WO2022265060A1 - Epoxy resin and method for producing epoxy resin - Google Patents

Epoxy resin and method for producing epoxy resin Download PDF

Info

Publication number
WO2022265060A1
WO2022265060A1 PCT/JP2022/024068 JP2022024068W WO2022265060A1 WO 2022265060 A1 WO2022265060 A1 WO 2022265060A1 JP 2022024068 W JP2022024068 W JP 2022024068W WO 2022265060 A1 WO2022265060 A1 WO 2022265060A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
epoxy
group
general formula
carbon
Prior art date
Application number
PCT/JP2022/024068
Other languages
French (fr)
Japanese (ja)
Inventor
夕紀 阿須間
員正 太田
芙美 大野
潤也 河井
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020237042825A priority Critical patent/KR20240021798A/en
Priority to CN202280042383.1A priority patent/CN117480195A/en
Priority to JP2023530394A priority patent/JPWO2022265060A1/ja
Publication of WO2022265060A1 publication Critical patent/WO2022265060A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/027Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to an epoxy resin, a method for producing the same, and a composition containing the epoxy resin. More particularly, it relates to a sulfonamide group-containing epoxy resin, a method for producing the same, and a composition containing the sulfonamide group-containing epoxy resin.
  • Epoxy resins are excellent in heat resistance, adhesiveness, water resistance, mechanical strength and electrical properties, so they are used in various fields such as adhesives, paints, materials for civil engineering and construction, and insulating materials for electrical and electronic equipment. It is used. In particular, in the electrical and electronic fields, low-viscosity epoxy resins are widely used in insulating materials, laminating materials, sealing materials, and the like because of their good moldability. Further, nitrogen-containing epoxy resins are used in applications that require adhesiveness, such as CFRP matrix resins. Further, Patent Documents 2 and 3 disclose sulfonamide type epoxy resins.
  • Patent Document 1 The amine-type epoxy resin described in Patent Document 1 is widely known as a highly heat-resistant epoxy resin, but it is subject to storage temperature restrictions because it causes ring-opening polymerization of epoxy due to the basicity of its own amino group. There were problems in terms of storage stability, such as points and quality deterioration such as viscosity increase during storage. In order to solve this problem, Patent Documents 2 and 3 succeed in reducing the nucleophilicity of the nitrogen atom and improving the storage stability by replacing the amino group with a sulfonamide group. On the other hand, in recent years, especially for electric and electronic equipment materials such as multilayer circuit boards, materials that can withstand operation at higher temperatures have been demanded, so epoxy resins are required to have high heat resistance.
  • an object of the present invention is to provide an epoxy resin whose cured product has high heat resistance and a low coefficient of linear expansion.
  • the present inventors have found a sulfonyl group containing 2 to 4 epoxy groups, and a styrene oxide structure (here, the styrene oxide structure means that one or more hydrogens in the benzene ring are substituted with a 2-oxiranyl group. It has been found that an epoxy resin having a structure shown in FIG. The present invention has been completed based on such findings.
  • the gist of the present invention is as follows. [1] An epoxy resin represented by the following general formula (1).
  • A is an aromatic group which may have a substituent
  • B1 and B2 are each is independently hydrogen or a monovalent organic group having 1 to 10 carbon atoms optionally having an epoxy group
  • the total number of epoxy groups contained in B 1 and B 2 is 2 to 4
  • R 1 to R 3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, which may be combined to form a ring
  • m is an integer of 0 to 4
  • n is an integer of 1 to 4 .
  • A is an optionally substituted aromatic group
  • B 1 and B 2 are each independently hydrogen or a monovalent C 1-10 optionally having an epoxy group is an organic group
  • the total number of epoxy groups contained in B 1 and B 2 is 2 to 4
  • R 1 to R 3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, and are bonded to each other may form a ring
  • n is an integer of 1 to 4.
  • R 4 to R 6 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, and may be combined to form a ring.
  • a semiconductor encapsulant comprising the epoxy resin composition described in [6] above.
  • a varnish for reinforced plastic materials comprising the epoxy resin composition according to [6] above.
  • a method for producing an epoxy resin. In the formula, A, R 1 to R 3 and n are the same as defined above. L 1 and L 2 are hydrogen or a hydrocarbon group which may have a carbon-carbon double bond.)
  • Epoxy resin The epoxy resin of the present invention is represented by the following general formula (1). Hereinafter, it may be described as “the epoxy resin of the present invention” or “the present epoxy resin”.
  • X is a nitrogen atom, CF, C(C m H 2m+1 ) or C(Ph), and m is an integer of 0-4. n is an integer of 1-4.
  • F shows a fluorine atom and Ph shows a phenyl group.
  • X is a nitrogen atom in the formula (1).
  • X is C(C m H 2m+1 ), preferably m is 0, for the purpose of lowering the viscosity of the resin and improving moldability during processing.
  • A is an aromatic group which may have a substituent.
  • the aromatic group includes monocyclic aromatic hydrocarbon groups such as benzene ring; and polycyclic aromatic hydrocarbon groups such as naphthalene ring, anthracene ring and phenanthrene ring.
  • a monocyclic aromatic hydrocarbon group such as a benzene ring is preferable for the purpose of lowering the viscosity of the resin and improving the moldability during processing, and a polycyclic aromatic hydrocarbon group is preferable for the purpose of further improving the heat resistance of the cured product.
  • a group is preferred, but a benzene ring is particularly preferred for the purpose of balancing the viscosity and heat resistance of the present resin.
  • n is an integer of 1 to 4, and the number of n determines the valence of the aromatic group.
  • n is preferably 1 or 2 in order to increase the curing rate of the introduced epoxy group, and is particularly preferably 1 from the viewpoint of easy raw material availability.
  • the 2-oxiranyl group is preferably at the para-position with respect to the bond with the sulfonyl group from the viewpoint of easy raw material availability.
  • the substituent that A may have may be appropriately selected depending on the application, and specific examples thereof include a saturated linear alkyl group such as a methyl group and an ethyl group; an isopropyl group, an isobutyl group, saturated branched alkyl groups such as tert-butyl; alkenyl groups such as vinyl, 2-propenyl and 2-methyl-2-propenyl; alkynyl groups such as ethynyl and 1-propynyl; cyclopropyl and cyclohexyl aryl groups such as phenyl group, 4-methylphenyl group and naphthyl group; alkoxy groups such as methoxy group and ethoxy group; halogen groups such as chloro group and bromo group.
  • a saturated linear alkyl group such as a methyl group and an ethyl group
  • B 1 and B 2 are each independently hydrogen or a monovalent organic group having 1 to 10 carbon atoms which may have an epoxy group, and the total number of epoxy groups contained in B 1 and B 2 is 2-4.
  • B 1 and B 2 are preferably monovalent organic groups having 2 to 6 carbon atoms from the viewpoint of easy synthesis and high curing rate, and from the viewpoint of keeping the coefficient of linear expansion low, the number of carbon atoms It is preferably a 2-4 monovalent organic group.
  • the number of epoxy groups contained in B 1 and B 2 is the total number of epoxy groups contained in B 1 and B 2. For example, only B 1 has 2 to 4 epoxy groups. and B2 may have no epoxy group.
  • each of B 1 and B 2 preferably has one or more epoxy groups.
  • both B 1 and B 2 are preferably glycidyl groups.
  • R 1 to R 3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, and may be combined with each other to form a ring.
  • the alkyl group may be linear or branched, and examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and t-butyl group.
  • R 1 to R 3 are preferably hydrogen or an alkyl group having 1 carbon atoms, and more preferably all of R 1 to R 3 are hydrogen, in terms of ease of synthesis and high curing rate.
  • a sulfonamide group-containing epoxy resin represented by the general formula (3) is preferable in that inexpensive raw materials can be used.
  • R 4 to R 6 are the same as R 1 to R 3 in the general formula (1), but from the viewpoint of easy synthesis and high curing rate, it is preferable that both R 5 and R 6 are hydrogen, It is particularly preferred that all of R 4 -R 6 are hydrogen. Specific examples of the epoxy resin of the present invention are shown below.
  • the exothermic start temperature of the epoxy resin of the present invention in DSC is usually 150°C or higher, preferably 180°C or higher, more preferably 200°C or higher.
  • the exothermic initiation temperature is 150° C. or higher, self-polymerization is less likely to occur, and storage stability is excellent.
  • Epoxy resin composition contains one or more of the epoxy resins of the present invention. By containing the epoxy resin of the present invention, an epoxy resin composition having excellent storage stability can be obtained. Moreover, the cured product of the epoxy resin composition of the present invention is characterized by a low coefficient of linear expansion and high heat resistance, and can be used in various applications.
  • the epoxy resin composition of the present invention contains an epoxy resin other than the epoxy resin of the present invention (hereinafter sometimes referred to as "another epoxy resin") within a range that does not impair the effects of the present invention. good too.
  • another epoxy resin may contain curing agents, fillers, additives, solvents, and the like.
  • the content of the present epoxy resin in the resin composition of the present invention is not particularly limited as long as the effect of the present invention is exhibited, but in terms of solid content, it is preferably 1% by mass or more, and 5 masses. % or more, more preferably 10% by mass or more.
  • the upper limit may be 100% by mass or less, but is preferably 95% by mass or less, particularly preferably 90% by mass or less, in order to express the properties of other components.
  • epoxy resins that may be contained in the epoxy resin composition of the present invention can be appropriately selected depending on the application, and are not particularly limited.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, naphthalene type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, phenol aralkyl type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, di
  • Various epoxy resins such as cyclopentadiene type epoxy resins can be used, and these epoxy resins may be used alone or in any combination and ratio of two or more. When two or more types of epoxy resins are used, the total content is within the above preferred range.
  • the curing agent that may be contained in the epoxy resin composition of the present invention may be any substance that contributes to the cross-linking reaction of the epoxy groups of the epoxy resin of the present invention, and is generally called an epoxy resin curing agent.
  • the curing agent according to the present invention is a substance that contributes to a cross-linking reaction between the epoxy groups of the epoxy resin contained in the epoxy resin composition of the present invention, or a cross-linking agent between the epoxy resins contained in the epoxy resin composition of the present invention. It is a substance that exhibits the function of promoting the reaction and the addition reaction between the epoxy resin and the curing agent.
  • Epoxy resin curing agents that may be contained in the epoxy resin composition of the present invention include, for example, phenolic curing agents, ester curing agents, benzoxazine curing agents, acid anhydride curing agents, primary and secondary curing agents. Class amine-based curing agents, mercaptan-based curing agents, amide-based curing agents, blocked isocyanate-based curing agents, and the like are included. It is also possible to use a phenoxy resin as an epoxy resin curing agent. Examples of the phenol-based curing agent include phenol novolak resin, cresol novolak resin, naphthol-modified phenol resin, dicyclopentadiene-modified phenol resin and p-xylene-modified phenol resin.
  • Acid anhydride curing agents include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhymic anhydride, and dodecenyl succinic anhydride. and methyl nadic acid anhydride, and specific examples include MH-700 manufactured by Shin Nippon Rika Co., Ltd., and YH306 and YH307 manufactured by Mitsubishi Chemical Corporation.
  • Primary and secondary amine curing agents include aromatic amines such as methylene dianiline, m-phenylenediamine, 4,4'-diaminodiphenylsulfone and 3,3'-diaminodiphenylsulfone. Examples include JER Cure WA manufactured by Mitsubishi Chemical Corporation.
  • the content of the curing agent contained in the epoxy resin composition of the present invention is large in that the epoxy groups contained in the epoxy resin composition of the present invention are less likely to remain unreacted and can be sufficiently cured in a short time. is preferred.
  • the cured product obtained by curing the epoxy resin composition of the present invention has few sites that react with the epoxy groups of the curing agent as they are unlikely to remain unreacted.
  • the equivalent ratio between the epoxy groups contained in the epoxy resin composition of the present invention and the reactive sites in the curing agent is preferably 0.3 or more, preferably 0.8 or more. It is more preferable to use it for , and it is particularly preferable to use it so that it is 0.9 or more.
  • the total content is within the above preferred range.
  • the epoxy resin composition of the present invention may contain a curing accelerator.
  • curing accelerators include imidazole-based curing accelerators and tertiary amine-based curing accelerators. accelerators, organic phosphine-based curing accelerators, phosphonium salt-based curing accelerators, tetraphenylboron salt-based curing accelerators, metal-based curing accelerators, organic acid dihydrazides, halogenated boron amine complexes, and the like.
  • one type of curing accelerator may be used, or two or more types may be used in any combination and ratio.
  • filler When the epoxy resin composition of the present invention contains a filler, curing the epoxy resin composition of the present invention causes the filler to have a low coefficient of linear expansion, high thermal conductivity, flame retardancy, and electrical conductivity. It is possible to impart physical properties to the cured product.
  • the type of filler may be selected according to desired physical properties. Specific examples include inorganic fillers such as alumina, aluminum nitride, boron nitride, silicon nitride, and silica.
  • the shape and particle size of the filler are not limited as long as they do not impair the effect of the epoxy resin composition of the present invention.
  • the content of the filler is preferably 10% by mass or more, more preferably 20% by mass or more, and preferably 95% by mass or less, and further preferably 90% by mass or less. preferable. When it is at least the above lower limit value, the effect as a filler is obtained, and when it is at most the above upper limit value, the viscosity of the composition is lowered to maintain workability. Only one filler may be used, or two or more fillers may be used in any combination and ratio. In addition, the content in the case of using two or more fillers means the total amount.
  • the epoxy resin composition of the present invention may contain additives.
  • additives such as silane coupling agents and titanate coupling agents, UV inhibitors, antioxidants, plasticizers, flame retardants, colorants, dispersants, emulsifiers, elasticity reducing agents, diluents, antifoaming agents , ion trap agents, and the like.
  • the diluent is added for the purpose of adjusting the viscosity during processing of the epoxy resin composition of the present invention and the handling properties during curing. are preferred and these are called reactive diluents.
  • Examples of reactive diluents that can be used in the epoxy resin composition of the present invention include jER1750, YED111N, YED111AN, YED122, YED188, YED216M, YED216D (all manufactured by Mitsubishi Chemical Corporation), Neotote S, PG-207GS, ZX-1658GS (all manufactured by Nippon Steel Chemical & Material Co., Ltd.), EX-211, EX-212, EX-212L, EX-214L, EX-121EX-141, EX-142-IM, EX-145, EX-146EX -146P (all manufactured by Nagase ChemteX Corporation), Epodil 741, Epodil 749, Epodil 757 (all manufactured by Air Products), Epolight M-1230, Epolight 40E, Epolight 100E, Epolight 200E, Epolight 400E, Epolight 70P, Epolight 200P, Epolight 400P, Epolite 1500NP, E
  • the epoxy resin composition of the present invention may contain a solvent for viscosity adjustment during processing and handling during curing.
  • solvents include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; esters such as ethyl acetate; ethers such as ethylene glycol monomethyl ether; N,N-dimethylformamide, N,N-dimethylacetamide and the like.
  • amides alcohols such as methanol, ethanol and isopropanol; alkanes such as hexane and cyclohexane; aromatics such as toluene and xylene.
  • the amount is preferably not used or small in order to avoid formation of voids in the cured product due to residual solvent. On the other hand, a large amount is preferable from the viewpoint that cracks are less likely to occur as the viscosity of the composition increases.
  • solvents may be used alone, or two or more may be used in any combination and ratio.
  • the epoxy resin composition containing the epoxy resin of the present invention is suitable for applications requiring high heat resistance. is particularly useful as a semiconductor encapsulant. It is also useful as a varnish for reinforced plastic materials because of its excellent adhesiveness derived from nitrogen atoms. Furthermore, it is also useful as a fiber-reinforced plastic obtained by curing the varnish.
  • the cured product of the present invention can be obtained by curing the epoxy resin composition of the present invention.
  • the curing method and conditions are not particularly limited as long as the epoxy resin composition of the present invention can be cured. However, thermosetting is preferable because molding is easy.
  • the cured product of the present invention has a high glass transition temperature and excellent heat resistance because the composition containing the epoxy resin of the present invention is cured.
  • the glass transition temperature estimated from the dynamic viscoelasticity measurement of the cured product of the present invention is, for example, using aromatic amine curing agent WA (Mitsubishi Chemical Co., Ltd.) as a curing agent, at 120 ° C. for 2 hours, at 175 ° C.
  • WA aromatic amine curing agent
  • the temperature is usually 200° C. or higher, preferably 230° C. or higher, more preferably 250° C. or higher.
  • the temperature is usually 150° C. or higher, preferably 180° C. °C or higher, more preferably 200 °C or higher.
  • the upper limit of the glass transition temperature is usually 300°C.
  • the cured product of the present invention is characterized by a low average coefficient of linear expansion.
  • the average coefficient of linear expansion in the range of 50 ° C. to 250 ° C. of the cured product of the present invention is, for example, using an aromatic amine curing agent jER Cure WA (manufactured by Mitsubishi Chemical Corporation) as a curing agent, at 120 ° C. for 2 hours, When cured by heating at 175°C for 6 hours, it is usually 100 ppm/°C or less, preferably 80 ppm/°C or less, more preferably 70 ppm/°C or less.
  • an acid anhydride curing agent MH700 manufactured by Shin Nippon Rika Co., Ltd.
  • it is usually 100 ppm / ° C. or less, preferably 80 ppm. /°C or less, more preferably 70 ppm/°C or less.
  • the cured product obtained by curing the epoxy resin composition of the present invention has excellent heat resistance, it can be applied as a material in various fields such as adhesives, paints, electronic materials, and structural materials. Due to its low modulus, it is useful for electronic materials such as insulation casting, lamination materials, and encapsulation materials. Specific examples include multilayer printed wiring boards, film adhesives, liquid adhesives, semiconductor sealing materials, underfill materials, inter-chip fills for 3D-LSI, insulating sheets, prepregs, and heat dissipation substrates. In addition, it is useful as a structural material made of various reinforced plastics because of its excellent adhesiveness derived from nitrogen atoms.
  • the method for producing the epoxy resin of the present invention is not particularly limited, and it can be produced appropriately according to the structure and desired physical properties of the resin.
  • a method of converting to an epoxy group by oxidizing the carbon-carbon double bond of the compound is preferred.
  • the carbon-carbon double bond possessed by the compound of the general formula (4) means the n carbon - carbon double bonds specified in the general formula (4) and the refers to both carbon-carbon double bonds, which may be L 1 and L 2 are hydrogen or a hydrocarbon group which may have a carbon - carbon double bond.
  • a structure corresponding to B2 in general formula ( 1 ) may be selected for L2 in formula (4). That is, when B 1 or B 2 does not have an epoxy group, B 1 and L 1 and B 2 and L 2 are respectively the same.
  • B 1 contains an epoxy group
  • the corresponding L 1 has a carbon-carbon double bond at the position corresponding to the epoxy group in B 1 , and the other partial structure is the same as B 1 . is.
  • the carbon-carbon double bond of the compound of the following general formula (5) may be converted to an epoxy group by oxidation.
  • R 1 to R 3 are the same as in general formula (2).
  • the carbon-carbon double bond of the compound of the following general formula (6) may be converted to an epoxy group by oxidation.
  • R 4 to R 6 are the same as in general formula (3).
  • the oxidation method is not particularly limited as long as the epoxy resin of the present invention can be obtained, and a known method can be used. Specifically, a method using a nitrile and an aqueous hydrogen peroxide solution in the presence of a base, a method using a quaternary ammonium salt and an aqueous hydrogen peroxide solution in the presence of tungstic acids, an organic peracid such as peracetic acid and m-chlorobenzoic acid. and a method using dioxiranes, and the method can be appropriately selected according to the properties of the epoxy resin.
  • the method of using a quaternary ammonium salt and an aqueous hydrogen peroxide solution in the presence of tungstic acids can use inexpensive and stable hydrogen peroxide as an oxidizing agent, and the by-product is water, so it has a negative impact on the environment. can be reduced. Furthermore, it is preferable in that it does not require excessive use of hydrogen peroxide as compared with the method using nitrile and an aqueous solution of hydrogen peroxide in the presence of a base.
  • the compound represented by the general formula (4) as a raw material (hereinafter referred to as "raw material compound") is usually mixed in a reaction solvent with additives such as tungstic acid, onium salts and phosphoric acids. Then, hydrogen peroxide solution is added dropwise so as to keep the temperature of the mixture constant, and the mixture is stirred. After the reaction, the remaining hydrogen peroxide is quenched with a reducing agent such as an aqueous sodium thiosulfate solution, and ordinary operations such as washing with water and concentration are performed to obtain an epoxy resin. Purification by crystallization or column chromatography may be carried out as necessary.
  • tungstic acids include tungsten compounds and salts thereof.
  • the tungsten compound is not particularly limited as long as it contains tungsten and acts as a catalyst for the above epoxidation reaction.
  • the tungstic acids include tungstic acid; sodium tungstate, potassium tungstate, Tungstates such as calcium tungstate and ammonium tungstate; hydrates of the tungstates; phosphotungstic acids such as 12-tungstophosphoric acid and 18-tungstophosphoric acid; -Tungstoboric acid or metal tungsten, etc., preferably tungstic acid, tungstate, phosphotungstic acid, and in terms of availability, tungstic acid, sodium tungstate, calcium tungstate, 12-tungstophosphoric acid more preferred.
  • the amount of tungstic acid used is not particularly limited, but in order to sufficiently proceed the reaction, it is preferably 0.001 equivalent in terms of catalyst metal atom with respect to 1 equivalent of carbon-carbon double bond contained in the raw material compound. Above, more preferably 0.005 equivalents or more, still more preferably 0.01 equivalents or more. It is preferably 1 equivalent or less.
  • onium salts to be used for the reaction those which become lipid-soluble during the epoxidation reaction and are usually dissolved in an organic solvent used as necessary are preferred. Therefore, it is preferable to use onium salts with higher fat solubility.
  • One of the measures of the fat solubility of the onium salt is the number of carbon atoms in the onium salt. . More preferably, an onium salt of a cationic species having 20 or more carbon atoms in its structure is more preferable.
  • ammonium salts such as methyltrioctylammonium salts, tetrahexylammonium salts, dilauryldimethylammonium salts and benzyltributylammonium salts, pyridinium salts such as ceylpyridinium salts, and phosphonium salts such as tetrahexylphosphonium salts.
  • onium salt it is also possible to use an onium salt having one or more substituents convertible to a functional group containing active hydrogen or a salt thereof, as described in WO2013/147092.
  • These onium salts exhibit lipophilicity when oxidized, but can be converted to water-soluble substances by simple post-treatment such as hydrolysis after the completion of the reaction. It is preferable in that it can be dissolved in layers and separated.
  • Preferred specific examples of the above onium salts include N-methyl-N,N,N-tri[2-(pentylcarbonyloxy)ethyl]ammonium hydrogensulfate, N-methyl-N,N,N-tri[ 2-(4-t-butylphenylcarbonyloxy)ethyl]ammonium monomethyl hydrogen sulfate, 2,3-bis(4-t-butyl-phenyloxy)-N,N,N-triethyl-1-propanemmonium chloride, and N-butyl-N,N-di[2-(4-t-butylbenzoyloxy)ethyl-N-methylammonium monomethyl]sulfate.
  • the onium salts may be used alone or in combination of two or more.
  • the amount of the onium salt used can be adjusted as appropriate, and is not particularly limited. .2 equivalents or more, more preferably 0.3 equivalents or more, and usually 5.0 equivalents or less, preferably 2.0 equivalents or less, more preferably 2.0 equivalents or less, in order to reduce the load on the removal of the onium salt It is 1.0 equivalent or less.
  • the concentration of the hydrogen peroxide solution to be dropped is not particularly limited, it is usually 10% by mass or more, preferably 20% by mass or more, more preferably 30% by mass, because it is easily available, has a low risk of decomposition, and is inexpensive to transport. % by mass or more, and usually 60% by mass or less, more preferably 45% by mass or less. Furthermore, it is more preferable from the standpoint of safety and productivity to keep the amount and concentration of hydrogen peroxide in the reaction solution low by using water or adding hydrogen peroxide successively.
  • the amount of hydrogen peroxide used is not particularly limited, and varies depending on the raw material compound, conversion rate of carbon-carbon double bonds, type of catalyst, reaction conditions, etc. On the other hand, it is usually 0.5 equivalents or more, preferably 1.0 equivalents or more, and usually 10 equivalents or less, preferably 3.0 equivalents or less.
  • phosphoric acids in addition to tungstic acids and onium salts.
  • phosphoric acids include inorganic phosphoric acids such as phosphoric acid and phosphorous acid; phosphoric acid polymers such as polyphosphoric acid and pyrophosphoric acid; sodium phosphate, potassium phosphate, ammonium phosphate, and sodium hydrogen phosphate. , potassium hydrogen phosphate, ammonium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, calcium dihydrogen phosphate; monomethyl phosphate, dimethyl phosphate, trimethyl phosphate, triethyl phosphate , phosphates such as triphenyl phosphate; and the like. Of these, phosphoric acid is preferred.
  • the amount of phosphoric acid used is not particularly limited, and the amount used can be adjusted as appropriate depending on the type and type of tungsten compound.
  • the tungsten compound to be used is a tungstate or a tungstate hydrate
  • the equivalent of phosphorus contained in either the phosphoric acid or the phosphonic acid is usually 0.1 equivalent or more relative to tungsten, It is preferably 0.2 equivalents or more, more preferably 0.3 equivalents or more, and usually 10.0 equivalents or less, preferably 5.0 equivalents or less, more preferably 2.0 equivalents or less.
  • the pH of the aqueous layer of the reaction solution may be appropriately adjusted depending on the reaction rate, and is usually 7.0 or less, preferably 6.0 or less, more preferably 4.0 or less, and usually 0.5 or more, preferably is 1.0 or more, more preferably 2.0 or more.
  • the pH may be adjusted by adjusting the amount of phosphoric acid used, and may be adjusted by adding other acids or bases.
  • a solvent can also be used for the reaction.
  • the solvent to be used is not particularly limited, but aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as hexane, heptane and dodecane; alcohols such as methanol, ethanol, isopropanol, butanol, hexanol and cyclohexanol.
  • Halogen solvents such as chloroform, dichloromethane, dichloroethane and chlorobenzene; Ethers such as diisopropyl ether, tetrahydrofuran and dioxane; Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone; Nitriles such as acetonitrile and butyronitrile; Ethyl acetate , butyl acetate, ester compounds such as methyl formate; amides such as N,N-dimethylformamide and N,N-dimethylacetamide; ureas such as N,N'-dimethylimidazolidinone; mentioned.
  • the compound represented by the general formula (4) which is the starting material for the oxidation reaction
  • a solvent it is not necessary to use a solvent.
  • the amount of the organic solvent used is usually 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass, per 1 part by mass of the starting compound, in order to uniformly dissolve the starting compound. parts or more, and usually 20 parts by mass or less, preferably 10 parts by mass or less, more preferably 5 parts by mass or less.
  • the reaction temperature is not particularly limited as long as the reaction is not inhibited, but in order to allow the reaction to proceed sufficiently, it is usually 10°C or higher, preferably 35°C or higher, more preferably 50°C or higher. In order to suppress hydrolysis of the epoxy ring attached, the temperature is usually 100° C. or lower, preferably 80° C. or lower, more preferably 75° C. or lower.
  • the epoxy resin of the present invention represented by the general formula (1) is produced by a method of oxidizing the carbon-carbon double bond contained in the general formula (4) to convert it to an epoxy group
  • the epoxy resin is It may contain a compound in which a part of the carbon-carbon double bond contained in the general formula (4) remains. Multiple carbon-carbon double bonds contained in the general formula (4) are sequentially oxidized to form an epoxy resin, so in any oxidation method, by changing the equivalent amount of the oxidizing agent, It is possible to control the content ratio of the compound in which some double bonds remain.
  • the mixing ratio thereof is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately set depending on the purpose of use.
  • the double bond conversion rate is 100%, the carbon-carbon double bonds contained in the general formula (4) are converted to all epoxy groups.
  • the double bond conversion rate is preferably 60% or more, more preferably 70% or more.
  • the double bond conversion rate is preferably 98% or less, more preferably 95% or less.
  • the content of other impurities can be estimated by the epoxy equivalent. The fewer impurities, the better the workability of the composition containing the polyfunctional epoxy resin of the present invention and the heat resistance of the cured product of the present invention. Therefore, the ratio of the epoxy equivalent of the polyfunctional epoxy resin of the present invention to the theoretical epoxy equivalent (mixture epoxy equivalent/theoretical epoxy equivalent) is usually 0.90 to 1.50, preferably 0.95 to 1.40, It is more preferably 1.00 to 1.30.
  • Measurement mode 3-point bending mode Measurement temperature range: 30°C to 300°C Heating rate: 5°C/min (Measurement of average coefficient of linear expansion) Using a test piece obtained by cutting the epoxy resin cured product into a cylindrical test piece with a thickness of about 4 mm and a diameter of about 7 mm, measurement was performed under the following conditions, and the temperature from 50 to 250 ° C. during the second temperature rise. The average value of the coefficients of linear expansion was defined as the average coefficient of linear expansion.
  • Measurement mode Compression mode Temperature increase rate: 5°C/min, temperature decrease rate: 5°C/min Measurement temperature range: 30°C to 280°C (viscosity analysis) Analyzer: Cone plate viscometer (manufactured by Tokai Yagami Co., Ltd.) One drop of epoxy resin sucked with a 3 ml dropper was dropped on a hot plate of a viscometer adjusted to 30° C., and the viscosity was measured at a rotational speed of 750 rpm.
  • Example 1 Synthesis of 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide As shown in the following reaction scheme, 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide was synthesized. Synthesized. The detailed method is as follows.
  • a reactor was charged with 2.77 g (10.5 mmol) of p-styrenesulfonic acid diallylamide obtained in the same manner as in A of Example 1, and dissolved in 5.5 ml of toluene.
  • HPLC analysis revealed 45.5 area % of 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide and 34.5 area % of 4-(2-oxiranyl)-N-allyl-N-glycidylbenzenesulfonamide. It was found to contain 0 area % and 11.7 area % of 4-(2-oxiranyl)-N,N-diallylbenzenesulfonamide. The double bond conversion was 78.1% and the epoxy equivalent weight was 132.
  • reaction solution was washed with 2 L of water, 2 L of 1 mol/L hydrochloric acid twice, and 2 L of water in this order.
  • the organic layer was dried over anhydrous sodium sulfate, concentrated , and purified by silica gel column chromatography to obtain 325 g (812 mmol, yield 69.8%, purity 99.1%).
  • the following chart was obtained, confirming that the desired compound was synthesized.
  • Example 4 To 100 parts by mass of the epoxy resin produced in Example 1, 46 parts by mass of an aromatic amine curing agent WA (manufactured by Mitsubishi Chemical Corporation) was added as a curing agent, and mixed at 100° C. until uniform, thereby forming an epoxy resin composition. Obtained. A casting plate adjusted to a thickness of 4 mm was prepared using two glass plates with a release PET film on the inside. A cured product was obtained by heating for hours. Table 1 shows the physical property evaluation results of the obtained cured product.
  • WA aromatic amine curing agent
  • Example 5 In Example 4, the epoxy resin produced in Example 1 was replaced with the epoxy resin produced in Example 2, and the content of the curing agent was 39 parts by mass. An epoxy resin composition was obtained, and physical properties were evaluated in the same manner as in Example 4. Table 1 shows the results.
  • Example 6 In Example 4, the epoxy resin produced in Example 1 was replaced with the epoxy resin produced in Example 3, and the content of the curing agent was 39 parts by mass. An epoxy resin composition was obtained, and physical properties were evaluated in the same manner as in Example 4. Table 1 shows the results.
  • Example 4 the epoxy resin produced in Example 1 was replaced with the epoxy resin produced in Production Example 1, and the content of the curing agent was 40 parts by mass. An epoxy resin composition was obtained, and physical properties were evaluated in the same manner as in Example 4. Table 1 shows the results.
  • Example 4 the epoxy resin produced in Example 1 was replaced with the epoxy resin produced in Production Example 2, and the content of the curing agent was 39 parts by mass. An epoxy resin composition was obtained, and physical properties were evaluated in the same manner as in Example 4. Table 1 shows the results.
  • Example 4 instead of the epoxy resin produced in Example 1, a commercially available epoxy resin ("jER (registered trademark) 630", manufactured by Mitsubishi Chemical Corporation) was used, and the content of the curing agent was set to 50 parts by mass. Except for this, an epoxy resin composition was obtained in the same manner as in Example 4, and the physical properties were evaluated in the same manner as in Example 4. Table 1 shows the results.
  • jER registered trademark
  • the cured products of Examples 4 to 6 obtained by curing the epoxy resins of Examples 1 to 3 and the aromatic amine curing agent have both a high Tg and a low average linear expansion coefficient. It is superior to Comparative Examples 1 and 2 obtained by curing the epoxy resin and the curing agent of Production Examples 1 and 2 in terms of One of the reasons for the low average coefficient of linear expansion is thought to be that the presence of the sulfonyl group extends the ⁇ -conjugated system extending from the aromatic ring, thereby strengthening the intermolecular bond.
  • the epoxy resins of Examples 1 to 3 contain a sulfonamide group, so that the ⁇ -conjugated system extends further to the nitrogen atom beyond the sulfonyl group, which is thought to lower the average coefficient of linear expansion.
  • the 2-oxiranyl group contained in the epoxy resins of Examples 1 to 3 has a shorter distance from the aromatic ring to the epoxy group than the glycidyl ether group contained in the epoxy resin of Production Example 1. It is presumed that the degree of freedom of covalent bonding has decreased due to Also, Tg is generally higher when the epoxy equivalent is small (epoxy groups are present more densely).
  • the epoxy resin prepared in Example 2 had a carbon-carbon double bond conversion rate of 86.2%
  • the epoxy resin prepared in Example 3 had a carbon-carbon double bond conversion rate of 78.2%. 1%
  • the curing of Example 5 or 6 obtained by curing the epoxy resin of Example 2 or 3 and the curing agent, although the epoxy equivalent weight is higher than that of the epoxy resin produced in Example 1.
  • the product has an equivalent or improved Tg. This is also the same as the relationship between the density of epoxy groups and Tg described above, and some of the epoxy groups remain as allyl groups, so that the distance between the epoxy groups is moderate and the reactivity with the curing agent increases. It is thought that the hardening rate was rather increased and the Tg was increased.
  • Example 7 To 100 parts by mass of the epoxy resin produced in Example 2, 114 parts by mass of an acid anhydride curing agent Rikacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd.) and 1 part by mass of a curing catalyst 2E4MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.) are added as a curing agent.
  • the epoxy resin composition was obtained by mixing until it became uniform at 80 degreeC.
  • a casting plate adjusted to a thickness of 4 mm was prepared using two glass plates with a release PET film on the inside, and the composition was cast on the casting plate and heated at 100 ° C. for 3 hours and at 140 ° C. for 3 hours.
  • a cured product was obtained by heating for hours. Table 2 shows the physical property evaluation results of the obtained cured product.
  • Example 7 instead of the epoxy resin produced in Example 2, a commercially available epoxy resin ("jER (registered trademark) 630", manufactured by Mitsubishi Chemical Corporation) was used, and the content of the curing agent was 172 parts by mass. Except for this, an epoxy resin composition was obtained in the same manner as in Example 7, and the physical properties were evaluated in the same manner as in Example 7. Table 2 shows the results.
  • jER registered trademark
  • Example 7 As shown in Table 2, the cured product of Example 7 obtained by curing using the epoxy resin produced in Example 2 and the acid anhydride curing agent achieved both a high Tg and a low average linear expansion coefficient. In that respect, it is superior to Comparative Example 4, which is cured using the epoxy resin "jER (registered trademark) 630" and an acid anhydride curing agent. The reason is considered to be the same as in the case of using the aromatic amine curing agent.
  • Example 8 80 parts by mass of the epoxy resin produced in Example 2 and 20 parts by mass of YED216D (manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 117) were mixed, and the viscosity of the obtained epoxy resin mixture was measured to be 2.7 P (poise). .
  • An epoxy resin composition was obtained in the same manner as in Example 4 except that 100 parts by mass of these epoxy resins were used, and 40 parts by mass of an aromatic amine curing agent WA (manufactured by Mitsubishi Chemical Corporation) was added as a curing agent. Physical properties were evaluated in the same manner as in Example 4. Table 3 shows the results.
  • Example 8 by mixing the epoxy resin "YED216D” with the epoxy resin produced in Example 2, the viscosity was lower than that of the epoxy resin "jER (registered trademark) 630", and moldability was improved. Be expected.
  • the epoxy resin "jER (registered trademark) 630” has a flexible aliphatic chain such as “YED216D” and is mixed with a resin that lowers the Tg of the cured product. Tg was higher than the cured product obtained by curing the above.
  • "YED216D” has a flexible fatty chain that increases the average linear expansion coefficient, but as in Example 8, the average linear expansion is higher than that of the cured product obtained by curing the epoxy resin "jER (registered trademark) 630". Low expansion rate.
  • the epoxy resin and epoxy resin composition of the present invention are excellent in storage stability and are useful as semiconductor encapsulants and varnishes for reinforced plastics.
  • the cured product has high heat resistance and a low average coefficient of linear expansion, so it is useful as a structural material made of electronic materials and reinforced plastics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Epoxy Compounds (AREA)

Abstract

Provided is an epoxy resin which is represented by general formula (1). (In the formula, X denotes a nitrogen atom, CF, C(CmH2m+1) or C(Ph), A is an optionally substituted aromatic group, B1 and B2 are each independently a hydrogen atom or a monovalent C1-10 organic group that may have an epoxy group, with the total number of epoxy groups contained in B1 and B2 being 2-4, R1 to R3 are each independently a hydrogen atom or an alkyl group having 1-6 carbon atoms, and may bond together to form a ring, m is an integer between 0 and 4, and n is an integer between 1 and 4.) An epoxy resin which has a low coefficient of linear expansion and which yields a cured product having high heat resistance can be provided.

Description

エポキシ樹脂及びエポキシ樹脂の製造方法Epoxy resin and method for producing epoxy resin
 本発明は、エポキシ樹脂、その製造方法、及びエポキシ樹脂を含む組成物に関する。より詳細には、スルホンアミド基含有エポキシ樹脂、その製造方法、及びスルホンアミド基含有エポキシ樹脂を含む組成物に関する。 The present invention relates to an epoxy resin, a method for producing the same, and a composition containing the epoxy resin. More particularly, it relates to a sulfonamide group-containing epoxy resin, a method for producing the same, and a composition containing the sulfonamide group-containing epoxy resin.
 エポキシ樹脂は、耐熱性、接着性、耐水性、機械的強度および電気的特性に優れていることから、接着剤、塗料、土木建築用材料、電気・電子機器の絶縁材料等の様々な分野で使用されている。特に、電気・電子分野では、絶縁材料、積層材料、封止材料等において成形性の良さから低粘度のエポキシ樹脂が幅広く使用されている。さらに、CFRPのマトリックス樹脂など、特に接着性を必要とする用途において、窒素を含むエポキシ樹脂が使用されており、代表的なものとして特許文献1に記載のアミン型エポキシ樹脂が挙げられる。また、特許文献2、及び特許文献3にはスルホンアミド型のエポキシ樹脂が開示されている。 Epoxy resins are excellent in heat resistance, adhesiveness, water resistance, mechanical strength and electrical properties, so they are used in various fields such as adhesives, paints, materials for civil engineering and construction, and insulating materials for electrical and electronic equipment. It is used. In particular, in the electrical and electronic fields, low-viscosity epoxy resins are widely used in insulating materials, laminating materials, sealing materials, and the like because of their good moldability. Further, nitrogen-containing epoxy resins are used in applications that require adhesiveness, such as CFRP matrix resins. Further, Patent Documents 2 and 3 disclose sulfonamide type epoxy resins.
特開平9-31161号公報JP-A-9-31161 特開2015-193598号公報JP 2015-193598 A 特開2016-172852号公報JP 2016-172852 A
 特許文献1に記載のアミン型エポキシ樹脂は、高耐熱のエポキシ樹脂として広く知られているが、それ自身が持つアミノ基の塩基性によりエポキシの開環重合を引き起こすため、保管温度の制約を受ける点や、保管中の粘度上昇などの品質低下が見られる点など、保存安定性の面に課題があった。これを解決するために、特許文献2及び3ではアミノ基をスルホンアミド基にすることで、窒素原子の求核性を下げ、保存安定性を向上させることに成功している。
 一方、近年特に多層回路基板などの電気・電子機器材料については、より高温下での動作に耐え得る材料が求められていることから、エポキシ樹脂には高い耐熱性が求められている。また、信頼性の向上のためには熱硬化時の応力緩和によるクラックの発生を抑制する必要があるが、その手法の一つとして樹脂組成物の線膨張率を基板の線膨張率と合わせる方法がある。一般的にエポキシ樹脂の線膨張率は金属基板よりも大きいことから、より線膨張率の低いエポキシ樹脂の開発が望まれるが、特許文献2、3では線膨張率については触れられていない。
The amine-type epoxy resin described in Patent Document 1 is widely known as a highly heat-resistant epoxy resin, but it is subject to storage temperature restrictions because it causes ring-opening polymerization of epoxy due to the basicity of its own amino group. There were problems in terms of storage stability, such as points and quality deterioration such as viscosity increase during storage. In order to solve this problem, Patent Documents 2 and 3 succeed in reducing the nucleophilicity of the nitrogen atom and improving the storage stability by replacing the amino group with a sulfonamide group.
On the other hand, in recent years, especially for electric and electronic equipment materials such as multilayer circuit boards, materials that can withstand operation at higher temperatures have been demanded, so epoxy resins are required to have high heat resistance. In addition, in order to improve reliability, it is necessary to suppress the occurrence of cracks due to stress relaxation during thermosetting. There is Since the coefficient of linear expansion of an epoxy resin is generally higher than that of a metal substrate, it is desired to develop an epoxy resin with a lower coefficient of linear expansion.
 そこで、本発明は、硬化物の耐熱性が高く、かつ線膨張率が低いエポキシ樹脂を提供することを課題とする。 Therefore, an object of the present invention is to provide an epoxy resin whose cured product has high heat resistance and a low coefficient of linear expansion.
 本発明者らは、鋭意検討の結果、エポキシ基を2~4個含むスルホニル基、及びスチレンオキサイド構造(ここでスチレンオキサイド構造とは、ベンゼン環の一つ以上の水素が2-オキシラニル基で置換された構造を示す)を有するエポキシ樹脂が、上記課題を解決し得ることを見出した。本発明はかかる知見に基づき完成したものである。本発明の要旨は以下の通りである。
[1]下記一般式(1)で表されるエポキシ樹脂。
Figure JPOXMLDOC01-appb-C000007

(式中、Xは窒素原子、CF、C(C2m+1)又はC(Ph)を表し、Aは置換基を有していてもよい芳香族基であり、B及びBはそれぞれ独立に、水素又はエポキシ基を有していてもよい炭素数1~10の1価の有機基であり、B及びBに含まれるエポキシ基の合計数が2~4であり、R~Rはそれぞれ独立に水素又は炭素数1~6のアルキル基であり、互いに結合して環を形成していてもよく、mは0~4の整数、nは1~4の整数である。)
[2]前記式(1)で表されるエポキシ樹脂が、下記一般式(2)で表されるスルホンアミド基含有エポキシ樹脂である、上記[1]に記載のエポキシ樹脂。
Figure JPOXMLDOC01-appb-C000008

(式中、Aは置換基を有していてもよい芳香族基であり、B及びBはそれぞれ独立に、水素又はエポキシ基を有していてもよい炭素数1~10の1価の有機基であり、B及びBに含まれるエポキシ基の合計数が2~4であり、R~Rはそれぞれ独立に水素又は炭素数1~6のアルキル基であり、互いに結合して環を形成していてもよく、nは1~4の整数である。)
[3]前記B及びBがそれぞれ1個以上のエポキシ基を含有する上記[1]又は[2]に記載のエポキシ樹脂。
[4]前記一般式(1)または(2)が、下記一般式(3)で表される上記[1]~[3]のいずれかに記載のエポキシ樹脂。
Figure JPOXMLDOC01-appb-C000009

(式中、R~Rはそれぞれ独立に水素又は炭素数1~6のアルキル基であり、互いに結合して環を形成していてもよい。)
[5]前記B及びBがいずれもグリシジル基である上記[1]~[4]のいずれかに記載のエポキシ樹脂。
[6]上記[1]~[5]のいずれかに記載のエポキシ樹脂を含むエポキシ樹脂組成物。
[7]上記[6]に記載のエポキシ樹脂組成物からなる半導体封止剤。
[8]上記[6]に記載のエポキシ樹脂組成物からなる強化プラスチック材料用ワニス。
[9]上記[6]に記載の樹脂組成物を硬化させてなるエポキシ樹脂硬化物。
[10]上記[6]に記載の樹脂組成物を硬化させてなる電子材料。
[11]上記[8]に記載のワニスを硬化させてなる繊維強化プラスチック材料。
[12]上記[1]に記載のエポキシ樹脂の製造方法であって、下記一般式(4)の化合物に含まれる炭素-炭素二重結合を酸化することで、エポキシ基に変換することを特徴とするエポキシ樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000010

(式中、A、R~R及びnは前記と同様である。L及びLは水素又は炭素-炭素二重結合を有していてもよい炭化水素基である。)
[13]上記[2]に記載のエポキシ樹脂の製造方法であって、下記一般式(5)の化合物に含まれる炭素-炭素二重結合を酸化し、エポキシ基に変換することを特徴とするエポキシ樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000011

(式中、R~R、L及びLは前記と同様である。)
[14]上記[3]に記載のエポキシ樹脂の製造方法であって、下記一般式(6)の化合物に含まれる炭素-炭素二重結合を酸化し、エポキシ基に変換することを特徴とするエポキシ樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000012

(式中、R~Rは前記と同様である。)
As a result of intensive studies, the present inventors have found a sulfonyl group containing 2 to 4 epoxy groups, and a styrene oxide structure (here, the styrene oxide structure means that one or more hydrogens in the benzene ring are substituted with a 2-oxiranyl group. It has been found that an epoxy resin having a structure shown in FIG. The present invention has been completed based on such findings. The gist of the present invention is as follows.
[1] An epoxy resin represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007

(Wherein, X represents a nitrogen atom, CF, C( CmH2m +1 ) or C ( Ph), A is an aromatic group which may have a substituent, and B1 and B2 are each is independently hydrogen or a monovalent organic group having 1 to 10 carbon atoms optionally having an epoxy group, the total number of epoxy groups contained in B 1 and B 2 is 2 to 4, and R 1 to R 3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, which may be combined to form a ring, m is an integer of 0 to 4, and n is an integer of 1 to 4 .)
[2] The epoxy resin according to [1] above, wherein the epoxy resin represented by the formula (1) is a sulfonamide group-containing epoxy resin represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000008

(In the formula, A is an optionally substituted aromatic group, B 1 and B 2 are each independently hydrogen or a monovalent C 1-10 optionally having an epoxy group is an organic group, the total number of epoxy groups contained in B 1 and B 2 is 2 to 4, R 1 to R 3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, and are bonded to each other may form a ring, and n is an integer of 1 to 4.)
[3] The epoxy resin according to [ 1 ] or [ 2 ] above, wherein each of B1 and B2 contains one or more epoxy groups.
[4] The epoxy resin according to any one of the above [1] to [3], wherein the general formula (1) or (2) is represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000009

(In the formula, R 4 to R 6 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, and may be combined to form a ring.)
[5] The epoxy resin according to any one of [1] to [4] above, wherein both B 1 and B 2 are glycidyl groups.
[6] An epoxy resin composition containing the epoxy resin according to any one of [1] to [5] above.
[7] A semiconductor encapsulant comprising the epoxy resin composition described in [6] above.
[8] A varnish for reinforced plastic materials comprising the epoxy resin composition according to [6] above.
[9] A cured epoxy resin obtained by curing the resin composition described in [6] above.
[10] An electronic material obtained by curing the resin composition according to [6] above.
[11] A fiber-reinforced plastic material obtained by curing the varnish described in [8] above.
[12] The method for producing an epoxy resin according to [1] above, wherein the carbon-carbon double bond contained in the compound represented by the following general formula (4) is oxidized to be converted into an epoxy group. A method for producing an epoxy resin.
Figure JPOXMLDOC01-appb-C000010

(In the formula, A, R 1 to R 3 and n are the same as defined above. L 1 and L 2 are hydrogen or a hydrocarbon group which may have a carbon-carbon double bond.)
[13] The method for producing the epoxy resin described in [2] above, characterized by oxidizing the carbon-carbon double bond contained in the compound of the following general formula (5) and converting it into an epoxy group. A method for producing an epoxy resin.
Figure JPOXMLDOC01-appb-C000011

(In the formula, R 1 to R 3 , L 1 and L 2 are the same as above.)
[14] The method for producing the epoxy resin described in [3] above, characterized by oxidizing the carbon-carbon double bond contained in the compound of the following general formula (6) and converting it into an epoxy group. A method for producing an epoxy resin.
Figure JPOXMLDOC01-appb-C000012

(In the formula, R 4 to R 6 are the same as above.)
 本発明によれば、硬化物の耐熱性が高く、かつ線膨張率が低いエポキシ樹脂を提供することができる。 According to the present invention, it is possible to provide an epoxy resin having a cured product with high heat resistance and a low coefficient of linear expansion.
 以下、本発明について詳細に説明する。
[エポキシ樹脂]
 本発明のエポキシ樹脂は、下記一般式(1)で表される。以下、「本発明のエポキシ樹脂」又は「本エポキシ樹脂」と記載することがある。
The present invention will be described in detail below.
[Epoxy resin]
The epoxy resin of the present invention is represented by the following general formula (1). Hereinafter, it may be described as "the epoxy resin of the present invention" or "the present epoxy resin".
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記一般式(1)において、Xは窒素原子、CF、C(C2m+1)又はC(Ph)であり、mは0~4の整数である。nは1~4の整数である。なお、Fはフッ素原子、Phはフェニル基を示す。
 本発明では、線膨張率をより低くする目的では、前記式(1)において、Xが窒素原子である下記一般式(2)で表されるエポキシ樹脂であることが好ましい。また、前記式(1)において、樹脂の粘度を下げ、加工時の成形性を向上させる目的では、XがC(C2m+1)であり、そのうちmが0であることが好ましい。
In the above general formula (1), X is a nitrogen atom, CF, C(C m H 2m+1 ) or C(Ph), and m is an integer of 0-4. n is an integer of 1-4. In addition, F shows a fluorine atom and Ph shows a phenyl group.
In the present invention, for the purpose of lowering the coefficient of linear expansion, it is preferable to use an epoxy resin represented by the following general formula (2) in which X is a nitrogen atom in the formula (1). In the above formula (1), X is C(C m H 2m+1 ), preferably m is 0, for the purpose of lowering the viscosity of the resin and improving moldability during processing.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 また、上記一般式(1)又は(2)において、Aは置換基を有していてもよい芳香族基である。芳香族基としては、ベンゼン環等の単環芳香族炭化水素基;ナフタレン環、アントラセン環、フェナントレン環等の多環芳香族炭化水素基がある。本発明では、樹脂の粘度を下げ加工時の成形性を向上させる目的ではベンゼン環等の単環芳香族炭化水素基が好ましく、硬化物の耐熱性をより向上させる目的では多環芳香族炭化水素基が好ましいが、本樹脂の粘度と耐熱性のバランスをとる目的でベンゼン環が特に好ましい。
 nは1~4の整数であり、nの数によって、芳香族基の価数が決まる。本発明では、導入したエポキシ基の硬化率を上げるためにはnは1または2が好ましく、原料入手の容易さの観点で1が特に好ましい。
 Aがベンゼン環であり、nが1である場合には、原料入手の容易さの観点でスルホニル基との結合部に対してパラ位に2-オキシラニル基があることが好ましい。
 Aが有していてもよい置換基としては、用途に応じて、適宜選択可能であるが、具体例としては、メチル基、エチル基などの飽和直鎖状アルキル基;イソプロピル基、イソブチル基、tert-ブチル基などの飽和分岐状アルキル基;ビニル基、2-プロペニル基、2-メチル-2-プロペニル基などのアルケニル基;エチニル基、1-プロピニル基などのアルキニル基;シクロプロピル基、シクロヘキシル基などの環状アルキル基;フェニル基、4-メチルフェニル基、ナフチル基等のアリール基;メトキシ基、エトキシ基等のアルコキシ基;クロロ基、ブロモ基等のハロゲン基が挙げられる。
Further, in the above general formula (1) or (2), A is an aromatic group which may have a substituent. The aromatic group includes monocyclic aromatic hydrocarbon groups such as benzene ring; and polycyclic aromatic hydrocarbon groups such as naphthalene ring, anthracene ring and phenanthrene ring. In the present invention, a monocyclic aromatic hydrocarbon group such as a benzene ring is preferable for the purpose of lowering the viscosity of the resin and improving the moldability during processing, and a polycyclic aromatic hydrocarbon group is preferable for the purpose of further improving the heat resistance of the cured product. A group is preferred, but a benzene ring is particularly preferred for the purpose of balancing the viscosity and heat resistance of the present resin.
n is an integer of 1 to 4, and the number of n determines the valence of the aromatic group. In the present invention, n is preferably 1 or 2 in order to increase the curing rate of the introduced epoxy group, and is particularly preferably 1 from the viewpoint of easy raw material availability.
When A is a benzene ring and n is 1, the 2-oxiranyl group is preferably at the para-position with respect to the bond with the sulfonyl group from the viewpoint of easy raw material availability.
The substituent that A may have may be appropriately selected depending on the application, and specific examples thereof include a saturated linear alkyl group such as a methyl group and an ethyl group; an isopropyl group, an isobutyl group, saturated branched alkyl groups such as tert-butyl; alkenyl groups such as vinyl, 2-propenyl and 2-methyl-2-propenyl; alkynyl groups such as ethynyl and 1-propynyl; cyclopropyl and cyclohexyl aryl groups such as phenyl group, 4-methylphenyl group and naphthyl group; alkoxy groups such as methoxy group and ethoxy group; halogen groups such as chloro group and bromo group.
 B及びBはそれぞれ独立に、水素又はエポキシ基を有していてもよい炭素数1~10の1価の有機基であって、B及びBに含まれるエポキシ基の合計数は2~4である。B及びBは合成が容易な点や硬化率が高くなるという観点では、炭素数2~6の1価の有機基であることが好ましく、また線膨張率を低く保つという観点では炭素数2~4の1価の有機基であることが好ましい。
 また、B及びBに含まれるエポキシ基の数としては、B及びBに含まれるエポキシ基全体の総数であって、例えば、Bにのみエポキシ基を2~4個有しており、Bがエポキシ基を有さない態様であってもよい。
 本発明においては、B及びBのそれぞれが1個以上のエポキシ基を有することが好ましい。エポキシ基を分散して含む方が、硬化剤との反応性及び硬化率に優れ、かつ硬化によるネットワーク形成が広範囲になり、ガラス転移温度が高く、耐熱性に優れる傾向にあるためである。特に、B及びBのいずれもグリシジル基であることが好ましい。
B 1 and B 2 are each independently hydrogen or a monovalent organic group having 1 to 10 carbon atoms which may have an epoxy group, and the total number of epoxy groups contained in B 1 and B 2 is 2-4. B 1 and B 2 are preferably monovalent organic groups having 2 to 6 carbon atoms from the viewpoint of easy synthesis and high curing rate, and from the viewpoint of keeping the coefficient of linear expansion low, the number of carbon atoms It is preferably a 2-4 monovalent organic group.
In addition, the number of epoxy groups contained in B 1 and B 2 is the total number of epoxy groups contained in B 1 and B 2. For example, only B 1 has 2 to 4 epoxy groups. and B2 may have no epoxy group.
In the present invention, each of B 1 and B 2 preferably has one or more epoxy groups. This is because when the epoxy groups are dispersed, the reactivity with the curing agent and the curing rate are excellent, the network formation by curing is widened, the glass transition temperature is high, and the heat resistance tends to be excellent. In particular, both B 1 and B 2 are preferably glycidyl groups.
 また、R~Rはそれぞれ独立に水素又は炭素数1~6のアルキル基であり、互いに結合して環を形成していてもよい。アルキル基としては、直鎖状でも分岐状でもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等が例示される。R~Rは合成が容易な点や硬化率が高くなる点において、水素または炭素数1のアルキル基が好ましく、R~Rが全て水素であることがさらに好ましい。 In addition, R 1 to R 3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, and may be combined with each other to form a ring. The alkyl group may be linear or branched, and examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and t-butyl group. R 1 to R 3 are preferably hydrogen or an alkyl group having 1 carbon atoms, and more preferably all of R 1 to R 3 are hydrogen, in terms of ease of synthesis and high curing rate.
 本発明のエポキシ樹脂としては、安価な原料を活用できる点で、一般式(3)で示されるスルホンアミド基含有エポキシ樹脂が好ましい。 As the epoxy resin of the present invention, a sulfonamide group-containing epoxy resin represented by the general formula (3) is preferable in that inexpensive raw materials can be used.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 R~Rは一般式(1)のR~Rと同じだが、合成が容易な点や硬化率が高くなる点において、RとRが何れも水素であることが好ましく、R~R全てが水素であることが特に好ましい。
 本発明のエポキシ樹脂の具体例を以下に示す。
R 4 to R 6 are the same as R 1 to R 3 in the general formula (1), but from the viewpoint of easy synthesis and high curing rate, it is preferable that both R 5 and R 6 are hydrogen, It is particularly preferred that all of R 4 -R 6 are hydrogen.
Specific examples of the epoxy resin of the present invention are shown below.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 本発明のエポキシ樹脂のDSCにおける発熱開始温度は通常150℃以上、好ましくは180℃以上、より好ましくは200℃以上である。発熱開始温度が150℃以上であると、自己重合を起こしにくく、保存安定性に優れる。 The exothermic start temperature of the epoxy resin of the present invention in DSC is usually 150°C or higher, preferably 180°C or higher, more preferably 200°C or higher. When the exothermic initiation temperature is 150° C. or higher, self-polymerization is less likely to occur, and storage stability is excellent.
[エポキシ樹脂組成物]
 本発明のエポキシ樹脂組成物は、上記本発明のエポキシ樹脂を1種類以上含むものである。本発明のエポキシ樹脂を含むことで、保存安定性に優れたエポキシ樹脂組成物が得られる。また、本発明のエポキシ樹脂組成物の硬化物は、線膨張率が低く、耐熱性が高いことが特徴であり、種々の用途に用いることができる。
[Epoxy resin composition]
The epoxy resin composition of the present invention contains one or more of the epoxy resins of the present invention. By containing the epoxy resin of the present invention, an epoxy resin composition having excellent storage stability can be obtained. Moreover, the cured product of the epoxy resin composition of the present invention is characterized by a low coefficient of linear expansion and high heat resistance, and can be used in various applications.
 本発明のエポキシ樹脂組成物は、本発明の効果を阻害しない範囲で、上記本発明のエポキシ樹脂以外のエポキシ樹脂(以下、「他のエポキシ樹脂」と記載することがある。)を含んでいてもよい。その他、硬化剤、充填剤、添加剤、及び溶媒等を含んでいてもよい。 The epoxy resin composition of the present invention contains an epoxy resin other than the epoxy resin of the present invention (hereinafter sometimes referred to as "another epoxy resin") within a range that does not impair the effects of the present invention. good too. In addition, it may contain curing agents, fillers, additives, solvents, and the like.
 本発明の樹脂組成物中の本エポキシ樹脂の含有量は、本発明の効果を奏する範囲であれば、特に制約はないが、固形分換算で、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。上記下限値以上であると、本発明の効果が十分に発揮され、線膨張率が低く、保存安定性に優れ、かつ、その硬化物は、耐熱性が高くなる。一方、上限値については、100質量%以下であればよいが、他の成分の特性を発現させるためには、95質量%以下が好ましく、90質量%以下が特に好ましい。本発明のエポキシ樹脂を2種類以上含む場合は、各樹脂の含有量の合計が前述の含有量であればよい。 The content of the present epoxy resin in the resin composition of the present invention is not particularly limited as long as the effect of the present invention is exhibited, but in terms of solid content, it is preferably 1% by mass or more, and 5 masses. % or more, more preferably 10% by mass or more. When it is at least the above lower limit, the effects of the present invention are sufficiently exhibited, the coefficient of linear expansion is low, the storage stability is excellent, and the cured product has high heat resistance. On the other hand, the upper limit may be 100% by mass or less, but is preferably 95% by mass or less, particularly preferably 90% by mass or less, in order to express the properties of other components. When two or more kinds of epoxy resins of the present invention are contained, the total content of each resin should be the above-described content.
[他のエポキシ樹脂]
 本発明のエポキシ樹脂組成物に含まれていても良い他のエポキシ樹脂としては、用途に応じて適宜選択することができ、特に制約はない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等の各種エポキシ樹脂などを挙げることができ、これらのエポキシ樹脂は1種のみ用いても、2種以上を任意の組み合わせおよび比率で用いても良い。2種以上のエポキシ樹脂を用いた場合におけるその含有量は、合計量が上記の好ましい範囲である。
[Other epoxy resins]
Other epoxy resins that may be contained in the epoxy resin composition of the present invention can be appropriately selected depending on the application, and are not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, phenol aralkyl type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, di Various epoxy resins such as cyclopentadiene type epoxy resins can be used, and these epoxy resins may be used alone or in any combination and ratio of two or more. When two or more types of epoxy resins are used, the total content is within the above preferred range.
[硬化剤]
 本発明のエポキシ樹脂組成物に含まれていても良い硬化剤は、本発明のエポキシ樹脂が有するエポキシ基の架橋反応に寄与する物質であれば良く、一般的にエポキシ樹脂硬化剤と言われているものの他、一般的に硬化促進剤として知られているものなども含める。すなわち、本発明に係る硬化剤は、本発明のエポキシ樹脂組成物に含まれるエポキシ樹脂のエポキシ基間の架橋反応に寄与する物質、または本発明のエポキシ樹脂組成物に含まれるエポキシ樹脂同士の架橋反応やエポキシ樹脂と硬化剤との付加反応を促進させる機能を発現する物質である。
[Curing agent]
The curing agent that may be contained in the epoxy resin composition of the present invention may be any substance that contributes to the cross-linking reaction of the epoxy groups of the epoxy resin of the present invention, and is generally called an epoxy resin curing agent. In addition to those that are commonly known as curing accelerators, etc. are also included. That is, the curing agent according to the present invention is a substance that contributes to a cross-linking reaction between the epoxy groups of the epoxy resin contained in the epoxy resin composition of the present invention, or a cross-linking agent between the epoxy resins contained in the epoxy resin composition of the present invention. It is a substance that exhibits the function of promoting the reaction and the addition reaction between the epoxy resin and the curing agent.
 本発明のエポキシ樹脂組成物に含まれていてもよいエポキシ樹脂硬化剤としては、例えば、フェノール系硬化剤、エステル系硬化剤、ベンゾオキサジン系硬化剤、酸無水物系硬化剤、1級および2級アミン系硬化剤、メルカプタン系硬化剤、アミド系硬化剤、ブロックイソシアネート系硬化剤等が挙げられる。また、フェノキシ樹脂をエポキシ樹脂硬化剤として用いることも可能である。
 フェノール系硬化剤としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトール修飾フェノール樹脂、ジシクロペンタジエン修飾フェノール樹脂及びp-キシレン修飾フェノール樹脂を挙げることができ、具体的には明和化成社製MEH-8000Hが挙げられる。
 酸無水物硬化剤としては、メチルテトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、アルキル化テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルハイミック無水物、ドデセニル無水コハク酸無水物及びメチルナド酸無水物を挙げることができ、具体的には新日本理化社製MH-700、三菱ケミカル社製YH306、YH307が挙げられる。
 1級および2級アミン系硬化剤としては、メチレンジアニリン、m-フェニレンジアミン、4,4’-ジアミノジフェニルスルホン及び3,3’-ジアミノジフェニルスルホンなどの芳香族アミンを挙げることができ、具体的には三菱ケミカル社製JERキュアWA等が挙げられる。
Epoxy resin curing agents that may be contained in the epoxy resin composition of the present invention include, for example, phenolic curing agents, ester curing agents, benzoxazine curing agents, acid anhydride curing agents, primary and secondary curing agents. Class amine-based curing agents, mercaptan-based curing agents, amide-based curing agents, blocked isocyanate-based curing agents, and the like are included. It is also possible to use a phenoxy resin as an epoxy resin curing agent.
Examples of the phenol-based curing agent include phenol novolak resin, cresol novolak resin, naphthol-modified phenol resin, dicyclopentadiene-modified phenol resin and p-xylene-modified phenol resin. Specifically, MEH-8000H manufactured by Meiwa Kasei Co., Ltd. is mentioned.
Acid anhydride curing agents include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhymic anhydride, and dodecenyl succinic anhydride. and methyl nadic acid anhydride, and specific examples include MH-700 manufactured by Shin Nippon Rika Co., Ltd., and YH306 and YH307 manufactured by Mitsubishi Chemical Corporation.
Primary and secondary amine curing agents include aromatic amines such as methylene dianiline, m-phenylenediamine, 4,4'-diaminodiphenylsulfone and 3,3'-diaminodiphenylsulfone. Examples include JER Cure WA manufactured by Mitsubishi Chemical Corporation.
 本発明のエポキシ樹脂組成物に含まれる硬化剤の含有量は、本発明のエポキシ樹脂組成物に含まれるエポキシ基が未反応のまま残留し難く、短時間で十分に硬化させやすい点では多い方が好ましい。一方、本発明のエポキシ樹脂組成物を硬化させた硬化物に硬化剤のエポキシ基と反応する部位が未反応のまま残留し難い点では少ないことが好ましい。具体的には、本発明のエポキシ樹脂組成物に含まれるエポキシ基と、硬化剤における反応部位との当量比で、0.3以上となるように用いることが好ましく、0.8以上となるように用いることが更に好ましく、0.9以上となるように用いることが特に好ましい。
 一方で、1.5以下となるように用いることが好ましく、1.2以下となるように用いることが更に好ましい。
 なお、硬化剤は、1種のみ用いても、2種以上を任意の組み合わせおよび比率で用いても良い。2種以上の硬化剤を用いた場合におけるその含有量は、合計量が上記の好ましい範囲である。
The content of the curing agent contained in the epoxy resin composition of the present invention is large in that the epoxy groups contained in the epoxy resin composition of the present invention are less likely to remain unreacted and can be sufficiently cured in a short time. is preferred. On the other hand, it is preferable that the cured product obtained by curing the epoxy resin composition of the present invention has few sites that react with the epoxy groups of the curing agent as they are unlikely to remain unreacted. Specifically, the equivalent ratio between the epoxy groups contained in the epoxy resin composition of the present invention and the reactive sites in the curing agent is preferably 0.3 or more, preferably 0.8 or more. It is more preferable to use it for , and it is particularly preferable to use it so that it is 0.9 or more.
On the other hand, it is preferably used so as to be 1.5 or less, and more preferably used so as to be 1.2 or less.
In addition, only one curing agent may be used, or two or more curing agents may be used in any combination and ratio. When two or more curing agents are used, the total content is within the above preferred range.
 本発明のエポキシ樹脂組成物は、目的に応じて硬化促進剤を含んでいても良く、一般的に硬化促進剤と言われることが多いものとしては、イミダゾール系硬化促進剤、3級アミン系硬化促進剤、有機ホスフィン系硬化促進剤、ホスホニウム塩系硬化促進剤、テトラフェニルボロン塩系硬化促進剤、金属系硬化促進剤、有機酸ジヒドラジド、ハロゲン化ホウ素アミン錯体などが挙げられる。なお、硬化促進剤は1種のみ用いても、2種以上を任意の組み合わせおよび比率で用いても良い。 Depending on the purpose, the epoxy resin composition of the present invention may contain a curing accelerator. Examples of what are generally called curing accelerators include imidazole-based curing accelerators and tertiary amine-based curing accelerators. accelerators, organic phosphine-based curing accelerators, phosphonium salt-based curing accelerators, tetraphenylboron salt-based curing accelerators, metal-based curing accelerators, organic acid dihydrazides, halogenated boron amine complexes, and the like. In addition, one type of curing accelerator may be used, or two or more types may be used in any combination and ratio.
[充填剤]
 本発明のエポキシ樹脂組成物に充填剤が含まれていると、本発明のエポキシ樹脂組成物を硬化させることにより、低線膨張率、高熱伝導性、難燃性、導電性などの充填剤が有する物性を硬化物に付与することができる。
 充填剤の種類は、所望の物性などに応じて選択すればよい。具体的には、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、シリカなどの無機充填剤が挙げられる。充填剤の形状及び粒径については、本発明のエポキシ樹脂組成物の効果を阻害しない範囲であれば限定されない。
[filler]
When the epoxy resin composition of the present invention contains a filler, curing the epoxy resin composition of the present invention causes the filler to have a low coefficient of linear expansion, high thermal conductivity, flame retardancy, and electrical conductivity. It is possible to impart physical properties to the cured product.
The type of filler may be selected according to desired physical properties. Specific examples include inorganic fillers such as alumina, aluminum nitride, boron nitride, silicon nitride, and silica. The shape and particle size of the filler are not limited as long as they do not impair the effect of the epoxy resin composition of the present invention.
 充填剤の含有量としては、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、また、95質量%以下であることが好ましく、90質量%以下であることが更に好ましい。上記下限値以上であると、充填剤としての効果が得られ、上記上限値以下であると組成物の粘度が低下することによる加工性が維持される。
 充填剤は、1種のみで用いても、2種以上を任意の組み合わせおよび比率で用いてもよい。なお、2種以上の充填剤を用いた場合におけるその含有量は、合計量を意味する。
The content of the filler is preferably 10% by mass or more, more preferably 20% by mass or more, and preferably 95% by mass or less, and further preferably 90% by mass or less. preferable. When it is at least the above lower limit value, the effect as a filler is obtained, and when it is at most the above upper limit value, the viscosity of the composition is lowered to maintain workability.
Only one filler may be used, or two or more fillers may be used in any combination and ratio. In addition, the content in the case of using two or more fillers means the total amount.
[添加剤]
 本発明のエポキシ樹脂組成物には、添加剤が含まれていてもよい。例えば、シランカップリング剤やチタネートカップリング剤等のカップリング剤、紫外線防止剤、酸化防止剤、可塑剤、難燃剤、着色剤、分散剤、乳化剤、低弾性化剤、希釈剤、消泡剤、イオントラップ剤等が挙げられる。
 希釈剤は、本発明のエポキシ樹脂組成物の加工時の粘度調整および硬化させるときの取り扱い性などを調整する目的で加えられるものであり、中でも1官能性もしくは2官能性の低分子量のエポキシ樹脂が好ましく、これらを反応性希釈剤と呼ぶ。本発明のエポキシ樹脂組成物に用いることができる反応性希釈剤としては、例えば、jER1750、YED111N、YED111AN、YED122、YED188、YED216M、YED216D(いずれも三菱ケミカル社製)、ネオトートS、PG-207GS、ZX-1658GS(いずれも日鉄ケミカル&マテリアル社製)、EX-211、EX-212、EX-212L、EX-214L、EX-121EX-141、EX-142-IM、EX-145、EX-146EX-146P(いずれもナガセケムテックス社製)、Epodil741、Epodil749、Epodil757(いずれもAir Products社製)、エポライトM-1230、エポライト40E、エポライト100E、エポライト200E、エポライト400E、エポライト70P、エポライト200P、エポライト400P、エポライト1500NP、エポライト1600、エポライト80MF、エポライト100MF(いずれも共栄化学社製)等が挙げられるが、これらに限られるものではない。
[Additive]
The epoxy resin composition of the present invention may contain additives. For example, coupling agents such as silane coupling agents and titanate coupling agents, UV inhibitors, antioxidants, plasticizers, flame retardants, colorants, dispersants, emulsifiers, elasticity reducing agents, diluents, antifoaming agents , ion trap agents, and the like.
The diluent is added for the purpose of adjusting the viscosity during processing of the epoxy resin composition of the present invention and the handling properties during curing. are preferred and these are called reactive diluents. Examples of reactive diluents that can be used in the epoxy resin composition of the present invention include jER1750, YED111N, YED111AN, YED122, YED188, YED216M, YED216D (all manufactured by Mitsubishi Chemical Corporation), Neotote S, PG-207GS, ZX-1658GS (all manufactured by Nippon Steel Chemical & Material Co., Ltd.), EX-211, EX-212, EX-212L, EX-214L, EX-121EX-141, EX-142-IM, EX-145, EX-146EX -146P (all manufactured by Nagase ChemteX Corporation), Epodil 741, Epodil 749, Epodil 757 (all manufactured by Air Products), Epolight M-1230, Epolight 40E, Epolight 100E, Epolight 200E, Epolight 400E, Epolight 70P, Epolight 200P, Epolight 400P, Epolite 1500NP, Epolite 1600, Epolite 80MF, Epolite 100MF (all manufactured by Kyoei Chemical Co., Ltd.), etc., but not limited thereto.
[溶媒]
 本発明のエポキシ樹脂組成物は、加工時の粘度調整および硬化させるときの取り扱い性などのための溶媒を含有してもよい。溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル等のエステル類;エチレングリコールモノメチルエーテル等のエーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;メタノール、エタノール、イソプロパノール等のアルコール類;ヘキサン、シクロヘキサン等のアルカン類;トルエン、キシレン等の芳香族類などが挙げられる。溶媒を用いる場合の量は、溶媒残留による硬化物中のボイド形成を避ける点では用いない又は少ないことが好ましい。一方、組成物の高粘度化に伴うクラックが発生し難い点では多いことが好ましい。これらの溶媒は、1種のみで用いても、2種以上を任意の組み合わせおよび比率で用いても良い。
[solvent]
The epoxy resin composition of the present invention may contain a solvent for viscosity adjustment during processing and handling during curing. Examples of solvents include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; esters such as ethyl acetate; ethers such as ethylene glycol monomethyl ether; N,N-dimethylformamide, N,N-dimethylacetamide and the like. amides; alcohols such as methanol, ethanol and isopropanol; alkanes such as hexane and cyclohexane; aromatics such as toluene and xylene. When using a solvent, the amount is preferably not used or small in order to avoid formation of voids in the cured product due to residual solvent. On the other hand, a large amount is preferable from the viewpoint that cracks are less likely to occur as the viscosity of the composition increases. These solvents may be used alone, or two or more may be used in any combination and ratio.
[組成物の用途]
 本発明のエポキシ樹脂を含むエポキシ樹脂組成物は、高い耐熱性を必要とする用途に適しているが、特に組成物を硬化させてなる硬化物の平均線膨張率が低いことから各種電子材料向けの組成物、中でも半導体封止剤として有用である。また、窒素原子に由来する接着性に優れていることから、強化プラスチック材料用ワニスとしても有用である。さらに該ワニスを硬化させてなる繊維強化プラスチックとしても有用である。
[Use of composition]
The epoxy resin composition containing the epoxy resin of the present invention is suitable for applications requiring high heat resistance. is particularly useful as a semiconductor encapsulant. It is also useful as a varnish for reinforced plastic materials because of its excellent adhesiveness derived from nitrogen atoms. Furthermore, it is also useful as a fiber-reinforced plastic obtained by curing the varnish.
[硬化物]
 本発明のエポキシ樹脂組成物を硬化させることにより、本発明の硬化物を得ることができる。硬化方法や条件については、本発明のエポキシ樹脂組成物を硬化させることができれば特に限定されない。但し、成型が容易であることから熱硬化が好ましい。
[Hardened product]
The cured product of the present invention can be obtained by curing the epoxy resin composition of the present invention. The curing method and conditions are not particularly limited as long as the epoxy resin composition of the present invention can be cured. However, thermosetting is preferable because molding is easy.
 本発明の硬化物は、本発明のエポキシ樹脂を含有する組成物を硬化させているためにガラス転移温度が高く、耐熱性に優れている。本発明の硬化物の動的粘弾性測定から見積もられるガラス転移温度は、例えば、硬化剤として芳香族アミン硬化剤WA(三菱ケミカル社製)を使用し、120℃で2時間、175℃で6時間加温して硬化させた場合、通常200℃以上、好ましくは230℃以上、より好ましくは250℃以上である。また、硬化剤として酸無水物硬化剤MH700(新日本理化社製)を使用し、100℃で3時間、140℃で3時間加温して硬化させた場合、通常150℃以上、好ましくは180℃以上、より好ましくは200℃以上である。なお、ガラス転移温度の上限は通常300℃である。 The cured product of the present invention has a high glass transition temperature and excellent heat resistance because the composition containing the epoxy resin of the present invention is cured. The glass transition temperature estimated from the dynamic viscoelasticity measurement of the cured product of the present invention is, for example, using aromatic amine curing agent WA (Mitsubishi Chemical Co., Ltd.) as a curing agent, at 120 ° C. for 2 hours, at 175 ° C. When cured by heating for a period of time, the temperature is usually 200° C. or higher, preferably 230° C. or higher, more preferably 250° C. or higher. In addition, when an acid anhydride curing agent MH700 (manufactured by Shin Nippon Rika Co., Ltd.) is used as a curing agent and cured by heating at 100° C. for 3 hours and at 140° C. for 3 hours, the temperature is usually 150° C. or higher, preferably 180° C. °C or higher, more preferably 200 °C or higher. The upper limit of the glass transition temperature is usually 300°C.
 また、本発明の硬化物は平均線膨張率が低いことが特徴である。本発明の硬化物の50℃~250℃の範囲での平均線膨張率は、例えば、硬化剤として芳香族アミン硬化剤jERキュアWA(三菱ケミカル社製)を使用し、120℃で2時間、175℃で6時間加温して硬化させた場合、通常100ppm/℃以下、好ましくは80ppm/℃以下、より好ましくは70ppm/℃以下である。また、硬化剤として酸無水物硬化剤MH700(新日本理化社製)を使用し100℃で3時間、140℃で3時間加温して硬化させた場合、通常100ppm/℃以下、好ましくは80ppm/℃以下、より好ましくは70ppm/℃以下である。 In addition, the cured product of the present invention is characterized by a low average coefficient of linear expansion. The average coefficient of linear expansion in the range of 50 ° C. to 250 ° C. of the cured product of the present invention is, for example, using an aromatic amine curing agent jER Cure WA (manufactured by Mitsubishi Chemical Corporation) as a curing agent, at 120 ° C. for 2 hours, When cured by heating at 175°C for 6 hours, it is usually 100 ppm/°C or less, preferably 80 ppm/°C or less, more preferably 70 ppm/°C or less. In addition, when an acid anhydride curing agent MH700 (manufactured by Shin Nippon Rika Co., Ltd.) is used as a curing agent and cured by heating at 100 ° C. for 3 hours and at 140 ° C. for 3 hours, it is usually 100 ppm / ° C. or less, preferably 80 ppm. /°C or less, more preferably 70 ppm/°C or less.
[硬化物の用途]
 本発明のエポキシ樹脂組成物を硬化させた硬化物は、耐熱性に優れることから、接着剤、塗料、電子材料、構造材などの様々な分野の材料として適用可能であり、特に、平均線膨張率が低いことから、絶縁注型、積層材料、封止材料等の電子材料に有用である。具体的には多層プリント配線基板、フィルム状接着剤、液状接着剤、半導体封止材料、アンダーフィル材料、3D-LSI用インターチップフィル、絶縁シート、プリプレグ、放熱基板等が挙げられる。また、窒素原子に由来する接着性に優れていることから、各種強化プラスチックからなる構造材としても有用である。
[Usage of cured product]
Since the cured product obtained by curing the epoxy resin composition of the present invention has excellent heat resistance, it can be applied as a material in various fields such as adhesives, paints, electronic materials, and structural materials. Due to its low modulus, it is useful for electronic materials such as insulation casting, lamination materials, and encapsulation materials. Specific examples include multilayer printed wiring boards, film adhesives, liquid adhesives, semiconductor sealing materials, underfill materials, inter-chip fills for 3D-LSI, insulating sheets, prepregs, and heat dissipation substrates. In addition, it is useful as a structural material made of various reinforced plastics because of its excellent adhesiveness derived from nitrogen atoms.
[製造方法]
 本発明のエポキシ樹脂の製造方法は特に限定されず、樹脂の構造や所望の物性に応じて適宜製造することができるが、樹脂中の塩素含有量を低減する目的では、下記一般式(4)の化合物が有する炭素-炭素二重結合を酸化することでエポキシ基に変換する方法が好ましい。
[Production method]
The method for producing the epoxy resin of the present invention is not particularly limited, and it can be produced appropriately according to the structure and desired physical properties of the resin. A method of converting to an epoxy group by oxidizing the carbon-carbon double bond of the compound is preferred.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 ここで「一般式(4)の化合物が有する炭素-炭素二重結合」とは、一般式(4)に明示されたn個の炭素-炭素二重結合と、L、Lに含まれていても良い炭素-炭素二重結合の両方を指す。
 L、Lは水素又は炭素-炭素二重結合を有していてもよい炭化水素基であるが、一般式(4)中のLは一般式(1)中のBに、一般式(4)中のLは一般式(1)中のBに対応する構造を選択すれば良い。すなわちBまたはBがエポキシ基を有していない場合、BとL、BとLはそれぞれ同一である。また、Bにエポキシ基が含まれる場合、対応するLはBにおけるエポキシ基に対応する位置に炭素-炭素二重結合を有しており、それ以外の部分構造はBと同一構造である。これはBとLの関係においても同様である。上述の通り、B及びBに含まれるエポキシ基の合計数が2~4であることから、L、Lに含まれる炭素-炭素二重結合の合計数も2~4である。
 また、一般式(4)中X、R~R、nは一般式(1)と同一となる。
Here, "the carbon-carbon double bond possessed by the compound of the general formula (4)" means the n carbon - carbon double bonds specified in the general formula (4) and the refers to both carbon-carbon double bonds, which may be
L 1 and L 2 are hydrogen or a hydrocarbon group which may have a carbon - carbon double bond. A structure corresponding to B2 in general formula ( 1 ) may be selected for L2 in formula (4). That is, when B 1 or B 2 does not have an epoxy group, B 1 and L 1 and B 2 and L 2 are respectively the same. In addition, when B 1 contains an epoxy group, the corresponding L 1 has a carbon-carbon double bond at the position corresponding to the epoxy group in B 1 , and the other partial structure is the same as B 1 . is. This also applies to the relationship between B2 and L2 . As described above, since the total number of epoxy groups contained in B 1 and B 2 is 2-4, the total number of carbon-carbon double bonds contained in L 1 and L 2 is also 2-4.
Further, X, R 1 to R 3 and n in general formula (4) are the same as in general formula (1).
 一般式(2)で表されるエポキシ樹脂の製造方法としては、下記一般式(5)の化合物が有する炭素-炭素二重結合を酸化することでエポキシ基に変換すれば良く、一般式(5)中、R~Rは一般式(2)と同一となる。 As a method for producing the epoxy resin represented by the general formula (2), the carbon-carbon double bond of the compound of the following general formula (5) may be converted to an epoxy group by oxidation. ), R 1 to R 3 are the same as in general formula (2).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(3)で表されるエポキシ樹脂の製造方法としては、下記一般式(6)の化合物が有する炭素-炭素二重結合を酸化することでエポキシ基に変換すれば良く、一般式(6)中、R~Rは一般式(3)と同一となる。 As a method for producing the epoxy resin represented by the general formula (3), the carbon-carbon double bond of the compound of the following general formula (6) may be converted to an epoxy group by oxidation. ), R 4 to R 6 are the same as in general formula (3).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 本発明のエポキシ樹脂の原料化合物である一般式(4)の具体例を以下に示す。 Specific examples of general formula (4), which is the raw material compound of the epoxy resin of the present invention, are shown below.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 酸化方法は、本発明のエポキシ樹脂が取得可能な方法であれば特に限定されず、公知の方法で行うことができる。具体的には、塩基の存在下ニトリルと過酸化水素水溶液を用いる方法、タングステン酸類の存在下4級アンモニウム塩と過酸化水素水溶液を用いる方法、過酢酸やm-クロロ安息香酸等の有機過酸を用いる方法、ジオキシラン類を用いる方法等が挙げられ、エポキシ樹脂の性質に応じて適宜方法を選択することができる。中でも、タングステン酸類の存在下4級アンモニウム塩と過酸化水素水溶液を用いる方法は、酸化剤として安価かつ安定な過酸化水素を用いることができる上、副生物が水であることから環境への負荷を低減できる点で好ましい。さらには塩基の存在下ニトリルと過酸化水素水溶液を用いる方法と比べて過酸化水素を過剰に使用する必要がない点でも好ましい。 The oxidation method is not particularly limited as long as the epoxy resin of the present invention can be obtained, and a known method can be used. Specifically, a method using a nitrile and an aqueous hydrogen peroxide solution in the presence of a base, a method using a quaternary ammonium salt and an aqueous hydrogen peroxide solution in the presence of tungstic acids, an organic peracid such as peracetic acid and m-chlorobenzoic acid. and a method using dioxiranes, and the method can be appropriately selected according to the properties of the epoxy resin. Among them, the method of using a quaternary ammonium salt and an aqueous hydrogen peroxide solution in the presence of tungstic acids can use inexpensive and stable hydrogen peroxide as an oxidizing agent, and the by-product is water, so it has a negative impact on the environment. can be reduced. Furthermore, it is preferable in that it does not require excessive use of hydrogen peroxide as compared with the method using nitrile and an aqueous solution of hydrogen peroxide in the presence of a base.
 以下、タングステン酸類の存在下4級アンモニウム塩と過酸化水素水溶液を用いる酸化方法について詳細に説明する。
 本酸化法では通常、まず原料となる一般式(4)で表される化合物(以下「原料化合物」とする)と、タングステン酸、オニウム塩、リン酸類等の添加物とを反応溶媒中で混合し、混合物の温度を一定に保つように過酸化水素水を滴下し、撹拌する。反応後、残存した過酸化水素をチオ硫酸ナトリウム水溶液等の還元剤でクエンチし、水洗や濃縮等の通常の操作を行ってエポキシ樹脂を得る。必要に応じて晶析やカラムクロマトグラフィーによる精製を実施しても良い。
The oxidation method using a quaternary ammonium salt and an aqueous hydrogen peroxide solution in the presence of tungstic acids will now be described in detail.
In the present oxidation method, the compound represented by the general formula (4) as a raw material (hereinafter referred to as "raw material compound") is usually mixed in a reaction solvent with additives such as tungstic acid, onium salts and phosphoric acids. Then, hydrogen peroxide solution is added dropwise so as to keep the temperature of the mixture constant, and the mixture is stirred. After the reaction, the remaining hydrogen peroxide is quenched with a reducing agent such as an aqueous sodium thiosulfate solution, and ordinary operations such as washing with water and concentration are performed to obtain an epoxy resin. Purification by crystallization or column chromatography may be carried out as necessary.
 タングステン酸類としては、タングステン化合物やその塩等が挙げられる。タングステン化合物は、タングステンを含有し、上記のエポキシ化反応の触媒としての作用を有するものであれば、特に限定されないが、前記タングステン酸類としては、例えば、タングステン酸;タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸カルシウム、タングステン酸アンモニウム等のタングステン酸塩類;前記タングステン酸塩類の水和物;12-タングストリン酸、18-タングストリン酸等のリンタングステン酸類;12-タングストケイ酸等のケイタングステン酸類;12-タングストホウ酸または金属タングステン類等が挙げられ、タングステン酸、タングステン酸塩、リンタングステン酸が好ましく、入手しやすさの点で、タングステン酸、タングステン酸ナトリウム、タングステン酸カルシウム、12-タングストリン酸がより好ましい。 Examples of tungstic acids include tungsten compounds and salts thereof. The tungsten compound is not particularly limited as long as it contains tungsten and acts as a catalyst for the above epoxidation reaction. Examples of the tungstic acids include tungstic acid; sodium tungstate, potassium tungstate, Tungstates such as calcium tungstate and ammonium tungstate; hydrates of the tungstates; phosphotungstic acids such as 12-tungstophosphoric acid and 18-tungstophosphoric acid; -Tungstoboric acid or metal tungsten, etc., preferably tungstic acid, tungstate, phosphotungstic acid, and in terms of availability, tungstic acid, sodium tungstate, calcium tungstate, 12-tungstophosphoric acid more preferred.
 タングステン酸類の使用量は特に限定されないが、反応を十分に進行させるためには、原料化合物に含まれる炭素-炭素二重結合1当量に対して、触媒金属原子換算で、好ましくは0.001当量以上、より好ましくは0.005当量以上、さらに好ましくは0.01当量以上であり、タングステン酸類の除去にかかる負荷を低減するためには、好ましくは5当量以下、より好ましくは3当量以下、より好ましくは1当量以下である。 The amount of tungstic acid used is not particularly limited, but in order to sufficiently proceed the reaction, it is preferably 0.001 equivalent in terms of catalyst metal atom with respect to 1 equivalent of carbon-carbon double bond contained in the raw material compound. Above, more preferably 0.005 equivalents or more, still more preferably 0.01 equivalents or more. It is preferably 1 equivalent or less.
 反応に用いるオニウム塩としては、エポキシ化反応の際には脂溶性となり、通常、必要に応じて用いられる有機溶媒に溶解するものが好ましい。そのため、より脂溶性が高いオニウム塩を使用することが好ましい。オニウム塩の脂溶性の目安の一つとしては、オニウム塩の有する炭素数が挙げられ、(炭素数/1分子中のオニウム塩の数)が通常20以上であり、より好ましくは25以上である。さらに好ましくはその構造内に炭素原子を20個以上有するカチオン種のオニウム塩がより好ましい。例えば、メチルトリオクチルアンモニウム塩、テトラヘキシルアンモニウム塩、ジラウリルジメチルアン
モニウム塩、ベンジルトリブチルアンモニウム塩等のアンモニウム塩類、セシルピリジニウム塩等のピリジニウム塩類、テトラヘキシルホスホニウム塩等のホスホニウム塩類が挙げられる。
As the onium salt to be used for the reaction, those which become lipid-soluble during the epoxidation reaction and are usually dissolved in an organic solvent used as necessary are preferred. Therefore, it is preferable to use onium salts with higher fat solubility. One of the measures of the fat solubility of the onium salt is the number of carbon atoms in the onium salt. . More preferably, an onium salt of a cationic species having 20 or more carbon atoms in its structure is more preferable. Examples thereof include ammonium salts such as methyltrioctylammonium salts, tetrahexylammonium salts, dilauryldimethylammonium salts and benzyltributylammonium salts, pyridinium salts such as ceylpyridinium salts, and phosphonium salts such as tetrahexylphosphonium salts.
 またオニウム塩としては、WO2013/147092に記載されているような、活性水素を含む官能基またはその塩に変換可能な置換基を1つ以上有するオニウム塩を用いることもできる。これらのオニウム塩は、酸化時には脂溶性を呈するが、反応終了後に加水分解等の簡単な後処理をすることで水溶性物質に変換することができ、タングステン等の前記タングステン化合物をより効率よく水層に溶解し、分離できる点で好ましい。 As the onium salt, it is also possible to use an onium salt having one or more substituents convertible to a functional group containing active hydrogen or a salt thereof, as described in WO2013/147092. These onium salts exhibit lipophilicity when oxidized, but can be converted to water-soluble substances by simple post-treatment such as hydrolysis after the completion of the reaction. It is preferable in that it can be dissolved in layers and separated.
 上記オニウム塩の好ましい具体的な例としては、N-メチル-N,N,N-トリ[2-(ペンチルカルボニルオキシ)エチル]アンモニウム硫酸水素塩、N-メチル-N,N,N-トリ[2-(4-t-ブチルフェニルカルボニルオキシ)エチル]アンモニウムモノメチル硫酸水素塩、2,3-ビス(4-t-ブチル-フェニルオキシ)-N、N、N-トリエチル-1-プロパンアンモニウムクロライド、N-ブチル-N,N-ジ[2-(4-t-ブチルベンゾイルオキシ)エチル-N-メチルアンモニウムモノメチル]硫酸塩等が挙げられるが、このうち、調製および分析が簡便である観点から、N-ブチル-N,N-ジ[2-(4-t-ブチルベンゾイルオキシ)エチル-N-メチルアンモニウムモノメチル]硫酸塩が挙げられる。本発明において、オニウム塩は単独でも2種以上適宜組み合わせて使用してもよい。 Preferred specific examples of the above onium salts include N-methyl-N,N,N-tri[2-(pentylcarbonyloxy)ethyl]ammonium hydrogensulfate, N-methyl-N,N,N-tri[ 2-(4-t-butylphenylcarbonyloxy)ethyl]ammonium monomethyl hydrogen sulfate, 2,3-bis(4-t-butyl-phenyloxy)-N,N,N-triethyl-1-propanemmonium chloride, and N-butyl-N,N-di[2-(4-t-butylbenzoyloxy)ethyl-N-methylammonium monomethyl]sulfate. and N-butyl-N,N-di[2-(4-t-butylbenzoyloxy)ethyl-N-methylammonium monomethyl]sulfate. In the present invention, the onium salts may be used alone or in combination of two or more.
 前記オニウム塩の使用量は適宜調整可能であり、特に制限はされないが、反応を十分に進行させるためには、反応時に使用する前記タングステン化合物に対して、通常0.1当量以上、好ましくは0.2当量以上、より好ましくは0.3当量以上、通常5.0当量以下であり、オニウム塩の除去にかかる負荷を低減するためには、好ましくは2.0当量以下であり、より好ましくは1.0当量以下である。 The amount of the onium salt used can be adjusted as appropriate, and is not particularly limited. .2 equivalents or more, more preferably 0.3 equivalents or more, and usually 5.0 equivalents or less, preferably 2.0 equivalents or less, more preferably 2.0 equivalents or less, in order to reduce the load on the removal of the onium salt It is 1.0 equivalent or less.
 滴下する過酸化水素水の濃度は特に限定されないが、入手が容易で分解の危険性が低く、かつ運搬コストが安いことから、通常10質量%以上、好ましくは20質量%以上、より好ましくは30質量%以上であり、通常60質量%以下、より好ましくは45質量%以下である。さらに水を使用したり、過酸化水素を逐次添加することにより、反応液中の過酸化水素量及び濃度を低く保つことが、安全性、生産性の面からさらに好ましい。過酸化水素の使用量は特に限定されず、原料化合物や炭素-炭素二重結合の転化率、触媒の種類、反応条件等によって異なるが、原料化合物に含まれる炭素-炭素二重結合1当量に対して、通常0.5当量以上、好ましくは1.0当量以上、通常10当量以下、好ましくは3.0当量以下である。 Although the concentration of the hydrogen peroxide solution to be dropped is not particularly limited, it is usually 10% by mass or more, preferably 20% by mass or more, more preferably 30% by mass, because it is easily available, has a low risk of decomposition, and is inexpensive to transport. % by mass or more, and usually 60% by mass or less, more preferably 45% by mass or less. Furthermore, it is more preferable from the standpoint of safety and productivity to keep the amount and concentration of hydrogen peroxide in the reaction solution low by using water or adding hydrogen peroxide successively. The amount of hydrogen peroxide used is not particularly limited, and varies depending on the raw material compound, conversion rate of carbon-carbon double bonds, type of catalyst, reaction conditions, etc. On the other hand, it is usually 0.5 equivalents or more, preferably 1.0 equivalents or more, and usually 10 equivalents or less, preferably 3.0 equivalents or less.
 反応を十分に進行させるためには、タングステン酸類とオニウム塩に加えてリン酸類を用いることが好ましい。リン酸類としては、具体的にはリン酸、亜リン酸等の無機リン酸類;ポリリン酸、ピロリン酸等のリン酸重合体類;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、リン酸水素ナトリウム、リン酸水素カリウム、リン酸水素アンモニウム、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸二水素カルシウム等の無機リン酸塩類;モノメチルリン酸、ジメチルリン酸、トリメチルリン酸、トリエチルリン酸、トリフェニルリン酸等のリン酸エステル類;等が挙げられる。このうちリン酸が好ましい。 In order to allow the reaction to proceed sufficiently, it is preferable to use phosphoric acids in addition to tungstic acids and onium salts. Examples of phosphoric acids include inorganic phosphoric acids such as phosphoric acid and phosphorous acid; phosphoric acid polymers such as polyphosphoric acid and pyrophosphoric acid; sodium phosphate, potassium phosphate, ammonium phosphate, and sodium hydrogen phosphate. , potassium hydrogen phosphate, ammonium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, calcium dihydrogen phosphate; monomethyl phosphate, dimethyl phosphate, trimethyl phosphate, triethyl phosphate , phosphates such as triphenyl phosphate; and the like. Of these, phosphoric acid is preferred.
 リン酸類の使用量は、特に限定されるものではなく、その種類やタングステン化合物の種類によって適宜使用量を調整できる。使用する前記タングステン化合物がタングステン酸塩類またはタングステン酸塩類の水和物である場合、該リン酸類及びホスホン酸類のいずれかに含まれるリンの当量としては、タングステンに対して通常0.1当量以上、好ましくは0.2当量以上、より好ましくは0.3当量以上であり、通常10.0当量以下、好ましくは5.0当量以下、より好ましくは2.0当量以下である。 The amount of phosphoric acid used is not particularly limited, and the amount used can be adjusted as appropriate depending on the type and type of tungsten compound. When the tungsten compound to be used is a tungstate or a tungstate hydrate, the equivalent of phosphorus contained in either the phosphoric acid or the phosphonic acid is usually 0.1 equivalent or more relative to tungsten, It is preferably 0.2 equivalents or more, more preferably 0.3 equivalents or more, and usually 10.0 equivalents or less, preferably 5.0 equivalents or less, more preferably 2.0 equivalents or less.
 反応液の水層のpHは、反応速度によって適宜調整すればよく、通常7.0以下であり、好ましくは6.0以下、より好ましくは4.0以下であり、通常0.5以上、好ましくは1.0以上、より好ましくは2.0以上である。pHはリン酸類の使用量で調整すればよく、他の酸や塩基を添加することで調整しても良い。 The pH of the aqueous layer of the reaction solution may be appropriately adjusted depending on the reaction rate, and is usually 7.0 or less, preferably 6.0 or less, more preferably 4.0 or less, and usually 0.5 or more, preferably is 1.0 or more, more preferably 2.0 or more. The pH may be adjusted by adjusting the amount of phosphoric acid used, and may be adjusted by adding other acids or bases.
 反応には溶媒を使用することもできる。用いる溶媒は特に限定されないが、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン、ヘプタン、ドデカン等の脂肪族炭化水素類;メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール、シクロヘキサノール等のアルコール類;クロロホルム、ジクロロメタン、ジクロロエタン、クロロベンゼン等のハロゲン溶媒;ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類;アセトニトリル、ブチロニトリル等のニトリル類;酢酸エチル、酢酸ブチル、蟻酸メチル等のエステル化合物;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;N,N’-ジメチルイミダゾリジノン等のウレア類;水及びこれら溶媒の混合物が挙げられる。上述の通り、反応系中に水を添加することにより、反応時に系内の過酸化水素量及び濃度を低く保つことが、安全性、生産性の面からさらに好ましい。また、本反応を水層と有機層の分離した二層系で行うと、二層分離していることによりエポキシ樹脂は有機層に溶解するため、酸性である水層の影響によりエポキシ環が開環、転位等で分解することを抑えることができる。よって非水溶性の芳香族炭化水素類、脂肪族炭化水素類、ハロゲン系溶媒またはこれら溶媒の混合物と、水の組み合わせが好ましい。 A solvent can also be used for the reaction. The solvent to be used is not particularly limited, but aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as hexane, heptane and dodecane; alcohols such as methanol, ethanol, isopropanol, butanol, hexanol and cyclohexanol. Halogen solvents such as chloroform, dichloromethane, dichloroethane and chlorobenzene; Ethers such as diisopropyl ether, tetrahydrofuran and dioxane; Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone; Nitriles such as acetonitrile and butyronitrile; Ethyl acetate , butyl acetate, ester compounds such as methyl formate; amides such as N,N-dimethylformamide and N,N-dimethylacetamide; ureas such as N,N'-dimethylimidazolidinone; mentioned. As described above, it is more preferable from the standpoint of safety and productivity to keep the amount and concentration of hydrogen peroxide in the system low during the reaction by adding water to the reaction system. In addition, when this reaction is carried out in a two-layer system in which the aqueous layer and the organic layer are separated, the epoxy resin dissolves in the organic layer due to the separation of the two layers. Decomposition due to rings, rearrangements, etc. can be suppressed. Therefore, a combination of water-insoluble aromatic hydrocarbons, aliphatic hydrocarbons, halogen-based solvents or a mixture of these solvents and water is preferred.
 酸化反応の原料となる一般式(4)で表される化合物が反応条件下で液状である場合には、溶媒を使用しなくてもよいが、反応熱を潜熱により吸収させ安全に製造するためには、溶媒を使用するのが好ましい。有機溶媒の使用量は、原料化合物を均一に溶解させるためには、原料化合物1質量部に対して通常0.01質量部以上、好ましくは0.1質量部以上、さらに好ましくは0.5質量部以上であり、通常は20質量部以下、好ましくは10質量部以下、さらに好ましくは5質量部以下である。 When the compound represented by the general formula (4), which is the starting material for the oxidation reaction, is liquid under the reaction conditions, it is not necessary to use a solvent. preferably use a solvent. The amount of the organic solvent used is usually 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass, per 1 part by mass of the starting compound, in order to uniformly dissolve the starting compound. parts or more, and usually 20 parts by mass or less, preferably 10 parts by mass or less, more preferably 5 parts by mass or less.
 反応温度は、反応が阻害されない限り特に限定されないが、反応を十分に進行させるためには通常10℃以上、好ましくは35℃以上、さらに好ましくは50℃以上であり、過酸化水素の分解や形成されたエポキシ環の加水分解を抑制するためには、通常100℃以下、好ましくは80℃以下、さらに好ましくは75℃以下である。 The reaction temperature is not particularly limited as long as the reaction is not inhibited, but in order to allow the reaction to proceed sufficiently, it is usually 10°C or higher, preferably 35°C or higher, more preferably 50°C or higher. In order to suppress hydrolysis of the epoxy ring attached, the temperature is usually 100° C. or lower, preferably 80° C. or lower, more preferably 75° C. or lower.
 上記一般式(1)で表される本発明のエポキシ樹脂を、一般式(4)に含まれる炭素-炭素二重結合を酸化してエポキシ基に変換する方法で製造する場合、エポキシ樹脂は、一般式(4)に含まれる炭素-炭素二重結合が一部残存した化合物を含んでいても良い。一般式(4)に含まれる複数の炭素-炭素二重結合が逐次的に酸化されてエポキシ樹脂が生成するため、何れの酸化法においても、酸化剤の当量を変化させることにより、炭素-炭素二重結合が一部残存した化合物の含有比率を制御することができる。本発明の効果を損なわない範囲においてそれらの混合比率は特に限定されるものではなく、使用する目的によって適宜設定可能である。例えば、一般式(4)に含まれる炭素-炭素二重結合が全てのエポキシ基に変換された状態を二重結合転化率100%とした場合、耐熱性を向上させる目的やエポキシ樹脂の安定性向上のためには二重結合転化率は60%以上が好ましく、70%以上がさらに好ましい。一方、粘度や毒性を下げるためには二重結合転化率は98%以下が好ましく、95%以下がさらに好ましい。
 また、その他の不純物の含有量もエポキシ当量によって見積もることができる。不純物が少ないほうが、本発明の多官能エポキシ樹脂を含有する組成物の加工性や本発明の硬化物の耐熱性などに優れる。よって、本発明の多官能エポキシ樹脂のエポキシ当量と、理論エポキシ当量の比(混合物のエポキシ当量/理論エポキシ当量)は、通常0.90~1.50、好ましくは0.95~1.40、さらに好ましくは1.00~1.30である。
When the epoxy resin of the present invention represented by the general formula (1) is produced by a method of oxidizing the carbon-carbon double bond contained in the general formula (4) to convert it to an epoxy group, the epoxy resin is It may contain a compound in which a part of the carbon-carbon double bond contained in the general formula (4) remains. Multiple carbon-carbon double bonds contained in the general formula (4) are sequentially oxidized to form an epoxy resin, so in any oxidation method, by changing the equivalent amount of the oxidizing agent, It is possible to control the content ratio of the compound in which some double bonds remain. The mixing ratio thereof is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately set depending on the purpose of use. For example, when the double bond conversion rate is 100%, the carbon-carbon double bonds contained in the general formula (4) are converted to all epoxy groups. For improvement, the double bond conversion rate is preferably 60% or more, more preferably 70% or more. On the other hand, in order to reduce viscosity and toxicity, the double bond conversion rate is preferably 98% or less, more preferably 95% or less.
Also, the content of other impurities can be estimated by the epoxy equivalent. The fewer impurities, the better the workability of the composition containing the polyfunctional epoxy resin of the present invention and the heat resistance of the cured product of the present invention. Therefore, the ratio of the epoxy equivalent of the polyfunctional epoxy resin of the present invention to the theoretical epoxy equivalent (mixture epoxy equivalent/theoretical epoxy equivalent) is usually 0.90 to 1.50, preferably 0.95 to 1.40, It is more preferably 1.00 to 1.30.
 以下、実験例(製造例、実施例)に基づいて本発明をさらに具体的に説明するが、本発明はその要旨を越えない限り、以下の実験例により限定されるものではない。
 実験例中の資材は断りのない限り通常入手可能な市販試薬を用いた。また、実施例及び比較例における各種分析方法は以下の通りである。
Hereinafter, the present invention will be described in more detail based on experimental examples (manufacturing examples, examples), but the present invention is not limited to the following experimental examples as long as the gist thereof is not exceeded.
Unless otherwise specified, commonly available commercial reagents were used in the experimental examples. Various analysis methods in Examples and Comparative Examples are as follows.
H-NMR分析条件)
装置:BRUKER社製 AVANCE400、400MHz
溶媒:0.03体積%テトラメチルシラン含有重クロロホルム
(エポキシ当量)
JIS K7236:2001に準じて測定した。
(ガラス転移温度(Tg)の測定)
 エポキシ樹脂硬化物を縦5cm、横1cm、厚さ4mmに切削して得られた試験片を用いて、以下の条件で測定し、1回目昇温時の1HzのE’’とtanδのピークトップをTgとした。
 動的粘弾性測定装置装置(DMA):セイコーインスツルメント社製 EXSTAR6100
 測定モード:3点曲げモード
 測定温度範囲:30℃から300℃
 昇温速度:5℃/min
(平均線膨張率の測定)
 エポキシ樹脂硬化物を厚さ約4mm、直径約7mmの円柱状試験片に切削して得られた試験片を用いて、以下の条件で測定し、2回目昇温時の50~250℃までの線膨張率の平均値を平均線膨張率とした。
 熱機械分析装置(TMA):セイコーインスツルメント社製 EXSTAR6000E
 測定モード:圧縮モード
 昇温速度:5℃/min、降温速度:5℃/min
 測定温度範囲:30℃から280℃
(粘度分析)
分析装置:コーンプレート粘度計(東海八神株式会社製)
 30℃に調整した粘度計の熱板の上に3mlのスポイトで吸引したエポキシ樹脂を1滴滴下して、回転速度750rpmで粘度を測定した。
( 1 H-NMR analysis conditions)
Device: BRUKER AVANCE400, 400MHz
Solvent: heavy chloroform containing 0.03% by volume tetramethylsilane (epoxy equivalent)
Measured according to JIS K7236:2001.
(Measurement of glass transition temperature (Tg))
Using a test piece obtained by cutting an epoxy resin cured product into a length of 5 cm, a width of 1 cm, and a thickness of 4 mm, measurements were made under the following conditions. was taken as Tg.
Dynamic viscoelasticity measuring device (DMA): EXSTAR6100 manufactured by Seiko Instruments Inc.
Measurement mode: 3-point bending mode Measurement temperature range: 30°C to 300°C
Heating rate: 5°C/min
(Measurement of average coefficient of linear expansion)
Using a test piece obtained by cutting the epoxy resin cured product into a cylindrical test piece with a thickness of about 4 mm and a diameter of about 7 mm, measurement was performed under the following conditions, and the temperature from 50 to 250 ° C. during the second temperature rise. The average value of the coefficients of linear expansion was defined as the average coefficient of linear expansion.
Thermomechanical analyzer (TMA): EXSTAR6000E manufactured by Seiko Instruments Inc.
Measurement mode: Compression mode Temperature increase rate: 5°C/min, temperature decrease rate: 5°C/min
Measurement temperature range: 30°C to 280°C
(viscosity analysis)
Analyzer: Cone plate viscometer (manufactured by Tokai Yagami Co., Ltd.)
One drop of epoxy resin sucked with a 3 ml dropper was dropped on a hot plate of a viscometer adjusted to 30° C., and the viscosity was measured at a rotational speed of 750 rpm.
<実施例1>4-(2-オキシラニル)-N,N-ジグリシジルベンゼンスルホンアミドの合成
 以下の反応式に示す通り、4-(2-オキシラニル)-N,N-ジグリシジルベンゼンスルホンアミドを合成した。詳細な方法は以下の通りである。
<Example 1> Synthesis of 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide As shown in the following reaction scheme, 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide was synthesized. Synthesized. The detailed method is as follows.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
A.p-スチレンスルホン酸ジアリルアミドの合成
 反応容器にp-スチレンスルホン酸ナトリウム水和物(88%純度、富士フィルム和光純薬社製)21.0g(p-スチレンスルホン酸ナトリウム純分として18.5g、89.7mmol)を入れ、N,N-ジメチルホルムアミド55.5mlを加え、氷冷した。そこに塩化チオニル27.3g(89.7mmol)を内温0~10℃の範囲で滴下し、氷冷のまま1時間攪拌した。反応終了後、トルエン55.5mlを加え再度氷冷した後、水111mlを内温0~10℃の間で滴下した。水層を抜出し、残ったトルエン層を水37ml、1mol/Lの水酸化ナトリウム水溶液83mlで洗浄し、p-スチレンスルホン酸クロライドのトルエン溶液を得た。
 この溶液に、水37ml、炭酸カリウム24.8g(179mmol)を加えて氷冷した後、ジアリルアミン8.71g(89.7mmol)を内温0~10℃の範囲で滴下し、氷冷のまま1時間攪拌した。水層を抜出し、残ったトルエン層を1mol/Lの塩酸37ml、水37mlで2回水洗した後、トルエンを減圧留去した後、得られた粗体をシリカゲルカラムクロマトグラフィーで精製し、p-スチレンスルホン酸ジアリルアミド19.4g(73.6mmol,収率82.1%,HPLC純度98.1%)を得た。
 H-NMRによる同定の結果、以下のチャートが得られ、目的の化合物が合成できたことを確認した。
H-NMR(400MHz,CDCl)δ7.77(2H,d,J=8.4Hz),7.51(2H,d,J=8.4Hz),6.75(1H,dd,J=10.4,17.2Hz),5.88(2H,d,J=17.2Hz),5.61(1H,J=6.0,9.6,17.2Hz),5.43(1H,d,J=10.4Hz),5.19-5.10(2H,m),3.82(4H,d,J=6.0Hz).
A. Synthesis of p-styrenesulfonic acid diallylamide 21.0 g of sodium p-styrenesulfonate hydrate (88% purity, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (18.5 g as pure sodium p-styrenesulfonate) was placed in a reaction vessel. , 89.7 mmol), 55.5 ml of N,N-dimethylformamide was added, and the mixture was ice-cooled. 27.3 g (89.7 mmol) of thionyl chloride was added dropwise thereto at an internal temperature of 0 to 10° C., and the mixture was stirred for 1 hour while cooling with ice. After completion of the reaction, 55.5 ml of toluene was added and the mixture was ice-cooled again. The aqueous layer was extracted, and the remaining toluene layer was washed with 37 ml of water and 83 ml of a 1 mol/L sodium hydroxide aqueous solution to obtain a toluene solution of p-styrenesulfonyl chloride.
After adding 37 ml of water and 24.8 g (179 mmol) of potassium carbonate to this solution and ice-cooling, 8.71 g (89.7 mmol) of diallylamine was added dropwise at an internal temperature of 0 to 10°C. Stirred for hours. The aqueous layer was extracted, and the remaining toluene layer was washed twice with 37 ml of 1 mol/L hydrochloric acid and 37 ml of water, and the toluene was distilled off under reduced pressure. 19.4 g (73.6 mmol, yield 82.1%, HPLC purity 98.1%) of styrenesulfonic acid diallylamide were obtained.
As a result of identification by 1 H-NMR, the following chart was obtained, confirming that the desired compound was synthesized.
1 H-NMR (400 MHz, CDCl 3 ) δ 7.77 (2H, d, J = 8.4 Hz), 7.51 (2H, d, J = 8.4 Hz), 6.75 (1H, dd, J = 10.4, 17.2Hz), 5.88 (2H, d, J = 17.2Hz), 5.61 (1H, J = 6.0, 9.6, 17.2Hz), 5.43 (1H , d, J=10.4 Hz), 5.19-5.10 (2H, m), 3.82 (4H, d, J=6.0 Hz).
B.4-(2-オキシラニル)-N,N-ジグリシジルベンゼンスルホンアミドの合成
 上記Aで得られたp-スチレンスルホン酸ジアリルアミド18.2g(73.6mmol)をクロロホルム180mlに溶解し40℃に加熱した。ここにm-クロロ過安息香酸(70%純度、富士フィルム和光純薬社製)65.4g(m-クロロ過安息香酸純分45.8g、246mmol)を4分割して加えた後、40℃で21時間加熱した。反応終了後、室温まで冷却し、飽和チオ硫酸ナトリウム水溶液を36ml加えて1時間攪拌した。
 水層を抜出し、残ったクロロホルム層を1mol/L水酸化ナトリウム水溶液110ml、水36mlで2回水洗した後、クロロホルムを減圧留去した。得られた粗体をシリカゲルカラムクロマトグラフィーにて精製し、4-(2-オキシラニル)-N,N-ジグリシジルベンゼンスルホンアミドを14.7g(55.8mmol,収率76%,HPLC純度99.7%)得た。二重結合転化率は100%であり、エポキシ当量は104だった。
 H-NMRによる同定の結果、以下のチャートが得られ、目的の化合物が合成できたことを確認した。
H-NMR(400MHz,CDCl)δ7.82(2H,dd,J=2.0,8.4Hz),7.43(2H,d,J=8.4Hz),3.91(2H,dd,J=2.4,3.6Hz),3.71-3.58(2H,m),3.20(1H,dd,J=3.6,5.6Hz),3.18-3.09(2H,m),2.80-2.77(2H,m),2.77(2H,dd,J=2.4,5.6Hz),2.58(2H,dt,J=2.4,4.4Hz).
B. Synthesis of 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide 18.2 g (73.6 mmol) of p-styrenesulfonic acid diallylamide obtained in A above was dissolved in 180 ml of chloroform and heated to 40°C. did. 65.4 g of m-chloroperbenzoic acid (70% purity, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (pure m-chloroperbenzoic acid: 45.8 g, 246 mmol) was added thereto in four portions, and the temperature was maintained at 40°C. and heated for 21 hours. After completion of the reaction, the mixture was cooled to room temperature, 36 ml of a saturated sodium thiosulfate aqueous solution was added, and the mixture was stirred for 1 hour.
The aqueous layer was extracted, and the remaining chloroform layer was washed twice with 110 ml of a 1 mol/L sodium hydroxide aqueous solution and 36 ml of water, and then chloroform was distilled off under reduced pressure. The resulting crude product was purified by silica gel column chromatography to obtain 14.7 g (55.8 mmol, yield 76%, HPLC purity 99.0%) of 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide. 7%). The double bond conversion was 100% and the epoxy equivalent weight was 104.
As a result of identification by 1 H-NMR, the following chart was obtained, confirming that the desired compound was synthesized.
1 H-NMR (400 MHz, CDCl 3 ) δ 7.82 (2H, dd, J = 2.0, 8.4 Hz), 7.43 (2H, d, J = 8.4 Hz), 3.91 (2H, dd, J = 2.4, 3.6Hz), 3.71-3.58 (2H, m), 3.20 (1H, dd, J = 3.6, 5.6Hz), 3.18-3 .09 (2H, m), 2.80-2.77 (2H, m), 2.77 (2H, dd, J = 2.4, 5.6 Hz), 2.58 (2H, dt, J = 2.4, 4.4 Hz).
<実施例2>4-(2-オキシラニル)-N,N-ジグリシジルベンゼンスルホンアミドの合成
 以下の反応式に示す通り4-(2-オキシラニル)-N,N-ジグリシジルベンゼンスルホンアミドを合成した。詳細な方法は以下の通りである。
<Example 2> Synthesis of 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide Synthesis of 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide as shown in the following reaction scheme. did. The detailed method is as follows.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 反応容器に実施例1のAと同様の方法で得られたp-スチレンスルホン酸ジアリルアミド2.77g(10.5mmol)を仕込み、トルエン5.5mlで溶解した。ここにタングステン酸ナトリウム・2水和物173mg(526μmol)、20w/v%リン酸水溶液361μl(736μmol)、特開2015-166335の合成例6に記載の方法で合成したN-ブチル-N,N-ジ[2-(4-t-ブチルベンゾイルオキシ)エチル]-N-メチルアンモニウムモノメチル硫酸塩166mg(N-ブチル-N,N-ジ[2-(4-t-ブチルベンゾイルオキシ)エチル]-N-メチルアンモニウムモノメチル硫酸塩純分159mg、263μmol)を順次加えて65℃に加熱し、35%過酸化水素水3.58g(過酸化水素純分1.25g、36.8mmol)を8時間かけて滴下した。滴下後さらに1時間30分攪拌を継続した後、静置して水層を除去した。得られたトルエン層を40℃まで冷却した後、5質量%のチオ硫酸ナトリウム水溶液を2.8ml加えて1時間撹拌し水層を抜き出した。このトルエン層を40℃の1mol/Lの水酸化ナトリウム水溶液2.8mlに1時間かけて滴下した後、水層を抜き出した。得られたトルエン層を水2.8mlで3回洗浄し、溶媒を留去することで、4-(2-オキシラニル)N,N-ジグリシジルベンゼンスルホンアミドを含む混合物を1.80g得た。HPLC分析の結果、4-(2-オキシラニル)-N,N-ジグリシジルベンゼンスルホンアミドを66.4面積%、4-(2-オキシラニル)-N-アリル-N-グリシジルベンゼンスルホンアミドを17.3面積%、4-(2-オキシラニル)-N,N-ジアリルベンゼンスルホンアミドを2.5面積%含んでいることが分かった。二重結合転化率は86.2%であり、エポキシ当量は122だった。 A reactor was charged with 2.77 g (10.5 mmol) of p-styrenesulfonic acid diallylamide obtained in the same manner as in A of Example 1, and dissolved in 5.5 ml of toluene. Here, 173 mg (526 μmol) of sodium tungstate dihydrate, 361 μl (736 μmol) of 20 w/v% aqueous phosphoric acid solution, and N-butyl-N,N synthesized by the method described in Synthesis Example 6 of JP-A-2015-166335. -di[2-(4-t-butylbenzoyloxy)ethyl]-N-methylammonium monomethylsulfate 166 mg (N-butyl-N,N-di[2-(4-t-butylbenzoyloxy)ethyl]- N-methylammonium monomethylsulfate pure content 159 mg, 263 μmol) was sequentially added, heated to 65° C., and 35% hydrogen peroxide solution 3.58 g (hydrogen peroxide pure content 1.25 g, 36.8 mmol) was added over 8 hours. dripped. After the dropwise addition, stirring was continued for 1 hour and 30 minutes, and the mixture was allowed to stand and the water layer was removed. After the obtained toluene layer was cooled to 40° C., 2.8 ml of a 5% by mass sodium thiosulfate aqueous solution was added, stirred for 1 hour, and the water layer was extracted. After the toluene layer was added dropwise to 2.8 ml of a 1 mol/L sodium hydroxide aqueous solution at 40° C. over 1 hour, the aqueous layer was extracted. The obtained toluene layer was washed with 2.8 ml of water three times, and the solvent was distilled off to obtain 1.80 g of a mixture containing 4-(2-oxiranyl)N,N-diglycidylbenzenesulfonamide. As a result of HPLC analysis, 66.4 area % of 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide and 17.4% of 4-(2-oxiranyl)-N-allyl-N-glycidylbenzenesulfonamide. It was found to contain 3 area % and 2.5 area % of 4-(2-oxiranyl)-N,N-diallylbenzenesulfonamide. The double bond conversion was 86.2% and the epoxy equivalent weight was 122.
<実施例3>4-(2-オキシラニル)-N,N-ジグリシジルベンゼンスルホンアミドの合成
 以下の反応式に示す通り4-(2-オキシラニル)-N,N-ジグリシジルベンゼンスルホンアミドを合成した。詳細な方法は以下の通りである。
<Example 3> Synthesis of 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide Synthesis of 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide as shown in the following reaction scheme. did. The detailed method is as follows.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 反応容器に実施例1のAと同様の方法で得られたp-スチレンスルホン酸ジアリルアミド18.01g(68.4mmol)を仕込み、トルエン36mlで溶解した。ここにタングステン酸ナトリウム・2水和物1.13g(3.4mmol)、85w/v%リン酸水溶液0.55g(4.8mmol)、水1.72g、特開2015-166335の合成例6に記載の方法で合成したN-ブチル-N,N-ジ[2-(4-t-ブチルベンゾイルオキシ)エチル]-N-メチルアンモニウムモノメチル硫酸塩1.09g(N-ブチル-N,N-ジ[2-(4-t-ブチルベンゾイルオキシ)エチル]-N-メチルアンモニウムモノメチル硫酸塩純分1.04g、1.7mmol)を順次加えて65℃に加熱し、35%過酸化水素水20.42g(過酸化水素純分7.15g、210mmol)を6.5時間かけて滴下した。滴下後さらに30分攪拌を継続した後、静置して水層を除去した。得られたトルエン層を40℃の1mol/Lの水酸化ナトリウム水溶液18.62gに40分間かけて滴下した後、水層を抜き出した。得られたトルエン層を水18mlで4回洗浄し、溶媒を留去することで、4-(2-オキシラニル)N,N-ジグリシジルベンゼンスルホンアミドを含む混合物を15.60g得た。HPLC分析の結果、4-(2-オキシラニル)-N,N-ジグリシジルベンゼンスルホンアミドを45.5面積%、4-(2-オキシラニル)-N-アリル-N-グリシジルベンゼンスルホンアミドを34.0面積%、4-(2-オキシラニル)-N,N-ジアリルベンゼンスルホンアミドを11.7面積%含んでいることが分かった。二重結合転化率は78.1%であり、エポキシ当量は132だった。 A reactor was charged with 18.01 g (68.4 mmol) of p-styrenesulfonic acid diallylamide obtained in the same manner as in A of Example 1, and dissolved in 36 ml of toluene. Here, 1.13 g (3.4 mmol) of sodium tungstate dihydrate, 0.55 g (4.8 mmol) of 85 w/v% aqueous phosphoric acid solution, 1.72 g of water, in Synthesis Example 6 of JP-A-2015-166335 1.09 g of N-butyl-N,N-di[2-(4-t-butylbenzoyloxy)ethyl]-N-methylammonium monomethylsulfate (N-butyl-N,N-di [2-(4-t-Butylbenzoyloxy)ethyl]-N-methylammonium monomethylsulfate pure content 1.04 g, 1.7 mmol) was successively added and heated to 65° C., followed by 20 g of 35% hydrogen peroxide solution. 42 g (7.15 g pure hydrogen peroxide, 210 mmol) was added dropwise over 6.5 hours. After the dropwise addition, stirring was continued for 30 minutes, and the mixture was allowed to stand and the water layer was removed. After the obtained toluene layer was added dropwise to 18.62 g of a 1 mol/L sodium hydroxide aqueous solution at 40° C. over 40 minutes, the aqueous layer was extracted. The obtained toluene layer was washed with 18 ml of water four times, and the solvent was distilled off to obtain 15.60 g of a mixture containing 4-(2-oxiranyl)N,N-diglycidylbenzenesulfonamide. HPLC analysis revealed 45.5 area % of 4-(2-oxiranyl)-N,N-diglycidylbenzenesulfonamide and 34.5 area % of 4-(2-oxiranyl)-N-allyl-N-glycidylbenzenesulfonamide. It was found to contain 0 area % and 11.7 area % of 4-(2-oxiranyl)-N,N-diallylbenzenesulfonamide. The double bond conversion was 78.1% and the epoxy equivalent weight was 132.
<製造例1>4-グリシジルオキシ-N,N-ジグリシジルベンゼンスルホンアミドの製法
 以下の反応式に示す通り4-グリシジルオキシ-N,N-ジグリシジルベンゼンスルホンアミドを合成した。詳細な方法は以下の通りである。
<Production Example 1> Production of 4-glycidyloxy-N,N-diglycidylbenzenesulfonamide 4-glycidyloxy-N,N-diglycidylbenzenesulfonamide was synthesized according to the following reaction formula. The detailed method is as follows.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 反応容器に4-ヒドロキシベンゼンスルホンアミド163g(941mmol)、をエピクロロヒドリン1.31kg(14.1mol)、ベンジルトリメチルアンモニウムクロライド8.97g(48.3mmol)を加え、90℃で4時間攪拌した後、50℃まで冷却した。ここに33%水酸化ナトリウム水溶液382g(水酸化ナトリウム純分として126g、3.15mol)を30分かけて徐々に滴下した後、80℃に昇温して2時間攪拌した。ここまでの操作をもう1バッチ実施した。2バッチ分の反応液を室温まで冷却した後、酢酸エチル1000mLを加え攪拌し、酢酸エチル層を回収した。残った水層に酢酸エチル1000mLを入れ抽出する操作をさらに2回実施した後、酢酸エチル層をまとめて水1500mLで洗浄した。得られた酢酸エチル層を無水硫酸ナトリウムで乾燥後、濃縮し、薄黄色油状物を得た。薄黄色油状物をシリカゲルカラムクロマトグラフィーで精製し、4-グリシジルオキシ-N,N-ジグリシジルベンゼンスルホンアミド314g(920mmol、収率48.9%、純度93.4%)を得た。
 H-NMRによる同定の結果、以下のチャートが得られ、目的の化合物が合成できたことを確認した。
H-NMR(400MHz,CDCl)δ7.76(dd,J=2.0,8.8Hz, 2H),7.00(d,J=8.8 Hz,2H),4.32(dd,J=2.8,11.2Hz,1H),3.95(dd,J=6.0,11.2 Hz,1H),3.68-3.53(m,2H),3.43-3.29(m,1H),3.20-3.04(m,4H),2.91(t,J=4.4Hz,1H),2.76(q,J=4.4Hz,3H),2.64-2.46(m,2H).エポキシ当量は119だった。
163 g (941 mmol) of 4-hydroxybenzenesulfonamide, 1.31 kg (14.1 mol) of epichlorohydrin, and 8.97 g (48.3 mmol) of benzyltrimethylammonium chloride were added to a reactor and stirred at 90° C. for 4 hours. After that, it was cooled to 50°C. After 382 g of a 33% aqueous sodium hydroxide solution (126 g, 3.15 mol as pure sodium hydroxide) was gradually added dropwise over 30 minutes, the mixture was heated to 80° C. and stirred for 2 hours. The operation up to this point was carried out for another batch. After cooling the two batches of the reaction solution to room temperature, 1000 mL of ethyl acetate was added and stirred to recover the ethyl acetate layer. An operation of adding 1,000 mL of ethyl acetate to the remaining aqueous layer for extraction was performed two more times, and then the ethyl acetate layers were combined and washed with 1,500 mL of water. The obtained ethyl acetate layer was dried over anhydrous sodium sulfate and then concentrated to give a pale yellow oil. The pale yellow oil was purified by silica gel column chromatography to obtain 314 g (920 mmol, yield 48.9%, purity 93.4%) of 4-glycidyloxy-N,N-diglycidylbenzenesulfonamide.
As a result of identification by 1 H-NMR, the following chart was obtained, confirming that the desired compound was synthesized.
1 H-NMR (400 MHz, CDCl 3 ) δ 7.76 (dd, J = 2.0, 8.8 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 4.32 (dd , J = 2.8, 11.2 Hz, 1H), 3.95 (dd, J = 6.0, 11.2 Hz, 1H), 3.68-3.53 (m, 2H), 3.43 -3.29 (m, 1H), 3.20-3.04 (m, 4H), 2.91 (t, J = 4.4Hz, 1H), 2.76 (q, J = 4.4Hz, 3H), 2.64-2.46 (m, 2H). The epoxy equivalent was 119.
<製造例2>N,N,N,N-テトラグリシジルベンゼン-1,3-ジスルホンアミドの合成
 以下の反応式に示す通り、N,N,N,N-テトラグリシジルベンゼン-1,3-ジスルホンアミドを合成した。詳細な方法は以下の通りである。
<Production Example 2> Synthesis of N 1 ,N 1 ,N 3 ,N 3 -tetraglycidylbenzene-1,3-disulfonamide As shown in the following reaction scheme, N 1 ,N 1 ,N 3 ,N 3 -tetra Glycidylbenzene-1,3-disulfonamide was synthesized. The detailed method is as follows.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
A.ベンゼン-1,3-ジスルホニルジクロライドの合成
 反応容器にベンゼンスルホン酸クロライドを380g(2.15mol)仕込み、クロロ硫酸980g(8.41mol)と硫酸27.6g(276mmol)を順次加えた。これを徐々に130℃まで昇温し10時間攪拌した後、室温まで冷却し、得られた反応液を氷冷した水にゆっくり滴下した。沈殿物をろ取し、水500mLで洗浄した後、減圧乾燥させてベンゼン-1,3-ジスルホニルジクロライドを白色固体として320g(収率47.1%、純度87.1%)取得した。
 H-NMRによる同定の結果、以下のチャートが得られ、目的の化合物が合成できたことを確認した。
H-NMR(400MHz,CDCl)δ=8.69(s,1H),8.41(dd,J=1.5,8.0Hz,2H),7.97(t,J=7.8Hz,1H).
A. Synthesis of Benzene-1,3-Disulfonyl Dichloride A reaction vessel was charged with 380 g (2.15 mol) of benzenesulfonyl chloride, and 980 g (8.41 mol) of chlorosulfuric acid and 27.6 g (276 mmol) of sulfuric acid were sequentially added. After gradually raising the temperature to 130° C. and stirring for 10 hours, the resulting reaction solution was cooled to room temperature and slowly added dropwise to ice-cooled water. The precipitate was collected by filtration, washed with 500 mL of water, and dried under reduced pressure to obtain 320 g of benzene-1,3-disulfonyl dichloride as a white solid (yield 47.1%, purity 87.1%).
As a result of identification by 1 H-NMR, the following chart was obtained, confirming that the desired compound was synthesized.
1 H-NMR (400 MHz, CDCl 3 ) δ=8.69 (s, 1H), 8.41 (dd, J=1.5, 8.0 Hz, 2H), 7.97 (t, J=7. 8Hz, 1H).
B.N,N,N,N-テトラアリルベンゼン-1,3-ジスルホンアミドの合成
 Aで得られたベンゼン-1,3-ジスルホニルジクロライド160g(582mmol)をジクロロメタン1Lに溶解した後、窒素雰囲気化にし、-20℃に冷却したところにトリエチルアミン188g(1.86mol)を加え、さらにジアリルアミン119g(1.22mol)を、-20℃を保ちながら滴下した。反応液を-20℃で30分攪拌した後、20℃まで昇温してさらに30分攪拌した。反応液を水2L、1mol/L塩酸2Lで2回、水2Lの順番で洗浄した。有機層は無水硫酸ナトリウムで乾燥、濃縮後、シリカゲルカラムクロマトグラフィーで精製し、N,N,N,N-テトラアリルベンゼン-1,3-ジスルホンアミドを白色固体として325g(812mmol,収率69.8%, 純度99.1%)を得た。
 H-NMRによる同定の結果、以下のチャートが得られ、目的の化合物が合成できたことを確認した。
H-NMR(400MHz,CDCl)δ=8.25(t,J=1.8Hz,1H),8.01(dd,J=1.8,7.8Hz,2H),7.66(t,J=7.8Hz,1H),5.59(tdd,J=6.3,10.4,16.7Hz,4H),5.23-5.10(m,8H),3.85(d,J=6.5Hz,8H).
B. Synthesis of N 1 ,N 1 ,N 3 ,N 3 -tetraallylbenzene-1,3-disulfonamide After dissolving 160 g (582 mmol) of the benzene-1,3-disulfonyl dichloride obtained in A in 1 L of dichloromethane, After cooling to -20°C under a nitrogen atmosphere, 188 g (1.86 mol) of triethylamine was added, and 119 g (1.22 mol) of diallylamine was added dropwise while maintaining the temperature at -20°C. After stirring the reaction solution at -20°C for 30 minutes, the temperature was raised to 20°C and the mixture was further stirred for 30 minutes. The reaction solution was washed with 2 L of water, 2 L of 1 mol/L hydrochloric acid twice, and 2 L of water in this order. The organic layer was dried over anhydrous sodium sulfate, concentrated , and purified by silica gel column chromatography to obtain 325 g (812 mmol, yield 69.8%, purity 99.1%).
As a result of identification by 1 H-NMR, the following chart was obtained, confirming that the desired compound was synthesized.
1 H-NMR (400 MHz, CDCl 3 ) δ = 8.25 (t, J = 1.8 Hz, 1H), 8.01 (dd, J = 1.8, 7.8 Hz, 2H), 7.66 ( t, J = 7.8Hz, 1H), 5.59 (tdd, J = 6.3, 10.4, 16.7Hz, 4H), 5.23-5.10 (m, 8H), 3.85 (d, J=6.5Hz, 8H).
C.N,N,N,N-テトラグリシジルベンゼン-1,3-ジスルホンアミドの合成
 反応容器に、N,N,N,N-テトラアリルベンゼン-1,3-ジスルホンアミド65g(164mmol)をクロロホルム1.5Lに溶解させ窒素雰囲気化にした後、3-クロロ過安息香酸200g(984mmol)を加え、30℃で48時間攪拌した。得られた反応溶液をろ過して白色固体を除去し、ろ液を得た。白色固体はジクロロメタン100mLで洗浄し、得られたろ液は、先のろ液と混合した。これらのろ液を飽和チオ硫酸ナトリウム水溶液4L、5%水酸化ナトリウム水溶液2Lで2回、水2Lで2回洗浄した後、無水硫酸ナトリウムで乾燥、濃縮した。得られた粗体の一部をシリカゲルカラムクロマトグラフィーで精製することにより、N,N,N,N-テトラグリシジルベンゼン-1,3-ジスルホンアミドを45.6g(99.1mmol,純度92.8%)油状生成物として得た。エポキシ当量は123だった。
 H-NMRによる同定の結果、以下のチャートが得られ、目的の化合物が合成できたことを確認した。
H NMR(400MHz,CDCl)δ 8.36-8.30(m,1H), 8.11- 8.03(m, 2H), 8.01(t, J=2.5 Hz,1H), 7.75-7.67(m, 1H), 3.83-3.67(m, 4H),3.23-3.09(m,8H), 2.79(t, J=4.3Hz, 4H), 2.61-2.54(m,4H).
C. Synthesis of N 1 ,N 1 ,N 3 ,N 3 -tetraglycidylbenzene-1,3-disulfonamide Into a reaction vessel, N 1 ,N 1 ,N 3 ,N 3 -tetraallylbenzene-1,3-disulfonamide After dissolving 65 g (164 mmol) in 1.5 L of chloroform and creating a nitrogen atmosphere, 200 g (984 mmol) of 3-chloroperbenzoic acid was added and stirred at 30° C. for 48 hours. The obtained reaction solution was filtered to remove a white solid to obtain a filtrate. The white solid was washed with 100 mL of dichloromethane, and the resulting filtrate was mixed with the previous filtrate. These filtrates were washed twice with 4 L of saturated aqueous sodium thiosulfate solution, 2 L of 5% aqueous sodium hydroxide solution, and twice with 2 L of water, then dried over anhydrous sodium sulfate and concentrated. A portion of the obtained crude product was purified by silica gel column chromatography to obtain 45.6 g ( 99.1 mmol , Purity 92.8%) obtained as an oily product. The epoxy equivalent weight was 123.
As a result of identification by 1 H-NMR, the following chart was obtained, confirming that the desired compound was synthesized.
1 H NMR (400 MHz, CDCl 3 ) δ 8.36-8.30 (m, 1H), 8.11-8.03 (m, 2H), 8.01 (t, J = 2.5 Hz, 1H ), 7.75-7.67 (m, 1H), 3.83-3.67 (m, 4H), 3.23-3.09 (m, 8H), 2.79 (t, J=4 .3Hz, 4H), 2.61-2.54 (m, 4H).
<実施例4>
 実施例1で製造したエポキシ樹脂100質量部に硬化剤として、芳香族アミン硬化剤WA(三菱ケミカル社製)46質量部を加え、100℃で均一になるまで混合することでエポキシ樹脂組成物を得た。内側に離型PETフィルムを引いたガラス板2枚を用いて厚さ4mmに調整した注型板を作成し、注型板に組成物を注型して120℃で2時間、175℃で6時間加温して硬化物を得た。得られた硬化物の物性評価結果を表1に示す。
<Example 4>
To 100 parts by mass of the epoxy resin produced in Example 1, 46 parts by mass of an aromatic amine curing agent WA (manufactured by Mitsubishi Chemical Corporation) was added as a curing agent, and mixed at 100° C. until uniform, thereby forming an epoxy resin composition. Obtained. A casting plate adjusted to a thickness of 4 mm was prepared using two glass plates with a release PET film on the inside. A cured product was obtained by heating for hours. Table 1 shows the physical property evaluation results of the obtained cured product.
<実施例5>
 実施例4において、実施例1で製造したエポキシ樹脂に代えて、実施例2で製造したエポキシ樹脂を用い、硬化剤の含有量を39質量部としたこと以外は、実施例4と同様にしてエポキシ樹脂組成物を得、実施例4と同様に物性評価を行った。結果を表1に示す。
<Example 5>
In Example 4, the epoxy resin produced in Example 1 was replaced with the epoxy resin produced in Example 2, and the content of the curing agent was 39 parts by mass. An epoxy resin composition was obtained, and physical properties were evaluated in the same manner as in Example 4. Table 1 shows the results.
<実施例6>
 実施例4において、実施例1で製造したエポキシ樹脂に代えて、実施例3で製造したエポキシ樹脂を用い、硬化剤の含有量を39質量部としたこと以外は、実施例4と同様にしてエポキシ樹脂組成物を得、実施例4と同様に物性評価を行った。結果を表1に示す。
<Example 6>
In Example 4, the epoxy resin produced in Example 1 was replaced with the epoxy resin produced in Example 3, and the content of the curing agent was 39 parts by mass. An epoxy resin composition was obtained, and physical properties were evaluated in the same manner as in Example 4. Table 1 shows the results.
<比較例1>
 実施例4において、実施例1で製造したエポキシ樹脂に代えて、製造例1で製造したエポキシ樹脂を用い、硬化剤の含有量を40質量部としたこと以外は、実施例4と同様にしてエポキシ樹脂組成物を得、実施例4と同様に物性評価を行った。結果を表1に示す。
<Comparative Example 1>
In Example 4, the epoxy resin produced in Example 1 was replaced with the epoxy resin produced in Production Example 1, and the content of the curing agent was 40 parts by mass. An epoxy resin composition was obtained, and physical properties were evaluated in the same manner as in Example 4. Table 1 shows the results.
<比較例2>
 実施例4において、実施例1で製造したエポキシ樹脂に代えて、製造例2で製造したエポキシ樹脂を用い、硬化剤の含有量を39質量部としたこと以外は、実施例4と同様にしてエポキシ樹脂組成物を得、実施例4と同様に物性評価を行った。結果を表1に示す。
<Comparative Example 2>
In Example 4, the epoxy resin produced in Example 1 was replaced with the epoxy resin produced in Production Example 2, and the content of the curing agent was 39 parts by mass. An epoxy resin composition was obtained, and physical properties were evaluated in the same manner as in Example 4. Table 1 shows the results.
<比較例3>
 実施例4において、実施例1で製造したエポキシ樹脂に代えて、市販のエポキシ樹脂(「jER(登録商標)630」、三菱ケミカル社製)を用い、硬化剤の含有量を50質量部としたこと以外は、実施例4と同様にしてエポキシ樹脂組成物を得、実施例4と同様に物性評価を行った。結果を表1に示す。
<Comparative Example 3>
In Example 4, instead of the epoxy resin produced in Example 1, a commercially available epoxy resin ("jER (registered trademark) 630", manufactured by Mitsubishi Chemical Corporation) was used, and the content of the curing agent was set to 50 parts by mass. Except for this, an epoxy resin composition was obtained in the same manner as in Example 4, and the physical properties were evaluated in the same manner as in Example 4. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表1に示す通り、実施例1~3のエポキシ樹脂と芳香族アミン硬化剤を硬化してなる実施例4~6の硬化物は、Tgの高さと平均線膨張率の低さを両立している点で製造例1、2のエポキシ樹脂と硬化剤を硬化してなる比較例1、2よりも優れている。平均線膨張率の低さの原因の一つ目は、スルホニル基の存在により、芳香環から続くπ共役系が伸びたことによって分子間結合が強固になったことだと考えられる。特に実施例1~3のエポキシ樹脂はスルホンアミド基を含むことで、π共役系がスルホニル基の先の窒素原子までさらに伸びており、それによって平均線膨張率が低くなったものと思われる。二つ目は、実施例1~3のエポキシ樹脂に含まれる2-オキシラニル基が、製造例1のエポキシ樹脂に含まれるグリシジルエーテル基よりも芳香環からエポキシ基までの距離が短いことから、熱による共有結合の自由度が減少したことだと推定される。
 またTgは一般的にエポキシ当量が小さい(より密にエポキシ基が存在する)ほうが高い。しかしながら、本実施例においては、驚くべきことに、比較例2のように、ジグリシジルスルホンアミド基を2個有していると、かえってTgが低下し、一方、実施例4~6のように、ジグリシジルスルホンアミド基と、立体的に混んでいない構造のエポキシ基とを組み合わせた構造のエポキシ樹脂(実施例1~3)を用いると、比較例2よりもTgが向上している。これまで、Tgは一般的にエポキシ当量が小さい(より密にエポキシ基が存在する)ほうが高いと考えられてきたが、上述したように、ジグリシジルスルホンアミド基を有するエポキシ樹脂においては、全く逆の挙動を示している。これは、ジグリシジルスルホンアミド基の構造内においてエポキシ基同士が混み合っていることから、このようなジグリシジルスルホンアミド基を2個有していると、かえって硬化剤と反応しにくくなり、硬化率が下がってしまうためと考えられる。
As shown in Table 1, the cured products of Examples 4 to 6 obtained by curing the epoxy resins of Examples 1 to 3 and the aromatic amine curing agent have both a high Tg and a low average linear expansion coefficient. It is superior to Comparative Examples 1 and 2 obtained by curing the epoxy resin and the curing agent of Production Examples 1 and 2 in terms of One of the reasons for the low average coefficient of linear expansion is thought to be that the presence of the sulfonyl group extends the π-conjugated system extending from the aromatic ring, thereby strengthening the intermolecular bond. In particular, the epoxy resins of Examples 1 to 3 contain a sulfonamide group, so that the π-conjugated system extends further to the nitrogen atom beyond the sulfonyl group, which is thought to lower the average coefficient of linear expansion. Second, the 2-oxiranyl group contained in the epoxy resins of Examples 1 to 3 has a shorter distance from the aromatic ring to the epoxy group than the glycidyl ether group contained in the epoxy resin of Production Example 1. It is presumed that the degree of freedom of covalent bonding has decreased due to
Also, Tg is generally higher when the epoxy equivalent is small (epoxy groups are present more densely). However, in this example, surprisingly, having two diglycidylsulfonamide groups as in Comparative Example 2 rather lowered the Tg, while Examples 4 to 6 showed , a diglycidylsulfonamide group and an epoxy group having a structure that is not sterically crowded (Examples 1 to 3), the Tg is improved over that of Comparative Example 2. Until now, it has been generally believed that the lower the epoxy equivalent (the more densely the epoxy groups are present), the higher the Tg. behavior. This is because the epoxy groups are crowded with each other in the structure of the diglycidylsulfonamide group, and if there are two such diglycidylsulfonamide groups, it is rather difficult to react with the curing agent, resulting in curing. This is likely due to the lower rate.
 さらには、実施例2で製造されたエポキシ樹脂は炭素-炭素二重結合の転化率が86.2%、実施例3で製造されたエポキシ樹脂は炭素-炭素二重結合の転化率が78.1%であり、実施例1で製造されたエポキシ樹脂よりも何れもエポキシ当量が大きいにもかかわらず、実施例2又は3のエポキシ樹脂と硬化剤を硬化してなる実施例5又は6の硬化物は、実施例1のエポキシ樹脂と硬化剤を硬化してなる実施例4の硬化物と比較してTgが同等か又は向上している。これも上述のエポキシ基の密度とTgとの関係性と同様で、一部エポキシ基がアリル基のまま残存することでエポキシ基同士の距離が適度な状態となり、硬化剤との反応性が上がることでかえって硬化率が上がりTgが上昇したと考えられる。 Furthermore, the epoxy resin prepared in Example 2 had a carbon-carbon double bond conversion rate of 86.2%, and the epoxy resin prepared in Example 3 had a carbon-carbon double bond conversion rate of 78.2%. 1%, and the curing of Example 5 or 6 obtained by curing the epoxy resin of Example 2 or 3 and the curing agent, although the epoxy equivalent weight is higher than that of the epoxy resin produced in Example 1. Compared with the cured product of Example 4 obtained by curing the epoxy resin and curing agent of Example 1, the product has an equivalent or improved Tg. This is also the same as the relationship between the density of epoxy groups and Tg described above, and some of the epoxy groups remain as allyl groups, so that the distance between the epoxy groups is moderate and the reactivity with the curing agent increases. It is thought that the hardening rate was rather increased and the Tg was increased.
<実施例7>
 実施例2で製造したエポキシ樹脂100質量部に硬化剤として、酸無水物硬化剤リカシッドMH-700(新日本理化社製)114質量部、硬化触媒2E4MZ(四国化成工業社製)1質量部を加え、80℃で均一になるまで混合することでエポキシ樹脂組成物を得た。内側に離型PETフィルムを引いたガラス板2枚を用いて厚さ4mmに調整した注型板を作成し、注型板に組成物を注型して100℃で3時間、140℃で3時間加温して硬化物を得た。得られた硬化物の物性評価結果を表2に示す。
<Example 7>
To 100 parts by mass of the epoxy resin produced in Example 2, 114 parts by mass of an acid anhydride curing agent Rikacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd.) and 1 part by mass of a curing catalyst 2E4MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.) are added as a curing agent. In addition, the epoxy resin composition was obtained by mixing until it became uniform at 80 degreeC. A casting plate adjusted to a thickness of 4 mm was prepared using two glass plates with a release PET film on the inside, and the composition was cast on the casting plate and heated at 100 ° C. for 3 hours and at 140 ° C. for 3 hours. A cured product was obtained by heating for hours. Table 2 shows the physical property evaluation results of the obtained cured product.
<比較例4>
 実施例7において、実施例2で製造したエポキシ樹脂に代えて、市販のエポキシ樹脂(「jER(登録商標)630」、三菱ケミカル社製)を用い、硬化剤の含有量を172質量部としたこと以外は、実施例7と同様にして、エポキシ樹脂組成物を得、実施例7と同様に物性評価を行った。結果を表2に示す。
<Comparative Example 4>
In Example 7, instead of the epoxy resin produced in Example 2, a commercially available epoxy resin ("jER (registered trademark) 630", manufactured by Mitsubishi Chemical Corporation) was used, and the content of the curing agent was 172 parts by mass. Except for this, an epoxy resin composition was obtained in the same manner as in Example 7, and the physical properties were evaluated in the same manner as in Example 7. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表2に示す通り、実施例2で製造したエポキシ樹脂と酸無水物硬化剤を使用して硬化してなる実施例7の硬化物は、Tgの高さと平均線膨張率の低さを両立している点で、エポキシ樹脂「jER(登録商標)630」と酸無水物硬化剤を使用して硬化してなる比較例4よりも優れている。理由は芳香族アミン硬化剤を使用した場合と同様であると考えられる。 As shown in Table 2, the cured product of Example 7 obtained by curing using the epoxy resin produced in Example 2 and the acid anhydride curing agent achieved both a high Tg and a low average linear expansion coefficient. In that respect, it is superior to Comparative Example 4, which is cured using the epoxy resin "jER (registered trademark) 630" and an acid anhydride curing agent. The reason is considered to be the same as in the case of using the aromatic amine curing agent.
<実施例8>
 実施例2で製造したエポキシ樹脂80質量部とYED216D(三菱ケミカル社製、エポキシ当量117)20質量部を混合し、得られたエポキシ樹脂混合物の粘度を測定したところ2.7P(ポアズ)だった。これらのエポキシ樹脂100質量部を用い、硬化剤として芳香族アミン硬化剤WA(三菱ケミカル社製)40質量部を加えたこと以外は、実施例4と同様にしてエポキシ樹脂組成物を得、実施例4と同様に物性評価を行った。結果を表3に示す。
<Example 8>
80 parts by mass of the epoxy resin produced in Example 2 and 20 parts by mass of YED216D (manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 117) were mixed, and the viscosity of the obtained epoxy resin mixture was measured to be 2.7 P (poise). . An epoxy resin composition was obtained in the same manner as in Example 4 except that 100 parts by mass of these epoxy resins were used, and 40 parts by mass of an aromatic amine curing agent WA (manufactured by Mitsubishi Chemical Corporation) was added as a curing agent. Physical properties were evaluated in the same manner as in Example 4. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表3に示す通り、実施例8では実施例2で製造したエポキシ樹脂にエポキシ樹脂「YED216D」を混合することにより、エポキシ樹脂「jER(登録商標)630」以下の粘度となり、成形性の向上が期待される。一方で、驚くべきことに、「YED216D」のような柔軟な脂肪族鎖を有し、硬化物のTgを下げる樹脂を混合しているにも関わらず、エポキシ樹脂「jER(登録商標)630」を硬化させてなる硬化物よりもTgが高かった。また「YED216D」は平均線膨張率を上げるような柔軟な脂肪鎖を有しているが、実施例8の通りエポキシ樹脂「jER(登録商標)630」を硬化させてなる硬化物よりも平均線膨張率が低かった。 As shown in Table 3, in Example 8, by mixing the epoxy resin "YED216D" with the epoxy resin produced in Example 2, the viscosity was lower than that of the epoxy resin "jER (registered trademark) 630", and moldability was improved. Be expected. On the other hand, surprisingly, the epoxy resin "jER (registered trademark) 630" has a flexible aliphatic chain such as "YED216D" and is mixed with a resin that lowers the Tg of the cured product. Tg was higher than the cured product obtained by curing the above. "YED216D" has a flexible fatty chain that increases the average linear expansion coefficient, but as in Example 8, the average linear expansion is higher than that of the cured product obtained by curing the epoxy resin "jER (registered trademark) 630". Low expansion rate.
 本発明のエポキシ樹脂、エポキシ樹脂組成物は保存安定性に優れており、半導体封止剤や強化プラスチックのワニスとして有用である。またその硬化物は耐熱性が高く、平均線膨張率が低いといった特徴を有することから、電子材料や強化プラスチックからなる構造材として有用である。

 
The epoxy resin and epoxy resin composition of the present invention are excellent in storage stability and are useful as semiconductor encapsulants and varnishes for reinforced plastics. In addition, the cured product has high heat resistance and a low average coefficient of linear expansion, so it is useful as a structural material made of electronic materials and reinforced plastics.

Claims (14)

  1.  下記一般式(1)で表されるエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Xは窒素原子、CF、C(C2m+1)又はC(Ph)を表し、Aは置換基を有していてもよい芳香族基であり、B及びBはそれぞれ独立に、水素又はエポキシ基を有していてもよい炭素数1~10の1価の有機基であり、B及びBに含まれるエポキシ基の合計数が2~4であり、R~Rはそれぞれ独立に水素又は炭素数1~6のアルキル基であり、互いに結合して環を形成していてもよく、mは0~4の整数、nは1~4の整数である。)
    An epoxy resin represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (Wherein, X represents a nitrogen atom, CF, C( CmH2m +1 ) or C ( Ph), A is an aromatic group which may have a substituent, and B1 and B2 are each is independently hydrogen or a monovalent organic group having 1 to 10 carbon atoms optionally having an epoxy group, the total number of epoxy groups contained in B 1 and B 2 is 2 to 4, and R 1 to R 3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, which may be combined to form a ring, m is an integer of 0 to 4, and n is an integer of 1 to 4 .)
  2.  前記式(1)で表されるエポキシ樹脂が、下記一般式(2)で表されるスルホンアミド基含有エポキシ樹脂である、請求項1に記載のエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000002

    (式中、Aは置換基を有していてもよい芳香族基であり、B及びBはそれぞれ独立に、水素又はエポキシ基を有していてもよい炭素数1~10の1価の有機基であり、B及びBに含まれるエポキシ基の合計数が2~4であり、R~Rはそれぞれ独立に水素又は炭素数1~6のアルキル基であり、互いに結合して環を形成していてもよく、nは1~4の整数である。)
    2. The epoxy resin according to claim 1, wherein the epoxy resin represented by the formula (1) is a sulfonamide group-containing epoxy resin represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002

    (In the formula, A is an optionally substituted aromatic group, B 1 and B 2 are each independently hydrogen or a monovalent C 1-10 optionally having an epoxy group is an organic group, the total number of epoxy groups contained in B 1 and B 2 is 2 to 4, R 1 to R 3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, and are bonded to each other may form a ring, and n is an integer of 1 to 4.)
  3.  前記B及びBがそれぞれ1個以上のエポキシ基を含有する請求項1に記載のエポキシ樹脂。 2. The epoxy resin of claim 1, wherein said B1 and B2 each contain one or more epoxy groups.
  4.  前記一般式(1)または(2)が、下記一般式(3)で表される請求項1又は2に記載のエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000003

    (式中、R~Rはそれぞれ独立に水素又は炭素数1~6のアルキル基であり、互いに結合して環を形成していてもよい。)
    The epoxy resin according to claim 1 or 2, wherein the general formula (1) or (2) is represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003

    (In the formula, R 4 to R 6 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, and may be combined to form a ring.)
  5.  前記B及びBがいずれもグリシジル基である請求項1又は2に記載のエポキシ樹脂。 3. The epoxy resin according to claim 1 or 2 , wherein both B1 and B2 are glycidyl groups.
  6.  請求項1に記載のエポキシ樹脂を含むエポキシ樹脂組成物。 An epoxy resin composition containing the epoxy resin according to claim 1.
  7.  請求項6に記載のエポキシ樹脂組成物からなる半導体封止剤。 A semiconductor encapsulant comprising the epoxy resin composition according to claim 6.
  8.  請求項6に記載のエポキシ樹脂組成物からなる強化プラスチック材料用ワニス。 A varnish for reinforced plastic materials comprising the epoxy resin composition according to claim 6.
  9.  請求項6に記載の樹脂組成物を硬化させてなるエポキシ樹脂硬化物。 A cured epoxy resin obtained by curing the resin composition according to claim 6.
  10.  請求項6に記載の樹脂組成物を硬化させてなる電子材料。 An electronic material obtained by curing the resin composition according to claim 6.
  11.  請求項8に記載のワニスを硬化させてなる繊維強化プラスチック材料。 A fiber-reinforced plastic material obtained by curing the varnish according to claim 8.
  12.  請求項1に記載のエポキシ樹脂の製造方法であって、下記一般式(4)の化合物に含まれる炭素-炭素二重結合を酸化することで、エポキシ基に変換することを特徴とするエポキシ樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000004

    (式中、A、R~R及びnは前記と同様である。L及びLは水素又は炭素-炭素二重結合を有していてもよい炭化水素基である。)
    2. The method for producing the epoxy resin according to claim 1, wherein the carbon-carbon double bond contained in the compound represented by the following general formula (4) is oxidized to be converted into an epoxy group. manufacturing method.
    Figure JPOXMLDOC01-appb-C000004

    (In the formula, A, R 1 to R 3 and n are the same as defined above. L 1 and L 2 are hydrogen or a hydrocarbon group which may have a carbon-carbon double bond.)
  13.  請求項2に記載のエポキシ樹脂の製造方法であって、下記一般式(5)の化合物に含まれる炭素-炭素二重結合を酸化し、エポキシ基に変換することを特徴とするエポキシ樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000005

    (式中、R~R、L及びLは前記と同様である。)
    3. The method for producing an epoxy resin according to claim 2, wherein the carbon-carbon double bond contained in the compound represented by the following general formula (5) is oxidized and converted into an epoxy group. Method.
    Figure JPOXMLDOC01-appb-C000005

    (In the formula, R 1 to R 3 , L 1 and L 2 are the same as above.)
  14.  請求項3に記載のエポキシ樹脂の製造方法であって、下記一般式(6)の化合物に含まれる炭素-炭素二重結合を酸化し、エポキシ基に変換することを特徴とするエポキシ樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000006

    (式中、R~Rは前記と同様である。)

     
    4. The method for producing an epoxy resin according to claim 3, wherein the carbon-carbon double bond contained in the compound represented by the following general formula (6) is oxidized and converted into an epoxy group. Method.
    Figure JPOXMLDOC01-appb-C000006

    (In the formula, R 4 to R 6 are the same as above.)

PCT/JP2022/024068 2021-06-17 2022-06-16 Epoxy resin and method for producing epoxy resin WO2022265060A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237042825A KR20240021798A (en) 2021-06-17 2022-06-16 Epoxy resin and method for producing epoxy resin
CN202280042383.1A CN117480195A (en) 2021-06-17 2022-06-16 Epoxy resin and method for producing epoxy resin
JP2023530394A JPWO2022265060A1 (en) 2021-06-17 2022-06-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-100793 2021-06-17
JP2021100793 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022265060A1 true WO2022265060A1 (en) 2022-12-22

Family

ID=84527119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024068 WO2022265060A1 (en) 2021-06-17 2022-06-16 Epoxy resin and method for producing epoxy resin

Country Status (5)

Country Link
JP (1) JPWO2022265060A1 (en)
KR (1) KR20240021798A (en)
CN (1) CN117480195A (en)
TW (1) TW202313758A (en)
WO (1) WO2022265060A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876619A (en) * 1972-03-20 1975-04-08 Sheetz David P Polyepoxides from disulfonamides,, process therefor and cured products therefrom
JPS6284071A (en) * 1985-10-07 1987-04-17 Kanegafuchi Chem Ind Co Ltd Novel glycidyl compound and its preparation
JP2016172852A (en) * 2015-03-17 2016-09-29 三菱化学株式会社 Nitrogen-containing epoxy resin, epoxy resin composition, cured product, and electric and electronic material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931161A (en) 1995-07-19 1997-02-04 Shin Etsu Chem Co Ltd Liquid epoxy resin composition
JP6561509B2 (en) 2014-03-18 2019-08-21 三菱ケミカル株式会社 Nitrogen-containing epoxy resins, epoxy resin compositions, cured products, and electrical / electronic materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876619A (en) * 1972-03-20 1975-04-08 Sheetz David P Polyepoxides from disulfonamides,, process therefor and cured products therefrom
JPS6284071A (en) * 1985-10-07 1987-04-17 Kanegafuchi Chem Ind Co Ltd Novel glycidyl compound and its preparation
JP2016172852A (en) * 2015-03-17 2016-09-29 三菱化学株式会社 Nitrogen-containing epoxy resin, epoxy resin composition, cured product, and electric and electronic material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAMI NAJIMA, MEGHRAOUI HAFID, GRICH M’HAMMED, FETOUAKI SAID, ELHARFI AHMED: "Comportement thermique et diélectrique d’une nouvelle résine époxyde à base de tétraglycidylede l’amino-4 benzène sulfonamide (TGABSA) réticulée par diamines", ANNALES DE CHIMIE - SCIENCE DES MATéRIAUX, MASSON, PARIS, FR, vol. 33, no. 6, 1 November 2008 (2008-11-01), FR , pages 479 - 492, XP009541929, ISSN: 0151-9107, DOI: 10.3166/acsm.33.479-492 *

Also Published As

Publication number Publication date
KR20240021798A (en) 2024-02-19
JPWO2022265060A1 (en) 2022-12-22
TW202313758A (en) 2023-04-01
CN117480195A (en) 2024-01-30

Similar Documents

Publication Publication Date Title
JP5754731B2 (en) Epoxy resin, method for producing epoxy resin, and use thereof
JPH0154347B2 (en)
TW200418905A (en) Silicon compound containing epoxy group and thermosetting resin composition
WO2016208667A1 (en) Epoxy resin composition and cured product thereof
JP2018184533A (en) Novel benzoxazine resin composition and cured product thereof
TWI438216B (en) Modified liquid epoxy resin, epoxy resin composition by using modified liquid epoxy resin and cured product thereof
JP5527600B2 (en) Epoxy resin composition and electronic component device using the same
KR930006288B1 (en) Process for preparation of 2,6-di-substituted 4-epoxypropyl-phenyl glycidyl ethers
JPWO2016117584A1 (en) Aromatic amine resin, epoxy resin composition and cured product thereof
JP7556347B2 (en) Epoxy resin and its manufacturing method
JP5319289B2 (en) Epoxy resin and method for producing the same, and epoxy resin composition and cured product using the same
WO2022265060A1 (en) Epoxy resin and method for producing epoxy resin
WO2007083715A1 (en) Liquid epoxy resin, epoxy resin composition, and cured article
JP5832016B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP6677057B2 (en) Multifunctional epoxy resin and intermediate, epoxy resin composition, cured product
JP2010235826A (en) Polyhydroxy resin, production method of the same, and epoxy resin composition and cured product of the same
JP6561509B2 (en) Nitrogen-containing epoxy resins, epoxy resin compositions, cured products, and electrical / electronic materials
EP1538147B1 (en) Method of producing glycidyl 2-hydroxyisobutyrate
JPWO2020017141A1 (en) Reactive diluents, compositions, encapsulants, cured products, substrates, electronic components, epoxy compounds, and methods for producing compounds.
JP6715249B2 (en) Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof
JPWO2018025921A1 (en) Maleimide resin composition, prepreg, cured product thereof and semiconductor device
JP7465926B2 (en) Epoxy resin, its manufacturing method, epoxy composition containing same, and uses thereof
JP2018065932A (en) Allyl group-containing resin, method for producing the same, maleimide curing agent, thermosetting molding material, and semiconductor sealing material
JP2017036365A (en) Novel imino group-containing resin
JP6043602B2 (en) Resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825048

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530394

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280042383.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22825048

Country of ref document: EP

Kind code of ref document: A1