WO2022266897A1 - 电机驱动装置、云台增稳系统及控制方法 - Google Patents

电机驱动装置、云台增稳系统及控制方法 Download PDF

Info

Publication number
WO2022266897A1
WO2022266897A1 PCT/CN2021/101884 CN2021101884W WO2022266897A1 WO 2022266897 A1 WO2022266897 A1 WO 2022266897A1 CN 2021101884 W CN2021101884 W CN 2021101884W WO 2022266897 A1 WO2022266897 A1 WO 2022266897A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory alloy
alloy wire
drive device
motor drive
rotor
Prior art date
Application number
PCT/CN2021/101884
Other languages
English (en)
French (fr)
Inventor
杨镇坡
孙鑫
王平
邱健达
王雨浓
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202180087139.2A priority Critical patent/CN116670613A/zh
Priority to PCT/CN2021/101884 priority patent/WO2022266897A1/zh
Publication of WO2022266897A1 publication Critical patent/WO2022266897A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the present application relates to the technical field of motors, in particular to a motor drive device, a platform stabilization system and a control method.
  • a locking mechanism is usually used to fix the position of the motor to facilitate storage or transportation.
  • Traditional locking mechanisms usually require manual operation to lock the motor.
  • the size of the miniaturized equipment including the motor is usually smaller than the conventional size, so it is difficult to manually operate the locking mechanism of the miniaturized equipment by human hands or fingers.
  • the present application provides a motor drive device, a pan-tilt stabilization system and a control method to lock the motor when the motor is in a non-working state, so as to facilitate the storage and transportation of the motor drive device or its parent equipment.
  • the embodiment of the present application provides a motor drive device, including:
  • an electric machine comprising a stator part and a rotor part rotating relative to said stator part;
  • a locking member for locking the rotor part to prevent the rotor part from rotating relative to the stator part
  • the first memory alloy wire is mechanically coupled with the locking member; when the first memory alloy wire is energized, the length of the first memory alloy wire will be shortened to drive the locking member to move along the first direction slides from a first position to a second position; and
  • the reset part is mechanically coupled with the lock part, and is used to drive the lock part to move along the second movement direction; the reset part can move the lock part from the second position to the first position. Location;
  • the locking member when the motor is in a power-off state, can lock the rotor component at a preset angular position, and the preset angular position is outside the preset working angle range of the rotor component.
  • the embodiment of the present application provides a motor drive device, including:
  • an electric machine comprising a stator part and a rotor part rotating relative to said stator part;
  • a locking member for locking the rotor part to prevent the rotor part from rotating relative to the stator part
  • the first memory alloy wire is mechanically coupled with the lock; when the first memory alloy wire is heated, the length of the first memory alloy wire will change to drive the lock along the first the direction of motion slides from the first position to the second position; and
  • the reset part is mechanically coupled with the lock part, and is used to drive the lock part to move along the second movement direction; the reset part can move the lock part from the second position to the first position. Location;
  • the locking member when the motor is in a power-off state, can lock the rotor component at a preset angle position, and the preset angle position is outside the preset working angle range of the rotor component.
  • the embodiment of the present application provides a control method of a pan-tilt stabilization system, the control method comprising:
  • the power supply to the first memory alloy wire is stopped, so that the reset member drives the lock member to move from the second position along the second movement direction to the first position to lock the rotor component at a preset angular position, the preset angle being outside the preset working angle range.
  • the embodiment of the present application provides a motor drive device, a pan-tilt stabilization system and a control method.
  • the locking part can lock the rotor part of the motor , so as to prevent the rotor part from rotating relative to the stator part in the non-working state, avoid random swinging during storage or transportation, and facilitate the storage and transportation of the motor drive device or the parent equipment including the motor drive device.
  • FIG. 1 is a schematic structural diagram of a motor drive device provided in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a motor drive device provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a first terminal or a second terminal provided by an embodiment of the present application
  • Fig. 4 is the partially enlarged schematic view of Fig. 2 at place A;
  • Fig. 5 is a schematic structural diagram of a closure provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural view of a fixing frame provided in an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a motor drive device provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a reset member provided in an embodiment of the present application.
  • Fig. 9 is a partially enlarged schematic view at B of Fig. 7;
  • Fig. 10 is a schematic structural diagram of a pan-tilt stabilization system provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a control method of a pan-tilt stabilization system provided by an embodiment of the present application.
  • the first memory alloy wire 31. The fixed end; 32. The bending part; 301. The first terminal; 302. The second terminal; 303. The first connecting part; 304. The second connecting part; 305. The fourth matching part ;
  • cloud platform stabilization system 1001, pitch axis mechanism; 1002, translation axis mechanism; 1003, roll axis mechanism; 200, bracket; 300, load.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • a three-axis gimbal usually includes a pitch axis (Pitch axis) motor to control pitch motion, a pan axis (YAW axis) motor to control translation motion, and a roll axis (Roll axis) motor to control roll motion .
  • the three-axis gimbal has a specific working angle range on the pitch axis, pan axis and roll axis.
  • the working angle range of a certain gimbal on the pitch axis is -45° to +135°
  • the The range is -330° to +330°
  • the working angle range of the roll axis is -45° to +45°.
  • the traditional three-axis gimbal has no fixed position or needs to be manually operated to limit the rotation of the three-axis gimbal around the pitch axis, pan axis and/or roll axis in the non-working state. It is not conducive to the storage or transportation of the three-axis gimbal.
  • the embodiment of the present application provides a motor drive device, a pan-tilt stabilization system and a control method, which lock the motor when the motor is in a non-working state, so as to facilitate the storage and transportation of the motor drive device or its parent equipment and the user's carrying and use.
  • a motor driving device 100 provided by an embodiment of the present application includes a motor 10 , a locking part 20 , a first memory alloy wire 30 and a reset part 40 .
  • the motor 10 includes a stator part 11 and a rotor part 12 that rotates relative to the stator part 11 .
  • the locking member 20 is used to lock the rotor part 12 to prevent the rotor part 12 from rotating relative to the stator part 11 .
  • the first memory alloy wire 30 is mechanically coupled with the locking element 20 . When the first memory alloy wire 30 is energized, the length of the first memory alloy wire 30 will shorten, so as to drive the locking member 20 to slide from the first position to the second position along the first moving direction.
  • the reset member 40 is mechanically coupled with the locking member 20 and used to drive the locking member 20 to move along the second movement direction.
  • the reset member 40 can move the locking member 20 from the second position to the first position.
  • the locking member 20 can lock the rotor component 12 at a preset angular position, and the preset angular position is outside the preset working angle range of the rotor component 12 .
  • the locking member 20 can lock the rotor part 12 of the motor 10, thereby preventing the rotor part 12 from facing each other in the non-working state.
  • the stator part 11 rotates to avoid random swinging during storage or transportation, which facilitates the storage and transportation of the motor drive device 100 or parent equipment including the motor drive device 100 as well as the carrying and use of the user.
  • the first memory alloy wire 30 serves as the driving source of the lock piece 20; in the process of the lock piece 20 moving from the second position to the first position Among them, the reset part 40 is used as the driving source of the locking part 20, so as to realize the automatic locking or unlocking of the rotor part 12, improve the control accuracy of the motor drive device 100, and do not need to manually control the sliding of the locking part 20 from the first position to the second position.
  • the location reduces the number of parts for the user to operate the motor drive device 100 and reduces the complexity of the operation.
  • the space occupied by the first memory alloy wire 30 and the reset member 40 is small, and the overall space required by the motor drive device 100 is small, which is beneficial to the miniaturization design of the parent device corresponding to the motor drive device 100 .
  • the overall length of the first memory alloy wire 30 is well controllable, which facilitates adjustment of the connection position and/or angle between the first memory alloy wire 30 and the locking member 20 , and improves the operability of the motor drive device 100 .
  • the motor drive device 100 is applied to a parent device.
  • the parent device may be a vehicle, an aircraft, a robot, a ship, or the gimbal stabilization system 1000 (see FIG. 10 ), etc.
  • the parent device includes a fuselage.
  • the motor 10 is connected to the fuselage.
  • the motor 10 may be the motor of the gimbal stabilization system 1000, and the fuselage may be a part of the gimbal stabilization system 1000, for example, the fuselage includes the bracket 200 in FIG. 10 .
  • the motor 10 may be a motor that is connected to the power assembly of the aircraft, and the fuselage may include the arms of the aircraft.
  • the power assembly of the aircraft is used to provide flight power for the aircraft, which may include a propeller and the motor 10 of any embodiment of the present application.
  • the rotor part 12 of the electric machine 10 is rotatable about a rotation axis relative to the stator part 11 .
  • the working angle range of the rotor component 12 rotating around the rotation axis relative to the stator component 11 is -45° (that is, rotates to 45 degrees counterclockwise) to +45° (that is, rotates to 45 degrees clockwise).
  • the locking member 20 locks the rotor part 12 when the motor is in a non-working state
  • the rotor part 12 rotates around the rotation axis to an angle of -90° (that is, rotates counterclockwise to 90 degrees).
  • the rotor part 12 of the electric machine 10 is rotatable about a rotation axis relative to the stator part 11 .
  • the working angle range of the rotor part 12 rotating around the rotation axis relative to the stator part 11 is -135° (that is, rotates counterclockwise to 135 degrees) to +45° (that is, rotates clockwise to 45 degrees).
  • the locking member 20 locks the rotor part 12 when the motor is in a non-working state
  • the rotor part 12 rotates around the rotation axis to an angle of +90° (that is, rotates clockwise to 90°).
  • the motor 10 may be a linear motor or a rotary motor.
  • the locking component 20 locks the rotor component 12 at a preset angular position.
  • the rotor part 12 of the motor 10 can rotate within its working angle range (such as -135° to +45° in the above-mentioned embodiments).
  • the locking member 20 when the locking member 20 moves to the first position, the locking member 20 can be mechanically coupled with the rotor part 12 to lock the rotor part 12 at a preset angular position, so that the rotor part 12 does not need to rotate Under certain circumstances (such as a non-working state), the rotor component 12 is prevented from rotating relative to the stator component 11 .
  • the locking part 20 When the locking part 20 slides to the second position, the locking part 20 can be separated from the rotor part 12 to unlock the rotor part 12 so that the rotor part 12 can move freely. At this time, the rotor component 12 can rotate relative to the stator component 11 from a preset angular position to within a preset working angle range of the rotor component 12 .
  • the locking part 20 when the locking part 20 moves to the second position, the locking part 20 can be mechanically coupled with the rotor part 12, so that the locking part 20 can lock the rotor part 12 in the non-working state of the rotor part 12.
  • the preset angular position prevents the rotor part 12 from rotating relative to the stator part 11 .
  • the locking part 20 When the locking part 20 moves to the first position, the locking part 20 can be separated from the rotor part 12 to unlock the locking part 20 and the rotor part 12 so that the rotor part 12 can move freely. At this time, the rotor component 12 can rotate relative to the stator component 11 from a preset angular position to within a preset working angle range of the rotor component 12 .
  • the number of first positions may include at least one, such as one, two, three, four or more.
  • the number of second positions may include at least one, such as one, two, three, four or more.
  • the at least one first location may be one or more ranges, not just one or more discrete locations. In other embodiments, the at least one first location may be one or more discrete locations. The same applies to at least one second position, which will not be repeated here.
  • the first memory alloy wire 30 includes two fixed ends 31 , and each fixed end 31 is electrically connected to a power source.
  • each fixed end 31 of the first memory alloy wire 30 can be mechanically coupled to a connection structure on the motor 10 , and the connection structure is connected to a power source, so that the power source can supply power to the first memory alloy wire 30 .
  • the mechanical coupling manner between each fixed end 31 of the first memory alloy wire 30 and the connection structure may be any suitable manner, such as at least one of welding, snap connection, adhesive connection and the like.
  • the power supply can be a circuit, a power supply device of parent equipment such as the aircraft or the gimbal stabilization system 1000 .
  • the two fixed ends 31 of the first memory alloy wire 30 are mechanically coupled to the first terminal 301 and the second terminal 302 respectively, so that the first memory alloy wire 30 is electrically connected to the power source.
  • the conductive connection of the first memory alloy wire 30 is convenient.
  • the first terminal 301 and/or the second terminal 302 includes a first connecting portion 303 and a second connecting portion 304 .
  • the first connecting portion 303 is used for electrical connection with a power source.
  • the second connecting portion 304 is mechanically and electrically connected to the first connecting portion 303 , and is mechanically and electrically connected to the fixed end 31 .
  • the first terminal 301 and the second terminal 302 are mechanically coupled to the circuit board 50 .
  • the circuit board 50 is disposed on the stator part 11 of the motor 10 .
  • the circuit board 50 may be a circuit board of the motor 10 .
  • the circuit board 50 and the circuit board of the motor 10 may also be two physical entities independent of each other, and the circuit board 50 is used to electrically connect the first connecting portion 303 and the power supply.
  • the first connecting portion 303 is mechanically coupled to the circuit board 50 .
  • the circuit board 50 can be electrically connected to a power source.
  • the mechanical coupling manner between the first connecting portion 303 and the circuit board 50 may include at least one of welding, adhesive connection, snap connection and the like.
  • the shape of the first connecting portion 303 can be designed as any suitable shape according to actual needs, which is not limited here.
  • the fixed end 31 may be mechanically coupled to the second connecting portion 304 through at least one of welding, adhesive connection, winding, buckle connection, riveting and the like.
  • the second connecting portion 304 can be designed as any suitable structure according to actual needs, such as including at least one of a protrusion structure, a through-hole structure, and a slot structure.
  • the second connection part 304 includes a second protrusion, and the fixed end 31 is mechanically coupled with the second protrusion.
  • the second connecting portion 304 includes a second through hole or a second slot, and the fixed end 31 passes through the second through hole or the second slot.
  • the fixed end 31 passes through the second through hole or the second slot and is mechanically coupled to the hole wall of the second through hole or the groove wall of the second slot.
  • the first memory alloy wire 30 may extend from the upper surface of the stator component 11 to the lower surface of the stator component 11 .
  • a part of the first memory alloy wire 30 passes through the hole structure on the stator component 11 , and another part of the first memory alloy wire 30 is located on the upper surface of the stator component 11 .
  • the first memory alloy wire 30 located on the upper surface of the stator component 11 is coupled with the locking element 20 to drive the locking element 20 to slide from the first position to the second position. In this way, an additional length can be provided for the first memory alloy wire 30 , thereby providing an additional displacement or moving stroke.
  • the first memory alloy wire 30 is made of at least one of suitable materials including nickel titanium (Nickel titanium or Nitinol), nickel-titanium alloys, copper-aluminum alloys, copper-zinc alloys, and iron alloys. Due to the temperature characteristics of the first memory alloy wire 30, or by controlling the on-off state of the first memory alloy wire 30, the shape and length of the memory alloy wire can be changed, so by controlling the heating of the first memory alloy wire 30 or Depending on the power supply, the position and motion (such as the direction of motion) of the locking member 20 can be controlled to lock or unlock the rotor part 12 of the motor 10.
  • the motor drive device 100 is easy to operate without manual or manual operation.
  • the length of the first memory alloy wire 30 will be shortened, thereby pulling the locking member 20 to the second position.
  • the first memory alloy wire 30 is capable of pushing or otherwise actuating the closure 20 to the second position when energized.
  • the first memory alloy wire 30 may be continuously energized.
  • the first memory alloy wire 30 may not be energized continuously, for example, the first memory alloy wire 30 may be energized intermittently.
  • the first movement direction is opposite to the second movement direction.
  • the first movement direction is arranged radially inwardly of the rotor part 12 close to the axis of the motor 10 .
  • the second direction of motion is arranged radially outwardly of the rotor part 12 away from the axis of the electric machine 10 .
  • the first direction of motion is arranged radially outwardly of the rotor part 12 away from the axis of the electric machine 10 .
  • the second direction of motion is arranged radially inwardly of the rotor part 12 close to the axis of the motor 10 .
  • the motor 10 may be an inner rotor motor or an outer rotor motor or the like.
  • the motor 10 is an inner rotor motor
  • the first movement direction is radially inward toward the axis of the motor 10
  • the second movement direction is radially outward.
  • the stator part 11 of the motor 10 is located in the middle
  • the rotor part 12 of the motor 10 is located on the outer periphery
  • the first direction of motion may be radially outward toward the axis of the motor 10
  • the second direction of motion may be radially inward away from the motor 10 axis.
  • the locking member 20 includes a coupling portion 21 , and the first memory alloy wire 30 drives the locking member 20 to move through the coupling portion 21 .
  • the first memory alloy wire 30 When the first memory alloy wire 30 is energized, it can exert force on the coupling part 21 , thereby driving the locking part 20 to move.
  • the number of coupling parts 21 can be designed according to actual needs, such as one, two, three, four or more.
  • the first memory alloy wire 30 can contact the coupling part 21 when energized, so as to apply force to the coupling part 21 to drive the locking part 20 to move.
  • the coupling part 21 can be designed as any suitable structure according to actual needs, such as including at least one of a protrusion structure, a through-hole structure, or a slot structure.
  • the coupling portion 21 can be coupled with the end of the first memory alloy wire 30, and the first memory alloy wire 30 can shrink along a straight line, thereby driving the lock member 20 to move from the first position to the first position. second position.
  • the coupling portion 21 includes a first protruding portion, and the first memory alloy wire 30 is in contact with the first protruding portion.
  • the first memory alloy wire 30 is energized, the length of the first memory alloy wire 30 is shortened, the first memory alloy wire 30 is in contact with the first protruding part and exerts a force on the first protruding part, thereby driving the locking
  • the member 20 slides from the first position to the second position.
  • the coupling portion 21 includes a first through hole or a first slot, and the first memory alloy wire 30 passes through the first through hole or the first slot.
  • the coupling part 21 includes a first through hole.
  • the shape of the first memory alloy wire 30 includes at least one of W shape, V shape, five-sided arrow shape, straight line shape, coil shape and the like.
  • the first memory alloy wire 30 includes at least one bending portion 32 , such as one, two, three or more.
  • the first memory alloy wire 30 drives the locking member 20 to slide through the bending portion 32 .
  • At least one curved portion 32 forms curves such as a W shape, a V shape, and a five-sided arrow shape together, so as to make full use of the space and facilitate the application of the motor drive device 100 to a miniaturized parent device (such as an aircraft or a gimbal stabilization system 1000, etc.) , and can ensure sufficient driving force and responsiveness.
  • a miniaturized parent device such as an aircraft or a gimbal stabilization system 1000, etc.
  • the shape of the first memory alloy wire 30 includes a V shape, the middle part of the V shape is in contact with the locking member 20 , and the two fixed ends 31 are respectively located at two ends of the V shape.
  • the shape of the first memory alloy wire 30 is V-shaped.
  • the first memory alloy wire 30 is formed with a movable middle portion that is in contact with the coupling portion 21 such that the first memory alloy wire 30 forms a V shape.
  • the removable middle part is located in the middle part of the V shape.
  • only the movable middle portion of the V-shape is movable. In this way, when the first memory alloy wire 30 contracts and passes to the movable middle part of the first memory alloy wire 30, the V-shaped first memory alloy wire 30 can enlarge the displacement or active stroke of the movable middle part as much as possible , so that the movable middle part can drive the coupling part 21 to move in a limited space, so as to slide the locking part 20 from the first position to the second position.
  • the first memory alloy wire 30 adopts a V-shaped design, and the structure design of the motor drive device 100 is compact and occupies a small space.
  • the space of the motor drive device 100 or its parent equipment is limited, it can ensure that the locking member 20 is in the first position. Driven by the memory alloy wire 30, it moves from the first position to the second position.
  • the V-shaped first memory alloy wire 30 can amplify the displacement or movable stroke of the movable middle part as much as possible, thereby enlarging the displacement or movable stroke of the locking member 20 along the first moving direction.
  • the first direction of motion extends from the tip of the V-shape to the open end of the V-shape.
  • the moving direction of the movable middle part of the first memory alloy wire 30 may be along the radial direction of the motor 10 .
  • the moving direction of the movable middle part of the first memory alloy wire 30 may not be along the radial direction of the motor 10 .
  • the transmission mechanism can change the direction of the driving force output by the movable middle part.
  • the locking member 20 includes a first positioning portion 22 , and the rotor component 12 is provided with a first fitting portion 123 .
  • the first positioning portion 22 cooperates with the first matching portion 123 so that the locking member 20 can lock the rotor component 12 at a preset angular position when the rotor component 12 is in a non-working state.
  • the first positioning portion 22 when the locking member 20 moves to the first position, the first positioning portion 22 cooperates or couples with the first matching portion 123 to limit the rotation of the rotor component 12 relative to the stator component 11, so that it will be in a non-working state
  • the rotor part 12 is locked at a preset angular position.
  • the first positioning portion 22 is disengaged or disengaged from the first matching portion 123 , and the rotor component 12 can freely rotate relative to the stator component 11 .
  • the rotor component 12 includes a fixing frame 121 and a rotor 122 .
  • the first matching portion 123 is formed on the fixing frame 121 .
  • the rotor 122 is mechanically coupled with the fixing frame 121 .
  • the fixing frame 121 is used to fix the magnets of the rotor 122 .
  • the fixing frame 121 also rotates with the rotor 122 .
  • the fixing frame 121 can be designed in any suitable shape according to actual needs, such as a ring shape and the like.
  • the mechanical coupling manner between the rotor 122 and the fixing frame 121 includes at least one of welding, riveting, hot melting, buckle connection, adhesive connection, screw locking and the like.
  • the first matching portion 123 may be integrally formed with the fixing frame 121 .
  • the first mating portion 123 and the fixing frame 121 can also be provided separately, and the two are mechanically coupled by means of adhesive connection, riveting, hot melting, and the like.
  • the fixing frame 121 may also be omitted, and the first matching portion 123 is formed on the rotor 122 .
  • the structures of the first positioning portion 22 and the first matching portion 123 can be designed as any suitable structure.
  • one of the first positioning portion 22 and the first matching portion 123 includes a first groove, and the other includes a first protrusion matched with the first groove.
  • the first protrusion is embedded into the first groove, thereby locking the rotor component 12 at a preset angular position when the motor 10 is in a non-working state.
  • the first positioning portion 22 includes a first groove, and the first matching portion 123 includes a first protrusion matched with the first groove.
  • the first positioning portion 22 includes a first protrusion
  • the first matching portion 123 includes a first groove that fits with the first protrusion.
  • the first protrusion fits closely with the first groove, and at this time the rotor component 12 cannot rotate at any angle relative to the stator component 11 .
  • the first protrusion cooperates with the first groove, and the first groove allows the rotor component 12 to translate and/or rotate within a limited space relative to the stator component 11 .
  • the width of the first groove is greater than the width of the first positioning portion 22 , so that the rotor component 12 can rotate relative to the stator component 11 at a certain angle when the locking member 20 is in the first position.
  • the first positioning portion 22 includes a first protrusion.
  • the first matching portion 123 includes two protrusions 1231 .
  • the two protrusions 1231 are arranged at intervals to form a first groove for matching with the first protrusion.
  • the amount of material used for the rotor component 12 can be reduced, and the weight of the motor 10 can be reduced, which is beneficial to realize the lightness of the motor drive device 100.
  • two protrusions 1231 are arranged at intervals along the circumferential direction of the motor 10 .
  • the first positioning portion 22 is formed with a first slope 221
  • the first matching portion 123 is formed with a second slope 1232 .
  • the first slope 221 cooperates with the second slope 1232 .
  • the first positioning part 22 of the lock part 20 can be disengaged from the first mating part 123 of the rotor part 12, so as to avoid damage to the lock part 20 and/or the rotor part 12 etc.
  • the first slope 221 is parallel or substantially parallel to the second slope 1232 .
  • the first slope 221 may also intersect the second slope 1232 .
  • the shapes of the first slope 221 and the second slope 1232 may both be plane or curved.
  • the structure for protecting the locking member 20 and/or the rotor component 12 may also be any other suitable structure, not limited to the above-mentioned first slope 221 and second slope 1232 .
  • the restoring member 40 includes an elastic member.
  • the elastic member can be elastically deformed to move the locking member 20 from the second position to the first position.
  • the length of the first memory alloy wire 30 will be shortened, so as to drive the lock member 20 to slide from the first position to the second position, and the elastic member is on the lock member 20. Compressed under action.
  • the locking element 20 moves to the second position and stops electrifying the first memory alloy wire 30 , the locking element 20 returns to the first position under the force of the elastic element.
  • the length of the first memory alloy wire 30 will be shortened, so as to drive the lock member 20 to slide from the first position to the second position, and the elastic member is on the lock member 20. Stretched under action.
  • the locking element 20 moves to the second position and stops electrifying the first memory alloy wire 30 , the locking element 20 returns to the first position under the force of the elastic element.
  • the elastic member includes at least one elastic structure among elastic brackets, elastic sheets, springs and the like.
  • the shrapnel may include sheet metal shrapnel and the like.
  • the elastic member is an elastic bracket.
  • the elastic support includes a fixed body 41 and an elastic body 42 .
  • the fixing body 41 is used for fixed connection with the stator part 11, so as to realize the fixing of the elastic member.
  • the elastic body 42 is elastically deformable.
  • the elastic body 42 is connected with the fixed body 41 .
  • the elastic body 42 can be elastically deformed.
  • the mechanical coupling manner between the fixing body 41 and the stator component 11 includes at least one of dispensing, hot melting, riveting, buckling and the like.
  • the lower end of the fixed body 41 is mechanically coupled with the stator part 11 .
  • the locking member 20 when the first memory alloy wire 30 is energized, the locking member 20 can slide from the first position to the second position, and the elastic body 42 is stretched and deformed under the action of the locking member 20 .
  • the locking member 20 moves from the second position to the first position under the elastic restoring force of the elastic body 42 .
  • the locking member 20 when the first memory alloy wire 30 is energized, the locking member 20 can slide from the first position to the second position, and the elastic body 42 is compressed and deformed under the action of the locking member 20 .
  • the locking member 20 moves from the second position to the first position under the elastic restoring force of the elastic body 42 .
  • the elastic body 42 includes a deformation portion 421 and a second positioning portion 422 .
  • One end of the deformation part 421 is connected to the fixed body 41 .
  • the deformation part 421 can be deformed.
  • the second positioning portion 422 is connected to the deformation portion 421 .
  • the locking element 20 is connected to the deformation portion 421 and/or the second positioning portion 422 .
  • the second positioning portion 422 is used to cooperate with the second matching portion 111 on the stator component 11 to limit the movement of the second positioning portion 422 , thereby positioning the locking member 20 at the first position.
  • the second positioning part 422 is coupled with the second matching part 111 on the stator part 11, and can limit the movement of the second positioning part 422 along the circumferential direction of the motor 10, thereby limiting the locking coupling with the second positioning part 422.
  • the component 20 moves along the circumferential direction of the motor 10 , thereby ensuring that the locking component 20 can be accurately positioned to the first position to lock the rotor component 12 .
  • the locking element 20 is mechanically coupled to the second positioning portion 422 .
  • the locking part 20 moves from the first position to the second position, the locking part 20 drives the second positioning part 422 to move, and the deformation part 421 follows the movement of the second positioning part 422 to elastic deformation.
  • the locking element 20 moves to the second position and the first memory alloy wire 30 is de-energized, the locking element 20 returns from the second position to the first position under the action of the elastic restoring force of the deformation portion 421 .
  • the shape of the deformation part 421 can be designed according to actual needs, for example, the shape of the deformation part 421 includes at least one of a curved shape, a sheet shape, and the like.
  • the shape of the deformation portion 421 includes at least one of S-shape, bent shape, arc shape, wave shape and the like.
  • the shape of the deformation part 421 includes a wave shape, so that the deformation part 421 can produce sufficient elastic deformation in a limited space to ensure sufficient driving force of the reset member 40 .
  • the deformation portion 421 is substantially extended along the circumferential direction of the motor 10 .
  • each deformation portion 421 there are two deformation parts 421 and two fixing bodies 41 . Both ends of each deformation portion 421 are respectively connected to the second positioning portion 422 and a fixed body 41 . One ends of the two deformation parts 421 are mechanically coupled to the same second positioning part 422 . In this way, it can ensure that the reset member 40 has sufficient driving force, and can ensure that the second positioning portion 422 moves stably and accurately along the preset moving direction (such as the second moving direction), thereby ensuring that the locking member 20 can be reliably and accurately ground to the first position to lock the rotor member 12.
  • the two deformation parts 421 are symmetrically arranged with respect to the second positioning part 422 . In other implementations, the two deformation parts 421 may also be arranged asymmetrically.
  • the deformation part 421 may be integrally formed with the fixing body 41 .
  • the deformation part 421 may also be mechanically coupled with the fixed body 41 through adhesive connection, riveting, snap connection and the like.
  • the structures of the second positioning portion 422 and the second matching portion 111 can be designed as any suitable structure.
  • one of the second positioning portion 422 and the second matching portion 111 includes a second groove, and the other includes a second protrusion matching the second groove, and the second protrusion can be embedded in the second groove.
  • the second positioning portion 422 includes a second groove
  • the second matching portion 111 includes a second protrusion matching the second groove.
  • the second matching portion 111 includes a second groove
  • the second positioning portion 422 includes a second protrusion that fits into the second groove.
  • the second positioning portion 422 is coupled with the second matching portion 111
  • the first positioning portion 22 of the locking member 20 is coupled with the first matching portion 123 of the rotor component 12 Coupled, the rotor part 12 is locked.
  • the second positioning part 422 is at least partly separated from the second matching part 111 , and the first positioning part 22 of the locking part 20 and the first matching part 123 of the rotor component 12 After decoupling, the rotor part 12 is unlocked, and the rotor part 12 can rotate freely relative to the stator part 11 .
  • the surface of the second positioning portion 422 used to cooperate with the second matching portion 111 includes a smooth transition surface or a non-smooth transition surface.
  • the surface of the second positioning portion 422 for matching with the second matching portion 111 includes an arc surface.
  • the second positioning portion 422 includes a first positioning sub-portion 4221 and a second positioning sub-portion 4222 .
  • the first positioning part 4221 is connected with the deformation part 421 .
  • the second positioning part 4222 is connected to one end of the first positioning part 4221 .
  • the extending dimension of the second positioning part 4222 along the circumferential direction of the motor 10 is greater than the extending dimension of the first positioning part 4221 along the circumferential direction of the motor 10 .
  • the shape of the second matching portion 111 is adapted to the shape of the second positioning portion 422 .
  • the first positioning part 4221 cooperates with the second positioning part 4222 to form an inverted T shape
  • the inverted T-shaped second positioning part 422 is coupled with the inverted T-shaped second matching part 111, so that the reset member can be prevented from 40 moves upward relative to the stator part 11 along the axial direction of the motor 10, providing a guarantee for reliable and stable locking of the rotor part 12.
  • the first positioning part 4221 and the second positioning part 4222 are integrally formed.
  • the second positioning portion 422 is formed with a third matching portion 4223
  • the lock member 20 is formed with a third positioning portion 23 that cooperates with the third matching portion 4223 , to locate the locking member 20 .
  • the locking part 20 can drive the second positioning part 422 to move, so that the deformation part 421 becomes elastic deformation.
  • the second positioning part 422 drives the locking part 20 to move from the second position to the first position under the action of the elastic force of the deformation part 421 .
  • one of the third matching portion 4223 and the third positioning portion 23 includes a third groove, and the other includes a third protrusion that cooperates with the third groove , the third protrusion is embedded in the third groove.
  • the third matching portion 4223 includes a third groove
  • the third positioning portion 23 includes a third protrusion matching with the third groove.
  • the third positioning portion 23 includes a third groove
  • the third matching portion 4223 includes a third protrusion that fits into the third groove.
  • a fourth positioning portion 411 is formed on the fixed body 41 , and the fourth positioning portion 411 is positioned and matched with the fourth matching portion 305 of the first terminal 301 or the second terminal 302 , so that the first memory alloy wire 30 is fixedly connected to the stator component 11 indirectly.
  • the fourth positioning part 411 is mechanically coupled to the fourth matching part 305 , such as mechanically coupled by at least one of dispensing, hot melting, riveting, etc., so as to realize the positioning and fixing of the two.
  • one of the fourth matching portion 305 and the fourth positioning portion 411 includes a hole or a fourth groove, and the other includes a fourth protrusion, and the fourth protrusion is embedded in the hole or the fourth groove .
  • the fourth matching portion 305 includes a hole or a fourth groove
  • the fourth positioning portion 411 includes a fourth protrusion.
  • the fourth positioning portion 411 includes a hole or a fourth groove
  • the fourth matching portion 305 includes a fourth protrusion.
  • the reset member 40 includes a second memory alloy wire.
  • the second memory alloy wire When the second memory alloy wire is energized, the length of the second memory alloy wire will be shortened to drive the locking part 20 to move from the second position to the first position.
  • the first memory alloy wire 30 and the second memory alloy wire are used as driving sources to drive the locking member 20 to move between the first position and the second position.
  • the space occupied by the first memory alloy wire 30 and the second memory alloy wire is small, and the space required by the motor drive device 100 as a whole is small, which is conducive to the miniaturization design of the parent device corresponding to the motor drive device 100, and can improve the motor drive.
  • the control precision and operability of the device 100 do not need to manually control the movement of the locking member 20 between the first position and the second position, which reduces the number of components of the motor drive device 100 manually operated by the user, and reduces operational complexity.
  • the position and motion (such as the direction of motion) of the locking member 20 can be controlled, thereby automatically locking or unlocking the motor 10.
  • the operation of the rotor part 12 and the motor drive device 100 is convenient without manual or manual operation.
  • the structural design, material, principle, etc. of the second memory alloy wire can refer to the first memory alloy wire 30 in any embodiment of the present application, and will not be repeated here.
  • the motor driving device 100 further includes a processor (not shown in the figure), configured to control the on-off state of the first memory alloy wire 30 .
  • the number of processors may include one or more, such as one, two or more.
  • one or more processors are used to control the working state of the motor 10 and the on-off state of the first memory alloy wire 30 .
  • the one or more processors include a first controller and a second controller.
  • the first controller is used to control the working state of the motor 10 .
  • the second controller is used to control the on-off state of the first memory alloy wire 30 .
  • one or more processors may include only one controller, which can control the working state of the motor 10 and the on-off state of the first memory alloy wire 30, that is, control the operation of the motor 10
  • the state controller and the controller of the on-off state of the first memory alloy wire 30 are the same controller.
  • the processor is electrically connected to the first memory alloy wire 30 and/or the second memory alloy wire.
  • the processor or the second controller can control the energization and/or current magnitude of the first memory alloy wire 30, so that the first memory alloy wire 30 drives the lock member 20 to move to the second position, so that the motor 10
  • the rotor part is locked in a preset angular position or the rotor part is unlocked.
  • the processor or the second controller may be a remote controller.
  • the processor or the second controller may also be a circuit structure provided on the parent device, such as a circuit board.
  • the user can simply operate the processor or the second controller to switch the motor drive device 100 from the first position to the second position, so as to electrically control the movement of the locking member 20 to the second position, without manually finding and Press any button to mechanically lock the rotor part of the motor 10 or to unlock the rotor part.
  • the locking member 20 locks the rotor part 12 of the motor 10 .
  • the stator component 11 is provided with a position detection element for detecting the position information of the locking member 20 , and the position information is used to control power supply or power failure to the first memory alloy wire 30 .
  • the position detection element is in signal connection with the processor.
  • the position detecting element detects the position information of the lock member 20 and sends the position information to the processor. After the processor receives the position information, it controls to power on or off the first memory alloy wire 30, thereby controlling the movement of the locking member 20.
  • the arrangement of the position detection element can realize the locking or unlocking of the closed control rotor part 12 and control the movement of the locking member 20 more precisely.
  • the position detection element includes at least one of a photoelectric switch, a position sensor and the like.
  • the rotor component 12 forms a limiting channel (not shown), and the first positioning portion 22 of the locking member 20 can move along the limiting channel, thereby restricting the locking member 20 from moving along a predetermined path.
  • the preset path can be designed according to actual requirements, such as a straight path or a curved path.
  • the rotor part 12 can rotate relative to the stator part 11 within a preset working angle range.
  • the locking member 20 in the first position will interfere with the rotation of the rotor part 12, and it is difficult for the rotor part 12 to rotate to a preset angle position (outside the preset working angle range) relative to the stator part 11. For this reason, when the motor 10 is in a non-working state, power is supplied to the first memory alloy wire 30, so that the length of the first memory alloy wire 30 is shortened, thereby applying a force to the lock member 20 to drive the lock member 20 along the first The moving direction slides from the first position to the second position, and the restoring member 40 is compressed or stretched under the action of the locking member 20 to generate elastic deformation. At this time, the rotor component 12 in the non-working state can rotate to a preset angular position relative to the stator component 11 , and the locking member 20 at the second position will not interfere with the rotation of the rotor component 12 .
  • the rotor part 12 When the motor 10 is in the non-working state and the locking member 20 moves to the second position, the rotor part 12 is rotated to a preset angle position relative to the stator part 11 in a preset direction (such as the +90° position in the above-mentioned embodiment ). After the rotor part 12 rotates to the preset angle position, the power supply to the first memory alloy wire 30 is stopped. At this time, the reset member 40 is stretched or compressed, and the locking member 20 is moved from the second movement direction under the action of the reset member 40 to When the second position moves to the first position, the first positioning portion 22 of the locking member 20 is coupled with the first matching portion 123 of the stator component 11 , and the rotor component 12 is locked at a preset angular position.
  • a preset angle position relative to the stator part 11 in a preset direction (such as the +90° position in the above-mentioned embodiment ).
  • the rotor component 12 is controlled to rotate to a preset angular position relative to the stator component 11 . In this way, when the locking member 20 moves to the first position under the action of the reset member 40 , the locking member 20 can be coupled with the rotor component 12 , which provides guarantee for locking the rotor component 12 .
  • the locking part 20 is decoupled from the rotor part 12, the rotor part 12 is unlocked, and the rotor part 12 can rotate from the preset angle position to any suitable angle within the preset working angle range relative to the stator part 11, and can be rotated in its Rotate within the working angle range.
  • the embodiment of the present application also provides a motor driving device 100 , including a motor 10 , a locking part 20 , a first memory alloy wire 30 and a reset part 40 .
  • the motor 10 includes a stator part 11 and a rotor part 12 that rotates relative to the stator part 11 .
  • the locking member 20 is used to lock the rotor part 12 to prevent the rotor part 12 from rotating relative to the stator part 11 .
  • the first memory alloy wire 30 is mechanically coupled with the locking element 20 . When the first memory alloy wire 30 is heated, the length of the first memory alloy wire 30 will change, so as to drive the locking member 20 to slide from the first position to the second position along the first moving direction.
  • the reset member 40 is mechanically coupled with the locking member 20 and used to drive the locking member 20 to move along the second movement direction.
  • the reset member 40 can move the locking member 20 from the second position to the first position.
  • the locking member 20 can lock the rotor component 12 at a preset angular position.
  • the preset angular position is outside the preset operating angular range of the rotor component 12 .
  • the length of the first memory alloy wire 30 will be shortened to drive the locking member 20 to slide from the first position to the second position.
  • the first memory alloy wire 30 can be heated by a heater.
  • the first memory alloy wire 30 may be energized, so as to heat the first memory alloy wire 30 .
  • the specific structure of the motor driving device 100 refers to the motor driving device 100 in any of the above-mentioned embodiments.
  • the locking member 20 can lock the rotor part 12 of the motor 10, thereby preventing the rotor part 12 from facing each other in the non-working state.
  • the stator part 11 rotates to avoid random swinging during storage or transportation, which facilitates the storage and transportation of the motor drive device 100 or parent equipment including the motor drive device 100 as well as the carrying and use of the user.
  • the first memory alloy wire 30 serves as the driving source of the lock piece 20; in the process of the lock piece 20 moving from the second position to the first position Among them, the reset part 40 is used as the driving source of the locking part 20, so as to realize the automatic locking or unlocking of the rotor part 12, improve the control accuracy of the motor drive device 100, and do not need to manually control the sliding of the locking part 20 from the first position to the second position.
  • the location reduces the number of parts for the user to operate the motor drive device 100 and reduces the complexity of the operation.
  • the space occupied by the first memory alloy wire 30 and the reset member 40 is small, and the overall space required by the motor drive device 100 is small, which is conducive to the miniaturization design of the parent device corresponding to the motor drive device 100.
  • the overall length of the first memory alloy wire 30 is well controllable, which facilitates adjustment of the connection position and/or angle between the first memory alloy wire 30 and the locking member 20 , and improves the operability of the motor drive device 100 .
  • the embodiment of the present application provides a gimbal stabilization system 1000 , including one or more rotating shaft mechanisms for adjusting the attitude angle of the payload 300 of the gimbal stabilization system 1000 .
  • the rotating shaft mechanism includes a bracket 200 and the motor driving device 100 of any one of the above-mentioned embodiments.
  • the bracket 200 is used to drive the load 300 to rotate.
  • the bracket 200 is coupled with the rotor component 12 and rotates together with the rotor component 12 .
  • the locking member 20 can lock the rotor part 12 of the motor of the rotating shaft mechanism, such as the pitch axis motor and the translation axis motor Or the rotor part of the rolling axis motor is locked to avoid random swinging during storage or transportation, which is convenient for the storage and transportation of the gimbal stabilization system 1000 and the carrying and use of the user.
  • the first memory alloy wire 30 serves as the driving source of the lock piece 20; in the process of the lock piece 20 moving from the second position to the first position Among them, the reset part 40 is used as the driving source of the locking part 20, and the automatic locking or unlocking of the rotor part 12 is realized without increasing the external dimensions of the motor 10, which improves the control accuracy of the pan-tilt stabilization system 1000 without manual control
  • the locking member 20 slides from the first position to the second position, which reduces the number of components for the user to operate the pan-tilt stabilization system 1000 , and reduces the complexity of the operation.
  • the space occupied by the first memory alloy wire 30 and the reset member 40 is small, and the overall space required by the gimbal stabilization system 1000 is small, which is beneficial to the miniaturization design of the gimbal stabilization system 1000 .
  • the overall length of the first memory alloy wire 30 is well controllable, and it is convenient to adjust the connection position relationship and/or angle between the first memory alloy wire 30 and the lock member 20, which improves the operability of the gimbal stabilization system 1000 .
  • the rotation axis mechanism is a pitch axis (Pitch axis) mechanism 1001 , a translation axis (YAW axis) mechanism 1002 , or a roll axis (Roll axis) mechanism 1003 .
  • Pitch axis pitch axis
  • YAW axis translation axis
  • Roll axis roll axis
  • the translation axis mechanism 1002 includes a bracket 200 and a corresponding motor drive device 100, through which the translation axis locking of the gimbal stabilization system 1000 in a non-working state can be performed, that is, the motor drive device 100 can limit the The platform stabilization system 1000 rotates around the translation axis in the non-working state.
  • a gimbal stabilization system 1000 includes a pitch axis mechanism 1001 , a translation axis mechanism 1002 and a roll axis mechanism 1003 .
  • Each of the pitch axis mechanism 1001, the pan axis mechanism 1002, and the roll axis mechanism 1003 includes a bracket 200 and a corresponding motor drive device 100, and at least one of the pitch axis mechanism 1001, the pan axis mechanism 1002, and the roll axis mechanism 1003
  • the locking member 20 locks the rotor part 12 of the motor 10 when the motor 10 is in a power-off state.
  • the gimbal stabilization system 1000 is a three-axis gimbal stabilization system.
  • Pitch axis mechanism 1001 may be used to mount payload 300 .
  • the motor 10 in the pitch axis mechanism 1001 drives the load 300 to perform a pitch motion around the pitch axis.
  • the pitch axis mechanism 1001 is installed on the roll axis mechanism 1003 .
  • the motor 10 in the rolling axis mechanism 1003 drives the load 300 to perform rolling motion around the rolling axis;
  • the roll axis mechanism 1003 is installed on the translation axis mechanism 1002 .
  • the motor 10 in the translation axis mechanism 1002 controls the load 300 to perform translational motion around the translation axis. It can be understood that, in other implementation manners, the mechanical coupling manner among the pitch axis mechanism 1001 , the translation axis mechanism 1002 and the roll axis mechanism 1003 may also be in other manners, which is not limited here.
  • one of the pitch axis mechanism 1001 , the pan axis mechanism 1002 and the roll axis mechanism 1003 in the three-axis gimbal stabilization system includes a bracket 200 and a corresponding motor drive device 100 .
  • the translation axis mechanism 1002 includes a bracket 200 and a corresponding motor drive device 100 .
  • two of the pitch axis mechanism 1001 , the pan axis mechanism 1002 and the roll axis mechanism 1003 in the three-axis gimbal stabilization system include the bracket 200 and the corresponding motor drive device 100 .
  • each of the pitch axis mechanism 1001 and the translation axis mechanism 1002 includes a bracket 200 and a corresponding motor drive device 100 .
  • At least one of the two rotating shaft mechanisms of the two-axis gimbal stabilization system includes a bracket 200 and a corresponding motor drive device 100 .
  • the translation axis mechanism 1002 of the two-axis gimbal stabilization system includes a bracket 200 and a corresponding motor drive device 100 , through which the translation axis locking of the two-axis gimbal stabilization system in a non-working state can be performed.
  • the working angle range of the pitch axis mechanism 1001 around the roll axis is -45° (that is, rotates to 45 degrees counterclockwise) to +45° (that is, rotates to 45 degrees clockwise).
  • the pitch axis mechanism 1001 rotates around the roll axis to an angle of -90° (ie rotates counterclockwise to 90°).
  • the working angle range of the payload 300 around the pitch axis is -135° (that is, rotates counterclockwise to 135 degrees) to +45° (that is, rotates clockwise to 45 degrees).
  • the angle at which the load 300 rotates around the pitch axis is +90° (that is, rotates clockwise to 90°).
  • the locking component 20 can move to the first first position or second position.
  • the locking member 20 can move to the first position under the action of the reset member 40, thereby preventing the bracket 200 from rotating and damaging people or objects in the environment.
  • the motor driving device 100 can be used to reduce the degrees of freedom of the load 300 or the gimbal stabilization system 1000 .
  • the user can selectively lock the motor 10 connected between the two brackets 200 to prevent relative rotation between the two brackets 200 .
  • the two locked supports 200 can be used as a rigid support, thereby reducing one or more degrees of freedom.
  • the rotating shaft mechanism connected to the load 300 may also omit the support 200, and the load 300 is directly mounted on the rotor part 12 of the motor 10 of the corresponding rotating shaft mechanism.
  • pan-tilt stabilization system 1000 locking the rotor part 12 of the motor 10 of a certain rotating shaft mechanism.
  • the rotor part 12 of the motor 10 can rotate within its working angle range (such as -135° to +45° in the above-mentioned embodiment), thereby improving the stability of the pan/tilt stabilization system 1000.
  • Load 300 for stabilization is a working angle range (such as -135° to +45° in the above-mentioned embodiment).
  • the locking member 20 in the first position will interfere with the rotation of the rotor part 12, and it is difficult for the rotor part 12 to rotate to a preset angle position relative to the stator part 11 (in the preset working angle range other than). For this reason, when the gimbal stabilization system 1000 is in a non-working state, power is supplied to the first memory alloy wire 30, so that the length of the first memory alloy wire 30 is shortened, thereby applying force to the lock member 20 to drive the lock member 20 slides from the first position to the second position along the first movement direction, and the reset member 40 is compressed or elongated under the action of the locking member 20 to produce elastic deformation. At this time, the rotor component 12 in the non-working state can rotate to a preset angular position relative to the stator component 11 , and the locking member 20 at the second position will not interfere with the rotation of the rotor component 12 .
  • the rotor part 12 When the pan/tilt stabilization system 1000 is in the non-working state and the locking member 20 moves to the second position, the rotor part 12 is rotated to a preset angle position relative to the stator part 11 in a preset direction (such as + in the above-mentioned embodiment) 90° position). After the rotor part 12 rotates to the preset angle position, the power supply to the first memory alloy wire 30 is stopped. At this time, the reset member 40 is stretched or compressed, and the locking member 20 moves along the second movement direction under the action of the reset member 40. Moving from the second position to the first position, the first positioning portion 22 of the locking member 20 is coupled with the first matching portion 123 of the stator component 11 , and the rotor component 12 is locked at a preset angular position.
  • a preset angle position relative to the stator part 11 in a preset direction (such as + in the above-mentioned embodiment) 90° position.
  • the rotor component 12 is controlled to rotate to a preset angular position relative to the stator component 11 . In this way, when the locking member 20 moves to the first position under the action of the reset member 40 , the locking member 20 can be coupled with the rotor component 12 , which provides guarantee for locking the rotor component 12 .
  • the gimbal stabilization system 1000 when the gimbal stabilization system 1000 needs to switch from the non-working state to the working state, power is supplied to the first memory alloy wire 30, so that the length of the first memory alloy wire 30 is shortened, thereby driving the locking
  • the member 20 slides from the first position to the second position along the first movement direction.
  • the locking part 20 is decoupled from the rotor part 12, the rotor part 12 is unlocked, and the rotor part 12 can rotate from the preset angle position to any suitable angle within the preset working angle range relative to the stator part 11, and can be rotated in its Rotate within the working angle range.
  • the embodiment of the present application also provides a control method of the pan-tilt stabilization system 1000, the control method includes steps S101 to S103.
  • the gimbal stabilization system 1000 includes the gimbal stabilization system 1000 of any one of the above-mentioned embodiments.
  • the locking member 20 can lock the rotor part 12 of the motor of the rotating shaft mechanism, such as the pitch axis motor, pan axis motor or roll axis
  • the rotor part of the motor is locked to avoid random swinging during storage or transportation, which facilitates the storage and transportation of the pan/tilt stabilization system 1000 as well as the carrying and use of the user.
  • the first memory alloy wire 30 serves as the driving source of the lock piece 20; in the process of the lock piece 20 moving from the second position to the first position Among them, the reset part 40 is used as the driving source of the locking part 20, and the automatic locking or unlocking of the rotor part 12 is realized without increasing the external dimensions of the motor 10, which improves the control accuracy of the pan-tilt stabilization system 1000 without manual control
  • the locking member 20 slides from the first position to the second position, which reduces the number of components for the user to operate the pan-tilt stabilization system 1000 , and reduces the complexity of the operation.
  • the space occupied by the first memory alloy wire 30 and the reset member 40 is small, and the overall space required by the gimbal stabilization system 1000 is small, which is beneficial to the miniaturization design of the gimbal stabilization system 1000 .
  • the overall length of the first memory alloy wire 30 is well controllable, and it is convenient to adjust the connection position relationship and/or angle between the first memory alloy wire 30 and the lock member 20, which improves the operability of the gimbal stabilization system 1000 .
  • control method also includes:
  • Power is supplied to the first memory alloy wire 30 , so that the length of the first memory alloy wire 30 is shortened, thereby driving the locking member 20 to slide from the first position to the second position along the first moving direction, thereby unlocking the rotor component 12 .
  • control method also includes:
  • the rotor component 12 is controlled to rotate to a preset angular position.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two elements or the interaction relationship between two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • a first feature being “on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • "Below”, “under” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种电机驱动装置(100),包括电机(10)、锁合件(20)、第一记忆合金线(30)和复位件(40);锁合件(20)用于锁定电机(10)的转子部件(12),以阻止转子部件(12)相对于电机(10)的定子部件(11)转动;第一记忆合金线(30)与锁合件(20)机械耦合;第一记忆合金线(30)在被通电时,第一记忆合金线(30)的长度缩短以带动锁合件(20)从第一位置滑动至第二位置;复位件(40)与锁合件(20)机械耦合,复位件(40)能够将锁合件(20)从第二位置运动至第一位置;在电机(10)断电状态下,锁合件(20)能够将转子部件(12)锁定在预设角度位置,预设角度位置在转子部件(12)的预设工作角度范围外。还涉及云台增稳系统(1000)及控制方法。

Description

电机驱动装置、云台增稳系统及控制方法 技术领域
本申请涉及电机技术领域,尤其涉及一种电机驱动装置、云台增稳系统及控制方法。
背景技术
电机在非工作状态下通常会采用锁定机构对电机进行位置固定,以方便存放或者运输。传统的锁定机构,通常需要手动操作而锁定电机。但由于小型化要求,包括电机的小型化设备的尺寸通常比常规尺寸小,因而难以通过人的手或者手指手动操作小型化设备的锁定机构。
发明内容
本申请提供了一种电机驱动装置、云台增稳系统及控制方法,以在电机处于非工作状态下时锁定电机,方便电机驱动装置或者其父设备的存放、运输。
第一方面,本申请实施例提供了一种电机驱动装置,包括:
电机,包括定子部件以及相对于所述定子部件转动的转子部件;
锁合件,用于锁定所述转子部件,以阻止所述转子部件相对于所述定子部件转动;
第一记忆合金线,与所述锁合件机械耦合;所述第一记忆合金线在被通电时,所述第一记忆合金线的长度会缩短,以带动所述锁合件沿第一运动方向从第一位置滑动至第二位置;以及
复位件,与所述锁合件机械耦合,用于带动所述锁合件沿第二运动方向运动;所述复位件能够将所述锁合件从所述第二位置运动至所述第一位置;
其中,在所述电机处于断电状态下,所述锁合件能够将所述转子部件锁定在预设角度位置,所述预设角度位置位于所述转子部件的预设工作角度范围之 外。
第二方面,本申请实施例提供了一种电机驱动装置,包括:
电机,包括定子部件以及相对于所述定子部件转动的转子部件;
锁合件,用于锁定所述转子部件,以阻止所述转子部件相对于所述定子部件转动;
第一记忆合金线,与所述锁合件机械耦合;所述第一记忆合金线在被加热时,所述第一记忆合金线的长度会发生改变,以带动所述锁合件沿第一运动方向从第一位置滑动至第二位置;以及
复位件,与所述锁合件机械耦合,用于带动所述锁合件沿第二运动方向运动;所述复位件能够将所述锁合件从所述第二位置运动至所述第一位置;
其中,在所述电机处于断电状态下,所述锁合件能够将所述转子部件锁定在预设角度位置,所述预设角度位置位于所述转子部件的预设工作角度范围之外。
第三方面,本申请实施例提供了一种云台增稳系统的控制方法,所述控制方法包括:
控制电机的转子部件在预设工作角度范围内转动,以对所述云台增稳系统的负载进行增稳;
对所述云台增稳系统的电机驱动装置的第一记忆合金线供电,以使得所述第一记忆合金线的长度缩短,从而带动所述电机驱动装置的锁合件沿第一运动方向从第一位置滑动至第二位置;
当所述电机的转子部件转动至预设角度位置时,停止对所述第一记忆合金线供电,以使得所述复位件带动所述锁合件沿第二运动方向从所述第二位置运动至所述第一位置,以将所述转子部件锁定在预设角度位置,所述预设角度位于所述预设工作角度范围外。
本申请实施例提供了一种电机驱动装置、云台增稳系统及控制方法,该电机驱动装置,在第一记忆合金线或者复位件的作用下,锁合件能够对电机的转子部件进行锁定,从而阻止转子部件在非工作状态下相对定子部件转动,避免在存放或运输过程中发生随意摆动,方便电机驱动装置或者包括电机驱动装置的父设备的存放、运输。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电机驱动装置的结构示意图;
图2是本申请实施例提供的一种电机驱动装置的结构示意图;
图3是本申请实施例提供的一种第一端子或者第二端子的结构示意图;
图4是图2在A处的局部放大示意图;
图5是本申请实施例提供的一种锁合件的结构示意图;
图6是本申请实施例提供的一种固定架的结构示意图;
图7是本申请实施例提供的一种电机驱动装置的结构示意图;
图8是本申请实施例提供的一种复位件的结构示意图;
图9是图7在B处的局部放大示意图;
图10是本申请实施例提供的一种云台增稳系统的结构示意图;
图11是本申请实施例提供的一种云台增稳系统的控制方法的示意图。
附图标记说明:
100、电机驱动装置;
10、电机;11、定子部件;111、第二配合部;12、转子部件;121、固定架;122、转子;123、第一配合部;1231、凸部;1232、第二斜面;
20、锁合件;21、耦接部;22、第一定位部;221、第一斜面;23、第三定位部;
30、第一记忆合金线;31、固定端;32、弯曲部;301、第一端子;302、第二端子;303、第一连接部;304、第二连接部;305、第四配合部;
40、复位件;41、固定体;411、第四定位部;42、弹性体;421、形变部;422、第二定位部;4221、第一定位子部;4222、第二定位子部;4223、第三配 合部;
50、电路板;
1000、云台增稳系统;1001、俯仰轴机构;1002、平移轴机构;1003、横滚轴机构;200、支架;300、负载。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
还应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
本申请的发明人发现,三轴云台通常包括控制俯仰运动的俯仰轴(Pitch轴)电机、控制平移运动的平移轴(YAW轴)电机以及控制横滚运动的横滚轴 (Roll轴)电机。通常三轴云台在俯仰轴、平移轴与横滚轴均与特定的工作角度范围,例如,某云台在俯仰轴的工作角度范围为-45°至+135°,在平移轴的工作角度范围为-330°至+330°,在横滚轴的工作角度范围为-45°至+45°。然而传统的三轴云台,在非工作状态下,没有确定的位置固定或者需要通过手动操作限制三轴云台在非工作状态下发生绕俯仰轴、平移轴和/或横滚轴的转动,不利于三轴云台的存放或者运输。
为此,本申请实施例提供一种电机驱动装置、云台增稳系统及控制方法,在电机处于非工作状态下时锁定电机,方便电机驱动装置或者其父设备的存放、运输以及用户的携带和使用。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,本申请实施例提供的一种电机驱动装置100,包括电机10、锁合件20、第一记忆合金线30和复位件40。电机10包括定子部件11以及相对于定子部件11转动的转子部件12。锁合件20用于锁定转子部件12,以阻止转子部件12相对于定子部件11转动。第一记忆合金线30与锁合件20机械耦合。第一记忆合金线30在被通电时,第一记忆合金线30的长度会缩短,以带动锁合件20沿第一运动方向从第一位置滑动至第二位置。复位件40与锁合件20机械耦合,用于带动锁合件20沿第二运动方向运动。复位件40能够将锁合件20从第二位置运动至第一位置。其中,在电机10处于断电状态下,锁合件20能够将转子部件12锁定在预设角度位置,预设角度位置位于转子部件12的预设工作角度范围之外。
上述实施例的电机驱动装置100,在第一记忆合金线30或者复位件40的作用下,锁合件20能够对电机10的转子部件12进行锁定,从而阻止转子部件12在非工作状态下相对定子部件11转动,避免在存放或运输过程中发生随意摆动,方便电机驱动装置100或者包括电机驱动装置100的父设备的存放、运输以及用户的携带和使用。
另外,锁合件20从第一位置滑动至第二位置的过程中,第一记忆合金线30作为锁合件20的驱动源;在锁合件20从第二位置运动至第一位置的过程中,复位件40作为锁合件20的驱动源,从而实现转子部件12的自动锁定或者解锁,提高了电机驱动装置100的控制精度,无需手动控制锁合件20从第一位置滑动 至第二位置,减少了用户操作电机驱动装置100的部件的数量,降低了操作复杂性。第一记忆合金线30和复位件40所占据的空间小,电机驱动装置100整体所需的空间小,有利于电机驱动装置100对应的父设备的小型化设计。此外,第一记忆合金线30的总体长度可控性好,方便调节第一记忆合金线30与锁合件20的连接位置关系和/或角度,提高了电机驱动装置100的可操作性。
在一些实施例中,电机驱动装置100应用于父设备。该父设备可以是车辆、飞行器、机器人、船舶或者云台增稳系统1000(请参阅图10)等。示例性地,父设备包括机身。电机10连接于机身。比如,电机10可以是云台增稳系统1000的电机,机身可以是云台增稳系统1000的一部分,如机身包括图10中的支架200。又如,电机10可以是与飞行器的动力组件的电机,机身可以包括飞行器的机臂。飞行器的动力组件用于为飞行器提供飞行动力,其可以包括螺旋桨和本申请任意一个实施例的电机10。
示例性地,电机10的转子部件12能够相对定子部件11绕旋转轴旋转。转子部件12相对定子部件11绕旋转轴旋转的工作角度范围为-45°(即逆时针旋转至45度)至+45°(即顺时针旋转至45度)。锁合件20在电机处于非工作状态下锁定转子部件12时,转子部件12绕旋转轴转至的角度为-90°(即逆时针旋转至90度)。
示例性地,电机10的转子部件12能够相对定子部件11绕旋转轴旋转。转子部件12相对定子部件11绕旋转轴旋转的工作角度范围为-135°(即逆时针旋转至135度)至+45°(即顺时针旋转至45度)。锁合件20在电机处于非工作状态下锁定转子部件12时,转子部件12绕旋转轴转至的角度为+90°(即顺时针旋转至90度)。
示例性地,电机10可以是直线电机或者旋转电机。
示例性地,在转子部件12处于非工作状态下,当锁合件20位于第一位置时,锁合件20将转子部件12锁定在预设角度位置。在电机10处于工作状态下,电机10的转子部件12能够在其工作角度范围(比如上述实施例中的-135°至+45°)内转动。
在一些实施例中,当锁合件20运动至第一位置时,锁合件20能够与转子部件12机械耦合,以将转子部件12锁定在预设角度位置,从而在转子部件12不需要转动的场景下(比如非工作状态)阻止转子部件12相对定子部件11转 动。
当锁合件20滑动至第二位置时,锁合件20能够与转子部件12分离,以解锁转子部件12而使转子部件12能够自由运动。此时,转子部件12能够相对定子部件11从预设角度位置转动至转子部件12的预设工作角度范围内。
在一些实施例中,当锁合件20运动至第二位置时,锁合件20能够与转子部件12机械耦合,以在转子部件12处于非工作状态下锁合件20将转子部件12锁定在预设角度位置,从而阻止转子部件12相对定子部件11转动。
当锁合件20运动至第一位置时,锁合件20能够与转子部件12分离,以解锁锁合件20与转子部件12而使转子部件12能够自由运动。此时,转子部件12能够相对定子部件11从预设角度位置转动至转子部件12的预设工作角度范围内。
示例性地,第一位置的数量可以包括至少一个,比如一个、两个、三个、四个或者更多。第二位置的数量可以包括至少一个,比如一个、两个、三个、四个或者更多。
示例性地,至少一个第一位置可以是一个或者多个范围,而不仅仅是一个或者多个离散位置。在另一些实施方式中,至少一个第一位置可以是一个或者多个离散位置。至少一个第二位置同理,在此不再赘述。
请参阅图2,在一些实施例中,第一记忆合金线30包括两个固定端31,每个固定端31均与电源电连接。
示例性地,第一记忆合金线30的每个固定端31可以机械耦合于电机10上的连接结构,连接结构连接于电源,从而使得电源能够为第一记忆合金线30供电。第一记忆合金线30的每个固定端31与连接结构的机械耦合方式可以是任意合适的方式,比如焊接、卡扣连接、胶粘连接等中的至少一种。电源可以是电路,飞行器或者云台增稳系统1000等父设备的供电装置。
例如,请参阅图2,第一记忆合金线30的两个固定端31分别机械耦合于第一端子301和第二端子302,从而使得第一记忆合金线30与电源电连接。如此,第一记忆合金线30导电连接方便。
请参阅图3,在一些实施例中,第一端子301和/或第二端子302包括第一连接部303和第二连接部304。第一连接部303用于与电源电连接。第二连接部304机械连接和电连接于第一连接部303,且机械连接和电连接于固定端31。
请参阅图1和图3,在一些实施例中,第一端子301和第二端子302机械耦合于电路板50上。
示例性地,电路板50设于电机10的定子部件11上。
示例性地,电路板50可以是电机10的电路板。电路板50也可以与电机10的电路板为相互独立的两个物理实体,电路板50用于电连接第一连接部303和电源。
示例性地,第一连接部303机械耦合于电路板50。电路板50能够与电源电连接。第一连接部303与电路板50的机械耦合方式可以包括焊接、胶粘连接、卡扣连接等中的至少一种。第一连接部303的形状可以根据实际需求设计为任意合适形状,在此不作限制。
示例性地,固定端31可以通过焊接、胶粘连接、缠绕、卡扣连接、铆接等中的至少一种方式与第二连接部304机械耦合。
第二连接部304可以根据实际需求设计为任意合适结构,比如包括凸出结构、通孔结构、线槽结构等中的至少一种。
示例性地,第二连接部304包括第二凸出部,固定端31与第二凸出部机械耦合。
示例性地,第二连接部304包括第二通孔或者第二开槽,固定端31穿设第二通孔或者第二开槽。比如,固定端31穿设第二通孔或者第二开槽而机械耦合在第二通孔的孔壁或者第二开槽的槽壁上。
在一些实施例中,第一记忆合金线30可以从定子部件11的上表面向定子部件11的下表面延伸。比如,第一记忆合金线30的其中一部分穿设定子部件11上的孔结构,第一记忆合金线30的另一部分位于定子部件11的上表面。位于定子部件11上表面的第一记忆合金线30与锁合件20相耦合,以驱动锁合件20从第一位置滑动至第二位置。如此,能够为第一记忆合金线30提供额外的长度,并由此提供额外的位移或者活动行程。
示例性地,第一记忆合金线30由包括镍钛(Nickel titanium or Nitinol),镍钛系合金,铜铝系合金,铜锌系合金,铁系合金等合适材料中的至少一者制成。由于第一记忆合金线30的温度特性,或者,通过控制第一记忆合金线30的通断电状态,可以改变记忆合金线的形状和长度,因而通过控制第一记忆合金线30的加热情况或者供电情况,可以控制锁合件20的位置和运动情况(比 如运动方向),从而锁定或者解锁电机10的转子部件12,电机驱动装置100的操作方便,无需手动或者人工操作。
示例性地,第一记忆合金线30在被通电时,第一记忆合金线30的长度会缩短,从而将锁合件20拉动至第二位置。
示例性地,第一记忆合金线30在被通电时,能够将锁合件20推动或者以其他方式致动至第二位置。
示例性地,在锁合件20从第一位置滑动至第二位置的过程中,可以对第一记忆合金线30持续通电。示例性地,在锁合件20从第一位置滑动至第二位置的过程中,可以对第一记忆合金线30不持续通电,比如对第一记忆合金线30间断性通电。
示例性地,第一运动方向与第二运动方向相反。
示例性地,第一运动方向沿转子部件12的径向向内靠近电机10的轴线设置。第二运动方向沿转子部件12的径向向外远离电机10的轴线设置。
示例性地,第一运动方向沿转子部件12的径向向外远离电机10的轴线设置。第二运动方向沿转子部件12的径向向内靠近电机10的轴线设置。
示例性地,电机10可以为内转子电机或者外转子电机等。比如,电机10为内转子电机,第一运动方向沿径向向内朝向朝向电机10的轴线,第二运动方向沿径向向外。又如,电机10的定子部件11位于中部,电机10的转子部件12位于外周,第一运动方向可以沿径向向外朝向电机10的轴线,第二运动方向可以沿径向向内远离电机10的轴线。
请参阅图4和图5,在一些实施例中,锁合件20包括耦接部21,第一记忆合金线30通过耦接部21带动锁合件20运动。第一记忆合金线30在被通电时能够对耦接部21施加作用力,从而带动锁合件20运动。
耦接部21的数量可以根据实际需求进行设计,比如一个、两个、三个、四个或者更多。
示例性地,第一记忆合金线30在被通电时能够与耦接部21接触,从而对耦接部21施加作用力,以带动锁合件20运动。
耦接部21可以根据实际需求设计为任意合适结构,比如包括凸出结构、通孔结构或、线槽结构等中的至少一种。
在一些实施例中,耦接部21能够与第一记忆合金线30的端部相耦合,且 第一记忆合金线30能够沿直线方向线收缩,从而驱动锁合件20从第一位置运动至第二位置。
请参阅图4和图5,在一些实施例中,耦接部21包括第一凸出部,第一记忆合金线30与第一凸出部接触。当第一记忆合金线30在被通电时,第一记忆合金线30的长度缩短,第一记忆合金线30与第一凸出部接触并对第一凸出部施加作用力,从而驱动锁合件20从第一位置滑动至第二位置。
在另一些实施例中,耦接部21包括第一通孔或者第一开槽,第一记忆合金线30穿过第一通孔或者第一开槽。比如,耦接部21包括第一通孔。当第一记忆合金线30在被通电时,第一记忆合金线30的长度缩短,第一记忆合金线30与第一通孔的孔壁接触,并对第一通孔的孔壁施加作用力,从而带动锁合件20从第一位置滑动至第二位置。
可以理解地,第一记忆合金线30的形状包括W形、V形、五边箭头形、直线形、线圈形等中的至少一者。
请参阅图2,在一些实施例中,第一记忆合金线30包括至少一个弯曲部32,比如一个、两个、三个或者更多。第一记忆合金线30通过弯曲部32带动锁合件20滑动。
至少一个弯曲部32共同形成W形、V形、五边箭头形等曲线形,以充分利用空间,有利于电机驱动装置100应用于小型化父设备(比如飞行器或者云台增稳系统1000等),并能够保证足够的驱动力以及响应度。
请参阅图2,在一些实施例中,第一记忆合金线30的形状包括V形,V形的中部与锁合件20接触,两个固定端31分别位于V形的两端。示例性地,当锁合件20位于第一位置时,第一记忆合金线30的形状呈V形。
示例性地,第一记忆合金线30形成有可移动的中部,该可移动的中部与耦接部21接触,从而使得第一记忆合金线30形成V形。可移动的中部位于V形的中部。示例性地,仅仅V形的可移动的中部是可以移动的。如此,当第一记忆合金线30收缩并传递至第一记忆合金线30的可移动的中部处时,V形的第一记忆合金线30能够尽可能地放大可移动的中部的位移或者活动行程,从而使得可移动的中部能够在有限空间内带动耦接部21运动,以将锁合件20从第一位置滑动至第二位置。因而,第一记忆合金线30采用V形设计,电机驱动装置100的结构设计紧凑,占用空间小,在电机驱动装置100或者其父设备空间有 限的情况下,能够保证锁合件20在第一记忆合金线30的驱动下从第一位置运动至第二位置。
示例性地,V形的第一记忆合金线30能够尽可能地放大可移动的中部的位移或者活动行程,从而放大锁合件20沿第一运动方向的位移或者活动行程。
示例性地,第一运动方向从V形的尖端延伸至V形的开口端。
示例性地,第一记忆合金线30的可移动的中部的运动方向可以沿着电机10的径向方向。
示例性地,第一记忆合金线30的可移动的中部的运动方向也可以不沿着电机10的径向方向。比如,通过设置传动机构,使得可移动的中部的运动方向具有切向或者轴向方向的分量,该传动机构能够改变可移动的中部输出的驱动力的方向。
请参阅图4、图5和图6,在一些实施例中,锁合件20包括第一定位部22,转子部件12上设有第一配合部123。第一定位部22与第一配合部123配合,以在转子部件12处于非工作状态下锁合件20能够将转子部件12锁定在预设角度位置。
示例性地,当锁合件20运动至第一位置时,第一定位部22与第一配合部123配合或者耦合,以限制转子部件12相对于定子部件11转动,从而将处于非工作状态下的转子部件12锁定在预设角度位置。当锁合件20运动至第二位置时,第一定位部22与第一配合部123脱离配合或者脱离耦合,转子部件12能够相对定子部件11自由转动。
请参阅图1和图6,在一些实施例中,转子部件12包括固定架121和转子122。第一配合部123形成于固定架121上。转子122与固定架121机械耦合。示例性地,固定架121用于固定转子122的磁体。在转子122相对定子部件11转动的过程中,固定架121也跟随转子122一起转动。
固定架121可以根据实际需求设计为任意合适形状,比如环形等。
转子122与固定架121的机械耦合方式包括焊接、铆接、热熔、卡扣连接、胶粘连接、螺丝锁固等中的至少一种。
示例性地,第一配合部123可以与固定架121一体成型。第一配合部123与固定架121也可以分体设置,二者通过胶粘连接、铆接、热熔等方式机械耦合。
在其他实施例中,固定架121也可以省略,第一配合部123形成于转子122上。
第一定位部22和第一配合部123的结构可以设计为任意合适结构。示例性地,第一定位部22和第一配合部123中的其中一者包括第一凹槽,另一者包括与第一凹槽配合的第一凸起。当锁合件20运动至第一位置时,第一凸起嵌设至第一凹槽,从而在电机10处于非工作状态下将转子部件12锁定在预设角度位置。
比如,第一定位部22包括第一凹槽,第一配合部123包括与第一凹槽配合的第一凸起。请参阅图1、图5和图6,又如,第一定位部22包括第一凸起,第一配合部123包括与第一凸起配合的第一凹槽。
示例性地,当锁合件20运动至第一位置时,第一凸起与第一凹槽紧密配合,此时转子部件12不能相对定子部件11旋转任何角度。
示例性地,当锁合件20运动至第一位置时,第一凸起与第一凹槽配合,且第一凹槽允许转子部件12相对定子部件11在有限的空间内平移和/或旋转。比如,第一凹槽的宽度大于第一定位部22的宽度,使得转子部件12能够在锁合件20处于第一位置时相对定子部件11转动一定角度。
请参阅图5和图6,在一些实施例中,第一定位部22包括第一凸起。第一配合部123包括两个凸部1231。两个凸部1231间隔设置形成与第一凸起配合的第一凹槽。如此,在保证第一定位部22与第一配合部123耦合以锁定转子部件12的情况下,能够减少转子部件12的用料量,减轻电机10的重量,有利于实现电机驱动装置100的轻量化。示例性地,两个凸部1231沿电机10的周向间隔设置。
请参阅图4和图5,在一些实施例中,第一定位部22形成有第一斜面221,第一配合部123形成有第二斜面1232。第一斜面221与第二斜面1232配合。在锁合件20位于第二位置而将转子部件12锁定的情况下,若转子部件12强行相对定子部件11转动,转子部件12能够通过第二斜面1232对第一斜面221施加作用力,第一斜面221所受到作用力的分力能够使得锁合件20后退,从而使得第一定位部22与第一配合部123脱离配合,进而解锁转子部件12。因而,在转子部件12突然遭受冲击或者碰撞等情况下,锁合件20的第一定位部22能够与转子部件12的第一配合部123脱离配合,避免损坏锁合件20和/或转子 部件12等。
示例性地,第一斜面221与第二斜面1232平行或者大致平行。示例性地,第一斜面221也可以与第二斜面1232相交。
示例性地,第一斜面221和第二斜面1232的形状均可以是平面或者曲面。
示例性地,用于保护锁合件20和/或转子部件12的结构也可以是其他任意合适结构,不限于上述第一斜面221与第二斜面1232。
请参阅图1和图7,在一些实施例中,复位件40包括弹性件。弹性件能够发生弹性形变以将锁合件20从第二位置运动至第一位置。
示例性地,第一记忆合金线30在被通电时,第一记忆合金线30的长度会缩短,以带动锁合件20从第一位置滑动至第二位置,弹性件在锁合件20的作用下被压缩。当锁合件20运动至第二位置并停止对第一记忆合金线30通电时,锁合件20在弹性件的作用力下回复至第一位置。
示例性地,第一记忆合金线30在被通电时,第一记忆合金线30的长度会缩短,以带动锁合件20从第一位置滑动至第二位置,弹性件在锁合件20的作用下被拉伸。当锁合件20运动至第二位置并停止对第一记忆合金线30通电时,锁合件20在弹性件的作用力下回复至第一位置。
示例性地,弹性件包括弹性支架、弹片、弹簧等中的至少一种弹性结构。弹片可以包括钣金弹片等。
请参阅图8,在一些实施例中,弹性件为弹性支架。弹性支架包括固定体41和弹性体42。固定体41用于与定子部件11固定连接,从而实现弹性件的固定。弹性体42能够发生弹性形变。弹性体42与固定体41连接。
示例性地,锁合件20在第一位置和第二位置之间运动的过程中,弹性体42能够发生弹性形变。固定体41与定子部件11的机械耦合方式包括点胶、热熔、铆接、卡扣等方式中的至少一种。示例性地,固定体41的下端与定子部件11机械耦合。
在一些实施例中,当第一记忆合金线30被通电时,锁合件20能够从第一位置滑动至第二位置,弹性体42在锁合件20的作用下被拉伸而产生形变。当第一记忆合金线30被断电时,锁合件20在弹性体42的弹性回复力作用下从第二位置运动至第一位置。
在一些实施例中,当第一记忆合金线30被通电时,锁合件20能够从第一 位置滑动至第二位置,弹性体42在锁合件20的作用下被压缩而产生形变。当第一记忆合金线30被断电时,锁合件20在弹性体42的弹性回复力作用下从第二位置运动至第一位置。
请参阅图1和图8,在一些实施例中,弹性体42包括形变部421和第二定位部422。形变部421的一端与固定体41连接。形变部421能够发生形变。第二定位部422与形变部421连接。锁合件20连接于形变部421和/或第二定位部422。第二定位部422用于与定子部件11上的第二配合部111配合以限制第二定位部422运动,从而将锁合件20定位在第一位置。
示例性地,第二定位部422与定子部件11上的第二配合部111耦合,能够限制第二定位部422沿电机10的周向运动,从而限制与第二定位部422相耦合的锁合件20沿电机10的周向运动,进而保证锁合件20能够精准地定位至第一位置以将转子部件12锁定。
可以理解地,锁合件20机械耦合于第二定位部422。当第一记忆合金线30在被通电时,锁合件20从第一位置运动至第二位置,锁合件20带动第二定位部422运动,形变部421随着第二定位部422的运动而发生弹性形变。当锁合件20运动至第二位置且第一记忆合金线30被断电时,锁合件20在形变部421的弹性回复力作用下从第二位置回复至第一位置。
形变部421的形状可以根据实际需求进行设计,比如,形变部421的形状包括弯曲状、片状等中的至少一种。示例性地,形变部421的形状包括S形、弯折形、弧形、波浪形等中的至少一种。
示例性地,形变部421的形状包括波浪形,如此,在有限的空间内形变部421能够产生足够的弹性变形以保证复位件40的足够的驱动力。
示例性地,形变部421大致沿电机10的周向延伸设置。
请参阅图8,在一些实施例中,形变部421和固定体41的数量均为两个。每一个形变部421的两端分别连接第二定位部422和一个固定体41。两个形变部421的一端均机械耦合于同一个第二定位部422。如此,能够保证复位件40具有足够的驱动力,并能够保证第二定位部422稳定、准确地沿预设活动方向(比如第二运动方向)运动,从而保证锁合件20能够可靠地并准确地运动至第一位置以锁定转子部件12。
在一些实施方式中,两个形变部421关于第二定位部422对称设置。在其 他实施方式中,两个形变部421也可以不对称设置。
示例性地,形变部421可以与固定体41一体成型。示例性地,形变部421也可以通过胶粘连接、铆接、卡合连接等方式与固定体41机械耦合。
第二定位部422和第二配合部111的结构可以设计为任意合适结构。示例性地,第二定位部422和第二配合部111的其中一者包括第二凹槽,另一者包括与第二凹槽配合的第二凸起,第二凸起能够嵌设至第二凹槽中。比如,第二定位部422包括第二凹槽,第二配合部111包括与第二凹槽配合的第二凸起。请参阅图1和图8,又如,第二配合部111包括第二凹槽,第二定位部422包括与第二凹槽配合的第二凸起。
示例性地,当锁合件20运动至第一位置时,第二定位部422与第二配合部111相耦合,锁合件20的第一定位部22与转子部件12的第一配合部123相耦合,转子部件12实现锁定。
当锁合件20从第一位置运动至第二位置时,第二定位部422至少部分脱离第二配合部111,锁合件20的第一定位部22与转子部件12的第一配合部123脱离耦合,转子部件12实现解锁,转子部件12能够相对定子部件11自由转动。
示例性地,第二定位部422中用于与第二配合部111配合的面包括平滑过渡面或者非平滑过渡面。
示例性地,第二定位部422中用于与第二配合部111配合的面包括弧形面。
请参阅图8,在一些实施例中,第二定位部422包括第一定位子部4221和第二定位子部4222。第一定位子部4221与形变部421连接。第二定位子部4222与第一定位子部4221的一端连接。第二定位子部4222沿电机10的周向的延伸尺寸大于第一定位子部4221沿电机10的周向的延伸尺寸。第二配合部111的形状与第二定位部422的形状适配。
示例性地,第一定位子部4221与第二定位子部4222配合形成倒T形,倒T形的第二定位部422与倒T形的第二配合部111相耦合,如此能够阻止复位件40相对定子部件11沿电机10的轴向方向向上运动,为可靠、稳定地锁定转子部件12提供了保障。
示例性地,第一定位子部4221和第二定位子部4222一体成型。
请参阅图5、图8和图9,在一些实施例中,第二定位部422形成有第三配合部4223,锁合件20上形成有与第三配合部4223配合的第三定位部23,以定 位锁合件20。如此,当锁合件20在第一记忆合金线30的作用下从第一位置滑动至第二位置的过程中,锁合件20能够带动第二定位部422运动,从而使得形变部421发生弹性形变。当锁合件20位于第二位置且第一记忆合金线30在被断电时,第二定位部422在形变部421的弹性力作用下带动锁合件20从第二位置运动至第一位置。
请参阅图8和图9,在一些实施例中,第三配合部4223与第三定位部23的其中一者包括第三凹槽,另一者包括与第三凹槽配合的第三凸起,第三凸起嵌设于第三凹槽内。比如,请参阅图9,第三配合部4223包括第三凹槽,第三定位部23包括与第三凹槽配合的第三凸起。又如,第三定位部23包括第三凹槽,第三配合部4223包括与第三凹槽配合的第三凸起。
请参阅图3和图8,在一些实施例中,固定体41上还形成有第四定位部411,第四定位部411定位配合于第一端子301或者第二端子302的第四配合部305,从而间接使得第一记忆合金线30与定子部件11固定连接。示例性地,第四定位部411与第四配合部305机械耦合,比如通过点胶、热熔、铆接等中的至少一种方式机械耦合,从而实现二者的定位和固定。
示例性地,第四配合部305与第四定位部411的其中一者包括孔或者第四凹槽,另一者包括第四凸起,第四凸起嵌设至孔或者第四凹槽内。比如,第四配合部305包括孔或者第四凹槽,第四定位部411包括第四凸起。又如,第四定位部411包括孔或者第四凹槽,第四配合部305包括第四凸起。
在一些实施例中,复位件40包括第二记忆合金线。当第二记忆合金线在被通电时,第二记忆合金线的长度会缩短,以带动锁合件20从第二位置运动至第一位置。第一记忆合金线30和第二记忆合金线作为驱动源,带动锁合件20在第一位置和第二位置之间运动。第一记忆合金线30和第二记忆合金线所占据的空间小,电机驱动装置100整体所需的空间小,有利于与电机驱动装置100对应的父设备的小型化设计,并能够提高电机驱动装置100的控制精度和可操作性,无需手动控制锁合件20在第一位置和第二位置之间运动,减少了用户手动操作电机驱动装置100的部件的数量,降低操作复杂性。
可以理解地,通过控制对第一记忆合金线30和第二记忆合金线的通断电状态,可以控制锁合件20的位置和运动情况(比如运动方向),从而自动锁定或者解锁电机10的转子部件12,电机驱动装置100的操作方便,无需手动或者 人工操作。
示例性地,第二记忆合金线的结构设计、材料、原理等可以参照本申请任一个实施例的第一记忆合金线30,在此不再赘述。
在一些实施例中,电机驱动装置100还包括处理器(图未示),用于控制第一记忆合金线30的通断电状态。
处理器的数量可以包括一个或多个,比如一个、两个或者更多。
示例性地,一个或者多个处理器,用于控制电机10的工作状态以及第一记忆合金线30的通断电状态。
示例性地,一个或者多个处理器包括第一控制器和第二控制器。第一控制器用于控制电机10的工作状态。第二控制器用于控制第一记忆合金线30的通断电状态。在另一些实施方式中,一个或者多个处理器包括可以仅包括一个控制器,该控制器可以控制电机10的工作状态以及第一记忆合金线30的通断电状态,即控制电机10的工作状态的控制器以及第一记忆合金线30的通断电状态的控制器为同一个控制器。
示例性地,处理器电连接于第一记忆合金线30和/或第二记忆合金线。
示例性地,处理器或者第二控制器可以控制第一记忆合金线30的通电和/或电流大小,从而使得第一记忆合金线30带动锁合件20运动至第二位置,以将电机10的转子部件锁定在预设角度位置或者解锁转子部件。
示例性地,处理器或者第二控制器可以是遥控器。示例性地,处理器或者第二控制器也可以是设于父设备上的电路结构,比如电路板。
可以理解地,用户可以简单地操作处理器或者第二控制器以使电机驱动装置100能够从第一位置切换至第二位置,从而电动控制锁合件20运动至第二位置,无需手动找到并按下任何按钮以机械地锁定电机10的转子部件或者解锁转子部件。
示例性地,当电机10处于上电待机状态时,锁合件20锁定电机10的转子部件12。
在一些实施例中,定子部件11上设有位置检测元件,用于检测锁合件20的位置信息,位置信息用于控制对第一记忆合金线30供电或者断电。示例性地,位置检测元件与处理器信号连接。位置检测元件检测锁合件20的位置信息,并将位置信息发送至处理器。处理器接收到该位置信息后,控制对第一记忆合金 线30供电或者断电,从而控制锁合件20运动。位置检测元件的设置,能够实现闭合控制转子部件12的锁定或者解锁,并更加精准地控制锁合件20运动。
示例性地,位置检测元件包括光电开关、位置传感器等中的至少一种。
在一些实施例中,转子部件12形成有限位通道(未标示),锁合件20的第一定位部22能够沿限位通道运动,从而限制锁合件20沿预设路径运动。该预设路径可以根据实际需求进行设计,比如直线路径或者曲线路径等。
下面举例详细说明电机10的转子部件12锁定或者解锁的过程。
在电机10处于工作状态下,转子部件12可以在预设工作角度范围内相对定子部件11转动。
当电机10不需要使用时,处于第一位置的锁合件20会干涉转子部件12的转动,转子部件12相对定子部件11难以转动至预设角度位置(位于预设工作角度范围之外)。为此,当电机10处于非工作状态时,对第一记忆合金线30供电,使得第一记忆合金线30的长度缩短,从而对锁合件20施加作用力以带动锁合件20沿第一运动方向从第一位置滑动至第二位置,复位件40在锁合件20的作用下压缩或者伸长而产生弹性形变。此时,处于非工作状态下的转子部件12能够相对定子部件11转动至预设角度位置,位于第二位置的锁合件20不会干涉转子部件12的转动。
在电机10处于非工作状态且锁合件20运动至第二位置时,将转子部件12相对定子部件11沿预设方向旋转至预设角度位置处(比如上述实施例中的+90°位置处)。在转子部件12旋转至预设角度位置后,停止对第一记忆合金线30供电,此时,复位件40伸长或者压缩,锁合件20在复位件40的作用下沿第二运动方向从第二位置运动至第一位置,锁合件20的第一定位部22与定子部件11的第一配合部123耦合,转子部件12被锁定在预设角度位置。
在一些实施例中,在锁合件20运动至第二位置之后,控制转子部件12相对定子部件11转动至预设角度位置。如此,当锁合件20在复位件40的作用下运动至第一位置时锁合件20能够与转子部件12耦合,为锁定转子部件12提供了保障。
在一些实施例中,当转子部件12需要从非工作状态切换至工作状态时,对第一记忆合金线30进行供电,以使得第一记忆合金线30的长度缩短,从而带动锁合件20沿第一运动方向从第一位置滑动至第二位置。此时,锁合件20与 转子部件12脱离耦合,转子部件12解锁,转子部件12能够相对定子部件11从预设角度位置转动至位于预设工作角度范围内的任意合适角度,并能够在其工作角度范围内转动。
请参阅图1,本申请实施例还提供一种电机驱动装置100,包括电机10、锁合件20、第一记忆合金线30和复位件40。电机10包括定子部件11以及相对于定子部件11转动的转子部件12。锁合件20用于锁定转子部件12,以阻止转子部件12相对于定子部件11转动。第一记忆合金线30与锁合件20机械耦合。第一记忆合金线30在被加热时,第一记忆合金线30的长度会发生改变,以带动锁合件20沿第一运动方向从第一位置滑动至第二位置。复位件40与锁合件20机械耦合,用于带动锁合件20沿第二运动方向运动。复位件40能够将锁合件20从第二位置运动至第一位置。其中,在电机10处于断电状态下,锁合件20能够将转子部件12锁定在预设角度位置。预设角度位置位于转子部件12的预设工作角度范围之外。
示例性地,第一记忆合金线30在被加热时,第一记忆合金线30的长度会缩短,以带动锁合件20从第一位置滑动至第二位置。
示例性地,可以通过加热器对第一记忆合金线30进行加热。示例性地,可以对第一记忆合金线30进行通电,从而对第一记忆合金线30进行加热。
请参阅图1至图9,示例性地,电机驱动装置100的具体结构参照上述任一实施例的电机驱动装置100。
上述实施例的电机驱动装置100,在第一记忆合金线30或者复位件40的作用下,锁合件20能够对电机10的转子部件12进行锁定,从而阻止转子部件12在非工作状态下相对定子部件11转动,避免在存放或运输过程中发生随意摆动,方便电机驱动装置100或者包括电机驱动装置100的父设备的存放、运输以及用户的携带和使用。
另外,锁合件20从第一位置滑动至第二位置的过程中,第一记忆合金线30作为锁合件20的驱动源;在锁合件20从第二位置运动至第一位置的过程中,复位件40作为锁合件20的驱动源,从而实现转子部件12的自动锁定或者解锁,提高了电机驱动装置100的控制精度,无需手动控制锁合件20从第一位置滑动至第二位置,减少了用户操作电机驱动装置100的部件的数量,降低了操作复杂性。第一记忆合金线30和复位件40所占据的空间小,电机驱动装置100整 体所需的空间小,有利于电机驱动装置100对应的父设备的小型化设计。此外,第一记忆合金线30的总体长度可控性好,方便调节第一记忆合金线30与锁合件20的连接位置关系和/或角度,提高了电机驱动装置100的可操作性。
请参阅图10,本申请实施例提供一种云台增稳系统1000,包括一个或者多个转轴机构,用于调节云台增稳系统1000的负载300的姿态角。转轴机构包括支架200及上述任一实施例的电机驱动装置100。支架200用于带动负载300转动。其中,支架200与转子部件12相耦合,并且跟随转子部件12一起转动。
上述实施例的云台增稳系统1000,在云台增稳系统1000处于非工作状态下时,锁合件20能够可以将转轴机构的电机的转子部件12锁定,例如俯仰轴电机、平移轴电机或横滚轴电机的转子部件锁定,避免在存放或运输过程中发生随意摆动,方便云台增稳系统1000的存放、运输以及用户的携带和使用。
另外,锁合件20从第一位置滑动至第二位置的过程中,第一记忆合金线30作为锁合件20的驱动源;在锁合件20从第二位置运动至第一位置的过程中,复位件40作为锁合件20的驱动源,在不增加电机10的外形尺寸的前提下实现转子部件12的自动锁定或者解锁,提高了云台增稳系统1000的控制精度,无需手动控制锁合件20从第一位置滑动至第二位置,减少了用户操作云台增稳系统1000的部件的数量,降低了操作复杂性。第一记忆合金线30和复位件40所占据的空间小,云台增稳系统1000整体所需的空间小,有利于云台增稳系统1000的小型化设计。此外,第一记忆合金线30的总体长度可控性好,方便调节第一记忆合金线30与锁合件20的连接位置关系和/或角度,提高了云台增稳系统1000的可操作性。
请参阅图10,在一些实施例中,转轴机构为俯仰轴(Pitch轴)机构1001,平移轴(YAW轴)机构1002,或者横滚轴(Roll轴)机构1003。
示例性地,平移轴机构1002包括支架200以及相应的电机驱动装置100,通过电机驱动装置100可以进行云台增稳系统1000非工作状态下的平移轴锁定,即通过电机驱动装置100可以限制云台增稳系统1000在非工作状态下发生绕平移轴的转动。
请参阅图10,在一些实施例中,云台增稳系统1000包括俯仰轴机构1001、平移轴机构1002以及横滚轴机构1003。俯仰轴机构1001、平移轴机构1002以及横滚轴机构1003中的每个机构包括支架200以及相应的电机驱动装置100, 并且俯仰轴机构1001、平移轴机构1002以及横滚轴机构1003中至少一个的锁合件20在电机10处于断电状态时锁定电机10的转子部件12。
示例性地,云台增稳系统1000为三轴云台增稳系统。俯仰轴机构1001可用于安装负载300。通过俯仰轴机构1001内的电机10带动负载300绕俯仰轴做俯仰运动。俯仰轴机构1001安装于横滚轴机构1003上。通过横滚轴机构1003内的电机10带动负载300绕横滚轴做横滚运动;。横滚轴机构1003安装于平移轴机构1002上。通过平移轴机构1002内的电机10控制负载300绕平移轴做平移运动。可以理解地,在其他实施方式中,俯仰轴机构1001、平移轴机构1002以及横滚轴机构1003之间的机械耦合方式也可以是其他方式,在此不作限制。
在一些实施例中,三轴云台增稳系统中的俯仰轴机构1001、平移轴机构1002以及横滚轴机构1003中的其中一个机构包括支架200以及相应的电机驱动装置100。比如,平移轴机构1002包括支架200以及相应的电机驱动装置100。
在一些实施例中,三轴云台增稳系统中的俯仰轴机构1001、平移轴机构1002以及横滚轴机构1003中的其中两个机构包括支架200以及相应的电机驱动装置100。比如,俯仰轴机构1001和平移轴机构1002中的每个机构包括支架200以及相应的电机驱动装置100。
需要说明的是,图示中虽然示出的是三轴云台增稳系统,但本申请实施方式中提供的方案同样适应于其他轴云台增稳系统,比如单轴云台增稳系统、二轴云台增稳系统等。示例性地,二轴云台增稳系统的两个转轴机构中的至少一个机构包括支架200以及相应的电机驱动装置100。比如,二轴云台增稳系统的平移轴机构1002包括支架200以及相应的电机驱动装置100,通过电机驱动装置100可以进行二轴云台增稳系统非工作状态下的平移轴锁定。
示例性地,俯仰轴机构1001绕横滚轴的工作角度范围为-45°(即逆时针旋转至45度)至+45°(即顺时针旋转至45度)。云台增稳系统1000非工作状态下横滚轴机构1003的转子部件12锁定时,俯仰轴机构1001绕横滚轴转至的角度为-90°(即逆时针旋转至90度)。
示例性地,负载300绕俯仰轴的工作角度范围为-135°(即逆时针旋转至135度)至+45°(即顺时针旋转至45度)。云台增稳系统1000非工作状态下俯仰轴机构1001的转子部件12锁定时,负载300绕俯仰轴转至的角度为+90°(即顺时针旋转至90度)。
示例性地,云台增稳系统1000在某些操作模式下执行某些用户指令或者某些任务时,在复位件40或者第一记忆合金线30的作用下,锁合件20能够运动至第一位置或者第二位置。比如,当用户关闭云台增稳系统1000时,锁合件20能够在复位件40的作用下运动至第一位置,从而防止支架200转动而损伤环境中的人或者物体。
示例性地,电机驱动装置100可以用于减少负载300或者云台增稳系统1000的自由度。比如,用户可以选择性地锁定连接于两个支架200之间的电机10,从而防止两个支架200之间相对转动。此时,被锁定的两个支架200可以作为一个刚性支架,,从而减少一个或者多个自由度。
示例性地,与负载300连接的转轴机构也可以省略支架200,负载300直接搭载在对应的转轴机构的电机10的转子部件12上。
下面举例详细说明云台增稳系统1000实现锁定某一个转轴机构的电机10的转子部件12的过程。
云台增稳系统1000处于工作状态下,电机10的转子部件12能够在其工作角度范围(比如上述实施例中的-135°至+45°)内转动,从而对云台增稳系统1000的负载300进行增稳。
当云台增稳系统1000不需要使用时,处于第一位置的锁合件20会干涉转子部件12的转动,转子部件12相对定子部件11难以转动至预设角度位置(位于预设工作角度范围之外)。为此,当云台增稳系统1000处于非工作状态时,对第一记忆合金线30供电,使得第一记忆合金线30的长度缩短,从而对锁合件20施加作用力以带动锁合件20沿第一运动方向从第一位置滑动至第二位置,复位件40在锁合件20的作用下压缩或者伸长而产生弹性形变。此时,处于非工作状态下的转子部件12能够相对定子部件11转动至预设角度位置,位于第二位置的锁合件20不会干涉转子部件12的转动。
当云台增稳系统1000处于非工作状态且锁合件20运动至第二位置时,将转子部件12相对定子部件11沿预设方向旋转至预设角度位置处(比如上述实施例中的+90°位置处)。在在转子部件12旋转至预设角度位置后,停止对第一记忆合金线30供电,此时,复位件40伸长或者压缩,锁合件20在复位件40的作用下沿第二运动方向从第二位置运动至第一位置,锁合件20的第一定位部22与定子部件11的第一配合部123耦合,转子部件12被锁定在预设角度 位置。
在一些实施例中,在锁合件20运动至第二位置之后,控制转子部件12相对定子部件11转动至预设角度位置。如此,当锁合件20在复位件40的作用下运动至第一位置时锁合件20能够与转子部件12耦合,为锁定转子部件12提供了保障。
在一些实施例中,当云台增稳系统1000需要从非工作状态切换至工作状态时,对第一记忆合金线30进行供电,以使得第一记忆合金线30的长度缩短,从而带动锁合件20沿第一运动方向从第一位置滑动至第二位置。此时,锁合件20与转子部件12脱离耦合,转子部件12解锁,转子部件12能够相对定子部件11从预设角度位置转动至位于预设工作角度范围内的任意合适角度,并能够在其工作角度范围内转动。
请参阅图11,本申请实施例还提供一种云台增稳系统1000的控制方法,该控制方法包括步骤S101至S103。
示例性地,云台增稳系统1000包括上述任一实施例的云台增稳系统1000。
S101、控制电机10的转子部件12在预设工作角度范围内转动,以对云台增稳系统1000的负载300进行增稳。
S102、对云台增稳系统1000的电机驱动装置100的第一记忆合金线30供电,以使得第一记忆合金线30的长度缩短,从而带动电机驱动装置100的锁合件20沿第一运动方向从第一位置滑动至第二位置。
S103、当电机10的转子部件12转动至预设角度位置时,停止对第一记忆合金线30供电,以使得复位件40带动锁合件20沿第二运动方向从第二位置运动至第一位置,以将转子部件12锁定在预设角度位置,预设角度位于预设工作角度范围外。
上述实施例的控制方法,在云台增稳系统1000处于非工作状态下时,锁合件20能够可以将转轴机构的电机的转子部件12锁定,例如俯仰轴电机、平移轴电机或横滚轴电机的转子部件锁定,避免在存放或运输过程中发生随意摆动,方便云台增稳系统1000的存放、运输以及用户的携带和使用。
另外,锁合件20从第一位置滑动至第二位置的过程中,第一记忆合金线30作为锁合件20的驱动源;在锁合件20从第二位置运动至第一位置的过程中,复位件40作为锁合件20的驱动源,在不增加电机10的外形尺寸的前提下实现 转子部件12的自动锁定或者解锁,提高了云台增稳系统1000的控制精度,无需手动控制锁合件20从第一位置滑动至第二位置,减少了用户操作云台增稳系统1000的部件的数量,降低了操作复杂性。第一记忆合金线30和复位件40所占据的空间小,云台增稳系统1000整体所需的空间小,有利于云台增稳系统1000的小型化设计。此外,第一记忆合金线30的总体长度可控性好,方便调节第一记忆合金线30与锁合件20的连接位置关系和/或角度,提高了云台增稳系统1000的可操作性。
在一些实施例中,控制方法还包括:
对第一记忆合金线30进行供电,以使得第一记忆合金线30的长度缩短,从而带动锁合件20沿第一运动方向从第一位置滑动至第二位置,进而解锁转子部件12。
在一些实施例中,控制方法还包括:
在锁合件20运动至第二位置之后,控制转子部件12转动至预设角度位置。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指 示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体方法步骤、特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体方法步骤、特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (48)

  1. 一种电机驱动装置,其特征在于,包括:
    电机,包括定子部件以及相对于所述定子部件转动的转子部件;
    锁合件,用于锁定所述转子部件,以阻止所述转子部件相对于所述定子部件转动;
    第一记忆合金线,与所述锁合件机械耦合;所述第一记忆合金线在被通电时,所述第一记忆合金线的长度会缩短,以带动所述锁合件沿第一运动方向从第一位置滑动至第二位置;以及
    复位件,与所述锁合件机械耦合,用于带动所述锁合件沿第二运动方向运动;所述复位件能够将所述锁合件从所述第二位置运动至所述第一位置;
    其中,在所述电机处于断电状态下,所述锁合件能够将所述转子部件锁定在预设角度位置,所述预设角度位置位于所述转子部件的预设工作角度范围之外。
  2. 根据权利要求1所述的电机驱动装置,其特征在于,当所述锁合件运动至所述第一位置时,所述锁合件能够与所述转子部件机械耦合,以将所述转子部件锁定在所述预设角度位置;
    当所述锁合件滑动至所述第二位置时,所述锁合件能够与所述转子部件分离,以解锁所述转子部件而使所述转子部件能够自由运动。
  3. 根据权利要求1所述的电机驱动装置,其特征在于,当所述锁合件运动至所述第二位置时,所述锁合件能够与所述转子部件机械耦合,以在所述转子部件处于非工作状态下将所述转子部件锁定在所述预设角度位置;
    当所述锁合件运动至所述第一位置时,所述锁合件能够与所述转子部件分离,以解锁所述锁合件与所述转子部件而使所述转子部件能够自由运动。
  4. 根据权利要求1所述的电机驱动装置,其特征在于,所述第一记忆合金线包括两个固定端,每个所述固定端均与电源电连接。
  5. 根据权利要求4所述的电机驱动装置,其特征在于,所述第一端子和/或所述第二端子包括:
    第一连接部,用于与所述电源电连接;
    第二连接部,机械连接和电连接于所述第一连接部,且机械连接和电连接于所述固定端。
  6. 根据权利要求5所述的电机驱动装置,其特征在于,所述第二连接部包括第二凸出部,所述固定端与所述第二凸出部机械耦合;和/或,
    所述第二连接部包括第二通孔或者第二开槽,所述固定端穿设所述第二通孔或者所述第二开槽。
  7. 根据权利要求4所述的电机驱动装置,其特征在于,所述锁合件包括耦接部,所述第一记忆合金线通过所述耦接部带动所述锁合件运动。
  8. 根据权利要求7所述的电机驱动装置,其特征在于,所述耦接部包括第一凸出部,所述第一记忆合金线与所述第一凸出部接触。
  9. 根据权利要求7所述的电机驱动装置,其特征在于,所述耦接部包括第一通孔或者第一开槽,所述第一记忆合金线穿过所述第一通孔或者所述第一开槽。
  10. 根据权利要求4所述的电机驱动装置,其特征在于,所述第一记忆合金线包括至少一个弯曲部,所述第一记忆合金线通过所述弯曲部带动所述锁合件滑动。
  11. 根据权利要求4所述的电机驱动装置,其特征在于,两个所述固定端分别机械耦合于第一端子和第二端子。
  12. 根据权利要求4所述的电机驱动装置,其特征在于,所述第一记忆合金线的形状包括W形、V形、五边箭头形、直线形、线圈形中的至少一者。
  13. 根据权利要求4所述的电机驱动装置,其特征在于,所述第一记忆合金线的形状包括V形,所述V形的中部与所述锁合件接触,两个所述固定端分别位于所述V形的两端。
  14. 根据权利要求13所述的电机驱动装置,其特征在于,所述第一运动方向从所述V形的尖端延伸至所述V形的开口端。
  15. 根据权利要求4所述的电机驱动装置,其特征在于,所述锁合件包括第一定位部,所述转子部件上设有第一配合部,所述第一定位部与所述第一配合部配合以使得所述锁合件在所述转子部件处于非工作状态下将所述转子部件锁定在所述预设角度位置。
  16. 根据权利要求15所述的电机驱动装置,其特征在于,所述第一定位部 和所述第一配合部的其中一者包括第一凹槽,另一者包括与所述第一凹槽配合的第一凸起。
  17. 根据权利要求15所述的电机驱动装置,其特征在于,所述第一定位部形成有第一斜面,所述第一配合部形成有第二斜面,所述第一斜面与所述第二斜面配合。
  18. 根据权利要求15所述的电机驱动装置,其特征在于,所述第一定位部包括第一凸起,所述第一配合部包括:
    两个凸部,两个凸部间隔设置形成与所述第一凸起配合的第一凹槽。
  19. 根据权利要求1所述的电机驱动装置,其特征在于,所述第一运动方向与所述第二运动方向相反。
  20. 根据权利要求1-19任一项所述的电机驱动装置,其特征在于,所述复位件包括:
    弹性件,所述弹性件能够发生弹性形变以将所述锁合件从所述第二位置运动至所述第一位置。
  21. 根据权利要求20所述的电机驱动装置,其特征在于,所述弹性件包括弹性支架、弹片、弹簧中的至少一种。
  22. 根据权利要求20所述的电机驱动装置,其特征在于,所述弹性件为弹性支架,所述弹性支架包括:
    固定体,用于与定子部件固定连接;
    弹性体,与所述固定体连接,并与所述锁合件连接,能够发生弹性形变。
  23. 根据权利要求22所述的电机驱动装置,其特征在于,当所述第一记忆合金线被通电时,所述锁合件能够从所述第一位置滑动至所述第二位置,所述弹性体在所述锁合件的作用下被拉伸而产生形变;
    当所述第一记忆合金线被断电时,所述锁合件在所述弹性体的弹性回复力作用下从所述第二位置运动至所述第一位置。
  24. 根据权利要求22所述的电机驱动装置,其特征在于,当所述第一记忆合金线被通电时,所述锁合件能够从所述第一位置滑动至所述第二位置,所述弹性体在所述锁合件的作用下被压缩而产生形变;
    当所述第一记忆合金线被断电时,所述锁合件在所述弹性体的弹性回复力作用下从所述第二位置运动至所述第一位置。
  25. 根据权利要求22所述的电机驱动装置,其特征在于,所述弹性体包括:
    形变部,一端与所述固定体连接,能够发生形变;
    第二定位部,与所述形变部连接,所述锁合件连接于所述形变部和/或第二定位部,所述第二定位部用于与所述定子部件上的第二配合部配合以限制所述第二定位部运动,从而将所述锁合件定位在所述第一位置。
  26. 根据权利要求25所述的电机驱动装置,其特征在于,所述形变部的形状包括弯曲状或者片状。
  27. 根据权利要求25所述的电机驱动装置,其特征在于,所述形变部的形状包括波浪形。
  28. 根据权利要求25所述的电机驱动装置,其特征在于,所述形变部和所述固定体的数量均为两个,每一个所述形变部的两端分别连接所述第二定位部和一个所述固定体。
  29. 根据权利要求28所述的电机驱动装置,其特征在于,两个所述形变部关于所述第二定位部对称设置。
  30. 根据权利要求25所述的电机驱动装置,其特征在于,所述第二定位部和所述第二配合部的其中一者包括第二凹槽,另一者包括与所述第二凹槽配合的第二凸起。
  31. 根据权利要求25所述的电机驱动装置,其特征在于,所述第二定位部包括:
    第一定位子部,与所述形变部连接;
    第二定位子部,与所述第一定位子部的一端连接,所述第二定位子部沿所述电机的周向的延伸尺寸大于所述第一定位子部沿所述电机的周向的延伸尺寸。
  32. 根据权利要求25所述的电机驱动装置,其特征在于,所述第二定位部形成有第三配合部,所述锁合件上形成有与所述第三配合部配合的第三定位部,以定位所述锁合件。
  33. 根据权利要求32所述的电机驱动装置,其特征在于,所述第三配合部与所述第三定位部的其中一者包括第三凹槽,另一者包括与所述第三凹槽配合的第三凸起。
  34. 根据权利要求22所述的电机驱动装置,其特征在于,所述固定体上还形成有第四定位部,所述第四定位部定位配合于第一端子或者第二端子的第四 配合部。
  35. 根据权利要求34所述的电机驱动装置,其特征在于,所述第四配合部与所述第四定位部的其中一者包括孔或者第四凹槽,另一者包括第四凸起。
  36. 根据权利要求1-19任一项所述的电机驱动装置,其特征在于,所述复位件包括:
    第二记忆合金线,当所述第二记忆合金线在被通电时,所述第二记忆合金线的长度会缩短,以带动所述锁合件从第二位置运动至第一位置。
  37. 根据权利要求1-19任一项所述的电机驱动装置,其特征在于,所述定子部件上设有位置检测元件,用于检测所述锁合件的位置信息,所述位置信息用于控制对所述第一记忆合金丝供电或者断电。
  38. 根据权利要求37所述的电机驱动装置,其特征在于,所述位置检测元件包括光电开关、位置传感器中的至少一种。
  39. 根据权利要求1-19任一项所述的电机驱动装置,其特征在于,所述转子部件包括:
    固定架,所述固定架上设有与所述锁合件的第一定位部配合的第一配合部;
    转子,与所述固定架机械耦合。
  40. 根据权利要求1-19任一项所述的电机驱动装置,其特征在于,在所述电机处于上电待机状态下,所述锁合件能够锁定所述转子部件。
  41. 一种电机驱动装置,其特征在于,包括:
    电机,包括定子部件以及相对于所述定子部件转动的转子部件;
    锁合件,用于锁定所述转子部件,以阻止所述转子部件相对于所述定子部件转动;
    第一记忆合金线,与所述锁合件机械耦合;所述第一记忆合金线在被加热时,所述第一记忆合金线的长度会发生改变,以带动所述锁合件沿第一运动方向从第一位置滑动至第二位置;以及
    复位件,与所述锁合件机械耦合,用于带动所述锁合件沿第二运动方向运动;所述复位件能够将所述锁合件从所述第二位置运动至所述第一位置;
    其中,在所述电机处于断电状态下,所述锁合件能够将所述转子部件锁定在预设角度位置,所述预设角度位置位于所述转子部件的预设工作角度范围之外。
  42. 根据权利要求41所述的电机驱动装置,其特征在于,所述第一记忆合金线在被加热时,所述第一记忆合金线的长度会缩短,以带动所述锁合件从所述第一位置滑动至所述第二位置。
  43. 一种云台增稳系统,其特征在于,包括:
    一个或者多个转轴机构,用于调节所述云台增稳系统的负载的姿态角,所述转轴机构包括:
    支架,用于带动所述负载转动;以及
    权利要求1-42任一项所述的电机驱动装置,其中,所述支架与所述转子部件相耦合,并且跟随所述转子部件一起转动。
  44. 根据权利要求43所述的云台增稳系统,其特征在于,所述转轴机构为俯仰轴机构,平移轴机构,或者横滚轴机构。
  45. 根据权利要求43所述的云台增稳系统,其特征在于,所述增稳系统包括俯仰轴机构、平移轴机构以及横滚轴机构,所述俯仰轴机构、平移轴机构以及横滚轴机构中的每个机构包括所述支架以及相应的所述电机驱动装置,并且所述俯仰轴机构、平移轴机构以及横滚轴机构中至少一个的锁合件在所述电机处于断电状态时锁定所述电机的转子部分。
  46. 一种云台增稳系统的控制方法,其特征在于,所述控制方法包括:
    控制电机的转子部件在预设工作角度范围内转动,以对所述云台增稳系统的负载进行增稳;
    对所述云台增稳系统的电机驱动装置的第一记忆合金线供电,以使得所述第一记忆合金线的长度缩短,从而带动所述电机驱动装置的锁合件沿第一运动方向从第一位置滑动至第二位置;
    当所述电机的转子部件转动至预设角度位置时,停止对所述第一记忆合金线供电,以使得所述复位件带动所述锁合件沿第二运动方向从所述第二位置运动至所述第一位置,以将所述转子部件锁定在预设角度位置,所述预设角度位于所述预设工作角度范围外。
  47. 根据权利要求46所述的控制方法,其特征在于,所述控制方法还包括:
    对所述第一记忆合金线进行供电,以使得所述第一记忆合金线的长度缩短,从而带动所述锁合件沿所述第一运动方向从所述第一位置滑动至所述第二位置,进而解锁所述转子部件。
  48. 根据权利要求46所述的控制方法,其特征在于,所述控制方法还包括:
    在所述锁合件运动至所述第二位置之后,控制所述转子部件转动至所述预设角度位置。
PCT/CN2021/101884 2021-06-23 2021-06-23 电机驱动装置、云台增稳系统及控制方法 WO2022266897A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180087139.2A CN116670613A (zh) 2021-06-23 2021-06-23 电机驱动装置、云台增稳系统及控制方法
PCT/CN2021/101884 WO2022266897A1 (zh) 2021-06-23 2021-06-23 电机驱动装置、云台增稳系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101884 WO2022266897A1 (zh) 2021-06-23 2021-06-23 电机驱动装置、云台增稳系统及控制方法

Publications (1)

Publication Number Publication Date
WO2022266897A1 true WO2022266897A1 (zh) 2022-12-29

Family

ID=84545046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101884 WO2022266897A1 (zh) 2021-06-23 2021-06-23 电机驱动装置、云台增稳系统及控制方法

Country Status (2)

Country Link
CN (1) CN116670613A (zh)
WO (1) WO2022266897A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107465800A (zh) * 2016-06-06 2017-12-12 华为终端(东莞)有限公司 一种移动终端的解锁装置及移动终端
CN110005678A (zh) * 2019-04-11 2019-07-12 长春理工大学 采用记忆合金丝的转轴抱紧及限位一体装置
CN111089074A (zh) * 2019-12-27 2020-05-01 珠海格力电器股份有限公司 转轴锁定装置、压缩机、空调器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107465800A (zh) * 2016-06-06 2017-12-12 华为终端(东莞)有限公司 一种移动终端的解锁装置及移动终端
CN110005678A (zh) * 2019-04-11 2019-07-12 长春理工大学 采用记忆合金丝的转轴抱紧及限位一体装置
CN111089074A (zh) * 2019-12-27 2020-05-01 珠海格力电器股份有限公司 转轴锁定装置、压缩机、空调器

Also Published As

Publication number Publication date
CN116670613A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2018152943A1 (zh) 电机、云台及无人机
US20160229556A1 (en) Carrier having non-orthogonal axes
US20090225388A1 (en) Controllably coupled piezoelectric motors
CN111698352A (zh) 摄像头模组及电子设备
EP3624435B1 (en) Pan-tilt-zoom photographing device
WO2017181387A1 (zh) 无人机及摄像组件
WO2020000240A1 (zh) 天线结构、遥控器及无人飞行器系统
CN111727340B (zh) 可折叠的手持云台
US11624935B2 (en) Multi-axis sector motor
WO2022266897A1 (zh) 电机驱动装置、云台增稳系统及控制方法
CN215181589U (zh) 电机驱动装置及云台增稳系统
CN112954144B (zh) 马达、摄像装置及终端设备
CN113395432A (zh) 摄像头模组和电子设备
CN101694523A (zh) 记忆合金定标锁及用其实现卫星定标装置锁定解锁的方法
CN111367038A (zh) Sma致动装置、摄像模块和电子设备
CN213333196U (zh) 云台及移动平台
CN111601756A (zh) 安装在飞行器上的三轴旋转装置
CN110848104B (zh) 一种形状记忆合金丝驱动的机械虹膜装置
JP2006051217A (ja) 飛行体
JP7209399B2 (ja) 飛行装置
CN216162478U (zh) 电机系统及增稳系统
CN112991944B (zh) 一种磁悬浮结构及展示装置
CN108696036B (zh) 一种电机、动力装置和无人飞行器
CN112610435B (zh) 基于记忆合金丝驱动的柱状驱动器及其方法
CN210244222U (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087139.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946397

Country of ref document: EP

Kind code of ref document: A1