WO2022267068A1 - 光束调整方法及装置、发射端、计算机存储介质 - Google Patents

光束调整方法及装置、发射端、计算机存储介质 Download PDF

Info

Publication number
WO2022267068A1
WO2022267068A1 PCT/CN2021/102563 CN2021102563W WO2022267068A1 WO 2022267068 A1 WO2022267068 A1 WO 2022267068A1 CN 2021102563 W CN2021102563 W CN 2021102563W WO 2022267068 A1 WO2022267068 A1 WO 2022267068A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitting end
image
light
light beam
light spot
Prior art date
Application number
PCT/CN2021/102563
Other languages
English (en)
French (fr)
Inventor
李佳明
沈嘉
徐婧
苏进喜
张洪明
宋健
Original Assignee
Oppo广东移动通信有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司, 清华大学 filed Critical Oppo广东移动通信有限公司
Priority to CN202180095836.2A priority Critical patent/CN117044131A/zh
Priority to PCT/CN2021/102563 priority patent/WO2022267068A1/zh
Publication of WO2022267068A1 publication Critical patent/WO2022267068A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • the present application relates to the technical field of visible light communication, and in particular to a beam adjustment method and device, a transmitting end, and a computer storage medium.
  • Visible light communication technology is a technology that uses visible light for wireless communication. Since the visible light spectrum used by visible light communication technology is 10,000 times higher than the wireless spectrum bandwidth, it can alleviate the serious shortage of spectrum resources, so it has gradually become a research hotspot in the industry.
  • the present application provides a light beam adjustment method and device, a transmitting end, and a computer storage medium to solve the problem of how to align the light beam between the transmitting end and the receiving end.
  • the transmitting end transmits the beam through the beam emitting device and collects the image through the image acquisition device;
  • the transmitting end recognizes the marker and/or light spot in the image, the marker in the image corresponds to the marker attached to the receiving end, and the light spot in the image corresponds to the light beam irradiated on the receiving end Spots formed on
  • the transmitting end adjusts the light beam emitted by the light beam emitting device based on the identification result of the marker and/or the light spot, wherein the light spot formed by the adjusted light beam on the receiving end is different from that of the receiving end.
  • the receiving areas have overlapping portions.
  • a light beam emitting device configured to emit a light beam
  • an image acquisition device configured to acquire images
  • the image processing unit is configured to recognize markers and/or light spots in the image, the markers in the image correspond to the markers attached to the receiving end, and the light spots in the image correspond to the light beams irradiated on the The light spot formed on the receiving end;
  • a light beam adjustment unit configured to adjust the light beam emitted by the light beam emitting device based on the identification result of the marker and/or the light spot, wherein the light spot formed by the adjusted light beam on the receiving end is identical to the The receiving area of the receiving end has an overlapping portion.
  • the transmitter provided in the embodiment of the present application includes a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the above beam adjustment method.
  • the chip provided in the embodiment of the present application is used to implement the above beam adjustment method.
  • the chip includes: a processor, which is used to call and run a computer program from the memory, so that the device equipped with the chip executes the above-mentioned beam adjustment method.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program enables the computer to execute the above beam adjustment method.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above beam adjustment method.
  • the computer program provided in the embodiment of the present application when running on a computer, enables the computer to execute the above beam adjustment method.
  • the transmitting end transmits the beam through the beam emitting device and collects the image through the image acquisition device; the transmitting end recognizes the markers and/or light spots in the image, and the markers in the image are correspondingly attached to the receiving end
  • the light spot on the image corresponds to the light spot formed by the light beam irradiated on the receiving end; the transmitting end adjusts the light beam emitted by the light beam emitting device based on the recognition result of the mark object and/or light spot, wherein the adjusted light beam
  • the light spot formed on the receiving end overlaps with the receiving area of the receiving end. That is to say, the transmitting end can identify the markers and/or light spots in the image through the image recognition technology.
  • the transmitting end can adjust the transmission direction of the light beam according to the recognition results of the marker and/or the light spot, so that the adjusted light beam can overlap with the receiving area of the receiving end, thereby realizing the alignment of the light beam and the receiving area and improving the data quality.
  • Signal transmission accuracy and transmission efficiency can be adjusted.
  • Fig. 1 is a schematic diagram of the architecture of a visible light communication system provided by an embodiment of the present application
  • Fig. 2 is a schematic flow diagram of a beam adjustment method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Fig. 4 is a schematic flow diagram II of a beam adjustment method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flow diagram III of a beam adjustment method provided by an embodiment of the present application.
  • Fig. 6 is a schematic flowchart 4 of a beam adjustment method provided by an embodiment of the present application.
  • Fig. 7 is a schematic flow diagram five of a beam adjustment method provided by an embodiment of the present application.
  • Fig. 8 is a schematic flow diagram VI of a beam adjustment method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structural composition of a transmitting end provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware structure composition of a transmitting end provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Fig. 1 is a schematic structural diagram of a visible light communication system provided by an embodiment of the present application.
  • a visible light communication system may include a transmitting end 10 and a receiving end 20 .
  • the transmitting end 10 can emit a beam of visible light, and communicate with the receiving end 20 through the beam.
  • the transmitting end 10 can generate an original data signal, and modulate the original data signal to obtain an optical modulation signal, and then, the transmitting end 10 can control the light source to emit a light beam carrying the optical modulation signal to the receiving end 20 .
  • the receiving end 20 can receive the light beam emitted by the light source of the transmitting end 10, and recover the original data signal from the optical modulation signal of the light beam.
  • the transmitting end 10 can be a light emitting diode (Light Emitting Diode, LED) lamp, laser light and other equipment, and the transmitting end can also be a smart phone, a tablet computer, a wearable device, etc. that can emit visible light.
  • the embodiment does not limit the type of the transmitting end 10 .
  • the receiving end 20 may be a smart phone, a tablet computer, a personal computer, an industrial computer, an Internet of Things device, a vehicle device, a wearable device, and the like.
  • the embodiment of the present application does not limit the type of the receiving end 20 .
  • FIG. 1 exemplarily shows a transmitting end and a receiving end.
  • the visible light communication system may include other numbers of transmitting ends and receiving ends, which is not limited in this embodiment of the present application.
  • FIG. 1 is only an illustration of a system applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • the "predefined” or “predefined rules” mentioned in the embodiments of the present application can be used by pre-saving corresponding codes, tables or other rules in the device (for example, including the receiving end and the transmitting end) It is implemented by indicating related information, and this application does not limit the specific implementation.
  • An embodiment of the present application provides a beam adjustment method.
  • the beam adjustment method provided in the embodiment of the present application may include steps 210 to 230 .
  • Step 210 the transmitting end emits a beam through the beam emitting device and collects an image through the image acquisition device.
  • the transmitting end 10 may include a beam emitting device 11 and an image capturing device 12 .
  • the light beam transmitting device 11 is used for transmitting a light beam carrying a data signal to the receiving end 20 to communicate with the transmitting end 20 .
  • the image acquisition device 12 is used to acquire images around the transmitting end 10, so as to identify the receiving end 20 in the image through image recognition technology, so as to achieve beam alignment.
  • the image acquisition device 12 may be a camera, such as a monocular camera or a binocular camera, which is not limited in this embodiment of the present application.
  • the transmitter 10 can dynamically adjust the position and/or attitude of the image acquisition device 12 . That is to say, the transmitting end 10 can control the image acquisition device 12 to acquire images in any orientation around it, so as to track and align the receiving area of the receiving end 20 .
  • the emission position and/or emission angle of the light beam can be dynamically adjusted.
  • the emission end can adjust the emission position and/or emission angle of the light beam by adjusting the deflection angle of the galvanometer system. In this way, after the transmitting end 10 tracks the receiving area of the receiving end 20, it can control the light beam emitted by the beam emitting device 11 to be aimed at the receiving area of the receiving end 20 to realize the transmission of data signals.
  • the transmitter 10 can emit a beam through the beam emitting device 11 and collect images through the image acquisition device 12 according to a predefined time period, so as to realize beam alignment during the entire data signal transmission process.
  • Step 220 the transmitting end recognizes the markers and/or light spots in the image, the markers in the image correspond to the markers attached to the receiving end, and the light spots in the image correspond to the light spots formed by the beam irradiated on the receiving end.
  • the receiving end 20 may include a receiving area 21 for receiving the light beam emitted by the transmitting end 10 .
  • a receiving area 21 for receiving the light beam emitted by the transmitting end 10 .
  • an identifier 22 may be attached to the receiving end 20 in the embodiment of the present application, and the identifier 22 is set near the receiving area 21 in the receiving end 20, so that the transmitting end 10 can pass through Identify the marker 22 to determine the receiving area 21 of the receiving end 20 .
  • the identifier may be an object that is easy to recognize by image, such as a green circle, a blue rectangular object, and the like. This embodiment of the present application does not limit it.
  • the beam emitted by the beam emitting device 11 irradiates the surface of the receiving end 20 to form a light spot 23 on the surface of the receiving end 20 .
  • the image may include the marker attached to the receiving end and/or the light spot formed by irradiation on the surface of the receiving end.
  • the transmitting end determines the position of the receiving area in the receiving end and the current position of the light spot on the surface of the receiving end by identifying the marker and/or spot in the image, so as to adjust the beam according to the position of the receiving area and the position of the spot , to track the receiver.
  • the transmitting end may identify markers and/or light spots in the image through a machine learning algorithm.
  • the transmitting end can pre-train the recognition model through a large number of sample images containing markers and light spots, and when the transmitting end collects images through the image acquisition device, it can input the collected images into the trained recognition model, Through the processing of the recognition model, the markers and/or light spots in the image are recognized.
  • the transmitting end may also use a feature matching algorithm to identify markers and/or light spots in the image.
  • the transmitting end may pre-store the first reference image including the marker and the second reference image including the light spot. After the transmitting terminal collects the image, it can perform feature matching on the image with the first reference image and/or the second reference object to identify the marker and/or light spot in the image.
  • the embodiment of the present application does not limit the method for identifying markers and/or light spots.
  • Step 230 The transmitting end adjusts the light beam emitted by the light beam emitting device based on the identification result of the marker and/or the light spot, wherein the light spot formed by the adjusted light beam on the receiving end overlaps with the receiving area of the receiving end.
  • the transmitting end may determine the position of the receiving area for receiving the light beam in the receiving end.
  • the transmitting end may also determine the current position of the light spot on the surface of the receiving end based on the recognition result of the light spot. In this way, the transmitting end can adjust the transmission direction of the light beam based on the position of the above-mentioned receiving area and/or the position of the light spot, so that the light spot formed by the adjusted light beam on the surface of the receiving end overlaps with the receiving area, thereby realizing the transmission between the transmitting end and the light spot. Beam alignment between receivers.
  • the overlap between the light spot and the receiving area may mean that part or all of the light spot covers the receiving area of the receiving end.
  • the receiving end can receive the light beam through the receiving area, and analyze the original data signal from the light beam.
  • the transmitting end can identify the marker and/or light spot through image recognition technology, and adjust the transmission direction of the light beam according to the identification result of the marker and/or light spot, so that the adjusted light beam can Align with the receiving area of the receiving end, thereby improving the transmission accuracy and transmission efficiency of the data signal.
  • the beam emitting device 11 may include: a light source 111 , a lens 112 , and a galvanometer system 113 .
  • the light beam emitted by the light source 111 is transmitted to the galvanometer system 113 after being transmitted by the lens 112 , and the galvanometer system 113 is used to change the transmission direction of the light beam.
  • the galvanometer system 113 may include one or more mirrors (only two mirrors are shown in FIG. 3 ).
  • the transmitting end 10 can control the movement of the motor to change the deflection angle of each lens in the galvanometer system 113 .
  • the transmitting end can adjust the deflection angle of some or all mirrors in the vibrating mirror system 113, and deflect the light beam emitted by the reflective light source through the vibrating mirror system, thereby changing the transmission direction of the light beam.
  • step 220 and step 230 the transmitting end adjusts the beam emitted by the beam emitting device based on the identification result of the marker and/or light spot, which can be achieved by the following steps:
  • Step 2201. Based on the identification result of the marker, the transmitting end determines the first deflection angle of the galvanometer system, and controls the galvanometer system to deflect according to the first deflection angle;
  • Step 2202 the transmitting end determines the second deflection angle of the galvanometer system based on the identification result of the light spot, and controls the galvanometer system to deflect according to the second deflection angle.
  • the transmitting end can first identify the marker in the image, and after the recognition is successful (that is, the image includes the marker of the transmitting end), the transmitting end can preliminarily determine part or The deflection angles of all lenses are obtained to obtain the first deflection angle. In this way, the transmitting end can control the vibrating mirror system to deflect according to the first deflection angle, and at the same time, the transmitting end can control the light source to emit light beams, so that the light beams irradiate near the receiving area of the receiving end. After adjusting the galvanometer system based on the first deflection angle, the transmitting end can identify the light spots in the image.
  • the transmitting end can determine the second deflection angle of the galvanometer system according to the positional deviation between the light spot and the marker. In this way, the transmitting end can fine-tune the galvanometer system according to the second deflection angle, so that the adjusted light beam can be aligned with the receiving area of the receiving end, and the transmission accuracy and transmission efficiency of data signals can be improved.
  • step 2201 the transmitting end determines the first deflection angle of the galvanometer system based on the identification result of the marker, which may be implemented through the following steps 2201a to 2201c.
  • Step 2201a the transmitting end determines the position of the first reference point in the marker based on the identification result of the marker.
  • the marker is an object that is easy to recognize by image.
  • the marker 22 may be a green ring, or a red ring, or the like.
  • the transmitting end may perform recognition processing on the image according to the color feature and/or shape feature of the identifier to obtain the identifier in the image. Further, the transmitting end may determine the position of the first reference point in the image according to the shape feature of the marker.
  • the first reference point may be a feature point of the marker, for example, the first reference point may be the center of the marker, or the midpoint of any side of the marker, which is not limited in this embodiment of the present application.
  • the transmitter can identify the green channel image in the image and find a ring with a preset radius. And according to the intersection point between any two lines inside the circle, determine the position of the center of the circle in the image.
  • the transmitter can identify the red channel image in the image, find a ring with a preset radius, and then determine the position of the center of the ring in the image.
  • the position of the first reference point refers to the position of the first reference point in the image.
  • the location of the first reference point can be represented by first coordinates.
  • the transmitting end may collect images according to a preset time period, and each time the transmitting end collects an image, it may identify the image to obtain the first coordinates of the first reference point of the marker in the image. In this way, the transmitter can store the first coordinates corresponding to the position of the first reference point in the multiple images collected, and obtain the coordinate queue of the first reference point.
  • the plurality of first coordinates stored in the coordinate queue may be coordinates when the position of the first reference point is relatively stable. Specifically, if the rate of change between the first coordinate of the first reference point in the image captured by the current image acquisition device and the first coordinate of the first reference point in the previous image is less than the preset change threshold, it can be determined that the receiving end has not moved , the transmitting end may add the first coordinate of the first reference point in the current image to the above coordinate queue.
  • the transmitting end may clear the coordinate queue, and add the first coordinate of the first reference point in the current image to the coordinate queue.
  • the transmitter can use the average value of multiple first coordinates in the coordinate queue as the actual coordinates of the first reference point in the current image, thus improving the recognition stability of the first reference point and improving subsequent beam alignment accuracy.
  • Step 2201b the transmitting end determines the position of the second reference point in the receiving area based on the position of the first reference point and the first positional relationship, the first positional relationship being the positional relationship between the first reference point and the second reference point.
  • the second reference point may be a feature point of the receiving area, for example, the second reference point may be the center of the receiving area, or a midpoint of any side of the receiving area.
  • the transmitting end may pre-store the first positional relationship between the first reference point and the second reference point. In this way, after the transmitting end determines the position of the first reference point in the marker, it can calculate the position of the second reference point in the receiving area according to the first position relationship.
  • the transmitting end may perform an initial calibration process before step 210 .
  • the operating object can adjust the position and/or angle of the transmitting end and the receiving end, so that the beam emitted by the beam emitting device can be irradiated on the center of the receiving area of the receiving end.
  • the transmitter can control the image acquisition device to acquire the calibration image, and calculate the first position between the first reference point and the second reference point according to the first reference point of the marker in the calibration image and the second reference point of the receiving area relationship, and store the calculated first position relationship.
  • the position of the second reference point of the receiving end can be determined according to the pre-calculated first position relationship.
  • the accurate first position relationship can still be obtained through initial calibration, ensuring the accuracy of beam adjustment and the tracking alignment between the transmitting end and the receiving end. robustness.
  • Step 2201c the transmitting end determines the first deflection angle of the galvanometer system based on the position of the second reference point, and controls the galvanometer system to deflect according to the first deflection angle.
  • the second reference point refers to a feature point of the receiving area of the receiving end, and the second reference point may represent the receiving area of the receiving end.
  • the receiving area may be an area within the first preset range of the second reference point at the receiving end.
  • the receiving area may be an area within 5 millimeters of the second reference point at the receiving end.
  • the transmitting end can determine the first deflection angle of the galvanometer system according to the position of the second reference point, so that the light beam reflected by the galvanometer system adjusted according to the first deflection angle can be aligned with the receiving area of the receiving end to achieve reception. Beam alignment at the end and reflector end. In this way, the transmission accuracy and transmission efficiency of the data signal are improved.
  • the position of the second reference point refers to the position of the second reference point in the image.
  • the position of the first reference point is represented by the first coordinate
  • the position of the second reference point can be represented by the second coordinate
  • the first coordinate and the second coordinate are the coordinates in the coordinate system where the pixel in the image is located;
  • step 2201c the transmitting end determines the first deflection angle of the galvanometer system based on the position of the second reference point, which can be achieved through the following steps:
  • the transmitting end maps the second coordinates to the first mapping coordinates based on the first coordinate mapping relationship, and the first mapping coordinates are coordinates in the coordinate system where the image acquisition device is located;
  • the transmitting end maps the first mapping coordinates to second mapping coordinates based on the second coordinate mapping relationship, and the second mapping coordinates are coordinates in the coordinate system where the beam emitting device is located;
  • the transmitting end determines the first deflection angle based on the second mapping coordinates.
  • the second coordinates corresponding to the second reference point are the coordinates in the coordinate system where the pixels in the image are located, that is, the second reference point may be the coordinates of the pixel points in the image, for example, the second coordinates may be the second reference point Pixels occupied in the image.
  • the first deflection angle refers to the deflection angle of the galvanometer system in the coordinate system of the beam emitting device in the actual three-dimensional space. Therefore, the transmitting end cannot directly adjust the galvanometer system in the beam emitting device according to the second coordinate in the coordinate system where the pixel in the image is located, and the transmitting end also needs to perform coordinate alignment processing on the coordinates in different coordinate systems.
  • the transmitting end needs to map the second coordinates in the coordinate system of the pixels in the image to the coordinate system of the beam emitting device to obtain the second mapped coordinates, and then map the coordinates in the beam emitting device based on the second mapped coordinates.
  • the deflection angle of the galvanometer system is adjusted.
  • the transmitting end cannot directly map the second coordinate of the second reference point in the image to The coordinates where the beam emitting device is located.
  • there is a certain mapping relationship between the coordinate system where the pixel is located and the coordinate system where the image acquisition device is located that is, the first coordinate mapping relationship.
  • the coordinate system at also has a certain mapping relationship (ie, the second coordinate mapping relationship). Therefore, the transmitter can map the second coordinates of the second reference point in the image to the coordinate system where the image acquisition device is located by using the above-mentioned first coordinate mapping relationship to obtain the first mapped coordinates.
  • the first mapped coordinates in the coordinate system where the image acquisition device is located are mapped to the coordinate system where the light beam emitting device is located to obtain the second mapped coordinates.
  • the second coordinates in the coordinate system where the pixels in the image are located are mapped to the coordinate system where the beam emitting device is located, so that the transmitting end can use the coordinates in the coordinate system where the beam emitting device is located.
  • the deflection angle of the system is adjusted.
  • the transmitting end may pre-store the first coordinate mapping relationship and the second coordinate mapping relationship.
  • the first coordinate mapping relationship refers to the coordinate mapping relationship between the coordinate system where the pixels in the image are located and the coordinate system where the image acquisition device is located.
  • the second coordinate mapping relationship refers to the coordinate mapping relationship between the coordinate system where the image acquisition device is located and the coordinate system where the light beam emitting device is located.
  • the first coordinate mapping relationship and the second coordinate mapping relationship may be determined by the transmitter during the initial calibration process.
  • the transmitting end can set the two mirrors in the galvanometer system to a non-deflection state (for example, the angle between the mirror direction and the vertical direction is 45 degrees), and the operating object can adjust the transmitting The position and/or angle between the receiving end and the receiving end make the light spot formed by the beam on the surface of the receiving end be located in the center of the receiving area.
  • the transmitter can determine the first coordinate mapping relationship between the pixel points in the image and the image acquisition device in the three-dimensional coordinate system according to the shooting angle and/or shooting position of the current image acquisition device.
  • the transmitting end may calculate the relative positional relationship between the current image acquisition device and the beam emitting device to obtain the second coordinate mapping relationship.
  • the transmitting end may first map the second coordinates to the coordinate system where the image acquisition device is located according to the first coordinate mapping relationship to obtain the first mapped coordinates.
  • the first mapping coordinates can be understood as the coordinates of the second reference point in the receiving area relative to the image acquisition device in three-dimensional space.
  • the transmitting end may continue to map the first mapping coordinates to the coordinate system of the beam emitting device according to the second coordinate mapping relationship to obtain the second mapping coordinates.
  • the second mapping coordinates can be understood as the coordinates of the second reference point in the receiving area relative to the beam emitting device in three-dimensional space.
  • the transmitting end can determine the first deflection angle of the vibrating mirror system according to the second mapping coordinates.
  • the accurate first deflection angle of the galvanometer system can be obtained, so as to ensure that the subsequent beams of the transmitting end and the receiving end can be effectively aligned.
  • the second mapping coordinates indicate that the second reference point in the receiving area is located 10 centimeters above and 30 centimeters to the right of the beam emitting device.
  • the transmitting end can adjust the deflection angle of the galvanometer system so that the beam is emitted at a position 10 cm to the upper side and 30 cm to the right, so that the light spot formed by the beam on the surface of the receiving end can cover the receiving area of the receiving end.
  • step 2202 the transmitting end determines the second deflection angle of the galvanometer system based on the identification result of the light spot, which can be implemented through the following steps 2202a and 2202b:
  • Step 2202a the transmitting end determines the position of the third reference point in the light spot based on the recognition result of the light spot.
  • the transmitting end recognizes the light spots in the image, which may be implemented through the following steps:
  • the transmitting end determines the spot recognition area in the image based on the second reference point
  • the transmitter performs binarization processing on the spot recognition area to obtain a binarized image
  • the transmitter performs filtering processing on the binarized image to obtain the filtered image
  • the transmitting end identifies the pixel points whose pixel values meet the preset conditions from the filtered image, and uses the pixel set composed of the pixel points whose pixel values meet the preset pixel conditions as the pixel set of the light spot.
  • the transmitting end may identify the light spot in the light spot identification area near the second reference point.
  • the light spot recognition area may be an area within a second preset range of the second reference point.
  • the receiving area may be an area within 3 centimeters of the second reference point at the receiving end.
  • the second preset range is different from the first preset range in the above embodiments.
  • the second preset range is larger than the first preset range, that is to say, the spot identification area includes a receiving area, and the area of the spot identification area is larger than that of the receiving area.
  • the area of the light spot identification area can also be smaller than the area of the surface of the receiving end.
  • the transmitting end may crop the light spot recognition area in the image from the image to obtain a cropped image.
  • the transmitting end can only perform recognition processing on the cropped image, so as to reduce the calculation load of the transmitting end and improve the processing speed.
  • the boundary between the spot area and the non-spot area in the promotion is more obvious, so as to accurately identify the spot, and the spot recognition area in the image can be Perform binarization.
  • the transmitting end may first perform threshold segmentation on the spot recognition area.
  • Threshold segmentation is to classify the pixel values of pixels. For example, setting a feature threshold, the pixels whose pixel value is less than the feature threshold are classified into one category, and the pixels whose pixel value is greater than or equal to the feature threshold are classified into one category.
  • the characteristic threshold is, for example, any number in 50-80, such as 50.
  • the pixel value of each pixel in the spot recognition area is divided into two categories.
  • a binarization operation may be performed to make the difference between the pixel values of these two types of pixel points more obvious.
  • the pixel degree of a pixel point whose value is greater than the feature threshold can be set as the first preset pixel value, and the pixel value of the pixel point less than or equal to the feature threshold can be set as the second preset pixel value; the first preset The pixel value may be 0, and the second preset pixel value may be 255; or the first preset pixel value may be 255, and the second preset pixel value may be 0.
  • the above-mentioned first preset pixel value and second preset pixel value may also be set to other pixel values, which are not limited here.
  • the amount of data in the spot recognition area can be further reduced, the calculation speed can be improved, and the speed of spot recognition can be accelerated. At the same time, it can also make the boundary of the light spot in the obtained binarized image more obvious, highlighting the area where the light spot is located.
  • the binarized image obtained after the binarization process there may be a large difference between the pixel values of some pixels and the pixel values of other pixels inside the light spot.
  • the binarized image can be filtered.
  • the interference information in the image is removed by filtering.
  • the filtering processing may be mean filtering processing, Gaussian filtering processing, median filtering processing, etc., which is not limited in this embodiment of the present application.
  • the transmitting end can average the pixel values of the pixels in the area with a large difference in pixel values, and set the pixel value of each pixel in the area with a large difference to The average value of pixel values in this area, so that the transmitter can get a filtered image.
  • the interference information inside the light spot can be eliminated, the accuracy of spot identification can be improved, and the accuracy of subsequent beam alignment can be improved.
  • the transmitting end can find out the pixel points whose pixel values satisfy the preset pixel condition, and the pixel set composed of these pixel points is the pixel set of the light spot.
  • the transmitting end can identify the pixel set of the light spot in the image by performing binarization processing and filtering processing on the light spot identification area. In this way, the transmitting end can determine the position of the third reference point in the light spot in the image according to the pixel set of the light spot.
  • the third reference point may be a certain feature point of the light spot.
  • the third reference point may be the center of the light spot. The embodiment of the present application does not limit the third reference point.
  • Step 2202b the transmitting end determines the second deflection angle of the galvanometer system based on the distance between the position of the third reference point and the position of the second reference point, and controls the galvanometer system to deflect according to the second deflection angle.
  • the third reference point is a feature point of the light spot, which can be used to characterize the light spot.
  • the second reference point refers to a feature point of the receiving area, which can be used to characterize the receiving area.
  • the transmitting end determines the second deflection angle of the galvanometer system based on the distance between the position of the third reference point and the position of the second reference point, which means that the transmitting end is based on the deviation between the position of the light spot and the position of the receiving area , to determine the second deflection angle. Furthermore, the transmitting end can fine-tune the galvanometer system based on the second deflection angle, so that the light spot formed by the adjusted light beam on the surface of the receiving end can cover the receiving area.
  • the transmitting end can adjust the deflection angle of the galvanometer system, so that the direction of the beam emitted by the beam emitting device can be shifted to the right by 20 cm, so that the beam is aligned with the receiving area.
  • the receiving area at the end, that is, the light spot overlaps with the receiving area.
  • the position of the third reference point is the position of the third reference point in the image.
  • the position of the third reference point may be represented by a third coordinate, where the third coordinate is a coordinate in the coordinate system where the pixel in the image is located.
  • the transmitting end may map the distance between the third coordinate and the second coordinate to the coordinate system of the image acquisition device in the three-dimensional space according to the above first mapping relationship, to obtain the first mapping distance. Furthermore, the transmitting end may map the first mapping distance to the coordinate system of the light beam emitting device in the three-dimensional space according to the above second mapping relationship, to obtain the second mapping distance. In this way, the transmitting end can determine the second deflection angle of the galvanometer system according to the second mapping distance. In this way, through the coordinate alignment process, an accurate second deflection angle of the galvanometer system can be obtained, so as to ensure that the subsequent beams of the transmitting end and the receiving end can be effectively aligned.
  • the beam adjustment method provided in the embodiment of the present application may further include the following steps:
  • Step 240 if the first condition is met, re-determine the first deflection angle of the galvanometer system based on the identification result of the marker, and control the galvanometer system to deflect according to the re-determined first deflection angle.
  • the transmitter can control the image acquisition device to acquire surrounding images according to a preset time period.
  • the transmitting end can identify and process the images collected in each time period, and determine the position of the receiving area in the receiving end according to the identification results of the markers in the image, so as to realize the tracking of the receiving end.
  • the transmitting end when the transmitting end performs recognition processing on the currently collected image, if the first condition is met, the transmitting end may recalculate the first deflection angle of the galvanometer system based on the identification result of the marker in the current image , so that after the galvanometer system is adjusted according to the first deflection angle, the light spot formed by the light beam emitted by the light beam emitting device at the receiving end can be located near the receiving area.
  • satisfying the first condition includes at least one of the following:
  • the amount of change in the position of the first reference point is greater than or equal to a first threshold
  • the change amount of the position of the first reference point refers to the change amount between the position of the first reference point in the current image and the position of the first reference point in the image collected in the last time period.
  • the transmitting end detects that the change amount of the position of the first reference point is greater than or equal to the first threshold, it may be determined that a relatively large movement has occurred at the transmitting end or the receiving end.
  • the transmitting end After detecting a large movement of the transmitting end or the receiving end, the transmitting end can recalculate the first deflection angle of the galvanometer system, and adjust the galvanometer system based on the first deflection angle, so as to adjust the galvanometer according to the first deflection angle
  • the light spot formed by the light beam emitted by the light beam emitting device at the receiving end can be located near the receiving area.
  • the transmitting end can recalculate the first deflection angle of the galvanometer system, and adjust the galvanometer system based on the first deflection angle, so as to adjust the deflection angle according to the first deflection angle.
  • the light spot formed by the light beam emitted by the light beam emitting device at the receiving end can be located near the receiving area.
  • the transmitting end can recalculate the first deflection angle of the galvanometer system according to the position of the marker in the image, and control the galvanometer The system deflects according to the first deflection angle, so that the beam emitted by the beam emitting device can be irradiated near the receiving area of the receiving end.
  • the beam adjustment method provided in the embodiment of the present application may further include the following steps:
  • Step 250 the transmitting end determines the coverage of the light spot in the receiving area based on the identification result of the light spot
  • Step 260 if the spot coverage is less than the second threshold, the transmitter re-determines the second deflection angle of the galvanometer system, and controls the galvanometer system to deflect according to the re-determined second deflection angle;
  • Step 270 if the light spot coverage is greater than or equal to the second threshold, the transmitting end stops adjusting the deflection angle of the galvanometer system.
  • the transmitting end After the transmitting end identifies the light spots and markers in the image through the image recognition technology, it can further determine the coverage of the light spots in the receiving area of the receiving end.
  • the transmitting end may determine the position of the first reference point of the identification object. Furthermore, the transmitting end may determine the position of the second reference point in the receiving area according to the position of the first reference point. In this way, the transmitting end can determine the receiving area of the receiving end according to the position of the second reference point.
  • the receiving area may be an area within a preset range of the second reference point in the image.
  • the transmitting end may determine the coverage of the light spot in the receiving area, that is, the area occupied by the light spot in the receiving area.
  • the transmitting end may determine the spot coverage by the number of pixels.
  • the transmitting end may determine the first number of pixels in the pixel set of the receiving area, and the second number of pixels located in the receiving area in the pixel set of the light spot. The transmitting end obtains the light spot coverage by calculating the ratio of the second quantity to the first quantity.
  • the transmitting end when the coverage of the light spot is less than the second threshold, the transmitting end may determine that the beam emitted by the current beam emitting device is not aimed at the receiving area. When the coverage of the light spot is greater than or equal to the second threshold, the transmitting end may determine that the beam emitted by the current beam emitting device has been aimed at the receiving area.
  • the transmitting end can re-adjust the galvanometer system according to the distance between the position of the third reference point in the current spot and the position of the second reference point in the receiving area. fine-tuning. That is, according to the deviation between the position of the third reference point and the position of the second reference point, the second deflection angle of the galvanometer system is re-determined, and the galvanometer system is controlled to deflect according to the re-determined second deflection angle.
  • the transmitting end can continue to collect images, determine the coverage of the light spots in the receiving area in the image, and if the coverage of the light spots is still less than the second threshold, continue according to the position of the third reference point of the light spots in the current image and the first threshold in the receiving area. The distance between the positions of the two reference points is used to redetermine the second deflection angle of the galvanometer system. Until the coverage of the light spots in the receiving area in the image is greater than or equal to the second threshold.
  • the transmitter can continuously adjust the second deflection angle of the galvanometer system according to the proportional, integral and differential (Proportion Integral Differential, PID) algorithm, until the coverage of the light spot is greater than or equal to the second threshold.
  • proportional, integral and differential Proportion Integral Differential, PID
  • the light beam adjustment method provided by the embodiment of the present application can automatically adjust the irradiation direction of the light beam, so that the light beam can be automatically aligned with the receiving area, thereby improving the data transmission efficiency.
  • step 230 the transmitting end adjusts the light beam emitted by the light beam emitting device based on the recognition result of the marker and/or light spot, which can be achieved through the following steps:
  • the transmitter determines the movement parameters of the receiver
  • the transmitting end adjusts the light beam emitted by the light beam emitting device based on the movement parameters of the receiving end and the identification result of the marker and/or light spot.
  • the transmitter uses image recognition technology to track the movement of the receiver, which will cause a certain lag. This is because the position between the transmitter and the receiver may have changed during image processing after the transmitter captures the image.
  • the transmitting end in the embodiment of the present application can determine the movement parameters of the receiving end, and predict the movement trajectory of the receiving end at the next moment according to the moving parameters. In this way, the transmitting end can adjust the light beam emitted by the light beam emitting device in combination with the movement track of the receiving end and the identification result of the marker and/or light spot in the image.
  • the emitting end determines that the emitting direction of the light beam should be shifted to the right by 5 cm according to the identification result of the marker and/or the light spot.
  • the transmitting end detects that the receiving end is moving to the right at a speed of 5 centimeters per second, so that the transmitting end can determine that the receiving end is 5 cm to the right of the current position in the next second. Therefore, the transmitting end can determine that when transmitting the beam in the next second, it needs to shift the transmitting direction of the beam to the right by 10 centimeters.
  • the movement parameters may include parameters such as a movement direction and a movement speed, and the embodiment of the present application does not limit the movement parameters.
  • the transmitting end can determine the motion parameters of the receiving end through the images collected in each time period.
  • the transmitting end may determine the movement parameter of the receiving end according to changes in positions of markers in images collected in multiple adjacent time periods.
  • the transmitter can use a machine learning algorithm to predict the trajectory of the receiver according to the movement parameters of the receiver.
  • the transmitting end may train a prediction model through a large amount of sample data in advance to obtain a trained prediction model.
  • the transmitter can input motion parameters into the prediction model to obtain the motion trajectory of the receiver.
  • the transmitter can also use the Kalman filter algorithm to predict the movement trajectory of the receiver according to the movement parameters of the receiver.
  • the light beam adjustment method provided by the embodiment of the present application can adjust the light beam emitted by the light beam emitting device in combination with the movement rule of the receiving end and the recognition result of the marker and/or light spot in the image, so that the adjusted light beam can be adjusted when receiving
  • the light spot formed on the end surface can effectively cover the receiving area and improve the efficiency of data transmission.
  • the light source of the light beam emitting device is a red laser
  • the marker set on the receiving end is a green ring.
  • the beam adjustment method provided by the embodiment of the present application can be implemented through three processing modules: an initial calibration module 81 , an image processing module 82 and a galvanometer system adjustment module 83 .
  • the initial calibration module 81 is used to realize the calibration of the internal structure relationship of the transmitter.
  • the transmitting end can set the two mirrors in the galvanometer system to be in a non-deflection state (for example, the angle between the mirror surface direction and the vertical direction is 45 degrees), and the operating object can adjust the position and position of the transmitting end and the receiving end at the same time. /or angle, so that the red laser spot emitted by the beam emitting device is irradiated on the center of the receiving area of the receiving end.
  • the transmitter can determine the first coordinate mapping relationship between the coordinate system of the pixels in the image and the coordinate system of the image capture device according to the current shooting angle and/or shooting position of the image capture device.
  • the transmitting end can also calculate the coordinate deviation between the current image acquisition device and the beam emitting device to obtain the second coordinate mapping relationship.
  • the transmitting end can also collect the calibration image through the image acquisition device, according to the position of the center of the circle in the calibration image (ie the first reference point in the above embodiment) and the receiving center (ie the second reference point in the above embodiment) position, to determine the first positional relationship between the center of the circle and the receiving center.
  • the transmitting end may store the first coordinate mapping relationship, the second coordinate mapping relationship, and the first position relationship obtained in the initial calibration process into the storage space.
  • the image processing module 82 and the galvanometer system adjustment module 83 the above-mentioned mapping relationship can be obtained from the storage space, and the light beam can be adjusted.
  • the image processing module 82 and the galvanometer system adjustment module 83 may perform processing at the same time.
  • the transmitting end may control the image acquisition device to acquire images according to a preset time period.
  • the preset time period may be 5 milliseconds, or 3 milliseconds, etc., which is not limited in this embodiment of the present application.
  • the image processing module 82 may detect whether a new image is acquired according to the aforementioned preset time period. If a new image is collected, the image processing module 82 can recognize the green circle (ie, the marker in the above embodiment) in the current image, and then judge whether the recognition is successful.
  • the green circle ie, the marker in the above embodiment
  • the image processing module 82 may identify the green channel image in the image, and find out whether the green channel image includes a circle with a specified radius. If the circle within the specified radius range is included, it is determined that the circle recognition is successful, and if the circle within the specified radius range is not included, it is determined that the circle recognition has failed.
  • the recognition ring can only be searched in the vicinity of the previous ring. In the case of unsuccessful ring recognition, it is determined whether a ring is included in the image by recognizing the entire image.
  • the image processing module 82 continues to recognize the light spot in the image. In the case that the ring recognition fails, the image processing module 82 may not perform any processing, and continue to detect whether a new image is collected in the next time period.
  • the image processing module 82 can determine the receiving center (that is, the second reference point in the above embodiment) according to the location of the center of the circle (that is, the first reference point in the above embodiment) the location of the reference point).
  • the image processing module 82 may acquire the first positional relationship determined by the initial calibration module 81 from the storage space, and determine the position of the receiving center according to the first positional relationship and the position of the center of the circle. Wherein, the area within the preset range of the receiving center is the receiving area of the receiving end.
  • the image processing module 82 may determine the receiving area according to the position of the receiving center, and identify the light spots in the light spot identification area. Specifically, the image processing module 82 can perform cropping processing on the spot recognition area in the image to obtain a cropped image; perform binarization processing on the cropped image to obtain a binarized image; perform mean filtering processing on the binarized image to obtain Filtering the image: the image processing module 82 identifies pixels whose pixel values satisfy the preset condition from the filtered image, and uses a pixel set composed of pixels whose pixel values meet the preset pixel condition as a pixel set of the light spot.
  • the image processing module 82 can perform spot recognition on the blue channel image in the image, which can reduce the influence of laser reflection halo on the recognition effect.
  • the image processing module 82 may calculate the coverage of the spot in the receiving area in the current image.
  • the image processing module 82 may determine the first number of pixels in the pixel set of the receiving area, and the second number of pixels located in the receiving area in the pixel set of the light spot.
  • the image processing module 82 calculates the ratio of the second quantity to the first quantity to obtain the spot coverage.
  • the image processing module 82 can detect whether a new image is collected in the next time period, and if a new image is collected, continue to identify the new image. recognition, and spot recognition.
  • the processing method of the image processing module 82 is the same as that described above, and will not be repeated here.
  • the image processing module 82 can send the processing result of each image to the galvanometer system adjustment module 83 .
  • the image processing module 82 can transmit the recognition result of the ring in each image, the recognition result of the light spot, and the coverage of the light spot in the receiving area in the image to the galvanometer system adjustment module 83, so that the galvanometer system can be based on the image
  • the recognition result of the middle ring, the recognition result of the light spot, and the coverage of the light spot adjust the galvanometer system to change the emitting direction of the beam so that the beam emitted by the transmitting end can be aligned with the receiving area of the receiving end.
  • the vibration mirror system adjustment module 83 can adjust the vibration mirror system according to the clock signal.
  • the galvanometer system adjustment module 83 can detect the clock signal, and when the clock signal is detected, the galvanometer system adjustment module 83 can judge the position of the current ring center according to the latest image recognition result sent by the image processing module 82. Whether the change amount of the position is greater than or equal to the first threshold (that is, whether the transmitting end moves too much), or a ring is recognized in the image but no light spot is recognized.
  • the first threshold that is, whether the transmitting end moves too much
  • the galvanometer system adjustment module 83 can recalculate the galvanometer system The first deflection angle, and adjust the galvanometer system according to the first deflection angle, so that the beam can be irradiated near the receiving center.
  • the galvanometer system adjustment module 83 adjusts the galvanometer system according to the first deflection angle, it can continue to detect the clock signal and perform the processing of the next clock.
  • the galvanometer system adjustment module 83 can determine whether the position of the light spot changes. This is because the clock signal of the galvanometer system adjustment module 83 is faster than the image processing rate in the image processing module 82 in practical applications. Therefore, when fine-tuning the galvanometer system, it is necessary to determine whether the currently processed image is the latest image. In the embodiment of the present application, it may be determined whether the currently processed image is the latest image by judging whether the position of the light spot changes.
  • the image processing module 82 may not process the current image, but continue to detect the clock signal and perform the next clock processing.
  • the image processing module 82 may acquire the coverage of the light spot in the receiving area in the image. Furthermore, the image processing module 82 determines whether the receiving area of the current receiving end is covered according to the spot coverage.
  • the image processing module 82 may determine that the current receiving area is not covered by the spot. As shown in FIG. 8, the image processing module 82 can perform the galvanometer system according to the distance between the center of the light spot (i.e. the third reference point in the above-mentioned embodiment) and the receiving center (i.e. the second reference point in the above-mentioned embodiment). fine-tuning. That is to say, the image processing module 82 can re-determine the second deflection angle of the galvanometer system according to the distance between the spot center and the receiving center, and control the galvanometer system to deflect according to the re-determined second deflection angle.
  • the image processing module 82 may determine that the current receiving area has been covered by light spots. At this time, referring to FIG. 8 , the image processing module 82 does not fine-tune the galvanometer system, and the image processing module 82 continues to detect the clock signal, and performs the processing of the next clock.
  • the light spot and the receiving area of the receiving end can be identified through image recognition technology, and the light beam can be adjusted according to the distance between the light spot and the receiving area, so that the adjusted light beam is aligned with the receiving area of the receiving end, Therefore, the transmission accuracy and transmission efficiency of the data signal are improved.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • Fig. 9 is a schematic diagram of the structural composition of the transmitting end provided by the embodiment of the present application. As shown in Fig. 9, the transmitting end includes:
  • a light beam emitting device 11 configured to emit a light beam
  • An image acquisition device 12 configured to acquire images
  • the image processing unit 13 is configured to identify the marker and/or light spot in the image, the marker in the image corresponds to the marker attached to the receiving end, and the light spot in the image corresponds to the light beam irradiated on the The light spot formed on the receiving end;
  • the light beam adjustment unit 14 is configured to adjust the light beam emitted by the light beam emitting device based on the identification result of the marker and/or the light spot, wherein the light spot formed by the adjusted light beam on the receiving end There is an overlapping portion with the receiving area of the receiving end.
  • the beam emitting device 11 includes: a light source, a lens, and a vibrating mirror system; the beam emitted by the light source is transmitted to the vibrating mirror system after being transmitted by the lens, and the vibrating mirror system uses for changing the transmission direction of the light beam;
  • the light beam adjustment unit 14 is specifically configured to determine a first deflection angle of the galvanometer system based on the identification result of the marker, and control the galvanometer system to deflect according to the first deflection angle; A second deflection angle of the galvanometer system is determined for the recognition result of the light spot, and the galvanometer system is controlled to deflect according to the second deflection angle.
  • the light beam adjustment unit 14 is further configured to determine the position of the first reference point in the marker based on the identification result of the marker; based on the position of the first reference point and the first position relationship, determining the position of a second reference point within the receiving area, the first position relationship being the position relationship between the first reference point and the second reference point; based on the position of the second reference point position, determine the first deflection angle.
  • the light beam adjustment unit 14 is further configured to determine the position of a third reference point in the light spot based on the identification result of the light spot; based on the position of the third reference point and the second reference The distance between the positions of the points determines the second deflection angle.
  • the image processing unit 13 is further configured to determine the spot identification area in the image based on the second reference point; perform binarization processing on the spot identification area in the image to obtain binary valued image; filtering the binarized image to obtain a filtered image; identifying pixel points whose pixel values meet a preset pixel condition from the filtered image, and calculating pixels whose pixel values meet the preset pixel condition A pixel set composed of points is used as a pixel set of the light spot.
  • the beam adjustment unit 14 is further configured to re-determine the first deflection angle of the galvanometer system based on the recognition result of the marker if the first condition is met, and control the galvanometer The system deflects according to the re-determined first deflection angle.
  • the meeting the first condition includes at least one of the following:
  • the amount of change in the position of the first reference point is greater than or equal to a first threshold
  • the marker is identified from the image and the light spot is not identified.
  • the light beam adjustment unit 14 is further configured to determine the spot coverage in the receiving area based on the identification result of the spot; if the spot coverage is less than a second threshold, the The transmitting end re-determines the second deflection angle of the galvanometer system, and controls the galvanometer system to deflect according to the re-determined second deflection angle; if the spot coverage is greater than or equal to the second threshold, the The transmitting end stops adjusting the deflection angle of the vibrating mirror system.
  • the position of the first reference point is represented by a first coordinate
  • the position of the second reference point is represented by a second coordinate
  • the first coordinate and the second coordinate are represented by pixels in the image.
  • the light beam adjustment unit 14 is further configured to map the second coordinates to first mapping coordinates based on the first coordinate mapping relationship, and the first mapping coordinates are coordinates in the coordinate system where the image acquisition device is located; based on The second coordinate mapping relationship is to map the first mapping coordinates to second mapping coordinates, and the second mapping coordinates are coordinates in the coordinate system where the light beam emitting device is located; based on the second mapping coordinates, determine The first deflection angle of the galvanometer system.
  • the beam adjustment unit 14 It is further configured to determine a movement parameter of the receiving end; and adjust the light beam emitted by the light beam emitting device based on the movement parameter of the receiving end and the identification result of the marker and/or the light spot.
  • FIG. 10 is a schematic structural diagram of a transmitting end 100 provided by an embodiment of the present application.
  • the transmitter 100 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the transmitting end 100 may further include a memory 1020 .
  • the processor 1010 can invoke and run a computer program from the memory 1020, so as to implement the method in the embodiment of the present application.
  • the memory 1020 may be an independent device independent of the processor 1010 , or may be integrated in the processor 1010 .
  • the transmitting end 100 may also include a beam emitting device 1030 and an image acquisition device 1040, and the processor 1010 may control the beam emitting device 1030 to communicate with the receiving end, specifically, may send information or data.
  • the processor 1010, the memory 1020, the beam emitting device 1030 and the image acquisition device 1040 may communicate through a bus system.
  • processor 1010 in the embodiment of the present application may integrate the image processing unit and the light beam adjustment unit in the above embodiments.
  • the transmitting end 100 may implement the corresponding processes implemented by the transmitting end in the various methods of the embodiments of the present application, and details are not repeated here for the sake of brevity.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1100 may further include a memory 1120 .
  • the processor 1110 can invoke and run a computer program from the memory 1120, so as to implement the method in the embodiment of the present application.
  • the memory 1120 may be an independent device independent of the processor 1110 , or may be integrated in the processor 1110 .
  • the chip 1100 may also include an input interface 1130 .
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the processor 1110 may control the input interface 1130 to receive the image transmitted by the image acquisition device.
  • the chip 1100 may also include an output interface 1140 .
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the processor 1110 may control the output interface 1140 to output an adjustment instruction to the beam emitting device, so as to adjust the deflection angle of the galvanometer system in the beam emitting device through the adjustment instruction.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the transmitter in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the transmitter in the methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the transmitter in the methods of the embodiments of the present application.
  • chips mentioned in the embodiments of the present application may also be referred to as system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the transmitting end in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the transmitting end in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the transmitting end in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the transmitting end in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the transmitting end in the methods of the embodiments of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the transmitting end in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the transmitting end in each method of the embodiment of the present application. For the sake of brevity , which will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供一种光束调整方法及装置、发射端、计算机存储介质,该方法包括:发射端通过光束发射装置发射光束以及通过图像采集装置采集图像;所述发射端识别所述图像中的标识物和/或光斑,所述图像中的标识物对应附着在接收端上的标识物,所述图像中的光斑对应所述光束照射在所述接收端上形成的光斑;所述发射端基于对所述标识物和/或所述光斑的识别结果,调整所述光束发射装置发射的光束,其中,调整后的光束在所述接收端上形成的光斑与所述接收端的接收区域具有重叠部分。

Description

光束调整方法及装置、发射端、计算机存储介质 技术领域
本申请涉及可见光通信技术领域,具体涉及一种光束调整方法及装置、发射端、计算机存储介质。
背景技术
可见光通信技术是利用可见光进行无线通信的技术。由于可见光通信技术使用的可见光频谱比无线频谱带宽高一万倍,能够缓解频谱资源严重紧缺的问题,因此逐渐成为业界研究热点。
可见光通信中,由于发射端的定向发光特性,需要将发射端发射的光束对准接收端的接收区域来进行数据信号的传输。通常情况下,接收端的位置是固定不变的,因此发射端和接收端之间的光束对准十分容易。但是当发射端和接收端处于相对运动的状态时,如何实现发射端和接收端之间的光束对准,从而实现可见光通信,目前并没有可行的方法。
发明内容
本申请提供一种光束调整方法及装置、发射端、计算机存储介质,以解决发射端和接收端之间光束如何对准的问题。
本申请实施例提供的光束调整方法,包括:
发射端通过光束发射装置发射光束以及通过图像采集装置采集图像;
所述发射端识别所述图像中的标识物和/或光斑,所述图像中的标识物对应附着在接收端上的标识物,所述图像中的光斑对应所述光束照射在所述接收端上形成的光斑;
所述发射端基于对所述标识物和/或所述光斑的识别结果,调整所述光束发射装置发射的光束,其中,调整后的光束在所述接收端上形成的光斑与所述接收端的接收区域具有重叠部分。
本申请实施例提供的发射端,包括:
光束发射装置,配置为发射光束;
图像采集装置,配置为采集图像;
图像处理单元,配置为识别所述图像中的标识物和/或光斑,所述图像中的标识物对应附着在接收端上的标识物,所述图像中的光斑对应所述光束照射在所述接收端上形成的光斑;
光束调整单元,配置为基于对所述标识物和/或所述光斑的识别结果,调整所述光束发射装置发射的光束,其中,调整后的光束在所述接收端上形成的光斑与所述接收端的接收区域具有重叠部分。
本申请实施例提供的发射端,包括处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行上述的光束调整方法。
本申请实施例提供的芯片,用于实现上述的光束调整方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安 装有该芯片的设备执行上述的光束调整方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的光束调整方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的光束调整方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的光束调整方法。
本申请实施例提供的光束调整方法中,发射端通过光束发射装置发射光束以及通过图像采集装置采集图像;发射端识别图像中的标识物和/或光斑,图像中的标识物对应附着在接收端上的标识物,图像中的光斑对应所述光束照射在接收端上形成的光斑;发射端基于对标识物和/或光斑的识别结果,调整光束发射装置发射的光束,其中,调整后的光束在所述接收端上形成的光斑与接收端的接收区域具有重叠部分。也就是说,发射端可以通过图像识别技术,识别图像中的标识物和/或光斑。这样,发射端可以根据对标识物和/或光斑的识别结果,调整光束的传输方向,使得调整后的光束能够与接收端的接收区域具有重叠部分,从而实现光束与接收区域的对准,提高数据信号的传输准确性和传输效率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一个可见光通信系统的架构示意图;
图2是本申请实施例提供的一种光束调整方法的流程示意图一;
图3是本申请实施例提供的一个应用场景的示意图;
图4是本申请实施例提供的一种光束调整方法的流程示意图二;
图5是本申请实施例提供的一种光束调整方法的流程示意图三;
图6是本申请实施例提供的一种光束调整方法的流程示意图四;
图7是本申请实施例提供的一种光束调整方法的流程示意图五;
图8是本申请实施例提供的一种光束调整方法的流程示意图六;
图9是本申请实施例提供的一种发射端的结构组成示意图;
图10是本申请实施例提供的一种发射端的硬件结构组成示意图;
图11是本申请实施例的一种芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例提供的一个可见光通信系统的架构示意图。
如图1所示,可见光通信系统可以包括发射端10和接收端20。发射端10可以发出可见光的光束,通过光束与接收端20进行通信。具体地,发射端10可以生成原始数据信号,并对原始数据信号进行调制得到光调制信号,接着,发射端10可以控制光源向接收端20发射携带有光调制信号的光束。对应的,接收端20可以接收发射端10光源发出的光束,从光束的光调制信号中恢复原始数据信号。
应理解,本申请实施例仅以可见光通信系统进行示例性说明,但本申请实施例不限定于此。
在本申请实施例中,发射端10可以是发光二极管(Light Emitting Diode,LED)灯,激光灯等设备,发射端也可以是可以发射可见光的智能手机、平板电脑、可穿戴设备等,本申请实施例对发射端10的类型不做限定。接收端20可以是智能手机、平板电脑、个人计算机、工业计算机、物联网设备、车载设备、可穿戴设备等。本申请实施例对接收端20的类型不做限定。
图1示例性地示出了一个发射端和一个接收端,可选地,该可见光通信系统可以包括其它数量的发射端和接收端,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括接收端和发射端)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
本申请一实施例提供一种光束调整方法,参考图2所示的流程示意图,本申请实施例提供的光束调整方法可以包括步骤210至步骤230。
步骤210、发射端通过光束发射装置发射光束以及通过图像采集装置采集图像。
本申请实施例中,参考图3所示,发射端10可以包括光束发射装置11和图像采集装置12。
其中,光束发射装置11用于向接收端20发射携带数据信号的光束,以与发射端20进行通信。图像采集装置12用于采集发射端10周围的图像,以便于通过图像识别技术识别图像中的接收端20,从而实现光束对准。这里,图像采集装置12可以是摄像头,例如单目摄像头,或者双目摄像头,本申请实施例对此不做限定。
在一些实施例中,发射端10可以动态调整图像采集装置12的位置和/姿态。也就是说,发射端10可以控制图像采集装置12采集其周围任意方位上的图像,以便于对接收端20的接收区域进行追踪对准。
在一些实施例中,光束的发射位置和/或发射角度可以动态调整。示例性的,发射端可以通过调整振镜系统的偏转角度,来调整光束的发射位置和/或发射角度。这样,发射端10在追踪到接收端20的接收区域后,可以控制光束发射装置11发射出的光束能够对准接收端20的接收区域,实现数据信号的传输。
需要说明的是,发射端10可以按照预定义的时间周期,通过光束发射装置11发射光束以及通过图像采集装置12采集图像,从而实现在整个数据信号传输过程中的光束对准。
步骤220、发射端识别图像中的标识物和/或光斑,图像中的标识物对应附着在接收端上的标识物,图像中的光斑对应光束照射在接收端上形成的光斑。
在一些实施例中,参考图3所示,接收端20可以包括接收区域21,该接收区域21用于接收发射端10发射的光束。实际应用中,由于接收区域21在接收端20表面所占面积较小,直接通过图像识别技术确定接收端20的接收区域21比较困难。基于此,参考图3所示,本申请实施例中的接收端20上可以附着有标识物22,且该标识物22设置于接收端20中的接收区域21附近,这样,发射端10可以通过识别标识物22来确定接收端20的接收区域21。
在一些实施例中,标识物可以是容易进行图像识别的物体,例如绿色圆环,蓝色矩形物体等。本申请实施例对此不做限定。
在一些实施例中,参考图3所示,光束发射装置11发射的光束照射在接收端20的表面,可以在接收端20的表面形成光斑23。
可以理解的是,发射端通过图像采集装置采集周围环境中的图像后,图像中可以包括附着于接收端上的标识物和/或照射在接收端表面形成的光斑。发射端通过识别图像中的标识物和/或光斑,来确定接收端中的接收区域的位置,以及当前光斑在接收端表面的位置,从而根据接收区域的位置和光斑的位置,对光束进行调整,实现对接收端的追踪。
在一些实施例中,发射端可以通过机器学习算法识别图像中的标识物和/或光斑。示例性的,发射端可以预先通过大量的包含标识物以及光斑的样本图像训练识别模型,当发射端通过图像采集装置采集到图像时,可以将采集到的图像输入至训练好的识别模型中,通过识别模型的处理,识别得到图像中的标识物和/或光斑。
在一些实施例中,发射端还可以通过特征匹配算法,识别图像中的标识物和/或光斑。示例性的,发射端可以预先存储包含标识物的第一参考图像,以及包含光斑的第二参考图像。发射端接采集到图像后,可以将该图像与第一参考图像和/或第二参考对象进行特征匹配,识别图像中的标识物和/或光斑。本申请实施例对识别标识物和/或光斑的方法不做限定。
步骤230、发射端基于对标识物和/或光斑的识别结果,调整光束发射装置发射的光束,其中,调整后的光束在接收端上形成的光斑与接收端的接收区域具有重叠部分。
可以理解的是,发射端可以基于对图像中标识物的识别结果,确定接收端中用于接收光束的接收区域的位置。另外,发射端还可以基于对光斑的识别结果,确定当前光斑在接收端表面的位置。这样,发射端可以基于上述接收区域的位置,和/或光斑的位置对光束的传输方向进行调整,使调整后的光束在接收端表面形成的光斑与接收区域具有重叠部分,从而实现发射端和接收端之间的光束对准。
在一些实施例中,光斑与接收区域具有重叠部分,可以是指光斑的部分区域或者全部区域覆盖接收端的接收区域。在光斑与接收区域具有重叠部分的情况下,接收端可以通过接收区域接收光束,并从光束中解析得到原始数据信号。
本申请提供的光束调整方法中,发射端可以通过图像识别技术,识别标识物和/或光斑,并根据对标识物和/或光斑的识别结果,调整光束的传输方向,使得调整后的光束能够与接收端的接收区域对准,从而提高数据信号的传输准确性和传输效率。
在一些实施例中,参考图3所示,光束发射装置11可以包括:光源111、透镜112、以及振镜系统113。其中,光源111发射的光束经过透镜112的透射后传输至振镜系统113,振镜系统113用于改变光束的传输方向。
在一些实施例中,振镜系统113可以包括一个或者多个镜片(图3中仅示出两个镜片)。其中,发射端10可以控制电机的运动,来改变振镜系统113中每个镜片的偏转角度。这样,发射端可以调整振镜系统113中部分或者全部镜片的偏转角度,通过振镜系统偏转反射光源发射的光束,从而改变光束的传输方向。
在上述光束发射装置的基础上,参考图4所示,步骤220和步骤230中,发射端基 于对标识物和/或光斑的识别结果,调整光束发射装置发射的光束,可以通过以下步骤实现:
步骤2201、发射端基于对标识物的识别结果,确定振镜系统的第一偏转角度,并控制振镜系统按照第一偏转角度进行偏转;
步骤2202、发射端基于对光斑的识别结果,确定振镜系统的第二偏转角度,并控制振镜系统按照第二偏转角度进行偏转。
本申请实施例中,发射端可以先识别图像中的标识物,识别成功后(即图像中包括发射端的标识物),发射端可以根据标识物在图像的位置,初步确定振镜系统中部分或者全部镜片的偏转角度,得到第一偏转角度。这样,发射端可以控制振镜系统按照第一偏转角度进行偏转,同时发射端可以控制光源发射光束,使得光束照射在接收端的接收区域附近。在基于第一偏转角度对振镜系统进行调整之后,发射端可以对图像中的光斑进行识别。在光斑识别成功(即图像中包括光斑)后,发射端可以根据光斑和标识物之间的位置偏差,确定振镜系统的第二偏转角度。这样,发射端可以按照第二偏转角度对振镜系统进行微调,如此,可以使得调整后的光束与接收端的接收区域对准,提高数据信号的传输准确性和传输效率。
在一些实施例中,参考图5所示,步骤2201中发射端基于对标识物的识别结果确定振镜系统的第一偏转角度,可以通过以下步骤2201a至步骤2201c实现。
步骤2201a、发射端基于对标识物的识别结果,确定标识物中的第一参考点的位置。
应理解,标识物是容易进行图像识别的物体。示例性的,参考图3所示,标识物22可以是绿色圆环,或者红色圆环等。
在一些实施例中,发射端可以根据识别物的颜色特征和/或形状特征,对图像进行识别处理,得到图像中的标识物。进一步地,发射端可以根据标识物的形状特征确定第一参考点在图像中的位置。这里,第一参考点可以是标识物的特征点,例如,第一参考点可以是标识物中心,也可以是标识物任意一条边的中点,本申请实施例对此不做限定。
示例性的,若标识物为绿色圆环,且第一参考点为圆环中心,则发射端可以对图像中的绿色通道图像进行识别,找到预设半径的圆环。并根据圆环内任意两条线之间的交点,确定圆环中心在图像中的位置。另外,若标识物为红色圆环,则发射端可以对图像中的红色通道图像进行识别,找到预设半径的圆环,接着确定圆环中心在图像中的位置。
需要说明的是,第一参考点的位置,是指第一参考点在图像中的位置。第一参考点的位置可以通过第一坐标表示。
在一些实施例中,发射端可以按照预设时间周期采集图像,发射端每采集一张图像,即可以对该图像进行识别,以得到该图像中标识物的第一参考点的第一坐标。这样,发射端可以存储采集到的多个图像中第一参考点所在位置对应的第一坐标,得到第一参考点的坐标队列。
需要说明的是,坐标队列中存储的多个第一坐标可以是第一参考点位置相对稳定时的坐标。具体地,若当前图像采集装置采集的图像中第一参考点的第一坐标与上一张图像中第一参考点的第一坐标变化率小于预设变化阈值,则可以认定接收端未发生移动,发射端可以将当前图像中第一参考点的第一坐标加入上述坐标队列中。若当前图像采集装置采集的图像中第一参考点的第一坐标与上一张图像中第一参考点的第一坐标变化率大于或等于预设变化阈值,则可以认为接收端发生了移动,此时,发射端可以将坐标队列清空,并将当前图像中第一参考点的第一坐标加入该坐标队列中。
在一些实施例中,发射端可以将坐标队列中多个第一坐标的均值,作为当前图像中第一参考点的实际坐标,如此,提高第一参考点的识别稳定性,提高后续光束对准的准确性。
步骤2201b、发射端基于第一参考点的位置及第一位置关系,确定接收区域内的第二参考点的位置,第一位置关系为第一参考点与第二参考点之间的位置关系。
这里,第二参考点可以是接收区域的特征点,例如第二参考点可以是接收区域中心,或者接收区域中任意一个边的中点。
在一些实施例中,发射端可以预先存储第一参考点和第二参考点之间的第一位置关系。这样,当发射端确定了标识物中第一参考点的位置后,可以根据第一位置关系,计算出接收区域中第二参考点的位置。
在一些实施例中,发射端可以在步骤210之前执行初始校准过程。在初始校准过程中,操作对象可以调整发射端和接收端的位置和/或角度,使光束发射装置发射的光束可以照射在接收端的接收区域中心。此时,发射端可以控制图像采集装置采集校准图像,根据校准图像中标识物的第一参考点和接收区域的第二参考点,计算第一参考点和第二参考点之间的第一位置关系,并将计算到的第一位置关系进行存储。
这样,在后续发射端对接收端追踪对准过程中,可以根据预先计算的第一位置关系,确定接收端的第二参考点的位置。如此,可以在接收端的标识物与接收区域之间的位置发生变化时,仍可以通过初始校准,得到准确的第一位置关系,保证光束调整的准确性,以及发射端和接收端追踪对准的鲁棒性。
步骤2201c、发射端基于第二参考点的位置,确定振镜系统的第一偏转角度,并控制振镜系统按照第一偏转角度进行偏转。
应理解,第二参考点是指接收端接收区域的特征点,该第二参考点可以表征接收端的接收区域。在一些实施例中,接收区域可以是接收端中第二参考点的第一预设范围内的区域。示例性的,接收区域可以是接收端中第二参考点5毫米范围内的区域。
基于此,发射端可以根据第二参考点的位置,确定振镜系统的第一偏转角度,使得根据第一偏转角度调整后的振镜系统反射的光束,能够对准接收端的接收区域,实现接收端和反射端的光束对准。如此,提高数据信号的传输准确性和传输效率。
在一些实施中,第二参考点的位置,是指第二参考点在图像中的位置。这里,第一参考点的位置通过第一坐标表示,第二参考点的位置可以通过第二坐标表示,第一坐标和第二坐标为图像中像素所处的坐标系下的坐标;
对应的,步骤2201c中发射端基于第二参考点的位置,确定振镜系统的第一偏转角度,可以通过以下步骤实现:
发射端基于第一坐标映射关系,将第二坐标映射为第一映射坐标,第一映射坐标为图像采集装置所处的坐标系下的坐标;
发射端基于第二坐标映射关系,将第一映射坐标映射为第二映射坐标,第二映射坐标为光束发射装置所处的坐标系下的坐标;
发射端基于第二映射坐标,确定第一偏转角度。
应理解,第二参考点对应的第二坐标是图像中像素所处的坐标系下的坐标,即第二参考点可以是图像中像素点的坐标,例如,第二坐标可以是第二参考点在图像中所占据的像素点。而第一偏转角度是指实际的三维空间中,光束发射装置坐标系下的振镜系统的偏转角度。因此,发射端并不能直接根据图像中像素所处的坐标系中的第二坐标,对光束发射装置中的振镜系统进行调整,发射端还需要对不同坐标系下的坐标进行坐标对齐处理。也就是说,发射端需要将图像中像素所处的坐标系下的第二坐标,映射至光束发射装置所处的坐标系中,得到第二映射坐标,基于第二映射坐标对光束发射装置中的振镜系统的偏转角度进行调整。
本申请实施例中,由于像素所处的坐标系,与光束发射装置所处的坐标系之间没有直接的关联关系,因此发射端无法直接将第二参考点在图像中的第二坐标映射到光束发 射装置所处的坐标中。而实际应用中,像素所处的坐标系与图像采集装置所处的坐标系之间具有一定的映射关系(即第一坐标映射关系),同时图像采集装置所处的坐标系与光束发射装置所处的坐标系也具有一定的映射关系(即第二坐标映射关系)。因此,发射端可以借助上述第一坐标映射关系,将第二参考点在图像中的第二坐标映射到图像采集装置所处的坐标系中,得到第一映射坐标。进而,再基于第二坐标映射关系,将图像采集装置所处的坐标系中的第一映射坐标,映射到光束发射装置所处的坐标系中,得到第二映射坐标。如此,实现将图像中像素所处的坐标系下的第二坐标,映射至光束发射装置所处的坐标系中,以便于发射端可以基于光束发射装置所处坐标系下的坐标,对振镜系统的偏转角度进行调整。
具体地,发射端可以预先存储第一坐标映射关系和第二坐标映射关系。其中,第一坐标映射关系,是指图像中像素所处的坐标系与图像采集装置所处的坐标系之间的坐标映射关系。第二坐标映射关系,是指图像采集装置所处的坐标系与光束发射装置所处的坐标系之间的坐标映射关系。
在一些实施例中,第一坐标映射关系和第二坐标映射关系,可以是发射端在初始校准过程中确定的。示例性的,发射端可以在初始校准过程中,发射端可以设置振镜系统中的两个镜片为无偏转状态(例如,镜面方向与竖直方向夹角45度),并且操作对象可以调整发射端和接收端之间的位置和/或角度,使光束在接收端表面形成的光斑位于接收区域的中心位置。这样,发射端可以根据当前图像采集装置的拍摄角度和/或拍摄位置,确定图像中像素点与三维坐标系中图像采集装置之间的第一坐标映射关系。另外,发射端可以计算当前图像采集装置和光束发射装置之间的相对位置关系,得到第二坐标映射关系。
本申请实施例中,发射端可以先根据第一坐标映射关系,将第二坐标映射到图像采集装置所处的坐标系中,得到第一映射坐标。第一映射坐标可以理解为是三维空间中,接收区域中的第二参考点相对于图像采集装置的坐标。
进一步,发射端可以继续根据第二坐标映射关系,将第一映射坐标映射到光束发射装置坐标系中,得到第二映射坐标。第二映射坐标可以理解为是三维空间中,接收区域中的第二参考点相对于光束发射装置的坐标。
这样,发射端在得到第二映射坐标后,可以根据第二映射坐标确定振镜系统的第一偏转角度。如此,通过坐标对齐处理,可以得到振镜系统准确的第一偏转角度,以保证后续发射端和接收端光束能够有效地对准。
示例性的,第二映射坐标表示接收区域中的第二参考点位于光束发射装置的上侧10厘米,且右侧30厘米。这样,发射端可以调整振镜系统的偏转角度,使得光束向上侧10厘米以及右侧30厘米的位置发射,这样光束在接收端表面形成的光斑可以覆盖接收端的接收区域。
在一些实施例中,参考图5所示,步骤2202中发射端基于对光斑的识别结果,确定振镜系统的第二偏转角度,可以通过以下步骤2202a和步骤2202b实现:
步骤2202a、发射端基于对光斑的识别结果,确定光斑中的第三参考点的位置。
在一些实施例中,发射端识别图像中的光斑,可以通过以下步骤实现:
发射端基于第二参考点确定图像中的光斑识别区域;
发射端对光斑识别区域进行二值化处理,得到二值化图像;
发射端对二值化图像进行滤波处理,得到滤波图像;
发射端从滤波图像中识别出像素值满足预设条件的像素点,将像素值满足预设像素条件的像素点组成的像素集合作为光斑的像素集合。
在一些实施例中,发射端可以在第二参考点附近的光斑识别区域内识别光斑。这里, 光斑识别区域可以是第二参考点的第二预设范围内区域。示例性的,接收区域可以是接收端中第二参考点3厘米范围内的区域。
这里,第二预设范围和上述实施例中的第一预设范围不同。第二预设范围大于第一预设范围,也就是说,光斑识别区域包括接收区域,且光斑识别区域的面积大于接收区域的面积。另外,光斑识别区域的面积还可以小于接收端表面的面积。通过在光斑识别区域中进行光斑识别,可以减少需要运算的数据量,提高处理速度。
可选地,发射端可以将图像中的光斑识别区域从图像中裁剪出来,得到裁剪图像。这样,发射端可以仅对该裁剪图像进行识别处理,以减少发射端的运算量,提高处理速度。
在一些实施例中,为了使各个像素点的像素值之间的差异更加明显,促进中的光斑区域和非光斑区域的边界更加明显,以准确的识别出光斑,可以对图像中的光斑识别区域进行二值化处理。
示例性的,发射端可先对光斑识别区域进行阈值分割。阈值分割即是对像素点的像素值进行分类,例如设定一个特征阈值,像素点值小于特征阈值的像素点归为一类,像素点值大于或等于特征阈值的像素点归为一类,特征阈值例如是50-80中任意一个数字,如50。
在阈值分割之后,光斑识别区域中的每一个像素点的像素点值被分为两类。此时,可以进行二值化操作,使得这两类像素点的像素值的差异更加明显。例如,可以将像素点值大于特征阈值的像素点的像素度设为第一预设像素值,小于或等于特征阈值的像素点的像素值设为第二预设像素值;该第一预设像素值可以为0,第二预设像素值可以为255;或者第一预设像素值为255,第二预设像素值可以为0。当然,上述第一预设像素值和第二预设像素值也可设为其他像素值,在此不做限定。
通过对光斑识别区域的二值化处理,可以进一步降光斑识别区域中的数据量,提高运算速度,加快对光斑的识别的速度。同时,还能使得得到的二值化图像中的光斑的边界更加明显,突出了光斑所在的区域。
在一些实施例中,经过二值化处理后得到的二值化图像,在光斑的内部可能会存在部分像素点的像素值与其他像素点的像素值存在较大的差异的情况。为了避免像素值差值对光斑识别结果的影响,可以对二值化图像进行滤波处理。通过滤波处理去除图像中的干扰信息。
可选地,滤波处理可以是均值滤波处理、高斯滤波处理、中值滤波处理等,本申请实施例对此不做限定。
示例性的,滤波处理为均值滤波处理时,发射端可以将像素值差异较大的区域中的像素点的像素值进行平均处理,设置该差异较大的区域中每个像素点的像素值为该区域内像素值的平均值,这样,发射端可以得到滤波图像。
在本申请实施例中,通过滤波处理,可以消除光斑内部的干扰信息,提高光斑识别的准确度,进而提高后续光束对准的准确度。
在一些实施例中,发射端得到滤波图像后,可以查找出像素值满足预设像素条件的像素点,这些像素点组成的像素集合即光斑的像素集合。
可以理解的是,发射端通过对光斑识别区域进行二值化处理、滤波处理后可以识别得到图像中的光斑的像素集合。这样,发射端可以根据光斑的像素集合,确定出光斑中第三参考点在图像中的位置。这里,第三参考点可以是光斑的某一特征点,示例性的,第三参考点可以是光斑中心。本申请实施例对第三参考点不做限定。
步骤2202b、发射端基于第三参考点的位置和第二参考点的位置之间的距离,确定振镜系统的第二偏转角度,并控制振镜系统按照第二偏转角度进行偏转。
应理解,第三参考点为光斑的特征点,可以用于表征光斑。而第二参考点是指接收区域的特征点,可以用于表征接收区域。发射端基于第三参考点的位置和第二参考点的位置之间的距离,确定振镜系统的第二偏转角度,即是指,发射端基于光斑的位置和接收区域的位置之间的偏差,确定第二偏转角度。进而,发射端可以基于第二偏转角度对振镜系统进行微调,使得调整后的光束在接收端表面形成的光斑可以覆盖接收区域。
示例性的,若光斑位于接收区域左侧20厘米,则发射端可以调整振镜系统的偏转角度,使得光束发射装置发射的光束的方向可以向右侧20厘米偏移,从而使得光束对准接收端的接收区域,即光斑与接收区域具有重叠部分。
在一些实施例中,第三参考点的位置,即第三参考点在图像中的位置。第三参考点的位置可以通过第三坐标表示,其中,第三坐标为图像中像素所处的坐标系下的坐标。
这里,由于第三参考点对应的第三坐标,以及第二参考点对应的第二坐标均为图像中像素所处的坐标系下的坐标。发射端可以根据上述第一映射关系,将第三坐标和第二坐标之间的距离映射到三维空间中的图像采集装置坐标系中,得到第一映射距离。进而,发射端可以根据上述第二映射关系,将第一映射距离映射到三维空间中的光束发射装置所处的坐标系中,得到第二映射距离。这样,发射端可以根据第二映射距离确定振镜系统的第二偏转角度。如此,通过坐标对齐处理,可以得到振镜系统准确的第二偏转角度,以保证后续发射端和接收端光束能够有效地对准。
在一些实施例中,参考图6所示,本申请实施例提供的光束调整方法,还可以包括以下步骤:
步骤240、若满足第一条件,则重新基于对标识物的识别结果,确定振镜系统的第一偏转角度,并控制振镜系统按照重新确定的第一偏转角度进行偏转。
可以理解的是,发射端可以控制图像采集装置按照预设时间周期采集周围的图像。这样,发射端可以对每个时间周期采集到的图像进行识别处理,根据对图像中标识物的识别结果,确定接收端中接收区域的位置,从而实现对接收端的追踪。
在一些实施例中,当发射端对当前采集到的图像进行识别处理时,若满足第一条件,则发射端可以基于对当前图像中标识物识别结果,重新计算振镜系统的第一偏转角度,以便于根据第一偏转角度调整振镜系统后,光束发射装置发射出的光束在接收端形成的光斑可以位于接收区域附近。
在一些实施例中,满足第一条件包括以下中的至少一项:
第一参考点的位置的变化量大于或等于第一阈值;
从图像中识别出标识物且未识别出光斑。
其中,第一参考点的位置的变化量,是指当前图像中第一参考点的位置,与上一时间周期采集到的图像中第一参考点的位置之间的变化量。当发射端检测到第一参考点的位置的变化量大于或等于第一阈值时,可以确定发射端或接收端的发生了较大的移动。检测到发射端或接收端发生较大的移动后,发射端可以重新计算振镜系统的第一偏转角度,基于第一偏转角度对振镜系统进行调整,以便于根据第一偏转角度调整振镜系统后,光束发射装置发射出的光束在接收端形成的光斑可以位于接收区域附近。
另外,发射端从图像中仅识别出标识物而未识别出光斑(即未找到光斑)的情况下,可以认为发射端未能成功追踪到接收端。因此,在仅识别出标识物而未识别出光斑时,发射端可以重新计算振镜系统的第一偏转角度,基于第一偏转角度对振镜系统进行调整,以便于根据第一偏转角度调整振镜系统后,光束发射装置发射出的光束在接收端形成的光斑可以位于接收区域附近。
可以理解的是,接收端移动过大,以及发射端对接收端的追踪丢失的情况下,发射端均可以根据图像中的标识物的位置,重新计算振镜系统的第一偏转角度,控制振镜系 统按照第一偏转角度进行偏转,将光束发射装置发射出的光束能够照射在接收端的接收区域附近。
在一些实施例中,参考图7所示,本申请实施例提供的光束调整方法,还可以包括以下步骤:
步骤250、发射端基于对光斑的识别结果,确定接收区域内的光斑覆盖度;
步骤260、若光斑覆盖度小于第二阈值,则发射端重新确定振镜系统的第二偏转角度,并控制振镜系统按照重新确定的第二偏转角度进行偏转;
步骤270、若光斑覆盖度大于或等于第二阈值,则发射端停止对振镜系统的偏转角度进行调整。
这里,发射端通过图像识别技术,识别到图像中包括光斑和标识物之后,可以进一步确定接收端的接收区域内的光斑覆盖度。
在一些实施例中,发射端识别到图像中包含识别物后,可以确定识别物的第一参考点的位置。进而,发射端可以根据第一参考点的位置,确定接收区域的第二参考点的位置。这样,发射端可以根据第二参考点的位置,确定出接收端的接收区域。其中,接收区域可以是图像中第二参考点预设范围内的区域。
在一些实施例中,发射端确定出接收端的接收区域后,可以确定光斑在该接收区域内的光斑覆盖度,即光斑在接收区域中所占的面积。示例性的,发射端可以通过像素点的数量来确定光斑覆盖度。其中,发射端可以确定接收区域的像素集合中像素点的第一数量,以及光斑的像素集合中位于接收区域内的像素点的第二数量。发射端通过计算第二数量与第一数量的比值,得到光斑覆盖度。
本申请实施例中,当光斑的覆盖度小于第二阈值时,发射端可以确定当前光束发射装置发射的光束未对准接收区域。当光斑的覆盖度大于或等于第二阈值时,发射端可以确定当前光束发射装置发射的光束已经对准接收区域。
基于此,当光斑的覆盖度小于第二阈值时,发射端可以根据当前光斑中的第三参考点的位置,与接收区域中第二参考点的位置之间的距离,重新对振镜系统进行微调。即,根据第三参考点的位置和第二参考点的位置之间的偏差,重新确定振镜系统的第二偏转角度,并控制振镜系统按照重新确定的第二偏转角度进行偏转。
进一步,发射端可以继续采集图像,确定图像中接收区域内光斑的覆盖度,若光斑的覆盖度仍小于第二阈值,则继续根据当前图像中光斑的第三参考点的位置和接收区域中第二参考点的位置之间的距离,重新确定振镜系统的第二偏转角度。直至图像中接收区域内光斑的覆盖度大于或等于第二阈值。
可以理解的是,在光斑的覆盖度小于第二阈值的情况下,发射端可以根据比例、积分和微分(Proportion Integral Differential,PID)算法,不断地对振镜系统的第二偏转角度进行调整,直至光斑的覆盖度大于或等于第二阈值。
由此可见,本申请实施例提供的光束调整方法,可以自动地调整光束的照射方向,使得光束可以自动地与接收区域对准,进而提高数据传输效率。
在一些实施例中,步骤230中发射端基于对标识物和/或光斑的识别结果,调整光束发射装置发射的光束,可以通过以下步骤实现:
发射端确定接收端的移动参数;
发射端基于接收端的移动参数,以及对标识物和/或光斑的识别结果,调整光束发射装置发射的光束。
在本申请实施例中,当发射端和接收端处于动态运动的状态时。发射端通过图像识别技术对接收端的移动进行追踪,会产生一定的滞后性。这是因为发射端采集图像后,在对图像处理的过程中,发射端和接收端之间的位置可能已经发生了变化。
基于此,本申请实施例中的发射端可以确定接收端的移动参数,根据移动参数对接收端下一时刻的运动轨迹进行预测。这样,发射端可以结合接收端的运动轨迹,以及对图像中标识物和/或光斑的识别结果,对光束发射装置发射的光束进行调整。
示例性的,发射端根据对标识物和/或光斑的识别结果,确定光束的发射方向要向右侧偏移5厘米。同时,发射端检测到接收端正在以每秒5厘米的速度向右移动,这样发射端可以确定接收端在下一秒位于当前位置的右侧5厘米处。因此,发射端可以确定下一秒发射光束时,需要将光束的发射方向向右偏移10厘米。
这里,移动参数可以包括移动方向,移动速度等参数,本申请实施例对移动参数不做限定。
在一些实施例中,发射端可以通过每个时间周期采集到的图像,确定接收端的运动参数。示例性的,发射端可以根据多个相邻时间周期采集的图像中标识物位置的变化,来确定接收端的移动参数。
在一些实施例中,发射端可以利用机器学习算法,根据接收端的移动参数来预测接收端的运动轨迹。示例性的,发射端可以预先通过大量的样本数据训练预测模型,得到训练好的预测模型。发射端可以将运动参数输入至预测模型中,得到接收端的运动轨迹。
在一些实施例中,发射端还可以利用卡尔曼滤波算法,根据接收端的移动参数来预测接收端的运动轨迹。
由此可见,本申请实施例提供的光束调整方法,可以结合接收端的移动规律,以及对图像中标识物和/或光斑的识别结果,调整光束发射装置发射的光束,使得调整后的光束在接收端表面形成的光斑可以有效覆盖接收区域,提高数据传输的效率。
下面结合具体应用场景,对本申请实施例提供的光束调整方法进行详细阐述。
在本申请实施提供的应用场景中,光束发射装置的光源为红色激光器,接收端上设置的标识物为绿色圆环。
参考图8所示,本申请实施例提供的光束调整方法可以通过三个处理模块实现:初始校准模块81、图像处理模块82和振镜系统调整模块83。
其中,初始校准模块81,用于实现发射端内部结构关系的校准。
在初始校准模块81中,发射端可以设置振镜系统中的两个镜片为无偏转状态(例如,镜面方向与竖直方向夹角45度),同时操作对象可以调整发射端和接收端的位置和/或角度,使光束发射装置发射的红色激光光斑照射在接收端的接收区域中心。
这样,发射端可以根据当前图像采集装置的拍摄角度和/或拍摄位置,确定图像中像素所处的坐标系与图像采集装置所处的坐标系之间的第一坐标映射关系。发射端还可以计算当前图像采集装置和光束发射装置之间的坐标偏差,得到第二坐标映射关系。另外,发射端还可以通过图像采集装置采集校准图像,根据校准图像中圆环中心(即上述实施例中第一参考点)的位置和接收中心(即上述实施例中的第二参考点)的位置,确定圆环中心和接收中心的第一位置关系。
本申请实施例中,发射端可以将初始校准过程中得到的第一坐标映射关系、第二坐标映射关系、以及第一位置关系存储至存储空间中。在图像处理模块82和振镜系统调整模块83,可以从存储空间中获取上述映射关系,对光束进行调整。
可见,当发射端和接收端内部结构的位置发生变化时,可以通过初始校准过程确定内部结构之间的对应关系,提高光束调整的准确性,以及发射端和接收端追踪对准的鲁棒性。
本申请实施例中,在初始校准模块81处理完成后,图像处理模块82和振镜系统调整模块83可以同时进行处理。
本申请实施例中,发射端可以控制图像采集装置按照预设时间周期采集图像。示例 性的,预设时间周期可以是5毫秒,或者3毫秒等,本申请实施例对此不做限定。
参考图8所示,在图像处理模块82可以按照上述预设时间周期检测是否采集到新的图像。若采集到新的图像,图像处理模块82可以识别当前图像中的绿色圆环(即上述实施例中的标识物),进而判断是否识别成功。
具体地,图像处理模块82可以对图像中的绿色通道图像进行识别,查找绿色通道图像中是否包括指定半径范围的圆环。若包括指定半径范围的圆环,则确定圆环识别成功,若不包括指定半径范围的圆环,则确定圆环识别失败。
需要说明的是,为了提升发射端对接收端的追踪速度,在圆环识别成功的情况下,当需要再次识别圆环时,可以仅在之前圆环的附近区域查找识别圆环。在圆环识别不成功的情况下,通过识别整个图像来确定图像中是否包括圆环。
参考图8所示,当圆环识别成功,图像处理模块中82继续识别图像中的光斑。在圆环识别失败的情况下,图像处理模块82可以不做处理,继续在下一时间周期检测是否采集到新的图像。
具体地,在圆环识别成功的情况下,图像处理模块中82可以根据圆环中心(即上述实施例中的第一参考点)所在的位置,确定接收中心(即上述实施例中的第二参考点)所在的位置。
这里,图像处理模块82可以从存储空间中获取初始校准模块81确定的第一位置关系,根据第一位置关系和圆环中心的位置,确定接收中心的位置。其中,在接收中心预设范围内的区域,即为接收端的接收区域。
本申请实施例中,图像处理模块82可以根据接收中心的位置确定接收区域,并在光斑识别区域中识别光斑。具体地,图像处理模块82可以根据对图像中的光斑识别区域进行裁剪处理,得到裁剪图像;对裁剪图像进行二值化处理,得到二值化图像;对二值化图像进行均值滤波处理,得到滤波图像;图像处理模块82从滤波图像中识别出像素值满足预设条件的像素点,将像素值满足预设像素条件的像素点组成的像素集合作为光斑的像素集合。
需要说明的是,图像处理模块82可以对图像中的蓝色通道图像进行光斑识别,可以减少激光反射光晕对于识别效果的影响。
进一步地,参考图8所示,若光斑识别成功(即图像中包括光斑),则图像处理模块82可以计算当前图像中光斑在接收区域中的覆盖度。这里,图像处理模块82可以确定接收区域的像素集合中像素点的第一数量,以及光斑的像素集合中位于接收区域内的像素点的第二数量。图像处理模块82通过计算第二数量与第一数量的比值,得到光斑覆盖度。
参考图8所示,图像处理模块82在确定了当前图像中光斑覆盖度之后,可以在下一个时间周期检测是否采集到新的图像,若采集到信的图像,则继续对新的图像进行标识物识别、以及光斑识别。图像处理模块82的处理方式与上文描述相同,此处不再赘述。
需要说明的是,图像处理模块82可以将每个图像的处理结果发送给振镜系统调整模块83。具体地,图像处理模块82可以将每个图像中圆环的识别结果、光斑的识别结果、以及图像中光斑在接收区域的覆盖度传输给振镜系统调整模块83,使得振镜系统基于对图像中圆环的识别结果、对光斑的识别结果、以及光斑的覆盖度,对振镜系统进行调整,从而改变光束的发射方向,使得发射端发射的光束可以对准接收端的接收区域。
本申请实施例中,在振镜系统调整模块83中,振镜系统调整模块83可以按照时钟信号对振镜系统进行调节。
参考图8所示,振镜系统调整模块83可以检测时钟信号,当检测到时钟信号时, 振镜系统调整模块83可以根据图像处理模块82发送的最新的图像识别结果,判断当前圆环中心的位置的变化量是否大于或等于第一阈值(即发射端是否移动过大),或者图像中识别出圆环且未识别出光斑。
基于参考图8所示,若当前圆环中心的位置的变化量大于或等于第一阈值,或者图像中识别出圆环且未识别出光斑,则振镜系统调整模块83可以重新计算振镜系统的第一偏转角度,并按照第一偏转角度调整振镜系统,使得光束可以照射到接收中心附近。
这里,参考图8所示,当振镜系统调整模块83按照第一偏转角度调整振镜系统后,可以继续检测时钟信号,进行下一时钟的处理。
另外,若当前圆环中心的位置的变化量小于第一阈值,且图像中识别出圆环和光斑,则振镜系统调整模块83可以判断光斑的位置是否发生变化。这是因为,实际应用中振镜系统调整模块83的时钟信号快于图像处理模块82中图像处理速率,因此,在对振镜系统进行微调时,需要判断当前处理的图像是否为最新的图像。本申请实施例中,可以通过判断光斑的位置是否发生变化,来确定当前处理的图像是否为最新的图像。
若光斑的位置没有发生变化,则当前处理的图像是已经处理过的图像,并不是最新的图像。参考图8所示,若光斑的位置没有发生变化,图像处理模块82可以不对当前的图像进行处理,继续检测时钟信号,进行下一时钟的处理。
若光斑的位置发生变化,则当前处理的图像是未经处理过的图像。参考图8所示,若光斑的位置发生了变化,图像处理模块82可以获取该图像中光斑在接收区域内的覆盖度。进而,图像处理模块82根据光斑覆盖度确定当前接收端的接收区域是否被覆盖。
具体地,若光斑覆盖度小于第二阈值,则图像处理模块82可以确定当前接收区域未被光斑覆盖。参考图8所示,图像处理模块82可以根据光斑中心(即上述实施例中的第三参考点)和接收中心(即上述实施例的第二参考点)之间的距离,对振镜系统进行微调。也就是说,图像处理模块82可以根据光斑中心和接收中心之间的距离,重新确定振镜系统的第二偏转角度,并控制振镜系统按照重新确定的第二偏转角度进行偏转。
若光斑覆盖度大于或等于第二阈值,则图像处理模块82可以确定当前接收区域已被光斑覆盖。此时,参考图8所示,图像处理模块82以不对振镜系统进行微调,图像处理模块82继续检测时钟信号,进行下一时钟的处理。
本申请提供的光束调整方法中,可以通过图像识别技术,识别光斑和接收端的接收区域,根据光斑和接收区域之间的距离对光束进行调整,使得调整后的光束与接收端的接收区域对准,从而提高数据信号的传输准确性和传输效率。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图9是本申请实施例提供的发射端的结构组成示意图一,如图9所示,所述发射端 包括:
光束发射装置11,配置为发射光束;
图像采集装置12,配置为采集图像;
图像处理单元13,配置为识别所述图像中的标识物和/或光斑,所述图像中的标识物对应附着在接收端上的标识物,所述图像中的光斑对应所述光束照射在所述接收端上形成的光斑;
光束调整单元14,配置为基于对所述标识物和/或所述光斑的识别结果,对所述光束发射装置发射的光束进行调整,其中,调整后的光束在所述接收端上形成的光斑与所述接收端的接收区域具有重叠部分。
在一些实施例中,所述光束发射装置11包括:光源、透镜、以及振镜系统;所述光源发射的光束经过所述透镜的透射后传输至所述振镜系统,所述振镜系统用于改变所述光束的传输方向;
所述光束调整单元14,具体配置为基于对所述标识物的识别结果,确定所述振镜系统的第一偏转角度,并控制所述振镜系统按照所述第一偏转角度进行偏转;基于对所述光斑的识别结果,确定所述振镜系统的第二偏转角度,并控制所述振镜系统按照所述第二偏转角度进行偏转。
在一些实施例中,光束调整单元14,还配置为基于所述标识物的识别结果,确定所述标识物中的第一参考点的位置;基于所述第一参考点的位置及第一位置关系,确定所述接收区域内的第二参考点的位置,所述第一位置关系为所述第一参考点与所述第二参考点之间的位置关系;基于所述第二参考点的位置,确定所述第一偏转角度。
在一些实施例中,光束调整单元14,还配置为基于对所述光斑的识别结果确定所述光斑中的第三参考点的位置;基于所述第三参考点的位置和所述第二参考点的位置之间的距离,确定所述第二偏转角度。
在一些实施例中,所述图像处理单元13,还配置为基于所述第二参考点确定图像中的光斑识别区域;对所述图像中的所述光斑识别区域进行二值化处理,得到二值化图像;对所述二值化图像进行滤波处理,得到滤波图像;从所述滤波图像中识别出像素值满足预设像素条件的像素点,将像素值满足所述预设像素条件的像素点组成的像素集合作为所述光斑的像素集合。
在一些实施例中,所述光束调整单元14还配置为若满足第一条件,则重新基于对所述标识物的识别结果确定所述振镜系统的第一偏转角度,并控制所述振镜系统按照重新确定的所述第一偏转角度进行偏转。
在一些实施例中,所述满足第一条件包括以下中的至少一项:
所述第一参考点的位置的变化量大于或等于第一阈值;
从所述图像中识别出所述标识物且未识别出所述光斑。
在一些实施例中,所述光束调整单元14,还配置为基于对所述光斑的识别结果,确定所述接收区域内的光斑覆盖度;若所述光斑覆盖度小于第二阈值,则所述发射端重新确定所述振镜系统的第二偏转角度,并控制所述振镜系统按照重新确定的所述第二偏转角度进行偏转;若所述光斑覆盖度大于或等于第二阈值,则所述发射端停止对所述振镜系统的偏转角度进行调整。
在一些实施例中,所述第一参考点的位置通过第一坐标表示,所述第二参考点的位置通过第二坐标表示,所述第一坐标和所述第二坐标为图像中像素所处的坐标系下的坐标;
光束调整单元14,还配置为基于第一坐标映射关系,将所述第二坐标映射为第一映射坐标,所述第一映射坐标为所述图像采集装置所处的坐标系下的坐标;基于第二坐标 映射关系,将所述第一映射坐标映射为第二映射坐标,所述第二映射坐标为所述光束发射装置所处的坐标系下的坐标;基于所述第二映射坐标,确定所述振镜系统的第一偏转角度。
在一些实施例中,光束调整单元14。还配置为确定所述接收端的移动参数;基于所述接收端的移动参数,以及对所述标识物和/或所述光斑的识别结果对所述光束发射装置发射的光束进行调整。
本领域技术人员应当理解,本申请实施例的上述发射端的相关描述可以参照本申请实施例的光束调整方法的相关描述进行理解。
图10是本申请实施例提供的一种发射端100示意性结构图。图10所示的发射端100包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,发射端100还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图10所示,发射端100还可以包括光束发射装置1030和图像采集装置1040,处理器1010可以控制该光束发射装置1030与接收端进行通信,具体地,可以向接收端发送信息或数据。
其中,处理器1010、存储器1020、束发射装置1030和图像采集装置1040可以通过总线系统通信。
需要说明的是,本申请实施例中的处理器1010中可以集成上述实施例中的图像处理单元和光束调整单元。
发射端100可以实现本申请实施例的各个方法中由发射端实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。示例性的,处理器1110可以控制输入接口1130,接收图像采集装置传输的图像。
可选地,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。示例性的,处理器1110可以控制输出接口1140向光束发射装置输出调整指令,以通过调整指令调整光束发射装置中振镜系统的偏转角度。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的发射端,并且该芯片可以实现本申请实施例的各个方法中由发射端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或 片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的发射端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由发射端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的发射端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由发射端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的发射端,当该计算机程序在计算 机上运行时,使得计算机执行本申请实施例的各个方法中由发射端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (16)

  1. 一种光束调整方法,包括:
    发射端通过光束发射装置发射光束以及通过图像采集装置采集图像;
    所述发射端识别所述图像中的标识物和/或光斑,所述图像中的标识物对应附着在接收端上的标识物,所述图像中的光斑对应所述光束照射在所述接收端上形成的光斑;
    所述发射端基于对所述标识物和/或所述光斑的识别结果,调整所述光束发射装置发射的光束,其中,调整后的光束在所述接收端上形成的光斑与所述接收端的接收区域具有重叠部分。
  2. 根据权利要求1所述的方法,其中,所述光束发射装置包括:光源、透镜、以及振镜系统;所述光源发射的光束经过所述透镜的透射后传输至所述振镜系统,所述振镜系统用于改变所述光束的传输方向;
    所述发射端基于对所述标识物和/或所述光斑的识别结果,调整所述光束发射装置发射的光束,包括:
    所述发射端基于对所述标识物的识别结果,确定所述振镜系统的第一偏转角度,并控制所述振镜系统按照所述第一偏转角度进行偏转;
    所述发射端基于对所述光斑的识别结果,确定所述振镜系统的第二偏转角度,并控制所述振镜系统按照所述第二偏转角度进行偏转。
  3. 根据权利要求2所述的方法,其中,所述发射端基于对所述标识物的识别结果,确定所述振镜系统的第一偏转角度,包括:
    所述发射端基于对所述标识物的识别结果,确定所述标识物中的第一参考点的位置;
    所述发射端基于所述第一参考点的位置及第一位置关系,确定所述接收区域内的第二参考点的位置,所述第一位置关系为所述第一参考点与所述第二参考点之间的位置关系;
    所述发射端基于所述第二参考点的位置,确定所述第一偏转角度。
  4. 根据权利要求3所述的方法,其中,所述发射端基于对所述光斑的识别结果确定所述振镜系统的第二偏转角度,包括:
    所述发射端基于对所述光斑的识别结果,确定所述光斑中的第三参考点的位置;
    所述发射端基于所述第三参考点的位置和所述第二参考点的位置之间的距离,确定所述第二偏转角度。
  5. 根据权利要求3或4所述的方法,其中,所述发射端识别所述图像中的光斑,包括:
    所述发射端基于所述第二参考点确定所述图像中的光斑识别区域;
    所述发射端对所述光斑识别区域进行二值化处理,得到二值化图像;
    所述发射端对所述二值化图像进行滤波处理,得到滤波图像;
    所述发射端从所述滤波图像中识别出像素值满足预设像素条件的像素点,将像素值满足所述预设像素条件的像素点组成的像素集合作为所述光斑的像素集合。
  6. 根据权利要求3至5中任一项所述的方法,其中,所述方法还包括:
    若满足第一条件,则重新基于对所述标识物的识别结果,确定所述第一偏转角度,并控制所述振镜系统按照重新确定的所述第一偏转角度进行偏转。
  7. 根据权利要求6所述的方法,其中,所述满足第一条件包括以下中的至少一项:
    所述第一参考点的位置的变化量大于或等于第一阈值;
    从所述图像中识别出所述标识物且未识别出所述光斑。
  8. 根据权利要求3至7中任一项所述的方法,其中,所述方法还包括:
    所述发射端基于对所述光斑的识别结果,确定所述接收区域内的光斑覆盖度;
    若所述光斑覆盖度小于第二阈值,则所述发射端重新确定所述第二偏转角度,并控制所述振镜系统按照重新确定的所述第二偏转角度进行偏转;
    若所述光斑覆盖度大于或等于第二阈值,则所述发射端停止对所述振镜系统的偏转角度进行调整。
  9. 根据权利要求3至8中任一项所述的方法,其中,所述第一参考点的位置通过第一坐标表示,所述第二参考点的位置通过第二坐标表示,所述第一坐标和所述第二坐标为图像中像素所处的坐标系下的坐标;
    其中,所述发射端基于所述第二参考点的位置,确定所述第一偏转角度,包括:
    所述发射端基于第一坐标映射关系,将所述第二坐标映射为第一映射坐标,所述第一映射坐标为所述图像采集装置所处的坐标系下的坐标;
    所述发射端基于第二坐标映射关系,将所述第一映射坐标映射为第二映射坐标,所述第二映射坐标为所述光束发射装置所处的坐标系下的坐标;
    所述发射端基于所述第二映射坐标,确定所述第一偏转角度。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述发射端基于对所述标识物和/或所述光斑的识别结果,调整所述光束发射装置发射的光束,包括:
    所述发射端确定所述接收端的移动参数;
    所述发射端基于所述接收端的移动参数,以及对所述标识物和/或所述光斑的识别结果,调整所述光束发射装置发射的光束。
  11. 一种发射端,包括:
    光束发射装置,配置为发射光束;
    图像采集装置,配置为采集图像;
    图像处理单元,配置为识别所述图像中的标识物和/或光斑,所述图像中的标识物对应附着在接收端上的标识物,所述图像中的光斑对应所述光束照射在所述接收端上形成的光斑;
    光束调整单元,配置为基于对所述标识物和/或所述光斑的识别结果,调整所述光束发射装置发射的光束,其中,调整后的光束在所述接收端上形成的光斑与所述接收端的接收区域具有重叠部分。
  12. 一种发射端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至10中任一项所述的方法。
  13. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至10中任一项所述的方法。
  14. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  15. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至10中任一项所述的方法。
  16. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
PCT/CN2021/102563 2021-06-25 2021-06-25 光束调整方法及装置、发射端、计算机存储介质 WO2022267068A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180095836.2A CN117044131A (zh) 2021-06-25 2021-06-25 光束调整方法及装置、发射端、计算机存储介质
PCT/CN2021/102563 WO2022267068A1 (zh) 2021-06-25 2021-06-25 光束调整方法及装置、发射端、计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/102563 WO2022267068A1 (zh) 2021-06-25 2021-06-25 光束调整方法及装置、发射端、计算机存储介质

Publications (1)

Publication Number Publication Date
WO2022267068A1 true WO2022267068A1 (zh) 2022-12-29

Family

ID=84545182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102563 WO2022267068A1 (zh) 2021-06-25 2021-06-25 光束调整方法及装置、发射端、计算机存储介质

Country Status (2)

Country Link
CN (1) CN117044131A (zh)
WO (1) WO2022267068A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115884480A (zh) * 2023-02-16 2023-03-31 广州成至智能机器科技有限公司 基于图像处理的多光轴云台灯控制方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229253A (ja) * 2004-02-12 2005-08-25 Olympus Corp 空間光伝送装置
CN108303400A (zh) * 2018-02-12 2018-07-20 北京敏视达雷达有限公司 一种校准大气透射仪的方法及大气透射仪
CN111953417A (zh) * 2020-07-24 2020-11-17 西安理工大学 室内可见光通信自动对准系统及方法
CN112117835A (zh) * 2019-06-19 2020-12-22 华为技术有限公司 一种激光对准方法以及相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229253A (ja) * 2004-02-12 2005-08-25 Olympus Corp 空間光伝送装置
CN108303400A (zh) * 2018-02-12 2018-07-20 北京敏视达雷达有限公司 一种校准大气透射仪的方法及大气透射仪
CN112117835A (zh) * 2019-06-19 2020-12-22 华为技术有限公司 一种激光对准方法以及相关装置
CN111953417A (zh) * 2020-07-24 2020-11-17 西安理工大学 室内可见光通信自动对准系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115884480A (zh) * 2023-02-16 2023-03-31 广州成至智能机器科技有限公司 基于图像处理的多光轴云台灯控制方法、设备及存储介质
CN115884480B (zh) * 2023-02-16 2023-04-28 广州成至智能机器科技有限公司 基于图像处理的多光轴云台灯控制方法、设备及存储介质

Also Published As

Publication number Publication date
CN117044131A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US11153483B2 (en) Shelf-viewing camera with multiple focus depths
WO2020248910A1 (zh) 目标检测方法和装置
CN111507210B (zh) 交通信号灯的识别方法、系统、计算设备和智能车
US20220161430A1 (en) Recharging Control Method of Desktop Robot
US20080088707A1 (en) Image processing apparatus, image processing method, and computer program product
WO2022267068A1 (zh) 光束调整方法及装置、发射端、计算机存储介质
CN115376109B (zh) 障碍物检测方法、障碍物检测装置以及存储介质
US20210051262A1 (en) Camera device and focus method
CN112605993B (zh) 基于双目视觉引导的自动抓取档案机器人控制系统及方法
CN112749643A (zh) 一种障碍物检测方法、装置及系统
CN115729245A (zh) 用于矿区坡道的障碍物融合检测方法、芯片和终端
US11790628B2 (en) Apparatus and method for generating map
US20230367319A1 (en) Intelligent obstacle avoidance method and apparatus based on binocular vision, and non-transitory computer-readable storage medium
CN109587304B (zh) 电子设备和移动平台
CN109803089B (zh) 电子设备和移动平台
CN112911151B (zh) 目标跟随方法、装置、设备、系统及存储介质
JP2020077293A (ja) 区画線検出装置及び区画線検出方法
CN114782496A (zh) 一种对象的跟踪方法、装置、存储介质及电子装置
JP7036464B2 (ja) 物体識別装置、物体識別方法、及び制御プログラム
CN114359766A (zh) 重叠区域的确定方法、目标检测方法、装置、设备和介质
KR20160038971A (ko) 상황정보 기반 콘텐츠 생성을 위한 구간영역 내 이동체 인식 방법 및 시스템
KR102154043B1 (ko) 이동체의 위치 인식을 위한 비전 모듈 및 이동체의 위치 인식 방법
TW201814246A (zh) 影像辨識確定座標與導航裝置
CN114299420A (zh) 一种基于屏幕光通信的定位方法、装置及服务器
US20220215590A1 (en) Multimodal sensor measurement fusion through a combined geometrical approach of time warping and occlusion surface ray projection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946558

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095836.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE