WO2022265341A1 - 바이러스 살균기능을 갖는 공기살균장치 - Google Patents

바이러스 살균기능을 갖는 공기살균장치 Download PDF

Info

Publication number
WO2022265341A1
WO2022265341A1 PCT/KR2022/008375 KR2022008375W WO2022265341A1 WO 2022265341 A1 WO2022265341 A1 WO 2022265341A1 KR 2022008375 W KR2022008375 W KR 2022008375W WO 2022265341 A1 WO2022265341 A1 WO 2022265341A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
sterilization
virus
unit
lamp
Prior art date
Application number
PCT/KR2022/008375
Other languages
English (en)
French (fr)
Inventor
심동현
Original Assignee
심동현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 심동현 filed Critical 심동현
Publication of WO2022265341A1 publication Critical patent/WO2022265341A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an air sterilization device having a virus sterilization function.
  • Microorganisms are filtered and fixed with a filter, and then ultraviolet rays are emitted to kill the microorganisms.
  • Microorganisms are small, so a fine filter is used, but air does not pass through the filter quickly. The amount of virus killing is too small.
  • ions, electromagnetic, etc. may be used. Because a filter is used and a sterilization process of two or more steps is used, the sterilization speed is high and the sterilization amount is small.
  • Radical is generated when ultraviolet rays are irradiated to titanium, and the radical kills the virus. The remaining radicals are harmful to the human body, so neutralize them.
  • a three-step sterilization process was used and chemicals were used. The sterilization rate is slow and the price of the equipment becomes expensive. Since the residual substance is a disinfectant, it is judged that it is not safe if even a small amount remains.
  • Ozone is generated when ultraviolet rays of 180 nm wavelength are irradiated into the air. Ozone kills viruses and turns ozone into water. It has the same downside.
  • the problem to be solved by the present invention is to provide an air sterilization device that can solve the conventional problems in a cheap, rapid, reliable, safe, and mass killing of viruses, thereby reducing the density of viruses in indoor air and , Its purpose is to provide a device to respond to the coronavirus pandemic by significantly reducing the risk of coronavirus infection in the room.
  • An air sterilization device having a virus sterilization function inhales indoor air to kill airborne viruses and discharges them into the room. (Since this device is small compared to the indoor volume, the air must be moved rapidly, and since the virus rotates and is disturbed by dust or water droplets, a reflector is placed to irradiate ultraviolet rays from 360 degrees, even if the angle of attack is not 90 degrees. Viruses must be killed.)
  • a three-dimensional sterilization field (diameter 220mm*755mm) is constructed to kill viruses in the air in large quantities, and a powerful sterilization lamp for water treatment and an aluminum reflector treated with electrolysis are used.
  • the reflector collects all UV rays that may be wasted, creating a strong instant sterilization strength.
  • the instantaneous sterilization intensity should be 23,000 microwatts/cm 2 /sec or more.
  • the length of time the virus stays in the sterilization field is determined by the height and wind speed of the three-dimensional sterilization field, and this exposure time and the sterilization intensity of ultraviolet rays are important.
  • Exposure time is determined by the height and wind speed of the three-dimensional sterilization field, and this exposure time and the sterilization intensity of ultraviolet rays are important.
  • no data have been accumulated on the ability of viruses to resist ultraviolet rays. Therefore, the resistance ability of the largest virus is the standard.
  • Ultraviolet rays lose their sterilizing ability immediately when electricity is turned off, and unlike electromagnetic waves, they do not penetrate objects well.
  • the lamp was installed vertically so that ultraviolet rays were irradiated horizontally, and a light blocking function was given to prevent diffused reflection ultraviolet rays from coming out, and a black light absorb
  • an air sterilization device having a virus sterilization function includes a body having a cylindrical structure; an air intake unit located at a lower end of the body and sucking indoor or outdoor air using a fan motor; an air sterilization unit located in the middle of the body to sterilize viruses in the air by irradiating the air sucked in from the air intake unit with ultraviolet rays of a preset wavelength and intensity; an air outlet for discharging sterilized air to an upper part of the body; and a drive control unit controlling operations of the air intake unit, the air sterilization unit, and the air discharge unit.
  • the air discharge unit is characterized in that it further comprises a heat dissipation structure for lowering the temperature of the sterilized air than the temperature of indoor air.
  • the air intake unit is characterized in that an air passage having a bridge-like structure is provided.
  • the air sterilization unit UV lamp for irradiating UV rays of a predetermined wavelength and intensity to the virus in the inhaled air; and an electrolysis reflector having a cylindrical structure for reflecting ultraviolet rays irradiated from the ultraviolet lamp to form a three-dimensional sterilization field, and further comprising a holding member for holding the ultraviolet lamp in the center.
  • a light blocking member having a sequential structure for preventing ultraviolet rays irradiated or reflected from an upper portion of the air sterilization unit from being radiated to the air discharge unit, wherein the light blocking member has hollow holes having different diameters.
  • the air discharge unit is characterized in that it is manufactured so that the heat dissipation plate is wrapped around the outer surface.
  • the air sterilization unit lamp, lamp shape, lamp diameter, lamp installation method, UV wavelength and sterilization intensity, electrolysis reflector shape, thickness, reflectance, film formation period, distance between lamp and reflector It is characterized in that it includes constructing and applying a three-dimensional sterilization field having an appropriate sterilization strength by synthesizing all emitted ultraviolet rays in consideration of the materials used, the ability of the virus to resist ultraviolet rays, etc.
  • the driving control unit causes the lamp to irradiate ultraviolet rays of a preset wavelength and intensity, drives a motor and a fan of the air intake unit to vary the wind speed according to the sterilization purpose, and drives the heat dissipation structure of the air discharge unit.
  • viruses in indoor air can be killed in a cheap, rapid, reliable, and safe manner in large quantities. If the virus density in indoor air is maintained at 30% of the normal level, the risk of virus infection will drop from the current 1/100,000 to 1/1 billion (estimated).
  • FIG. 1 is a device configuration diagram of an air sterilization device having a virus sterilization function according to an embodiment of the present invention.
  • FIG. 2 is a three-dimensional cross-sectional view of the air sterilization device having a virus sterilization function shown in FIG.
  • 3a and 3b are virus removal performance test result documents of the air sterilization device shown in FIG.
  • Embodiments according to the present invention can apply various changes and can have various forms, so specific embodiments are illustrated in the drawings and described in detail in this specification or application. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific posting form, and should be understood to include all changes, equivalents, or substitutes included in the spirit and technical scope of the present invention.
  • first and/or second may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another component, e.g., without departing from the scope of rights according to the concept of the present invention, a first component may be termed a second component, and similarly The second component may also be referred to as the first component.
  • FIG. 1 is a device block diagram of an air sterilization device having a virus sterilization function according to an embodiment of the present invention
  • FIG. 2 is a three-dimensional cross-sectional view of the air sterilization device having a virus sterilization function shown in FIG. 1
  • FIGS. 3b is a virus removal performance test result document of the air sterilization device shown in FIG.
  • the air sterilization device 100 having a sterilization function is manufactured in a double cylindrical structure, and includes a body 101, an air intake unit 110, air It consists of a sterilization unit 120, an air discharge unit 130 and a driving control unit 140.
  • the air intake unit 110 is made of a cylindrical structure and may be configured to suck outside air from the lower end of the body 101 to the inside.
  • the air intake unit 110 may include a suction motor 111, a suction fan 112, and a bridge type air passage unit 113.
  • the suction motor 111 rotates the suction fan 112 to suck indoor air into the inside through the bridge-type air passage 113 .
  • the bridge-type air passage part 113 has a structure in which a plurality of air passages are manufactured in a bridge shape, and the suction air passage connected to the central air passage is arched.
  • the air intake unit 110 further includes an air rotation device 114 that rotates the air introduced into the central air passage to increase the time the air stays in the air sterilization unit and to flow a lot through the vicinity of the lamp can do.
  • the air sterilization unit 120 may be located in the middle of the body 101 and sterilize viruses in the air by irradiating ultraviolet rays of a predetermined wavelength and intensity to the air sucked in from the air intake unit. .
  • the air sterilization unit 120 includes an electrolysis reflector 121, an ultraviolet lamp 122, a cradle, a lead-in line, and a DC converter 123.
  • the electrolysis reflector 121 may be made of aluminum or may have a structure coated with a UV reflective film on its surface.
  • the UV reflective film is made of a photonic crystal material for reflecting specific wavelengths of UV light.
  • the electrolysis reflector 121 is surface-treated by electrolysis of aluminum, and the reflectance is increased from 80% to 95% compared to the surface of an aluminum tube polished, and the film formation is greatly delayed, so that the reflectance decreases over time. don't Also, the manufacturing cost is reduced. Since the electrolysis reflector 121 collects and synthesizes the ultraviolet rays irradiated from the ultraviolet lamp without waste, it is possible to realize strong sterilization strength. If the electrolysis reflector is configured in a precise circular shape, it is possible to realize a sterilization strength of a certain standard or more and a homogeneous sterilization strength at any position in the sterilization field, and the sterilization strength can be calculated without actually measuring it.
  • the electrolytic reflector is a virus that survives by hiding behind dust or water droplets and avoiding ultraviolet rays when the virus lives with a small angle of exposure to ultraviolet rays, when the virus rotates and fluctuates so that it is evenly hit by ultraviolet rays and is only inactivated without being destroyed. case, etc. can be removed.
  • the ultraviolet lamp 122 may be configured to irradiate ultraviolet rays of a predetermined wavelength and intensity to viruses in the air sucked in from the air intake unit.
  • An ultraviolet lamp generally emits ultraviolet rays having short or long wavelengths left and right in addition to the optimal sterilization wavelength in a normal distribution manner.
  • UV rays of 180 nm wavelength meet air, ozone is generated.
  • Radicals (OH) are generated when titanium is irradiated with ultraviolet rays, and such materials should be avoided.
  • Many lamps generate as little as 5% heat.
  • the lamp adopted in one use embodiment is a powerful sterilizing lamp for water treatment used in high-density water, and emits 100% of only the optimal sterilizing wavelength and does not generate heat.
  • the sterilization intensity of ultraviolet light means the amount of impact on viruses, etc., and it is the highest in the light source and falls according to the distance from the light source.
  • This lamp adopted in one use embodiment has a sterilization intensity of 6300 microwatts/cm 2 /sec at a location 10 cm away from the light source.
  • the inner diameter of the air sterilization unit is 220 mm, the diameter of the lamp is 18 mm, and the thickness of the electrolysis reflector is 1 mm.
  • the distance from the lamp to the electrolysis reflector is 100 millimeters.
  • the sterilization field was constructed considering the high-performance lamp, lamp installation method and irradiation direction, high-efficiency electrolysis reflector, shape of the sterilization field, height of the sterilization field, diameter of the sterilization field, and variability of wind speed. synthesized by ultraviolet
  • the minimum sterilization intensity of the three-dimensional sterilization field achieved 23000 microwatts/cm 2 /sec. This corresponds to 42 times the sterilization intensity of 550 microwatts/cm 2 /sec used in a sterilizer that kills fixed viruses.
  • the cradle, lead-in line, and DC converter 123 may be configured to allow the ultraviolet sterilization lamp 122 to be mounted in the inner center of the body 101 and to supply DC electricity to the sterilization lamp.
  • the air discharge unit 130 may be configured to discharge sterilized air to the upper part of the body and prevent ultraviolet light reflected from the electrolytic reflector from being discharged into the room.
  • the air discharge part 130 may include an air discharge passage, a light blocking member 131 laid inside and out, a light blocking member 132, and a heat radiation structure 133.
  • the air discharge passage may be bent at 90 degrees, and the horizontal cross-sectional area of the passage may be larger.
  • the light blocking member 131 laid inside and out may block diffused reflection ultraviolet light generated from the air sterilization unit and smoothly discharge the sterilized air into the room.
  • the light blocking member 132 may be a passage through which air passing through the ultraviolet sterilization field is discharged into the room.
  • the light blocking member 132 may have a structure to prevent irradiated or reflected ultraviolet rays emitted from the upper portion of the air sterilization unit 120 from being emitted into the air discharge passage.
  • the light blocking member 132 is a structure in which circular blockers having hollows of different diameters are vertically stacked, and a vertical cross section of the light blocking member 132 may have an isosceles trapezoidal shape.
  • the light blocking area of each circular ring blocker may be 20% of the horizontal sectional area of the air discharge unit, and air may flow through the hollow and the vertical distance when the vertical distance is maintained at a constant rate.
  • all surfaces of each circular ring blocker may be coated with a light absorbing paint.
  • the heat dissipation structure 133 is composed of a thermoelectric semiconductor, a heat sink, and a DC converter, and is provided to cover the outer surface of the air discharge unit 130.
  • the heat generated by the thermoelectric semiconductor is radiated to the outside (inside) through the heat sink, and the cold air is radiated toward the air discharge passage of the air discharge unit through the air discharge unit itself.
  • the heat dissipation structure may be for the purpose of adjusting the relative temperature of air so that the sterilized air goes to the core protective layer (50cm-150cm) in a cathedral, a baseball field (stand), and the like.
  • the drive control unit 140 may be a component that controls the operation of each unit, and controls the operation of each unit according to an input signal of the controller 150 .
  • the suction motor is operated to introduce indoor air into the body, and then the ultraviolet sterilization field in the air sterilization unit
  • the ultraviolet lamp 122 of the air sterilization unit 120 is operated to generate light.
  • the discharge operation of the air discharge unit is controlled so that the sterilized air passing through the ultraviolet sterilization field is discharged into the room.
  • This product kills the coronavirus in large quantities to prevent humans from being infected with the coronavirus (unlike vaccines or social distancing methods), so they tend not to accept it because it is unfamiliar.
  • the 1.2 ton per second water pump will be completed at the time of grandson. Considering the realistic sense of time, a water pump with a capacity of 11 tons per second or more is required. All air sterilizers on the market are water pumps with a capacity of less than 1 ton per second.
  • the virus number decreases over time by increasing the virus death rate more than the average virus growth rate in each cycle.
  • the present invention is a newly emerged product and there is no industrial classification standard, so it is temporarily classified as an air sterilizer according to similarity, which is different from the air sterilizer in terms of purpose and required performance. Later, it should be classified into virus eradication period, virus pandemic response product, indoor virus density reduction, etc.
  • the developed product of the present invention utilizes the facts that “human beings are the host of viruses, so they naturally have considerable defense against viruses” and “sunlight kills most viruses outside the body of the host.”
  • Corona pandemic response products must kill 50 million indoor airborne viruses in 30 minutes when there are 100 million indoor airborne viruses.
  • the unit air throughput is also reduced. It can do 30 revolutions per hour, but at least 10,000-20,000 revolutions are required to adequately reduce the virus density in the indoor air in a volume of 300 m3 .
  • the virus removal rate per hour is 0.3% - 0.15%. If the 'death rate of airborne viruses emitted by the product' is 70%, several times the number of revolutions is required, so the removal rate of indoor airborne viruses is almost non-existent.
  • Performance test time 30 minutes Since a device that reduces the virus density in the indoor air by a dilution method needs to supply a lot of sterilized air, the performance test time is 1 and a half to 2 hours. However, the Industrial Technology Testing Institute set it to 30 minutes.
  • air sterilizers that use chemicals or electromagnetic waves can receive good performance test results from the test center. However, in that case, you have to go to a place that controls chemicals and get the corresponding inspection. If even a small amount of residual material is detected, it is disqualified as an air sterilizer. Electromagnetic waves also have a negative effect on blood flow, so they are quite strict. In some cases, a process is added to remove chemicals or electromagnetic waves, or electromagnetic waves are blocked with carbon fiber, but the price goes up and the performance goes down. Since this development product does not contain chemicals or electromagnetic waves, the performance test of the Industrial Technology Testing Institute is final.
  • the virus removal rate is 84%.
  • the virus removal rate is about 93%.
  • This product is different from air sterilizers in terms of purpose, market, and basic required performance. This product allows humans to attack viruses. It is the first product that can kill viruses in large quantities faster than the speed of virus propagation.
  • This product enables humans to respond appropriately (unlike vaccines) to the fact that the number of coronaviruses is high, that the speed of virus propagation is fast, that viruses mutate easily, and that there are recombinant viruses. .
  • the biological characteristics of viruses invisibly small, many types, easy mutation, presence of recombinant viruses, and very rapid proliferation
  • has strong viability unlike the ecosystem composition and provides the advantage of physically and rapidly killing all viruses in large quantities.
  • it can drastically reduce the virus density in indoor air.
  • the density of viruses in indoor air is reduced, the risk of viral infection is significantly reduced.
  • the coronavirus pandemic “how to kill the virus cheaply, quickly, reliably, safely, and in large quantities has become an enormously important technology.
  • ⁇ unit used in one embodiment of the present invention may be implemented as a hardware component, a software component, and/or a combination of hardware components and software components.
  • devices and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable array (FPA), It may be implemented using one or more general purpose or special purpose computers, such as a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions.
  • a processing device may run an operating system (OS) and one or more software applications running on the operating system.
  • a processing device may also access, store, manipulate, process, and generate data in response to execution of software.
  • OS operating system
  • a processing device may also access, store, manipulate, process, and generate data in response to execution of software.
  • the processing device includes a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that it can include.
  • a processing device may include a plurality of processors or a processor and a controller. Other processing configurations are also possible, such as parallel processors.
  • Software may include a computer program, code, instructions, or a combination of one or more of the foregoing, which configures a processing device to operate as desired or processes independently or collectively.
  • the device can be commanded.
  • Software and/or data may be any tangible machine, component, physical device, virtual equipment, computer storage medium or device, intended to be interpreted by or to provide instructions or data to a processing device. , or may be permanently or temporarily embodied in a transmitted signal wave.
  • Software may be distributed on networked computer systems and stored or executed in a distributed manner.
  • Software and data may be stored on one or more computer readable media.
  • the method according to the embodiment of the present invention may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Program commands recorded on the medium may be specially designed and configured for the embodiment or may be known and usable to those skilled in computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks.
  • - includes hardware devices specially configured to store and execute program instructions, such as magneto-optical media, and ROM, RAM, flash memory, and the like.
  • program instructions include high-level language codes that can be executed by a computer using an interpreter, as well as machine language codes such as those produced by a compiler.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

본 발명의 일 실시예에 따른 바이러스 살균기능을 갖는 공기살균장치는 원통형 챔버구조를 갖는 몸체; 상기 몸체의 하단에 위치하고, 팬 모터를 이용하여 실내 또는 실외 공기를 흡입하는 공기 흡입부; 상기 몸체의 중부에 위치하여 상기 공기 흡입부에서 흡입된 흡입공기를 기 설정된 파장 및 세기의 자외선을 조사하여 공기 내의 바이러스를 살균하는 공기살균부; 살균된 공기를 상기 몸체의 상부로 배출하는 공기 배출부; 및 상기 공기 흡입부, 공기 살균부 및 공기 배출부의 동작을 제어하는 구동제어부를 포함한다.

Description

바이러스 살균기능을 갖는 공기살균장치
본 발명은 바이러스 살균기능을 갖는 공기살균장치에 관한 것이다.
1950년대에 자외선을 이용하여 수술용 칼 등에 '고정된 바이러스'를 살균하는 살균기가 개발되었다.
1964년에 자외선을 이용하여 실내공기 중 부유하면서 요동치는 바이러스를 살균하는 방법이 개발되었다. 이 방법은 확실하고 안전하게 바이러스를 사멸할 수 있었지만 싸고, 신속하고, 대량으로 바이러스를 사멸하지는 못했다. 당시에는 그럴 필요성이 없었다.
현행 공기살균기, 공기제균기, 공기청정기 등 이름으로 많은 종류의 제품이 출시되고 있다. 기술의 특징에 따라 2종류로 구분된다. 먼저 필터, 자외선, 다단계 살균프로세스를 사용하는 방법이 있다.
필터로 미생물을 걸러 고정시킨 뒤 자외선을 쏘아 미생물을 사멸한다. 미생물이 작아서 미세필터를 사용하는데 공기가 필터를 빨리 통과하지 못한다. 바이러스 사멸량이 너무 적어진다. 사람의 코털과 같이 공기가 통과하면서 필터(털)에 바이러스를 부착시키는 방법이 있다. 부착율을 높이기 위해 이온, 전자기 등을 사용하기도 한다. 필터를 사용하고 2단계이상의 살균프로세스를 사용하므로 살균속도가 누리고 살균량도 적다.
비록 적은 량이라도 바이러스, 박테리아, 곰팡이, 미세먼지 등을 처리할 수 있으므로 공기청정기시장에서 활동하고 있다.
두 번째 방법으로, 자외선과 화학물질, 그리고 다단계살균프로세스를 동시에 사용하는 방식이 있다.
자외선을 티타늄에 쏘면 라디칼(OH)이 발생하고, 라디칼이 바이러스를 사멸한다. 남은 라디칼은 인체에 유해하므로 이를 중화한다. 3단계살균프로세스를 사용했고 화학물질을 사용했다. 살균속도가 느리고 장치의 가격이 비싸 진다. 잔류물질이 살균제이므로 미량이라도 잔류한다면 안전하지 않다고 판단한다.
180nm파장의 자외선을 공기에 쏘면 오존이 발생한다. 오존이 바이러스를 사멸하고, 오존을 물로 바꾼다. 동일한 단점이 있다.
[선행기술문헌]
공개특허공보 제10-2012-0077724
본 발명이 해결하고자 하는 과제는 종래의 문제점을 해결할 수 있는 싸고, 신속하며, 확실하고, 안전하고, 대량으로 바이러스를 사멸하는 공기살균장치를 제공하는 것이며, 이를 통해 실내공기 중 바이러스밀도를 떨어뜨리고, 해당 실내에서 코로나바이러스 감염위험을 크게 떨어뜨려, 코로나바이러스 대유행에 대응하기 위한 장치를 제공하는 데 그 목적이 있다.
본 발명의 일 실시예에 따른 바이러스 살균기능을 갖는 공기살균장치는 실내공기를 흡입하여 공기중바이러스를 사멸하여 실내로 배출하는데 그러면 희석되어서 점차 실내공기 중 바이러스밀도가 떨어진다. (이 장치는 실내용적에 비해 작으므로 공기를 빠르게 이동시켜야 하고, 바이러스가 회전 요동치므로 그리고 먼지나 물방울의 방해를 받으므로 반사판을 두어 360도 전채에서 자외선을 조사하도록 하고 피격각도가 90도가 아니더라도 바이러스가 죽도록 하여야 한다.) 공기중 바이러스를 대량으로 사멸하려고 입체살균장(직경 220mm*755mm)을 구성하는데 수처리용 강력한 살균램프와 전기분해로 표면처리한 알미늄 반사판을 사용한다. 반사판은 허비될 수도 있는 모든 자외선을 모아 강력한 순간살균강도를 조성한다. 살균장내 어느 위치에서도 순간살균강도가 23,000 마이크로와트/cm2/sec 이상이 되도록 한다. 입체살균장의 높이와 풍속에 따라 바이러스가 살균장에 머무르는 시간(노출시간)이 결정되는데 이 노출시간과 자외선의 살균강도가 중요하다. 여러 종류의, 바이러스의 자외선에 대한 저항능력은 데이터가 축적되어 있지 않다 그러므로 제일 큰 바이러스의 저항능력을 기준으로 한다. 자외선은 전기를 끊으면 즉시 살균능력이 없어지고 전자기와 달리 물체를 잘 투과하지 못한다. 램프를 수직으로 설치하여 자외선이 수평으로 조사되도록 했고, 난반사 자외선이 외부로 나오지 않도록 광차단기능을 부여했고 장치내부에는 검은색 광흡수제를 칠했다.
상기 과제를 해결하기 본 발명의 일 실시예에 따른 바이러스 살균기능을 갖는 공기살균장치는 원통형 구조를 갖는 몸체; 상기 몸체의 하단에 위치하고, 팬 모터를 이용하여 실내 또는 실외 공기를 흡입하는 공기 흡입부; 상기 몸체의 중부에 위치하여 상기 공기 흡입부에서 흡입된 흡입공기를 기 설정된 파장 및 세기의 자외선을 조사하여 공기 내의 바이러스를 살균하는 공기살균부; 살균된 공기를 상기 몸체의 상부로 배출하는 공기 배출부; 및 상기 공기 흡입부, 공기 살균부 및 공기 배출부의 동작을 제어하는 구동제어부를 포함한다.
일 실시예에서, 상기 공기 배출부는 상기 살균된 공기의 온도를 실내의 공기 온도보다 낮추기 위한 방열구조체를 더 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 공기 흡입부는 교량형 구조의 공기 통로가 구비된 것을 특징으로 한다.
일 실시예에서, 상기 공기살균부는 흡입된 공기 내의 바이러스에 미리 설정된 파장 및 세기의 자외선을 조사하는 자외선램프; 및 상기 자외선램프에서 조사된 자외선을 반사시켜 입체살균장을 형성하는 원통형 구조의 전기분해반사판을 포함하고, 상기 자외선램프를 중앙에 거치하기 위한 거치부재를 더 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 공기 살균부의 상부에 조사되거나 또는 반사된 자외선이 상기 공기 배출부로 방사되는 것을 방지하기 위한 축차 구조의 광차단 부재를 더 포함하고, 상기 광차단 부재는 직경이 서로 다른 중공을 갖는 원형의 링 차단체를 수직으로 적층한 구조체로서, 상기 광차단 부재의 수직 단면이 등변사다리꼴의 형상인 것을 특징으로 한다.
일 실시예에서, 상기 공기 배출부는 외측면에 방열판이 감싸지도록 제작된 것을 특징으로 한다.
일 실시예에서, 상기 공기 살균부는 램프, 램프의 형상, 램프의 직경, 램프의 설치방법, 자외선의 파장 및 살균강도, 전기분해반사판의 형상, 두께, 반사율, 피막형성기간, 램프와 반사판의 거리, 사용소재, 바이러스의 자외선에 대한 저항능력 등을 고려하고 방출된 모든 자외선을 합성하여 적절한 살균강도를 갖는 입체살균장을 구성 응용하는 것을 포함하는 것을 특징으로 한다.
일 실시예에서, 상기 구동제어부는 램프가 미리 설정된 파장과 강도의 자외선을 조사하게 하고, 공기흡입부의 모터와 팬을 구동하여 살균목적에 따라 풍속을 가변하며, 공기배출부의 방열구조체를 구동하는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 바이러스 살균기능을 갖는 공기살균장치를 이용하면, 싸고, 신속하고, 확실하고, 안전하고, 대량으로 실내공기 중 바이러스를 사멸할 수 있다. 실내공기 중 바이러스밀도를 정상상태의 30%수준으로 유지하면 바이러스감염위험은 현행 10만분의1에서 10억분의1 수준으로 떨어지게 된다(추정).
자영업자가 이 장치를 이용하면 고객과 정부를 안심케 하여 코로나 대유행에 불구하고 비즈니스를 정상적으로 영위할 수 있다. 이 장치가 많이 보급되면 나라 전체의 실내공기 중 바이러스밀도가 떨어져 확진자 숫자가 떨어진다. 더욱이 이 장치는 바이러스종류여부, 변이여부, 유전자재조합바이러스 여부에 불문하고 바이러스를 모두 사멸한다.
현재 코로나바이러스 대유행에 대항하는 방법은 '백신과 사회적 거리두기' 이다. 그런데 이 방법은 너무나 소극적이고 수비적이어서 바이러스를 이길수 없을 것 같다. 전쟁이 발발하면 병원, 방공호 설치, 전국민에 방탄복 지급 등을 통해서 전쟁을 이길 수 없을 것이다. 바이러스가 야기한 피해를 경감하는데 집중하지 말고 도발원점을 제거하고 다른 종류의 바이러스나 변이된 바이러스 등에 대하여도 대비가 되는 방법을 채택하는 것이 좋겠다. 이 장치는 인간으로 하여금 바이러스에 대항하는 적극적이고 공격적 방법을 채택할 수 있게 해준다.
도 1은 본 발명의 일 실시예에 따른 바이러스 살균기능을 갖는 공기살균장치의 장치 구성도이다.
도 2는 도 1에 도시된 바이러스 살균기능을 갖는 공기살균장치의 입체 단면도이다.
도 3a 및 도 3b는 도 1에 도시된 공기살균장치의 바이러스 제거 성능시험 결과문서이다.
본 명세서 또는 출원에 게시되어 있는 본 발명의 실시 예들에 대해서 특정한 구조적 내지 기능적 설명들은 단지 본 발명에 따른 실시 예를 설명하기 위한 목적으로 예시된 것으로, 본 발명에 따른 실시 예들은 다양한 형태로 실시될 수 있으며 본 명세서 또는 출원에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니 된다.
본 발명에 따른 실시예는 다양한 변경을 가할 수 있고 여러가지 형태를 가질 수 있으므로 특정실시 예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예를 특정한 게시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1 및/또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로 만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면들에 기초하여 본 발명의 일 실시예에 따른 바이러스 살균기능을 갖는 공기살균장치를 보다 상세하게 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 바이러스 살균기능을 갖는 공기살균장치의 장치 블럭도이고, 도 2는 도 1에 도시된 바이러스 살균기능을 갖는 공기살균장치의 입체 단면도이고, 도 3a 및 도 3b는 도 1에 도시된 공기살균장치의 바이러스제거 성능시험 결과문서이다.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 살균기능을 갖는 공기살균장치(100)는 이중원통형 구조로 제작되며, 몸체(101), 공기흡입부(110), 공기살균부(120), 공기배출부(130) 및 구동제어부(140)로 구성된다.
상기 공기흡입부(110)는 원통형 구조체로 제작되며, 몸체(101)의 하단부에서 외부 공기를 내부로 흡입하는 구성일 수 있다. 상기 공기흡입부(110)는 흡인모터(111), 흡입팬(112), 교량형 공기통로부(113)로 구성될 수 있다.
상기 흡입모터(111)는 흡입팬(112)을 회전시켜 교량형 공기통로부(113)를 통해 실내공기가 내부로 흡입하도록 구동된다.
상기 교량형 공기통로부(113)는 복수 개의 공기통로가 교량형으로 제작된 구조로서 중앙 공기통로와 연결된 흡인공기통로가 아치형으로 형상된다.
또한, 상기 공기 흡입부(110)는 상기 중앙 공기통로로 유입되는 공기를 회전하게 하여 공기가 공기살균부에 머무르는 시간을 늘리고, 램프근처를 통하여 많이 흘러가게 하는 공기회전장치(114)를 더 포함할 수 있다.
다음으로, 공기살균부(120)는 상기 몸체(101)의 중부에 위치하여 상기 공기 흡입부에서 흡입된 흡입공기에 기 설정된 파장 및 세기의 자외선을 조사하여 공기 내의 바이러스를 살균하는 구성일 수 있다.
보다 구체적으로, 상기 공기살균부(120)는 전기분해반사판(121), 자외선램프(122) 및 거치대, 인입선 및 직류변환기(123)를 포함한다.
상기 전기분해반사판(121)는 재질이 알루미늄이거나 또는 표면에 자외선 반사필름이 코팅 처리된 구조체일 수 있다. 여기서 자외선 반사필름은 자외선의 특정한 파장을 반사하기 위한 광결정 물질로 제작된다.
상기 전기분해반사판(121)은 알미늄을 전기분해하여 표면처리한 것으로 알미늄 튜브의 표면을 연마한 것과 비교하여 반사율이 80%에서 95%까지 높아지며, 피막형성을 크게 지연시켜서 시간경과에 따라 반사율이 떨어지지 않는다. 또한 제조단가가 떨어진다. 상기 전기분해반사판(121)은 자외선램프에서 조사된 자외선을 허비없이 모아, 합성하므로 강한 살균강도를 구현할 수 있다. 상기 전기분해반사판이 정밀한 원형으로 구성되면 살균장내 어느 위치에서도 일정기준이상의 살균강도 및 균질한 살균강도를 실현시킬 수 있으며 그 살균강도를 실측하지 않고 계산해낼 수 있다. 또한 전기분해반사판은 바이러스가 자외선에 맞는 피격각도가 작아서 사는 경우, 바이러스가 회전 요동치므로 자외선에 골고루 맞아 파괴되지 않고 불활성화 되는 정도에 그치는 경우, 바이러스가 먼지나 물방울 뒤에 숨어 자외선을 피함으로써 살아남는 경우 등을 제거할 수 있게 한다.
다음으로, 자외선 램프(122)는 공기 흡입부에서 흡입된 공기 내의 바이러스에 미리 설정된 파장 및 세기의 자외선을 조사하는 구성일 수 있다. 자외선 램프는 대체로 최적살균파장 외에 좌우로 짧거나 긴 파장을 갖는 자외선을 정규분포 방식으로 방출한다. 180nm 파장의 자외선이 공기와 만나면 오존을 발생시키므로 램프를 선정할 때 180nm 파장을 방출하는가 여부를 확인하여야 한다. 자외선을 티타늄에 조사하면 라디칼(OH)이 발생하는데 이런 소재를 피해야 한다. 많은 램프가 5%정도의 열을 발생시킨다. 일 사용실시예에 채택한 램프는 밀도가 높은 물에서 사용하는 강력한 수처리용 살균램프이며 최적살균파장만 100% 방출하고 발열은 없다. 자외선의 살균강도는 바이러스 등에 대한 충격량을 의미하는데 광원에서 제일 높고 광원으로부터 거리에 따라 떨어진다. 일 사용실시예에 채택된 이 램프는 광원으로부터 10센티 떨어진 위치에서 살균강도는 6300마이크로와트/cm2/sec이다. 공기살균부의 내경은 220밀리이고 램프의 직경은 18밀리이며 전기분해반사판의 두께는 1밀리이다. 램프에서 전기분해반사판 까지의 거리는 100밀리이다.
대량으로 바이러스를 사멸하기 위하여 고성능램프, 램프의 설치방법 및 조사방향, 고효율 전기분해반사판, 살균장의 형태, 살균장의 높이, 살균장의 직경, 풍속의 가변성 등을 고려하여 살균장을 구성하였고 방출된 모든 자외선을 합성하여
입체살균장의 최소살균강도가 23000 마이크로와트/cm2/sec을 달성하였다. 이는 고정된 바이러스를 사멸하는 살균기에서 사용하는 살균강도 550 마이크로와트/cm2/sec의 42배에 해당한다.
다음으로, 거치대, 인입선 및 직류변환기(123)는 상기 자외선 살균램프(122)가 몸체(101)의 내부 중앙에 거치되도록 하고 직류전기를 살균램프에 공급하는 구성일 수 있다.
다음으로, 공기배출부(130)는 살균된 공기를 상기 몸체의 상부로 배출하는 동시에 상기 전기분해반사판에서 반사된 자외선이 실내로 배출되는 것을 방지하기 위한 구성일 수 있다.
상기 공기배출부(130)는 공기배출통로, 안과 밖으로 뉘인 광차단 부재(131), 광차단 부재(132) 및 방열구조체(133)를 포함할 수 있다.
상기 공기배출통로는 90도로 굽은 형태로 할 수 있고, 통로의 수평단면적이 더 커질 수 있다.
상기 안과 밖으로 뉘인 광차단부재(131)는 공기살균부에서 발생한 난반사 자외선을 차단하고 살균된 공기는 실내로 원활하게 배출하는 기능을 할 수도 있다.
상기 광차단 부재(132)는 자외선 입체살균장을 통과한 공기를 실내로 배출하는 통로일 수 있다.
상기 광차단 부재(132)는 공기살균부(120)의 상부로 방출되는 조사 또는 반사된 자외선이 상기 공기배출통로로 방사되는 것을 방지하기 위한 구조일 수 있다.
보다 상세하게, 상기 광차단 부재(132)는 직경이 서로 다른 중공을 갖는 원형 차단체를 수직으로 적층한 구조체로서, 상기 광차단 부재(132)의 수직 단면은 등변사다리꼴의 형상일 수 있다. 또한, 각 원형의 링 차단체가 광차단을 하는 면적은 공기배출부 수평단면적의 20%로 하고, 수직거리를 일정비율로 유지하면 중공과 수직거리를 통하여 공기가 흐르도록 하는 것 일 수도 있다. 또한, 상기 각 원형의 링 차단체는 모든 표면이 광 흡수도료가 코팅 처리된 구성일 수 있다.
다음으로, 방열구조체(133)는 열전반도체, 방열판, 직류변환기로 구성되는데 공기 배출부(130)의 외측면을 감싸도록 구비되어 있다. 열전반도체에 의하여 발생한 열기는 방열판을 통해 밖(실내)으로 방사되고 냉기는 공기배출부 자체를 통하여 공기배출부의 공기배출통로 쪽으로 방사된다. 상기 방열구조체는 성당, 야구장(관람석) 등에서 살균된 공기가 핵심보호층(50cm-150cm)으로 가도록 공기의 상대온도를 조절하는 목적일 수 있다.
다음으로, 구동제어부(140)는 각 부의 동작을 제어하는 구성일 수 있고, 컨트롤러(150)의 입력신호에 따라 각 부의 동작을 제어한다.
보다 구체적으로, 상기 구동제어부(140)는 컨트롤러(150)부터 전원입력신호 및 공기살균동작 신호를 입력받으면, 흡입모터를 동작시켜 실내 공기를 몸체 내로 유입한 후, 공기 살균부 내의 자외선 입체살균장이 생성되도록 공기 살균부(120)의 자외선램프(122)을 동작시킨다.
또한, 자외선 입체살균장을 통과한 살균된 공기가 실내로 배출되도록 공기 배출부의 배출동작을 제어한다.
- 산업기술시험원 바이러스제거 성능검사 결과의 해석 고찰-
'바이러스킬러'의 시제품을 만들어 산업기술시헌뭔에 의뢰하여 바이러스제거성능검사를 했다. 퇴직 과학자들이 ”코로나대유행에 대응할 수 있는 충분한 성능을 갖췄다.”라고 판정했는데 머떤 사람이 “어떤 제품은 99% 바이러스를 죽이는데 바이러스킬러는 능력이 훨씬 뒤지네.”, ”공기살균기가 이미 있는데 만들 필요없는 것 같은데.” 같은 말을 한다.
이 제품은 코로나바이러스를 대량으로 사멸하여 인간이 코로나바이러스에 감염되지 않도록 하는 것인데 (백신이나 사회적 거리두기 방식과 다르게) 생소하다보니까 받아드리지 않으려는 경향이 있다.
'바이러스킬러'가 코로나바이러스 대유행에 대응하는 제품서비스시장에 처음 진입하게 되었고, (공인된) 성능검사방법, (공인된) 성능검사기준이 없다. 그럼에 불구하고 '코로나 바이러스대유행에 대응하는 제품'은 기본적으로 요구되는 성능이 있다. 이 경우에는 제품의 목적, 제품이 속할 시장, 제품에 요구되는 기본적 성능, 제품에 대한 성능검사방법, 성능검사기준 등을 설명해야 할 것 같다. 그러므로 결과해석을 위한 기초사항, 성능시험결과해석으로 분리하여 기술한다(도 3a 및 도 3b 참조).
1. 성능검사 결과를 해석하기 위한 기초사항
1)실내공기중 바이러스: 실외공기중 부유바이러스나 실외부착되어 고정된 바이러스는 햇빛이 모두 사멸하므로 인간이 관여할 필요가 없다. 실내고정된 바이러스는 소독제나 끓는 물, 소독기를 사용하면 간단히 죽는다. 그런데 실내공기중 부유바이러스는 햇빛이 닿지않고, 인간호흡과 딱 붙어있어 인간을 방해하지않고 사멸하기 쉽지 않다. 공기살균기 등을 사용하여 죽일수는 있지만 그 양이 너무 적어 코로나대유행에 대응하기 곤란하다.
2)인간은 실내공기중 바이러스를 잘 죽이지 못한다. : 총포로 쏴도, 불로 지져도, 그물로도 바이러스를 잡을 수 없다. 화학물질을 사용하면 인간도 방해받는다. 바이러스는 사람을 잘 죽인다. 인간은 할 수 없이 바이러스로부터 도망하게 되었다. 그리고 백만명 이상이 죽었다. 바이러스는 숫자가 많고 증식속도가 매우 빠르기 때문에 사멸속도를 매우 높인 방법이 아니면 '의미있게' 사멸한다고 할 수 없다. 어떤 호수를 물을 퍼내어 간척을 하려 하는데 유입되는 물(유입2톤- 유출1톤)은 초당 1톤이다. 초당 1톤이하의 능력을 가진 양수기로는 호수물을 퍼내기 불가능하다. 초당 1.2톤의 양수기로는 손자 때에 완성이 된다. 현실적인 시간 감각을 고려하면 초당 11톤이상의 능력을 가진 양수기가 필요하다. 시중에 나와 있는 공기살균기 등은 모두 초당 1톤이하의 능력을 가진 양수기이다.
3) 이 개발품의 성격: 특정실내의 공기중바이러스를 대량신속하게 사멸하여 실내바이러스밀도를 떨어뜨리고 바이러스감염위험을 크게 떨어뜨려 코로나 대유행을 극복하기 위한 제품이다.
①특정실내가 바이러스교환소가 되는 것을 차단한다.
②매 싸이큶에 바이러스평균증식속도보다 바이러스사멸속도를 높여 시간경과에 따라 바이러스숫자가 줄어든다.
③백신이나 사회적거리두기를 매우 비효울적이라고 보고, 코로나대유행에 대응하는 새로운 방법을염두에 둔 것이다.
④본 발명은 새롭게 출현한 제품으로 산업분류기준이 없으므로 유사성에 따라 임시로 공기살균기로 분류하는데 이것은 사용목적과 요구성능이 공기살균기와 다르다. 나중에 바이러스사멸기, 바이러스대유행 대응제품, 실내바이러스밀도저하기 등으로 분류해야 한다.
⑤본 발명의 개발품은, “인간이 바이러스의 숙주이어서 선천적으로 바이러스에 대하여 상당한 방어능력을 가지고 있다”와 “숙주의 몸 밖으로 나온 바이러스는 대부분 햇빛이 사멸한다.”라는 사실을 활용한다.
4) 공인된 검사방법 등: 이 개발품이 백신이 지배하는 '코로나대유행에 대응하는 재품서비스시장'에 갑자기 뛰어들다보니까 공인된 검사방법, 공인된 검사기준 등이 없다. 또 공기청정기시장에도 바이러스제거성능에 대한 공인된 검사방법이나 검사기준이 없는 것 같다(어떤 청정기 광고에 '제품에서 배출하는 공기'중 바이러스사멸율, 99%. 이 경우에는 인간이 호흡하는 공기 (즉 실내공기전체)를 기준으로 성능검사를 해야 하는데 좀 이상한 것이다. 공인된 검사방법은 없어도 널리 쓰이는 검사방법을 채택해야 한다).
공인된 검사방법이나 검사기준이 없는 '코로나 대유행에 대응하는 제품시장'에서는 어떻게 행동해야 할까? 처음 진출한 제품개발자가 제안을 하고 나중에 받아드려지면 공인화 되는 것이다. 제안사항은 다음과 같다.
1)'인간이 호흡하는 실내공기 전체'를 기준으로 성능검사를 해야 한다. (서울대나 공공기관은 이 검사방법을 사용한다.)
2) 코로나대유행 대응제품은 실내 공기중바이러스가 1억마리 있을 때 30분에 5천만마리를 사멸해야 한다.(코로나대응제품의 합격여부를 결정하는 검사기준)
3)바이러스제거성능을 갖는 공기살균기 등은 30분에 5백만마리를 사멸한다.(공기살균기 합격 검사기준)
5)바이러스와 인간이 딱 붙어 있으니 할 수 없이 (실내공기를 흡입- 바이러스 사멸- 멸균공기를 실내에 공급)하는 것을 반복하면 희석되면서 점차 실내공기중 바이러스밀도가 떨어진다. 문제는 실내용적보다 최소 1.6배-2.4배의 멸균된 공기를 공급해야 적절한 실내바이러스밀도를 얻을 수 있다는 것이다. 만약 높은 수준을 요구하면 멸균된 공기의 공급량이 10배이상되고 경제적으로 곤란하게 된다. 적절한 밀도를 30%로 했는데 감염위험과 비용을 고려한 것이다. 그러므로 이 희석식방법으로 실내공기중바이러스밀도를 낮추려면 빠른 바이러스 사멸속도와 많은 공기처리량이 동시에 요구된다. 필터를 사용하거나 다단계 살균프로세스를 사용하면 실내바이러스밀도를 낮추기가 매우 어렵다.
6) 사례분석: 사람의 코를 모사하여, 코털에 바이러스를 부착시키고 고정된 바이러스를 자외선으로 사멸한다. 이것은 사멸효율이 적으므로 5번을 반복한다.
이 경우 살균프로세스는 10개가 되고 10개의 프로세스를 마치는데 2분이 소요된다. 코털필터가 차지하는 용적이 크기 때문에 단위 공기처리량도 줄어든다. 시간당 30회전을 할 수 있는데 300m3 용적의 실내공기중바이러스밀도를 적절한 정도로 낮추려면 최소 1만-2만회전이 있어야 한다. 시간당 바이러스제거율은 0.3% - 0.15%가 된다. 만약 '제품이 배출하는 공기중바이러스사멸율'이 70%라고 하면 몇 배의 회전수가 필요하게 되어 실내공기중바이러스제거율은 거의 없게 된다.
자외선을 티타늄에 반응시켜 라디칼을 발생시키고, 라디칼이 바이러스를 사멸하고, 라디칼은 인체에 유해하므로 중화하여 실내로 배출한다.) 이것은 3단계살균프로세스를 사용하는 경우인데, 라디칼 생성시간, 퍼지는 시간, 바이러스제거에 필요한 반응시간, 중화에 소요되는 시간 등 많은 시간이 소요되니 이 경우도 실내공기중바이러스밀도를 낮추지 못한다.
7)성능검사시간 30분: 희석식 방법으로 실내공기중 바이러스밀도를 떨어뜨리는 장치는 많은 멸균공기를 공급해야 하므로 성능검사시간이 1시간 반에서 2시간이 적절하다. 그런데 산업기술시험원이 30분으로 정해버린 것이다.
바이러스실험규정을 지키면서 자체성능검사를 하려면 1억원이 들고, 기업에 의뢰하면 5천만원인데 시험원은 세금포함 320만원이다. 시험원이 엄청난 기여를 한다. 이 성능검사는 분석작업 기타를 제외하고 멸균작업, 바이러스 주입작업, 30분 운용, 바이러스 시료채취작업 등을 포함하는데 1회검사에 1시간이 넘게 소요된다. 그러므로 경제적으로 실행하기 곤란하니까 30분으로 정한 것 같다.
8)시험원은 실내공기중 바이러스제거성능만 검사한다.
예컨대, 화학물질이나 전자기파를 사용하는 공기살균기등이 시험원에서 좋은 성능검사결과를 받을 수 있다. 그런데 그 경우에는 화학물질을 통제하는 곳에 가서 해당검사를 받아야 한다. 잔류물질이 미량이라도 검출되면 공기살균기로서 결격이다. 전자기파도 혈류에 부정적인 영향을 미치므로 상당히 엄격하다. 화학물질이나 전자기파를 제거하려고 공정을 추가하거나 탄소섬유 등으로 전자기파를 막는 경우도 있지만 가격이 올라가고 성능은 떨어진다. 이 개발품은 화학물질이나 전자기파 등이 없으므로 산업기술시험원 성능검사가 최종적이다.
2.산업기술시험원의 성능검사 결과해석
1)이 개발품을 60m3의 챔버에 넣고 30분간 운용했을 때 (공기처리속도는 0.7m/sec, 30분동안 처리한 공기량 48m3) 바이러스제거율은 58.8%이다.
-만약 1시간 운용했다면 바이러스제거율은 84%가 된다.
-만약 30분을 더 운용하면 바이러스제거율은 약 93%가 된다.
2)바이러스숫자를 기준으로 해석하면
- 챔버에 1억마리의 바이러스가 있을 때, 30분간 운용하면 이 개발품은 5880만 마리를 사멸한다.
-1시간운용하면 8400만 마리를 사멸한다.
-1시간 30분을 운용하면 9300만마리를 사멸한다.
3)현실적인 사용조건을 고려하면
-300m3 용적의 매장에 최대동시거주고객수 50명, 개발품의 풍속 2m/sec로 하고 1시간 운용하면(공기처리량288m3) 매장내 공기중바이러스밀도가 약 30%로 떨어진다. (추정) 이 매장을 방문한 고객이 이 매장에서 바이러스에 감염될 위험은 당초 10만분의1에서 10억분의1로 떨어진다. 이 개발품이 충분히 보급되어 보호받는 사람수와 시간이 늘어나면 확진자수는 줄어들고 대유행은 종식된다.
3.결론
1) 이 제품은 목적, 시장, 기본적 요구성능 이라는 측면에서 공기살균기 등과 다르다. 이 제품은 인간이 바이러스를 공격할 수 있게 해준다. 바이러스증식속도보다 빠르고 대량으로 바이러스를 사멸할 수 있는 최초의 제품이다.
2) 이 제품은 인간이 코로나바이러스의 숫자가 많다는 것, 바이러스의 증식속도가 빠르다는 것, 바이러스변이가 쉽게 된다는 것, 유전자재조합바이러스가 있다는 것에 대하여 (백신괴 다르게) 적절한 대응을 할 수 있게 한다.
3) 이 제품은 인간이 (사회적 거리두기와 다르게) 코로나대유행에 불구하고 정상적으로 자신의 직업을 영위할 수 있도록 한다. 백신도 인간이 정상적으로 직업을 영위할 수 있게 하지 못한다.
따라서, 본 발명의 일 실시예에 따른 바이러스 살균기능을 갖는 공기살균장치를 이용하면, 바이러스의 생물학적 특성(보이지 않을 정도로 작고, 종류가 많고, 변이가 쉽고, 유전자재조합 바이러스의 존재, 증식이 매우 빠르고, 생태계 구성원리와 다르게 생존력이 강하다)을 극복하고 모든 바이러스를 물리적으로, 대량으로 신속하게 사멸한다는 이점을 제공한다. 또한, 실내 공기 중 바이러스 밀도를 급격하게 줄일 수 있다. 실내공기 중 바이러스밀도가 줄어들면 바이러스 감염위험은 현격하게 줄어든다. 코로나바이러스대유행이 되니 “싸고, 신속하고, 확실하고, 안전하고, 대량으로 바이러스를 사멸하는 방법은 엄청나게 중요한 기술이 되었다.
본 발명의 일 실시예에서 사용된 “~부”는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다
본 발명의 실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
전술된 내용은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 게시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
*부호의 설명*
100: 바이러스 살균기능을 갖는 공기살균장치
101: 몸체
110: 공기 흡입부
111: 흡입모터
112: 흡입팬
113: 교량형 공기통로부
114. 공기회전장치
120: 공기 살균부
121: 전기분해반사판(121)
122: 자외선램프
123: 거치대, 인입선 및 직류변환기
130: 공기 배출부
131: 안과 밖으로 뉘인 광차단부재
132: 광차단 부재
133: 방열구조체
140: 구동제어부
150: 컨트롤러

Claims (8)

  1. 원통형 구조를 갖는 몸체;
    상기 몸체의 하단에 위치하고, 팬 모터를 이용하여 실내 또는 실외 공기를 흡입하는 공기 흡입부;
    상기 몸체의 중부에 위치하여 상기 공기 흡입부에서 흡입된 흡입공기를 기 설정된 파장 및 세기의 자외선을 조사하여 공기 내의 바이러스를 살균하는 공기살균부;
    살균된 공기를 상기 몸체의 상부로 배출하는 공기 배출부; 및
    상기 공기 흡입부, 공기 살균부 및 공기 배출부의 동작을 제어하는 구동제어부를 포함하는 바이러스 살균기능을 갖는 공기살균장치.
  2. 제1항에 있어서,
    상기 공기 배출부는
    상기 살균된 공기의 온도를 실내의 공기 온도보다 낮추기 위한 방열구조체를 더 포함하는 바이러스 살균기능을 갖는 공기살균장치.
  3. 제1항에 있어서,
    상기 공기 흡입부는
    교량형 구조의 공기 통로가 구비된 것을 특징으로 하는 바이러스 살균기능을 갖는 공기살균장치.
  4. 제1항에 있어서,
    상기 공기살균부는
    흡입된 공기 내의 바이러스에 미리 설정된 파장 및 세기의 자외선을 조사하는 자외선램프; 및
    상기 자외선램프에서 조사된 자외선을 반사시켜 입체살균장을 형성하는 원통형 구조의 전기분해반사판을 포함하고,
    상기 자외선램프를 중앙에 거치하기 위한 거치부재를 더 포함하는 바이러스 살균기능을 갖는 공기살균장치.
  5. 제1항에 있어서,
    상기 공기 살균부의 상부에 조사되거나 또는 반사된 자외선이 상기 공기 배출부로 방사되는 것을 방지하기 위한 축차 구조의 광차단 부재를 더 포함하고,
    상기 광차단 부재는
    직경이 서로 다른 중공을 갖는 원형의 링 차단체를 수직으로 적층한 구조체로서, 상기 광차단 부재의 수직 단면이 등변사다리꼴의 형상인 것을 특징으로 하는 바이러스 살균기능을 갖는 공기살균장치.
  6. 제1항에 있어서,
    상기 공기 배출부는
    외측면에 방열판이 감싸지도록 제작된 것을 특징으로 하는 바이러스 살균기능을 갖는 공기살균장치.
  7. 제1항에 있어서,
    상기 공기 살균부는
    램프, 램프의 형상, 램프의 직경, 램프의 설치방법, 자외선의 파장 및 살균강도, 전기분해반사판의 형상, 두께, 반사율, 피막형성기간, 램프와 반사판의 거리, 사용소재, 바이러스의 자외선에 대한 저항능력 등을 고려하고 방출된 모든 자외선을 합성하여 적절한 살균강도를 갖는 입체살균장을 구성 응용하는 것을 포함하는 바이러스 살균기능을 갖는 공기살균장치.
  8. 제1항에 있어서,
    상기 구동제어부는
    램프가 미리 설정된 파장과 강도의 자외선을 조사하게 하고, 공기흡입부의 모터와 팬을 구동하여 살균목적에 따라 풍속을 가변하며, 공기배출부의 방열구조체를 구동하는 바이러스 살균기능을 갖는 공기살균장치.
PCT/KR2022/008375 2021-06-16 2022-06-14 바이러스 살균기능을 갖는 공기살균장치 WO2022265341A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210078222A KR102380069B1 (ko) 2021-06-16 2021-06-16 바이러스 살균기능을 갖는 공기살균장치
KR10-2021-0078222 2021-06-16

Publications (1)

Publication Number Publication Date
WO2022265341A1 true WO2022265341A1 (ko) 2022-12-22

Family

ID=80997408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008375 WO2022265341A1 (ko) 2021-06-16 2022-06-14 바이러스 살균기능을 갖는 공기살균장치

Country Status (2)

Country Link
KR (1) KR102380069B1 (ko)
WO (1) WO2022265341A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102380069B1 (ko) * 2021-06-16 2022-03-29 심동현 바이러스 살균기능을 갖는 공기살균장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322614B1 (en) * 1996-12-18 2001-11-27 Kurt Tillmans Device for high-purity filtering and disinfecting breathing air
KR20060118508A (ko) * 2003-10-27 2006-11-23 헤르만누스 게르하르두스 마리아 실데르휴이스 공기처리방법 및 공기처리기
KR100660138B1 (ko) * 2005-07-06 2006-12-21 한양대학교 산학협력단 공기 살균기
KR101796298B1 (ko) * 2016-05-03 2017-12-01 주식회사 세스코 자외선 공기살균기 및 자외선 공기살균방법
KR20200135261A (ko) * 2018-09-10 2020-12-02 엘지전자 주식회사 살균 장치 및 그를 포함하는 홈 어플라이언스
KR102380069B1 (ko) * 2021-06-16 2022-03-29 심동현 바이러스 살균기능을 갖는 공기살균장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120077724A (ko) 2010-12-31 2012-07-10 박정석 자외선 엘이디와 광촉매를 이용한 공기살균장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322614B1 (en) * 1996-12-18 2001-11-27 Kurt Tillmans Device for high-purity filtering and disinfecting breathing air
KR20060118508A (ko) * 2003-10-27 2006-11-23 헤르만누스 게르하르두스 마리아 실데르휴이스 공기처리방법 및 공기처리기
KR100660138B1 (ko) * 2005-07-06 2006-12-21 한양대학교 산학협력단 공기 살균기
KR101796298B1 (ko) * 2016-05-03 2017-12-01 주식회사 세스코 자외선 공기살균기 및 자외선 공기살균방법
KR20200135261A (ko) * 2018-09-10 2020-12-02 엘지전자 주식회사 살균 장치 및 그를 포함하는 홈 어플라이언스
KR102380069B1 (ko) * 2021-06-16 2022-03-29 심동현 바이러스 살균기능을 갖는 공기살균장치

Also Published As

Publication number Publication date
KR102380069B1 (ko) 2022-03-29

Similar Documents

Publication Publication Date Title
US10549007B2 (en) Fluid sterilization system
US7407633B2 (en) Method and apparatus for air treatment
Nunayon et al. A novel upper-room UVC-LED irradiation system for disinfection of indoor bioaerosols under different operating and airflow conditions
WO2022265341A1 (ko) 바이러스 살균기능을 갖는 공기살균장치
US6328937B1 (en) Apparatus for killing microorganisms
KR20010006417A (ko) 휴대용 살균성 공기 필터
US11938252B2 (en) Medical air handling system with laminar flow and energy-based air decontamination
WO2008058290A2 (en) Method of and apparatus for cleaning and disinfection of air
US10328174B2 (en) Portable microorganism sanitation system
KR102228610B1 (ko) 안티바이러스 게이트
KR101654160B1 (ko) 공기 멸균장치
Mathebula et al. The Use of UVC-LEDs for the Disinfection of Mycobacterium tuberculosis
KR102153884B1 (ko) 이동 가능한 검사 부스, 이동 가능한 엑스선 검사 시스템 및 이를 이용한 엑스선 검사 방법
US20210308612A1 (en) Decontamination of objects
WO2022027101A1 (en) Apparatus for sterilizing a lift
JP7471635B2 (ja) 送風殺菌装置
Pisharodi Portable and Air Conditioner-Based Bio-Protection Devices to Prevent Airborne Infections in Acute and Long-Term Healthcare Facilities, Public Gathering Places, Public Transportation, and Similar Entities
US20230302188A1 (en) Expandable system for purification and disinfection of air
CN214065149U (zh) 一种紫外线杀毒通风装置
CN217154480U (zh) 一种安全紫外线杀菌消毒灯
JP3235987U (ja) 空間浮遊コロナマイクロ飛沫ウイルス不活化システム
WO2022045742A1 (ko) 안티바이러스 시스템, 이를 구비한 방역장비 및 방역장비의 바이러스 제거과정을 통하여 점막백신을 조제하는 의료기기
GB2601912A (en) Gas sterilisation apparatus
Demak et al. Can Autonomous UV Disinfection Robots Sterilize a Room? A Review.
BR202021012961Y1 (pt) Esterilizador uv-c para ar condicionado split piso teto

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22825266

Country of ref document: EP

Kind code of ref document: A1