WO2022265018A1 - Case and pack - Google Patents
Case and pack Download PDFInfo
- Publication number
- WO2022265018A1 WO2022265018A1 PCT/JP2022/023833 JP2022023833W WO2022265018A1 WO 2022265018 A1 WO2022265018 A1 WO 2022265018A1 JP 2022023833 W JP2022023833 W JP 2022023833W WO 2022265018 A1 WO2022265018 A1 WO 2022265018A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchange
- housing
- heat
- case
- communication channel
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 127
- 239000002184 metal Substances 0.000 claims abstract description 127
- 238000004891 communication Methods 0.000 claims abstract description 99
- 238000012856 packing Methods 0.000 claims description 68
- 229920005989 resin Polymers 0.000 claims description 37
- 239000011347 resin Substances 0.000 claims description 37
- 239000002826 coolant Substances 0.000 claims description 34
- 229920001971 elastomer Polymers 0.000 claims description 33
- 239000000806 elastomer Substances 0.000 claims description 30
- 229920002725 thermoplastic elastomer Polymers 0.000 claims description 27
- 229920001187 thermosetting polymer Polymers 0.000 claims description 12
- 239000011148 porous material Substances 0.000 claims description 10
- 238000007599 discharging Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 description 43
- 238000000034 method Methods 0.000 description 29
- 239000007788 liquid Substances 0.000 description 17
- 238000001816 cooling Methods 0.000 description 13
- 239000003507 refrigerant Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- 238000003466 welding Methods 0.000 description 11
- 230000004308 accommodation Effects 0.000 description 10
- 238000000465 moulding Methods 0.000 description 10
- 239000003063 flame retardant Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000005192 partition Methods 0.000 description 8
- 101000608734 Helianthus annuus 11 kDa late embryogenesis abundant protein Proteins 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000001723 curing Methods 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000004512 die casting Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 101710171219 30S ribosomal protein S13 Proteins 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 101000722833 Geobacillus stearothermophilus 30S ribosomal protein S16 Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- -1 aliphatic bromine compounds Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 235000012438 extruded product Nutrition 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 229920006346 thermoplastic polyester elastomer Polymers 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FBDMJGHBCPNRGF-UHFFFAOYSA-M [OH-].[Li+].[O-2].[Mn+2] Chemical compound [OH-].[Li+].[O-2].[Mn+2] FBDMJGHBCPNRGF-UHFFFAOYSA-M 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000012796 inorganic flame retardant Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229920006285 olefinic elastomer Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
- H01M10/6568—Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to cases and packs.
- the secondary batteries installed in electric vehicles generate heat during operation. Such secondary batteries are required to be efficiently cooled in order to suppress deterioration of the secondary batteries.
- Patent Literature 1 discloses a battery pack capable of removing heat generated from battery modules.
- a battery pack disclosed in Patent Document 1 includes a cooling system, a battery module, a lower housing, and an upper housing.
- a cooling system and battery modules are mounted on the upper surface of the lower housing.
- the upper housing is combined with the lower housing such that the cooling system and battery module are isolated from the outside.
- the lower housing and the upper housing may be collectively referred to as "case”.
- the cooling system has a plurality of coolant pipes, at least one pipe connecting member, and a plurality of cooling plates.
- a plurality of refrigerant pipes communicate with the refrigerant inlet or the refrigerant outlet.
- a pipe connection member communicatively connects at least two refrigerant pipes to alter or divide the flow of liquid refrigerant between the connected refrigerant pipes.
- a battery module is mounted on one surface of each of the plurality of cooling plates.
- Each of the plurality of cooling plates includes hollow channels that connect to at least one of the plurality of coolant pipes. The liquid coolant is supplied to different cooling plates through pipe connecting members, and cools the battery modules through the cooling plates by thermal conduction.
- Patent Document 1 Japanese Patent Publication No. 2018-533167
- the battery pack described in Patent Document 1 it is necessary to secure a space for accommodating a plurality of coolant pipes in the limited accommodation space of the case.
- the “accommodating space of the case” refers to the space in which the battery module is accommodated. Therefore, it is required to make effective use of the limited housing space of the case. Further, there is a need for a case that is lightweight while still allowing efficient control of the temperature of the heat exchange object.
- an object of the present disclosure is to provide a case and a pack that enable efficient control of the temperature of the heat exchange medium and effective use of the storage space, and are lighter than before. .
- Means for solving the above problems include the following embodiments. ⁇ 1> A case for controlling the temperature of a heat-exchanging body housed inside, a housing that accommodates the heat-exchanged body; A plurality of metal plates fixed to the housing and in thermal contact with the heat exchange object, Between each of the plurality of metal plates and the housing, a heat exchange flow path for circulating a heat exchange medium that exchanges heat with the heat exchange object is formed,
- the plurality of heat exchange channels includes at least a first heat exchange channel and a second heat exchange channel, A case, wherein the housing has a communication channel for communicating the first heat exchange channel and the second heat exchange channel.
- the housing is a main body; and at least one communication channel forming part fixed to the main body, The case according to ⁇ 1>, wherein the communication channel is formed between the body portion and the at least one communication channel forming portion.
- the body portion has at least one housing wall portion for housing the heat-exchanged body, The at least one housing wall includes an inner surface facing the heat-exchanged body and an outer surface facing the inner surface, The case according to ⁇ 2>, wherein the communication channel is formed between the at least one communication channel forming part and the outer surface.
- the body portion has at least one groove corresponding to the at least one communication flow path forming portion;
- the groove includes an opening, a bottom surface, and a tapered side surface expanding from the bottom surface toward the opening.
- ⁇ 6> The case according to any one of ⁇ 1> to ⁇ 5>, further comprising a packing interposed between each of the plurality of metal plates and the housing.
- each of the plurality of metal plates has an uneven structure in a portion that contacts the packing,
- the recesses in the uneven structure have an average pore size of 5 nm to 500 ⁇ m.
- the resin includes at least one of a thermoplastic elastomer and a thermosetting elastomer.
- the packing is bonded to each of the plurality of metal plates.
- the housing has at least one supply port for supplying the heat exchange medium and at least one discharge port for discharging the heat exchange medium, ⁇ 1> to ⁇ 10>, wherein the at least one supply port, the at least one discharge port, each of the plurality of heat exchange channels, and the communication channel communicate with each other; Any one of the cases described.
- ⁇ 12> The case according to any one of ⁇ 1> to ⁇ 11>;
- a pack comprising the heat-exchanged body housed in the case.
- the heat exchange object includes at least one battery module, The pack according to ⁇ 12>, wherein the heat exchange medium is a cooling medium.
- FIG. 1 is a perspective view showing the appearance of the top side of the pack according to the first embodiment of the present disclosure.
- FIG. 2 is a perspective view showing the appearance of the upper surface side of the case according to the first embodiment of the present disclosure.
- FIG. 3 is a perspective view showing the appearance of the lower surface side of the case according to the first embodiment of the present disclosure.
- FIG. 4 is a perspective view showing the appearance of the upper surface side of the main body according to the first embodiment of the present disclosure.
- FIG. 5 is a perspective view showing the appearance of the upper surface side of the main body according to the first embodiment of the present disclosure.
- FIG. 6 is a perspective view showing the appearance of the lower surface side of the main body according to the first embodiment of the present disclosure
- 7 is a cross-sectional view taken along line VII-VII of FIG. 6.
- FIG. 8 is a perspective view of the housing-side surface of the metal plate according to the first embodiment of the present disclosure.
- 9 is a top view of the housing according to the first embodiment of the present disclosure;
- a numerical range indicated using “to” indicates a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
- the upper or lower limit values described in a certain numerical range may be replaced with the upper or lower values of other numerical ranges described step by step. You can substitute the values shown in the example.
- the amount of each component in the material when there are multiple substances corresponding to each component in the material, the amount of each component in the material means the total amount of the multiple substances present in the material unless otherwise specified.
- Case The case of the present disclosure is a case for controlling the temperature of an object to be heat exchanged that is housed inside, and includes a housing and a plurality of metal plates.
- the housing accommodates the heat-exchanged body.
- a plurality of metal plates are fixed to the housing and are in thermal contact with the heat exchange object.
- a heat exchange channel for circulating a heat exchange medium is formed between each of the plurality of metal plates and the housing.
- the heat exchange medium exchanges heat with the object to be heat exchanged.
- the plurality of heat exchange channels includes at least a first heat exchange channel and a second heat exchange channel.
- the housing has a communication channel for communicating the first heat exchange channel and the second heat exchange channel.
- heat exchange flow path indicates a space through which the heat exchange medium is circulated.
- Heat exchange means heat exchange without mass transfer.
- a “first heat exchange channel” is any one of a plurality of heat exchange channels.
- a “second heat exchange channel” is one of a plurality of heat exchange channels and indicates a heat exchange channel different from the first heat exchange channel.
- the case of the present disclosure by circulating the heat exchange medium through the plurality of heat exchange channels, heat is conducted between the heat exchange object and the heat exchange medium via each independent metal plate. As a result, the case of the present disclosure can efficiently control the temperature of the heat exchange medium.
- the communication channel functions as a pipe that connects the heat exchange channels.
- the heat exchange medium can be supplied to or recovered from each of the plurality of heat exchange channels through the communication channels without the refrigerant pipes or the like used conventionally being arranged in the case. Therefore, the case of the present disclosure is lighter than conventional cases. Furthermore, in the case of the present disclosure, it is not necessary to secure a space for arranging a refrigerant pipe or the like in the accommodation space of the case.
- the “accommodating space of the case” refers to the space in which the object to be heat-exchanged is accommodated. Therefore, the case of the present disclosure can effectively utilize the accommodation space. As described above, the case of the present disclosure enables efficient control of the temperature of the heat-exchanging medium and effective use of the storage space, and is lighter than before.
- the body to be heat-exchanged is not particularly limited, and examples thereof include a central processing unit (CPU), a memory module, a battery module, a power module, and the like.
- memory modules include DIMMs (Dual Inline Memory Modules).
- a “battery module” refers to a unit cell assembly in which at least one unit cell is assembled. When at least one cell is a plurality of cells, each of the plurality of cells may be electrically connected in series or in parallel.
- a single battery includes a primary battery or a secondary battery.
- the primary battery is not particularly limited, and examples thereof include a manganese dry battery, a graphite fluoride lithium primary battery, a manganese dioxide lithium primary battery, and the like.
- Secondary batteries are not particularly limited, and examples thereof include lithium ion batteries, all-solid batteries, lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries. Examples of the shape of the cell include pouch type (laminate type), square type, cylindrical type, and the like.
- the battery module may or may not have a module case. If the battery module does not have a module case, at least one cell is directly (ie, as is) housed in the case of the present disclosure. When the battery module includes a module case, at least one cell is housed in the case of the present disclosure while being housed in the module case.
- the module case is not particularly limited as long as it is a known module case. Regarding the module case, Japanese Patent No. 6751570, Japanese Patent No. 6645500, etc. can be referred to as appropriate.
- the battery module may further include protection elements (fuses, PTC (positive temperature coefficient) elements, etc.) and monitoring circuits.
- the heat exchange medium exchanges heat with the object to be heat exchanged.
- the heat exchange medium is a medium for cooling or a medium for heating, and is appropriately selected according to the type of heat-exchanged body.
- a cooling medium indicates a medium for removing heat from a heat-exchanged body.
- Cooling media include cooling liquids, cooling gases, and the like.
- the cooling liquid is not particularly limited as long as it is a liquid generally used for cooling, and examples thereof include water, oil, glycol-based aqueous solution, refrigerant for air conditioners, non-conductive liquid, phase change liquid, and the like.
- Examples of the cooling gas include air and nitrogen gas.
- the temperature of the cooling medium is appropriately adjusted according to the type of the heat exchange medium.
- a heating medium indicates a medium for applying heat to a heat-exchanged body.
- the heating medium include a heating liquid and a heating gas.
- the heating liquid is not particularly limited as long as it is a liquid that is generally used as a heating liquid, and examples thereof include water, oil, glycol-based aqueous solutions, refrigerants for air conditioners, non-conductive liquids, phase-change liquids, and the like.
- the heating gas include air, water vapor, and the like. The temperature of the heating medium is appropriately adjusted according to the type of heat-exchanged body.
- the number of heat exchange channels is not particularly limited as long as it is two or more, and is appropriately adjusted according to the type of heat exchange object, the shape of the housing, and the like.
- the number of heat exchange channels corresponds to the number of metal plates, and may be equal to or greater than the number of metal plates.
- the position, shape, and size of each of the heat exchange channels are such that heat can be conducted between the heat exchange object and the heat exchange medium by circulating the heat exchange medium through the plurality of heat exchange channels. , is not particularly limited.
- the interior of the heat exchange channel may have a flow control shape for controlling the flow of the heat exchange fluid.
- the flow path control shape include grooves, partition walls, and the like.
- the partition wall partitions the heat exchange flow path.
- the channel control shape may be formed on at least one of the housing and the metal plate.
- the flow path control shape is a partition wall
- the flow path control shape has a member different from the housing and the metal plate (hereinafter referred to as "flow control member") fixed to at least one of the housing and the metal plate. It may be formed by The partition wall may or may not be in contact with the opposing member.
- “Opposing member” means a member facing the partition wall, and indicates a metal plate when the partition wall is formed or fixed to the housing, and when the partition wall is formed or fixed to the metal plate shows the housing.
- the material of the flow control member may be metal or resin. Examples of materials constituting the flow control member include materials similar to those exemplified as materials constituting the housing described later.
- a method for fixing the flow control member to at least one of the housing and the metal plate is appropriately selected according to the material of the flow control member, and includes the same method as the first fixing method described later.
- the shape of the housing is not particularly limited as long as it can accommodate the heat-exchanged body, and examples thereof include a rectangular parallelepiped.
- the housing has at least one communication channel.
- the number of communication channels is selected according to the number of heat exchange channels, and is not particularly limited.
- the position of the communication channel is not particularly limited as long as the first heat exchange channel and the second heat exchange channel are communicated with each other.
- the first heat exchange flow path and the second heat exchange flow path may be connected by one communication flow path, or may be connected by two or more communication flow paths.
- Each of the shape and size of the communication channel is not particularly limited as long as the first heat exchange channel and the second heat exchange channel can be communicated with each other.
- the communication channel may have, for example, the first configuration or the second configuration.
- the housing has a main body portion and at least one communication flow path configuration portion fixed to the main body portion, and the communication flow path includes the main body portion and the at least one communication flow path configuration. It is formed between the department.
- the communication channel is formed by being surrounded by wall surfaces.
- the wall surface surrounding the communication channel is composed of the surface of the main body and the surface of the communication channel forming part on the main body side.
- the communication channel is formed by drilling the housing itself.
- the wall surface surrounding the communication channel is composed of the inner peripheral surface of the hole formed by drilling the housing.
- the communication channel has the first configuration.
- the communication flow path can be formed in a desired path more easily than in the case of forming a hole in the housing itself.
- the case of the present disclosure can more efficiently control the temperature of the heat exchange medium.
- the shape of the communication channel forming portion is not particularly limited as long as it is a shape that constitutes a part of the wall surface surrounding the communication channel. be done.
- the method for fixing the communication flow path forming part to the main body (hereinafter referred to as “first fixing method") is not particularly limited, and the material of the portion of the main body that contacts the communication flow path forming part and the connection It is selected according to each material of the common flow path forming part.
- the first fixing method include a method using fastening parts (hereinafter referred to as “mechanical fastening”), welding, a method using an insert bonding layer, a method using a known adhesive, welding, and the like.
- a plurality of fixing methods can also be used in combination.
- Fastening parts include bolts, nuts, screws, rivets, or pins.
- Welding includes metal welding or brazing.
- the connecting flow path forming part and the main body are inserted into the mold, and the melted material of the insert bonding layer is injected between the connecting flow path forming part and the main body to perform insert bonding.
- the connection flow path forming portion is fixed to the main body portion.
- Welding includes heat welding, vibration welding, laser welding, ultrasonic welding, and hot plate welding.
- the communication channel When the communication channel has the first configuration, the communication channel may have the first A configuration or the first B configuration.
- the main body has at least one groove corresponding to at least one communication flow path forming part, and the communication flow path has at least one groove corresponding to the at least one communication flow path forming part.
- formed by covering the In the 1B configuration the main body portion does not have a groove portion, at least one communication flow path forming portion is grooved, and the communication flow path is such that at least one communication flow path forming portion is formed on the surface of the main body portion. formed by covering the
- the main body has at least one groove corresponding to at least one communication flow path constituting part
- one groove is formed in the main body for one communication flow path constituting part. indicate.
- the communication channel has the 1A configuration.
- the housing can be formed more compactly than a configuration in which the communication flow path is formed by covering the surface of the housing having no groove with the grooved communication flow path forming portion.
- the disclosed case can be more compact.
- the cross-sectional shape of the groove is not particularly limited, and may be a first tapered shape, a second tapered shape, a V shape, a U shape, or the like.
- the groove includes an opening, a bottom surface, and a first tapered side surface. The first tapered side widens from the bottom toward the opening.
- the groove includes an opening, a bottom surface, and a second tapered side surface. The second tapered side tapers from the bottom toward the opening.
- the cross-sectional shape of the groove is preferably the first tapered shape.
- the main body When manufacturing the main body by injection molding, press molding, or die-casting, the main body requires a mold draft angle.
- the slope of the tapered side surface is a draft angle.
- the body can be manufactured by injection molding or press molding or die casting. Therefore, the main body is likely to be mass-produced by injection molding, press molding, or die casting. As a result, the case of the present disclosure tends to be easier to manufacture and is more cost effective to manufacture.
- the body portion has at least one housing wall portion for housing the body to be heat-exchanged, and the housing wall portion has an inner surface facing the body to be heat-exchanged and an inner side surface facing the body.
- the communication channel is formed between at least one communication channel forming portion and the outer surface of the housing wall portion.
- the heat exchange channel is formed on the inner side of the housing wall, and the communication channel is formed on the outer side of the housing wall.
- the body to be heat-exchanged is housed on the inner side surface of the housing wall.
- the case of the present disclosure can more efficiently control the temperature of the heat exchange medium. Furthermore, the case of the present disclosure can secure a wider storage space than a configuration in which a communication channel is formed on the inner side surface of the storage wall. As a result, the case of the present disclosure can facilitate effective utilization of the storage space. Since the communication flow path is formed on the outer side surface of the housing wall, if the heat exchange medium leaks from the communication flow path, the communication flow path is formed on the inner side surface of the housing. However, it is difficult for the leaked heat exchange medium to reach the object to be heat exchanged. As a result, the case of the present disclosure can more safely accommodate the heat-exchanged body.
- the shape of the housing wall portion is not particularly limited as long as it is capable of housing the body to be heat-exchanged, and is preferably a container-like object with an opening on the side opposite to the direction of gravity (hereinafter referred to as "upper").
- the containing wall preferably includes a bottom wall and an enclosing wall.
- the surrounding wall portion is erected upward from the peripheral edge portion of the bottom wall portion.
- the surrounding wall portion is formed to surround the heat-exchanged body.
- the bottom wall portion and the surrounding wall portion constitute the accommodation space.
- the shape of the enclosure wall depends on the shape of the peripheral edge of the bottom wall.
- the shape of the surrounding wall is not particularly limited, and may be rectangular, polygonal (excluding rectangular), round, elliptical, or the like in plan view.
- a “planar view” indicates a view from above downward (toward the direction of gravity).
- the number of accommodation walls may be one or more, and may be two or more.
- the housing may include a lid that covers the housing space.
- the main body may have connection walls.
- the connection wall connects the housing walls.
- the housing has at least one supply port for supplying the heat exchange medium and at least one discharge port for discharging the heat exchange medium, the at least one supply port and the at least one discharge port It is preferable that each of the plurality of heat exchange channels and the communication channel communicate with each other. Thereby, when the heat exchange medium is supplied from the supply port of the housing, the heat exchange medium flows through each of the plurality of heat exchange channels via the communication flow channel and is discharged from the discharge port of the housing. can be As a result, the case of the present disclosure can more efficiently control the temperature of the heat exchange medium.
- the number and positions of the supply ports are not particularly limited, and can be selected according to the size of the housing.
- Each of the number and positions of the outlets is not particularly limited, and can be selected according to the size of the housing and the like.
- the number of supply ports and the number of discharge ports may be the same or different.
- the material forming the housing may be metal or resin.
- the metal forming the housing is not particularly limited, and examples thereof include metals similar to the metals exemplified as the metal forming the metal plate described later.
- the resin constituting the housing is not particularly limited, and can be selected according to the use of the case. Examples of the resin forming the housing include thermoplastic resins (including elastomers), thermosetting resins, and the like.
- thermoplastic resins examples include polyolefin resins, polyvinyl chloride, polyvinylidene chloride, polystyrene resins, acrylonitrile-styrene copolymer (AS) resins, acrylonitrile-butadiene-styrene copolymer (ABS) resins, polyester resin, poly(meth)acrylic resin, polyvinyl alcohol, polycarbonate resin, polyamide resin, polyimide resin, polyether resin, polyacetal resin, fluorine resin, polysulfone resin, polyphenylene sulfide resin, polyketone resin etc.
- polyolefin resins examples include polyolefin resins, polyvinyl chloride, polyvinylidene chloride, polystyrene resins, acrylonitrile-styrene copolymer (AS) resins, acrylonitrile-butadiene-styrene copolymer (ABS) resins, polyester resin, poly(
- Thermosetting resins include, for example, phenol resins, melamine resins, urea resins, polyurethane resins, epoxy resins, unsaturated polyester resins, and the like. These resins may be used alone or in combination of two or more.
- the resin forming the housing may contain a filler from the viewpoint of improving the mechanical strength of the housing. Examples of fillers include glass fibers, carbon fibers, carbon particles, clay, talc, inorganic substances, minerals, and cellulose fibers.
- the resin forming the housing may contain a flame retardant from the viewpoint of imparting self-extinguishing properties to the housing. Examples of flame retardants include halogen flame retardants and non-halogen flame retardants.
- Halogenated flame retardants include, for example, aliphatic bromine compounds, aromatic bromine compounds, and chlorine compounds.
- Non-halogen flame retardants include, for example, phosphorus flame retardants, inorganic flame retardants, silicone flame retardants, and nitrogen flame retardants.
- the resin forming the housing may contain a compounding agent.
- Compounding agents include, for example, heat stabilizers, antioxidants, pigments, weathering agents, plasticizers, dispersants, lubricants, release agents, antistatic agents, and the like.
- the housing may be a metal molded product or a resin molded product.
- Metal molded products include roll molded products, die cast molded products, machined products, rolled products, press molded products, or extruded products. Resin molded products include injection molded products and press molded products.
- the material constituting each of the main body and the at least one communication flow path forming part is the material composing the housing. and similar ones.
- the material forming the main body portion and the material forming at least one communication flow path forming portion may be the same or different.
- examples of the material that constitutes the lid are the same as those exemplified as the materials that constitute the housing.
- the material forming the lid and the material forming the main body may be the same or different.
- Metal plate is a plate-like object made of metal.
- the shape of the metal plate may be any shape that forms a heat exchange flow path between the housing and the metal plate, and is appropriately selected according to the type of heat-exchanged body, the shape of the housing, and the like.
- the size of the metal plate is appropriately selected according to the type of heat-exchanged body, the size of the housing, and the like.
- the material of the metal constituting the metal plate is not particularly limited, and examples include iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium, manganese, and alloys thereof. (stainless steel, brass, phosphor bronze, etc.) and the like.
- the material of the metal forming the metal plate is preferably aluminum, an aluminum alloy, copper, or a copper alloy, and more preferably copper or a copper alloy. From the viewpoint of weight reduction and ensuring strength, the material of the metal forming the metal plate is preferably aluminum or an aluminum alloy.
- the metal plate may be a metal molding. Metal molded products include roll molded products, die cast molded products, machined products, rolled products, press molded products, or extruded products.
- the metal plate is fixed to the housing to form a heat exchange channel between the metal plate and the housing.
- a method for fixing the metal plate to the housing (hereinafter referred to as "second fixing method") is not particularly limited, and the same method as the first fixing method can be used.
- a metal plate and a housing are inserted into a mold, and a melt of the insert bonding layer is injected between the metal plate and the housing to form an insert bonding layer, whereby the metal Secure the plate to the housing.
- the metal plate is in thermal contact with the heat exchange object.
- the metal plate may be in direct physical contact with the body to be heat-exchanged, or may be in indirect physical contact with the body to be heat-exchanged.
- the metal plates may, for example, be in thermal contact via a heat conducting layer.
- the heat-conducting layer is not particularly limited, and may be a heat-conducting sheet or a heat-conducting material (TIM: Thermal Interface Material) layer.
- a thermally conductive material layer indicates a layer formed by applying a thermally conductive material.
- Thermally conductive materials include thermally conductive greases, thermally conductive gels, thermally conductive adhesives, Phase Change Materials, and the like.
- each of the plurality of metal plates further includes a packing interposed between itself and the housing.
- the sealing performance between each of the plurality of metal plates and the housing is superior to that in which the case is provided with no packing.
- the case of the present disclosure can more reliably prevent leakage of the heat exchange medium or entry of foreign matter from the outside through the gap between each of the plurality of metal plates and the housing.
- the position of the packing may be formed at a position that can improve the airtightness of the heat exchange flow path.
- the packing is formed along the periphery of the surface of the metal plate facing the housing. is preferred.
- the packing is preferably joined to each of the plurality of metal plates. Thereby, the occurrence of gaps between the packing and the plurality of metal plates can be prevented more reliably. Furthermore, the packing is less likely to detach from each of the plurality of metal plates than if the packing were not bonded to each of the plurality of metal plates. As a result, the airtightness of the heat exchange passage is further improved, and the excellent airtightness of the heat exchange passage is maintained for a long period of time. For example, even if the metal plate is bent rather than flat, and the sealing surface of the metal plate with the housing has a complicated shape, the packing is joined to the metal plate to facilitate heat exchange. The airtightness of the irrigation channel is better.
- the method of joining the packing and the metal plate is not particularly limited, and examples include an insert molding method, a method using a known adhesive, and a welding method.
- the insert molding method a metal plate is inserted into an injection mold, and a molten material of the packing material is injection-molded onto a predetermined portion of the surface of the metal plate on the housing side.
- a method of joining the packing to the metal plate by inserting the packing into the metal mold and heat-curing the material of the packing in contact with a predetermined portion of the housing-side surface of the metal plate in the mold.
- the welding method the portion of the packing that contacts the metal plate is melted by a hot plate, vibration, laser, or the like, and the packing is joined to the metal plate.
- each of the plurality of metal plates has an uneven structure at a portion that contacts the packing, and that the packing is made of resin.
- part of the packing enters the concave portion of the concave-convex structure, and the packing is more strongly bonded to the metal plate than in the case where the metal plate does not have the concave-convex structure at the part that contacts the packing.
- the case of the present disclosure can more reliably prevent leakage of the heat exchange medium or entry of foreign matter from the outside through the gap between each of the plurality of metal plates and the housing.
- the state of the concave-convex structure is not particularly limited as long as a sufficient bonding strength with the packing can be obtained.
- the average pore diameter of the recesses in the uneven structure may be, for example, 5 nm to 500 ⁇ m, preferably 10 nm to 150 ⁇ m, more preferably 15 nm to 100 ⁇ m, from the viewpoint of further improving the bonding strength between the metal plate and the packing.
- the average pore depth of recesses in the uneven structure may be, for example, 5 nm to 500 ⁇ m, preferably 10 nm to 150 ⁇ m, more preferably 15 nm to 100 ⁇ m.
- the method for measuring the average pore diameter and average pore depth of the recesses is a method based on JIS B0601-2001.
- the uneven structure is formed by roughening the surface of the metal plate.
- the method of roughening the surface of the metal member is not particularly limited, and various known methods can be used.
- the surface of the metal plate may be treated to add functional groups from the viewpoint of improving the bonding strength between the metal plate and the packing. Various known methods can be used for the treatment of adding functional groups.
- the material of the packing may be metal or resin.
- the material of which the packing is made may be the same as those exemplified as the metal that makes up the housing.
- the material constituting the packing includes thermoplastic elastomers, thermosetting elastomers, etc., in addition to the same materials as those exemplified as the resins constituting the housing.
- the tensile modulus at 25° C. of the thermoplastic elastomer is less than 6.0 ⁇ 10 8 Pa.
- the tensile modulus of the thermoset elastomer at 25° C. is less than 6.0 ⁇ 10 8 Pa.
- the resin which is the material of the packing
- the packing preferably has elasticity.
- thermoplastic elastomer is an elastic material that does not need to be vulcanized like rubber.
- Thermoplastic elastomers generally have a hard component (hard and rigid component) and a soft component (soft and flexible component).
- Thermoplastic elastomers are elastic materials that do not require vulcanization like rubber.
- Thermoplastic elastomers generally have a hard component (hard and rigid component) and a soft component (soft and flexible component).
- thermoplastic elastomers include urethane-based thermoplastic elastomers (TPU), amide-based thermoplastic elastomers (TPAE), olefin-based thermoplastic elastomers (TPO), styrene-based thermoplastic elastomers (TPS), and polyester-based thermoplastic elastomers ( TPEE), thermoplastic vinyl chloride elastomer (TPVC), and the like.
- the thermoplastic elastomer preferably contains any one of TPU, TPAE, and TPEE from the viewpoint of adhesive strength, airtightness, and heat resistance.
- the thermoplastic elastomer preferably contains either TPO or TPS.
- Thermosetting elastomers include one-component curable elastomers, two-component curable elastomers, and UV (Ultraviolet) curable elastomers.
- a one-liquid curable elastomer refers to an elastomer in which the main component is cured by heating alone without using a curing agent.
- a two-liquid curable elastomer is an elastomer whose curing reaction is accelerated by mixing, for example, a component called a main agent and a component called a curing agent at an arbitrary mixing ratio.
- the curing reaction may be accelerated at room temperature, or the effective reaction may be accelerated by heating.
- a UV curable elastomer indicates an elastomer in which the polymerization reaction of the main agent proceeds when irradiated with UV.
- the UV curable elastomer may contain a known photopolymerization initiator.
- As the one-liquid curable elastomer a known one-liquid curable elastomer can be used.
- the two-pack curable elastomer As the two-pack curable elastomer, a known two-pack curable elastomer (for example, olefinic rubber such as ethylene/propylene/diene copolymer rubber (EPDM)) can be used. A known UV curable elastomer can be used as the UV curable elastomer.
- EPDM ethylene/propylene/diene copolymer rubber
- the pack of the present disclosure includes the case of the present disclosure and an object to be heat-exchanged.
- the body to be heat-exchanged is housed in a case.
- the pack of the present disclosure can adjust the temperature of the heat exchange object by heat conduction through each independent metal plate by circulating the cooling medium in the heat exchange flow path.
- the pack of the present disclosure can efficiently adjust the temperature of the heat exchange object.
- Pack indicates a unit including the case of the present disclosure and the heat-exchanged body housed in the case of the present disclosure.
- the body to be heat exchanged includes at least one battery module, and the heat exchange medium is a cooling medium.
- the pack of the present disclosure can cool the temperature of at least one battery module by heat conduction through each independent metal plate by circulating a cooling medium in the heat exchange channel. .
- the battery pack of the present disclosure can efficiently cool the temperature of at least one battery module.
- FIG. 1 A pack 1 according to a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 9.
- FIG. 1 A pack 1 according to a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 9.
- FIG. 1 A pack 1 according to a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 9.
- FIG. 1 A pack 1 according to a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 9.
- a pack 1 (hereinafter referred to as "battery pack 1") is suitably used as a power source for an electric vehicle.
- An electric vehicle includes an electric four-wheeled vehicle or an electric two-wheeled vehicle.
- the electric four-wheeled vehicle includes an electric vehicle (EV), a plug-in hybrid electric vehicle (PHEV), or a hybrid vehicle (HV).
- Electric motorcycles include electric motorcycles and electrically assisted bicycles.
- the battery pack 1 is a cuboid, as shown in FIG.
- a battery pack 1 includes a case 2 and a plurality of battery modules 3 .
- a plurality of battery modules 3 are housed in the case 2 .
- the plurality of battery modules 3 is an example of a heat exchange object.
- the lateral direction of the battery pack 1 is referred to as the "front-rear direction,” the longitudinal direction of the battery pack 1 as the “left-right direction,” and the direction perpendicular to the front-rear direction and the left-right direction as the “vertical direction.”
- the direction from top to bottom is parallel to the direction of gravity.
- the front-rear direction is parallel to the front-rear direction of the electric four-wheeled vehicle.
- the left-right direction is parallel to the width direction of the electric four-wheel vehicle.
- the size of the battery pack 1 is appropriately adjusted according to the application of the battery pack 1 and the like.
- the size of the battery pack 1 is appropriately selected according to the type of the electric four-wheel vehicle.
- the size of the battery pack 1 is, for example, approximately 1200 mmW ⁇ 1800 mmD ⁇ 200 mmH. If the electric four-wheeled vehicle is not an electric vehicle (EV), for example, the size of the battery pack 1 is approximately 900 mmW ⁇ 700 mmD ⁇ 200 mmH.
- the case 2 is used to cool the temperature of the plurality of battery modules 3 housed inside.
- the case 2 includes a housing 10 (see FIG. 1) and four metal plates 20, as shown in FIG. Each of the four metal plates 20 is fixed to the housing 10 by mechanical fastening.
- heat exchange flow paths AR are formed on the upper surface side of the case 2 .
- six communication channels BR are formed on the lower surface side of the case 2 .
- the four heat exchange flow paths AR and the six communication flow paths BR communicate with each other.
- the housing 10 accommodates a plurality of battery modules 3 .
- the housing 10 has a main body portion 11, six piping plates 12, and a lid portion 13 (see FIG. 1).
- Each of the six piping plates 12 is fixed to the main body 11 by mechanical fastening.
- the lid portion 13 is detachably attached to the body portion 11 .
- the six piping plates 12 are an example of a communication channel forming part.
- FIG. 1 (3.1.1.1) Main Body Next, the main body 11 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 6.
- FIG. 1 (3.1.1.1) Main Body
- the main body part 11 is a container-like object with an upper opening.
- the body portion 11 has a first containing wall portion 14, a second containing wall portion 15, and a connection wall portion 16 on the upper surface side.
- the first containing wall portion 14, the connecting wall portion 16, and the second containing wall portion 15 are arranged continuously from right to left in this order.
- the first containing wall portion 14, the connecting wall portion 16, and the second containing wall portion 15 are integrated.
- the material of the body portion 11 is resin.
- the first housing wall section 14 houses the battery modules 3 .
- the first containing wall portion 14 includes a first bottom wall portion 141 and a first surrounding wall portion 142 .
- the first surrounding wall portion 142 surrounds the plurality of battery modules 3 .
- the first bottom wall portion 141 and the first surrounding wall portion 142 are integrated.
- the first bottom wall portion 141 and the first surrounding wall portion 142 form a housing space.
- the second housing wall portion 15 houses a plurality of battery modules 3 .
- the second containing wall portion 15 includes a second bottom wall portion 151 and a second surrounding wall portion 152 .
- the second surrounding wall portion 152 surrounds the plurality of battery modules 3 .
- the second bottom wall portion 151 and the second surrounding wall portion 152 are integrated.
- the second bottom wall portion 151 and the first surrounding wall portion 152 form an accommodation space.
- the main body 11 has four recesses A on the top surfaces of the first housing wall 14, the second housing wall 15, and the connection wall 16. formed. Each of the four recesses A is covered with a metal plate 20. As shown in FIG. Thereby, a heat exchange flow path AR is formed between the body portion 11 and the metal plate 20 .
- Through holes H1 to H8 are formed in the four recesses A, as shown in FIGS. Each of the through holes H1 to H8 extends substantially vertically.
- the main body 11 has six grooves B formed on the lower surfaces of the first housing wall 14, the second housing wall 15, and the connection wall 16. ing.
- Through holes H2 to H7 are formed in the six grooves B, as shown in FIG.
- the through hole H2 of the groove B (see FIG. 6) and the through hole H2 of the recess A (see FIG. 5) communicate with each other.
- the through holes H3 to H7 of the six grooves B (see FIG. 6) and the through holes H3 to H7 of the four recesses A (see FIGS. 4 and 5) communicate with each other.
- the groove B includes an opening G, a bottom surface CS11, and a first tapered side surface DS11.
- the bottom surface CS11 and the first tapered side surface DS11 are formed continuously.
- the first tapered side surface DS11 expands from the bottom surface CS11 toward the opening G. In other words, the first tapered side surface DS11 widens downward.
- the piping plate 12 is a long flat plate.
- the piping plate 12 is processed to match the shape of the groove portion B. As shown in FIG.
- the material of the piping plate 12 is resin.
- the housing 10 has one supply port H9 and one discharge port H10 on the lower surface side of the body portion 11.
- An external supply unit is connected to the supply port H9.
- the supply unit supplies the cooling medium to the battery pack 1 .
- An external recovery unit is connected to the discharge port H10.
- the recovery unit recovers the cooling medium discharged from the battery pack 1 .
- the supply port H9 communicates with the through hole H1. Therefore, the through hole H1 communicates the supply port H9 and the heat exchange flow path AR.
- the outlet H10 communicates with the through hole H8. Therefore, the through hole H8 communicates with the outlet H10 and the heat exchange flow path AR.
- the metal plate 20 is a plate-like object made of metal, as shown in FIG.
- the metal plate 20 is processed to match the shape of the recess A.
- a heat conductive layer is formed on the surface of the metal plate 20 opposite to the surface ES20 on the housing 10 side.
- the surface ES20 of the metal plate 20 faces the housing 10 in the housing 10 .
- Packing Case 2 includes packing 30 . As shown in FIG. 8, it is formed along the periphery of the surface ES20 of the metal plate 20 on the body portion 11 side.
- the material of the packing 30 is resin.
- the resin contains at least one of a thermoplastic elastomer and a thermosetting elastomer.
- packing 30 is interposed between metal plate 20 and body portion 11 .
- the metal plate 20 has an uneven structure on at least a portion of the surface ES20 on the housing 10 side that contacts the packing 30 .
- the average pore diameter of the recesses in the uneven structure is 5 nm to 500 ⁇ m.
- the packing 30 is joined to the surface ES20 of the metal plate 20 on the housing 10 side by an insert molding method.
- FIG. 9 symbol F indicates the main flow direction of the cooling medium.
- the metal plate 20 is in thermal contact with the multiple battery modules 3 .
- the metal plate 20 is in indirect physical contact with the plurality of battery modules 3 via the heat-conducting layer.
- the cooling medium is supplied from an external supply unit along the flow direction F to the supply port H9 on the lower surface side of the case 2, and passes through the heat exchange flow path AR and the communication flow path BR. Then, it is discharged to the outside of the main body 11 from the discharge port H10 on the lower surface side of the case 2, and is collected by the external collection unit. At this time, the cooling medium exchanges heat with the plurality of battery modules 3 via the metal plate 20 . In this manner, the cooling medium absorbs heat from the plurality of battery modules 3 inside case 2 and discharges it to the outside of case 2 . That is, the battery pack 1 promotes heat dissipation of the plurality of battery modules 3 .
- a plurality of metal plates 20 are fixed to the housing 10 and are in thermal contact with the heat exchange object.
- a heat exchange flow path AR is formed between each of the plurality of metal plates 20 and the housing 10 .
- the housing 10 has a communication channel BR.
- case 2 the cooling medium is supplied to or recovered from each of the plurality of heat exchange channels AR via the communication channel BR without the refrigerant pipes or the like used conventionally being arranged in the case. obtain. Therefore, the case 2 is lighter than before. Furthermore, in the case 2, it is not necessary to secure a space for arranging a refrigerant pipe or the like in the housing space of the case 2. Therefore, the case 2 can effectively utilize the accommodation space. As described above, the case 2 enables efficient control of the temperature of the cooling medium and effective use of the storage space, and is lighter than the conventional one.
- the housing 10 has the body portion 11 and the piping plate 12. As shown in FIG.
- the communication channel BR is formed between the body portion 11 and the piping plate 12 .
- the communication flow path BR is more likely to be formed in a desired path than in the case where it is formed by drilling the housing 10 itself.
- case 2 can control the temperature of the cooling medium more efficiently.
- the body portion 11 has the first containing wall portion 14 and the second containing wall portion 15.
- the first housing wall portion 14 includes an upper surface TS14 (see FIG. 4) facing the plurality of battery modules 3 and a lower surface BS14 (see FIG. 6) facing the upper surface.
- Two communication channels BR are formed between the piping plate 12 and the lower surface BS14.
- the second containing wall portion 15 includes an upper surface TS15 (see FIG. 4) facing the plurality of battery modules 3 and a lower surface BS15 (see FIG. 6) facing the upper surface.
- Two communication channels BR are formed between the piping plate 12 and the lower surface BS15.
- the heat exchange flow path AR is formed on the upper surface side of the first containing wall portion 14 and the second containing wall portion 15 (hereinafter referred to as "the first containing wall portion 14, etc.”), and the communication flow path BR It is formed on the lower surface side of the first housing wall portion 14 and the like.
- the cooling medium flowing through the communication channel BR is less likely to come into thermal contact with the plurality of battery modules 3 than in a configuration in which the communication channel BR is formed on the upper surface side of the first containing wall portion or the like.
- case 2 can control the temperature of the cooling medium more efficiently.
- the case 2 can secure a wider accommodation space than the configuration in which the communication flow path BR is formed on the upper surface side of the first accommodation wall portion 14 and the like. As a result, the case 2 can facilitate effective utilization of the accommodation space. Since the communication flow path BR is formed on the lower surface side of the first containing wall portion 14 and the like, when the cooling medium leaks from the communication flow path BR, the communication flow path BR is formed on the upper surface side of the housing 10. Leaked cooling medium is less likely to reach the plurality of battery modules 3 than the formed configuration. As a result, the case 2 can more safely accommodate the plurality of battery modules 3 to be accommodated.
- the body portion 11 has the groove portion B corresponding to the piping plate 12.
- the communication channel BR is formed by covering the corresponding groove B with the pipe plate 12 .
- the housing 10 can be formed more compactly than the structure in which the communication flow path BR is formed by covering the surface of the housing 10 without the groove B with the grooved communication flow path forming part. As a result, case 2 can be more compact.
- groove B includes opening G, bottom surface CS11, and first tapered side surface DS11.
- a first tapered side surface DS11 expands from the bottom surface CS11 toward the opening G.
- the slope of the tapered side surface DS11 is a draft angle.
- metal plate 20 further comprises packing 30 .
- the sealing performance between the metal plate 20 and the housing 10 is superior to that in which the case 2 does not include the packing 30 .
- the case 2 can more reliably prevent leakage of the cooling medium or entry of foreign matter from the outside through the gap between the metal plate 20 and the housing 10 .
- metal plate 20 has an uneven structure at a portion that contacts packing 30 .
- the material of the packing 30 is resin.
- part of the packing 30 enters the concave portion of the concave-convex structure, and the packing 30 is more strongly bonded to the metal plate 20 than in a structure in which the contacting portion of the metal plate 20 with the packing 30 does not have the concave-convex structure.
- the case 2 can more reliably prevent leakage of the cooling medium or entry of foreign matter from the outside through the gap between the metal plate 20 and the housing 10 .
- the average pore size of the recesses in the uneven structure of the metal plate 20 is 5 nm to 500 ⁇ m. This further improves the bonding strength between the metal plate and the packing.
- the resin that is the material of the packing 30 includes at least one of thermoplastic elastomer and thermosetting elastomer. That is, the packing 30 has elasticity.
- the shape of the surface of the housing 10 conforms to the shape of the surface of the housing 10 more than when the resin that is the material of the packing 30 does not contain at least one of a thermoplastic elastomer and a thermosetting elastomer. easy to follow. Therefore, the occurrence of a gap between the packing 30 and the housing 10 can be more reliably prevented. As a result, the airtightness of the heat exchange flow path AR is further improved.
- the packing 30 is bonded to the metal plate 20 as described with reference to FIGS. 1-9. Thereby, the occurrence of a gap between the packing 30 and the metal plate 20 can be prevented more reliably. Furthermore, the packing 30 is less likely to come off from the metal plate 20 than when the packing 30 is not bonded to the metal plate 20 . As a result, the airtightness of the heat exchange flow path AR is further improved, and the excellent airtightness of the heat exchange flow path AR is maintained over a long period of time.
- the housing has one supply port H9 and one discharge port H10.
- the supply port H9, the discharge port H10, the heat exchange flow path AR, and the communication flow path BR communicate with each other. Accordingly, when the cooling medium is supplied from the supply port H9 of the housing 10, the cooling medium flows through the heat exchange flow path AR via the communication flow path BR and is discharged from the discharge port H10 of the housing 10. can be As a result, case 2 can control the temperature of the cooling medium more efficiently.
- battery pack 1 includes case 2 and a plurality of battery modules 3 .
- the battery pack 1 can cool the temperature of the plurality of battery modules 3 by heat conduction via the independent metal plates 20 by circulating the cooling medium in the heat exchange flow paths AR. can.
- the battery pack 1 can efficiently cool the temperature of the plurality of battery modules 3 .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
Abstract
This case is for controlling the temperature of a heat exchange target body accommodated therein. The case comprises: a housing accommodating the heat exchange target body; and a plurality of metal plates which are fixed to the housing and which are in thermal contact with the heat exchange target body. Heat-exchange flow passages for circulating a heat exchange medium that exchanges heat with the heat exchange target body are formed between each of the plurality of metal plates and the housing. The plurality of heat-exchange flow passages include at least a first heat-exchange flow passage and a second heat-exchange flow passage. The housing has a communication flow passage for providing communication between the first heat-exchange flow passage and the second heat-exchange flow passage.
Description
本開示は、ケース、及びパックに関する。
The present disclosure relates to cases and packs.
電気自動車に搭載される二次電池は、作動時に発熱する。このような二次電池は、二次電池の劣化を抑制するために、効率良く冷却されることが求められている。
The secondary batteries installed in electric vehicles generate heat during operation. Such secondary batteries are required to be efficiently cooled in order to suppress deterioration of the secondary batteries.
特許文献1は、電池モジュールから発生する熱を除去することができる電池パックを開示している。特許文献1に開示の電池パックは、冷却システムと、電池モジュールと、下部ハウジングと、上部ハウジングとを備える。冷却システム及び電池モジュールは、下部ハウジングの上面に搭載されている。上部ハウジングは、冷却システム及び電池モジュールが外部から隔離されるように、下部ハウジングと結合している。以下、下部ハウジング及び上部ハウジングをまとめて「ケース」という場合がある。
冷却システムは、複数の冷媒パイプと、少なくとも1つのパイプ連結部材と、複数の冷却プレートとを有する。複数の冷媒パイプは、冷媒流入口又は冷媒排出口に連通している。パイプ連結部材は、少なくとも2つの冷媒パイプを相互に連通するように連結して、連結された冷媒パイプ間での液状冷媒の流れを変更又は分割する。複数の冷却プレートの各々の一面には、電池モジュールが搭載されている。複数の冷却プレートの各々は、複数の冷媒パイプの少なくとも1つに連結している中空型流路を含む。液状冷媒は、パイプ連結部材により互いに異なる冷却プレートに供給され、熱伝導により冷却プレートを通じて電池モジュールを冷却する。Patent Literature 1 discloses a battery pack capable of removing heat generated from battery modules. A battery pack disclosed in Patent Document 1 includes a cooling system, a battery module, a lower housing, and an upper housing. A cooling system and battery modules are mounted on the upper surface of the lower housing. The upper housing is combined with the lower housing such that the cooling system and battery module are isolated from the outside. Hereinafter, the lower housing and the upper housing may be collectively referred to as "case".
The cooling system has a plurality of coolant pipes, at least one pipe connecting member, and a plurality of cooling plates. A plurality of refrigerant pipes communicate with the refrigerant inlet or the refrigerant outlet. A pipe connection member communicatively connects at least two refrigerant pipes to alter or divide the flow of liquid refrigerant between the connected refrigerant pipes. A battery module is mounted on one surface of each of the plurality of cooling plates. Each of the plurality of cooling plates includes hollow channels that connect to at least one of the plurality of coolant pipes. The liquid coolant is supplied to different cooling plates through pipe connecting members, and cools the battery modules through the cooling plates by thermal conduction.
冷却システムは、複数の冷媒パイプと、少なくとも1つのパイプ連結部材と、複数の冷却プレートとを有する。複数の冷媒パイプは、冷媒流入口又は冷媒排出口に連通している。パイプ連結部材は、少なくとも2つの冷媒パイプを相互に連通するように連結して、連結された冷媒パイプ間での液状冷媒の流れを変更又は分割する。複数の冷却プレートの各々の一面には、電池モジュールが搭載されている。複数の冷却プレートの各々は、複数の冷媒パイプの少なくとも1つに連結している中空型流路を含む。液状冷媒は、パイプ連結部材により互いに異なる冷却プレートに供給され、熱伝導により冷却プレートを通じて電池モジュールを冷却する。
The cooling system has a plurality of coolant pipes, at least one pipe connecting member, and a plurality of cooling plates. A plurality of refrigerant pipes communicate with the refrigerant inlet or the refrigerant outlet. A pipe connection member communicatively connects at least two refrigerant pipes to alter or divide the flow of liquid refrigerant between the connected refrigerant pipes. A battery module is mounted on one surface of each of the plurality of cooling plates. Each of the plurality of cooling plates includes hollow channels that connect to at least one of the plurality of coolant pipes. The liquid coolant is supplied to different cooling plates through pipe connecting members, and cools the battery modules through the cooling plates by thermal conduction.
特許文献1:特表2018-533167号公報
Patent Document 1: Japanese Patent Publication No. 2018-533167
しかしながら、特許文献1に記載の電池パックでは、ケースの限られた収容空間内に、複数の冷媒パイプを収容するためのスペースを確保する必要があった。「ケースの収容空間」とは、電池モジュールが収容される空間を示す。そのため、ケースの限られた収容空間を有効活用できるようにすることが求められている。
更に、被熱交換体の温度を効率良く制御することを可能にしつつ、軽量化されたケースが求められている。 However, in the battery pack described inPatent Document 1, it is necessary to secure a space for accommodating a plurality of coolant pipes in the limited accommodation space of the case. The “accommodating space of the case” refers to the space in which the battery module is accommodated. Therefore, it is required to make effective use of the limited housing space of the case.
Further, there is a need for a case that is lightweight while still allowing efficient control of the temperature of the heat exchange object.
更に、被熱交換体の温度を効率良く制御することを可能にしつつ、軽量化されたケースが求められている。 However, in the battery pack described in
Further, there is a need for a case that is lightweight while still allowing efficient control of the temperature of the heat exchange object.
本開示は、上記事情に鑑み、被熱交換媒体の温度の効率的な制御、及び収容空間の有効活用を可能にし、従来よりも軽量化されたケース、及びパックを提供することを課題とする。
In view of the above circumstances, an object of the present disclosure is to provide a case and a pack that enable efficient control of the temperature of the heat exchange medium and effective use of the storage space, and are lighter than before. .
上記課題を解決するための手段には、以下の実施態様が含まれる。
<1> 内部に収容される被熱交換体の温度を制御するためのケースであって、
前記被熱交換体を収容する筐体と、
前記筐体に固定され、前記被熱交換体と熱的に接触する複数の金属プレートと
を備え、
前記複数の金属プレートの各々と前記筐体との間には、前記被熱交換体と熱交換する熱交換媒体を流通させるための熱交換用流路が形成されており、
複数の前記熱交換用流路は、第1熱交換用流路と、第2熱交換用流路とを少なくとも含み、
前記筐体は、前記第1熱交換用流路と前記第2熱交換用流路とを連通するための連通用流路を有する、ケース。
<2> 前記筐体は、
本体部と、
前記本体部に固定された少なくとも1つの連通用流路構成部と
を有し、
前記連通用流路は、前記本体部と前記少なくとも1つの連通用流路構成部との間に形成されている、前記<1>に記載のケース。
<3> 前記本体部は、前記被熱交換体を収容する少なくとも1つの収容壁部を有し、
前記少なくとも1つの収容壁部は、前記被熱交換体と対向する内側面と、前記内側面と対向する外側面とを含み、
前記連通用流路は、前記少なくとも1つの連通用流路構成部と、前記外側面との間に形成されている、前記<2>に記載のケース。
<4> 前記本体部は、前記少なくとも1つの連通用流路構成部に対応する少なくとも1つの溝部を有し、
前記連通用流路は、前記少なくとも1つの連通用流路構成部が対応する前記少なくとも1つの溝部を覆うことで形成されている、前記<2>又は<3>に記載のケース。
<5> 前記溝部は、開口部と、底面と、前記底面から前記開口部に向けて拡大するテーパ状の側面とを含む、前記<4>に記載のケース。
<6> 前記複数の金属プレートの各々と、前記筐体との間に介在するパッキンを更に備える、前記<1>~<5>のいずれか1つに記載のケース。
<7> 前記複数の金属プレートの各々は、前記パッキンと接触する部位に凹凸構造を有し、
前記パッキンの材質は、樹脂である、前記<6>に記載のケース。
<8> 前記凹凸構造における凹部の平均孔径は、5nm~500μmである、前記<7>に記載のケース。
<9> 前記樹脂は、熱可塑性エラストマー及び熱硬化性エラストマーの少なくとも一方を含む、前記<7>又は<8>に記載のケース。
<10> 前記パッキンは、前記複数の金属プレートの各々に接合している、前記<6>~<9>のいずれか1つに記載のケース。
<11> 前記筐体は、前記熱交換媒体を供給するための少なくとも1つの供給口と、前記熱交換媒体を排出するための少なくとも1つの排出口とを有し、
前記少なくとも1つの供給口と、前記少なくとも1つの排出口と、前記複数の熱交換用流路の各々と、前記連通用流路とは、連通している、前記<1>~<10>のいずれか1つに記載のケース。
<12> 前記<1>~<11>のいずれか1つに記載のケースと、
前記ケースに収容された前記被熱交換体と
を備える、パック。
<13> 前記被熱交換体は、少なくとも1つの電池モジュールを含み、
前記熱交換媒体は、冷却媒体である、前記<12>に記載のパック。 Means for solving the above problems include the following embodiments.
<1> A case for controlling the temperature of a heat-exchanging body housed inside,
a housing that accommodates the heat-exchanged body;
A plurality of metal plates fixed to the housing and in thermal contact with the heat exchange object,
Between each of the plurality of metal plates and the housing, a heat exchange flow path for circulating a heat exchange medium that exchanges heat with the heat exchange object is formed,
The plurality of heat exchange channels includes at least a first heat exchange channel and a second heat exchange channel,
A case, wherein the housing has a communication channel for communicating the first heat exchange channel and the second heat exchange channel.
<2> The housing is
a main body;
and at least one communication channel forming part fixed to the main body,
The case according to <1>, wherein the communication channel is formed between the body portion and the at least one communication channel forming portion.
<3> The body portion has at least one housing wall portion for housing the heat-exchanged body,
The at least one housing wall includes an inner surface facing the heat-exchanged body and an outer surface facing the inner surface,
The case according to <2>, wherein the communication channel is formed between the at least one communication channel forming part and the outer surface.
<4> the body portion has at least one groove corresponding to the at least one communication flow path forming portion;
The case according to <2> or <3>, wherein the communication channel is formed by covering the at least one groove corresponding to the at least one communication channel forming part.
<5> The case according to <4>, wherein the groove includes an opening, a bottom surface, and a tapered side surface expanding from the bottom surface toward the opening.
<6> The case according to any one of <1> to <5>, further comprising a packing interposed between each of the plurality of metal plates and the housing.
<7> each of the plurality of metal plates has an uneven structure in a portion that contacts the packing,
The case according to <6>, wherein the packing is made of resin.
<8> The case according to <7>, wherein the recesses in the uneven structure have an average pore size of 5 nm to 500 μm.
<9> The case according to <7> or <8>, wherein the resin includes at least one of a thermoplastic elastomer and a thermosetting elastomer.
<10> The case according to any one of <6> to <9>, wherein the packing is bonded to each of the plurality of metal plates.
<11> The housing has at least one supply port for supplying the heat exchange medium and at least one discharge port for discharging the heat exchange medium,
<1> to <10>, wherein the at least one supply port, the at least one discharge port, each of the plurality of heat exchange channels, and the communication channel communicate with each other; Any one of the cases described.
<12> The case according to any one of <1> to <11>;
A pack comprising the heat-exchanged body housed in the case.
<13> the heat exchange object includes at least one battery module,
The pack according to <12>, wherein the heat exchange medium is a cooling medium.
<1> 内部に収容される被熱交換体の温度を制御するためのケースであって、
前記被熱交換体を収容する筐体と、
前記筐体に固定され、前記被熱交換体と熱的に接触する複数の金属プレートと
を備え、
前記複数の金属プレートの各々と前記筐体との間には、前記被熱交換体と熱交換する熱交換媒体を流通させるための熱交換用流路が形成されており、
複数の前記熱交換用流路は、第1熱交換用流路と、第2熱交換用流路とを少なくとも含み、
前記筐体は、前記第1熱交換用流路と前記第2熱交換用流路とを連通するための連通用流路を有する、ケース。
<2> 前記筐体は、
本体部と、
前記本体部に固定された少なくとも1つの連通用流路構成部と
を有し、
前記連通用流路は、前記本体部と前記少なくとも1つの連通用流路構成部との間に形成されている、前記<1>に記載のケース。
<3> 前記本体部は、前記被熱交換体を収容する少なくとも1つの収容壁部を有し、
前記少なくとも1つの収容壁部は、前記被熱交換体と対向する内側面と、前記内側面と対向する外側面とを含み、
前記連通用流路は、前記少なくとも1つの連通用流路構成部と、前記外側面との間に形成されている、前記<2>に記載のケース。
<4> 前記本体部は、前記少なくとも1つの連通用流路構成部に対応する少なくとも1つの溝部を有し、
前記連通用流路は、前記少なくとも1つの連通用流路構成部が対応する前記少なくとも1つの溝部を覆うことで形成されている、前記<2>又は<3>に記載のケース。
<5> 前記溝部は、開口部と、底面と、前記底面から前記開口部に向けて拡大するテーパ状の側面とを含む、前記<4>に記載のケース。
<6> 前記複数の金属プレートの各々と、前記筐体との間に介在するパッキンを更に備える、前記<1>~<5>のいずれか1つに記載のケース。
<7> 前記複数の金属プレートの各々は、前記パッキンと接触する部位に凹凸構造を有し、
前記パッキンの材質は、樹脂である、前記<6>に記載のケース。
<8> 前記凹凸構造における凹部の平均孔径は、5nm~500μmである、前記<7>に記載のケース。
<9> 前記樹脂は、熱可塑性エラストマー及び熱硬化性エラストマーの少なくとも一方を含む、前記<7>又は<8>に記載のケース。
<10> 前記パッキンは、前記複数の金属プレートの各々に接合している、前記<6>~<9>のいずれか1つに記載のケース。
<11> 前記筐体は、前記熱交換媒体を供給するための少なくとも1つの供給口と、前記熱交換媒体を排出するための少なくとも1つの排出口とを有し、
前記少なくとも1つの供給口と、前記少なくとも1つの排出口と、前記複数の熱交換用流路の各々と、前記連通用流路とは、連通している、前記<1>~<10>のいずれか1つに記載のケース。
<12> 前記<1>~<11>のいずれか1つに記載のケースと、
前記ケースに収容された前記被熱交換体と
を備える、パック。
<13> 前記被熱交換体は、少なくとも1つの電池モジュールを含み、
前記熱交換媒体は、冷却媒体である、前記<12>に記載のパック。 Means for solving the above problems include the following embodiments.
<1> A case for controlling the temperature of a heat-exchanging body housed inside,
a housing that accommodates the heat-exchanged body;
A plurality of metal plates fixed to the housing and in thermal contact with the heat exchange object,
Between each of the plurality of metal plates and the housing, a heat exchange flow path for circulating a heat exchange medium that exchanges heat with the heat exchange object is formed,
The plurality of heat exchange channels includes at least a first heat exchange channel and a second heat exchange channel,
A case, wherein the housing has a communication channel for communicating the first heat exchange channel and the second heat exchange channel.
<2> The housing is
a main body;
and at least one communication channel forming part fixed to the main body,
The case according to <1>, wherein the communication channel is formed between the body portion and the at least one communication channel forming portion.
<3> The body portion has at least one housing wall portion for housing the heat-exchanged body,
The at least one housing wall includes an inner surface facing the heat-exchanged body and an outer surface facing the inner surface,
The case according to <2>, wherein the communication channel is formed between the at least one communication channel forming part and the outer surface.
<4> the body portion has at least one groove corresponding to the at least one communication flow path forming portion;
The case according to <2> or <3>, wherein the communication channel is formed by covering the at least one groove corresponding to the at least one communication channel forming part.
<5> The case according to <4>, wherein the groove includes an opening, a bottom surface, and a tapered side surface expanding from the bottom surface toward the opening.
<6> The case according to any one of <1> to <5>, further comprising a packing interposed between each of the plurality of metal plates and the housing.
<7> each of the plurality of metal plates has an uneven structure in a portion that contacts the packing,
The case according to <6>, wherein the packing is made of resin.
<8> The case according to <7>, wherein the recesses in the uneven structure have an average pore size of 5 nm to 500 μm.
<9> The case according to <7> or <8>, wherein the resin includes at least one of a thermoplastic elastomer and a thermosetting elastomer.
<10> The case according to any one of <6> to <9>, wherein the packing is bonded to each of the plurality of metal plates.
<11> The housing has at least one supply port for supplying the heat exchange medium and at least one discharge port for discharging the heat exchange medium,
<1> to <10>, wherein the at least one supply port, the at least one discharge port, each of the plurality of heat exchange channels, and the communication channel communicate with each other; Any one of the cases described.
<12> The case according to any one of <1> to <11>;
A pack comprising the heat-exchanged body housed in the case.
<13> the heat exchange object includes at least one battery module,
The pack according to <12>, wherein the heat exchange medium is a cooling medium.
本開示によれば、被熱交換媒体の温度の効率的な制御、及び収容空間の有効活用を可能にし、従来よりも軽量化されたケース、及びパックが提供される。
According to the present disclosure, it is possible to efficiently control the temperature of the heat-exchanging medium and effectively utilize the storage space, and provides a case and pack that are lighter than before.
本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよく、実施例に示されている値に置き換えてもよい。
本開示において、材料中の各成分の量は、材料中の各成分に該当する物質が複数存在する場合は、特に断らない限り、材料中に存在する複数の物質の合計量を意味する。 In the present disclosure, a numerical range indicated using "to" indicates a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, the upper or lower limit values described in a certain numerical range may be replaced with the upper or lower values of other numerical ranges described step by step. You can substitute the values shown in the example.
In the present disclosure, when there are multiple substances corresponding to each component in the material, the amount of each component in the material means the total amount of the multiple substances present in the material unless otherwise specified.
本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよく、実施例に示されている値に置き換えてもよい。
本開示において、材料中の各成分の量は、材料中の各成分に該当する物質が複数存在する場合は、特に断らない限り、材料中に存在する複数の物質の合計量を意味する。 In the present disclosure, a numerical range indicated using "to" indicates a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, the upper or lower limit values described in a certain numerical range may be replaced with the upper or lower values of other numerical ranges described step by step. You can substitute the values shown in the example.
In the present disclosure, when there are multiple substances corresponding to each component in the material, the amount of each component in the material means the total amount of the multiple substances present in the material unless otherwise specified.
(1)ケース
本開示のケースは、内部に収容される被熱交換体の温度を制御するためのケースであって、筐体と、複数の金属プレートとを備える。筐体は、被熱交換体を収容する。複数の金属プレートは、筐体に固定され、被熱交換体と熱的に接触する。複数の金属プレートの各々と筐体との間には、熱交換媒体を流通させるための熱交換用流路が形成されている。熱交換媒体は、被熱交換体と熱交換をする。複数の熱交換用流路は、第1熱交換用流路と、第2熱交換用流路とを少なくとも含む。筐体は、第1熱交換用流路と第2熱交換用流路とを連通するための連通用流路を有する。 (1) Case The case of the present disclosure is a case for controlling the temperature of an object to be heat exchanged that is housed inside, and includes a housing and a plurality of metal plates. The housing accommodates the heat-exchanged body. A plurality of metal plates are fixed to the housing and are in thermal contact with the heat exchange object. A heat exchange channel for circulating a heat exchange medium is formed between each of the plurality of metal plates and the housing. The heat exchange medium exchanges heat with the object to be heat exchanged. The plurality of heat exchange channels includes at least a first heat exchange channel and a second heat exchange channel. The housing has a communication channel for communicating the first heat exchange channel and the second heat exchange channel.
本開示のケースは、内部に収容される被熱交換体の温度を制御するためのケースであって、筐体と、複数の金属プレートとを備える。筐体は、被熱交換体を収容する。複数の金属プレートは、筐体に固定され、被熱交換体と熱的に接触する。複数の金属プレートの各々と筐体との間には、熱交換媒体を流通させるための熱交換用流路が形成されている。熱交換媒体は、被熱交換体と熱交換をする。複数の熱交換用流路は、第1熱交換用流路と、第2熱交換用流路とを少なくとも含む。筐体は、第1熱交換用流路と第2熱交換用流路とを連通するための連通用流路を有する。 (1) Case The case of the present disclosure is a case for controlling the temperature of an object to be heat exchanged that is housed inside, and includes a housing and a plurality of metal plates. The housing accommodates the heat-exchanged body. A plurality of metal plates are fixed to the housing and are in thermal contact with the heat exchange object. A heat exchange channel for circulating a heat exchange medium is formed between each of the plurality of metal plates and the housing. The heat exchange medium exchanges heat with the object to be heat exchanged. The plurality of heat exchange channels includes at least a first heat exchange channel and a second heat exchange channel. The housing has a communication channel for communicating the first heat exchange channel and the second heat exchange channel.
「熱交換用流路」及び「連通用流路」の各々は、熱交換媒体を流通させる空間を示す。「熱交換」とは、物質移転を伴わない熱の交換を行なうことを示す。「第1熱交換用流路」とは、複数の熱交換用流路のうちの任意の1つである。「第2熱交換用流路」とは、複数の熱交換用流路のうちの1つであって、第1熱交換用流路とは異なる熱交換用流路を示す。
Each of the "heat exchange flow path" and the "communication flow path" indicates a space through which the heat exchange medium is circulated. "Heat exchange" means heat exchange without mass transfer. A “first heat exchange channel” is any one of a plurality of heat exchange channels. A “second heat exchange channel” is one of a plurality of heat exchange channels and indicates a heat exchange channel different from the first heat exchange channel.
本開示のケースでは、複数の熱交換用流路に熱交換媒体を流通させることで、それぞれの独立した金属プレートを介して、被熱交換体と熱交換媒体との間で熱伝導する。その結果、本開示のケースは、被熱交換媒体の温度を効率良く制御することができる。
本開示のケースでは、連通用流路は、熱交換用流路同士を連結する配管として機能する。これにより、従来用いられた冷媒パイプ等がケース内に配置されなくても、連通用流路を介して、複数の熱交換用流路の各々に対する熱交換媒体の供給又は回収が行われ得る。そのため、本開示のケースは、従来よりも軽量化されている。更に、本開示のケースでは、ケースの収容空間内に、冷媒パイプ等を配置するためのスペースが確保される必要はない。「ケースの収容空間」とは、被熱交換体が収容される空間を示す。そのため、本開示のケースは、収容空間を有効活用可能にすることができる。
以上により、本開示のケースは、被熱交換媒体の温度の効率的な制御、及び収容空間の有効活用を可能にし、従来よりも軽量化されている。 In the case of the present disclosure, by circulating the heat exchange medium through the plurality of heat exchange channels, heat is conducted between the heat exchange object and the heat exchange medium via each independent metal plate. As a result, the case of the present disclosure can efficiently control the temperature of the heat exchange medium.
In the case of the present disclosure, the communication channel functions as a pipe that connects the heat exchange channels. As a result, the heat exchange medium can be supplied to or recovered from each of the plurality of heat exchange channels through the communication channels without the refrigerant pipes or the like used conventionally being arranged in the case. Therefore, the case of the present disclosure is lighter than conventional cases. Furthermore, in the case of the present disclosure, it is not necessary to secure a space for arranging a refrigerant pipe or the like in the accommodation space of the case. The “accommodating space of the case” refers to the space in which the object to be heat-exchanged is accommodated. Therefore, the case of the present disclosure can effectively utilize the accommodation space.
As described above, the case of the present disclosure enables efficient control of the temperature of the heat-exchanging medium and effective use of the storage space, and is lighter than before.
本開示のケースでは、連通用流路は、熱交換用流路同士を連結する配管として機能する。これにより、従来用いられた冷媒パイプ等がケース内に配置されなくても、連通用流路を介して、複数の熱交換用流路の各々に対する熱交換媒体の供給又は回収が行われ得る。そのため、本開示のケースは、従来よりも軽量化されている。更に、本開示のケースでは、ケースの収容空間内に、冷媒パイプ等を配置するためのスペースが確保される必要はない。「ケースの収容空間」とは、被熱交換体が収容される空間を示す。そのため、本開示のケースは、収容空間を有効活用可能にすることができる。
以上により、本開示のケースは、被熱交換媒体の温度の効率的な制御、及び収容空間の有効活用を可能にし、従来よりも軽量化されている。 In the case of the present disclosure, by circulating the heat exchange medium through the plurality of heat exchange channels, heat is conducted between the heat exchange object and the heat exchange medium via each independent metal plate. As a result, the case of the present disclosure can efficiently control the temperature of the heat exchange medium.
In the case of the present disclosure, the communication channel functions as a pipe that connects the heat exchange channels. As a result, the heat exchange medium can be supplied to or recovered from each of the plurality of heat exchange channels through the communication channels without the refrigerant pipes or the like used conventionally being arranged in the case. Therefore, the case of the present disclosure is lighter than conventional cases. Furthermore, in the case of the present disclosure, it is not necessary to secure a space for arranging a refrigerant pipe or the like in the accommodation space of the case. The “accommodating space of the case” refers to the space in which the object to be heat-exchanged is accommodated. Therefore, the case of the present disclosure can effectively utilize the accommodation space.
As described above, the case of the present disclosure enables efficient control of the temperature of the heat-exchanging medium and effective use of the storage space, and is lighter than before.
被熱交換体としては、特に限定されず、例えば、中央処理装置(CPU:Central Processing Unit)、メモリモジュール、電池モジュール、パワーモジュール等が挙げられる。メモリモジュールとしては、DIMM(Dual Inline Memory Module)等が挙げられる。
「電池モジュール」とは、少なくとも1つの単電池が集合された単電池集合体を示す。少なくとも1つの単電池が複数の単電池である場合、複数の単電池の各々は、直列又は並列に電気的に接続されていてもよい。
単電池としては、一次電池、又は二次電池を含む。一次電池としては、特に限定されず、例えば、マンガン乾電池、フッ化黒鉛リチウム一次電池、二酸化マンガンリチウム一次電池等が挙げられる。二次電池としては、特に限定はされず、例えば、リチウムイオン電池、全固体電池、鉛電池、ニッケルカドミウム電池、ニッケル水素電池等が挙げられる。単電池の形状としては、パウチ型(ラミネート型)、角型、円筒型等が挙げられる。
電池モジュールは、モジュールケースを備えていなくてもよいし、モジュールケースを備えていてもよい。電池モジュールがモジュールケースを備えていない場合、少なくとも1つの単電池は、直接的に(すなわち、そのまま)、本開示のケースに収容される。電池モジュールがモジュールケースを備える場合、少なくとも1つの単電池は、モジュールケースに収容された状態で、本開示のケースに収容される。モジュールケースは、特に限定されず、公知のモジュールケースであればよい。モジュールケースについては、特許第6751570号公報、特許第6645500号公報等を適宜参照できる。電池モジュールは、保護素子(ヒューズ、PTC(positive temperature coefficient)素子等)及び監視回路を更に備えていてもよい。 The body to be heat-exchanged is not particularly limited, and examples thereof include a central processing unit (CPU), a memory module, a battery module, a power module, and the like. Examples of memory modules include DIMMs (Dual Inline Memory Modules).
A “battery module” refers to a unit cell assembly in which at least one unit cell is assembled. When at least one cell is a plurality of cells, each of the plurality of cells may be electrically connected in series or in parallel.
A single battery includes a primary battery or a secondary battery. The primary battery is not particularly limited, and examples thereof include a manganese dry battery, a graphite fluoride lithium primary battery, a manganese dioxide lithium primary battery, and the like. Secondary batteries are not particularly limited, and examples thereof include lithium ion batteries, all-solid batteries, lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries. Examples of the shape of the cell include pouch type (laminate type), square type, cylindrical type, and the like.
The battery module may or may not have a module case. If the battery module does not have a module case, at least one cell is directly (ie, as is) housed in the case of the present disclosure. When the battery module includes a module case, at least one cell is housed in the case of the present disclosure while being housed in the module case. The module case is not particularly limited as long as it is a known module case. Regarding the module case, Japanese Patent No. 6751570, Japanese Patent No. 6645500, etc. can be referred to as appropriate. The battery module may further include protection elements (fuses, PTC (positive temperature coefficient) elements, etc.) and monitoring circuits.
「電池モジュール」とは、少なくとも1つの単電池が集合された単電池集合体を示す。少なくとも1つの単電池が複数の単電池である場合、複数の単電池の各々は、直列又は並列に電気的に接続されていてもよい。
単電池としては、一次電池、又は二次電池を含む。一次電池としては、特に限定されず、例えば、マンガン乾電池、フッ化黒鉛リチウム一次電池、二酸化マンガンリチウム一次電池等が挙げられる。二次電池としては、特に限定はされず、例えば、リチウムイオン電池、全固体電池、鉛電池、ニッケルカドミウム電池、ニッケル水素電池等が挙げられる。単電池の形状としては、パウチ型(ラミネート型)、角型、円筒型等が挙げられる。
電池モジュールは、モジュールケースを備えていなくてもよいし、モジュールケースを備えていてもよい。電池モジュールがモジュールケースを備えていない場合、少なくとも1つの単電池は、直接的に(すなわち、そのまま)、本開示のケースに収容される。電池モジュールがモジュールケースを備える場合、少なくとも1つの単電池は、モジュールケースに収容された状態で、本開示のケースに収容される。モジュールケースは、特に限定されず、公知のモジュールケースであればよい。モジュールケースについては、特許第6751570号公報、特許第6645500号公報等を適宜参照できる。電池モジュールは、保護素子(ヒューズ、PTC(positive temperature coefficient)素子等)及び監視回路を更に備えていてもよい。 The body to be heat-exchanged is not particularly limited, and examples thereof include a central processing unit (CPU), a memory module, a battery module, a power module, and the like. Examples of memory modules include DIMMs (Dual Inline Memory Modules).
A “battery module” refers to a unit cell assembly in which at least one unit cell is assembled. When at least one cell is a plurality of cells, each of the plurality of cells may be electrically connected in series or in parallel.
A single battery includes a primary battery or a secondary battery. The primary battery is not particularly limited, and examples thereof include a manganese dry battery, a graphite fluoride lithium primary battery, a manganese dioxide lithium primary battery, and the like. Secondary batteries are not particularly limited, and examples thereof include lithium ion batteries, all-solid batteries, lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries. Examples of the shape of the cell include pouch type (laminate type), square type, cylindrical type, and the like.
The battery module may or may not have a module case. If the battery module does not have a module case, at least one cell is directly (ie, as is) housed in the case of the present disclosure. When the battery module includes a module case, at least one cell is housed in the case of the present disclosure while being housed in the module case. The module case is not particularly limited as long as it is a known module case. Regarding the module case, Japanese Patent No. 6751570, Japanese Patent No. 6645500, etc. can be referred to as appropriate. The battery module may further include protection elements (fuses, PTC (positive temperature coefficient) elements, etc.) and monitoring circuits.
熱交換媒体は、被熱交換体と熱交換する。熱交換媒体は、冷却用媒体又は加熱用媒体であり、被熱交換体の種類等に応じて適宜選択される。
冷却用媒体は、被熱交換体から熱を奪うための媒体を示す。冷却用媒体としては、冷却用液体、冷却用気体等が挙げられる。冷却用液体としては、一般に冷却に用いられる液体であれば特に限定されず、一例として水、油、グリコール系水溶液、エアコン用冷媒、非導電性液体、相変化液体等が挙げられる。冷却用気体としては、空気、窒素ガス等が挙げられる。冷却用媒体の温度は、被熱交換媒体の種類等に応じて、適宜調整される。
加熱用媒体は、被熱交換体に熱を与えるための媒体を示す。加熱用媒体としては、加熱用液体、加熱用気体等が挙げられる。加熱用液体としては、一般に加熱用液体として用いられる液体であれば特に限定されず、一例として水、油、グリコール系水溶液、エアコン用冷媒、非導電性液体、相変化液体等が挙げられる。加熱用気体は、空気、水蒸気等が挙げられる。加熱用媒体の温度は、被熱交換体の種類等に応じて、適宜調整される。 The heat exchange medium exchanges heat with the object to be heat exchanged. The heat exchange medium is a medium for cooling or a medium for heating, and is appropriately selected according to the type of heat-exchanged body.
A cooling medium indicates a medium for removing heat from a heat-exchanged body. Cooling media include cooling liquids, cooling gases, and the like. The cooling liquid is not particularly limited as long as it is a liquid generally used for cooling, and examples thereof include water, oil, glycol-based aqueous solution, refrigerant for air conditioners, non-conductive liquid, phase change liquid, and the like. Examples of the cooling gas include air and nitrogen gas. The temperature of the cooling medium is appropriately adjusted according to the type of the heat exchange medium.
A heating medium indicates a medium for applying heat to a heat-exchanged body. Examples of the heating medium include a heating liquid and a heating gas. The heating liquid is not particularly limited as long as it is a liquid that is generally used as a heating liquid, and examples thereof include water, oil, glycol-based aqueous solutions, refrigerants for air conditioners, non-conductive liquids, phase-change liquids, and the like. Examples of the heating gas include air, water vapor, and the like. The temperature of the heating medium is appropriately adjusted according to the type of heat-exchanged body.
冷却用媒体は、被熱交換体から熱を奪うための媒体を示す。冷却用媒体としては、冷却用液体、冷却用気体等が挙げられる。冷却用液体としては、一般に冷却に用いられる液体であれば特に限定されず、一例として水、油、グリコール系水溶液、エアコン用冷媒、非導電性液体、相変化液体等が挙げられる。冷却用気体としては、空気、窒素ガス等が挙げられる。冷却用媒体の温度は、被熱交換媒体の種類等に応じて、適宜調整される。
加熱用媒体は、被熱交換体に熱を与えるための媒体を示す。加熱用媒体としては、加熱用液体、加熱用気体等が挙げられる。加熱用液体としては、一般に加熱用液体として用いられる液体であれば特に限定されず、一例として水、油、グリコール系水溶液、エアコン用冷媒、非導電性液体、相変化液体等が挙げられる。加熱用気体は、空気、水蒸気等が挙げられる。加熱用媒体の温度は、被熱交換体の種類等に応じて、適宜調整される。 The heat exchange medium exchanges heat with the object to be heat exchanged. The heat exchange medium is a medium for cooling or a medium for heating, and is appropriately selected according to the type of heat-exchanged body.
A cooling medium indicates a medium for removing heat from a heat-exchanged body. Cooling media include cooling liquids, cooling gases, and the like. The cooling liquid is not particularly limited as long as it is a liquid generally used for cooling, and examples thereof include water, oil, glycol-based aqueous solution, refrigerant for air conditioners, non-conductive liquid, phase change liquid, and the like. Examples of the cooling gas include air and nitrogen gas. The temperature of the cooling medium is appropriately adjusted according to the type of the heat exchange medium.
A heating medium indicates a medium for applying heat to a heat-exchanged body. Examples of the heating medium include a heating liquid and a heating gas. The heating liquid is not particularly limited as long as it is a liquid that is generally used as a heating liquid, and examples thereof include water, oil, glycol-based aqueous solutions, refrigerants for air conditioners, non-conductive liquids, phase-change liquids, and the like. Examples of the heating gas include air, water vapor, and the like. The temperature of the heating medium is appropriately adjusted according to the type of heat-exchanged body.
(1.1)熱交換用流路
熱交換用流路の数は、2つ以上であれば特に限定されず、被熱交換体の種類及び筐体の形状等に応じて適宜調整される。熱交換用流路の数は、金属プレートの数に対応し、金属プレートの数以上であればよい。
熱交換用流路の位置、形状、及びサイズの各々は、複数の熱交換用流路に熱交換媒体を流通させることで被熱交換体と熱交換媒体との間で熱伝導させることができれば、特に限定されない。 (1.1) Heat Exchange Channels The number of heat exchange channels is not particularly limited as long as it is two or more, and is appropriately adjusted according to the type of heat exchange object, the shape of the housing, and the like. The number of heat exchange channels corresponds to the number of metal plates, and may be equal to or greater than the number of metal plates.
The position, shape, and size of each of the heat exchange channels are such that heat can be conducted between the heat exchange object and the heat exchange medium by circulating the heat exchange medium through the plurality of heat exchange channels. , is not particularly limited.
熱交換用流路の数は、2つ以上であれば特に限定されず、被熱交換体の種類及び筐体の形状等に応じて適宜調整される。熱交換用流路の数は、金属プレートの数に対応し、金属プレートの数以上であればよい。
熱交換用流路の位置、形状、及びサイズの各々は、複数の熱交換用流路に熱交換媒体を流通させることで被熱交換体と熱交換媒体との間で熱伝導させることができれば、特に限定されない。 (1.1) Heat Exchange Channels The number of heat exchange channels is not particularly limited as long as it is two or more, and is appropriately adjusted according to the type of heat exchange object, the shape of the housing, and the like. The number of heat exchange channels corresponds to the number of metal plates, and may be equal to or greater than the number of metal plates.
The position, shape, and size of each of the heat exchange channels are such that heat can be conducted between the heat exchange object and the heat exchange medium by circulating the heat exchange medium through the plurality of heat exchange channels. , is not particularly limited.
熱交換用流路の内部には、熱交換流体の流れを制御するための流動制御形状が付与されていてもよい。流路制御形状としては、例えば、溝、仕切り壁等が挙げられる。仕切り壁は、熱交換用流路を仕切る。流路制御形状は、筐体及び金属プレートの少なくとも一方に形成されていてもよい。
流路制御形状が仕切り壁である場合、流路制御形状は、筐体及び金属プレートとは異なる部材(以下、「流動制御部材」という。)が筐体及び金属プレートの少なくとも一方に固定されることで形成されていてもよい。仕切り壁は、対向部材に接触していてもよいし、接触していなくてもよい。「対向部材」とは、仕切り壁に対向する部材であって、仕切り壁が筐体に形成又は固定されている場合には金属プレートを示し、仕切り壁が金属プレートに形成又は固定されている場合には筐体を示す。
流動制御部材の材質は、金属であってもよいし、樹脂であってもよい。流動制御部材を構成する材質としては、後述する筐体を構成する材質として例示した材質と同様の材質が挙げられる。流動制御部材を筐体及び金属プレートの少なくとも一方に固定する方法は、流動制御部材の材質に応じて適宜選択され、後述する第1固定方法と同様の方法が挙げられる。 The interior of the heat exchange channel may have a flow control shape for controlling the flow of the heat exchange fluid. Examples of the flow path control shape include grooves, partition walls, and the like. The partition wall partitions the heat exchange flow path. The channel control shape may be formed on at least one of the housing and the metal plate.
When the flow path control shape is a partition wall, the flow path control shape has a member different from the housing and the metal plate (hereinafter referred to as "flow control member") fixed to at least one of the housing and the metal plate. It may be formed by The partition wall may or may not be in contact with the opposing member. "Opposing member" means a member facing the partition wall, and indicates a metal plate when the partition wall is formed or fixed to the housing, and when the partition wall is formed or fixed to the metal plate shows the housing.
The material of the flow control member may be metal or resin. Examples of materials constituting the flow control member include materials similar to those exemplified as materials constituting the housing described later. A method for fixing the flow control member to at least one of the housing and the metal plate is appropriately selected according to the material of the flow control member, and includes the same method as the first fixing method described later.
流路制御形状が仕切り壁である場合、流路制御形状は、筐体及び金属プレートとは異なる部材(以下、「流動制御部材」という。)が筐体及び金属プレートの少なくとも一方に固定されることで形成されていてもよい。仕切り壁は、対向部材に接触していてもよいし、接触していなくてもよい。「対向部材」とは、仕切り壁に対向する部材であって、仕切り壁が筐体に形成又は固定されている場合には金属プレートを示し、仕切り壁が金属プレートに形成又は固定されている場合には筐体を示す。
流動制御部材の材質は、金属であってもよいし、樹脂であってもよい。流動制御部材を構成する材質としては、後述する筐体を構成する材質として例示した材質と同様の材質が挙げられる。流動制御部材を筐体及び金属プレートの少なくとも一方に固定する方法は、流動制御部材の材質に応じて適宜選択され、後述する第1固定方法と同様の方法が挙げられる。 The interior of the heat exchange channel may have a flow control shape for controlling the flow of the heat exchange fluid. Examples of the flow path control shape include grooves, partition walls, and the like. The partition wall partitions the heat exchange flow path. The channel control shape may be formed on at least one of the housing and the metal plate.
When the flow path control shape is a partition wall, the flow path control shape has a member different from the housing and the metal plate (hereinafter referred to as "flow control member") fixed to at least one of the housing and the metal plate. It may be formed by The partition wall may or may not be in contact with the opposing member. "Opposing member" means a member facing the partition wall, and indicates a metal plate when the partition wall is formed or fixed to the housing, and when the partition wall is formed or fixed to the metal plate shows the housing.
The material of the flow control member may be metal or resin. Examples of materials constituting the flow control member include materials similar to those exemplified as materials constituting the housing described later. A method for fixing the flow control member to at least one of the housing and the metal plate is appropriately selected according to the material of the flow control member, and includes the same method as the first fixing method described later.
(1.2)筐体
筐体は、被熱交換体を収容する。 (1.2) Housing The housing accommodates the heat-exchanged body.
筐体は、被熱交換体を収容する。 (1.2) Housing The housing accommodates the heat-exchanged body.
筐体の形状は、被熱交換体を収容可能であれば特に限定されず、例えば、直方体状物等が挙げられる。
The shape of the housing is not particularly limited as long as it can accommodate the heat-exchanged body, and examples thereof include a rectangular parallelepiped.
(1.2.1)連通用流路
筐体は、少なくとも1つの連通用流路を有する。
連通用流路の数は、熱交換用流路の数等に応じて選択され、特に限定されない。連通用流路の位置は、第1熱交換用流路と第2熱交換用流路とを連通すれば、特に限定されない。第1熱交換用流路と第2熱交換用流路とは、1つの連通用流路で連結されていてもよいし、2つ以上の連通用流路で連結されていてもよい。連通用流路の形状、及びサイズの各々は、第1熱交換用流路と第2熱交換用流路とを連通することができれば、特に限定されない。 (1.2.1) Communication channel The housing has at least one communication channel.
The number of communication channels is selected according to the number of heat exchange channels, and is not particularly limited. The position of the communication channel is not particularly limited as long as the first heat exchange channel and the second heat exchange channel are communicated with each other. The first heat exchange flow path and the second heat exchange flow path may be connected by one communication flow path, or may be connected by two or more communication flow paths. Each of the shape and size of the communication channel is not particularly limited as long as the first heat exchange channel and the second heat exchange channel can be communicated with each other.
筐体は、少なくとも1つの連通用流路を有する。
連通用流路の数は、熱交換用流路の数等に応じて選択され、特に限定されない。連通用流路の位置は、第1熱交換用流路と第2熱交換用流路とを連通すれば、特に限定されない。第1熱交換用流路と第2熱交換用流路とは、1つの連通用流路で連結されていてもよいし、2つ以上の連通用流路で連結されていてもよい。連通用流路の形状、及びサイズの各々は、第1熱交換用流路と第2熱交換用流路とを連通することができれば、特に限定されない。 (1.2.1) Communication channel The housing has at least one communication channel.
The number of communication channels is selected according to the number of heat exchange channels, and is not particularly limited. The position of the communication channel is not particularly limited as long as the first heat exchange channel and the second heat exchange channel are communicated with each other. The first heat exchange flow path and the second heat exchange flow path may be connected by one communication flow path, or may be connected by two or more communication flow paths. Each of the shape and size of the communication channel is not particularly limited as long as the first heat exchange channel and the second heat exchange channel can be communicated with each other.
連通用流路は、例えば、第1構成であってもよいし、第2構成であってもよい。
第1構成では、筐体が、本体部と、本体部に固定された少なくとも1つの連通用流路構成部とを有し、連通用流路は、本体部と少なくとも1つの連通用流路構成部との間に形成される。連通用流路は、壁面に囲まれることによって形成される。第1構成では、連通用流路を囲う壁面は、本体部の表面と連通用流路構成部の本体側の面とで構成される。
第2構成では、連通用流路は、筐体自体に穴あけ加工を施すことによって形成される。第2構成では、連通用流路を囲う壁面は、筐体に対する穴あけ加工によって形成された孔の内周面で構成される。 The communication channel may have, for example, the first configuration or the second configuration.
In the first configuration, the housing has a main body portion and at least one communication flow path configuration portion fixed to the main body portion, and the communication flow path includes the main body portion and the at least one communication flow path configuration. It is formed between the department. The communication channel is formed by being surrounded by wall surfaces. In the first configuration, the wall surface surrounding the communication channel is composed of the surface of the main body and the surface of the communication channel forming part on the main body side.
In the second configuration, the communication channel is formed by drilling the housing itself. In the second configuration, the wall surface surrounding the communication channel is composed of the inner peripheral surface of the hole formed by drilling the housing.
第1構成では、筐体が、本体部と、本体部に固定された少なくとも1つの連通用流路構成部とを有し、連通用流路は、本体部と少なくとも1つの連通用流路構成部との間に形成される。連通用流路は、壁面に囲まれることによって形成される。第1構成では、連通用流路を囲う壁面は、本体部の表面と連通用流路構成部の本体側の面とで構成される。
第2構成では、連通用流路は、筐体自体に穴あけ加工を施すことによって形成される。第2構成では、連通用流路を囲う壁面は、筐体に対する穴あけ加工によって形成された孔の内周面で構成される。 The communication channel may have, for example, the first configuration or the second configuration.
In the first configuration, the housing has a main body portion and at least one communication flow path configuration portion fixed to the main body portion, and the communication flow path includes the main body portion and the at least one communication flow path configuration. It is formed between the department. The communication channel is formed by being surrounded by wall surfaces. In the first configuration, the wall surface surrounding the communication channel is composed of the surface of the main body and the surface of the communication channel forming part on the main body side.
In the second configuration, the communication channel is formed by drilling the housing itself. In the second configuration, the wall surface surrounding the communication channel is composed of the inner peripheral surface of the hole formed by drilling the housing.
なかでも、連通用流路は、第1構成であることが好ましい。
これにより、連通用流路は、筐体自体に穴あけ加工を施すことによって形成される場合よりも所望の経路に形成されやすい。その結果、本開示のケースは、被熱交換媒体の温度をより効率良く制御することができる。 Especially, it is preferable that the communication channel has the first configuration.
As a result, the communication flow path can be formed in a desired path more easily than in the case of forming a hole in the housing itself. As a result, the case of the present disclosure can more efficiently control the temperature of the heat exchange medium.
これにより、連通用流路は、筐体自体に穴あけ加工を施すことによって形成される場合よりも所望の経路に形成されやすい。その結果、本開示のケースは、被熱交換媒体の温度をより効率良く制御することができる。 Especially, it is preferable that the communication channel has the first configuration.
As a result, the communication flow path can be formed in a desired path more easily than in the case of forming a hole in the housing itself. As a result, the case of the present disclosure can more efficiently control the temperature of the heat exchange medium.
連通用流路構成部の形状は、連通用流路を囲う壁面の一部を構成する形状であれば特に限定されず、例えば、長平板状、溝加工が施された長板状等が挙げられる。
連通用流路構成部を本体部に固定する方法(以下、「第1固定方法」という。)は、特に限定されず、本体部の連通用流路構成部と接触する部位の材質、及び連通用流路構成部の材質の各々に応じて選択される。第1固定方法としては、例えば、締結用部品を用いる方法(以下、「機械締結」という。)、溶接、インサート接合層を用いる方法、公知の接着剤を用いる方法、溶着等が挙げられ、これら複数の固定方法を組み合わせて用いることもできる。締結用部品は、ボルト、ナット、ネジ、リベット、又はピンを含む。溶接は、金属溶接、又はろう接を含む。インサート接合層を用いる法では、連結用流路構成部及び本体部を金型内にインサートして、インサート接合層の溶融物を連結用流路構成部及び本体部の間に射出してインサート接合層を形成することで、連結用流路構成部を本体部に固定する。溶着は、熱溶着、振動溶着、レーザー溶着、超音波溶着、熱板溶着を含む。 The shape of the communication channel forming portion is not particularly limited as long as it is a shape that constitutes a part of the wall surface surrounding the communication channel. be done.
The method for fixing the communication flow path forming part to the main body (hereinafter referred to as "first fixing method") is not particularly limited, and the material of the portion of the main body that contacts the communication flow path forming part and the connection It is selected according to each material of the common flow path forming part. Examples of the first fixing method include a method using fastening parts (hereinafter referred to as “mechanical fastening”), welding, a method using an insert bonding layer, a method using a known adhesive, welding, and the like. A plurality of fixing methods can also be used in combination. Fastening parts include bolts, nuts, screws, rivets, or pins. Welding includes metal welding or brazing. In the method using an insert bonding layer, the connecting flow path forming part and the main body are inserted into the mold, and the melted material of the insert bonding layer is injected between the connecting flow path forming part and the main body to perform insert bonding. By forming the layer, the connection flow path forming portion is fixed to the main body portion. Welding includes heat welding, vibration welding, laser welding, ultrasonic welding, and hot plate welding.
連通用流路構成部を本体部に固定する方法(以下、「第1固定方法」という。)は、特に限定されず、本体部の連通用流路構成部と接触する部位の材質、及び連通用流路構成部の材質の各々に応じて選択される。第1固定方法としては、例えば、締結用部品を用いる方法(以下、「機械締結」という。)、溶接、インサート接合層を用いる方法、公知の接着剤を用いる方法、溶着等が挙げられ、これら複数の固定方法を組み合わせて用いることもできる。締結用部品は、ボルト、ナット、ネジ、リベット、又はピンを含む。溶接は、金属溶接、又はろう接を含む。インサート接合層を用いる法では、連結用流路構成部及び本体部を金型内にインサートして、インサート接合層の溶融物を連結用流路構成部及び本体部の間に射出してインサート接合層を形成することで、連結用流路構成部を本体部に固定する。溶着は、熱溶着、振動溶着、レーザー溶着、超音波溶着、熱板溶着を含む。 The shape of the communication channel forming portion is not particularly limited as long as it is a shape that constitutes a part of the wall surface surrounding the communication channel. be done.
The method for fixing the communication flow path forming part to the main body (hereinafter referred to as "first fixing method") is not particularly limited, and the material of the portion of the main body that contacts the communication flow path forming part and the connection It is selected according to each material of the common flow path forming part. Examples of the first fixing method include a method using fastening parts (hereinafter referred to as “mechanical fastening”), welding, a method using an insert bonding layer, a method using a known adhesive, welding, and the like. A plurality of fixing methods can also be used in combination. Fastening parts include bolts, nuts, screws, rivets, or pins. Welding includes metal welding or brazing. In the method using an insert bonding layer, the connecting flow path forming part and the main body are inserted into the mold, and the melted material of the insert bonding layer is injected between the connecting flow path forming part and the main body to perform insert bonding. By forming the layer, the connection flow path forming portion is fixed to the main body portion. Welding includes heat welding, vibration welding, laser welding, ultrasonic welding, and hot plate welding.
連通用流路が第1構成である場合、連通用流路は、第1A構成であってもよいし、第1B構成であってもよい。
第1A構成では、本体部が少なくとも1つの連通用流路構成部に対応する少なくとも1つの溝部を有し、連通用流路は、少なくとも1つの連通用流路構成部が対応する少なくとも1つの溝部を覆うことで形成される。
第1B構成では、本体部が溝部を有さず、少なくとも1つの連通用流路構成部が溝加工されており、連通用流路は、少なくとも1つの連通用流路構成部が本体部の表面を覆うことで形成される。 When the communication channel has the first configuration, the communication channel may have the first A configuration or the first B configuration.
In the 1A configuration, the main body has at least one groove corresponding to at least one communication flow path forming part, and the communication flow path has at least one groove corresponding to the at least one communication flow path forming part. formed by covering the
In the 1B configuration, the main body portion does not have a groove portion, at least one communication flow path forming portion is grooved, and the communication flow path is such that at least one communication flow path forming portion is formed on the surface of the main body portion. formed by covering the
第1A構成では、本体部が少なくとも1つの連通用流路構成部に対応する少なくとも1つの溝部を有し、連通用流路は、少なくとも1つの連通用流路構成部が対応する少なくとも1つの溝部を覆うことで形成される。
第1B構成では、本体部が溝部を有さず、少なくとも1つの連通用流路構成部が溝加工されており、連通用流路は、少なくとも1つの連通用流路構成部が本体部の表面を覆うことで形成される。 When the communication channel has the first configuration, the communication channel may have the first A configuration or the first B configuration.
In the 1A configuration, the main body has at least one groove corresponding to at least one communication flow path forming part, and the communication flow path has at least one groove corresponding to the at least one communication flow path forming part. formed by covering the
In the 1B configuration, the main body portion does not have a groove portion, at least one communication flow path forming portion is grooved, and the communication flow path is such that at least one communication flow path forming portion is formed on the surface of the main body portion. formed by covering the
「本体部が少なくとも1つの連通用流路構成部に対応する少なくとも1つの溝部を有し」とは、1つの連通用流路構成部に対して1つの溝部が本体部に形成されていることを示す。
"The main body has at least one groove corresponding to at least one communication flow path constituting part" means that one groove is formed in the main body for one communication flow path constituting part. indicate.
なかでも、連通用流路は、第1A構成であることが好ましい。
これにより、溝部を有しない筐体の表面に溝加工された連通用流路構成部を被せて連通用流路が形成された構成よりも、筐体はコンパクトに形成され得る。その結果、本開示のケースは、よりコンパクトになり得る。 Above all, it is preferable that the communication channel has the 1A configuration.
As a result, the housing can be formed more compactly than a configuration in which the communication flow path is formed by covering the surface of the housing having no groove with the grooved communication flow path forming portion. As a result, the disclosed case can be more compact.
これにより、溝部を有しない筐体の表面に溝加工された連通用流路構成部を被せて連通用流路が形成された構成よりも、筐体はコンパクトに形成され得る。その結果、本開示のケースは、よりコンパクトになり得る。 Above all, it is preferable that the communication channel has the 1A configuration.
As a result, the housing can be formed more compactly than a configuration in which the communication flow path is formed by covering the surface of the housing having no groove with the grooved communication flow path forming portion. As a result, the disclosed case can be more compact.
連通用流路が第1A構成である場合、溝部の断面形状は、特に限定されず、第1テーパ形状、第2テーパ形状、V字状、U字状等が挙げられる。
第1テーパ形状は、溝部が、開口部と、底面と、第1テーパ状の側面とを含む。第1テーパ状の側面は、底面から開口部に向けて拡大する。
第2テーパ形状は、溝部が、開口部と、底面と、第2テーパ状の側面とを含む。第2テーパ状の側面は、底面から開口部に向けて縮小する。 When the communication channel has the 1A configuration, the cross-sectional shape of the groove is not particularly limited, and may be a first tapered shape, a second tapered shape, a V shape, a U shape, or the like.
In the first tapered shape, the groove includes an opening, a bottom surface, and a first tapered side surface. The first tapered side widens from the bottom toward the opening.
In the second tapered shape, the groove includes an opening, a bottom surface, and a second tapered side surface. The second tapered side tapers from the bottom toward the opening.
第1テーパ形状は、溝部が、開口部と、底面と、第1テーパ状の側面とを含む。第1テーパ状の側面は、底面から開口部に向けて拡大する。
第2テーパ形状は、溝部が、開口部と、底面と、第2テーパ状の側面とを含む。第2テーパ状の側面は、底面から開口部に向けて縮小する。 When the communication channel has the 1A configuration, the cross-sectional shape of the groove is not particularly limited, and may be a first tapered shape, a second tapered shape, a V shape, a U shape, or the like.
In the first tapered shape, the groove includes an opening, a bottom surface, and a first tapered side surface. The first tapered side widens from the bottom toward the opening.
In the second tapered shape, the groove includes an opening, a bottom surface, and a second tapered side surface. The second tapered side tapers from the bottom toward the opening.
なかでも、溝部の断面形状は、第1テーパ形状であることが好ましい。
本体部を射出成形又はプレス成型又はダイキャスト成形で製造する際、本体部には金型の抜き勾配が必要となる。第1形状では、テーパ状の側面の勾配は、抜き勾配となる。これにより、本体部は、射出成形又はプレス成型又はダイキャスト成形によって、製造され得る。そのため、本体部は、射出成形又はプレス成型又はダイキャスト成形によって大量生産されやすい。その結果、本開示のケースは、より容易に製造されやすく、製造コストにより優れる。 Among others, the cross-sectional shape of the groove is preferably the first tapered shape.
When manufacturing the main body by injection molding, press molding, or die-casting, the main body requires a mold draft angle. In the first shape, the slope of the tapered side surface is a draft angle. Thereby, the body can be manufactured by injection molding or press molding or die casting. Therefore, the main body is likely to be mass-produced by injection molding, press molding, or die casting. As a result, the case of the present disclosure tends to be easier to manufacture and is more cost effective to manufacture.
本体部を射出成形又はプレス成型又はダイキャスト成形で製造する際、本体部には金型の抜き勾配が必要となる。第1形状では、テーパ状の側面の勾配は、抜き勾配となる。これにより、本体部は、射出成形又はプレス成型又はダイキャスト成形によって、製造され得る。そのため、本体部は、射出成形又はプレス成型又はダイキャスト成形によって大量生産されやすい。その結果、本開示のケースは、より容易に製造されやすく、製造コストにより優れる。 Among others, the cross-sectional shape of the groove is preferably the first tapered shape.
When manufacturing the main body by injection molding, press molding, or die-casting, the main body requires a mold draft angle. In the first shape, the slope of the tapered side surface is a draft angle. Thereby, the body can be manufactured by injection molding or press molding or die casting. Therefore, the main body is likely to be mass-produced by injection molding, press molding, or die casting. As a result, the case of the present disclosure tends to be easier to manufacture and is more cost effective to manufacture.
(1.2.2)本体部
本体部は、被熱交換体を収容する少なくとも1つの収容壁部を有し、収容壁部は、被熱交換体と対向する内側面と、内側面と対向する外側面とを含み、連通用流路は、少なくとも1つの連通用流路構成部と、収容壁部の外側面との間に形成されていることが好ましい。
つまり、熱交換用流路は収容壁部の内側面側に形成され、連通用流路は収容壁部の外側面側に形成されていることが好ましい。被熱交換体は、収容壁部の内側面側に収容される。これにより、連通用流路を流通する熱交換媒体は、収容壁部の内側面側に連通用流路が形成された構成よりも被熱交換体と熱的に接触しにくい。その結果、本開示のケースは、被熱交換媒体の温度をより効率良く制御することができる。
更に、本開示のケースは、収容壁部の内側面側に連通用流路が形成された構成よりも収容空間をより広く確保することができる。その結果、本開示のケースは、収容空間の有効活用をよりしやすくすることができる。
連通用流路が収容壁部の外側面側に形成されていることで、連通用流路から熱交換媒体が漏出した場合、筐体の内側面側に連通用流路が形成された構成よりも、漏出した熱交換媒体は被熱交換体に到達しにくい。その結果、本開示のケースは、収容される被熱交換体をより安全に収容することができる。 (1.2.2) Body portion The body portion has at least one housing wall portion for housing the body to be heat-exchanged, and the housing wall portion has an inner surface facing the body to be heat-exchanged and an inner side surface facing the body. It is preferable that the communication channel is formed between at least one communication channel forming portion and the outer surface of the housing wall portion.
In other words, it is preferable that the heat exchange channel is formed on the inner side of the housing wall, and the communication channel is formed on the outer side of the housing wall. The body to be heat-exchanged is housed on the inner side surface of the housing wall. As a result, the heat exchange medium flowing through the communication channel is less likely to come into thermal contact with the heat-exchanged body than in the configuration in which the communication channel is formed on the inner side surface of the housing wall. As a result, the case of the present disclosure can more efficiently control the temperature of the heat exchange medium.
Furthermore, the case of the present disclosure can secure a wider storage space than a configuration in which a communication channel is formed on the inner side surface of the storage wall. As a result, the case of the present disclosure can facilitate effective utilization of the storage space.
Since the communication flow path is formed on the outer side surface of the housing wall, if the heat exchange medium leaks from the communication flow path, the communication flow path is formed on the inner side surface of the housing. However, it is difficult for the leaked heat exchange medium to reach the object to be heat exchanged. As a result, the case of the present disclosure can more safely accommodate the heat-exchanged body.
本体部は、被熱交換体を収容する少なくとも1つの収容壁部を有し、収容壁部は、被熱交換体と対向する内側面と、内側面と対向する外側面とを含み、連通用流路は、少なくとも1つの連通用流路構成部と、収容壁部の外側面との間に形成されていることが好ましい。
つまり、熱交換用流路は収容壁部の内側面側に形成され、連通用流路は収容壁部の外側面側に形成されていることが好ましい。被熱交換体は、収容壁部の内側面側に収容される。これにより、連通用流路を流通する熱交換媒体は、収容壁部の内側面側に連通用流路が形成された構成よりも被熱交換体と熱的に接触しにくい。その結果、本開示のケースは、被熱交換媒体の温度をより効率良く制御することができる。
更に、本開示のケースは、収容壁部の内側面側に連通用流路が形成された構成よりも収容空間をより広く確保することができる。その結果、本開示のケースは、収容空間の有効活用をよりしやすくすることができる。
連通用流路が収容壁部の外側面側に形成されていることで、連通用流路から熱交換媒体が漏出した場合、筐体の内側面側に連通用流路が形成された構成よりも、漏出した熱交換媒体は被熱交換体に到達しにくい。その結果、本開示のケースは、収容される被熱交換体をより安全に収容することができる。 (1.2.2) Body portion The body portion has at least one housing wall portion for housing the body to be heat-exchanged, and the housing wall portion has an inner surface facing the body to be heat-exchanged and an inner side surface facing the body. It is preferable that the communication channel is formed between at least one communication channel forming portion and the outer surface of the housing wall portion.
In other words, it is preferable that the heat exchange channel is formed on the inner side of the housing wall, and the communication channel is formed on the outer side of the housing wall. The body to be heat-exchanged is housed on the inner side surface of the housing wall. As a result, the heat exchange medium flowing through the communication channel is less likely to come into thermal contact with the heat-exchanged body than in the configuration in which the communication channel is formed on the inner side surface of the housing wall. As a result, the case of the present disclosure can more efficiently control the temperature of the heat exchange medium.
Furthermore, the case of the present disclosure can secure a wider storage space than a configuration in which a communication channel is formed on the inner side surface of the storage wall. As a result, the case of the present disclosure can facilitate effective utilization of the storage space.
Since the communication flow path is formed on the outer side surface of the housing wall, if the heat exchange medium leaks from the communication flow path, the communication flow path is formed on the inner side surface of the housing. However, it is difficult for the leaked heat exchange medium to reach the object to be heat exchanged. As a result, the case of the present disclosure can more safely accommodate the heat-exchanged body.
収容壁部の形状は、被熱交換体を収容可能な形状であれば特に限定されず、重力方向の反対側(以下、「上方」という。)が開口した容器状物であることが好ましい。
収容壁部は、底壁部と囲い壁部とを含むことが好ましい。囲い壁部は、底壁部の周縁部から上方に立設している。囲い壁部は、被熱交換体を囲うために形成されている。底壁部及び囲い壁部は、収容空間を構成する。囲い壁部の形状は、底壁部の周縁部の形状に依存する。囲い壁部の形状は、特に限定されず、平面視において、矩形状、多角形状(但し、矩形状を除く。)、丸状、楕円状等が挙げられる。「平面視」とは、上方から下方に向けて(重力方向に向けて)見たことを示す。
収容壁部の数は、1つ以上であればよく、2つ以上であってもよい。
収容壁部の形状が上方向に開口した容器状物である場合、筐体は、収容空間を覆う蓋部を備えていてもよい。 The shape of the housing wall portion is not particularly limited as long as it is capable of housing the body to be heat-exchanged, and is preferably a container-like object with an opening on the side opposite to the direction of gravity (hereinafter referred to as "upper").
The containing wall preferably includes a bottom wall and an enclosing wall. The surrounding wall portion is erected upward from the peripheral edge portion of the bottom wall portion. The surrounding wall portion is formed to surround the heat-exchanged body. The bottom wall portion and the surrounding wall portion constitute the accommodation space. The shape of the enclosure wall depends on the shape of the peripheral edge of the bottom wall. The shape of the surrounding wall is not particularly limited, and may be rectangular, polygonal (excluding rectangular), round, elliptical, or the like in plan view. A “planar view” indicates a view from above downward (toward the direction of gravity).
The number of accommodation walls may be one or more, and may be two or more.
When the shape of the housing wall is a container-like object that opens upward, the housing may include a lid that covers the housing space.
収容壁部は、底壁部と囲い壁部とを含むことが好ましい。囲い壁部は、底壁部の周縁部から上方に立設している。囲い壁部は、被熱交換体を囲うために形成されている。底壁部及び囲い壁部は、収容空間を構成する。囲い壁部の形状は、底壁部の周縁部の形状に依存する。囲い壁部の形状は、特に限定されず、平面視において、矩形状、多角形状(但し、矩形状を除く。)、丸状、楕円状等が挙げられる。「平面視」とは、上方から下方に向けて(重力方向に向けて)見たことを示す。
収容壁部の数は、1つ以上であればよく、2つ以上であってもよい。
収容壁部の形状が上方向に開口した容器状物である場合、筐体は、収容空間を覆う蓋部を備えていてもよい。 The shape of the housing wall portion is not particularly limited as long as it is capable of housing the body to be heat-exchanged, and is preferably a container-like object with an opening on the side opposite to the direction of gravity (hereinafter referred to as "upper").
The containing wall preferably includes a bottom wall and an enclosing wall. The surrounding wall portion is erected upward from the peripheral edge portion of the bottom wall portion. The surrounding wall portion is formed to surround the heat-exchanged body. The bottom wall portion and the surrounding wall portion constitute the accommodation space. The shape of the enclosure wall depends on the shape of the peripheral edge of the bottom wall. The shape of the surrounding wall is not particularly limited, and may be rectangular, polygonal (excluding rectangular), round, elliptical, or the like in plan view. A “planar view” indicates a view from above downward (toward the direction of gravity).
The number of accommodation walls may be one or more, and may be two or more.
When the shape of the housing wall is a container-like object that opens upward, the housing may include a lid that covers the housing space.
収容壁部の数が2以上である場合、本体部は、接続壁部を有していてもよい。接続壁部は、収容壁部同士を接続する。
When the number of housing walls is two or more, the main body may have connection walls. The connection wall connects the housing walls.
筐体は、熱交換媒体を供給するための少なくとも1つの供給口と、熱交換媒体を排出するための少なくとも1つの排出口とを有し、少なくとも1つの供給口と、少なくとも1つの排出口と、複数の熱交換用流路の各々と、連通用流路とは、連通していることが好ましい。
これにより、熱交換媒体を筐体の供給口から供給すると、熱交換媒体は、連通用流路を介して、複数の熱交換用流路の各々を流通して、筐体の排出口から排出され得る。その結果、本開示のケースは、被熱交換媒体の温度をより効率良く制御することができる。 The housing has at least one supply port for supplying the heat exchange medium and at least one discharge port for discharging the heat exchange medium, the at least one supply port and the at least one discharge port It is preferable that each of the plurality of heat exchange channels and the communication channel communicate with each other.
Thereby, when the heat exchange medium is supplied from the supply port of the housing, the heat exchange medium flows through each of the plurality of heat exchange channels via the communication flow channel and is discharged from the discharge port of the housing. can be As a result, the case of the present disclosure can more efficiently control the temperature of the heat exchange medium.
これにより、熱交換媒体を筐体の供給口から供給すると、熱交換媒体は、連通用流路を介して、複数の熱交換用流路の各々を流通して、筐体の排出口から排出され得る。その結果、本開示のケースは、被熱交換媒体の温度をより効率良く制御することができる。 The housing has at least one supply port for supplying the heat exchange medium and at least one discharge port for discharging the heat exchange medium, the at least one supply port and the at least one discharge port It is preferable that each of the plurality of heat exchange channels and the communication channel communicate with each other.
Thereby, when the heat exchange medium is supplied from the supply port of the housing, the heat exchange medium flows through each of the plurality of heat exchange channels via the communication flow channel and is discharged from the discharge port of the housing. can be As a result, the case of the present disclosure can more efficiently control the temperature of the heat exchange medium.
供給口の数及び位置の各々は、特に限定されず、筐体のサイズ等に応じて選択され得る。排出口の数及び位置の各々は、特に限定されず、筐体のサイズ等に応じて選択され得る。供給口の数と排出口の数とは、同一であってもよいし、異なっていてもよい。
The number and positions of the supply ports are not particularly limited, and can be selected according to the size of the housing. Each of the number and positions of the outlets is not particularly limited, and can be selected according to the size of the housing and the like. The number of supply ports and the number of discharge ports may be the same or different.
筐体を構成する材質は、金属であってもよいし、樹脂であってもよい。
筐体を構成する金属は、特に限定されず、後述する金属プレートを構成する金属として例示する金属と同様の金属が挙げられる。
筐体を構成する樹脂は、特に制限されず、ケースの用途等に応じて選択できる。筐体を構成する樹脂としては、熱可塑性樹脂(エラストマーを含む)、熱硬化性樹脂等が挙げられる。熱可塑性樹脂(エラストマーを含む)としては、例えば、ポリオレフィン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン系樹脂、アクリロニトリルスチレン共重合体(AS)樹脂、アクリロニトリルブタジエンスチレン共重体(ABS)樹脂、ポリエステル系樹脂、ポリ(メタ)アクリル系樹脂、ポリビニルアルコール、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリアセタール系樹脂、フッ素系樹脂、ポリサルフォン系樹脂、ポリフェニレンスルフィド樹脂、ポリケトン系樹脂等が挙げられる。熱硬化性樹脂としては、例えば、フェノール樹脂、メラミン樹脂、ユリア樹脂、ポリウレタン系樹脂、エポキシ樹脂、不飽和ポリエステル樹脂等が挙げられる。これらの樹脂は単独で使用してもよく、2種以上を組み合わせて使用してもよい。筐体を構成する樹脂は、筐体の機械的強度を向上させる等の観点から、充填材を含有してもよい。充填材としては、例えば、ガラス繊維、炭素繊維、炭素粒子、粘土、タルク、無機物、ミネラル、セルロース繊維等が挙げられる。筐体を構成する樹脂は、筐体に自己消炎性を付与する観点から、難燃剤を含有してもよい。難燃剤としては、ハロゲン系難燃剤、ノンハロゲン系難燃剤等が挙げられる。ハロゲン系難燃剤としては、例えば、脂肪族系臭素化合物、芳香族系臭素化合物、塩素系化合物等が挙げられる。ノンハロゲン系難燃剤としては、例えば、りん系難燃剤、無機系難燃剤、シリコーン系難燃剤、窒素系難燃剤等が挙げられる。筐体を構成する樹脂は、配合剤を含有してもよい。配合剤としては、例えば、熱安定剤、酸化防止剤、顔料、耐候剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤等が挙げられる。
筐体は、金属成形品、又は樹脂成形品であってもよい。金属成形品は、ロール成形品、ダイキャスト成形品、切削加工品、圧延材、プレス成形品、又は押出材を含む。樹脂成形品は、射出成形品、又はプレス成形品を含む。 The material forming the housing may be metal or resin.
The metal forming the housing is not particularly limited, and examples thereof include metals similar to the metals exemplified as the metal forming the metal plate described later.
The resin constituting the housing is not particularly limited, and can be selected according to the use of the case. Examples of the resin forming the housing include thermoplastic resins (including elastomers), thermosetting resins, and the like. Examples of thermoplastic resins (including elastomers) include polyolefin resins, polyvinyl chloride, polyvinylidene chloride, polystyrene resins, acrylonitrile-styrene copolymer (AS) resins, acrylonitrile-butadiene-styrene copolymer (ABS) resins, polyester resin, poly(meth)acrylic resin, polyvinyl alcohol, polycarbonate resin, polyamide resin, polyimide resin, polyether resin, polyacetal resin, fluorine resin, polysulfone resin, polyphenylene sulfide resin, polyketone resin etc. Thermosetting resins include, for example, phenol resins, melamine resins, urea resins, polyurethane resins, epoxy resins, unsaturated polyester resins, and the like. These resins may be used alone or in combination of two or more. The resin forming the housing may contain a filler from the viewpoint of improving the mechanical strength of the housing. Examples of fillers include glass fibers, carbon fibers, carbon particles, clay, talc, inorganic substances, minerals, and cellulose fibers. The resin forming the housing may contain a flame retardant from the viewpoint of imparting self-extinguishing properties to the housing. Examples of flame retardants include halogen flame retardants and non-halogen flame retardants. Halogenated flame retardants include, for example, aliphatic bromine compounds, aromatic bromine compounds, and chlorine compounds. Non-halogen flame retardants include, for example, phosphorus flame retardants, inorganic flame retardants, silicone flame retardants, and nitrogen flame retardants. The resin forming the housing may contain a compounding agent. Compounding agents include, for example, heat stabilizers, antioxidants, pigments, weathering agents, plasticizers, dispersants, lubricants, release agents, antistatic agents, and the like.
The housing may be a metal molded product or a resin molded product. Metal molded products include roll molded products, die cast molded products, machined products, rolled products, press molded products, or extruded products. Resin molded products include injection molded products and press molded products.
筐体を構成する金属は、特に限定されず、後述する金属プレートを構成する金属として例示する金属と同様の金属が挙げられる。
筐体を構成する樹脂は、特に制限されず、ケースの用途等に応じて選択できる。筐体を構成する樹脂としては、熱可塑性樹脂(エラストマーを含む)、熱硬化性樹脂等が挙げられる。熱可塑性樹脂(エラストマーを含む)としては、例えば、ポリオレフィン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン系樹脂、アクリロニトリルスチレン共重合体(AS)樹脂、アクリロニトリルブタジエンスチレン共重体(ABS)樹脂、ポリエステル系樹脂、ポリ(メタ)アクリル系樹脂、ポリビニルアルコール、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリアセタール系樹脂、フッ素系樹脂、ポリサルフォン系樹脂、ポリフェニレンスルフィド樹脂、ポリケトン系樹脂等が挙げられる。熱硬化性樹脂としては、例えば、フェノール樹脂、メラミン樹脂、ユリア樹脂、ポリウレタン系樹脂、エポキシ樹脂、不飽和ポリエステル樹脂等が挙げられる。これらの樹脂は単独で使用してもよく、2種以上を組み合わせて使用してもよい。筐体を構成する樹脂は、筐体の機械的強度を向上させる等の観点から、充填材を含有してもよい。充填材としては、例えば、ガラス繊維、炭素繊維、炭素粒子、粘土、タルク、無機物、ミネラル、セルロース繊維等が挙げられる。筐体を構成する樹脂は、筐体に自己消炎性を付与する観点から、難燃剤を含有してもよい。難燃剤としては、ハロゲン系難燃剤、ノンハロゲン系難燃剤等が挙げられる。ハロゲン系難燃剤としては、例えば、脂肪族系臭素化合物、芳香族系臭素化合物、塩素系化合物等が挙げられる。ノンハロゲン系難燃剤としては、例えば、りん系難燃剤、無機系難燃剤、シリコーン系難燃剤、窒素系難燃剤等が挙げられる。筐体を構成する樹脂は、配合剤を含有してもよい。配合剤としては、例えば、熱安定剤、酸化防止剤、顔料、耐候剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤等が挙げられる。
筐体は、金属成形品、又は樹脂成形品であってもよい。金属成形品は、ロール成形品、ダイキャスト成形品、切削加工品、圧延材、プレス成形品、又は押出材を含む。樹脂成形品は、射出成形品、又はプレス成形品を含む。 The material forming the housing may be metal or resin.
The metal forming the housing is not particularly limited, and examples thereof include metals similar to the metals exemplified as the metal forming the metal plate described later.
The resin constituting the housing is not particularly limited, and can be selected according to the use of the case. Examples of the resin forming the housing include thermoplastic resins (including elastomers), thermosetting resins, and the like. Examples of thermoplastic resins (including elastomers) include polyolefin resins, polyvinyl chloride, polyvinylidene chloride, polystyrene resins, acrylonitrile-styrene copolymer (AS) resins, acrylonitrile-butadiene-styrene copolymer (ABS) resins, polyester resin, poly(meth)acrylic resin, polyvinyl alcohol, polycarbonate resin, polyamide resin, polyimide resin, polyether resin, polyacetal resin, fluorine resin, polysulfone resin, polyphenylene sulfide resin, polyketone resin etc. Thermosetting resins include, for example, phenol resins, melamine resins, urea resins, polyurethane resins, epoxy resins, unsaturated polyester resins, and the like. These resins may be used alone or in combination of two or more. The resin forming the housing may contain a filler from the viewpoint of improving the mechanical strength of the housing. Examples of fillers include glass fibers, carbon fibers, carbon particles, clay, talc, inorganic substances, minerals, and cellulose fibers. The resin forming the housing may contain a flame retardant from the viewpoint of imparting self-extinguishing properties to the housing. Examples of flame retardants include halogen flame retardants and non-halogen flame retardants. Halogenated flame retardants include, for example, aliphatic bromine compounds, aromatic bromine compounds, and chlorine compounds. Non-halogen flame retardants include, for example, phosphorus flame retardants, inorganic flame retardants, silicone flame retardants, and nitrogen flame retardants. The resin forming the housing may contain a compounding agent. Compounding agents include, for example, heat stabilizers, antioxidants, pigments, weathering agents, plasticizers, dispersants, lubricants, release agents, antistatic agents, and the like.
The housing may be a metal molded product or a resin molded product. Metal molded products include roll molded products, die cast molded products, machined products, rolled products, press molded products, or extruded products. Resin molded products include injection molded products and press molded products.
筐体が本体部及び少なくとも1つの連通用流路構成部を有する場合、本体部及び少なくとも1つの連通用流路構成部の各々を構成する材質としては、筐体を構成する材質として例示したものと同様のものが挙げられる。本体部を構成する材質と、少なくとも1つの連通用流路構成部を構成する材質とは、同一であってもよいし、異なっていてもよい。
筐体が蓋部を有する場合、蓋部を構成する材質としては、筐体を構成する材質として例示したものと同様のものが挙げられる。蓋部を構成する材質と、本体部を構成する材質とは、同一であってもよいし、異なっていてもよい。 When the housing has a main body and at least one communication flow path forming part, the material constituting each of the main body and the at least one communication flow path forming part is the material composing the housing. and similar ones. The material forming the main body portion and the material forming at least one communication flow path forming portion may be the same or different.
In the case where the housing has a lid, examples of the material that constitutes the lid are the same as those exemplified as the materials that constitute the housing. The material forming the lid and the material forming the main body may be the same or different.
筐体が蓋部を有する場合、蓋部を構成する材質としては、筐体を構成する材質として例示したものと同様のものが挙げられる。蓋部を構成する材質と、本体部を構成する材質とは、同一であってもよいし、異なっていてもよい。 When the housing has a main body and at least one communication flow path forming part, the material constituting each of the main body and the at least one communication flow path forming part is the material composing the housing. and similar ones. The material forming the main body portion and the material forming at least one communication flow path forming portion may be the same or different.
In the case where the housing has a lid, examples of the material that constitutes the lid are the same as those exemplified as the materials that constitute the housing. The material forming the lid and the material forming the main body may be the same or different.
(1.3)金属プレート
金属プレートは、金属製の板状物である。
金属プレートの形状は、筐体と金属プレートとの間に熱交換用流路を形成する形状であればよく、被熱交換体の種類及び筐体の形状等に応じて適宜選択される。金属プレートのサイズは、被熱交換体の種類、及び筐体のサイズ等に応じて適宜選択される。
金属プレートを構成する金属の材質は、特に制限されず、例えば、鉄、銅、ニッケル、金、銀、プラチナ、コバルト、亜鉛、鉛、スズ、チタン、クロム、アルミニウム、マグネシウム、マンガン及びこれらの合金(ステンレス、真鍮、リン青銅等)等が挙げられる。なかでも、熱伝導性の観点からは、金属プレートを構成する金属の材質は、アルミニウム、アルミニウム合金、銅、又は銅合金が好ましく、銅又は銅合金がより好ましい。軽量化及び強度確保の観点からは、金属プレートを構成する金属の材質は、アルミニウム又はアルミニウム合金が好ましい。
金属プレートは、金属成形品であってもよい。金属成形品は、ロール成形品、ダイキャスト成形品、切削加工品、圧延材、プレス成形品、又は押出材を含む。 (1.3) Metal plate A metal plate is a plate-like object made of metal.
The shape of the metal plate may be any shape that forms a heat exchange flow path between the housing and the metal plate, and is appropriately selected according to the type of heat-exchanged body, the shape of the housing, and the like. The size of the metal plate is appropriately selected according to the type of heat-exchanged body, the size of the housing, and the like.
The material of the metal constituting the metal plate is not particularly limited, and examples include iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium, manganese, and alloys thereof. (stainless steel, brass, phosphor bronze, etc.) and the like. Among them, from the viewpoint of thermal conductivity, the material of the metal forming the metal plate is preferably aluminum, an aluminum alloy, copper, or a copper alloy, and more preferably copper or a copper alloy. From the viewpoint of weight reduction and ensuring strength, the material of the metal forming the metal plate is preferably aluminum or an aluminum alloy.
The metal plate may be a metal molding. Metal molded products include roll molded products, die cast molded products, machined products, rolled products, press molded products, or extruded products.
金属プレートは、金属製の板状物である。
金属プレートの形状は、筐体と金属プレートとの間に熱交換用流路を形成する形状であればよく、被熱交換体の種類及び筐体の形状等に応じて適宜選択される。金属プレートのサイズは、被熱交換体の種類、及び筐体のサイズ等に応じて適宜選択される。
金属プレートを構成する金属の材質は、特に制限されず、例えば、鉄、銅、ニッケル、金、銀、プラチナ、コバルト、亜鉛、鉛、スズ、チタン、クロム、アルミニウム、マグネシウム、マンガン及びこれらの合金(ステンレス、真鍮、リン青銅等)等が挙げられる。なかでも、熱伝導性の観点からは、金属プレートを構成する金属の材質は、アルミニウム、アルミニウム合金、銅、又は銅合金が好ましく、銅又は銅合金がより好ましい。軽量化及び強度確保の観点からは、金属プレートを構成する金属の材質は、アルミニウム又はアルミニウム合金が好ましい。
金属プレートは、金属成形品であってもよい。金属成形品は、ロール成形品、ダイキャスト成形品、切削加工品、圧延材、プレス成形品、又は押出材を含む。 (1.3) Metal plate A metal plate is a plate-like object made of metal.
The shape of the metal plate may be any shape that forms a heat exchange flow path between the housing and the metal plate, and is appropriately selected according to the type of heat-exchanged body, the shape of the housing, and the like. The size of the metal plate is appropriately selected according to the type of heat-exchanged body, the size of the housing, and the like.
The material of the metal constituting the metal plate is not particularly limited, and examples include iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium, manganese, and alloys thereof. (stainless steel, brass, phosphor bronze, etc.) and the like. Among them, from the viewpoint of thermal conductivity, the material of the metal forming the metal plate is preferably aluminum, an aluminum alloy, copper, or a copper alloy, and more preferably copper or a copper alloy. From the viewpoint of weight reduction and ensuring strength, the material of the metal forming the metal plate is preferably aluminum or an aluminum alloy.
The metal plate may be a metal molding. Metal molded products include roll molded products, die cast molded products, machined products, rolled products, press molded products, or extruded products.
金属プレートは、筐体に固定されることによって、金属プレートと筐体との間に熱交換用流路を形成する。
金属プレートを筐体に固定する方法(以下、「第2固定方法」)は、特に限定されず、第1固定方法として例示した方法と同様の方法が挙げられる。インサート接合層を用いる法では、金属プレート及び筐体を金型内にインサートして、インサート接合層の溶融物を金属プレート及び筐体の間に射出してインサート接合層を形成することで、金属プレートを筐体に固定する。 The metal plate is fixed to the housing to form a heat exchange channel between the metal plate and the housing.
A method for fixing the metal plate to the housing (hereinafter referred to as "second fixing method") is not particularly limited, and the same method as the first fixing method can be used. In the method using an insert bonding layer, a metal plate and a housing are inserted into a mold, and a melt of the insert bonding layer is injected between the metal plate and the housing to form an insert bonding layer, whereby the metal Secure the plate to the housing.
金属プレートを筐体に固定する方法(以下、「第2固定方法」)は、特に限定されず、第1固定方法として例示した方法と同様の方法が挙げられる。インサート接合層を用いる法では、金属プレート及び筐体を金型内にインサートして、インサート接合層の溶融物を金属プレート及び筐体の間に射出してインサート接合層を形成することで、金属プレートを筐体に固定する。 The metal plate is fixed to the housing to form a heat exchange channel between the metal plate and the housing.
A method for fixing the metal plate to the housing (hereinafter referred to as "second fixing method") is not particularly limited, and the same method as the first fixing method can be used. In the method using an insert bonding layer, a metal plate and a housing are inserted into a mold, and a melt of the insert bonding layer is injected between the metal plate and the housing to form an insert bonding layer, whereby the metal Secure the plate to the housing.
金属プレートは、被熱交換体と熱的に接触する。
金属プレートは、被熱交換体と物理的に直接的に接触していてもよいし、被熱交換体と物理的に間接的に接触していてもよい。
金属プレートは、例えば、熱伝導層を介して熱的に接触していてもよい。熱伝導層は、特に限定されず、熱伝導シートであってもよいし、熱伝導材料(TIM:Thermal Interface Material)層であってもよい。熱伝導材料層は、熱伝導性材料が塗布されて形成された層を示す。熱伝導性材料は、熱伝導性グリース、熱伝導性ゲル、熱伝導接着剤、フェイズチェンジマテリアル(Phase Change Material)等が挙げられる。 The metal plate is in thermal contact with the heat exchange object.
The metal plate may be in direct physical contact with the body to be heat-exchanged, or may be in indirect physical contact with the body to be heat-exchanged.
The metal plates may, for example, be in thermal contact via a heat conducting layer. The heat-conducting layer is not particularly limited, and may be a heat-conducting sheet or a heat-conducting material (TIM: Thermal Interface Material) layer. A thermally conductive material layer indicates a layer formed by applying a thermally conductive material. Thermally conductive materials include thermally conductive greases, thermally conductive gels, thermally conductive adhesives, Phase Change Materials, and the like.
金属プレートは、被熱交換体と物理的に直接的に接触していてもよいし、被熱交換体と物理的に間接的に接触していてもよい。
金属プレートは、例えば、熱伝導層を介して熱的に接触していてもよい。熱伝導層は、特に限定されず、熱伝導シートであってもよいし、熱伝導材料(TIM:Thermal Interface Material)層であってもよい。熱伝導材料層は、熱伝導性材料が塗布されて形成された層を示す。熱伝導性材料は、熱伝導性グリース、熱伝導性ゲル、熱伝導接着剤、フェイズチェンジマテリアル(Phase Change Material)等が挙げられる。 The metal plate is in thermal contact with the heat exchange object.
The metal plate may be in direct physical contact with the body to be heat-exchanged, or may be in indirect physical contact with the body to be heat-exchanged.
The metal plates may, for example, be in thermal contact via a heat conducting layer. The heat-conducting layer is not particularly limited, and may be a heat-conducting sheet or a heat-conducting material (TIM: Thermal Interface Material) layer. A thermally conductive material layer indicates a layer formed by applying a thermally conductive material. Thermally conductive materials include thermally conductive greases, thermally conductive gels, thermally conductive adhesives, Phase Change Materials, and the like.
(1.4)パッキン
複数の金属プレートの各々は、筐体との間に介在するパッキンを更に備えることが好ましい。
これにより、複数の金属プレートの各々と筐体との密閉性は、ケースがパッキンを備えない構成よりも優れる。その結果、本開示のケースは、複数の金属プレートの各々と筐体との隙間から熱交換媒体の漏れ又は外部の異物の侵入をより確実に防止することができる。 (1.4) Packing Preferably, each of the plurality of metal plates further includes a packing interposed between itself and the housing.
As a result, the sealing performance between each of the plurality of metal plates and the housing is superior to that in which the case is provided with no packing. As a result, the case of the present disclosure can more reliably prevent leakage of the heat exchange medium or entry of foreign matter from the outside through the gap between each of the plurality of metal plates and the housing.
複数の金属プレートの各々は、筐体との間に介在するパッキンを更に備えることが好ましい。
これにより、複数の金属プレートの各々と筐体との密閉性は、ケースがパッキンを備えない構成よりも優れる。その結果、本開示のケースは、複数の金属プレートの各々と筐体との隙間から熱交換媒体の漏れ又は外部の異物の侵入をより確実に防止することができる。 (1.4) Packing Preferably, each of the plurality of metal plates further includes a packing interposed between itself and the housing.
As a result, the sealing performance between each of the plurality of metal plates and the housing is superior to that in which the case is provided with no packing. As a result, the case of the present disclosure can more reliably prevent leakage of the heat exchange medium or entry of foreign matter from the outside through the gap between each of the plurality of metal plates and the housing.
パッキンの位置は、熱交換用流路の密閉性を向上させることができる位置に形成されていればよく、例えば、金属プレートの筐体に対向する側の面の周縁に沿って形成されていることが好ましい。
The position of the packing may be formed at a position that can improve the airtightness of the heat exchange flow path. For example, the packing is formed along the periphery of the surface of the metal plate facing the housing. is preferred.
パッキンは、複数の金属プレートの各々に接合していることが好ましい。これにより、パッキンと、複数の金属プレートとの隙間の発生は、より確実に防止されることができる。更に、パッキンは、パッキンが複数の金属プレートの各々に接合していない場合よりも、複数の金属プレートの各々から脱離しにくい。その結果、熱交換用流路の密閉性は、より向上するとともに、熱交換用流路の優れた密閉性は長期に亘って維持される。例えば、金属プレートが平板ではなく、曲げ加工されており、金属プレートの筐体とのシール面が複雑な形状である場合であっても、パッキンが金属プレートに接合されていることによって、熱交換用流路の気密性はより優れる。
The packing is preferably joined to each of the plurality of metal plates. Thereby, the occurrence of gaps between the packing and the plurality of metal plates can be prevented more reliably. Furthermore, the packing is less likely to detach from each of the plurality of metal plates than if the packing were not bonded to each of the plurality of metal plates. As a result, the airtightness of the heat exchange passage is further improved, and the excellent airtightness of the heat exchange passage is maintained for a long period of time. For example, even if the metal plate is bent rather than flat, and the sealing surface of the metal plate with the housing has a complicated shape, the packing is joined to the metal plate to facilitate heat exchange. The airtightness of the irrigation channel is better.
パッキンの材質が、樹脂である場合、パッキンと金属プレートとの接合方法は、特に限定されず、インサート成形法、公知の接着剤を用いる方法、溶着法等が挙げられる。インサート成形法では、金属プレートを射出成形金型内にインサートして、パッキンの材質の溶融物を金属プレートの筐体側の面の所定の部位に射出成形する方法や、金属プレートを熱硬化用プレス金型内にインサートして、パッキンの材質を金型内で金属プレートの筐体側の面の所定の部位に接触させて熱硬化することでパッキンを金属プレートに接合する方法等が挙げられる。溶着法では、熱板、振動、レーザー等によってパッキンの金属プレートと接触する部位を溶融状態にして、パッキンを金属プレートに接合する。
When the material of the packing is a resin, the method of joining the packing and the metal plate is not particularly limited, and examples include an insert molding method, a method using a known adhesive, and a welding method. In the insert molding method, a metal plate is inserted into an injection mold, and a molten material of the packing material is injection-molded onto a predetermined portion of the surface of the metal plate on the housing side. A method of joining the packing to the metal plate by inserting the packing into the metal mold and heat-curing the material of the packing in contact with a predetermined portion of the housing-side surface of the metal plate in the mold. In the welding method, the portion of the packing that contacts the metal plate is melted by a hot plate, vibration, laser, or the like, and the packing is joined to the metal plate.
複数の金属プレートの各々は、パッキンと接触する部位に凹凸構造を有し、パッキンの材質が、樹脂であることが好ましい。
これにより、凹凸構造の凹部内にパッキンの一部が入り込み、パッキンは、金属プレートのパッキンと接触する部位に凹凸構造を有しない構成よりも金属プレートに強固に接合する。その結果、本開示のケースは、複数の金属プレートの各々と筐体との隙間から熱交換媒体の漏れ又は外部の異物の侵入をより確実に防止することができる。 It is preferable that each of the plurality of metal plates has an uneven structure at a portion that contacts the packing, and that the packing is made of resin.
As a result, part of the packing enters the concave portion of the concave-convex structure, and the packing is more strongly bonded to the metal plate than in the case where the metal plate does not have the concave-convex structure at the part that contacts the packing. As a result, the case of the present disclosure can more reliably prevent leakage of the heat exchange medium or entry of foreign matter from the outside through the gap between each of the plurality of metal plates and the housing.
これにより、凹凸構造の凹部内にパッキンの一部が入り込み、パッキンは、金属プレートのパッキンと接触する部位に凹凸構造を有しない構成よりも金属プレートに強固に接合する。その結果、本開示のケースは、複数の金属プレートの各々と筐体との隙間から熱交換媒体の漏れ又は外部の異物の侵入をより確実に防止することができる。 It is preferable that each of the plurality of metal plates has an uneven structure at a portion that contacts the packing, and that the packing is made of resin.
As a result, part of the packing enters the concave portion of the concave-convex structure, and the packing is more strongly bonded to the metal plate than in the case where the metal plate does not have the concave-convex structure at the part that contacts the packing. As a result, the case of the present disclosure can more reliably prevent leakage of the heat exchange medium or entry of foreign matter from the outside through the gap between each of the plurality of metal plates and the housing.
凹凸構造の状態は、パッキンとの接合強度が充分に得られるのであれば特に制限されない。
凹凸構造における凹部の平均孔径は、金属プレートとパッキンとの接合強度をより向上させる観点から、例えば5nm~500μmであってよく、好ましくは10nm~150μmであり、より好ましくは15nm~100μmである。
凹凸構造における凹部の平均孔深さは、例えば5nm~500μmであってよく、好ましくは10nm~150μmであり、より好ましくは15nm~100μmである。
凹凸構造における凹部の平均孔径又は平均孔深さのいずれか又は両方が上記数値範囲内であると、より強固な接合が得られる傾向にある。
凹部の平均孔径及び平均孔深さの測定方法は、JIS B0601-2001に準拠した方法である。 The state of the concave-convex structure is not particularly limited as long as a sufficient bonding strength with the packing can be obtained.
The average pore diameter of the recesses in the uneven structure may be, for example, 5 nm to 500 μm, preferably 10 nm to 150 μm, more preferably 15 nm to 100 μm, from the viewpoint of further improving the bonding strength between the metal plate and the packing.
The average pore depth of recesses in the uneven structure may be, for example, 5 nm to 500 μm, preferably 10 nm to 150 μm, more preferably 15 nm to 100 μm.
When either or both of the average pore diameter and the average pore depth of the recesses in the uneven structure are within the above numerical range, stronger bonding tends to be obtained.
The method for measuring the average pore diameter and average pore depth of the recesses is a method based on JIS B0601-2001.
凹凸構造における凹部の平均孔径は、金属プレートとパッキンとの接合強度をより向上させる観点から、例えば5nm~500μmであってよく、好ましくは10nm~150μmであり、より好ましくは15nm~100μmである。
凹凸構造における凹部の平均孔深さは、例えば5nm~500μmであってよく、好ましくは10nm~150μmであり、より好ましくは15nm~100μmである。
凹凸構造における凹部の平均孔径又は平均孔深さのいずれか又は両方が上記数値範囲内であると、より強固な接合が得られる傾向にある。
凹部の平均孔径及び平均孔深さの測定方法は、JIS B0601-2001に準拠した方法である。 The state of the concave-convex structure is not particularly limited as long as a sufficient bonding strength with the packing can be obtained.
The average pore diameter of the recesses in the uneven structure may be, for example, 5 nm to 500 μm, preferably 10 nm to 150 μm, more preferably 15 nm to 100 μm, from the viewpoint of further improving the bonding strength between the metal plate and the packing.
The average pore depth of recesses in the uneven structure may be, for example, 5 nm to 500 μm, preferably 10 nm to 150 μm, more preferably 15 nm to 100 μm.
When either or both of the average pore diameter and the average pore depth of the recesses in the uneven structure are within the above numerical range, stronger bonding tends to be obtained.
The method for measuring the average pore diameter and average pore depth of the recesses is a method based on JIS B0601-2001.
凹凸構造は、金属プレートの表面に粗化処理が施されることで、形成される。金属部材の表面に粗化処理を施す方法は特に制限されず、様々な公知の方法を使用できる。
金属プレートの表面は、金属プレートとパッキンとの接合強度を向上させる観点から、官能基を付加する処理が施されていてもよい。官能基を付加する処理は、様々な公知の方法を使用できる。 The uneven structure is formed by roughening the surface of the metal plate. The method of roughening the surface of the metal member is not particularly limited, and various known methods can be used.
The surface of the metal plate may be treated to add functional groups from the viewpoint of improving the bonding strength between the metal plate and the packing. Various known methods can be used for the treatment of adding functional groups.
金属プレートの表面は、金属プレートとパッキンとの接合強度を向上させる観点から、官能基を付加する処理が施されていてもよい。官能基を付加する処理は、様々な公知の方法を使用できる。 The uneven structure is formed by roughening the surface of the metal plate. The method of roughening the surface of the metal member is not particularly limited, and various known methods can be used.
The surface of the metal plate may be treated to add functional groups from the viewpoint of improving the bonding strength between the metal plate and the packing. Various known methods can be used for the treatment of adding functional groups.
(1.4.1)パッキンの材質
パッキンの材質は、金属であってもよいし、樹脂であってもよい。
パッキンの材質が金属である場合、パッキンを構成する材質は、筐体を構成する金属として例示したものと同様のものが挙げられる。 (1.4.1) Material of Packing The material of the packing may be metal or resin.
When the material of the packing is metal, the material of which the packing is made may be the same as those exemplified as the metal that makes up the housing.
パッキンの材質は、金属であってもよいし、樹脂であってもよい。
パッキンの材質が金属である場合、パッキンを構成する材質は、筐体を構成する金属として例示したものと同様のものが挙げられる。 (1.4.1) Material of Packing The material of the packing may be metal or resin.
When the material of the packing is metal, the material of which the packing is made may be the same as those exemplified as the metal that makes up the housing.
パッキンの材質が樹脂である場合、パッキンを構成する材質は、筐体を構成する樹脂として例示したものと同様のものに加えて、熱可塑性エラストマー、及び熱硬化性エラストマー等が挙げられる。熱可塑性エラストマーの25℃での引張弾性率は、6.0×108Pa未満である。熱硬化性エラストマーの25℃での引張弾性率は、6.0×108Pa未満である。
In the case where the material of the packing is a resin, the material constituting the packing includes thermoplastic elastomers, thermosetting elastomers, etc., in addition to the same materials as those exemplified as the resins constituting the housing. The tensile modulus at 25° C. of the thermoplastic elastomer is less than 6.0×10 8 Pa. The tensile modulus of the thermoset elastomer at 25° C. is less than 6.0×10 8 Pa.
中でも、パッキンの材質である樹脂は、熱可塑性エラストマー及び熱硬化性エラストマーの少なくとも一方を含むことが好ましい。つまり、パッキンは、弾力性を有することが好ましい。これにより、パッキンは、ケースに取り付けられた際に、パッキンの材質である樹脂が熱可塑性エラストマー及び熱硬化性エラストマーの少なくとも一方を含まない場合よりも、金属プレート及び筐体の少なくとも一方の表面の形状に追従しやすい。そのため、パッキンと、金属プレート及び筐体の少なくとも一方との隙間の発生は、より確実に防止されることができる。その結果、熱交換用流路の密閉性は、より向上する。
Above all, it is preferable that the resin, which is the material of the packing, contains at least one of a thermoplastic elastomer and a thermosetting elastomer. In other words, the packing preferably has elasticity. As a result, when the packing is attached to the case, the surface of at least one of the metal plate and the housing is more resistant than when the resin, which is the material of the packing, does not contain at least one of the thermoplastic elastomer and the thermosetting elastomer. Easy to follow shape. Therefore, the occurrence of a gap between the packing and at least one of the metal plate and the housing can be more reliably prevented. As a result, the airtightness of the heat exchange channel is further improved.
熱可塑性エラストマーは、ゴムのように加硫をする必要のない弾性体材料である。熱可塑性エラストマーは、一般にハード成分(硬く剛直な成分)とソフト成分(軟らかくフレキシブルな成分)を有する。
A thermoplastic elastomer is an elastic material that does not need to be vulcanized like rubber. Thermoplastic elastomers generally have a hard component (hard and rigid component) and a soft component (soft and flexible component).
熱可塑性エラストマーは、ゴムのように加硫をする必要のない弾性体材料である。熱可塑性エラストマーは、一般にハード成分(硬く剛直な成分)とソフト成分(軟らかくフレキシブルな成分)を有する。熱可塑性エラストマーとしては、例えば、ウレタン系熱可塑性エラストマー(TPU)、アミド系熱可塑性エラストマー(TPAE)、オレフィン系熱可塑性エラストマー(TPO)、スチレン系熱可塑性エラストマー(TPS)、ポリエステル系熱可塑性エラストマー(TPEE)、塩化ビニル系熱可塑性エラストマー(TPVC)等が挙げられる。
なかでも、接着強度、気密性、耐熱性の観点から、熱可塑性エラストマーは、TPU、TPAE、TPEEのいずれか一方を含むことが好ましい。
コスト、リペア性(離形容易性)の観点から、熱可塑性エラストマーは、TPO、及びTPSのいずれか一方を含むことが好ましい。
熱硬化性エラストマーは、1液硬化型エラストマー、2液硬化型エラストマー、又はUV(Ultraviolet)硬化型エラストマーを含む。
1液硬化型エラストマーは、硬化剤によらず、単独で加熱により主剤が硬化するエラストマーを示す。2液硬化型エラストマーは、例えば、主剤と呼ばれる成分と、硬化剤と呼ばれる成分とを、任意の混合比で混合することで、硬化反応が促進するエラストマーを示す。2液硬化型エラストマーを用いる場合、室温で硬化反応を促進させてもよいし、加熱により効果反応を促進させてもよい。UV硬化型エラストマーは、UVが照射されることで主剤の重合反応が進行するエラストマーを示す。UV硬化型エラストマーは、公知の光重合開始剤を含有してもよい。
1液硬化型エラストマーとしては、公知の1液硬化型エラストマーを用いることができる。2液硬化型エラストマーとしては、公知の2液硬化型エラストマー(例えば、エチレン・プロピレン・ジエン共重合体ゴム(EPDM)等のオレフィン系ゴム等)を用いることができる。UV硬化型エラストマーとしては、公知のUV硬化型エラストマーを用いることができる。 Thermoplastic elastomers are elastic materials that do not require vulcanization like rubber. Thermoplastic elastomers generally have a hard component (hard and rigid component) and a soft component (soft and flexible component). Examples of thermoplastic elastomers include urethane-based thermoplastic elastomers (TPU), amide-based thermoplastic elastomers (TPAE), olefin-based thermoplastic elastomers (TPO), styrene-based thermoplastic elastomers (TPS), and polyester-based thermoplastic elastomers ( TPEE), thermoplastic vinyl chloride elastomer (TPVC), and the like.
Among them, the thermoplastic elastomer preferably contains any one of TPU, TPAE, and TPEE from the viewpoint of adhesive strength, airtightness, and heat resistance.
From the viewpoint of cost and repairability (ease of releasability), the thermoplastic elastomer preferably contains either TPO or TPS.
Thermosetting elastomers include one-component curable elastomers, two-component curable elastomers, and UV (Ultraviolet) curable elastomers.
A one-liquid curable elastomer refers to an elastomer in which the main component is cured by heating alone without using a curing agent. A two-liquid curable elastomer is an elastomer whose curing reaction is accelerated by mixing, for example, a component called a main agent and a component called a curing agent at an arbitrary mixing ratio. When using a two-liquid curing type elastomer, the curing reaction may be accelerated at room temperature, or the effective reaction may be accelerated by heating. A UV curable elastomer indicates an elastomer in which the polymerization reaction of the main agent proceeds when irradiated with UV. The UV curable elastomer may contain a known photopolymerization initiator.
As the one-liquid curable elastomer, a known one-liquid curable elastomer can be used. As the two-pack curable elastomer, a known two-pack curable elastomer (for example, olefinic rubber such as ethylene/propylene/diene copolymer rubber (EPDM)) can be used. A known UV curable elastomer can be used as the UV curable elastomer.
なかでも、接着強度、気密性、耐熱性の観点から、熱可塑性エラストマーは、TPU、TPAE、TPEEのいずれか一方を含むことが好ましい。
コスト、リペア性(離形容易性)の観点から、熱可塑性エラストマーは、TPO、及びTPSのいずれか一方を含むことが好ましい。
熱硬化性エラストマーは、1液硬化型エラストマー、2液硬化型エラストマー、又はUV(Ultraviolet)硬化型エラストマーを含む。
1液硬化型エラストマーは、硬化剤によらず、単独で加熱により主剤が硬化するエラストマーを示す。2液硬化型エラストマーは、例えば、主剤と呼ばれる成分と、硬化剤と呼ばれる成分とを、任意の混合比で混合することで、硬化反応が促進するエラストマーを示す。2液硬化型エラストマーを用いる場合、室温で硬化反応を促進させてもよいし、加熱により効果反応を促進させてもよい。UV硬化型エラストマーは、UVが照射されることで主剤の重合反応が進行するエラストマーを示す。UV硬化型エラストマーは、公知の光重合開始剤を含有してもよい。
1液硬化型エラストマーとしては、公知の1液硬化型エラストマーを用いることができる。2液硬化型エラストマーとしては、公知の2液硬化型エラストマー(例えば、エチレン・プロピレン・ジエン共重合体ゴム(EPDM)等のオレフィン系ゴム等)を用いることができる。UV硬化型エラストマーとしては、公知のUV硬化型エラストマーを用いることができる。 Thermoplastic elastomers are elastic materials that do not require vulcanization like rubber. Thermoplastic elastomers generally have a hard component (hard and rigid component) and a soft component (soft and flexible component). Examples of thermoplastic elastomers include urethane-based thermoplastic elastomers (TPU), amide-based thermoplastic elastomers (TPAE), olefin-based thermoplastic elastomers (TPO), styrene-based thermoplastic elastomers (TPS), and polyester-based thermoplastic elastomers ( TPEE), thermoplastic vinyl chloride elastomer (TPVC), and the like.
Among them, the thermoplastic elastomer preferably contains any one of TPU, TPAE, and TPEE from the viewpoint of adhesive strength, airtightness, and heat resistance.
From the viewpoint of cost and repairability (ease of releasability), the thermoplastic elastomer preferably contains either TPO or TPS.
Thermosetting elastomers include one-component curable elastomers, two-component curable elastomers, and UV (Ultraviolet) curable elastomers.
A one-liquid curable elastomer refers to an elastomer in which the main component is cured by heating alone without using a curing agent. A two-liquid curable elastomer is an elastomer whose curing reaction is accelerated by mixing, for example, a component called a main agent and a component called a curing agent at an arbitrary mixing ratio. When using a two-liquid curing type elastomer, the curing reaction may be accelerated at room temperature, or the effective reaction may be accelerated by heating. A UV curable elastomer indicates an elastomer in which the polymerization reaction of the main agent proceeds when irradiated with UV. The UV curable elastomer may contain a known photopolymerization initiator.
As the one-liquid curable elastomer, a known one-liquid curable elastomer can be used. As the two-pack curable elastomer, a known two-pack curable elastomer (for example, olefinic rubber such as ethylene/propylene/diene copolymer rubber (EPDM)) can be used. A known UV curable elastomer can be used as the UV curable elastomer.
(2)パック
本開示のパックは、本開示のケースと、被熱交換体とを備える。被熱交換体は、ケースに収容されている。
これにより、本開示のパックは、熱交換用流路に冷却媒体を流通させることで、それぞれの独立した金属プレートを介して、熱伝導により被熱交換体の温度を調節することができる。その結果、本開示のパックは、被熱交換体の温度を効率良く調整することができる。 (2) Pack The pack of the present disclosure includes the case of the present disclosure and an object to be heat-exchanged. The body to be heat-exchanged is housed in a case.
Thereby, the pack of the present disclosure can adjust the temperature of the heat exchange object by heat conduction through each independent metal plate by circulating the cooling medium in the heat exchange flow path. As a result, the pack of the present disclosure can efficiently adjust the temperature of the heat exchange object.
本開示のパックは、本開示のケースと、被熱交換体とを備える。被熱交換体は、ケースに収容されている。
これにより、本開示のパックは、熱交換用流路に冷却媒体を流通させることで、それぞれの独立した金属プレートを介して、熱伝導により被熱交換体の温度を調節することができる。その結果、本開示のパックは、被熱交換体の温度を効率良く調整することができる。 (2) Pack The pack of the present disclosure includes the case of the present disclosure and an object to be heat-exchanged. The body to be heat-exchanged is housed in a case.
Thereby, the pack of the present disclosure can adjust the temperature of the heat exchange object by heat conduction through each independent metal plate by circulating the cooling medium in the heat exchange flow path. As a result, the pack of the present disclosure can efficiently adjust the temperature of the heat exchange object.
「パック」は、本開示のケースと、本開示のケースに収容された被熱交換体とを含むユニットを示す。
"Pack" indicates a unit including the case of the present disclosure and the heat-exchanged body housed in the case of the present disclosure.
本開示のパックは、前記被熱交換体が、少なくとも1つの電池モジュールを含み、前記熱交換媒体が、冷却媒体であることが好ましい。
これにより、本開示のパックは、熱交換用流路に冷却媒体を流通させることで、それぞれの独立した金属プレートを介して、熱伝導により、少なくとも1つの電池モジュールの温度を冷却することができる。その結果、本開示の電池パックは、少なくとも1つの電池モジュールの温度を効率良く冷却することができる。 In the pack of the present disclosure, it is preferable that the body to be heat exchanged includes at least one battery module, and the heat exchange medium is a cooling medium.
Thereby, the pack of the present disclosure can cool the temperature of at least one battery module by heat conduction through each independent metal plate by circulating a cooling medium in the heat exchange channel. . As a result, the battery pack of the present disclosure can efficiently cool the temperature of at least one battery module.
これにより、本開示のパックは、熱交換用流路に冷却媒体を流通させることで、それぞれの独立した金属プレートを介して、熱伝導により、少なくとも1つの電池モジュールの温度を冷却することができる。その結果、本開示の電池パックは、少なくとも1つの電池モジュールの温度を効率良く冷却することができる。 In the pack of the present disclosure, it is preferable that the body to be heat exchanged includes at least one battery module, and the heat exchange medium is a cooling medium.
Thereby, the pack of the present disclosure can cool the temperature of at least one battery module by heat conduction through each independent metal plate by circulating a cooling medium in the heat exchange channel. . As a result, the battery pack of the present disclosure can efficiently cool the temperature of at least one battery module.
(3)パックの一例
以下、図面を参照して、本開示のケース及び本開示のパックの実施形態について説明する。図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。 (3) Example of Pack Hereinafter, embodiments of the case of the present disclosure and the pack of the present disclosure will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
以下、図面を参照して、本開示のケース及び本開示のパックの実施形態について説明する。図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。 (3) Example of Pack Hereinafter, embodiments of the case of the present disclosure and the pack of the present disclosure will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
図1~図9を参照して、本開示の第1実施形態に係るパック1について説明する。
A pack 1 according to a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 9. FIG.
パック1(以下、「電池パック1」という。)は、電動車両の電源として好適に用いられる。電動車両は、電動四輪車、又は電動二輪車を含む。電動四輪車は、電気自動車(EV:Electric Vehicle)、プラグインハイブリッド車(PHEV:Plug-in Hybrid Electric Vehicle)、又はハイブリッド車(HV:Hybrid Vehicle)を含む。電動二輪車は、電動バイク、又は電動アシスト自転車を含む。
A pack 1 (hereinafter referred to as "battery pack 1") is suitably used as a power source for an electric vehicle. An electric vehicle includes an electric four-wheeled vehicle or an electric two-wheeled vehicle. The electric four-wheeled vehicle includes an electric vehicle (EV), a plug-in hybrid electric vehicle (PHEV), or a hybrid vehicle (HV). Electric motorcycles include electric motorcycles and electrically assisted bicycles.
電池パック1は、図1に示すように、直方体状物である。電池パック1は、ケース2と、複数の電池モジュール3とを備える。複数の電池モジュール3は、ケース2に収容されている。複数の電池モジュール3は、被熱交換体の一例である。
The battery pack 1 is a cuboid, as shown in FIG. A battery pack 1 includes a case 2 and a plurality of battery modules 3 . A plurality of battery modules 3 are housed in the case 2 . The plurality of battery modules 3 is an example of a heat exchange object.
以下、電池パック1の短手方向を「前後方向」、電池パック1の長手方向を「左右方向」、前後方向及び左右方向に直交する方向を「上下方向」として説明する。
上方から下方に向かう方向は、重力方向と平行である。電池パック1が電動四輪車に用いられる場合、前後方向は、電動四輪車の前後方向と平行である。左右方向は、電動四輪車の幅方向と平行である。 In the following description, the lateral direction of thebattery pack 1 is referred to as the "front-rear direction," the longitudinal direction of the battery pack 1 as the "left-right direction," and the direction perpendicular to the front-rear direction and the left-right direction as the "vertical direction."
The direction from top to bottom is parallel to the direction of gravity. When thebattery pack 1 is used in an electric four-wheeled vehicle, the front-rear direction is parallel to the front-rear direction of the electric four-wheeled vehicle. The left-right direction is parallel to the width direction of the electric four-wheel vehicle.
上方から下方に向かう方向は、重力方向と平行である。電池パック1が電動四輪車に用いられる場合、前後方向は、電動四輪車の前後方向と平行である。左右方向は、電動四輪車の幅方向と平行である。 In the following description, the lateral direction of the
The direction from top to bottom is parallel to the direction of gravity. When the
電池パック1のサイズは、電池パック1の用途等に応じて適宜調整される。電池パック1が電動四輪車に用いられる場合、電池パック1のサイズは、電動四輪車の種類に応じて、適宜選択される。電動四輪車が電気自動車(EV)である場合、電池パック1のサイズは、例えば、1200mmW×1800mmD×200mmH程度である。電動四輪車が電気自動車(EV)でない場合、例えば、電池パック1のサイズは、900mmW×700mmD×200mmH程度である。
The size of the battery pack 1 is appropriately adjusted according to the application of the battery pack 1 and the like. When the battery pack 1 is used in an electric four-wheel vehicle, the size of the battery pack 1 is appropriately selected according to the type of the electric four-wheel vehicle. When the electric four-wheeled vehicle is an electric vehicle (EV), the size of the battery pack 1 is, for example, approximately 1200 mmW×1800 mmD×200 mmH. If the electric four-wheeled vehicle is not an electric vehicle (EV), for example, the size of the battery pack 1 is approximately 900 mmW×700 mmD×200 mmH.
(3.1)ケース
次に、図1~図3を参照して、本開示の第1実施形態に係るケース2について説明する。 (3.1) Case Next,case 2 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 3. FIG.
次に、図1~図3を参照して、本開示の第1実施形態に係るケース2について説明する。 (3.1) Case Next,
ケース2は、内部に収容される複数の電池モジュール3の温度を冷却するために用いられる。ケース2は、図2に示すように、筐体10(図1参照)と、4つの金属プレート20とを備える。4つの金属プレート20の各々は、機械締結によって筐体10に固定されている。
The case 2 is used to cool the temperature of the plurality of battery modules 3 housed inside. The case 2 includes a housing 10 (see FIG. 1) and four metal plates 20, as shown in FIG. Each of the four metal plates 20 is fixed to the housing 10 by mechanical fastening.
第1実施形態では、ケース2の上面側に、4つの熱交換用流路ARが形成されている。ケース2の下面側には、図3に示すように、6つの連通用流路BRが形成されている。
4つの熱交換用流路AR及び6つの連通用流路BRは連通している。 In the first embodiment, four heat exchange flow paths AR are formed on the upper surface side of thecase 2 . As shown in FIG. 3, six communication channels BR are formed on the lower surface side of the case 2 .
The four heat exchange flow paths AR and the six communication flow paths BR communicate with each other.
4つの熱交換用流路AR及び6つの連通用流路BRは連通している。 In the first embodiment, four heat exchange flow paths AR are formed on the upper surface side of the
The four heat exchange flow paths AR and the six communication flow paths BR communicate with each other.
(3.1.1)筐体
筐体10は、複数の電池モジュール3を収容する。筐体10は、図3に示すように、本体部11と、6つの配管用プレート12と、蓋部13(図1参照)とを有する。6つの配管用プレート12の各々は、機械締結によって本体部11に固定されている。蓋部13は、着脱可能に本体部11に取り付けられている。
6つの配管用プレート12は、連通用流路構成部の一例である。 (3.1.1) Housing Thehousing 10 accommodates a plurality of battery modules 3 . As shown in FIG. 3, the housing 10 has a main body portion 11, six piping plates 12, and a lid portion 13 (see FIG. 1). Each of the six piping plates 12 is fixed to the main body 11 by mechanical fastening. The lid portion 13 is detachably attached to the body portion 11 .
The sixpiping plates 12 are an example of a communication channel forming part.
筐体10は、複数の電池モジュール3を収容する。筐体10は、図3に示すように、本体部11と、6つの配管用プレート12と、蓋部13(図1参照)とを有する。6つの配管用プレート12の各々は、機械締結によって本体部11に固定されている。蓋部13は、着脱可能に本体部11に取り付けられている。
6つの配管用プレート12は、連通用流路構成部の一例である。 (3.1.1) Housing The
The six
(3.1.1.1)本体部
次に、図1~図6を参照して、本開示の第1実施形態に係る本体部11について説明する。 (3.1.1.1) Main Body Next, themain body 11 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 6. FIG.
次に、図1~図6を参照して、本開示の第1実施形態に係る本体部11について説明する。 (3.1.1.1) Main Body Next, the
本体部11は、図4に示すように、上方が開口した容器状物である。本体部11は、上面側に、第1収容壁部14と、第2収容壁部15と、接続壁部16とを有する。第1収容壁部14、接続壁部16、及び第2収容壁部15は、この順に右方向から左方向に向けて連続的に配置されている。第1収容壁部14、接続壁部16、及び第2収容壁部15は、一体化している。本体部11の材質は、樹脂である。
As shown in FIG. 4, the main body part 11 is a container-like object with an upper opening. The body portion 11 has a first containing wall portion 14, a second containing wall portion 15, and a connection wall portion 16 on the upper surface side. The first containing wall portion 14, the connecting wall portion 16, and the second containing wall portion 15 are arranged continuously from right to left in this order. The first containing wall portion 14, the connecting wall portion 16, and the second containing wall portion 15 are integrated. The material of the body portion 11 is resin.
(a)収容壁部
第1収容壁部14は、電池モジュール3を収容する。第1収容壁部14は、第1底壁部141と、第1囲み壁部142とを含む。第1囲み壁部142は、複数の電池モジュール3を囲う。第1底壁部141と、第1囲み壁部142とは、一体となっている。第1底壁部141及び第1囲み壁部142は収容空間を構成する。 (a) Housing Wall Section The firsthousing wall section 14 houses the battery modules 3 . The first containing wall portion 14 includes a first bottom wall portion 141 and a first surrounding wall portion 142 . The first surrounding wall portion 142 surrounds the plurality of battery modules 3 . The first bottom wall portion 141 and the first surrounding wall portion 142 are integrated. The first bottom wall portion 141 and the first surrounding wall portion 142 form a housing space.
第1収容壁部14は、電池モジュール3を収容する。第1収容壁部14は、第1底壁部141と、第1囲み壁部142とを含む。第1囲み壁部142は、複数の電池モジュール3を囲う。第1底壁部141と、第1囲み壁部142とは、一体となっている。第1底壁部141及び第1囲み壁部142は収容空間を構成する。 (a) Housing Wall Section The first
第2収容壁部15は、複数の電池モジュール3を収容する。第2収容壁部15は、第2底壁部151と、第2囲み壁部152とを含む。第2囲み壁部152は、複数の電池モジュール3を囲う。第2底壁部151と、第2囲み壁部152とは、一体となっている。第2底壁部151及び第1囲み壁部152は収容空間を構成する。
The second housing wall portion 15 houses a plurality of battery modules 3 . The second containing wall portion 15 includes a second bottom wall portion 151 and a second surrounding wall portion 152 . The second surrounding wall portion 152 surrounds the plurality of battery modules 3 . The second bottom wall portion 151 and the second surrounding wall portion 152 are integrated. The second bottom wall portion 151 and the first surrounding wall portion 152 form an accommodation space.
(b)凹み部
本体部11には、図4に示すように、第1収容壁部14、第2収容壁部15、及び接続壁部16の各々の上面側に、4つの凹み部Aが形成されている。
4つの凹み部Aの各々は、金属プレート20に覆われる。これにより、本体部11と金属プレート20との間に、熱交換用流路ARが形成される。
4つの凹み部Aには、図4及び図5に示すように、貫通孔H1~H8が形成されている。貫通孔H1~H8の各々は、略上下方向に延びている。 (b) Recesses As shown in FIG. 4, themain body 11 has four recesses A on the top surfaces of the first housing wall 14, the second housing wall 15, and the connection wall 16. formed.
Each of the four recesses A is covered with ametal plate 20. As shown in FIG. Thereby, a heat exchange flow path AR is formed between the body portion 11 and the metal plate 20 .
Through holes H1 to H8 are formed in the four recesses A, as shown in FIGS. Each of the through holes H1 to H8 extends substantially vertically.
本体部11には、図4に示すように、第1収容壁部14、第2収容壁部15、及び接続壁部16の各々の上面側に、4つの凹み部Aが形成されている。
4つの凹み部Aの各々は、金属プレート20に覆われる。これにより、本体部11と金属プレート20との間に、熱交換用流路ARが形成される。
4つの凹み部Aには、図4及び図5に示すように、貫通孔H1~H8が形成されている。貫通孔H1~H8の各々は、略上下方向に延びている。 (b) Recesses As shown in FIG. 4, the
Each of the four recesses A is covered with a
Through holes H1 to H8 are formed in the four recesses A, as shown in FIGS. Each of the through holes H1 to H8 extends substantially vertically.
(c)溝部
本体部11には、図6に示すように、第1収容壁部14、第2収容壁部15、及び接続壁部16の各々の下面側に、6つの溝部Bが形成されている。
6つの溝部Bには、図6に示すように、貫通孔H2~H7が形成されている。溝部Bの貫通孔H2(図6参照)と、凹み部Aの貫通孔H2(図5参照)とは連通している。同様に、6つの溝部Bの貫通孔H3~H7(図6参照)と、4つの凹み部Aの貫通孔H3~H7(図4及び図5参照)とは連通している。 (c) Grooves As shown in FIG. 6, themain body 11 has six grooves B formed on the lower surfaces of the first housing wall 14, the second housing wall 15, and the connection wall 16. ing.
Through holes H2 to H7 are formed in the six grooves B, as shown in FIG. The through hole H2 of the groove B (see FIG. 6) and the through hole H2 of the recess A (see FIG. 5) communicate with each other. Similarly, the through holes H3 to H7 of the six grooves B (see FIG. 6) and the through holes H3 to H7 of the four recesses A (see FIGS. 4 and 5) communicate with each other.
本体部11には、図6に示すように、第1収容壁部14、第2収容壁部15、及び接続壁部16の各々の下面側に、6つの溝部Bが形成されている。
6つの溝部Bには、図6に示すように、貫通孔H2~H7が形成されている。溝部Bの貫通孔H2(図6参照)と、凹み部Aの貫通孔H2(図5参照)とは連通している。同様に、6つの溝部Bの貫通孔H3~H7(図6参照)と、4つの凹み部Aの貫通孔H3~H7(図4及び図5参照)とは連通している。 (c) Grooves As shown in FIG. 6, the
Through holes H2 to H7 are formed in the six grooves B, as shown in FIG. The through hole H2 of the groove B (see FIG. 6) and the through hole H2 of the recess A (see FIG. 5) communicate with each other. Similarly, the through holes H3 to H7 of the six grooves B (see FIG. 6) and the through holes H3 to H7 of the four recesses A (see FIGS. 4 and 5) communicate with each other.
溝部Bは、図7に示すように、開口部Gと、底面CS11と、第1テーパ状の側面DS11とを含む。底面CS11と第1テーパ状の側面DS11とは、連続的に形成されている。第1テーパ状の側面DS11は、底面CS11から開口部Gに向けて拡大している。換言すると、第1テーパ状の側面DS11は、下方に向けて拡大している。
As shown in FIG. 7, the groove B includes an opening G, a bottom surface CS11, and a first tapered side surface DS11. The bottom surface CS11 and the first tapered side surface DS11 are formed continuously. The first tapered side surface DS11 expands from the bottom surface CS11 toward the opening G. In other words, the first tapered side surface DS11 widens downward.
(3.1.1.2)配管用プレート
配管用プレート12は、長平板状物である。配管用プレート12は、溝部Bの形状に合わせて加工されている。配管用プレート12の材質は、樹脂である。 (3.1.1.2) Piping Plate The pipingplate 12 is a long flat plate. The piping plate 12 is processed to match the shape of the groove portion B. As shown in FIG. The material of the piping plate 12 is resin.
配管用プレート12は、長平板状物である。配管用プレート12は、溝部Bの形状に合わせて加工されている。配管用プレート12の材質は、樹脂である。 (3.1.1.2) Piping Plate The piping
(3.1.1.3)供給口及び排出口
筐体10は、図6に示すように、本体部11の下面側に、1つの供給口H9と、1つの排出口H10とを有する。供給口H9には、外部の供給部が連結される。供給部は、電池パック1に冷却媒体を供給する。排出口H10には、外部の回収部が連結される。回収部は、電池パック1から排出される冷却媒体を回収する。
供給口H9は、貫通孔H1と連通している。そのため、貫通孔H1は、供給口H9と熱交換用流路ARとを連通する。
排出口H10は、貫通孔H8と連通している。そのため、貫通孔H8は、排出口H10と熱交換用流路ARとは連通する。 (3.1.1.3) Supply Port and Discharge Port As shown in FIG. 6, thehousing 10 has one supply port H9 and one discharge port H10 on the lower surface side of the body portion 11. As shown in FIG. An external supply unit is connected to the supply port H9. The supply unit supplies the cooling medium to the battery pack 1 . An external recovery unit is connected to the discharge port H10. The recovery unit recovers the cooling medium discharged from the battery pack 1 .
The supply port H9 communicates with the through hole H1. Therefore, the through hole H1 communicates the supply port H9 and the heat exchange flow path AR.
The outlet H10 communicates with the through hole H8. Therefore, the through hole H8 communicates with the outlet H10 and the heat exchange flow path AR.
筐体10は、図6に示すように、本体部11の下面側に、1つの供給口H9と、1つの排出口H10とを有する。供給口H9には、外部の供給部が連結される。供給部は、電池パック1に冷却媒体を供給する。排出口H10には、外部の回収部が連結される。回収部は、電池パック1から排出される冷却媒体を回収する。
供給口H9は、貫通孔H1と連通している。そのため、貫通孔H1は、供給口H9と熱交換用流路ARとを連通する。
排出口H10は、貫通孔H8と連通している。そのため、貫通孔H8は、排出口H10と熱交換用流路ARとは連通する。 (3.1.1.3) Supply Port and Discharge Port As shown in FIG. 6, the
The supply port H9 communicates with the through hole H1. Therefore, the through hole H1 communicates the supply port H9 and the heat exchange flow path AR.
The outlet H10 communicates with the through hole H8. Therefore, the through hole H8 communicates with the outlet H10 and the heat exchange flow path AR.
(3.1.2)金属プレート
図1~図8を参照して、本開示の第1実施形態に係る金属プレート20について説明する。 (3.1.2) Metal PlateA metal plate 20 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 8. FIG.
図1~図8を参照して、本開示の第1実施形態に係る金属プレート20について説明する。 (3.1.2) Metal Plate
金属プレート20は、図8に示すように、金属製の板状物である。金属プレート20は、凹み部Aの形状に合わせて加工されている。金属プレート20の筐体10側の面ES20とは反対側の面には、熱伝導層が形成されている。金属プレート20の面ES20は、筐体10において、筐体10と対向する。
The metal plate 20 is a plate-like object made of metal, as shown in FIG. The metal plate 20 is processed to match the shape of the recess A. A heat conductive layer is formed on the surface of the metal plate 20 opposite to the surface ES20 on the housing 10 side. The surface ES20 of the metal plate 20 faces the housing 10 in the housing 10 .
(3.1.3)パッキン
ケース2は、パッキン30を備える。図8に示すように、金属プレート20の本体部11側の面ES20の周縁に沿って形成されている。パッキン30の材質は、樹脂である。樹脂は、熱可塑性エラストマー及び熱硬化性エラストマーの少なくとも一方を含む。ケース2において、パッキン30は、金属プレート20と本体部11との間に介在している。金属プレート20は、筐体10側の面ES20の少なくともパッキン30と接触する部位に凹凸構造を有する。凹凸構造における凹部の平均孔径は、5nm~500μmである。パッキン30は、インサート成形法によって、金属プレート20の筐体10側の面ES20に接合されている。 (3.1.3)Packing Case 2 includes packing 30 . As shown in FIG. 8, it is formed along the periphery of the surface ES20 of the metal plate 20 on the body portion 11 side. The material of the packing 30 is resin. The resin contains at least one of a thermoplastic elastomer and a thermosetting elastomer. In case 2 , packing 30 is interposed between metal plate 20 and body portion 11 . The metal plate 20 has an uneven structure on at least a portion of the surface ES20 on the housing 10 side that contacts the packing 30 . The average pore diameter of the recesses in the uneven structure is 5 nm to 500 μm. The packing 30 is joined to the surface ES20 of the metal plate 20 on the housing 10 side by an insert molding method.
ケース2は、パッキン30を備える。図8に示すように、金属プレート20の本体部11側の面ES20の周縁に沿って形成されている。パッキン30の材質は、樹脂である。樹脂は、熱可塑性エラストマー及び熱硬化性エラストマーの少なくとも一方を含む。ケース2において、パッキン30は、金属プレート20と本体部11との間に介在している。金属プレート20は、筐体10側の面ES20の少なくともパッキン30と接触する部位に凹凸構造を有する。凹凸構造における凹部の平均孔径は、5nm~500μmである。パッキン30は、インサート成形法によって、金属プレート20の筐体10側の面ES20に接合されている。 (3.1.3)
(3.2)冷却媒体の流れ
次に、図1~図9を参照して、ケース2内を流通する冷却媒体の流れについて説明する。図9中、符号Fは、冷却媒体の主な流れ方向を示す。 (3.2) Flow of Cooling Medium Next, the flow of the cooling medium flowing through thecase 2 will be described with reference to FIGS. 1 to 9. FIG. In FIG. 9, symbol F indicates the main flow direction of the cooling medium.
次に、図1~図9を参照して、ケース2内を流通する冷却媒体の流れについて説明する。図9中、符号Fは、冷却媒体の主な流れ方向を示す。 (3.2) Flow of Cooling Medium Next, the flow of the cooling medium flowing through the
金属プレート20は、複数の電池モジュール3と熱的に接触している。金属プレート20は、熱伝導層を介して、複数の電池モジュール3と物理的に間接的に接触している。
The metal plate 20 is in thermal contact with the multiple battery modules 3 . The metal plate 20 is in indirect physical contact with the plurality of battery modules 3 via the heat-conducting layer.
冷却媒体は、図9に示すように、外部の供給部から流れ方向Fに沿って、ケース2の下面側の供給口H9に供給され、熱交換用流路AR及び連通用流路BRを通って、ケース2の下面側の排出口H10から本体部11の外部に排出されて、外部の回収部に回収される。この際、冷却媒体は、金属プレート20を介して、複数の電池モジュール3と熱交換をする。
このようにして、冷却媒体は、ケース2の内部で複数の電池モジュール3から熱を吸収し、ケース2の外部に排出される。つまり、電池パック1は、複数の電池モジュール3の放熱を促進させる。 As shown in FIG. 9, the cooling medium is supplied from an external supply unit along the flow direction F to the supply port H9 on the lower surface side of thecase 2, and passes through the heat exchange flow path AR and the communication flow path BR. Then, it is discharged to the outside of the main body 11 from the discharge port H10 on the lower surface side of the case 2, and is collected by the external collection unit. At this time, the cooling medium exchanges heat with the plurality of battery modules 3 via the metal plate 20 .
In this manner, the cooling medium absorbs heat from the plurality of battery modules 3 insidecase 2 and discharges it to the outside of case 2 . That is, the battery pack 1 promotes heat dissipation of the plurality of battery modules 3 .
このようにして、冷却媒体は、ケース2の内部で複数の電池モジュール3から熱を吸収し、ケース2の外部に排出される。つまり、電池パック1は、複数の電池モジュール3の放熱を促進させる。 As shown in FIG. 9, the cooling medium is supplied from an external supply unit along the flow direction F to the supply port H9 on the lower surface side of the
In this manner, the cooling medium absorbs heat from the plurality of battery modules 3 inside
(3.3)作用効果
図1~図9を参照して説明したように、ケース2は、筐体10と、複数の金属プレート20とを備える。複数の金属プレート20は、筐体10に固定され、被熱交換体と熱的に接触する。複数の金属プレート20の各々と筐体10との間には、熱交換用流路ARが形成されている。筐体10は、連通用流路BRを有する。
これにより、ケース2では、複数の熱交換用流路ARに冷却媒体を流通させることで、それぞれの独立した金属プレート20を介して、冷却媒体と複数の電池モジュール3との間で熱伝導する。その結果、ケース2は、複数の電池モジュール3の温度を効率良く制御することができる。
ケース2では、従来用いられた冷媒パイプ等がケース内に配置されなくても、連通用流路BRを介して、複数の熱交換用流路ARの各々に対する冷却媒体の供給又は回収が行われ得る。そのため、ケース2は、従来よりも軽量化されている。更に、ケース2では、ケース2の収容空間内に、冷媒パイプ等を配置するためのスペースが確保される必要はない。そのため、ケース2は、収容空間を有効活用可能にすることができる。
以上より、ケース2は、冷却媒体の温度の効率的な制御、及び収容空間の有効活用を可能にし、従来よりも軽量化されている。 (3.3) Functions and Effects As described with reference to FIGS. A plurality ofmetal plates 20 are fixed to the housing 10 and are in thermal contact with the heat exchange object. A heat exchange flow path AR is formed between each of the plurality of metal plates 20 and the housing 10 . The housing 10 has a communication channel BR.
Thus, in thecase 2, by circulating the cooling medium through the plurality of heat exchange channels AR, heat is conducted between the cooling medium and the plurality of battery modules 3 via the respective independent metal plates 20. . As a result, the case 2 can efficiently control the temperatures of the plurality of battery modules 3 .
Incase 2, the cooling medium is supplied to or recovered from each of the plurality of heat exchange channels AR via the communication channel BR without the refrigerant pipes or the like used conventionally being arranged in the case. obtain. Therefore, the case 2 is lighter than before. Furthermore, in the case 2, it is not necessary to secure a space for arranging a refrigerant pipe or the like in the housing space of the case 2. Therefore, the case 2 can effectively utilize the accommodation space.
As described above, thecase 2 enables efficient control of the temperature of the cooling medium and effective use of the storage space, and is lighter than the conventional one.
図1~図9を参照して説明したように、ケース2は、筐体10と、複数の金属プレート20とを備える。複数の金属プレート20は、筐体10に固定され、被熱交換体と熱的に接触する。複数の金属プレート20の各々と筐体10との間には、熱交換用流路ARが形成されている。筐体10は、連通用流路BRを有する。
これにより、ケース2では、複数の熱交換用流路ARに冷却媒体を流通させることで、それぞれの独立した金属プレート20を介して、冷却媒体と複数の電池モジュール3との間で熱伝導する。その結果、ケース2は、複数の電池モジュール3の温度を効率良く制御することができる。
ケース2では、従来用いられた冷媒パイプ等がケース内に配置されなくても、連通用流路BRを介して、複数の熱交換用流路ARの各々に対する冷却媒体の供給又は回収が行われ得る。そのため、ケース2は、従来よりも軽量化されている。更に、ケース2では、ケース2の収容空間内に、冷媒パイプ等を配置するためのスペースが確保される必要はない。そのため、ケース2は、収容空間を有効活用可能にすることができる。
以上より、ケース2は、冷却媒体の温度の効率的な制御、及び収容空間の有効活用を可能にし、従来よりも軽量化されている。 (3.3) Functions and Effects As described with reference to FIGS. A plurality of
Thus, in the
In
As described above, the
図1~図9を参照して説明したように、筐体10が本体部11と、配管用プレート12とを有する。連通用流路BRは、本体部11と配管用プレート12との間に形成されている。
これにより、連通用流路BRは、筐体10自体に穴あけ加工を施すことによって形成される場合よりも所望の経路に形成されやすい。その結果、ケース2は、冷却媒体の温度をより効率良く制御することができる。 As described with reference to FIGS. 1 to 9, thehousing 10 has the body portion 11 and the piping plate 12. As shown in FIG. The communication channel BR is formed between the body portion 11 and the piping plate 12 .
As a result, the communication flow path BR is more likely to be formed in a desired path than in the case where it is formed by drilling thehousing 10 itself. As a result, case 2 can control the temperature of the cooling medium more efficiently.
これにより、連通用流路BRは、筐体10自体に穴あけ加工を施すことによって形成される場合よりも所望の経路に形成されやすい。その結果、ケース2は、冷却媒体の温度をより効率良く制御することができる。 As described with reference to FIGS. 1 to 9, the
As a result, the communication flow path BR is more likely to be formed in a desired path than in the case where it is formed by drilling the
図1~図9を参照して説明したように、本体部11は、第1収容壁部14及び第2収容壁部15を有する。第1収容壁部14は、複数の電池モジュール3と対向する上面TS14(図4参照)と、上面と対向する下面BS14(図6参照)とを含む。2つの連通用流路BRは、配管用プレート12と、下面BS14との間に形成されている。第2収容壁部15は、複数の電池モジュール3と対向する上面TS15(図4参照)と、上面と対向する下面BS15(図6参照)とを含む。2つの連通用流路BRは、配管用プレート12と、下面BS15との間に形成されている。
つまり、熱交換用流路ARは第1収容壁部14及び第2収容壁部15(以下、「第1収容壁部14等」という。)の上面側に形成され、連通用流路BRは第1収容壁部14等の下面側に形成されている。これにより、連通用流路BRを流通する冷却媒体は、第1収容壁部等の上面側に連通用流路BRが形成された構成よりも複数の電池モジュール3と熱的に接触しにくい。その結果、ケース2は、冷却媒体の温度をより効率良く制御することができる。
更に、ケース2は、第1収容壁部14等の上面側に連通用流路BRが形成された構成よりも収容空間をより広く確保することができる。その結果、ケース2は、収容空間の有効活用をよりしやすくすることができる。
連通用流路BRが第1収容壁部14等の下面側に形成されていることで、連通用流路BRから冷却媒体が漏出した場合、筐体10の上面側に連通用流路BRが形成された構成よりも、漏出した冷却媒体は複数の電池モジュール3に到達しにくい。その結果、ケース2は、収容される複数の電池モジュール3をより安全に収容することができる。 As described with reference to FIGS. 1 to 9, thebody portion 11 has the first containing wall portion 14 and the second containing wall portion 15. As shown in FIG. The first housing wall portion 14 includes an upper surface TS14 (see FIG. 4) facing the plurality of battery modules 3 and a lower surface BS14 (see FIG. 6) facing the upper surface. Two communication channels BR are formed between the piping plate 12 and the lower surface BS14. The second containing wall portion 15 includes an upper surface TS15 (see FIG. 4) facing the plurality of battery modules 3 and a lower surface BS15 (see FIG. 6) facing the upper surface. Two communication channels BR are formed between the piping plate 12 and the lower surface BS15.
That is, the heat exchange flow path AR is formed on the upper surface side of the first containingwall portion 14 and the second containing wall portion 15 (hereinafter referred to as "the first containing wall portion 14, etc."), and the communication flow path BR It is formed on the lower surface side of the first housing wall portion 14 and the like. As a result, the cooling medium flowing through the communication channel BR is less likely to come into thermal contact with the plurality of battery modules 3 than in a configuration in which the communication channel BR is formed on the upper surface side of the first containing wall portion or the like. As a result, case 2 can control the temperature of the cooling medium more efficiently.
Furthermore, thecase 2 can secure a wider accommodation space than the configuration in which the communication flow path BR is formed on the upper surface side of the first accommodation wall portion 14 and the like. As a result, the case 2 can facilitate effective utilization of the accommodation space.
Since the communication flow path BR is formed on the lower surface side of the first containingwall portion 14 and the like, when the cooling medium leaks from the communication flow path BR, the communication flow path BR is formed on the upper surface side of the housing 10. Leaked cooling medium is less likely to reach the plurality of battery modules 3 than the formed configuration. As a result, the case 2 can more safely accommodate the plurality of battery modules 3 to be accommodated.
つまり、熱交換用流路ARは第1収容壁部14及び第2収容壁部15(以下、「第1収容壁部14等」という。)の上面側に形成され、連通用流路BRは第1収容壁部14等の下面側に形成されている。これにより、連通用流路BRを流通する冷却媒体は、第1収容壁部等の上面側に連通用流路BRが形成された構成よりも複数の電池モジュール3と熱的に接触しにくい。その結果、ケース2は、冷却媒体の温度をより効率良く制御することができる。
更に、ケース2は、第1収容壁部14等の上面側に連通用流路BRが形成された構成よりも収容空間をより広く確保することができる。その結果、ケース2は、収容空間の有効活用をよりしやすくすることができる。
連通用流路BRが第1収容壁部14等の下面側に形成されていることで、連通用流路BRから冷却媒体が漏出した場合、筐体10の上面側に連通用流路BRが形成された構成よりも、漏出した冷却媒体は複数の電池モジュール3に到達しにくい。その結果、ケース2は、収容される複数の電池モジュール3をより安全に収容することができる。 As described with reference to FIGS. 1 to 9, the
That is, the heat exchange flow path AR is formed on the upper surface side of the first containing
Furthermore, the
Since the communication flow path BR is formed on the lower surface side of the first containing
図1~図9を参照して説明したように、本体部11が配管用プレート12に対応する溝部Bを有する。連通用流路BRは、配管用プレート12が対応する溝部Bを覆うことで形成されている。
これにより、溝部Bを有しない筐体10の表面に溝加工された連通用流路構成部を被せて連通用流路BRが形成された構成よりも、筐体10はコンパクトに形成され得る。その結果、ケース2は、よりコンパクトになり得る。 As described with reference to FIGS. 1 to 9, thebody portion 11 has the groove portion B corresponding to the piping plate 12. As shown in FIG. The communication channel BR is formed by covering the corresponding groove B with the pipe plate 12 .
As a result, thehousing 10 can be formed more compactly than the structure in which the communication flow path BR is formed by covering the surface of the housing 10 without the groove B with the grooved communication flow path forming part. As a result, case 2 can be more compact.
これにより、溝部Bを有しない筐体10の表面に溝加工された連通用流路構成部を被せて連通用流路BRが形成された構成よりも、筐体10はコンパクトに形成され得る。その結果、ケース2は、よりコンパクトになり得る。 As described with reference to FIGS. 1 to 9, the
As a result, the
図1~図9を参照して説明したように、溝部Bは、開口部Gと、底面CS11と、第1テーパ状の側面DS11とを含む。第1テーパ状の側面DS11は、底面CS11から開口部Gに向けて拡大している。
テーパ状の側面DS11の勾配は、抜き勾配となる。これにより、本体部11は、射出成形又はプレス成形又はダイキャスト成形によって、製造され得る。そのため、本体部11は、射出成形又はプレス成形又はダイキャスト成形によって大量生産されやすい。その結果、ケース2は、より容易に製造されやすく、製造コストにより優れる。 As described with reference to FIGS. 1 to 9, groove B includes opening G, bottom surface CS11, and first tapered side surface DS11. A first tapered side surface DS11 expands from the bottom surface CS11 toward the opening G. As shown in FIG.
The slope of the tapered side surface DS11 is a draft angle. Thereby, thebody part 11 can be manufactured by injection molding, press molding, or die casting. Therefore, the body portion 11 is easily mass-produced by injection molding, press molding, or die-cast molding. As a result, the case 2 tends to be manufactured more easily and is more cost effective to manufacture.
テーパ状の側面DS11の勾配は、抜き勾配となる。これにより、本体部11は、射出成形又はプレス成形又はダイキャスト成形によって、製造され得る。そのため、本体部11は、射出成形又はプレス成形又はダイキャスト成形によって大量生産されやすい。その結果、ケース2は、より容易に製造されやすく、製造コストにより優れる。 As described with reference to FIGS. 1 to 9, groove B includes opening G, bottom surface CS11, and first tapered side surface DS11. A first tapered side surface DS11 expands from the bottom surface CS11 toward the opening G. As shown in FIG.
The slope of the tapered side surface DS11 is a draft angle. Thereby, the
図1~図9を参照して説明したように、金属プレート20は、パッキン30を更に備える。
これにより、金属プレート20と筐体10との密閉性は、ケース2がパッキン30を備えない構成よりも優れる。その結果、ケース2は、金属プレート20と筐体10との隙間から冷却媒体の漏れ又は外部の異物の侵入をより確実に防止することができる。 As described with reference to FIGS. 1-9,metal plate 20 further comprises packing 30 .
Thereby, the sealing performance between themetal plate 20 and the housing 10 is superior to that in which the case 2 does not include the packing 30 . As a result, the case 2 can more reliably prevent leakage of the cooling medium or entry of foreign matter from the outside through the gap between the metal plate 20 and the housing 10 .
これにより、金属プレート20と筐体10との密閉性は、ケース2がパッキン30を備えない構成よりも優れる。その結果、ケース2は、金属プレート20と筐体10との隙間から冷却媒体の漏れ又は外部の異物の侵入をより確実に防止することができる。 As described with reference to FIGS. 1-9,
Thereby, the sealing performance between the
図1~図9を参照して説明したように、金属プレート20は、パッキン30と接触する部位に凹凸構造を有する。パッキン30の材質は、樹脂である。
これにより、凹凸構造の凹部内にパッキン30の一部が入り込み、パッキン30は、金属プレート20のパッキン30と接触する部位に凹凸構造を有しない構成よりも金属プレート20に強固に接合する。その結果、ケース2は、金属プレート20と筐体10との隙間から冷却媒体の漏れ又は外部の異物の侵入をより確実に防止することができる。 As described with reference to FIGS. 1 to 9,metal plate 20 has an uneven structure at a portion that contacts packing 30 . The material of the packing 30 is resin.
As a result, part of the packing 30 enters the concave portion of the concave-convex structure, and the packing 30 is more strongly bonded to themetal plate 20 than in a structure in which the contacting portion of the metal plate 20 with the packing 30 does not have the concave-convex structure. As a result, the case 2 can more reliably prevent leakage of the cooling medium or entry of foreign matter from the outside through the gap between the metal plate 20 and the housing 10 .
これにより、凹凸構造の凹部内にパッキン30の一部が入り込み、パッキン30は、金属プレート20のパッキン30と接触する部位に凹凸構造を有しない構成よりも金属プレート20に強固に接合する。その結果、ケース2は、金属プレート20と筐体10との隙間から冷却媒体の漏れ又は外部の異物の侵入をより確実に防止することができる。 As described with reference to FIGS. 1 to 9,
As a result, part of the packing 30 enters the concave portion of the concave-convex structure, and the packing 30 is more strongly bonded to the
図1~図9を参照して説明したように、金属プレート20の凹凸構造における凹部の平均孔径は、5nm~500μmである。
これにより、金属プレートとパッキンとの接合強度はより向上する。 As described with reference to FIGS. 1 to 9, the average pore size of the recesses in the uneven structure of themetal plate 20 is 5 nm to 500 μm.
This further improves the bonding strength between the metal plate and the packing.
これにより、金属プレートとパッキンとの接合強度はより向上する。 As described with reference to FIGS. 1 to 9, the average pore size of the recesses in the uneven structure of the
This further improves the bonding strength between the metal plate and the packing.
図1~図9を参照して説明したように、パッキン30の材質である樹脂は、熱可塑性エラストマー及び熱硬化性エラストマーの少なくとも一方を含む。つまり、パッキン30は、弾力性を有する。
これにより、パッキン30は、ケース2に取り付けられた際に、パッキン30の材質である樹脂が熱可塑性エラストマー及び熱硬化性エラストマーの少なくとも一方を含まない場合よりも、筐体10の表面の形状に追従しやすい。そのため、パッキン30と、筐体10との隙間の発生は、より確実に防止されることができる。その結果、熱交換用流路ARの密閉性は、より向上する。 As described with reference to FIGS. 1 to 9, the resin that is the material of the packing 30 includes at least one of thermoplastic elastomer and thermosetting elastomer. That is, the packing 30 has elasticity.
As a result, when the packing 30 is attached to thecase 2, the shape of the surface of the housing 10 conforms to the shape of the surface of the housing 10 more than when the resin that is the material of the packing 30 does not contain at least one of a thermoplastic elastomer and a thermosetting elastomer. easy to follow. Therefore, the occurrence of a gap between the packing 30 and the housing 10 can be more reliably prevented. As a result, the airtightness of the heat exchange flow path AR is further improved.
これにより、パッキン30は、ケース2に取り付けられた際に、パッキン30の材質である樹脂が熱可塑性エラストマー及び熱硬化性エラストマーの少なくとも一方を含まない場合よりも、筐体10の表面の形状に追従しやすい。そのため、パッキン30と、筐体10との隙間の発生は、より確実に防止されることができる。その結果、熱交換用流路ARの密閉性は、より向上する。 As described with reference to FIGS. 1 to 9, the resin that is the material of the packing 30 includes at least one of thermoplastic elastomer and thermosetting elastomer. That is, the packing 30 has elasticity.
As a result, when the packing 30 is attached to the
図1~図9を参照して説明したように、パッキン30は、金属プレート20に接合している。
これにより、パッキン30と、金属プレート20との隙間の発生は、より確実に防止されることができる。更に、パッキン30は、パッキン30が金属プレート20に接合していない場合よりも、金属プレート20から脱離しにくい。その結果、熱交換用流路ARの密閉性は、より向上するとともに、熱交換用流路ARの優れた密閉性は長期に亘って維持される。 The packing 30 is bonded to themetal plate 20 as described with reference to FIGS. 1-9.
Thereby, the occurrence of a gap between the packing 30 and themetal plate 20 can be prevented more reliably. Furthermore, the packing 30 is less likely to come off from the metal plate 20 than when the packing 30 is not bonded to the metal plate 20 . As a result, the airtightness of the heat exchange flow path AR is further improved, and the excellent airtightness of the heat exchange flow path AR is maintained over a long period of time.
これにより、パッキン30と、金属プレート20との隙間の発生は、より確実に防止されることができる。更に、パッキン30は、パッキン30が金属プレート20に接合していない場合よりも、金属プレート20から脱離しにくい。その結果、熱交換用流路ARの密閉性は、より向上するとともに、熱交換用流路ARの優れた密閉性は長期に亘って維持される。 The packing 30 is bonded to the
Thereby, the occurrence of a gap between the packing 30 and the
図1~図9を参照して説明したように、筐体は、1つの供給口H9と、1つの排出口H10とを有する。供給口H9と、排出口H10と、熱交換用流路ARと、連通用流路BRとは、連通している。
これにより、冷却媒体を筐体10の供給口H9から供給すると、冷却媒体は、連通用流路BRを介して、熱交換用流路ARを流通して、筐体10の排出口H10から排出され得る。その結果、ケース2は、冷却媒体の温度をより効率良く制御することができる。 As described with reference to FIGS. 1-9, the housing has one supply port H9 and one discharge port H10. The supply port H9, the discharge port H10, the heat exchange flow path AR, and the communication flow path BR communicate with each other.
Accordingly, when the cooling medium is supplied from the supply port H9 of thehousing 10, the cooling medium flows through the heat exchange flow path AR via the communication flow path BR and is discharged from the discharge port H10 of the housing 10. can be As a result, case 2 can control the temperature of the cooling medium more efficiently.
これにより、冷却媒体を筐体10の供給口H9から供給すると、冷却媒体は、連通用流路BRを介して、熱交換用流路ARを流通して、筐体10の排出口H10から排出され得る。その結果、ケース2は、冷却媒体の温度をより効率良く制御することができる。 As described with reference to FIGS. 1-9, the housing has one supply port H9 and one discharge port H10. The supply port H9, the discharge port H10, the heat exchange flow path AR, and the communication flow path BR communicate with each other.
Accordingly, when the cooling medium is supplied from the supply port H9 of the
図1~図9を参照して説明したように、電池パック1は、ケース2と、複数の電池モジュール3とを備える。
これにより、電池パック1は、熱交換用流路ARに冷却媒体を流通させることで、それぞれの独立した金属プレート20を介して、熱伝導により、複数の電池モジュール3の温度を冷却することができる。その結果、電池パック1は、複数の電池モジュール3の温度を効率良く冷却することができる。 As described with reference to FIGS. 1 to 9,battery pack 1 includes case 2 and a plurality of battery modules 3 .
As a result, thebattery pack 1 can cool the temperature of the plurality of battery modules 3 by heat conduction via the independent metal plates 20 by circulating the cooling medium in the heat exchange flow paths AR. can. As a result, the battery pack 1 can efficiently cool the temperature of the plurality of battery modules 3 .
これにより、電池パック1は、熱交換用流路ARに冷却媒体を流通させることで、それぞれの独立した金属プレート20を介して、熱伝導により、複数の電池モジュール3の温度を冷却することができる。その結果、電池パック1は、複数の電池モジュール3の温度を効率良く冷却することができる。 As described with reference to FIGS. 1 to 9,
As a result, the
以上、図面を参照しながら本開示の実施形態を説明した。但し、本開示は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数等は、図面作成の都合上から実際とは異なる。上記の実施形態で示す各構成要素の材質や形状、寸法等は一例であって、特に限定されるものではなく、本開示の効果から実質的に逸脱しない範囲で種々の変更が可能である。
The embodiments of the present disclosure have been described above with reference to the drawings. However, the present disclosure is not limited to the above embodiments, and can be embodied in various aspects without departing from the scope of the present disclosure. In order to facilitate understanding, the drawings schematically show each component mainly, and the thickness, length, number, etc. of each component illustrated are different from the actual ones due to the convenience of drawing. . The materials, shapes, dimensions, and the like of each component shown in the above embodiment are examples and are not particularly limited, and various changes are possible within a range that does not substantially deviate from the effects of the present disclosure.
2021年6月18日に出願された日本国特許出願2021-101971の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-101971 filed on June 18, 2021 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-101971 filed on June 18, 2021 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.
Claims (13)
- 内部に収容される被熱交換体の温度を制御するためのケースであって、
前記被熱交換体を収容する筐体と、
前記筐体に固定され、前記被熱交換体と熱的に接触する複数の金属プレートと
を備え、
前記複数の金属プレートの各々と前記筐体との間には、前記被熱交換体と熱交換する熱交換媒体を流通させるための熱交換用流路が形成されており、
複数の前記熱交換用流路は、第1熱交換用流路と、第2熱交換用流路とを少なくとも含み、
前記筐体は、前記第1熱交換用流路と前記第2熱交換用流路とを連通するための連通用流路を有する、ケース。 A case for controlling the temperature of a heat exchange object housed inside,
a housing that accommodates the heat-exchanged body;
A plurality of metal plates fixed to the housing and in thermal contact with the heat exchange object,
Between each of the plurality of metal plates and the housing, a heat exchange flow path for circulating a heat exchange medium that exchanges heat with the heat exchange object is formed,
The plurality of heat exchange channels includes at least a first heat exchange channel and a second heat exchange channel,
A case, wherein the housing has a communication channel for communicating the first heat exchange channel and the second heat exchange channel. - 前記筐体は、
本体部と、
前記本体部に固定された少なくとも1つの連通用流路構成部と
を有し、
前記連通用流路は、前記本体部と前記少なくとも1つの連通用流路構成部との間に形成されている、請求項1に記載のケース。 The housing is
a main body;
and at least one communication channel forming part fixed to the main body,
2. The case according to claim 1, wherein said communication channel is formed between said body portion and said at least one communication channel forming portion. - 前記本体部は、前記被熱交換体を収容する少なくとも1つの収容壁部を有し、
前記少なくとも1つの収容壁部は、前記被熱交換体と対向する内側面と、前記内側面と対向する外側面とを含み、
前記連通用流路は、前記少なくとも1つの連通用流路構成部と、前記外側面との間に形成されている、請求項2に記載のケース。 The main body has at least one housing wall that houses the heat-exchanged body,
The at least one housing wall includes an inner surface facing the heat-exchanged body and an outer surface facing the inner surface,
3. The case according to claim 2, wherein said communication channel is formed between said at least one communication channel forming part and said outer surface. - 前記本体部は、前記少なくとも1つの連通用流路構成部に対応する少なくとも1つの溝部を有し、
前記連通用流路は、前記少なくとも1つの連通用流路構成部が対応する前記少なくとも1つの溝部を覆うことで形成されている、請求項2又は請求項3に記載のケース。 the body portion has at least one groove corresponding to the at least one communication flow path forming portion;
4. The case according to claim 2, wherein the communication channel is formed by covering the at least one groove corresponding to the at least one communication channel forming part. - 前記溝部は、開口部と、底面と、前記底面から前記開口部に向けて拡大するテーパ状の側面とを含む、請求項4に記載のケース。 The case according to claim 4, wherein the groove includes an opening, a bottom surface, and tapered side surfaces expanding from the bottom surface toward the opening.
- 前記複数の金属プレートの各々と、前記筐体との間に介在するパッキンを更に備える、請求項1~請求項5のいずれか1項に記載のケース。 The case according to any one of claims 1 to 5, further comprising a packing interposed between each of the plurality of metal plates and the housing.
- 前記複数の金属プレートの各々は、前記パッキンと接触する部位に凹凸構造を有し、
前記パッキンの材質は、樹脂である、請求項6に記載のケース。 Each of the plurality of metal plates has an uneven structure at a portion that contacts the packing,
The case according to claim 6, wherein the packing is made of resin. - 前記凹凸構造における凹部の平均孔径は、5nm~500μmである、請求項7に記載のケース。 The case according to claim 7, wherein the average pore diameter of the recesses in the uneven structure is 5 nm to 500 µm.
- 前記樹脂は、熱可塑性エラストマー及び熱硬化性エラストマーの少なくとも一方を含む、請求項7又は請求項8に記載のケース。 The case according to claim 7 or claim 8, wherein the resin includes at least one of a thermoplastic elastomer and a thermosetting elastomer.
- 前記パッキンは、前記複数の金属プレートの各々に接合している、請求項6~請求項9のいずれか1項に記載のケース。 The case according to any one of claims 6 to 9, wherein the packing is joined to each of the plurality of metal plates.
- 前記筐体は、前記熱交換媒体を供給するための少なくとも1つの供給口と、前記熱交換媒体を排出するための少なくとも1つの排出口とを有し、
前記少なくとも1つの供給口と、前記少なくとも1つの排出口と、前記複数の熱交換用流路の各々と、前記連通用流路とは、連通している、請求項1~請求項10のいずれか1項に記載のケース。 the housing has at least one supply port for supplying the heat exchange medium and at least one discharge port for discharging the heat exchange medium;
The at least one supply port, the at least one discharge port, each of the plurality of heat exchange channels, and the communication channel are in communication with each other, according to any one of claims 1 to 10. or the case described in paragraph 1. - 請求項1~請求項11のいずれか1項に記載のケースと、
前記ケースに収容された前記被熱交換体と
を備える、パック。 The case according to any one of claims 1 to 11,
A pack comprising the heat-exchanged body housed in the case. - 前記被熱交換体は、少なくとも1つの電池モジュールを含み、
前記熱交換媒体は、冷却媒体である、請求項12に記載のパック。 the heat exchange object includes at least one battery module,
13. A pack as claimed in claim 12, wherein the heat exchange medium is a cooling medium.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021101971 | 2021-06-18 | ||
JP2021-101971 | 2021-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022265018A1 true WO2022265018A1 (en) | 2022-12-22 |
Family
ID=84526514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/023833 WO2022265018A1 (en) | 2021-06-18 | 2022-06-14 | Case and pack |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022265018A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3211711A1 (en) * | 2016-02-24 | 2017-08-30 | Contemporary Amperex Technology Co., Limited | Cooling system for battery pack |
JP2019197648A (en) * | 2018-05-09 | 2019-11-14 | 本田技研工業株式会社 | Battery pack |
JP2020009694A (en) * | 2018-07-11 | 2020-01-16 | パナソニックIpマネジメント株式会社 | Cooling device, battery temperature adjustment system, and vehicle |
WO2020138211A1 (en) * | 2018-12-25 | 2020-07-02 | 三井化学株式会社 | Cooling unit, method for manufacturing cooling unit, and structure |
JP2021039894A (en) * | 2019-09-03 | 2021-03-11 | 本田技研工業株式会社 | Battery pack |
-
2022
- 2022-06-14 WO PCT/JP2022/023833 patent/WO2022265018A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3211711A1 (en) * | 2016-02-24 | 2017-08-30 | Contemporary Amperex Technology Co., Limited | Cooling system for battery pack |
JP2019197648A (en) * | 2018-05-09 | 2019-11-14 | 本田技研工業株式会社 | Battery pack |
JP2020009694A (en) * | 2018-07-11 | 2020-01-16 | パナソニックIpマネジメント株式会社 | Cooling device, battery temperature adjustment system, and vehicle |
WO2020138211A1 (en) * | 2018-12-25 | 2020-07-02 | 三井化学株式会社 | Cooling unit, method for manufacturing cooling unit, and structure |
JP2021039894A (en) * | 2019-09-03 | 2021-03-11 | 本田技研工業株式会社 | Battery pack |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11189868B2 (en) | Battery module of cell edge direct cooling scheme, and battery pack comprising same | |
CN110854320B (en) | Battery module and battery pack including the same | |
CN107546351B (en) | First sub-base plate | |
US9077056B2 (en) | Device for housing electrochemical cells | |
WO2017033412A1 (en) | Battery system and electric vehicle equipped with same battery system | |
US7531269B2 (en) | Battery comprising at least one electrochemical storage cell and a cooling device | |
US8451609B2 (en) | Cooling device for a plurality of power modules | |
WO2013057952A1 (en) | Battery heat exchanger | |
JP7309910B2 (en) | Battery module including cell frame | |
KR20220083733A (en) | Battery Assembly for Electric Vehicles | |
CN113614985A (en) | Battery module and battery pack including the same | |
EP3364480B1 (en) | Battery pack | |
US20180331338A1 (en) | Battery-module housing, method for producing such, and battery module | |
WO2019019963A1 (en) | Battery assembly and traction battery | |
CN219144282U (en) | Battery monomer, battery module and electric equipment | |
CN115939588A (en) | Battery monomer, battery module and consumer | |
CN116053600A (en) | Battery monomer, battery module and electric equipment | |
CN113661599A (en) | Battery pack and motor vehicle equipped with at least one such battery pack | |
KR20240006533A (en) | Thermal management of liquid-cooled modules | |
WO2022265018A1 (en) | Case and pack | |
US20120308860A1 (en) | Casing for a multi-cell electrochemical battery and multi-cell electrochemical battery incorporating the same | |
KR20220012188A (en) | Battery housing for battery module of a traction battery of a motor vehicle | |
CN217788597U (en) | Battery pack and vehicle with same | |
CN115663332B (en) | Battery module | |
TWM573900U (en) | Battery component and power battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22825006 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22825006 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |