并,根据对应不同地貌类别的合并结果得到第一地貌地图。
也就是说,合并单元404根据位置信息对所得到的矢量图形集合中的各矢量图形进行还原,将各矢量图形还原到其所在的实际位置,所得到的第一地貌地图中包含对应不同地貌类别的矢量图形。
本实施例的构建地貌地图的装置400中还包含第一调整单元407,用于在合并单元404根据对应不同地貌类别的合并结果得到第一地貌地图之后,执行以下内容:将第一地貌地图中面积小于第一预设阈值的矢量图形的地貌类别改变为与其邻接的面积大于第二预设阈值的矢量图形的地貌类别。
也就是说,第一调整单元407能够对第一地貌地图中面积较小的矢量图形的地貌类别进行改变,使得该面积较小的矢量图像的地貌类别与其邻接的大面积的矢量图形的地貌类别相同,从而进一步提升了所构建的第一地貌地图的准确性与一致性。
本实施例在由合并单元404得到第一地貌地图之后,由映射单元405使用预设的地貌样式,对第一地貌地图中对应不同地貌类别的矢量图形进行映射,将映射结果作为第二地貌地图。
映射单元405中所使用的预设的地貌样式与不同的地貌类别相对应,即不同的地貌类别会有着不同的地貌样式,预设的地貌样式中可以包含地貌颜色、地貌形状等样式。
本实施例的构建地貌地图的装置400中还包含第二调整单元408,用于在映射单元405将映射结果作为第二地貌地图之后,执行以下内容:针对第二地貌地图中存在相交情况的两个矢量图形,将面积较小的矢量图形显示在面积较大的矢量图形之上。
也就是说,第二调整单元408针对矢量图形的相交情况,将小面积的矢量图形在大面积矢量图形之上进行显示,从而确保小面积的矢量图形不会被遮挡,从而确保第二地貌地图的完整性。
本实施例的构建地貌地图的装置400中还包含叠加单元409,用于在映射单元405将映射结果作为第二地貌地图之后,执行以下内容:获 取地图底图作为模板,将第二地貌地图作为掩膜;将地图底图与第二地貌地图进行叠加,将叠加结果作为第三地貌地图。
叠加单元409在获取地图底图时,可以从已知的地图数据库中获取,进而将所获取的地图底图为模板来进行叠加。
叠加单元409在将地图底图与第二地貌地图进行叠加,将叠加结果作为第三地貌地图时,可以采用的可选实现方式为:设置不同的比例尺;分别将对应同一比例尺的地图底图与第二地貌地图进行叠加;将对应不同比例尺的叠加结果作为第三地貌地图,从而使得该第三地貌地图能够在不同的比例尺下均能够显示地貌信息。
叠加单元409在分别将对应同一比例尺的地图底图与第二地貌地图进行叠加时,可以采用的可选实现方式为:确定与当前比例尺对应的叠加方式:使用所确定的叠加方式得到叠加结果中的矢量图形,设置叠加结果中各矢量图形的地貌类别。
另外,叠加单元409在设置叠加结果中各矢量图形的地貌类别时,可以使用与叠加方式所对应的处理方式,来设置叠加结果中各矢量图形的地貌类别。
本公开的技术方案中,所涉及的用户个人信息的获取,存储和应用等,均符合相关法律法规的规定,且不违背公序良俗。
根据本公开的实施例,本公开还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。
如图5所示,是根据本公开实施例的构建地貌地图的方法的电子设备的框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
如图5所示,设备500包括计算单元501,其可以根据存储在只读存储器(ROM)502中的计算机程序或者从存储单元508加载到随机访问存储器(RAM)503中的计算机程序,来执行各种适当的动作和处理。 在RAM503中,还可存储设备500操作所需的各种程序和数据。计算单元501、ROM502以及RAM503通过总线504彼此相连。输入/输出(I/O)接口505也连接至总线504。
设备500中的多个部件连接至I/O接口505,包括:输入单元506,例如键盘、鼠标等;输出单元507,例如各种类型的显示器、扬声器等;存储单元508,例如磁盘、光盘等;以及通信单元509,例如网卡、调制解调器、无线通信收发机等。通信单元509允许设备500通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
计算单元501可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元501的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元501执行上文所描述的各个方法和处理,例如构建地貌地图的方法。例如,在一些实施例中,构建地貌地图的方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元508。
在一些实施例中,计算机程序的部分或者全部可以经由ROM502和/或通信单元509而被载入和/或安装到设备500上。当计算机程序加载到RAM 503并由计算单元501执行时,可以执行上文描述的构建地貌地图的方法的一个或多个步骤。备选地,在其他实施例中,计算单元501可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行构建地貌地图的方法。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、复杂可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该 至少一个输出装置。
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后 台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与VPS服务(“Virtual Private Server”,或简称“VPS”)中,存在的管理难度大,业务扩展性弱的缺陷。服务器也可以为分布式系统的服务器,或者是结合了区块链的服务器。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。

Claims (19)

  1. 一种构建地貌地图的方法,包括:
    获取待处理图像,得到所述待处理图像的灰度图像;
    根据灰度值对所述灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像;
    提取所述二值图像中图斑的图斑轮廓,将所提取的图斑轮廓作为矢量图形,得到矢量图形集合;
    根据位置信息,将所述矢量图形集合中对应同一地貌类别的矢量图形进行合并,根据对应不同地貌类别的合并结果得到第一地貌地图;
    使用预设的地貌样式,对所述第一地貌地图中对应不同地貌类别的矢量图形进行映射,将映射结果作为第二地貌地图。
  2. 根据权利要求1所述的方法,其中,所述根据灰度值对所述灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像包括:
    确定所述灰度图像中各像素的灰度值;
    针对每个灰度值,将所述灰度图像中具有该灰度值的像素的灰度值设置为1,其他像素的灰度值设置为0,得到对应该灰度值的二值图像;
    将与该灰度值对应的地貌类别作为该二值图像的地貌类别。
  3. 根据权利要求1所述的方法,还包括,
    在得到对应不同地貌类别的二值图像之后,确定对应于预设地貌类别的二值图像;
    使用与所述预设地貌类别对应的处理方式,对所确定的二值图像进行处理。
  4. 根据权利要求1所述的方法,还包括,
    在根据对应不同地貌类别的合并结果得到第一地貌地图之后,将所述第一地貌地图中面积小于第一预设阈值的矢量图形的地貌类别改变为与其邻接的面积大于第二预设阈值的矢量图形的地貌类别。
  5. 根据权利要求1所述的方法,还包括,
    在将映射结果作为第二地貌地图之后,针对所述第二地貌地图中存在相交情况的两个矢量图形,将面积较小的矢量图形显示在面积较大的矢量图形之上。
  6. 根据权利要求1所述的方法,还包括,
    在将映射结果作为第二地貌地图之后,获取地图底图作为模板,将所述第二地貌地图作为掩膜;
    将所述地图底图与所述第二地貌地图进行叠加,将叠加结果作为第三地貌地图。
  7. 根据权利要求6所述的方法,其中,所述将所述地图底图与所述第二地貌地图进行叠加,将叠加结果作为第三地貌地图包括:
    设置不同的比例尺;
    分别将对应同一比例尺的地图底图与第二地貌地图进行叠加;
    将对应不同比例尺的叠加结果作为所述第三地貌地图。
  8. 根据权利要求7所述的方法,其中,所述分别将对应同一比例尺的地图底图与第二地貌地图进行叠加包括:
    确定与当前比例尺对应的叠加方式:
    使用所确定的叠加方式得到叠加结果中的矢量图形,设置所述叠加结果中各矢量图形的地貌类别。
  9. 一种构建地貌地图的装置,包括:
    获取单元,用于获取待处理图像,得到所述待处理图像的灰度图像;
    第一处理单元,用于根据灰度值对所述灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像;
    提取单元,用于提取所述二值图像中图斑的图斑轮廓,将所提取的图斑轮廓作为矢量图形,得到矢量图形集合;
    合并单元,用于根据位置信息,将所述矢量图形集合中对应同一地貌类别的矢量图形进行合并,根据对应不同地貌类别的合并结果得到第一地貌地图;
    映射单元,用于使用预设的地貌样式,对所述第一地貌地图中对应不同地貌类别的矢量图形进行映射,将映射结果作为第二地貌地图。
  10. 根据权利要求9所述的装置,其中,所述第一处理单元在根据灰度值对所述灰度图像中的各像素进行分类,得到对应不同地貌类别的二值图像时,具体执行:
    确定所述灰度图像中各像素的灰度值;
    针对每个灰度值,将所述灰度图像中具有该灰度值的像素的灰度值 设置为1,其他像素的灰度值设置为0,得到对应该灰度值的二值图像;
    将与该灰度值对应的地貌类别作为该二值图像的地貌类别。
  11. 根据权利要求9所述的装置,还包括第二处理单元,用于执行,
    在所述第一处理单元得到对应不同地貌类别的二值图像之后,确定对应于预设地貌类别的二值图像;
    使用与所述预设地貌类别对应的处理方式,对所确定的二值图像进行处理。
  12. 根据权利要求9所述的装置,还包括第一调整单元,用于执行,
    在所述合并单元根据对应不同地貌类别的合并结果得到第一地貌地图之后,将所述第一地貌地图中面积小于第一预设阈值的矢量图形的地貌类别改变为与其邻接的面积大于第二预设阈值的矢量图形的地貌类别。
  13. 根据权利要求9所述的装置,还包括第二调整单元,用于执行,
    在所述映射单元将映射结果作为第二地貌地图之后,针对所述第二地貌地图中存在相交情况的两个矢量图形,将面积较小的矢量图形显示在面积较大的矢量图形之上。
  14. 根据权利要求9所述的装置,还包括叠加单元,用于执行,
    在所述映射单元将映射结果作为第二地貌地图之后,获取地图底图作为模板,将所述第二地貌地图作为掩膜;
    将所述地图底图与所述第二地貌地图进行叠加,将叠加结果作为第三地貌地图。
  15. 根据权利要求14所述的装置,其中,所述叠加单元在将所述地图底图与所述第二地貌地图进行叠加,将叠加结果作为第三地貌地图时,具体执行:
    设置不同的比例尺;
    分别将对应同一比例尺的地图底图与第二地貌地图进行叠加;
    将对应不同比例尺的叠加结果作为所述第三地貌地图。
  16. 根据权利要求15所述的装置,其中,所述叠加单元在分别将对应同一比例尺的地图底图与第二地貌地图进行叠加时,具体执行:
    确定与当前比例尺对应的叠加方式:
    使用所确定的叠加方式得到叠加结果中的矢量图形,设置所述叠加结果中各矢量图形的地貌类别。
  17. 一种电子设备,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-8中任一项所述的方法。
  18. 一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行权利要求1-8中任一项所述的方法。
  19. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现根据权利要求1-8中任一项所述的方法。
PCT/CN2021/131179 2021-06-22 2021-11-17 构建地貌地图的方法、装置、电子设备和可读存储介质 WO2022267311A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/755,172 US11893685B2 (en) 2021-06-22 2021-11-17 Landform map building method and apparatus, electronic device and readable storage medium
KR1020237007587A KR20230044520A (ko) 2021-06-22 2021-11-17 지형 지도 구축 방법, 장치, 전자 기기 및 판독 가능 기록 매체
JP2023514789A JP2023540730A (ja) 2021-06-22 2021-11-17 地形地図を構築する方法、装置、電子機器、及び読み取り可能な記憶媒体
EP21881338.4A EP4174785A4 (en) 2021-06-22 2021-11-17 METHOD AND APPARATUS FOR CONSTRUCTING A RELIEF MAP, ELECTRONIC DEVICE AND READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110694174.2A CN113409461B (zh) 2021-06-22 2021-06-22 构建地貌地图的方法、装置、电子设备和可读存储介质
CN202110694174.2 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022267311A1 true WO2022267311A1 (zh) 2022-12-29

Family

ID=77682473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131179 WO2022267311A1 (zh) 2021-06-22 2021-11-17 构建地貌地图的方法、装置、电子设备和可读存储介质

Country Status (6)

Country Link
US (1) US11893685B2 (zh)
EP (1) EP4174785A4 (zh)
JP (1) JP2023540730A (zh)
KR (1) KR20230044520A (zh)
CN (1) CN113409461B (zh)
WO (1) WO2022267311A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409461B (zh) 2021-06-22 2023-06-23 北京百度网讯科技有限公司 构建地貌地图的方法、装置、电子设备和可读存储介质
CN117765420B (zh) * 2024-02-22 2024-05-07 山东瑞鑫时空信息科技有限公司 基于遥感数据的地形勘测方法及系统
CN117788679B (zh) * 2024-02-27 2024-05-03 腾讯科技(深圳)有限公司 地图数据生成方法、装置、电子设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804863A (zh) * 2006-01-16 2006-07-19 浙江大学 纸质矢量地图自动数字化的方法
CN104361616A (zh) * 2014-11-05 2015-02-18 南车株洲电力机车研究所有限公司 一种用于风电场风资源评估的地形地貌文件获取方法
CN106384081A (zh) * 2016-08-30 2017-02-08 水利部水土保持监测中心 一种基于高分辨率遥感影像的坡耕地提取方法和系统
CN107766825A (zh) * 2017-10-27 2018-03-06 国家测绘地理信息局第航测遥感院 基于空间功能单元的陆域省市县空间规划三区识别方法
CN107861129A (zh) * 2017-10-31 2018-03-30 中国铁路设计集团有限公司 一种山地地貌遥感提取方法
CN109100719A (zh) * 2018-07-27 2018-12-28 国家测绘地理信息局第三航测遥感院 基于星载sar影像与光学影像的地形图联合测图方法
CN111967341A (zh) * 2020-07-27 2020-11-20 广东融合通信股份有限公司 一种卫星地图目标物轮廓的识别方法
CN113409461A (zh) * 2021-06-22 2021-09-17 北京百度网讯科技有限公司 构建地貌地图的方法、装置、电子设备和可读存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631970A (en) * 1993-05-21 1997-05-20 Hsu; Shin-Yi Process for identifying simple and complex objects from fused images and map data
US8774470B1 (en) * 2012-04-03 2014-07-08 Google Inc. Processing a satellite image of a region to determine a terrain boundary included therein
CN107067003B (zh) * 2017-03-09 2021-09-21 百度在线网络技术(北京)有限公司 感兴趣区域边界的提取方法、装置、设备和计算机存储介质
CN107292339B (zh) * 2017-06-16 2020-07-21 重庆大学 基于特征融合的无人机低空遥感影像高分地貌分类方法
US10325349B2 (en) * 2017-08-11 2019-06-18 Intermap Technologies Inc. Method and apparatus for enhancing 3D model resolution
US10775174B2 (en) * 2018-08-30 2020-09-15 Mapbox, Inc. Map feature extraction system for computer map visualizations
CN110070012B (zh) * 2019-04-11 2022-04-19 电子科技大学 一种应用于遥感影像道路网络提取的细化和全局连接方法
CN110766038B (zh) * 2019-09-02 2022-08-16 深圳中科保泰空天技术有限公司 无监督式的地貌分类模型训练和地貌图构建方法
US11830246B2 (en) * 2020-05-01 2023-11-28 CACI, Inc.—Federal Systems and methods for extracting and vectorizing features of satellite imagery
CN112651896B (zh) * 2020-12-30 2024-08-16 成都星时代宇航科技有限公司 有效矢量范围确定方法、装置、电子设备及可读存储介质
CN112733745A (zh) * 2021-01-14 2021-04-30 北京师范大学 一种耕地图像提取方法及系统
CN112785686A (zh) * 2021-01-25 2021-05-11 湖南汽车工程职业学院 一种基于大数据的林区地图构建方法及可读存储介质
CN112991536B (zh) * 2021-04-20 2022-06-24 中国科学院软件研究所 一种专题地图地理面要素自动提取和矢量化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804863A (zh) * 2006-01-16 2006-07-19 浙江大学 纸质矢量地图自动数字化的方法
CN104361616A (zh) * 2014-11-05 2015-02-18 南车株洲电力机车研究所有限公司 一种用于风电场风资源评估的地形地貌文件获取方法
CN106384081A (zh) * 2016-08-30 2017-02-08 水利部水土保持监测中心 一种基于高分辨率遥感影像的坡耕地提取方法和系统
CN107766825A (zh) * 2017-10-27 2018-03-06 国家测绘地理信息局第航测遥感院 基于空间功能单元的陆域省市县空间规划三区识别方法
CN107861129A (zh) * 2017-10-31 2018-03-30 中国铁路设计集团有限公司 一种山地地貌遥感提取方法
CN109100719A (zh) * 2018-07-27 2018-12-28 国家测绘地理信息局第三航测遥感院 基于星载sar影像与光学影像的地形图联合测图方法
CN111967341A (zh) * 2020-07-27 2020-11-20 广东融合通信股份有限公司 一种卫星地图目标物轮廓的识别方法
CN113409461A (zh) * 2021-06-22 2021-09-17 北京百度网讯科技有限公司 构建地貌地图的方法、装置、电子设备和可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4174785A4

Also Published As

Publication number Publication date
KR20230044520A (ko) 2023-04-04
EP4174785A1 (en) 2023-05-03
US20230222733A1 (en) 2023-07-13
JP2023540730A (ja) 2023-09-26
US11893685B2 (en) 2024-02-06
CN113409461A (zh) 2021-09-17
CN113409461B (zh) 2023-06-23
EP4174785A4 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
WO2022267311A1 (zh) 构建地貌地图的方法、装置、电子设备和可读存储介质
WO2018099405A1 (zh) 人脸分辨率重建方法、重建系统和可读介质
CN107507216B (zh) 图像中局部区域的替换方法、装置及存储介质
US9020266B2 (en) Methods and devices for processing handwriting input
CN107610202B (zh) 人脸图像替换方法、设备及存储介质
CN113221743B (zh) 表格解析方法、装置、电子设备和存储介质
CN110705583A (zh) 细胞检测模型训练方法、装置、计算机设备及存储介质
EP3876197A2 (en) Portrait extracting method and apparatus, electronic device and storage medium
JP5935849B2 (ja) 画像処理装置、画像処理方法及びプログラム
CN115330940B (zh) 一种三维重建方法、装置、设备和介质
WO2024093641A1 (zh) 多模态融合的高精地图要素识别方法、装置、设备及介质
CN113077419A (zh) 用于髋关节ct影像识别的信息处理方法及装置
US20230059277A1 (en) Map data processing method and apparatus, and storage medium
WO2020134925A1 (zh) 人脸图像的光照检测方法、装置、设备和存储介质
CN115393872A (zh) 一种训练文本分类模型的方法、装置、设备及存储介质
WO2024099097A1 (zh) 一种公益诉讼线索的生成方法、生成装置及存储介质
JP6294700B2 (ja) 画像処理装置及び画像処理方法
CN104599325A (zh) 一种三维人脸重采样方法
CN115222895B (zh) 图像生成方法、装置、设备以及存储介质
CN116977539A (zh) 图像处理方法、装置、计算机设备、存储介质和程序产品
JP7429666B2 (ja) 点群ノイズ除去装置及びプログラム
JP2016075993A (ja) 画像処理装置及びその制御方法、プログラム
CN113298784A (zh) 基于视角的骨折线提取映射方法
CN111104470A (zh) 一种电子沙盘和应急平台联动的方法和系统
WO2024193345A1 (zh) 牙颌三维数字模型的分割方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021881338

Country of ref document: EP

Effective date: 20230127

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514789

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237007587

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE