WO2022264956A1 - Magnetic recording medium, magnetic tape cartridge, and magnetic recording reproduction device - Google Patents

Magnetic recording medium, magnetic tape cartridge, and magnetic recording reproduction device Download PDF

Info

Publication number
WO2022264956A1
WO2022264956A1 PCT/JP2022/023580 JP2022023580W WO2022264956A1 WO 2022264956 A1 WO2022264956 A1 WO 2022264956A1 JP 2022023580 W JP2022023580 W JP 2022023580W WO 2022264956 A1 WO2022264956 A1 WO 2022264956A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic layer
less
recording medium
powder
Prior art date
Application number
PCT/JP2022/023580
Other languages
French (fr)
Japanese (ja)
Inventor
成人 笠田
稔生 多田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023529851A priority Critical patent/JPWO2022264956A1/ja
Publication of WO2022264956A1 publication Critical patent/WO2022264956A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/702Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a magnetic recording medium, a magnetic tape cartridge, and a magnetic recording/reproducing device.
  • Magnetic recording media are roughly divided into two types: the metal thin film type and the coating type.
  • a metal thin film magnetic recording medium is a magnetic recording medium having a magnetic layer of a metal thin film formed by sputtering or the like (see, for example, Patent Document 1).
  • a coating type magnetic recording medium is a magnetic recording medium having a magnetic layer containing ferromagnetic powder together with a binder.
  • Magnetic recording methods include the perpendicular recording method and the longitudinal recording method.
  • a hard disk drive (HDD) which is a representative example of a magnetic recording/reproducing device equipped with a metal thin film magnetic recording medium, generally employs a perpendicular recording method.
  • Japanese Patent No. 6531764 discloses that recording is performed by a perpendicular recording system on a metal thin film magnetic recording medium having a magnetic layer formed by using a sputtering apparatus. (see paragraph 0102 of Patent Document 1).
  • the longitudinal recording method has conventionally been the mainstream recording method.
  • the perpendicular recording method is a desirable recording method for further high-density recording because it can be expected to dramatically improve the recording density.
  • magnetic recording media are desired to exhibit excellent electromagnetic conversion characteristics.
  • One aspect of the present invention is as follows. [1] having a non-magnetic support and a first magnetic layer containing a ferromagnetic powder and a binder; A second magnetic layer containing a ferromagnetic powder having a coercive force Hc of 50 Oe or less and an average particle size of 50 nm or less and a binder between the non-magnetic support and the first magnetic layer.
  • a magnetic recording medium further comprising: [2] The number of equivalent circle diameters of a plurality of bright regions in a binarized secondary electron image obtained by imaging the surface of the first magnetic layer with a scanning electron microscope at an accelerating voltage of 5 kV.
  • Distribution A is the following (1) to (3): (1) 10,000 or more and 30,000 or less bright regions having an equivalent circle diameter of 1 nm or more and 50 nm or less, (2) 7000 or more and 25000 or less bright regions with an equivalent circle diameter of 51 nm or more and 100 nm or less; (3) 1000 or more and 3000 or less bright regions with an equivalent circle diameter of 101 nm or more; and the number of circle-equivalent diameters of a plurality of dark areas in a binarized secondary electron image obtained by imaging the surface of the first magnetic layer with a scanning electron microscope at an accelerating voltage of 2 kV.
  • Distribution B is the following (4) to (6): (4) 200 or more and 50,000 or less dark regions with an equivalent circle diameter of 1 nm or more and 50 nm or less; (5) 200 or more and 25,000 or less dark regions with an equivalent circle diameter of 51 nm or more and 100 nm or less; (6) 0 or more and 2000 or less dark regions having an equivalent circle diameter of 101 nm or more;
  • the magnetic recording according to any one of [1] to [9] further comprising a nonmagnetic layer containing nonmagnetic powder and a binder between the nonmagnetic support and the second magnetic layer. medium.
  • the non-magnetic support further has a back coat layer containing a non-magnetic powder and a binder on the surface opposite to the surface having the first magnetic layer and the second magnetic layer, [ 1] The magnetic recording medium according to any one of [10]. [12] The magnetic recording medium according to any one of [1] to [11], which is a magnetic tape. [13] A magnetic tape cartridge containing the magnetic recording medium according to [12]. [14] A magnetic recording/reproducing device including the magnetic recording medium according to any one of [1] to [12].
  • a coating-type magnetic recording medium capable of exhibiting excellent electromagnetic conversion characteristics by recording in a perpendicular recording system. Further, according to one aspect of the present invention, it is possible to provide a magnetic tape cartridge and a magnetic recording/reproducing apparatus including such a magnetic recording medium.
  • An example arrangement of data bands and servo bands is shown.
  • An example of servo pattern arrangement for an LTO (Linear Tape-Open) Ultrium format tape is shown.
  • a magnetic recording medium has a non-magnetic support and a first magnetic layer containing ferromagnetic powder and a binder.
  • the magnetic recording medium includes a ferromagnetic powder having a coercive force Hc of 50 Oe or less and an average particle size of 50 nm or less, and a binder between the non-magnetic support and the first magnetic layer. It further has a second magnetic layer comprising:
  • the magnetic recording medium has the first magnetic layer and the second magnetic layer.
  • the first magnetic layer is a layer in which data is recorded by magnetic recording, that is, a layer that can function as a recording layer. Data is recorded on the recording layer by applying a magnetic field from the magnetic head to magnetize the ferromagnetic powder particles in the recording layer.
  • the longitudinal recording method is a recording method in which the direction of the magnetic field applied to the recording layer for magnetization is controlled so as to be parallel to the surface of the recording layer.
  • the in-plane recording method is also generally called a horizontal recording method, a longitudinal recording method, or the like.
  • the perpendicular recording method is a recording method in which the direction of the magnetic field applied to the recording layer for magnetization is controlled so as to be perpendicular to the surface of the recording layer.
  • the term "perpendicular” does not necessarily mean only verticality in a strict sense, but includes the range of error normally permitted in the technical field to which the present invention belongs.
  • a margin of error can mean, for example, a range of less than ⁇ 10 degrees of strict vertical. This point is the same for "horizontal”.
  • a soft magnetic underlayer is generally used to collect the magnetic field sent from the magnetic head in the direction perpendicular to the surface of the recording layer through the recording layer and back to the recording head.
  • the second magnetic layer can be a so-called soft magnetic layer, and can function as the soft magnetic underlayer.
  • the ferromagnetic powder contained in the second magnetic layer that can function as a soft magnetic underlayer in the magnetic recording medium has a coercive force Hc of 50 Oe or less and an average particle size of 50 nm or less.
  • Hc coercive force
  • the magnetic recording medium which is a coating type magnetic recording medium, can contribute to exhibiting excellent electromagnetic conversion characteristics (hereinafter also simply referred to as "electromagnetic conversion characteristics”) by recording in the perpendicular recording system. The inventor speculates.
  • the inventor believes that the fact that the coercive force Hc of the ferromagnetic powder contained in the second magnetic layer is 50 Oe or less can contribute to suppressing the noise derived from the second magnetic layer.
  • the present inventors speculate that the fact that the average particle size of the ferromagnetic powder contained in the second magnetic layer is 50 nm or less can contribute to suppressing the decrease in output. The present inventor believes that this is because the small average particle size of the ferromagnetic powder contained in the second magnetic layer of 50 nm or less contributes to the suppression of roughening of the second magnetic layer.
  • the invention is not limited to the speculations described herein.
  • the magnetic recording medium is suitable as a magnetic recording medium for perpendicular recording. However, it is not excluded that magnetic recording is performed on the magnetic recording medium by the longitudinal recording method.
  • the magnetic recording medium will be described in more detail below.
  • Coercive force Hc is a value measured at a measurement temperature of 25°C ⁇ 1°C.
  • the measurement temperature is the temperature of the ferromagnetic powder at the time of measurement.
  • the ferromagnetic powder contained in the second magnetic layer can be ferromagnetic powder called soft magnetic powder, and its coercive force Hc is 50 Oe or less.
  • the coercive force Hc of the ferromagnetic powder contained in the second magnetic layer is preferably 45 Oe or less from the viewpoint of further improving the electromagnetic conversion characteristics, and is preferably 40 Oe or less, 35 Oe or less, 30 Oe or less, 25 Oe or less, or 20 Oe or less. is more preferable in that order.
  • the coercive force Hc of the ferromagnetic powder contained in the second magnetic layer can be, for example, 1 Oe or more, 3 Oe or more, or 5 Oe or more.
  • a low coercive force Hc of the ferromagnetic powder contained in the second magnetic layer is preferable from the viewpoint of further improving the electromagnetic conversion characteristics.
  • the ferromagnetic powder having the coercive force Hc can be spinel ferrite powder, for example.
  • spinel ferrite powder refers to ferromagnetic powder in which the crystal structure of spinel ferrite is detected as the main phase by X-ray diffraction analysis.
  • the term "main phase” refers to a structure to which the highest intensity diffraction peak is assigned in an X-ray diffraction spectrum obtained by X-ray diffraction analysis.
  • the average particle size of various powders such as ferromagnetic powder is a value measured by the following method using a transmission electron microscope.
  • the powder is photographed using a transmission electron microscope at a magnification of 100,000 times, and the photograph of the particles constituting the powder is obtained by printing on photographic paper or displaying it on a display so that the total magnification is 500,000 times.
  • the particle of interest is selected from the photograph of the obtained particle, the outline of the particle is traced with a digitizer, and the size of the particle (primary particle) is measured.
  • Primary particles refer to individual particles without agglomeration. The above measurements are performed on 500 randomly selected particles.
  • the arithmetic mean of the particle sizes of the 500 particles thus obtained is taken as the average particle size of the powder.
  • the transmission electron microscope for example, Hitachi's H-9000 transmission electron microscope can be used.
  • the particle size can be measured using known image analysis software such as Carl Zeiss image analysis software KS-400. Unless otherwise specified, the average particle size shown in the examples below was measured using a transmission electron microscope H-9000 manufactured by Hitachi, and image analysis software KS-400 manufactured by Carl Zeiss as image analysis software. value.
  • powder means a collection of particles.
  • ferromagnetic powder means a collection of ferromagnetic particles.
  • the aggregation of a plurality of particles is not limited to the form in which the particles constituting the aggregation are in direct contact, but also includes the form in which binders, additives, etc., which will be described later, are interposed between the particles. be.
  • the term particles is sometimes used to describe powders.
  • the size of the particles constituting the powder is the shape of the particles observed in the above particle photographs.
  • particle size is the shape of the particles observed in the above particle photographs.
  • (1) In the case of needle-like, spindle-like, columnar (however, the height is greater than the maximum length of the bottom surface), etc., the length of the long axis constituting the particle, that is, the length of the long axis.
  • (2) In the case of a plate-like or columnar shape (where the thickness or height is smaller than the maximum major diameter of the plate surface or bottom surface), it is expressed by the maximum major diameter of the plate surface or bottom surface, (3)
  • Equivalent circle diameter means the diameter obtained by circular projection method.
  • the average acicular ratio of the powder is obtained by measuring the length of the minor axis of the particles in the above measurement, that is, the minor axis length, and obtaining the value of (long axis length / minor axis length) of each particle. It refers to the arithmetic mean of the values obtained for the particles.
  • the minor axis length is the length of the minor axis constituting the particle in the case of (1) in the definition of the particle size, and the thickness or height in the case of (2).
  • (long axis length/short axis length) is regarded as 1 for convenience.
  • the average particle size is the average major axis length
  • the average particle size is Average plate diameter
  • the average particle size is the average diameter (also referred to as average particle size or average particle size).
  • the average particle size of the ferromagnetic powder contained in the second magnetic layer is 50 nm or less, preferably 45 nm or less from the viewpoint of further improving the electromagnetic conversion characteristics, The order of 25 nm or less is more preferable.
  • the average particle size of the ferromagnetic powder contained in the second magnetic layer can be, for example, 3 nm or more, 5 nm or more, or 10 nm or more.
  • a small average particle size of the ferromagnetic powder contained in the second magnetic layer is preferable from the viewpoint of further improving the electromagnetic conversion characteristics.
  • sample powder can be collected from the magnetic recording medium for various measurements.
  • a method for collecting a powder sample from a magnetic recording medium for example, the method described in paragraph 0015 of JP-A-2011-048878 can be adopted.
  • the coercive force Hc and average particle size of the ferromagnetic powder can be controlled, for example, by the preparation conditions of the ferromagnetic powder. This point will be further described later.
  • a glass crystallization method will be described below as an example of a method for preparing spinel ferrite powder that can be used as the ferromagnetic powder for the second magnetic layer.
  • the ferromagnetic powder contained in the second magnetic layer is not limited to the spinel ferrite powder obtained by this preparation method.
  • a glass crystallization method generally includes the following steps. (1) a step of melting a raw material mixture containing at least a spinel ferrite-forming component and a glass-forming component to obtain a melt (melting step); (2) a step of quenching the melt to obtain an amorphous body (amorphization step); (3) A step of heat-treating an amorphous body to obtain a crystallized product containing spinel ferrite particles precipitated by the heat-treating and a crystallized glass component (crystallization step); (4) A step of collecting spinel ferrite particles from the crystallized product (particle collecting step).
  • the raw material mixture used in the glass crystallization method for obtaining spinel ferrite powder contains a spinel ferrite-forming component and a glass-forming component.
  • the glass-forming component include oxides containing atoms that form constituent atoms of the later-described glass component.
  • the glass-forming components can be, for example, B 2 O 3 and XO.
  • X atoms include alkaline earth metal atoms such as calcium atoms (Ca), strontium atoms (Sr), and barium atoms (Ba).
  • a glass component represented by the composition formula: XB 2 O 4 can be formed as a glass component described later.
  • Each component contained in the raw material mixture in the glass crystallization method exists as an oxide or as various salts that can be converted to an oxide during a process such as melting.
  • the term "B 2 O 3 component” is intended to include B 2 O 3 itself and various salts such as H 3 BO 3 that can be converted to B 2 O 3 during the process. do. This point also applies to other components.
  • Examples of the spinel ferrite-forming component contained in the raw material mixture include oxides containing atoms that form constituent atoms of the spinel ferrite crystal structure.
  • Examples of spinel ferrite include spinel ferrite represented by the composition formula: AFe 2 O 4 .
  • Examples of A atoms include divalent metal atoms such as nickel atoms (Ni), manganese atoms (Mn), zinc atoms (Zn), and copper atoms (Cu).
  • a divalent metal atom refers to a metal atom that can become a divalent cation as an ion.
  • Specific examples of spinel ferrite-forming components include Fe 2 O 3 component and AO component. Examples of the AO component include NiO component, MnO component, ZnO component, and CuO component.
  • the content of various components in the raw material mixture is not particularly limited.
  • the coercive force Hc of the spinel ferrite powder as a result of examination by the present inventors, for example, for a spinel ferrite powder containing nickel atoms and zinc atoms as A atoms, the higher the content of zinc atoms, the lower the coercive force Hc tends to be. seen. Therefore, increasing the content of the ZnO component in the raw material mixture containing the NiO component and the ZnO component can lead to a decrease in the coercive force Hc of the spinel ferrite powder.
  • the raw material mixture can be prepared by weighing and mixing various components. Next, the raw material mixture is melted to obtain a melt.
  • the melting temperature may be set according to the composition of the raw material mixture, and is usually 1000 to 1500°C.
  • the melting time may be appropriately set so that the raw material mixture is sufficiently melted.
  • the obtained melt is rapidly cooled to obtain an amorphous body.
  • the above quenching can be carried out in the same manner as the quenching process usually performed to obtain an amorphous body by the glass crystallization method. etc. can be performed by a known method.
  • the obtained amorphous material is heat-treated.
  • spinel ferrite particles and crystallized glass components can be precipitated.
  • the particle size of the spinel ferrite particles to be precipitated can be controlled by heating conditions.
  • the heating temperature for crystallization crystallization temperature
  • the grain size of the precipitated spinel ferrite grains tends to increase, and as a result, the average grain size of the prepared spinel ferrite powder tends to increase.
  • the composition of the raw material mixture is the same, the larger the average particle size, the higher the coercive force Hc tends to be.
  • the heating conditions it is preferable to control the heating conditions so as to obtain a spinel ferrite powder having an average particle size within the above range and a coercive force Hc within the above range.
  • the crystallization temperature is preferably in the range of 600°C to 690°C.
  • the heating time for crystallization (holding time at the crystallization temperature) is, in one form, for example 0.1 to 24 hours, preferably 0.15 to 8 hours.
  • the crystallized material obtained by heat-treating the amorphous body contains spinel ferrite particles and crystallized glass components. Therefore, when the crystallized product is subjected to an acid treatment, the crystallized glass component surrounding the spinel ferrite particles is dissolved and removed, so that the spinel ferrite particles can be collected.
  • coarse pulverization Prior to the acid treatment, coarse pulverization is preferably carried out in order to increase the efficiency of the acid treatment. Coarse pulverization may be carried out by either a dry method or a wet method. Conditions for coarse pulverization can be set according to a known method.
  • the acid treatment for particle collection can be carried out by a method commonly used in glass crystallization, such as acid treatment under heating. Thereafter, spinel ferrite powder can be obtained by performing post-treatment such as classification (for example, centrifugal separation, decantation, magnetic separation method, etc.), washing with water, and drying, if necessary.
  • the ferromagnetic powder contained in the second magnetic layer of the magnetic recording medium is not limited to that obtained by the above preparation method.
  • the above magnetic recording medium is a coating type magnetic recording medium and contains a binder in the second magnetic layer.
  • a binder is one or more resins.
  • various resins commonly used as binders for coating-type magnetic recording media can be used.
  • binders include polyurethane resins, polyester resins, polyamide resins, vinyl chloride resins, acrylic resins obtained by copolymerizing styrene, acrylonitrile, methyl methacrylate, etc., cellulose resins such as nitrocellulose, epoxy resins, phenoxy resins, polyvinyl acetal, A resin selected from polyvinyl alkylal resins such as polyvinyl butyral can be used alone, or a plurality of resins can be mixed and used. Preferred among these are polyurethane resins, acrylic resins, cellulose resins, and vinyl chloride resins. These resins may be homopolymers or copolymers.
  • the weight-average molecular weight of the resin used as the binder can be, for example, 10,000 or more and 200,000 or less.
  • the second magnetic layer contains the ferromagnetic powder and binder, and may contain one or more additives.
  • additives that may be included in the second magnetic layer see known techniques for magnetic layers commonly referred to as soft magnetic underlayers, known techniques for magnetic layers commonly referred to as recording layers, and/or A known technique for the non-magnetic layer can be applied.
  • the second magnetic layer it is also possible to refer to the below-described description of the first magnetic layer and/or the following description of the non-magnetic layer.
  • the second magnetic layer described above can be provided directly on the surface of the non-magnetic support or indirectly via the non-magnetic layer.
  • the first magnetic layer is a layer that can function as a recording layer. From the viewpoint of further improving the electromagnetic conversion characteristics, on the surface of the first magnetic layer, the number distribution A satisfies (1) to (3) described above and/or the number distribution B described above. It is preferable to satisfy (4) to (6). In the magnetic recording medium, the number distribution A preferably satisfies (1) to (3) described above, and the number distribution B satisfies (4) to (6) described above.
  • the scanning electron microscope used in the present invention and herein for determining the number distribution A and the number distribution B, respectively, is a Field Emission-Scanning Electron Microscope (FE-SEM).
  • FE-SEM Field Emission-Scanning Electron Microscope
  • the FE-SEM for example, FE-SEM S4800 manufactured by Hitachi, Ltd. can be used, and this FE-SEM was used in the examples described later.
  • the magnetic recording medium to be measured an unused magnetic recording medium which is not attached to the magnetic recording/reproducing apparatus is used.
  • magnetic tapes are usually distributed in magnetic tape cartridges.
  • a magnetic tape taken out from an unused magnetic tape cartridge that is not attached to the magnetic recording/reproducing apparatus is used.
  • the surface of the first magnetic layer is not coated before taking the SEM image.
  • Each image is taken by selecting an unimaged area on the surface of the first magnetic layer.
  • the captured SEM image is a secondary electron image.
  • the circle-equivalent diameter is obtained in increments of 1 nm by rounding off to the first decimal place and omitting the second decimal place and beyond.
  • the term "(the) surface of the first magnetic layer” is synonymous with the first magnetic layer side surface of the magnetic recording medium.
  • number distribution A is a number distribution measured by the following method.
  • FE-SEM scanning electron microscope
  • a secondary electron image of the surface of the first magnetic layer of the magnetic recording medium to be measured is captured.
  • the acceleration voltage is 5 kV
  • the working distance is 5 mm
  • the imaging magnification is 10,000.
  • a non-imaging area on the surface of the first magnetic layer is selected, focus is adjusted under the imaging conditions described above, and a secondary electron image is captured.
  • a secondary electron image with a pixel count of 960 pixels ⁇ 1280 pixels is obtained by deleting the portion (micron bar, cross mark, etc.) indicating the size and the like from the imaged image.
  • the above operation is performed 100 times at different locations on the surface of the first magnetic layer of the magnetic recording medium to be measured.
  • the secondary electron image obtained in this manner is taken into image processing software, and binarization processing is performed according to the following procedure.
  • image analysis software for example, ImageJ, which is free software, can be used.
  • the binarization process divides the image into a bright area (white area) and a dark area (black area).
  • the threshold value for binarizing the secondary electron image obtained above has a lower limit of 210 gradations and an upper limit of 255 gradations, and binarization is performed using these two thresholds.
  • noise component removal processing is performed using image analysis software.
  • Noise component removal processing can be performed, for example, by the following method.
  • ImageJ image analysis software
  • Noise cut processing Despeckle is selected to remove noise components.
  • the number of bright regions (that is, white portions) and the area of each bright region are determined by image analysis software.
  • the operator " ⁇ " represents exponentiation.
  • the above steps are performed on the binarized images (100 images) obtained above. Thus, the number distribution A is obtained.
  • number distribution B is a number distribution measured by the following method. Using a scanning electron microscope (FE-SEM), a secondary electron image of the surface of the first magnetic layer of the magnetic recording medium to be measured is taken. As imaging conditions, the acceleration voltage is 2 kV, the working distance is 5 mm, and the imaging magnification is 10,000 times. At the time of imaging, a non-imaging area on the surface of the first magnetic layer is selected, focus is adjusted under the imaging conditions described above, and a secondary electron image is captured.
  • FE-SEM scanning electron microscope
  • a secondary electron image with a pixel count of 960 pixels ⁇ 1280 pixels is obtained by deleting the portion (micron bar, cross mark, etc.) indicating the size and the like from the imaged image.
  • the above operation is performed 100 times at different locations on the surface of the first magnetic layer of the magnetic recording medium to be measured.
  • the secondary electron image obtained in this manner is taken into image processing software, and binarization processing is performed according to the following procedure.
  • image analysis software for example, ImageJ, which is free software, can be used.
  • the threshold value for binarizing the secondary electron image obtained above has a lower limit value of 0 gradation and an upper limit value of 75 gradation, and the binarization process is performed using these two threshold values. After the binarization processing, noise component removal processing is performed using image analysis software.
  • Noise component removal processing can be performed, for example, by the following method.
  • image analysis software ImageJ noise cut processing Despeckle is selected to remove noise components.
  • the number of dark regions (that is, black portions) and the area of each dark region are determined by image analysis software.
  • the above steps are performed on the binarized images (100 images) obtained above.
  • the number distribution B is obtained.
  • the number distribution A determined by the method described above is the following (1) to (3): (1) 10,000 or more and 30,000 or less bright regions with an equivalent circle diameter of 1 nm or more and 50 nm or less, (2) 7000 or more and 25000 or less bright regions with an equivalent circle diameter of 51 nm or more and 100 nm or less; (3) 1000 or more and 3000 or less bright regions with an equivalent circle diameter of 101 nm or more, is preferably satisfied.
  • the number distribution B obtained by the method described above is the following (4) to (6): (4) 200 or more and 50,000 or less dark regions with an equivalent circle diameter of 1 nm or more and 50 nm or less; (5) 200 or more and 25,000 or less dark regions with an equivalent circle diameter of 51 nm or more and 100 nm or less; (6) 0 or more and 2000 or less dark regions having an equivalent circle diameter of 101 nm or more; is preferably satisfied.
  • the first magnetic layer can be formed, for example, using a magnetic layer-forming composition containing one or more non-magnetic powders in addition to ferromagnetic powder.
  • abrasive the magnetic powder
  • the number distribution B is the number distribution of the non-magnetic powder (hereinafter also referred to as "filler") contained in the first magnetic layer to form moderate protrusions on the surface of the first magnetic layer for controlling the frictional characteristics.
  • the present inventor believes that it can serve as an indicator of the state of existence on the surface of one magnetic layer.
  • Controlling the number distribution A and the number distribution B as described above can contribute to further improvement of the electromagnetic conversion characteristics. From the viewpoint of achieving both a reduction in spacing loss and an improvement in the stability of the contact state between the surface of the first magnetic layer and the magnetic head, it is preferable that the number distribution A and the number distribution B are within the above ranges. presumed to be for this reason.
  • the number of bright regions is preferably 15000 or more, more preferably 20000 or more.
  • the number of bright regions is preferably 28000 or less, more preferably 25000 or less.
  • the number of bright regions having equivalent circle diameters of 51 nm or more and 100 nm or less is 7000 or more and 25000 or less.
  • the number of bright regions is preferably 8000 or more, more preferably 9000 or more.
  • the number of bright regions is preferably 24000 or less, more preferably 23000 or less.
  • the number of bright areas with an equivalent circle diameter of 101 nm or more is 1000 or more and 3000 or less.
  • the number of bright regions is preferably 1500 or more, more preferably 2000 or more.
  • the number of bright regions is preferably 2800 or less, more preferably 2500 or less.
  • the number of bright regions may be less than 3000.
  • the number of bright regions may be more than 1,000.
  • the number of dark regions with an equivalent circle diameter of 1 nm or more and 50 nm or less is 200 or more and 50000 or less.
  • the number of such dark regions is preferably 1000 or more, more preferably 2000 or more, and even more preferably 3000 or more.
  • the number of such dark regions is preferably 40,000 or less, more preferably 30,000 or less. In one form, the number of dark regions can be greater than 1000.
  • the number of dark regions with an equivalent circle diameter of 51 nm or more and 100 nm or less is 200 or more and 25000 or less.
  • the number of such dark regions is preferably 250 or more, more preferably 300 or more.
  • the number of such dark regions is preferably 20,000 or less, more preferably 15,000 or less.
  • the number of dark regions with an equivalent circle diameter of 101 nm or more is 0 or more and 2000 or less.
  • the number of such dark regions is preferably 10 or more, more preferably 20 or more.
  • the number of such dark regions is preferably 1500 or less, more preferably 1000 or less. In one aspect, the number of dark regions may be less than 200.
  • Number distribution A and number distribution B depend on the type of components added to the composition for forming the first magnetic layer used to form the first magnetic layer, the method of preparing such composition (e.g., dispersion method, classification method, etc.). method, etc.). For specific examples of the control method, the examples described later can also be referred to.
  • the ferromagnetic powder contained in the first magnetic layer one or a combination of two or more ferromagnetic powders known as ferromagnetic powders generally used in magnetic layers generally called recording layers in various magnetic recording media are used. be able to. From the viewpoint of improving the recording density, it is preferable to use ferromagnetic powder having a small average particle size. From this point of view, the average particle size of the ferromagnetic powder contained in the first magnetic layer is preferably 50 nm or less, more preferably 45 nm or less, even more preferably 40 nm or less, and 35 nm or less.
  • the average particle size of the ferromagnetic powder contained in the first magnetic layer is preferably 5 nm or more, more preferably 8 nm or more, and preferably 10 nm or more. More preferably, it is 15 nm or more, and even more preferably 20 nm or more.
  • Hexagonal Ferrite Powder A preferred specific example of the ferromagnetic powder contained in the first magnetic layer is hexagonal ferrite powder.
  • hexagonal ferrite powder For details of the hexagonal ferrite powder, for example, paragraphs 0012 to 0030 of JP-A-2011-225417, paragraphs 0134-0136 of JP-A-2011-216149, paragraphs 0013-0030 of JP-A-2012-204726 and Paragraphs 0029 to 0084 of JP-A-2015-127985 can be referred to.
  • hexagonal ferrite powder refers to ferromagnetic powder in which the crystal structure of hexagonal ferrite is detected as the main phase by X-ray diffraction analysis.
  • X-ray diffraction analysis For example, when the highest intensity diffraction peak in an X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of hexagonal ferrite, it is determined that the crystal structure of hexagonal ferrite has been detected as the main phase. do.
  • the crystal structure of hexagonal ferrite contains at least iron atoms, divalent metal atoms and oxygen atoms as constituent atoms.
  • a divalent metal atom is a metal atom that can become a divalent cation as an ion, and examples thereof include alkaline earth metal atoms such as strontium, barium, and calcium atoms, and lead atoms.
  • alkaline earth metal atoms such as strontium, barium, and calcium atoms, and lead atoms.
  • hexagonal strontium ferrite powder means that the main divalent metal atoms contained in this powder are strontium atoms
  • hexagonal barium ferrite powder means that the main divalent metal atoms contained in this powder are a barium atom as a divalent metal atom.
  • the main divalent metal atom means the divalent metal atom that accounts for the largest amount on an atomic % basis among the divalent metal atoms contained in the powder.
  • Rare earth atoms are not included in the divalent metal atoms for the above hexagonal ferrite.
  • "Rare earth atoms" in the present invention and herein are selected from the group consisting of scandium atoms (Sc), yttrium atoms (Y), and lanthanide atoms.
  • Lanthanide atoms include lanthanum atom (La), cerium atom (Ce), praseodymium atom (Pr), neodymium atom (Nd), promethium atom (Pm), samarium atom (Sm), europium atom (Eu), gadolinium atom (Gd ), terbium atom (Tb), dysprosium atom (Dy), holmium atom (Ho), erbium atom (Er), thulium atom (Tm), ytterbium atom (Yb), and lutetium atom (Lu) be.
  • La lanthanum atom
  • Ce cerium atom
  • Pr praseodymium atom
  • Nd neodymium atom
  • Pm promethium atom
  • Sm samarium atom
  • Eu europium atom
  • Gd gadolinium atom
  • Tb terbium atom
  • Dy dys
  • the hexagonal strontium ferrite powder which is one form of the hexagonal ferrite powder, will be described in more detail below.
  • the activated volume of the hexagonal strontium ferrite powder is preferably in the range of 800-1600 nm 3 .
  • a finely divided hexagonal strontium ferrite powder exhibiting an activation volume within the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion characteristics.
  • the activated volume of the hexagonal strontium ferrite powder is preferably greater than or equal to 800 nm 3 , for example it may be greater than or equal to 850 nm 3 .
  • the activated volume of the hexagonal strontium ferrite powder is more preferably 1500 nm 3 or less, further preferably 1400 nm 3 or less, and 1300 nm 3 or less. is more preferable, 1200 nm 3 or less is even more preferable, and 1100 nm 3 or less is even more preferable.
  • the same is true for the activation volume of hexagonal barium ferrite powder.
  • the "activation volume” is a unit of magnetization reversal, and is an index indicating the magnetic size of a particle.
  • the activation volume and the anisotropy constant Ku described in the present invention and this specification were measured using a vibrating sample magnetometer at magnetic field sweep speeds of 3 minutes and 30 minutes at the coercive force Hc measurement unit (measurement Temperature: 23° C. ⁇ 1° C.), which is a value obtained from the following relational expression between Hc and activation volume V.
  • Hc 2Ku/Ms ⁇ 1 ⁇ [(kT/KuV)ln(At/0.693)] 1/2 ⁇
  • Ku anisotropy constant (unit: J/m 3 )
  • Ms saturation magnetization (unit: kA/m)
  • k Boltzmann constant
  • T absolute temperature (unit: K)
  • V activity volume (unit: cm 3 )
  • A spin precession frequency (unit: s ⁇ 1 )
  • t magnetic field reversal time (unit: s)]
  • An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability.
  • the hexagonal strontium ferrite powder can preferably have a Ku of 1.8 ⁇ 10 5 J/m 3 or more, more preferably 2.0 ⁇ 10 5 J/m 3 or more.
  • Ku of the hexagonal strontium ferrite powder can be, for example, 2.5 ⁇ 10 5 J/m 3 or less.
  • the higher the Ku value the higher the thermal stability, which is preferable.
  • the hexagonal strontium ferrite powder may or may not contain rare earth atoms.
  • the hexagonal strontium ferrite powder contains rare earth atoms, it preferably contains 0.5 to 5.0 atomic % of rare earth atoms (bulk content) with respect to 100 atomic % of iron atoms.
  • the hexagonal strontium ferrite powder containing rare earth atoms can have uneven distribution of rare earth atoms on the surface layer.
  • rare earth atom surface uneven distribution refers to the rare earth atom content ratio (hereinafter referred to as “Rare earth atom surface layer content” or simply “surface layer content” with respect to rare earth atoms.) is obtained by completely dissolving hexagonal strontium ferrite powder with acid. (hereinafter referred to as “rare earth atom bulk content” or simply “bulk content” with respect to rare earth atoms), and Rare earth atom surface layer content/rare earth atom bulk content>1.0 means that the ratio of The rare earth atom content rate of the hexagonal strontium ferrite powder described later is synonymous with the rare earth atom bulk content rate.
  • the content of rare earth atoms in the solution obtained by partial dissolution is It is the rare earth atom content rate in the surface layer portion of the particles.
  • the rare earth atom surface layer portion content ratio satisfies the ratio of "rare earth atom surface layer portion content/rare earth atom bulk content rate >1.0" means that the rare earth atoms are present in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder. It means that it is unevenly distributed (that is, it exists more than inside).
  • the term "surface layer portion” means a partial region extending from the surface toward the inside of a particle that constitutes the hexagonal strontium ferrite powder.
  • the rare earth atom content is preferably in the range of 0.5 to 5.0 atomic % with respect to 100 atomic % of iron atoms.
  • the fact that the rare earth atoms are contained in the bulk content in the above range and that the rare earth atoms are unevenly distributed in the surface layer of the particles constituting the hexagonal strontium ferrite powder contributes to suppressing the decrease in reproduction output during repeated reproduction. Conceivable. This is because the hexagonal strontium ferrite powder contains rare earth atoms with a bulk content within the above range, and the rare earth atoms are unevenly distributed in the surface layers of the particles constituting the hexagonal strontium ferrite powder.
  • the use of the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed on the surface layer as the ferromagnetic powder of the first magnetic layer suppresses abrasion of the surface of the first magnetic layer due to sliding with the magnetic head. It is speculated that it also contributes to That is, it is presumed that the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed on the surface layer can contribute to the improvement of the running durability of the magnetic recording medium. This is because the uneven distribution of rare earth atoms on the surfaces of the particles that make up the hexagonal strontium ferrite powder causes interaction between the particle surfaces and the organic substances (e.g., binders and/or additives) contained in the first magnetic layer.
  • the organic substances e.g., binders and/or additives
  • the rare earth atom content is in the range of 0.5 to 4.5 atomic %. is more preferably in the range of 1.0 to 4.5 atomic %, and even more preferably in the range of 1.5 to 4.5 atomic %.
  • the above bulk content is the content obtained by completely dissolving the hexagonal strontium ferrite powder.
  • the atomic content refers to the bulk content obtained by completely dissolving the hexagonal strontium ferrite powder.
  • the hexagonal strontium ferrite powder containing rare earth atoms may contain only one kind of rare earth atoms as rare earth atoms, or may contain two or more kinds of rare earth atoms. When two or more rare earth atoms are included, the bulk content is determined for the total of two or more rare earth atoms. This point also applies to the present invention and other components in this specification. That is, unless otherwise specified, only one component may be used, or two or more components may be used. When two or more are used, the content or content refers to the total of two or more.
  • the contained rare earth atoms may be any one or more rare earth atoms.
  • Preferred rare earth atoms from the viewpoint of suppressing a decrease in reproduction output in repeated reproduction include neodymium atoms, samarium atoms, yttrium atoms and dysprosium atoms, more preferably neodymium atoms, samarium atoms and yttrium atoms, and neodymium atoms. More preferred.
  • the rare earth atoms need only be unevenly distributed on the surface layer of the particles constituting the hexagonal strontium ferrite powder, and the degree of uneven distribution is not limited.
  • the surface layer content of rare earth atoms obtained by partially dissolving under the melting conditions described later and the rare earth atoms obtained by completely dissolving under the melting conditions described later The ratio of atoms to the bulk content, "surface layer content/bulk content", is greater than 1.0 and can be 1.5 or greater.
  • the "surface layer content/bulk content” is greater than 1.0, it means that the rare earth atoms are unevenly distributed in the surface layer (ie, more present than in the interior) in the particles constituting the hexagonal strontium ferrite powder. do.
  • the ratio between the surface layer content of rare earth atoms obtained by partial dissolution under the dissolution conditions described later and the bulk content of rare earth atoms obtained by complete dissolution under the dissolution conditions described later, "surface layer content/ The “bulk content” can be, for example, 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, 5.0 or less, or 4.0 or less.
  • the rare earth atoms may be unevenly distributed in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder.
  • "Ratio" is not limited to the exemplified upper or lower limits.
  • Partial dissolution and total dissolution of hexagonal strontium ferrite powder are described below.
  • sample powders for partial dissolution and total dissolution are taken from the same lot of powder.
  • part of the hexagonal strontium ferrite powder taken out from the first magnetic layer is partially melted, and the other part is melted. A portion is subjected to total lysis.
  • the hexagonal strontium ferrite powder can be extracted from the magnetic layer, for example, by the method described in paragraph 0032 of JP-A-2015-91747.
  • the above-mentioned partial dissolution means dissolution to such an extent that residual hexagonal strontium ferrite powder can be visually confirmed in the liquid at the end of dissolution.
  • a region of 10 to 20% by mass of the particles constituting the hexagonal strontium ferrite powder can be dissolved out of 100% by mass of the entire particles.
  • the above-mentioned complete dissolution means that the hexagonal strontium ferrite powder is dissolved to the point where no residue of the hexagonal strontium ferrite powder remains in the liquid at the end of dissolution.
  • the partial dissolution and the measurement of the surface layer content are performed, for example, by the following methods.
  • dissolution conditions such as the amount of sample powder described below are examples, and dissolution conditions that allow partial dissolution and complete dissolution can be arbitrarily adopted.
  • a container for example, a beaker
  • 10 mL of 1 mol/L hydrochloric acid is held on a hot plate with a set temperature of 70° C. for 1 hour.
  • the resulting solution is filtered through a 0.1 ⁇ m membrane filter.
  • Atomic analysis of the filtrate thus obtained is performed by an inductively coupled plasma (ICP) analyzer. In this way, the surface layer portion content of rare earth atoms relative to 100 atomic % of iron atoms can be obtained.
  • ICP inductively coupled plasma
  • the total content of all rare earth atoms is taken as the surface layer portion content.
  • This point also applies to the measurement of the bulk content.
  • the measurement of the total dissolution and bulk content is carried out, for example, by the following method.
  • a container for example, a beaker
  • sample powder containing 12 mg of sample powder and 10 mL of 4 mol/L hydrochloric acid is held on a hot plate with a set temperature of 80° C. for 3 hours. After that, the partial dissolution and the measurement of the surface layer portion content are carried out in the same manner as described above, and the bulk content with respect to 100 atom % of iron atoms can be obtained.
  • the ferromagnetic powder contained in the magnetic layer that can function as a recording layer in the magnetic recording medium have a high mass magnetization ⁇ s.
  • hexagonal strontium ferrite powders containing rare earth atoms but not unevenly distributed in the surface layer of rare earth atoms tended to have a significantly lower ⁇ s than hexagonal strontium ferrite powders containing no rare earth atoms.
  • hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer is considered preferable in terms of suppressing such a large decrease in ⁇ s.
  • the ⁇ s of the hexagonal strontium ferrite powder can be 45 A ⁇ m 2 /kg or greater, and can also be 47 A ⁇ m 2 /kg or greater.
  • ⁇ s is preferably 80 A ⁇ m 2 /kg or less, more preferably 60 A ⁇ m 2 /kg or less.
  • ⁇ s can be measured using a known measuring device capable of measuring magnetic properties, such as a vibrating sample magnetometer. In the present invention and this specification, unless otherwise specified, the mass magnetization ⁇ s is a value measured at a magnetic field strength of 15 kOe.
  • the strontium atom content can be, for example, in the range of 2.0 to 15.0 atomic percent with respect to 100 atomic percent of iron atoms.
  • the hexagonal strontium ferrite powder can have strontium atoms as the only divalent metal atoms contained in the powder.
  • the hexagonal strontium ferrite powder can also contain one or more other divalent metal atoms in addition to the strontium atoms. For example, it can contain barium atoms and/or calcium atoms.
  • the barium atom content and calcium atom content in the hexagonal strontium ferrite powder are, for example, 0.05 to 5 atoms per 100 atomic percent of iron atoms. can be in the range of .0 atomic %.
  • the hexagonal strontium ferrite powder may have any crystal structure.
  • the crystal structure can be confirmed by X-ray diffraction analysis.
  • the hexagonal strontium ferrite powder can have a single crystal structure or two or more crystal structures detected by X-ray diffraction analysis.
  • a hexagonal strontium ferrite powder can be one in which only the M-type crystal structure is detected by X-ray diffraction analysis.
  • M-type hexagonal ferrite is represented by a composition formula of AFe 12 O 19 .
  • A represents a divalent metal atom
  • the hexagonal strontium ferrite powder is M-type, A is only a strontium atom (Sr), or if A contains a plurality of divalent metal atoms, , as described above, strontium atoms (Sr) account for the largest amount on an atomic % basis.
  • the divalent metal atom content of the hexagonal strontium ferrite powder is usually determined by the type of crystal structure of the hexagonal ferrite, and is not particularly limited. The same applies to the iron atom content and the oxygen atom content.
  • the hexagonal strontium ferrite powder contains at least iron atoms, strontium atoms and oxygen atoms, and may also contain rare earth atoms.
  • the hexagonal strontium ferrite powder may or may not contain atoms other than these atoms.
  • the hexagonal strontium ferrite powder may contain aluminum atoms (Al).
  • the content of aluminum atoms can be, for example, 0.5 to 10.0 atomic % with respect to 100 atomic % of iron atoms.
  • the hexagonal strontium ferrite powder contains iron atoms, strontium atoms, oxygen atoms and rare earth atoms, and the content of atoms other than these atoms is 100 atomic % iron atoms.
  • the hexagonal strontium ferrite powder may contain no atoms other than iron atoms, strontium atoms, oxygen atoms and rare earth atoms.
  • the content expressed in atomic % above is the content of each atom (unit: mass %) obtained by completely dissolving the hexagonal strontium ferrite powder, and converted to the value expressed in atomic % using the atomic weight of each atom. It is required by conversion.
  • the phrase "not containing" an atom means that the content of the atom as measured by an ICP analyzer after total dissolution is 0% by mass.
  • the detection limit of an ICP analyzer is usually 0.01 ppm (parts per million) or less on a mass basis.
  • the above "does not contain” shall be used in the sense of containing in an amount below the detection limit of the ICP analyzer.
  • the hexagonal strontium ferrite powder in one form, can be free of bismuth atoms (Bi).
  • Metal powder Ferromagnetic metal powder is also a preferred specific example of the ferromagnetic powder.
  • paragraphs 0137 to 0141 of JP-A-2011-216149 and paragraphs 0009-0023 of JP-A-2005-251351 can be referred to.
  • ⁇ -Iron Oxide Powder A preferred specific example of the ferromagnetic powder contained in the first magnetic layer is ⁇ -iron oxide powder.
  • ⁇ -iron oxide powder means a ferromagnetic powder in which the crystal structure of ⁇ -iron oxide is detected as the main phase by X-ray diffraction analysis. For example, when the highest intensity diffraction peak in the X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of ⁇ -iron oxide, it is determined that the crystal structure of ⁇ -iron oxide has been detected as the main phase.
  • ⁇ -iron oxide powder a method of producing from goethite, a reverse micelle method, and the like are known. All of the above manufacturing methods are known. Also, a method for producing ⁇ -iron oxide powder in which a part of Fe is substituted with substitution atoms such as Ga, Co, Ti, Al, and Rh is described in J. Am. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284, J.P. Mater. Chem. C, 2013, 1, pp. 5200-5206 and the like. However, the method for producing the ⁇ -iron oxide powder that can be used as the ferromagnetic powder in the first magnetic layer of the magnetic recording medium is not limited to the methods mentioned here.
  • the activated volume of the ⁇ -iron oxide powder is preferably in the range of 300-1500 nm 3 .
  • a finely divided ⁇ -iron oxide powder exhibiting an activation volume in the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion properties.
  • the activated volume of the ⁇ -iron oxide powder is preferably greater than or equal to 300 nm 3 and may eg be greater than or equal to 500 nm 3 .
  • the activated volume of the ⁇ -iron oxide powder is more preferably 1400 nm 3 or less, further preferably 1300 nm 3 or less, and 1200 nm 3 or less. is more preferable, and 1100 nm 3 or less is even more preferable.
  • An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability.
  • the ⁇ -iron oxide powder can preferably have a Ku of 3.0 ⁇ 10 4 J/m 3 or more, more preferably 8.0 ⁇ 10 4 J/m 3 or more.
  • Ku of the ⁇ -iron oxide powder can be, for example, 3.0 ⁇ 10 5 J/m 3 or less.
  • a higher Ku means a higher thermal stability, which is preferable, and thus is not limited to the values exemplified above.
  • the ferromagnetic powder contained in the magnetic layer that can function as a recording layer in the magnetic recording medium have a high mass magnetization ⁇ s.
  • the ⁇ s of the ⁇ -iron oxide powder can be 8 A ⁇ m 2 /kg or greater, and can also be 12 A ⁇ m 2 /kg or greater.
  • ⁇ s of the ⁇ -iron oxide powder is preferably 40 A ⁇ m 2 /kg or less, more preferably 35 A ⁇ m 2 /kg or less, from the viewpoint of noise reduction.
  • the ferromagnetic powder content (filling rate) in the first magnetic layer is preferably in the range of 50 to 90% by mass, more preferably 60 to 90% by mass, relative to the total mass of the first magnetic layer. is in the range of A high filling rate of the ferromagnetic powder in the first magnetic layer is preferable from the viewpoint of improving the recording density.
  • the first magnetic layer contains ferromagnetic powder and a binder.
  • the binder contained in the first magnetic layer can be referred to the above description of the binder in the second magnetic layer.
  • the composition for forming the first magnetic layer may contain a curing agent together with a resin that can be used as a binder.
  • the curing agent can be, in one form, a thermosetting compound which is a compound in which a curing reaction (crosslinking reaction) proceeds by heating, and in another form, a photocuring compound in which a curing reaction (crosslinking reaction) proceeds by light irradiation. can be a chemical compound.
  • the curing agent reacts (crosslinks) with other components such as the binder to form the first magnetic layer. can be included in layers.
  • the composition used for forming other layers contains a curing agent
  • Preferred curing agents are thermosetting compounds, preferably polyisocyanates.
  • the curing agent is contained in the composition for forming the first magnetic layer in an amount of, for example, 0 to 80.0 parts by weight per 100.0 parts by weight of the binder. .0 to 80.0 parts by weight.
  • the first magnetic layer may optionally contain one or more additives.
  • additives include the curing agents described above.
  • Additives contained in the magnetic layer include nonmagnetic powders, lubricants, dispersants, dispersing aids, antifungal agents, antistatic agents, antioxidants, and the like.
  • lubricants paragraphs 0030 to 0033, 0035 and 0036 of JP-A-2016-126817 can be referred to.
  • a non-magnetic layer which will be described later, may contain a lubricant.
  • Paragraphs 0030, 0031, 0034 to 0036 of JP-A-2016-126817 can be referred to for lubricants that can be contained in the non-magnetic layer.
  • paragraphs 0061 and 0071 of JP-A-2012-133837 can be referred to.
  • Dispersants that can be added to the first magnetic layer-forming composition include known dispersants for enhancing the dispersibility of ferromagnetic powders such as carboxy group-containing compounds and nitrogen-containing compounds.
  • the nitrogen-containing compound may be any of a primary amine represented by NH2R , a secondary amine represented by NHR2, and a tertiary amine represented by NR3.
  • R represents an arbitrary structure constituting the nitrogen-containing compound, and multiple Rs may be the same or different.
  • the nitrogen-containing compound may be a compound (polymer) having multiple repeating structures in its molecule.
  • the reason why the nitrogen-containing compound can work as a dispersing agent is considered to be that the nitrogen-containing portion of the nitrogen-containing compound functions as an adsorption portion to the particle surface of the ferromagnetic powder.
  • Examples of carboxy group-containing compounds include fatty acids such as oleic acid.
  • the reason why the carboxy group-containing compound can work as a dispersing agent is considered to be that the carboxy group functions as an adsorption site on the particle surface of the ferromagnetic powder. It is also preferable to use a carboxy group-containing compound and a nitrogen-containing compound in combination. The amount of these dispersants to be used can be set appropriately.
  • a dispersant may be added to the composition for forming the non-magnetic layer. See paragraph 0061 of JP-A-2012-133837 for the dispersant that can be added to the composition for forming a non-magnetic layer.
  • the number distribution A can be considered as an indicator of the presence of abrasives on the surface of the first magnetic layer. Therefore, the number distribution A can be controlled by the type of non-magnetic powder added as an abrasive.
  • a non-magnetic powder having a Mohs hardness of more than 8 is preferable, and a non-magnetic powder having a Mohs hardness of 9 or more is more preferable.
  • the maximum value of Mohs hardness is 10.
  • the abrasive can be a powder of inorganic material or can be a powder of organic material.
  • the abrasive can be an inorganic or organic oxide powder or carbide powder.
  • the abrasive is preferably an inorganic oxide powder.
  • examples of inorganic oxides include alumina (e.g. Al 2 O 3 ), titanium oxide (e.g. TiO 2 ), cerium oxide (e.g. CeO 2 ), zirconium oxide (e.g. ZrO 2 ), etc.
  • alumina is preferred.
  • Alumina has a Mohs hardness of about 9.
  • paragraph 0021 of JP-A-2013-229090 can also be referred to.
  • the specific surface area can be used as an index of the particle size of the abrasive. It can be considered that the larger the specific surface area, the smaller the particle size of the primary particles constituting the abrasive.
  • the abrasive it is preferable to use an abrasive having a specific surface area measured by the BET (Brunauer-Emmett-Teller) method (hereinafter referred to as "BET specific surface area") of 14 m 2 /g or more. From the viewpoint of dispersibility, it is preferable to use a polishing agent having a BET specific surface area of 40 m 2 /g or less.
  • the content of the abrasive in the first magnetic layer is preferably 1.0 to 20.0 parts by mass, more preferably 1.0 to 15.0 parts by mass, per 100.0 parts by mass of the ferromagnetic powder. is more preferable.
  • the abrasive only one type of non-magnetic powder can be used, or two or more types of non-magnetic powders having different compositions and/or physical properties (for example, size) can be used.
  • the content of abrasives means the total content of these two or more kinds of non-magnetic powders.
  • the abrasive is preferably dispersed separately from the ferromagnetic powder (separate dispersion), and more preferably dispersed separately from the filler described later (separate dispersion).
  • abrasive liquids two or more dispersions with different components and/or dispersion conditions are prepared as abrasive dispersions (hereinafter also referred to as "abrasive liquids"). This is preferable for controlling the number distribution A.
  • a dispersant can also be used to adjust the dispersion state of the abrasive dispersion.
  • a compound that can function as a dispersant for enhancing the dispersibility of the abrasive includes an aromatic hydrocarbon compound having a phenolic hydroxy group.
  • a "phenolic hydroxy group” refers to a hydroxy group directly attached to an aromatic ring.
  • the aromatic ring contained in the aromatic hydrocarbon compound may be monocyclic, polycyclic, or condensed. From the viewpoint of improving the dispersibility of the abrasive, aromatic hydrocarbon compounds containing a benzene ring or a naphthalene ring are preferred.
  • the aromatic hydrocarbon compound may have a substituent other than the phenolic hydroxy group.
  • substituents other than phenolic hydroxy groups include halogen atoms, alkyl groups, alkoxy groups, amino groups, acyl groups, nitro groups, nitroso groups, hydroxyalkyl groups and the like. Alkoxy groups, amino groups and hydroxyalkyl groups are preferred.
  • the number of phenolic hydroxy groups contained in one molecule of the aromatic hydrocarbon compound may be one, two, three or more.
  • a preferred form of the aromatic hydrocarbon compound having a phenolic hydroxy group is the compound represented by the following formula 100.
  • substitution positions of the two hydroxy groups are not particularly limited.
  • two of X 101 to X 108 are hydroxy groups (phenolic hydroxy groups), and the other six independently represent hydrogen atoms or substituents.
  • all of the portions other than the two hydroxy groups may be hydrogen atoms, or some or all of them may be substituents.
  • the substituent the substituents described above can be exemplified.
  • One or more phenolic hydroxy groups may be included as substituents other than the two hydroxy groups. From the viewpoint of improving the dispersibility of the abrasive, it is preferable that the hydroxy groups other than the two hydroxy groups among X 101 to X 108 are not phenolic hydroxy groups.
  • the compound represented by formula 100 is preferably dihydroxynaphthalene or a derivative thereof, more preferably 2,3-dihydroxynaphthalene or a derivative thereof.
  • substituents as the substituents represented by X 101 to X 108 include halogen atoms (eg, chlorine atom, bromine atom), amino groups, alkyl groups having 1 to 6 carbon atoms (preferably 1 to 4), and methoxy groups. and ethoxy, acyl, nitro and nitroso groups, and —CH 2 OH groups.
  • paragraphs 0024 to 0028 of JP-A-2014-179149 can also be referred to for the dispersant for enhancing the dispersibility of the abrasive.
  • the dispersant for enhancing the dispersibility of the abrasive is, for example, when preparing the abrasive liquid (for each abrasive liquid when preparing a plurality of abrasive liquids), per 100.0 parts by mass of the abrasive: For example, it can be used in a proportion of 0.5 to 20.0 parts by mass, preferably in a proportion of 1.0 to 10.0 parts by mass.
  • the number distribution B is a magnetic layer of non-magnetic powder (filler) contained in the first magnetic layer in order to form moderate protrusions on the surface of the first magnetic layer for controlling friction characteristics. It is thought that it can be an index of the state of existence on the surface. Therefore, the number distribution B can be controlled by the type of non-magnetic powder added as a filler.
  • One form of filler is carbon black.
  • the BET specific surface area of carbon black is preferably 10 m 2 /g or more, more preferably 15 m 2 /g or more.
  • the BET specific surface area of carbon black is preferably 50 m 2 /g or less, more preferably 40 m 2 /g or less, from the viewpoint of ease of improving dispersibility.
  • colloidal particles are preferably inorganic colloidal particles, more preferably inorganic oxide colloidal particles, and still more preferably silica colloidal particles (colloidal silica) from the viewpoint of availability.
  • colloidal particles means methyl ethyl ketone, cyclohexanone, toluene, ethyl acetate, or at least one mixed solvent containing two or more of the above solvents in an arbitrary mixing ratio.
  • a particle is defined as a particle that, when dispersed, does not settle but is capable of dispersing to provide a colloidal dispersion.
  • the average particle size of the colloidal particles can be, for example, 30-300 nm, preferably 40-200 nm.
  • the content of the filler in the first magnetic layer is preferably 0.5 to 20.0 parts by mass, more preferably 0.5 to 15.0 parts by mass, with respect to 100.0 parts by mass of the ferromagnetic powder. is more preferable.
  • the filler is preferably dispersed separately from the ferromagnetic powder, and more preferably dispersed separately from the abrasive. When preparing the composition for forming the magnetic layer, preparing two or more types of dispersions with different components and/or dispersion conditions as filler dispersions (hereinafter also referred to as "filler liquids”) can result in a number distribution It is preferable to control B.
  • a compound having an ammonium salt structure of an alkyl ester anion represented by the following formula 1 can be used when preparing the filler liquid.
  • the "alkylester anion” can also be called an “alkylcarboxylate anion”.
  • R represents an alkyl group having 7 or more carbon atoms or a fluorinated alkyl group having 7 or more carbon atoms
  • Z + represents an ammonium cation
  • two or more components capable of forming a compound having a salt structure can be used during preparation of the filler liquid. This allows at least a portion of these components to form a compound having the above salt structure during preparation of the filler liquid.
  • the groups described below may have a substituent or may be unsubstituted.
  • the “carbon number” of a group having a substituent means the number of carbon atoms not including the number of carbon atoms of the substituent unless otherwise specified.
  • substituents include, for example, alkyl groups (eg alkyl groups having 1 to 6 carbon atoms), hydroxy groups, alkoxy groups (eg alkoxy groups having 1 to 6 carbon atoms), halogen atoms (eg fluorine atom, chlorine atom, bromine atom, etc.), a cyano group, an amino group, a nitro group, an acyl group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, a salt of a sulfonic acid group, and the like.
  • alkyl groups eg alkyl groups having 1 to 6 carbon atoms
  • alkoxy groups eg alkoxy groups having 1 to 6 carbon atoms
  • halogen atoms eg fluorine atom, chlorine atom, bromine atom, etc.
  • a cyano group an amino group, a nitro group, an acyl group, a carboxy group, a salt of a carboxy
  • R represents an alkyl group having 7 or more carbon atoms or a fluorinated alkyl group having 7 or more carbon atoms.
  • a fluorinated alkyl group has a structure in which some or all of the hydrogen atoms constituting the alkyl group are substituted with fluorine atoms.
  • the alkyl group or fluorinated alkyl group represented by R may have a linear structure, may have a branched structure, may be a cyclic alkyl group or fluorinated alkyl group, and has a linear structure. is preferred.
  • the alkyl group or fluorinated alkyl group represented by R may have a substituent or may be unsubstituted, and is preferably unsubstituted.
  • An alkyl group represented by R can be represented by, for example, C n H 2n+1 -.
  • n represents an integer of 7 or more.
  • the fluorinated alkyl group represented by R can have a structure in which, for example, some or all of the hydrogen atoms constituting the alkyl group represented by C n H 2n+1 - are substituted with fluorine atoms.
  • the number of carbon atoms in the alkyl group or fluorinated alkyl group represented by R is 7 or more, preferably 8 or more, more preferably 9 or more, further preferably 10 or more, and 11 or more. more preferably, 12 or more, and even more preferably 13 or more.
  • the number of carbon atoms in the alkyl group or fluorinated alkyl group represented by R is preferably 20 or less, more preferably 19 or less, and even more preferably 18 or less.
  • Z + represents an ammonium cation.
  • the ammonium cation specifically has the following structure.
  • "*" in formulas representing part of a compound represents the bonding position between the structure of that part and an adjacent atom.
  • the nitrogen cation N + of the ammonium cation and the oxygen anion O 2 ⁇ in formula 1 can form a salt bridging group to form the ammonium salt structure of the alkyl ester anion represented by formula 1.
  • the presence of the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 in the first magnetic layer was confirmed by X-ray photoelectron spectroscopy (ESCA) for the magnetic recording medium. It can be confirmed by analyzing by infrared spectroscopy (IR) or the like.
  • an ammonium cation represented by Z + can be provided, for example, by a nitrogen atom of a nitrogen-containing polymer becoming a cation.
  • a nitrogen-containing polymer means a polymer containing nitrogen atoms.
  • the terms "polymer” and “polymer” are used in the sense of including homopolymers and copolymers.
  • a nitrogen atom can be contained as an atom constituting a main chain of a polymer in one form, and can be contained as an atom constituting a side chain of a polymer in one form.
  • Polyalkyleneimine is a ring-opening polymer of alkyleneimine, and is a polymer having a plurality of repeating units represented by formula 2 below.
  • the nitrogen atom N constituting the main chain in Formula 2 can become a nitrogen cation N + to provide an ammonium cation represented by Z + in Formula 1. and can form an ammonium salt structure with an alkyl ester anion, for example as follows.
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group, and n1 represents an integer of 2 or more.
  • Examples of the alkyl group represented by R 1 or R 2 include an alkyl group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group. group, more preferably a methyl group.
  • the alkyl group represented by R 1 or R 2 is preferably an unsubstituted alkyl group.
  • the combination of R 1 and R 2 in Formula 2 includes a mode in which one is a hydrogen atom and the other is an alkyl group, a mode in which both are hydrogen atoms, and a mode in which both are alkyl groups (same or different alkyl groups). There is a form, preferably a form in which both are hydrogen atoms.
  • n1 in Formula 2 is 2 or more.
  • n1 in Formula 2 can be, for example, 10 or less, 8 or less, 6 or less, or 4 or less.
  • the polyalkyleneimine may be a homopolymer containing only the same structure as the repeating structure represented by Formula 2, or may be a copolymer containing two or more different structures as the repeating structure represented by Formula 2. .
  • the number average molecular weight of the polyalkyleneimine that can be used to form the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 can be, for example, 200 or more, preferably 300 or more, It is more preferably 400 or more.
  • the number average molecular weight of the polyalkyleneimine may be, for example, 10,000 or less, preferably 5,000 or less, and more preferably 2,000 or less.
  • the average molecular weight (weight average molecular weight and number average molecular weight) is measured by gel permeation chromatography (GPC; Gel Permeation Chromatography) and refers to a value determined by standard polystyrene conversion.
  • GPC Gel Permeation Chromatography
  • the average molecular weight shown in the examples below is a value obtained by converting the value measured under the following measurement conditions using GPC into standard polystyrene (polystyrene conversion value).
  • GPC device HLC-8220 (manufactured by Tosoh Corporation) Guard column: TSKguardcolumn Super HZM-H Column: TSKgel Super HZ 2000, TSKgel Super HZ 4000, TSKgel Super HZ-M (manufactured by Tosoh Corporation, 4.6 mm (inner diameter) ⁇ 15.0 cm, 3 types of columns connected in series) Eluent: Tetrahydrofuran (THF) containing stabilizer (2,6-di-t-butyl-4-methylphenol) Eluent flow rate: 0.35 mL/min Column temperature: 40°C Inlet temperature: 40°C Refractive index (RI; Refractive Index) measurement temperature: 40°C Sample concentration: 0.3% by mass Sample injection volume: 10 ⁇ L
  • Polyallylamine is a polymer of allylamine and is a polymer having a plurality of repeating units represented by Formula 3 below.
  • the nitrogen atom N constituting the amino group of the side chain in Formula 3 can become a nitrogen cation N + to provide an ammonium cation represented by Z + in Formula 1. and can form an ammonium salt structure with an alkyl ester anion, for example as follows.
  • the weight average molecular weight of the polyallylamine that can be used to form the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 can be, for example, 200 or more, preferably 1,000 or more. , 1,500 or more.
  • the weight average molecular weight of the polyallylamine may be, for example, 15,000 or less, preferably 10,000 or less, and more preferably 8,000 or less.
  • the presence of a compound having a structure derived from polyalkyleneimine or polyallylamine in the first magnetic layer as the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 is effective for flying on the surface of the first magnetic layer. It can be confirmed by analysis by time-of-flight secondary ion mass spectrometry (TOF-SIMS) or the like.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the compound having an ammonium salt structure of an alkyl ester anion represented by Formula 1 is a nitrogen-containing polymer and at least one fatty acid selected from the group consisting of fatty acids having 7 or more carbon atoms and fluorinated fatty acids having 7 or more carbon atoms.
  • the salt-forming nitrogen-containing polymer can be one or more nitrogen-containing polymers, such as nitrogen-containing polymers selected from the group consisting of polyalkyleneimines and polyallylamines.
  • Fatty acids that form salts can be one or more fatty acids selected from the group consisting of fatty acids having 7 or more carbon atoms and fluorinated fatty acids having 7 or more carbon atoms.
  • a fluorinated fatty acid has a structure in which some or all of the hydrogen atoms constituting the alkyl group bonded to the carboxyl group COOH in the fatty acid are substituted with fluorine atoms.
  • Room temperature is, for example, about 20 to 25.degree.
  • one or more of the nitrogen-containing polymer and one or more of the above fatty acids are used as components of the filler liquid, and the salt formation reaction can be advanced by mixing them in the preparation process of the filler liquid. .
  • one or more of the nitrogen-containing polymer and one or more of the fatty acids are mixed to form a salt before preparing the filler liquid, and then the salt is used as a component of the filler liquid.
  • a filler liquid can be prepared.
  • fatty acids examples include fatty acids having an alkyl group described above as R in Formula 1 and fluorinated fatty acids having a fluorinated alkyl group described as R in Formula 1 above.
  • the mixing ratio of the nitrogen-containing polymer and the fatty acid used to form the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 is 10:10 as a mass ratio of the nitrogen-containing polymer:the fatty acid. It is preferably from 90 to 90:10, more preferably from 20:80 to 85:15, even more preferably from 30:70 to 80:20. Further, the compound having an ammonium salt structure of the alkyl ester anion represented by Formula 1 is added to 100.0 parts by mass of carbon black at the time of preparing the filler liquid (for each filler liquid when preparing multiple filler liquids). For example, 1.0 to 20.0 parts by mass can be used, and 1.0 to 10.0 parts by mass is preferably used.
  • 0.1 to 10.0 parts by mass of a nitrogen-containing polymer is used per 100.0 parts by mass of carbon black. It is preferable to use 0.5 to 8.0 parts by weight of the nitrogen-containing polymer.
  • the fatty acid can be used, for example, in an amount of 0.05 to 10.0 parts by mass, preferably 0.1 to 5.0 parts by mass, per 100.0 parts by mass of carbon black.
  • the first magnetic layer described above can be directly provided, for example, on the second magnetic layer formed on the non-magnetic support.
  • the magnetic recording medium may have the second magnetic layer directly on the surface of the non-magnetic support, or the second magnetic layer may be formed on the surface of the non-magnetic support via a non-magnetic layer containing non-magnetic powder.
  • the non-magnetic powder used in the non-magnetic layer may be inorganic powder or organic powder. Carbon black or the like can also be used. Examples of powders of inorganic substances include powders of metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, and the like. These non-magnetic powders are commercially available and can be produced by known methods.
  • paragraphs 0146 to 0150 of Japanese Patent Application Laid-Open No. 2011-216149 can be referred to.
  • carbon black that can be used in the non-magnetic layer see paragraphs 0040 and 0041 of JP-A-2010-24113.
  • the nonmagnetic powder content (filling rate) in the nonmagnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass, based on the total mass of the nonmagnetic layer. .
  • the non-magnetic layer contains a binder and can also contain one or more additives.
  • Known techniques for nonmagnetic layers can be applied to other details such as binders and additives for the nonmagnetic layer.
  • the type and content of the binder, the type and content of the additive, and the like can be applied to known techniques related to magnetic layers.
  • non-magnetic layers include non-magnetic powders as well as substantially non-magnetic layers containing a small amount of ferromagnetic powders, for example as impurities or intentionally.
  • the substantially non-magnetic layer means that the residual magnetic flux density of this layer is 10 mT or less, the coercive force is 7.96 kA/m (100 Oe) or less, or the residual magnetic flux density is 10 mT or less. and a coercive force of 7.96 kA/m (100 Oe) or less.
  • the non-magnetic layer preferably has no residual magnetic flux density and no coercive force.
  • a backcoat layer containing a nonmagnetic powder and a binder is provided on the surface of the nonmagnetic support opposite to the surface having the first magnetic layer and the second magnetic layer.
  • the magnetic recording medium may be a magnetic recording medium without a back coat layer.
  • the non-magnetic powder in the back coat layer is preferably carbon black or inorganic powder, or both.
  • the backcoat layer includes a binder and may also include one or more additives.
  • Non-magnetic support (hereinafter also simply referred to as "support") will be described.
  • the non-magnetic support include known materials such as biaxially stretched polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamideimide, and aromatic polyamide. Among these, polyethylene terephthalate, polyethylene naphthalate and polyamide are preferred. These supports may be previously subjected to corona discharge, plasma treatment, adhesion-enhancing treatment, heat treatment, or the like.
  • the thickness of the nonmagnetic support is preferably 3.0 to 5.0 ⁇ m.
  • the thickness of the first magnetic layer can be optimized according to the saturation magnetization amount of the magnetic head to be used, the head gap length, the recording signal band, etc., and is, for example, 0.01 ⁇ m to 0.15 ⁇ m. From the point of view, it is preferably 0.02 ⁇ m to 0.12 ⁇ m, more preferably 0.03 ⁇ m to 0.1 ⁇ m.
  • At least one first magnetic layer is sufficient, and the first magnetic layer may be separated into two or more layers having different magnetic properties, and a known multilayer magnetic layer configuration can be applied. The thickness of the first magnetic layer when separated into two or more layers is the total thickness of these layers.
  • the thickness of the second magnetic layer is, for example, 0.1 to 1.5 ⁇ m, preferably 0.1 to 1.0 ⁇ m.
  • the thickness of the nonmagnetic layer is, for example, 0.1 to 1.5 ⁇ m, preferably 0.1 to 1.0 ⁇ m.
  • the thickness of the backcoat layer is preferably 0.9 ⁇ m or less, more preferably 0.1 to 0.7 ⁇ m.
  • the various thicknesses described above can be determined, for example, by the following methods. After exposing a section of the magnetic recording medium in the thickness direction with an ion beam, the exposed section is observed with a scanning electron microscope or a transmission electron microscope. Various thicknesses can be determined as the arithmetic mean of the thicknesses determined at two arbitrary locations in cross-sectional observation. Alternatively, various thicknesses can be obtained as design thicknesses calculated from manufacturing conditions and the like.
  • the steps of preparing a composition for forming the first magnetic layer, second magnetic layer, non-magnetic layer, or backcoat layer usually include at least a kneading step, a dispersing step, and before and after these steps.
  • a mixing step may be included.
  • Each step may be divided into two or more stages.
  • the components used for preparing each layer-forming composition may be added at the beginning or in the middle of any step.
  • the solvent one or more of various solvents commonly used in the production of coating-type magnetic recording media can be used.
  • paragraph 0153 of JP-A-2011-216149 can be referred to.
  • individual components may be added in two or more steps.
  • the binder may be dividedly added in the kneading step, the dispersing step, and the mixing step for viscosity adjustment after dispersion.
  • known manufacturing techniques can be used in various steps.
  • the kneading step it is preferable to use a kneader having a strong kneading force such as an open kneader, a continuous kneader, a pressure kneader or an extruder. Details of the kneading process can be referred to JP-A-1-106338 and JP-A-1-79274.
  • a known disperser can be used.
  • Filtration may be performed by a known method at any stage of preparing each layer-forming composition. Filtration can be performed, for example, by filter filtration.
  • a filter used for filtration for example, a filter having a pore size of 0.01 to 3 ⁇ m (eg, glass fiber filter, polypropylene filter, etc.) can be used.
  • the abrasive liquid used to prepare the first magnetic layer-forming composition is preferably dispersed separately from the ferromagnetic powder and filler.
  • the dispersion state of the abrasive in the abrasive liquid depends on whether or not a dispersant is used to improve the dispersibility of the abrasive, the amount of the dispersant used, the treatment conditions for dispersion treatment such as bead dispersion, and the classification treatment such as centrifugation. can be adjusted depending on the processing conditions, etc. It is preferable to control the number distribution A to adjust the dispersed state of the abrasive.
  • the abrasive liquid is preferably prepared as one or more abrasive liquids containing an abrasive, a solvent, and preferably a binder separately from the ferromagnetic powder and the filler, and the composition for forming the magnetic layer is prepared.
  • a commercially available device can be used for the dispersion treatment and the classification treatment.
  • the conditions for performing these treatments are not particularly limited, and may be set according to the type of apparatus to be used so that the number distribution A satisfies (1) to (3) described above. .
  • the disperse and prepare the filler liquid used to prepare the first magnetic layer-forming composition separately from the ferromagnetic powder and the abrasive.
  • the dispersion state of the filler in the filler liquid depends on whether or not a component is used to improve the dispersibility of the filler, the amount of such component used, the processing conditions for dispersion treatment such as bead dispersion, and the processing conditions for classification treatment such as centrifugation. Adjustable.
  • one or more of the nitrogen-containing polymer and one or more of the fatty acids described above are used as components of the filler liquid, and by mixing them in the preparation process of the filler liquid, the salt formation reaction is induced. can proceed.
  • one or more of the nitrogen-containing polymer and one or more of the fatty acids are mixed to form a salt before preparing the filler liquid, and then the salt is used as a component of the filler liquid.
  • a filler liquid can be prepared. It is preferable to control the number distribution B to adjust the dispersed state of the filler.
  • the filler liquid is preferably prepared as one or more abrasive liquids containing a filler, a solvent, and preferably a binder separately from the ferromagnetic powder and the abrasive. Can be used for preparation. Commercially available equipment can be used for stirring, dispersion treatment and classification treatment. The conditions for performing these treatments are not particularly limited, and may be set according to the type of apparatus used, etc. so that the number distribution B satisfies (4) to (6) described above. .
  • the ferromagnetic powder is dispersed in two stages, and the ferromagnetic powder is dispersed in the first stage to form coarse agglomerates.
  • a second stage dispersion treatment can be performed in which the impact energy applied to the particles of the ferromagnetic powder by collision with the dispersion beads is smaller than that in the first dispersion treatment. It is believed that such dispersion treatment can both improve the dispersibility of the ferromagnetic powder and suppress the occurrence of chipping (partial chipping of particles). This point is also preferable for controlling the vertical squareness ratio, which will be described later.
  • the first step and the second step should be a dispersion treatment before mixing the ferromagnetic powder with other powder components. It is preferable to perform as For example, before mixing with an abrasive and a filler, as a dispersion treatment of a liquid (magnetic liquid) containing a ferromagnetic powder, a binder, a solvent and optionally added additives, the above first step and second step It is preferred to perform steps.
  • the bead diameter of the second dispersed beads is preferably 1/100 or less, more preferably 1/500 or less of the bead diameter of the first dispersed beads.
  • the bead diameter of the second dispersed beads can be, for example, 1/10000 or more of the bead diameter of the first dispersed beads. However, it is not limited to this range.
  • the bead diameter of the second dispersed beads is preferably in the range of 80-1000 nm.
  • the bead diameter of the first dispersed beads can range, for example, from 0.2 to 1.0 mm.
  • the bead diameter in the present invention and this specification is a value measured by the same method as the method for measuring the average particle size of the powder described above.
  • the above-mentioned second step is preferably carried out under conditions where the second dispersed beads are present in an amount of 10 times or more that of the ferromagnetic hexagonal ferrite powder on a mass basis, and in an amount of 10 to 30 times More preferably under existing conditions.
  • the amount of the first dispersed beads in the first stage is also preferably within the above range.
  • the second dispersed beads are beads with a lower density than the first dispersed beads. "Density" is determined by dividing the mass (unit: g) of dispersed beads by the volume (unit: cm 3 ). Measurements are made by the Archimedes method.
  • the density of the second dispersed beads is preferably 3.7 g/cm 3 or less, more preferably 3.5 g/cm 3 or less.
  • the density of the second dispersed beads may be, for example, greater than or equal to 2.0 g/cm 3 or less than 2.0 g/cm 3 .
  • Preferred second dispersed beads from the viewpoint of density include diamond beads, silicon carbide beads, silicon nitride beads, etc.
  • Preferred second dispersed beads from the viewpoint of density and hardness include diamond beads.
  • first dispersion beads dispersion beads with a density of more than 3.7 g/cm 3 are preferable, dispersion beads with a density of 3.8 g/cm 3 or more are more preferable, and dispersion beads with a density of 4.0 g/cm 3 or more are preferable. Beads are more preferred.
  • the density of the first dispersed beads may be, for example, less than or equal to 7.0 g/cm 3 or greater than 7.0 g/cm 3 .
  • zirconia beads, alumina beads, etc. are preferably used, and zirconia beads are more preferably used.
  • the dispersion time is not particularly limited, and may be set according to the type of dispersion machine used.
  • the second magnetic layer is formed, for example, by directly coating the second magnetic layer-forming composition on the surface of the non-magnetic support, or by sequentially or simultaneously coating the second magnetic layer-forming composition with the non-magnetic layer-forming composition. can do.
  • the first magnetic layer can be formed, for example, by coating the first magnetic layer-forming composition and the second magnetic layer-forming composition sequentially or simultaneously.
  • the backcoat layer comprises a backcoat layer-forming composition applied to the surface of a non-magnetic support having a first magnetic layer and a second magnetic layer or a further non-magnetic layer (or those layers are subsequently provided). It can be formed by coating the opposite surface. For details of coating for forming each layer, paragraph 0066 of JP-A-2010-231843 can be referred to.
  • the coating layer of the composition for forming the first magnetic layer can be subjected to orientation treatment in the orientation zone while the coating layer is in a wet state.
  • Various known techniques including those described in paragraph 0052 of JP-A-2010-24113 can be applied to the alignment treatment.
  • the vertical alignment treatment can be performed by a known method such as a method using opposed magnets with different polarities.
  • the drying speed of the coating layer can be controlled by the temperature and air volume of the drying air and/or the conveying speed in the orientation zone.
  • the coated layer may be pre-dried before being conveyed to the orientation zone.
  • the magnetic recording medium according to one aspect of the present invention can be a tape-shaped magnetic recording medium (magnetic tape), or can be a disk-shaped magnetic recording medium (magnetic disk).
  • a magnetic tape is housed in, for example, a magnetic tape cartridge, and the magnetic tape cartridge is loaded into a magnetic recording/reproducing apparatus.
  • a long magnetic tape material obtained through various processes can be cut (slit) into the width of the magnetic tape to be wound on the magnetic tape cartridge by a known cutting machine.
  • Servo patterns can also be formed on the magnetic recording medium by a known method in order to enable head tracking in a magnetic recording/reproducing apparatus. "Formation of servo patterns” can also be called “recording of servo signals.” The formation of a servo pattern will be described below using a magnetic tape as an example.
  • a servo pattern is usually formed along the longitudinal direction of the magnetic tape.
  • Methods of control using servo signals include timing-based servo (TBS), amplitude servo, frequency servo, and the like.
  • a magnetic tape conforming to the LTO (Linear Tape-Open) standard adopts a timing-based servo system.
  • LTO tape Linear Tape-Open
  • a servo pattern is composed of a plurality of non-parallel pairs of magnetic stripes (also called “servo stripes”) arranged continuously in the longitudinal direction of the magnetic tape.
  • a servo system is a system that performs head tracking using a servo signal.
  • the term "timing-based servo pattern” refers to a servo pattern that enables head tracking in a timing-based servo system servo system.
  • the reason why the servo pattern is composed of a pair of non-parallel magnetic stripes as described above is to inform the servo signal reading element passing over the servo pattern of its passing position. Specifically, the pair of magnetic stripes are formed so that the interval between them changes continuously along the width direction of the magnetic tape. and the relative position of the servo signal reading element. This relative position information enables tracking of the data tracks. For this reason, a plurality of servo tracks are usually set on the servo pattern along the width direction of the magnetic tape.
  • a servo band is composed of servo patterns that are continuous in the longitudinal direction of the magnetic tape.
  • a plurality of servo bands are usually provided on the magnetic tape. For example, in LTO tape, the number is five.
  • a data band is an area sandwiched between two adjacent servo bands. The data band is composed of a plurality of data tracks, each data track corresponding to each servo track.
  • each servo band includes information indicating the number of the servo band ("servo band ID (identification)” or "UDIM (Unique Data Band Identification)”).
  • Method also called information
  • This servo band ID is recorded by shifting a specific one of a plurality of pairs of servo stripes in the servo band so that the position thereof is relatively displaced in the longitudinal direction of the magnetic tape. Specifically, the method of shifting a specific one of a plurality of pairs of servo stripes is changed for each servo band.
  • the recorded servo band ID is unique for each servo band, so that one servo band can be uniquely specified only by reading one servo band with a servo signal reading element.
  • a method for uniquely specifying a servo band there is also a method using a staggered method as shown in ECMA-319 (June 2001).
  • this staggered method groups of non-parallel pairs of magnetic stripes (servo stripes) arranged continuously in the longitudinal direction of the magnetic tape are recorded so as to be shifted in the longitudinal direction of the magnetic tape for each servo band. do. Since this combination of shifts between adjacent servo bands is unique for the entire magnetic tape, the servo band can be uniquely identified when reading the servo pattern with two servo signal reading elements. It is possible.
  • each servo band information indicating the position in the longitudinal direction of the magnetic tape (also called “LPOS (Longitudinal Position) information”) is also usually embedded as indicated in ECMA-319 (June 2001). ing. Like the UDIM information, this LPOS information is also recorded by shifting the positions of a pair of servo stripes in the longitudinal direction of the magnetic tape. However, unlike the UDIM information, the same signal is recorded in each servo band in this LPOS information.
  • LPOS Longitudinal Position
  • UDIM and LPOS information can also be embedded in the servo band.
  • the embedded information may be different for each servo band, such as UDIM information, or common to all servo bands, such as LPOS information.
  • a method of embedding information in the servo band it is possible to adopt a method other than the above.
  • a predetermined code may be recorded by thinning out a predetermined pair from a group of paired servo stripes.
  • the servo pattern forming head is called a servo write head.
  • a servo write head normally has a pair of gaps corresponding to the pair of magnetic stripes as many as the number of servo bands.
  • a core and a coil are connected to each pair of gaps, and by supplying current pulses to the coils, a magnetic field generated in the core can generate a leakage magnetic field in the pair of gaps.
  • the magnetic pattern corresponding to the pair of gaps is transferred onto the magnetic tape by inputting a current pulse while the magnetic tape is running over the servo write head, thereby forming the servo pattern. can be done.
  • the width of each gap can be appropriately set according to the density of the servo pattern to be formed.
  • the width of each gap can be set to, for example, 1 ⁇ m or less, 1 to 10 ⁇ m, or 10 ⁇ m or more.
  • the magnetic tape is usually demagnetized (erase).
  • This erasing process can be performed by applying a uniform magnetic field to the magnetic tape using a DC magnet or an AC magnet.
  • the erase process includes DC (Direct Current) erase and AC (Alternating Current) erase.
  • AC erase is performed by gradually decreasing the strength of the magnetic field while reversing the direction of the magnetic field applied to the magnetic tape.
  • DC erase is performed by applying a unidirectional magnetic field to the magnetic tape.
  • the first method is a horizontal DC erase that applies a unidirectional magnetic field along the length of the magnetic tape.
  • the second method is perpendicular DC erase, in which a unidirectional magnetic field is applied along the thickness of the magnetic tape.
  • the erase process may be performed on the entire magnetic tape, or may be performed on each servo band of the magnetic tape.
  • the direction of the magnetic field of the formed servo pattern is determined according to the erase direction. For example, when horizontal DC erasing is performed on a magnetic tape, the servo pattern is formed so that the direction of the magnetic field is opposite to the direction of erasing. As a result, the output of the servo signal obtained by reading the servo pattern can be increased.
  • the formed servo pattern is read and obtained.
  • the servo signal has a unipolar pulse shape.
  • a servo signal obtained by reading the formed servo pattern has a bipolar pulse shape.
  • the vertical squareness ratio of the magnetic recording medium is preferably 0.60 or more, for example.
  • the upper limit of the squareness ratio is, in principle, 1.00 or less.
  • the perpendicular squareness ratio of the magnetic recording medium may be 1.00 or less, for example, 0.95 or less, 0.90 or less, 0.85 or less, or 0.80 or less.
  • a magnetic recording medium having a large squareness ratio in the perpendicular direction is preferable from the viewpoint of further improving the electromagnetic conversion characteristics.
  • the perpendicular squareness ratio of the magnetic recording medium can be controlled by a known method such as performing a perpendicular orientation treatment.
  • the "perpendicular squareness ratio” is the squareness ratio measured in the perpendicular direction of the magnetic recording medium.
  • the "perpendicular direction” described with respect to the squareness ratio is the direction perpendicular to the surface of the first magnetic layer, and can also be called the thickness direction.
  • the vertical squareness ratio is obtained by the following method. A sample piece of a size that can be introduced into the vibrating sample magnetometer is cut out from the magnetic recording medium to be measured. Using a vibrating sample magnetometer, this sample piece was measured at a maximum applied magnetic field of 3979 kA/m, a measurement temperature of 296 K, and a magnetic field sweep rate of 8.3 kA/m/sec.
  • a magnetic field is applied in the direction perpendicular to the direction of ), and the magnetization intensity of the sample piece is measured with respect to the applied magnetic field.
  • the measured value of the magnetization intensity shall be obtained as a value after demagnetization correction and as a value obtained by subtracting the magnetization of the sample probe of the vibrating sample magnetometer as background noise.
  • the measurement temperature refers to the temperature of the sample piece, and by setting the ambient temperature around the sample piece to the measurement temperature, the temperature equilibrium is established, whereby the temperature of the sample piece can be made the measurement temperature.
  • Magnetic tape cartridge One aspect of the present invention relates to a magnetic tape cartridge including the tape-shaped magnetic recording medium (that is, magnetic tape).
  • the details of the magnetic tape included in the magnetic tape cartridge are as described above.
  • a magnetic tape cartridge generally contains a magnetic tape wound on a reel inside the cartridge body.
  • the reel is rotatably provided inside the cartridge body.
  • As the magnetic tape cartridge a single reel type magnetic tape cartridge having one reel inside the cartridge body and a dual reel type magnetic tape cartridge having two reels inside the cartridge body are widely used.
  • a single-reel type magnetic tape cartridge is mounted on a magnetic tape device for recording and/or reproducing data on the magnetic tape, the magnetic tape is pulled out from the magnetic tape cartridge and wound on the reel of the magnetic tape device. be taken.
  • a magnetic head is arranged in the magnetic tape transport path from the magnetic tape cartridge to the take-up reel.
  • the magnetic tape is fed out and taken up between the reel (supply reel) of the magnetic tape cartridge and the reel (take-up reel) of the magnetic tape device. During this time, data is recorded and/or reproduced by contact and sliding between the magnetic head and the surface of the magnetic layer of the magnetic tape.
  • a twin-reel type magnetic tape cartridge has both a supply reel and a take-up reel inside the magnetic tape cartridge.
  • the magnetic tape cartridge may be either a single-reel type magnetic tape cartridge or a twin-reel type magnetic tape cartridge.
  • the magnetic tape cartridge may include the magnetic recording medium (magnetic tape) according to one aspect of the present invention, and other known techniques can be applied.
  • Magnetic recording and reproducing device One aspect of the present invention relates to a magnetic recording/reproducing device including the magnetic recording medium.
  • data is recorded on the magnetic recording medium and/or reproduced from the magnetic recording medium by, for example, contacting and sliding the magnetic layer surface of the magnetic recording medium and the magnetic head.
  • the magnetic recording/reproducing device can detachably include a magnetic tape cartridge according to one aspect of the present invention.
  • the term “magnetic recording/reproducing apparatus” means a device capable of at least one of recording data on a magnetic recording medium and reproducing data recorded on the magnetic recording medium. do. Such devices are commonly called drives.
  • the magnetic head included in the magnetic recording/reproducing device can be a recording head capable of recording data on a magnetic recording medium, and a reproducing head capable of reproducing data recorded on the magnetic recording medium.
  • the magnetic recording/reproducing apparatus can include both a recording head and a reproducing head as separate magnetic heads.
  • the magnetic head included in the magnetic recording/reproducing device may have a configuration in which both the recording element and the reproducing element are provided in one magnetic head.
  • the recording head can be a magnetic head for perpendicular recording or a magnetic head for longitudinal recording.
  • the magnetic head for perpendicular recording and the magnetic head for longitudinal recording known techniques for these heads can be applied.
  • the magnetic recording medium can exhibit excellent electromagnetic conversion characteristics when reproducing data recorded by the perpendicular recording method. Therefore, the recording head included in the magnetic recording/reproducing apparatus is preferably a magnetic head for perpendicular recording.
  • a magnetic head (MR head) including a magnetoresistive (MR) element as a reproducing element capable of reading information recorded on a magnetic recording medium with high sensitivity is preferable.
  • a magnetic head for recording and/or reproducing data may also include a servo pattern reading element.
  • the magnetic recording/reproducing apparatus may include a magnetic head (servo head) having a servo pattern reading element as a separate head from the magnetic head that records and/or reproduces data.
  • a magnetic head for recording data and/or reproducing recorded data (hereinafter also referred to as a "recording/reproducing head") may include two servo signal reading elements. can simultaneously read two adjacent servo bands across the data band. One or more data elements can be positioned between the two servo signal read elements.
  • An element for recording data (recording element) and an element for reproducing data (reading element) are collectively referred to as a "data element”.
  • head tracking using a servo signal can be performed. That is, by causing the servo signal reading element to follow a predetermined servo track, the data element can be controlled to pass over the target data track. The movement of the data track is performed by changing the servo track read by the servo signal reading element in the tape width direction.
  • the record/playback head can also record and/or play back other data bands.
  • the above-described UDIM information is used to move the servo signal reading element to a predetermined servo band, and tracking for that servo band can be started.
  • Fig. 1 shows an example of the arrangement of data bands and servo bands on a magnetic tape.
  • a plurality of servo bands 1 are sandwiched between guide bands 3 on the first magnetic layer of the magnetic tape MT.
  • a plurality of areas 2 sandwiched between two servo bands are data bands.
  • a servo pattern is a magnetized region that can be formed by magnetizing a specific region of the first magnetic layer with a servo write head.
  • the area magnetized by the servo write head (the position where the servo pattern is formed) is defined by standards. For example, in the industry standard LTO Ultrium format tape, a plurality of servo patterns inclined with respect to the tape width direction as shown in FIG.
  • the servo frame SF on servo band 1 is composed of servo subframe 1 (SSF1) and servo subframe 2 (SSF2).
  • a servo subframe 1 is composed of an A burst (symbol A in FIG. 2) and a B burst (symbol B in FIG. 2).
  • the A burst is composed of servo patterns A1 to A5, and the B burst is composed of servo patterns B1 to B5.
  • servo subframe 2 is composed of a C burst (symbol C in FIG. 2) and a D burst (symbol D in FIG. 2).
  • the C burst is composed of servo patterns C1 to C4, and the D burst is composed of servo patterns D1 to D4.
  • Such 18 servo patterns are arranged in sets of 5 and 4 in subframes arranged in an array of 5, 5, 4, 4, and are used to identify servo frames.
  • FIG. 2 shows one servo frame for explanation. In practice, however, a plurality of servo frames are arranged in the running direction in each servo band on the magnetic layer of the magnetic tape on which the head tracking of the timing-based servo system is performed. In FIG. 2, arrows indicate the direction of travel.
  • an LTO Ultrium format tape typically has 5000 or more servo frames per meter of tape length in each servo band of the magnetic layer.
  • the obtained amorphous material was placed in an electric furnace, the temperature inside the electric furnace was raised to the crystallization temperature shown in Table 1, and the same temperature was maintained for 5 hours to deposit particles of the ferromagnetic powder (crystallization ).
  • the crystallized product containing the precipitated particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a bead diameter of 1 mm and 800 ml of 1% concentration acetic acid were added to the glass bottle containing the coarsely pulverized particles, followed by dispersion treatment for 3 hours using a paint shaker. After that, the dispersion was separated from the beads and placed in a stainless steel beaker.
  • the dispersion liquid was allowed to stand at a liquid temperature of 80°C for 3 hours to dissolve the glass component (CaB 2 O 4 ), it was precipitated in a centrifugal separator and washed by repeating decantation, and the internal atmosphere temperature was 110°C. was dried in a dryer for 6 hours to obtain a ferromagnetic powder.
  • the coercive force Hc was determined by the method described above.
  • a VSM Vehicle Sample Magnetometer manufactured by Toei Kogyo Co., Ltd. was used.
  • the dispersion obtained by separating the dispersion and the beads with a mesh was subjected to centrifugal separation.
  • centrifugal separation CS150GXL manufactured by Hitachi Koki Co., Ltd. (rotor used is S100AT6 manufactured by Hitachi Koki Co., Ltd.) is used as a centrifuge, and the rotation speed (rpm; rotation per minute) shown in Table 2 is used for the time shown in Table 2 (centrifugation time ),Carried out.
  • Abrasive liquid B and abrasive liquid C were each prepared by the method described for the preparation of abrasive liquid A, except that various items were changed as shown in Table 2.
  • Preparation of filler liquid ⁇ Preparation of filler liquid D> Per 100.0 parts of the filler (carbon black) shown in Table 3, polyethyleneimine in the amount shown in Table 3, stearic acid in the amount shown in Table 3, and a mixed solution of methyl ethyl ketone and cyclohexanone 1:1 (mass ratio) as a solvent 570 0.0 part was mixed and dispersed with a paint shaker in the presence of zirconia beads (bead diameter: 0.1 mm) for the time shown in Table 3 (bead dispersion time). After dispersion, the dispersion obtained by separating the dispersion and the beads with a mesh was subjected to centrifugal separation.
  • centrifugation treatment For the centrifugation treatment, CS150GXL manufactured by Hitachi Koki Co., Ltd. (rotor used is S100AT6 manufactured by Hitachi Koki Co., Ltd.) is used as a centrifuge, and the rotation speed (rpm; rotation per minute) shown in Table 3 is used for the time shown in Table 3 (centrifugation time ),Carried out.
  • rpm rotation per minute
  • Table 3 centrifugation time
  • the above polyethyleneimine is a commercial product (number average molecular weight 600) manufactured by Nippon Shokubai Co., Ltd.
  • Filler fluids EG were each prepared by the method described for the preparation of filler fluid D, except that various items were changed as shown in Table 3.
  • Various components of the above magnetic liquid were dispersed for 24 hours using zirconia beads (first dispersion beads, density 6.0 g/cm 3 ) with a bead diameter of 0.5 mm in a batch-type vertical sand mill (first stage ), followed by filtration using a filter with a pore size of 0.5 ⁇ m to prepare Dispersion A.
  • the zirconia beads were used in an amount 10 times the mass of the ferromagnetic powder.
  • dispersion liquid A was dispersed in a batch-type vertical sand mill using diamond beads with a bead diameter of 500 nm (second dispersion beads, density 3.5 g/cm 3 ) for 1 hour (second step), followed by centrifugation.
  • a dispersion liquid (dispersion liquid B) was prepared by separating the diamond beads using a vessel. The amount of diamond beads used was 10 times the mass of the ferromagnetic powder.
  • Dispersion B obtained above, the abrasive liquid, the filler liquid, and the above-mentioned other components were introduced into a dissolver stirrer and stirred at a peripheral speed of 10 m/sec for 360 minutes.
  • the mixture was filtered three times through a filter with a pore size of 0.3 ⁇ m to prepare a first magnetic layer-forming composition. did.
  • composition for forming second magnetic layer Various components of the composition for forming the second magnetic layer described below were dispersed for 24 hours using zirconia beads with a bead diameter of 0.1 mm in a batch-type vertical sand mill. A second magnetic layer-forming composition was prepared by filtering using
  • Ferromagnetic powder (see Table 4): 100.0 parts SO 3 Na group-containing polyurethane resin: 18.0 parts (weight average molecular weight 70000, SO 3 Na group content 0.2 meq/g) Stearic acid: 1.0 parts Cyclohexanone: 300.0 parts Methyl ethyl ketone: 300.0 parts
  • composition for forming non-magnetic layer Various components of the following composition for forming a non-magnetic layer were dispersed for 24 hours in a batch-type vertical sand mill using zirconia beads with a bead diameter of 0.1 mm, and then filtered using a filter with a pore diameter of 0.5 ⁇ m. A composition for forming a non-magnetic layer was prepared by filtration.
  • Non-magnetic inorganic powder ⁇ -iron oxide 100.0 parts (average particle size 10 nm, BET specific surface area 75 m 2 /g) Carbon black: 25.0 parts (average particle size 20 nm) SO 3 Na group-containing polyurethane resin: 18.0 parts (weight average molecular weight 70000, SO 3 Na group content 0.2 meq/g) Stearic acid: 1.0 parts Cyclohexanone: 300.0 parts Methyl ethyl ketone: 300.0 parts
  • composition for Forming Backcoat Layer ⁇ Preparation of Composition for Forming Backcoat Layer>
  • components other than lubricants stearic acid and butyl stearate
  • polyisocyanate 200.0 parts of cyclohexanone
  • 200.0 parts of cyclohexanone were kneaded and diluted in an open kneader, and then dispersed in a horizontal bead mill.
  • zirconia beads with a bead diameter of 1 mm 12 passes of dispersion treatment were performed with a bead filling rate of 80% by volume, a rotor tip peripheral speed of 10 m/sec, and a residence time of 2 minutes per pass. Thereafter, the remaining components were added and stirred with a dissolver stirrer, and the resulting dispersion was filtered through a filter having a pore size of 1 ⁇ m to prepare a composition for forming a backcoat layer.
  • Non-magnetic inorganic powder ⁇ -iron oxide 80.0 parts (average particle size 0.15 ⁇ m, BET specific surface area 52 m 2 /g) Carbon black: 20.0 parts (average particle size 20 nm)
  • Vinyl chloride copolymer 13.0 parts
  • Sulfonic acid group-containing polyurethane resin 6.0 parts
  • Phenylphosphonic acid 3.0 parts
  • Cyclohexanone 155.0 parts
  • Methyl ethyl ketone 155.0 parts
  • Stearic acid 3.0 parts
  • Stearic acid Butyl 3.0 parts
  • Polyisocyanate 5.0 parts Cyclohexanone: 200.0 parts
  • the composition for forming a non-magnetic layer prepared above was applied so as to give a thickness of 0.7 ⁇ m after drying, and dried to form a non-magnetic layer. did.
  • the composition for forming the second magnetic layer prepared above was coated on the non-magnetic layer so that the thickness after drying was 0.1 ⁇ m, and dried to form a second magnetic layer.
  • the composition for forming the first magnetic layer prepared above was coated on the second magnetic layer so that the thickness after drying was 0.1 ⁇ m to form a coating layer.
  • a magnetic field having a magnetic field strength of 0.3 T is applied in a direction perpendicular to the surface of the coated layer to perform a vertical alignment treatment. It was dried to form the first magnetic layer.
  • the above-prepared back coat was applied to the surface of the support opposite to the surface on which the non-magnetic layer, the second magnetic layer and the first magnetic layer were formed so that the thickness after drying was 0.3 ⁇ m.
  • the layer-forming composition was applied and dried to form a backcoat layer.
  • the surface is smoothed (calendered) at a speed of 100 m / min, a linear pressure of 300 kg / cm, and a calender temperature of 90 ° C. (calender roll surface temperature).
  • the long magnetic tape original was slit into 1/2 inch width to obtain a magnetic tape.
  • the magnetic tape has a data band, a servo band, and a guide band arranged according to the LTO (Linear Tape-Open) Ultrium format.
  • the obtained magnetic tape (tape length: 960 m) was accommodated in a single reel type magnetic tape cartridge. By repeating the above steps, two magnetic tape cartridges were produced. One magnetic tape cartridge was used for measuring the following number distribution A and number distribution B, and the other magnetic tape cartridge was used for the following electromagnetic conversion characteristics. used for the evaluation of
  • the first magnetic layer of the magnetic tape contains the compound containing the ammonium salt structure of the alkyl ester anion represented by the formula 1 formed by polyethyleneimine and stearic acid.
  • a sample is cut out from the magnetic tape, and X-ray photoelectron spectroscopic analysis is performed on the surface of the magnetic layer (measurement area: 300 ⁇ m ⁇ 700 ⁇ m) using an ESCA device. Specifically, wide scan measurement is performed with an ESCA device under the following measurement conditions. In the measurement results, peaks are confirmed at the positions of the binding energy of the ester anion and the binding energy of the ammonium cation.
  • Apparatus Shimadzu AXIS-ULTRA Excitation X-ray source: Monochromatic Al-K ⁇ ray Scan range: 0 to 1200 eV Pass energy: 160 eV Energy resolution: 1 eV/step Acquisition time: 100ms/step Cumulative count: 5
  • X-ray source Monochromatic Al-K ⁇ ray Scan range: 0 to 1200 eV Pass energy: 160 eV Energy resolution: 1 eV/step Acquisition time: 100ms/step Cumulative count: 5
  • a sample piece having a length of 3 cm was cut from the magnetic tape, and the surface of the first magnetic layer was subjected to ATR-FT-IR (attenuated total reflection-fourier transform-infrared spectrometer) measurement (reflection method). Absorption is confirmed at the wavenumber (1540 cm ⁇ 1 or 1430 cm ⁇ 1 ) corresponding to the absorption of ⁇ and the wavenumber (2400 cm ⁇ 1 ) corresponding to the absorption of ammonium
  • Examples 2 to 28, Comparative Examples 1 to 25 A magnetic tape cartridge was produced by the method described for Example 1, except that the items shown in Table 4 were changed as shown in Table 4. In Table 4, for the comparative examples described as "no second magnetic layer", the second magnetic layer was not formed, and the first magnetic layer was formed on the non-magnetic layer.
  • SrFe1 indicates a hexagonal strontium ferrite powder produced as follows. 1707 g of SrCO3 , 687 g of H3BO3 , 1120 g of Fe2O3 , 45 g of Al(OH) 3 , 24 g of BaCO3, 13 g of CaCO3 , and 235 g of Nd2O3 were weighed and mixed in a mixer. A raw material mixture was obtained by mixing. The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1390° C., and while the melt was being stirred, a tap hole provided at the bottom of the platinum crucible was heated, and the melt was tapped in a rod shape at a rate of about 6 g/sec.
  • the tapped liquid was rolled and quenched with a water-cooled twin roller to prepare an amorphous body.
  • 280 g of the produced amorphous material was placed in an electric furnace, heated to 635° C. (crystallization temperature) at a heating rate of 3.5° C./min, and held at the same temperature for 5 hours to produce hexagonal strontium ferrite particles. Precipitated (crystallized).
  • the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a particle size of 1 mm and 800 mL of 1% concentration of acetic acid aqueous solution were added to a glass bottle and dispersed for 3 hours using a paint shaker. did After that, the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifugal separator, washed by repeating decantation, and placed in a heating furnace at a temperature of 110°C for 6 hours.
  • hexagonal strontium ferrite powder was obtained.
  • the average particle size of the hexagonal strontium ferrite powder obtained above is 18 nm
  • the activation volume is 902 nm 3
  • the anisotropy constant Ku is 2.2 ⁇ 10 5 J/m 3
  • the mass magnetization ⁇ s is 49 A ⁇ m 2 /. kg.
  • 12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was partially dissolved under the dissolution conditions exemplified above. The surface layer content was determined. Separately, 12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was completely dissolved under the dissolution conditions exemplified above.
  • Atomic bulk content was determined.
  • the content of neodymium atoms (bulk content) with respect to 100 atomic % of iron atoms in the hexagonal strontium ferrite powder obtained above was 2.9 atomic %.
  • the content of neodymium atoms in the surface layer was 8.0 atomic %.
  • the ratio of the surface layer portion content rate to the bulk content rate, "surface layer portion content rate/bulk content rate” was 2.8, confirming that neodymium atoms were unevenly distributed in the surface layer of the particles.
  • the fact that the powder obtained above exhibits the crystal structure of hexagonal ferrite can be confirmed by scanning CuK ⁇ rays under the conditions of a voltage of 45 kV and an intensity of 40 mA and measuring the X-ray diffraction pattern under the following conditions (X-ray diffraction analysis). confirmed.
  • the powder obtained above exhibited a crystal structure of magnetoplumbite type (M type) hexagonal ferrite.
  • the crystal phase detected by X-ray diffraction analysis was a magnetoplumbite single phase.
  • SrFe2 indicates hexagonal strontium ferrite powder produced as follows. 1725 g of SrCO3, 666 g of H3BO3 , 1332 g of Fe2O3 , 52 g of Al(OH) 3 , 34 g of CaCO3 and 141 g of BaCO3 were weighed and mixed in a mixer to obtain a raw material mixture. The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1380° C., and the melt was stirred while heating the outlet provided at the bottom of the platinum crucible to dispense the melt in a rod shape at a rate of about 6 g/sec. .
  • the tapped liquid was rolled and quenched with water-cooled twin rolls to prepare an amorphous body.
  • 280 g of the obtained amorphous material was placed in an electric furnace, heated to 645° C. (crystallization temperature), and held at the same temperature for 5 hours to precipitate (crystallize) hexagonal strontium ferrite particles.
  • the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads with a particle size of 1 mm and 800 mL of 1% concentration of acetic acid aqueous solution were added to a glass bottle, followed by dispersion treatment with a paint shaker for 3 hours.
  • the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifugal separator, washed by repeating decantation, and placed in a heating furnace at a temperature of 110°C for 6 hours. After drying for a few hours, hexagonal strontium ferrite powder was obtained. The obtained hexagonal strontium ferrite powder had an average particle size of 19 nm, an activated volume of 1102 nm 3 , an anisotropy constant Ku of 2.0 ⁇ 10 5 J/m 3 , and a mass magnetization ⁇ s of 50 A ⁇ m 2 /kg. there were.
  • ⁇ -iron oxide indicates ⁇ -iron oxide powder prepared as follows. 8.3 g of iron (III) nitrate nonahydrate, 1.3 g of gallium (III) nitrate octahydrate, 190 mg of cobalt (II) nitrate hexahydrate, 150 mg of titanium (IV) sulfate, and 4.0 g of an aqueous ammonia solution having a concentration of 25% was added to a solution of 1.5 g of polyvinylpyrrolidone (PVP) in an air atmosphere at an ambient temperature of 25° C. while stirring using a magnetic stirrer. , and the mixture was stirred for 2 hours while maintaining the ambient temperature of 25°C.
  • PVP polyvinylpyrrolidone
  • aqueous citric acid solution obtained by dissolving 1 g of citric acid in 9 g of pure water was added to the obtained solution, and the mixture was stirred for 1 hour.
  • the precipitated powder after stirring was collected by centrifugation, washed with pure water, and dried in a heating furnace with an internal furnace temperature of 80°C. 800 g of pure water was added to the dried powder, and the powder was dispersed again in water to obtain a dispersion liquid.
  • the obtained dispersion was heated to a liquid temperature of 50° C., and 40 g of an ammonia aqueous solution having a concentration of 25% was added dropwise while stirring.
  • TEOS tetraethoxysilane
  • the heat-treated ferromagnetic powder precursor is put into a 4 mol/L sodium hydroxide (NaOH) aqueous solution, and the liquid temperature is maintained at 70° C. and stirred for 24 hours to obtain a heat-treated ferromagnetic powder precursor.
  • the silicic acid compound which is an impurity, was removed from the After that, the ferromagnetic powder from which the silicic acid compound was removed was collected by centrifugal separation and washed with pure water to obtain the ferromagnetic powder.
  • the composition of the obtained ferromagnetic powder was confirmed by high-frequency inductively coupled plasma-optical emission spectrometry (ICP-OES), Ga, Co and Ti-substituted ⁇ -iron oxide ( ⁇ -Ga 0 .28 Co 0.05 Ti 0.05 Fe 1.62 O 3 ).
  • ICP-OES high-frequency inductively coupled plasma-optical emission spectrometry
  • Ga Ga
  • Co Ti-substituted ⁇ -iron oxide
  • ⁇ -Ga 0 .28 Co 0.05 Ti 0.05 Fe 1.62 O 3 X-ray diffraction analysis was performed under the same conditions as those previously described for the hexagonal strontium ferrite powder SrFe1. From the peaks of the X-ray diffraction pattern, the obtained ferromagnetic powder had an ⁇ -phase and a ⁇ -phase crystal structure.
  • the resulting ⁇ -iron oxide powder had an average particle size of 12 nm, an activated volume of 746 nm 3 , an anisotropy constant Ku of 1.2 ⁇ 10 5 J/m 3 and a mass magnetization ⁇ s of 16 A ⁇ m 2 /kg. there were.
  • the activation volume and anisotropy constant Ku of the hexagonal strontium ferrite powder and the ⁇ -iron oxide powder were obtained by using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd.) for each ferromagnetic powder, as previously described. It is a value obtained by the method of The mass magnetization ⁇ s is a value measured with a magnetic field strength of 1194 kA/m (15 kOe) using a vibrating sample magnetometer (manufactured by Toei Industry Co., Ltd.).
  • the magnetic tape housed in the magnetic tape cartridge was subjected to the following method using an FE-SEM S4800 manufactured by Hitachi Ltd. as a scanning electron microscope (FE-SEM) to determine the number distribution A and the number distribution A on the surface of the first magnetic layer. A number distribution B was obtained.
  • FE-SEM scanning electron microscope
  • FE-SEM scanning electron microscope
  • a secondary electron image of the surface of the first magnetic layer of the magnetic tape to be measured is taken.
  • the acceleration voltage is 5 kV
  • the working distance is 5 mm
  • the imaging magnification is 10,000.
  • a non-imaging area on the surface of the first magnetic layer is selected, focus is adjusted under the imaging conditions described above, and a secondary electron image is captured.
  • a secondary electron image with a pixel count of 960 pixels ⁇ 1280 pixels is obtained by deleting the portion (micron bar, cross mark, etc.) indicating the size and the like from the imaged image.
  • the above operation is performed 100 times at different locations on the surface of the first magnetic layer of the magnetic tape to be measured.
  • the secondary electron image obtained in this way is loaded into image processing software (Free software ImageJ), and binarization processing is performed according to the following procedure.
  • the threshold value for binarizing the secondary electron image obtained above has a lower limit of 210 gradations and an upper limit of 255 gradations, and binarization is performed using these two thresholds.
  • the noise component is removed by selecting the noise cut process Despeckle in the image analysis software (Free software ImageJ).
  • the number of bright regions that is, white portions
  • the above steps are performed on the binarized images (100 images) obtained above.
  • the number distribution A is obtained from the above.
  • FE-SEM scanning electron microscope
  • a secondary electron image of the surface of the first magnetic layer of the magnetic tape to be measured is taken.
  • the acceleration voltage is 2 kV
  • the working distance is 5 mm
  • the imaging magnification is 10,000 times.
  • a non-imaging area on the surface of the first magnetic layer is selected, focus is adjusted under the imaging conditions described above, and a secondary electron image is captured.
  • a secondary electron image with a pixel count of 960 pixels ⁇ 1280 pixels is obtained by deleting the portion (micron bar, cross mark, etc.) indicating the size and the like from the imaged image.
  • the above operation is performed 100 times at different locations on the surface of the first magnetic layer of the magnetic tape to be measured.
  • the secondary electron image obtained in this way is taken into image processing software (Free software ImageJ), and binarization processing is performed according to the following procedure.
  • the threshold value for binarizing the secondary electron image obtained above has a lower limit value of 0 gradation and an upper limit value of 75 gradation, and the binarization process is performed using these two threshold values.
  • the noise component is removed by selecting the noise cut process Despeckle in the image analysis software (Free software ImageJ).
  • the number of dark regions that is, black portions
  • the above steps are performed on the binarized images (100 images) obtained above.
  • the number distribution B is obtained from the above.
  • a sample piece for measuring the squareness ratio in the vertical direction was cut out from the magnetic tape contained in each of the magnetic tape cartridges described above.
  • the squareness ratio in the vertical direction was determined by the method described above using a TM-TRVSM5050-SMSL model manufactured by Tamagawa Seisakusho as a vibrating sample magnetometer.
  • the vertical squareness ratio of the magnetic tapes taken out from the respective magnetic tape cartridges of Examples 1-28 and Comparative Examples 1-25 was 0.60 or more and 1.00 or less.
  • One aspect of the present invention is useful in various magnetic recording applications where further improvement in recording density is desired.

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

The present invention provides a magnetic recording medium that has a non-magnetic support and a first magnetic layer that includes a ferromagnetic powder and a binding agent, the magnetic recording medium also having a second magnetic layer between the non-magnetic support and the first magnetic layer, the second magnetic layer including a ferromagnetic powder that has a coercivity Hc of no more than 50 Oe and an average particle size of no more than 50 nm and a binding agent. The present invention also provides a magnetic tape cartridge and a magnetic recording reproduction device that include the magnetic recording medium.

Description

磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置Magnetic Recording Media, Magnetic Tape Cartridges and Magnetic Recording/Reproducing Devices
 本発明は、磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置に関する。 The present invention relates to a magnetic recording medium, a magnetic tape cartridge, and a magnetic recording/reproducing device.
 磁気記録媒体は、金属薄膜型と塗布型の二種類に大別される。金属薄膜型磁気記録媒体は、スパッタ等によって形成された金属薄膜の磁性層を有する磁気記録媒体である(例えば特許文献1参照)。これに対し、塗布型磁気記録媒体は、強磁性粉末を結合剤とともに含む磁性層を有する磁気記録媒体である。 Magnetic recording media are roughly divided into two types: the metal thin film type and the coating type. A metal thin film magnetic recording medium is a magnetic recording medium having a magnetic layer of a metal thin film formed by sputtering or the like (see, for example, Patent Document 1). On the other hand, a coating type magnetic recording medium is a magnetic recording medium having a magnetic layer containing ferromagnetic powder together with a binder.
特許第6531764号明細書Patent No. 6531764
 磁気記録の記録方式には、垂直記録方式と面内記録方式とがある。金属薄膜型磁気記録媒体を搭載した磁気記録再生装置の代表例であるハードディスクドライブ(HDD)では、一般に垂直記録方式が採用されている。また、特許第6531764号明細書(特許文献1)には、スパッタ装置を用いて成膜された磁性層を有する金属薄膜型磁気記録媒体に対して垂直記録方式で記録を行ったことが開示されている(特許文献1の段落0102参照)。 Magnetic recording methods include the perpendicular recording method and the longitudinal recording method. A hard disk drive (HDD), which is a representative example of a magnetic recording/reproducing device equipped with a metal thin film magnetic recording medium, generally employs a perpendicular recording method. Further, Japanese Patent No. 6531764 (Patent Document 1) discloses that recording is performed by a perpendicular recording system on a metal thin film magnetic recording medium having a magnetic layer formed by using a sputtering apparatus. (see paragraph 0102 of Patent Document 1).
 これに対し、塗布型磁気記録媒体については、従来、記録方式は面内記録方式が主流であった。しかし、垂直記録方式は、記録密度の飛躍的な向上が期待できる点で、更なる高密度記録化のために望ましい記録方式である。また、磁気記録媒体には、優れた電磁変換特性を発揮できることが望まれる。 On the other hand, for coating type magnetic recording media, the longitudinal recording method has conventionally been the mainstream recording method. However, the perpendicular recording method is a desirable recording method for further high-density recording because it can be expected to dramatically improve the recording density. Further, magnetic recording media are desired to exhibit excellent electromagnetic conversion characteristics.
 以上に鑑み、本発明の一態様は、垂直記録方式での磁気記録によって優れた電磁変換特性を発揮できる塗布型磁気記録媒体を提供することを目的とする。 In view of the above, it is an object of one aspect of the present invention to provide a coating type magnetic recording medium capable of exhibiting excellent electromagnetic conversion characteristics by magnetic recording in a perpendicular recording system.
 本発明の一態様は、以下の通りである。
[1]非磁性支持体と、強磁性粉末および結合剤を含む第一の磁性層と、を有し、
上記非磁性支持体と上記第一の磁性層との間に、保磁力Hcが50Oe以下であって平均粒子サイズが50nm以下である強磁性粉末と、結合剤と、を含む第二の磁性層を更に有する磁気記録媒体。
[2]上記第一の磁性層の表面を走査型電子顕微鏡により加速電圧5kVで撮像して得られた二次電子像の二値化処理済み画像における複数の明部領域の円相当径の個数分布Aが、下記(1)~(3):
(1)円相当径が1nm以上50nm以下の明部領域が10000個以上30000個以下、
(2)円相当径が51nm以上100nm以下の明部領域が7000個以上25000個以下、
(3)円相当径が101nm以上の明部領域が1000個以上3000個以下、
を満たし、かつ
上記第一の磁性層の表面を走査型電子顕微鏡により加速電圧2kVで撮像して得られた二次電子像の二値化処理済み画像における複数の暗部領域の円相当径の個数分布Bが、下記(4)~(6):
(4)円相当径が1nm以上50nm以下の暗部領域が200個以上50000個以下、
(5)円相当径が51nm以上100nm以下の暗部領域が200個以上25000個以下、
(6)円相当径が101nm以上の暗部領域が0個以上2000個以下、
を満たす、[1]に記載の磁気記録媒体。
[3]上記磁気記録媒体の垂直方向角型比は0.60以上である、[1]または[2]に記載の磁気記録媒体。
[4]上記第二の磁性層に含まれる強磁性粉末の保磁力Hcは、10Oe以上50Oe以下である、[1]~[3]のいずれかに記載の磁気記録媒体。
[5]上記第二の磁性層に含まれる強磁性粉末の平均粒子サイズは、5nm以上50nm以下である、[1]~[4]のいずれかに記載の磁気記録媒体。
[6]上記第二の磁性層に含まれる強磁性粉末は、スピネルフェライト粉末である、[1]~[5]のいずれかに記載の磁気記録媒体。
[7]上記第一の磁性層に含まれる強磁性粉末は、六方晶バリウムフェライト粉末である、[1]~[6]のいずれかに記載の磁気記録媒体。
[8]上記第一の磁性層に含まれる強磁性粉末は、六方晶ストロンチウムフェライト粉末である、[1]~[6]のいずれかに記載の磁気記録媒体。
[9]上記第一の磁性層に含まれる強磁性粉末は、ε-酸化鉄粉末である、[1]~[6]のいずれかに記載の磁気記録媒体。
[10]上記非磁性支持体と上記第二の磁性層との間に、非磁性粉末および結合剤を含む非磁性層を更に有する、[1]~[9]のいずれかに記載の磁気記録媒体。
[11]上記非磁性支持体の上記第一の磁性層および上記第二の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を更に有する、[1]~[10]のいずれかに記載の磁気記録媒体。
[12]磁気テープである、[1]~[11]のいずれかに記載の磁気記録媒体。
[13][12]に記載の磁気記録媒体を含む磁気テープカートリッジ。
[14][1]~[12]のいずれかに記載の磁気記録媒体を含む磁気記録再生装置。
One aspect of the present invention is as follows.
[1] having a non-magnetic support and a first magnetic layer containing a ferromagnetic powder and a binder;
A second magnetic layer containing a ferromagnetic powder having a coercive force Hc of 50 Oe or less and an average particle size of 50 nm or less and a binder between the non-magnetic support and the first magnetic layer. A magnetic recording medium further comprising:
[2] The number of equivalent circle diameters of a plurality of bright regions in a binarized secondary electron image obtained by imaging the surface of the first magnetic layer with a scanning electron microscope at an accelerating voltage of 5 kV. Distribution A is the following (1) to (3):
(1) 10,000 or more and 30,000 or less bright regions having an equivalent circle diameter of 1 nm or more and 50 nm or less,
(2) 7000 or more and 25000 or less bright regions with an equivalent circle diameter of 51 nm or more and 100 nm or less;
(3) 1000 or more and 3000 or less bright regions with an equivalent circle diameter of 101 nm or more;
and the number of circle-equivalent diameters of a plurality of dark areas in a binarized secondary electron image obtained by imaging the surface of the first magnetic layer with a scanning electron microscope at an accelerating voltage of 2 kV. Distribution B is the following (4) to (6):
(4) 200 or more and 50,000 or less dark regions with an equivalent circle diameter of 1 nm or more and 50 nm or less;
(5) 200 or more and 25,000 or less dark regions with an equivalent circle diameter of 51 nm or more and 100 nm or less;
(6) 0 or more and 2000 or less dark regions having an equivalent circle diameter of 101 nm or more;
The magnetic recording medium according to [1], which satisfies:
[3] The magnetic recording medium according to [1] or [2], wherein the perpendicular squareness ratio of the magnetic recording medium is 0.60 or more.
[4] The magnetic recording medium according to any one of [1] to [3], wherein the ferromagnetic powder contained in the second magnetic layer has a coercive force Hc of 10 Oe or more and 50 Oe or less.
[5] The magnetic recording medium according to any one of [1] to [4], wherein the ferromagnetic powder contained in the second magnetic layer has an average particle size of 5 nm or more and 50 nm or less.
[6] The magnetic recording medium according to any one of [1] to [5], wherein the ferromagnetic powder contained in the second magnetic layer is spinel ferrite powder.
[7] The magnetic recording medium according to any one of [1] to [6], wherein the ferromagnetic powder contained in the first magnetic layer is hexagonal barium ferrite powder.
[8] The magnetic recording medium according to any one of [1] to [6], wherein the ferromagnetic powder contained in the first magnetic layer is hexagonal strontium ferrite powder.
[9] The magnetic recording medium according to any one of [1] to [6], wherein the ferromagnetic powder contained in the first magnetic layer is ε-iron oxide powder.
[10] The magnetic recording according to any one of [1] to [9], further comprising a nonmagnetic layer containing nonmagnetic powder and a binder between the nonmagnetic support and the second magnetic layer. medium.
[11] The non-magnetic support further has a back coat layer containing a non-magnetic powder and a binder on the surface opposite to the surface having the first magnetic layer and the second magnetic layer, [ 1] The magnetic recording medium according to any one of [10].
[12] The magnetic recording medium according to any one of [1] to [11], which is a magnetic tape.
[13] A magnetic tape cartridge containing the magnetic recording medium according to [12].
[14] A magnetic recording/reproducing device including the magnetic recording medium according to any one of [1] to [12].
 本発明の一態様によれば、垂直記録方式での記録によって優れた電磁変換特性を発揮できる塗布型磁気記録媒体を提供することができる。また、本発明の一態様によれば、かかる磁気記録媒体を含む磁気テープカートリッジおよび磁気記録再生装置を提供することができる。 According to one aspect of the present invention, it is possible to provide a coating-type magnetic recording medium capable of exhibiting excellent electromagnetic conversion characteristics by recording in a perpendicular recording system. Further, according to one aspect of the present invention, it is possible to provide a magnetic tape cartridge and a magnetic recording/reproducing apparatus including such a magnetic recording medium.
データバンドおよびサーボバンドの配置例を示す。An example arrangement of data bands and servo bands is shown. LTO(Linear Tape-Open)Ultriumフォーマットテープのサーボパターン配置例を示す。An example of servo pattern arrangement for an LTO (Linear Tape-Open) Ultrium format tape is shown.
[磁気記録媒体]
 本発明の一態様にかかる磁気記録媒体は、非磁性支持体と、強磁性粉末および結合剤を含む第一の磁性層と、を有する。上記磁気記録媒体は、上記非磁性支持体と上記第一の磁性層との間に、保磁力Hcが50Oe以下であって平均粒子サイズが50nm以下である強磁性粉末と、結合剤と、を含む第二の磁性層を更に有する。
[Magnetic recording medium]
A magnetic recording medium according to one aspect of the present invention has a non-magnetic support and a first magnetic layer containing ferromagnetic powder and a binder. The magnetic recording medium includes a ferromagnetic powder having a coercive force Hc of 50 Oe or less and an average particle size of 50 nm or less, and a binder between the non-magnetic support and the first magnetic layer. It further has a second magnetic layer comprising:
 上記磁気記録媒体は、上記の第一の磁性層と第二の磁性層とを有する。
 第一の磁性層は、磁気記録によってデータが記録される層、即ち記録層として機能し得る層である。記録層へのデータの記録は、磁気ヘッドから磁界を印加して記録層中の強磁性粉末の粒子を磁化することによって行われる。磁化のために記録層に印加される磁界の向きを記録層表面に対して水平になるように制御する記録方式が、面内記録方式である。面内記録方式は、一般に、水平記録方式、長手記録方式等とも呼ばれる。これに対し、磁化のために記録層に印加される磁界の向きを記録層表面に対して垂直になるように制御する記録方式が、垂直記録方式である。なお、本発明および本明細書において、「垂直」とは、必ずしも厳密な意味の垂直のみを意味するものではなく、本発明が属する技術分野において通常許容される誤差の範囲を含むものとする。誤差の範囲とは、例えば、厳密な垂直±10°未満の範囲を意味することができる。この点は、「水平」に関しても同様である。
 垂直記録方式でのデータの記録では、通常、磁気ヘッドから記録層表面に対して垂直方向に送り込んだ磁界を、記録層を通過させて再び記録ヘッドへと回収するために、一般に軟磁性下地層(Soft-magnetic Under Layer;SUL)と呼ばれる更なる磁性層を要する。上記磁気記録媒体において、上記の第二の磁性層は、いわゆる軟磁性層と呼ばれる層であることができ、上記の軟磁性下地層として機能し得る層である。上記磁気記録媒体において軟磁性下地層として機能し得る第二の磁性層に含まれる強磁性粉末が、保磁力Hcが50Oe以下であって、かつ平均粒子サイズが50nm以下の強磁性粉末であることが、塗布型磁気記録媒体である上記磁気記録媒体が、垂直記録方式での記録によって優れた電磁変換特性(以下、単に「電磁変換特性」とも記載する。)を発揮できることに寄与し得ると本発明者は推察している。詳しくは、本発明者は、第二の磁性層に含まれる強磁性粉末の保磁力Hcが50Oe以下であることが、第二の磁性層由来のノイズを抑制することに寄与し得ると考えている。また、第二の磁性層に含まれる強磁性粉末の平均粒子サイズが50nm以下であることが、出力低下を抑制することに寄与し得ると本発明者は推察している。これは、第二の磁性層に含まれる強磁性粉末の平均粒子サイズが50nm以下と小さいことが、第二の磁性層の粗面化を抑制することに寄与するためと本発明者は考えている。ただし、本発明は、本明細書に記載の推察に限定されるものではない。また、上記の通り、上記磁気記録媒体は、垂直記録用磁気記録媒体として好適である。ただし、上記磁気記録媒体に面内記録方式によって磁気記録が行われることが排除されるものではない。
The magnetic recording medium has the first magnetic layer and the second magnetic layer.
The first magnetic layer is a layer in which data is recorded by magnetic recording, that is, a layer that can function as a recording layer. Data is recorded on the recording layer by applying a magnetic field from the magnetic head to magnetize the ferromagnetic powder particles in the recording layer. The longitudinal recording method is a recording method in which the direction of the magnetic field applied to the recording layer for magnetization is controlled so as to be parallel to the surface of the recording layer. The in-plane recording method is also generally called a horizontal recording method, a longitudinal recording method, or the like. On the other hand, the perpendicular recording method is a recording method in which the direction of the magnetic field applied to the recording layer for magnetization is controlled so as to be perpendicular to the surface of the recording layer. In the present invention and this specification, the term "perpendicular" does not necessarily mean only verticality in a strict sense, but includes the range of error normally permitted in the technical field to which the present invention belongs. A margin of error can mean, for example, a range of less than ±10 degrees of strict vertical. This point is the same for "horizontal".
In data recording by the perpendicular recording method, a soft magnetic underlayer is generally used to collect the magnetic field sent from the magnetic head in the direction perpendicular to the surface of the recording layer through the recording layer and back to the recording head. (Soft-magnetic Under Layer; SUL) is required. In the magnetic recording medium, the second magnetic layer can be a so-called soft magnetic layer, and can function as the soft magnetic underlayer. The ferromagnetic powder contained in the second magnetic layer that can function as a soft magnetic underlayer in the magnetic recording medium has a coercive force Hc of 50 Oe or less and an average particle size of 50 nm or less. However, it is believed that the magnetic recording medium, which is a coating type magnetic recording medium, can contribute to exhibiting excellent electromagnetic conversion characteristics (hereinafter also simply referred to as "electromagnetic conversion characteristics") by recording in the perpendicular recording system. The inventor speculates. Specifically, the inventor believes that the fact that the coercive force Hc of the ferromagnetic powder contained in the second magnetic layer is 50 Oe or less can contribute to suppressing the noise derived from the second magnetic layer. there is Further, the present inventors speculate that the fact that the average particle size of the ferromagnetic powder contained in the second magnetic layer is 50 nm or less can contribute to suppressing the decrease in output. The present inventor believes that this is because the small average particle size of the ferromagnetic powder contained in the second magnetic layer of 50 nm or less contributes to the suppression of roughening of the second magnetic layer. there is However, the invention is not limited to the speculations described herein. Further, as described above, the magnetic recording medium is suitable as a magnetic recording medium for perpendicular recording. However, it is not excluded that magnetic recording is performed on the magnetic recording medium by the longitudinal recording method.
 以下、上記磁気記録媒体について、更に詳細に説明する。 The magnetic recording medium will be described in more detail below.
<第二の磁性層>
(強磁性粉末の各種物性)
保磁力Hc
 本発明および本明細書において、強磁性粉末の保磁力Hcは、振動試料型磁力計によって測定することができる。本発明および本明細書において、保磁力Hcは、測定温度25℃±1℃にて測定される値である。測定温度とは、測定時の強磁性粉末の温度である。測定対象の強磁性粉末の周囲の雰囲気温度を測定温度にすることにより、温度平衡が成り立つことによって測定対象の強磁性粉末の温度を測定温度にすることができる。保磁力Hcの単位Oe(エルステッド)について、1[Oe]=10/4π[A/m]である。
<Second magnetic layer>
(Various physical properties of ferromagnetic powder)
Coercive force Hc
In the present invention and herein, the coercive force Hc of ferromagnetic powder can be measured by a vibrating sample magnetometer. In the present invention and this specification, coercive force Hc is a value measured at a measurement temperature of 25°C ± 1°C. The measurement temperature is the temperature of the ferromagnetic powder at the time of measurement. By setting the temperature of the atmosphere around the ferromagnetic powder to be measured to the measurement temperature, temperature equilibrium is established, whereby the temperature of the ferromagnetic powder to be measured can be set to the measurement temperature. The unit Oe (Oersted) of the coercive force Hc is 1 [Oe]=10 3 /4π [A/m].
 第二の磁性層に含まれる強磁性粉末は、いわゆる軟磁性粉末と呼ばれる強磁性粉末であることができ、その保磁力Hcは、50Oe以下である。第二の磁性層に含まれる強磁性粉末の保磁力Hcは、電磁変換特性の更なる向上の観点から、45Oe以下であることが好ましく、40Oe以下、35Oe以下、30Oe以下、25Oe以下、20Oe以下の順により好ましい。第二の磁性層に含まれる強磁性粉末の保磁力Hcは、例えば1Oe以上、3Oe以上または5Oe以上であることができる。第二の磁性層に含まれる強磁性粉末の保磁力Hcが低いことは、電磁変換特性の更なる向上の観点から好ましい。上記保磁力Hcを有する強磁性粉末は、例えば、スピネルフェライト粉末であることができる。本発明および本明細書において、「スピネルフェライト粉末」とは、X線回折分析によって、主相としてスピネルフェライトの結晶構造が検出される強磁性粉末をいうものとする。本発明および本明細書において、「主相」とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがスピネルフェライトの結晶構造に帰属される場合、スピネルフェライトの結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一相のみが検出された場合には、この検出された構造を主相とする。 The ferromagnetic powder contained in the second magnetic layer can be ferromagnetic powder called soft magnetic powder, and its coercive force Hc is 50 Oe or less. The coercive force Hc of the ferromagnetic powder contained in the second magnetic layer is preferably 45 Oe or less from the viewpoint of further improving the electromagnetic conversion characteristics, and is preferably 40 Oe or less, 35 Oe or less, 30 Oe or less, 25 Oe or less, or 20 Oe or less. is more preferable in that order. The coercive force Hc of the ferromagnetic powder contained in the second magnetic layer can be, for example, 1 Oe or more, 3 Oe or more, or 5 Oe or more. A low coercive force Hc of the ferromagnetic powder contained in the second magnetic layer is preferable from the viewpoint of further improving the electromagnetic conversion characteristics. The ferromagnetic powder having the coercive force Hc can be spinel ferrite powder, for example. In the present invention and in this specification, the term "spinel ferrite powder" refers to ferromagnetic powder in which the crystal structure of spinel ferrite is detected as the main phase by X-ray diffraction analysis. In the present invention and the specification, the term "main phase" refers to a structure to which the highest intensity diffraction peak is assigned in an X-ray diffraction spectrum obtained by X-ray diffraction analysis. For example, when the highest intensity diffraction peak in an X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of spinel ferrite, it is determined that the crystal structure of spinel ferrite has been detected as the main phase. When only a single phase is detected by X-ray diffraction analysis, this detected structure is taken as the main phase.
平均粒子サイズ
 本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
 粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントするか、ディスプレイに表示する等して、粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
 以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
Average Particle Size In the present invention and this specification, unless otherwise specified, the average particle size of various powders such as ferromagnetic powder is a value measured by the following method using a transmission electron microscope.
The powder is photographed using a transmission electron microscope at a magnification of 100,000 times, and the photograph of the particles constituting the powder is obtained by printing on photographic paper or displaying it on a display so that the total magnification is 500,000 times. . The particle of interest is selected from the photograph of the obtained particle, the outline of the particle is traced with a digitizer, and the size of the particle (primary particle) is measured. Primary particles refer to individual particles without agglomeration.
The above measurements are performed on 500 randomly selected particles. The arithmetic mean of the particle sizes of the 500 particles thus obtained is taken as the average particle size of the powder. As the transmission electron microscope, for example, Hitachi's H-9000 transmission electron microscope can be used. Further, the particle size can be measured using known image analysis software such as Carl Zeiss image analysis software KS-400. Unless otherwise specified, the average particle size shown in the examples below was measured using a transmission electron microscope H-9000 manufactured by Hitachi, and image analysis software KS-400 manufactured by Carl Zeiss as image analysis software. value. In the present invention and herein, powder means a collection of particles. For example, ferromagnetic powder means a collection of ferromagnetic particles. In addition, the aggregation of a plurality of particles is not limited to the form in which the particles constituting the aggregation are in direct contact, but also includes the form in which binders, additives, etc., which will be described later, are interposed between the particles. be. The term particles is sometimes used to describe powders.
 本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものをいう。
In the present invention and this specification, unless otherwise specified, the size of the particles constituting the powder (particle size) is the shape of the particles observed in the above particle photographs.
(1) In the case of needle-like, spindle-like, columnar (however, the height is greater than the maximum length of the bottom surface), etc., the length of the long axis constituting the particle, that is, the length of the long axis,
(2) In the case of a plate-like or columnar shape (where the thickness or height is smaller than the maximum major diameter of the plate surface or bottom surface), it is expressed by the maximum major diameter of the plate surface or bottom surface,
(3) If the particle is spherical, polyhedral, irregular, or the like, and the long axis of the particle cannot be specified from the shape, it is represented by an equivalent circle diameter. Equivalent circle diameter means the diameter obtained by circular projection method.
 また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
 そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
In addition, the average acicular ratio of the powder is obtained by measuring the length of the minor axis of the particles in the above measurement, that is, the minor axis length, and obtaining the value of (long axis length / minor axis length) of each particle. It refers to the arithmetic mean of the values obtained for the particles. Here, unless otherwise specified, the minor axis length is the length of the minor axis constituting the particle in the case of (1) in the definition of the particle size, and the thickness or height in the case of (2). In the case of (3), since there is no distinction between the major axis and the minor axis, (long axis length/short axis length) is regarded as 1 for convenience.
Unless otherwise specified, when the particle shape is specific, for example, in the case of the definition (1) of the particle size, the average particle size is the average major axis length, and in the case of the definition (2), the average particle size is Average plate diameter. In the case of the same definition (3), the average particle size is the average diameter (also referred to as average particle size or average particle size).
 第二の磁性層に含まれる強磁性粉末の平均粒子サイズは、50nm以下であり、電磁変換特性の更なる向上の観点から、45nm以下であることが好ましく、40nm以下、35nm以下、30nm以下、25nm以下の順により好ましい。第二の磁性層に含まれる強磁性粉末の平均粒子サイズは、例えば3nm以上、5nm以上または10nm以上であることができる。第二の磁性層に含まれる強磁性粉末の平均粒子サイズが小さいことは、電磁変換特性の更なる向上の観点から好ましい。 The average particle size of the ferromagnetic powder contained in the second magnetic layer is 50 nm or less, preferably 45 nm or less from the viewpoint of further improving the electromagnetic conversion characteristics, The order of 25 nm or less is more preferable. The average particle size of the ferromagnetic powder contained in the second magnetic layer can be, for example, 3 nm or more, 5 nm or more, or 10 nm or more. A small average particle size of the ferromagnetic powder contained in the second magnetic layer is preferable from the viewpoint of further improving the electromagnetic conversion characteristics.
 保磁力Hcおよび平均粒子サイズの測定に関して、粉末試料を入手可能な場合には、かかる粉末試料について上記測定を行うことができる。または、各種測定のために磁気記録媒体から試料粉末を採取することもできる。磁気記録媒体から粉末試料を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。 Regarding the measurement of coercive force Hc and average particle size, if powder samples are available, the above measurements can be performed on such powder samples. Alternatively, sample powder can be collected from the magnetic recording medium for various measurements. As a method for collecting a powder sample from a magnetic recording medium, for example, the method described in paragraph 0015 of JP-A-2011-048878 can be adopted.
 強磁性粉末の保磁力Hcおよび平均粒子サイズは、例えば、強磁性粉末の調製条件によって制御することができる。この点については、更に後述する。 The coercive force Hc and average particle size of the ferromagnetic powder can be controlled, for example, by the preparation conditions of the ferromagnetic powder. This point will be further described later.
(強磁性粉末の調製方法)
 以下に、第二の磁性層の強磁性粉末として使用可能なスピネルフェライト粉末の調製方法の一例として、ガラス結晶化法について説明する。ただし、第二の磁性層に含まれる強磁性粉末は、かかる調製方法によって得られたスピネルフェライト粉末に限定されるものではない。
(Method for preparing ferromagnetic powder)
A glass crystallization method will be described below as an example of a method for preparing spinel ferrite powder that can be used as the ferromagnetic powder for the second magnetic layer. However, the ferromagnetic powder contained in the second magnetic layer is not limited to the spinel ferrite powder obtained by this preparation method.
 ガラス結晶化法は、一般に以下の工程を含む。
(1)スピネルフェライト形成成分およびガラス形成成分を少なくとも含む原料混合物を溶融し、溶融物を得る工程(溶融工程);
(2)溶融物を急冷し非晶質体を得る工程(非晶質化工程);
(3)非晶質体を加熱処理し、加熱処理により析出したスピネルフェライト粒子および結晶化したガラス成分を含む結晶化物を得る工程(結晶化工程);
(4)結晶化物からスピネルフェライト粒子を捕集する工程(粒子捕集工程)。
A glass crystallization method generally includes the following steps.
(1) a step of melting a raw material mixture containing at least a spinel ferrite-forming component and a glass-forming component to obtain a melt (melting step);
(2) a step of quenching the melt to obtain an amorphous body (amorphization step);
(3) A step of heat-treating an amorphous body to obtain a crystallized product containing spinel ferrite particles precipitated by the heat-treating and a crystallized glass component (crystallization step);
(4) A step of collecting spinel ferrite particles from the crystallized product (particle collecting step).
 以下、上記工程について、更に詳細に説明する。 The above steps will be explained in more detail below.
溶融工程
 スピネルフェライト粉末を得るためのガラス結晶化法に用いられる原料混合物は、スピネルフェライト形成成分およびガラス形成成分を含むものである。ガラス形成成分としては、後述のガラス成分の構成原子となる原子を含む酸化物等を挙げることができる。第二の磁性層の強磁性粉末として使用可能なスピネルフェライト粉末を得るためにガラス結晶化法を用いる場合、ガラス形成成分としては、例えばB成分およびXO成分を使用することができる。X原子としては、カルシウム原子(Ca)、ストロンチウム原子(Sr)、バリウム原子(Ba)等のアルカリ土類金属原子を挙げることができる。B成分とXO成分とを併用することによって、後述のガラス成分として、組成式:XBによって表されるガラス成分が形成され得る。ガラス結晶化法において原料混合物に含まれる各成分は、酸化物として、または溶融等の工程中に酸化物に変わり得る各種の塩として存在する。本発明および本明細書において「B成分」とは、B自体および工程中にBに変わり得るHBO等の各種の塩を包含する意味で用いるものとする。この点は、他の成分についても同様である。
Melting Process The raw material mixture used in the glass crystallization method for obtaining spinel ferrite powder contains a spinel ferrite-forming component and a glass-forming component. Examples of the glass-forming component include oxides containing atoms that form constituent atoms of the later-described glass component. When using a glass crystallization method to obtain a spinel ferrite powder that can be used as the ferromagnetic powder of the second magnetic layer, the glass-forming components can be, for example, B 2 O 3 and XO. Examples of X atoms include alkaline earth metal atoms such as calcium atoms (Ca), strontium atoms (Sr), and barium atoms (Ba). By using the B 2 O 3 component and the XO component together, a glass component represented by the composition formula: XB 2 O 4 can be formed as a glass component described later. Each component contained in the raw material mixture in the glass crystallization method exists as an oxide or as various salts that can be converted to an oxide during a process such as melting. In the present invention and the specification, the term "B 2 O 3 component" is intended to include B 2 O 3 itself and various salts such as H 3 BO 3 that can be converted to B 2 O 3 during the process. do. This point also applies to other components.
 原料混合物に含まれるスピネルフェライト形成成分としては、スピネルフェライトの結晶構造の構成原子となる原子を含む酸化物等を挙げることができる。スピネルフェライトとしては、例えば、組成式:AFeによって表されるスピネルフェライトを挙げることができる。A原子としては、ニッケル原子(Ni)、マンガン原子(Mn)、亜鉛原子(Zn)、銅原子(Cu)等の二価金属原子を挙げることができる。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子をいうものとする。スピネルフェライト形成成分の具体例としては、Fe成分およびAO成分を挙げることができる。AO成分としては、NiO成分、MnO成分、ZnO成分、CuO成分等を挙げることができる。 Examples of the spinel ferrite-forming component contained in the raw material mixture include oxides containing atoms that form constituent atoms of the spinel ferrite crystal structure. Examples of spinel ferrite include spinel ferrite represented by the composition formula: AFe 2 O 4 . Examples of A atoms include divalent metal atoms such as nickel atoms (Ni), manganese atoms (Mn), zinc atoms (Zn), and copper atoms (Cu). A divalent metal atom refers to a metal atom that can become a divalent cation as an ion. Specific examples of spinel ferrite-forming components include Fe 2 O 3 component and AO component. Examples of the AO component include NiO component, MnO component, ZnO component, and CuO component.
 原料混合物における各種成分の含有率は、特に限定されるものではない。スピネルフェライト粉末の保磁力Hcについて、本発明者が検討した結果、例えばA原子としてニッケル原子および亜鉛原子を含むスピネルフェライト粉末については、亜鉛原子の含有率が高いほど保磁力Hcが低くなる傾向が見られた。したがって、NiO成分およびZnO成分を含む原料混合物におけるZnO成分の含有率を高くすることは、スピネルフェライト粉末の保磁力Hcを低くすることにつながり得る。原料混合物は、各種成分を秤量および混合して調製することができる。次いで、原料混合物を溶融し溶融物を得る。溶融温度は原料混合物の組成に応じて設定すればよく、通常、1000~1500℃である。溶融時間は、原料混合物が十分溶融するように適宜設定すればよい。 The content of various components in the raw material mixture is not particularly limited. Regarding the coercive force Hc of the spinel ferrite powder, as a result of examination by the present inventors, for example, for a spinel ferrite powder containing nickel atoms and zinc atoms as A atoms, the higher the content of zinc atoms, the lower the coercive force Hc tends to be. seen. Therefore, increasing the content of the ZnO component in the raw material mixture containing the NiO component and the ZnO component can lead to a decrease in the coercive force Hc of the spinel ferrite powder. The raw material mixture can be prepared by weighing and mixing various components. Next, the raw material mixture is melted to obtain a melt. The melting temperature may be set according to the composition of the raw material mixture, and is usually 1000 to 1500°C. The melting time may be appropriately set so that the raw material mixture is sufficiently melted.
非晶質化工程
 次いで、得られた溶融物を急冷することにより非晶質体を得る。上記急冷は、ガラス結晶化法で非晶質体を得るために通常行われる急冷工程と同様に実施することができ、例えば高速回転させた水冷双ローラー上に溶融物を注いで圧延急冷する方法等の公知の方法で行うことができる。
Amorphization Step Next, the obtained melt is rapidly cooled to obtain an amorphous body. The above quenching can be carried out in the same manner as the quenching process usually performed to obtain an amorphous body by the glass crystallization method. etc. can be performed by a known method.
結晶化工程
 上記急冷後、得られた非晶質体を加熱処理する。この加熱処理により、スピネルフェライト粒子および結晶化したガラス成分を析出させることができる。析出させるスピネルフェライト粒子の粒子サイズは、加熱条件により制御可能である。結晶化のための加熱温度(結晶化温度)を高くすると、析出するスピネルフェライト粒子の粒子サイズが大きくなる傾向があり、その結果、調製されるスピネルフェライト粉末の平均粒子サイズは大きくなる傾向がある。また、スピネルフェライト粉末について、原料混合物の組成が同様の場合には、平均粒子サイズが大きいほど保磁力Hcは高くなる傾向がある。上記の点を考慮し、平均粒子サイズが上記範囲かつ保磁力Hcが上記範囲のスピネルフェライト粉末が得られるように、加熱条件を制御することが好ましい。一形態では、結晶化温度は、600℃~690℃の範囲とすることが好ましい。また、結晶化のための加熱時間(上記結晶化温度での保持時間)は、一形態では、例えば0.1~24時間であり、好ましくは0.15~8時間である。
Crystallization Step After the rapid cooling, the obtained amorphous material is heat-treated. By this heat treatment, spinel ferrite particles and crystallized glass components can be precipitated. The particle size of the spinel ferrite particles to be precipitated can be controlled by heating conditions. When the heating temperature for crystallization (crystallization temperature) is increased, the grain size of the precipitated spinel ferrite grains tends to increase, and as a result, the average grain size of the prepared spinel ferrite powder tends to increase. . Further, for spinel ferrite powders, when the composition of the raw material mixture is the same, the larger the average particle size, the higher the coercive force Hc tends to be. In consideration of the above points, it is preferable to control the heating conditions so as to obtain a spinel ferrite powder having an average particle size within the above range and a coercive force Hc within the above range. In one form, the crystallization temperature is preferably in the range of 600°C to 690°C. The heating time for crystallization (holding time at the crystallization temperature) is, in one form, for example 0.1 to 24 hours, preferably 0.15 to 8 hours.
粒子捕集工程
 非晶質体に加熱処理を施して得られた結晶化物中には、スピネルフェライト粒子および結晶化したガラス成分が含まれている。そこで、結晶化物に酸処理を施すと、スピネルフェライト粒子を取り囲んでいた、結晶化したガラス成分が溶解除去されるため、スピネルフェライト粒子を採取することができる。上記酸処理の前には、酸処理の効率を高めるために粗粉砕を行うことが好ましい。粗粉砕は、乾式および湿式のいずれの方法で行ってもよい。粗粉砕の条件は、公知の方法にしたがって設定することができる。粒子捕集のための酸処理は、加熱下酸処理等のガラス結晶化法で一般的に行われる方法により行うことができる。その後、必要に応じて、分級(例えば遠心分離、デカンテーション、磁気分離法等)、水洗、乾燥等の後処理を施すことにより、スピネルフェライト粉末を得ることができる。
Particle Collection Step The crystallized material obtained by heat-treating the amorphous body contains spinel ferrite particles and crystallized glass components. Therefore, when the crystallized product is subjected to an acid treatment, the crystallized glass component surrounding the spinel ferrite particles is dissolved and removed, so that the spinel ferrite particles can be collected. Prior to the acid treatment, coarse pulverization is preferably carried out in order to increase the efficiency of the acid treatment. Coarse pulverization may be carried out by either a dry method or a wet method. Conditions for coarse pulverization can be set according to a known method. The acid treatment for particle collection can be carried out by a method commonly used in glass crystallization, such as acid treatment under heating. Thereafter, spinel ferrite powder can be obtained by performing post-treatment such as classification (for example, centrifugal separation, decantation, magnetic separation method, etc.), washing with water, and drying, if necessary.
 以上、スピネルフェライト粉末の調製方法の一例を説明した。ただし上記磁気記録媒体の第二の磁性層に含まれる強磁性粉末は、上記の調製方法によって得られたものに限定されるものではない。 An example of a method for preparing spinel ferrite powder has been described above. However, the ferromagnetic powder contained in the second magnetic layer of the magnetic recording medium is not limited to that obtained by the above preparation method.
(結合剤)
 上記磁気記録媒体は、塗布型磁気記録媒体であり、第二の磁性層に結合剤を含む。結合剤とは、1種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する第一の磁性層、非磁性層および/またはバックコート層においても結合剤として使用することができる。
 以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。
(Binder)
The above magnetic recording medium is a coating type magnetic recording medium and contains a binder in the second magnetic layer. A binder is one or more resins. As the binder, various resins commonly used as binders for coating-type magnetic recording media can be used. Examples of binders include polyurethane resins, polyester resins, polyamide resins, vinyl chloride resins, acrylic resins obtained by copolymerizing styrene, acrylonitrile, methyl methacrylate, etc., cellulose resins such as nitrocellulose, epoxy resins, phenoxy resins, polyvinyl acetal, A resin selected from polyvinyl alkylal resins such as polyvinyl butyral can be used alone, or a plurality of resins can be mixed and used. Preferred among these are polyurethane resins, acrylic resins, cellulose resins, and vinyl chloride resins. These resins may be homopolymers or copolymers. These resins can also be used as binders in the first magnetic layer, non-magnetic layer and/or back coat layer, which will be described later.
Regarding the above binders, paragraphs 0028 to 0031 of JP-A-2010-24113 can be referred to. The weight-average molecular weight of the resin used as the binder can be, for example, 10,000 or more and 200,000 or less.
 第二の磁性層は、上記強磁性粉末および結合剤を含み、1種以上の添加剤が含まれていてもよい。第二の磁性層に含まれ得る添加剤等の第二の磁性層のその他詳細については、一般に軟磁性下地層と呼ばれる磁性層に関する公知技術、一般に記録層と呼ばれる磁性層に関する公知技術および/または非磁性層に関する公知技術を適用することができる。また、第二の磁性層については、第一の磁性層に関する後述の記載および/または非磁性層に関する後述の記載も参照できる。 The second magnetic layer contains the ferromagnetic powder and binder, and may contain one or more additives. For other details of the second magnetic layer, such as additives that may be included in the second magnetic layer, see known techniques for magnetic layers commonly referred to as soft magnetic underlayers, known techniques for magnetic layers commonly referred to as recording layers, and/or A known technique for the non-magnetic layer can be applied. Further, with regard to the second magnetic layer, it is also possible to refer to the below-described description of the first magnetic layer and/or the following description of the non-magnetic layer.
 以上説明した第二の磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。 The second magnetic layer described above can be provided directly on the surface of the non-magnetic support or indirectly via the non-magnetic layer.
<第一の磁性層>
 上記磁気記録媒体において、第一の磁性層は、記録層として機能し得る層である。電磁変換特性の更なる向上の観点からは、第一の磁性層の表面において、個数分布Aが先に記載した(1)~(3)を満たし、および/または、個数分布Bが先に記載した(4)~(6)を満たすことが好ましい。上記磁気記録媒体は、個数分布Aが先に記載した(1)~(3)を満たすこと、および、個数分布Bが先に記載した(4)~(6)を満たすこと、が好ましい。
<First magnetic layer>
In the magnetic recording medium, the first magnetic layer is a layer that can function as a recording layer. From the viewpoint of further improving the electromagnetic conversion characteristics, on the surface of the first magnetic layer, the number distribution A satisfies (1) to (3) described above and/or the number distribution B described above. It is preferable to satisfy (4) to (6). In the magnetic recording medium, the number distribution A preferably satisfies (1) to (3) described above, and the number distribution B satisfies (4) to (6) described above.
 本発明および本明細書において個数分布Aおよび個数分布Bをそれぞれ求めるために使用される走査型電子顕微鏡は、電界放射型走査型電子顕微鏡(FE-SEM;Field Emission-Scanning Electron Microscope)である。FE-SEMとしては、例えば、日立製作所製FE-SEM S4800を用いることができ、後述の実施例ではこのFE-SEMを用いた。測定に付す磁気記録媒体としては、磁気記録再生装置に取り付けられていない未使用の磁気記録媒体を使用する。例えば、磁気テープは、通常、磁気テープカートリッジに収容されて流通される。例えば、測定対象の磁気テープとしては、磁気記録再生装置に取り付けられていない未使用の磁気テープカートリッジから取り出された磁気テープが使用される。
 また、個数分布Aおよび個数分布Bをそれぞれ求める際、SEM像を撮像する前に第一の磁性層表面へのコーティング処理は行わない。
 各撮像は、第一の磁性層表面の未撮像領域を選択して実施する。
 撮像されるSEM像は、二次電子(Secondary Electron)像である。
 円相当径は、小数点以下1桁を四捨五入し、小数点以下2桁以降は切り捨てて、1nm刻みで求めるものとする。
 個数分布Aを求める際、明部領域の数の計測において、一部分のみが二値化処理済み画像に含まれ残りの部分が二値化処理済み画像の外にある明部領域は、計測対象から除外するものとする。
 個数分布Bを求める際、暗部領域の数の計測において、一部分のみが二値化処理済み画像に含まれ残りの部分が二値化処理済み画像の外にある暗部領域は、計測対象から除外するものとする。
 また、本発明および本明細書において、「第一の磁性層(の)表面」とは、磁気記録媒体の第一の磁性層側表面と同義である。
The scanning electron microscope used in the present invention and herein for determining the number distribution A and the number distribution B, respectively, is a Field Emission-Scanning Electron Microscope (FE-SEM). As the FE-SEM, for example, FE-SEM S4800 manufactured by Hitachi, Ltd. can be used, and this FE-SEM was used in the examples described later. As the magnetic recording medium to be measured, an unused magnetic recording medium which is not attached to the magnetic recording/reproducing apparatus is used. For example, magnetic tapes are usually distributed in magnetic tape cartridges. For example, as the magnetic tape to be measured, a magnetic tape taken out from an unused magnetic tape cartridge that is not attached to the magnetic recording/reproducing apparatus is used.
Further, when obtaining the number distribution A and the number distribution B, the surface of the first magnetic layer is not coated before taking the SEM image.
Each image is taken by selecting an unimaged area on the surface of the first magnetic layer.
The captured SEM image is a secondary electron image.
The circle-equivalent diameter is obtained in increments of 1 nm by rounding off to the first decimal place and omitting the second decimal place and beyond.
When calculating the number distribution A, in the measurement of the number of bright areas, only a part of the bright area is included in the binarized image and the remaining part is outside the binarized image. shall be excluded.
When calculating the number distribution B, in the measurement of the number of dark areas, dark areas that are partly included in the binarized image and the remaining part is outside the binarized image are excluded from the measurement target. shall be
In addition, in the present invention and this specification, the term "(the) surface of the first magnetic layer" is synonymous with the first magnetic layer side surface of the magnetic recording medium.
(個数分布Aの測定方法)
 本発明および本明細書において、「個数分布A」は、以下の方法によって測定される個数分布である。
 走査型電子顕微鏡(FE-SEM)を用いて、測定対象の磁気記録媒体の第一の磁性層表面の二次電子像を撮像する。撮像条件として、加速電圧は5kVとし、作動距離は5mmとし、撮影倍率は1万倍とする。撮像時には、第一の磁性層表面の未撮像領域を選択し、上記の撮像条件下でフォーカス調整を行い、二次電子像を撮像する。撮像された画像からサイズ等を表示する部分(ミクロンバー、クロスマーク等)を消し、960pixel×1280pixelの画素数の二次電子像を取得する。
 以上の操作を、測定対象の磁気記録媒体の第一の磁性層表面の異なる箇所において100回実施する。
 こうして取得された二次電子像を、画像処理ソフトに取り込み、以下の手順により二値化処理を行う。画像解析ソフトとしては、例えば、フリーソフトのImageJを使用することができる。二値化処理によって、画像は明部領域(白色部分)と暗部領域(黒色部分)とに区分けされる。
 上記で取得された二次電子像を二値化処理するための閾値は、下限値を210諧調、上限値を255諧調とし、これら2つの閾値により二値化処理を実行する。二値化処理後に画像解析ソフトによってノイズ成分除去処理を行う。ノイズ成分除去処理は、例えば以下の方法により行うことができる。画像解析ソフトImageJにおいて、ノイズカット処理Despeckleを選択しノイズ成分の除去を行う。
 こうして得られた二値化処理済み画像について、画像解析ソフトによって、明部領域(即ち白色部分)の個数および各明部領域の面積を求める。ここで求められた明部領域の面積から、各明部領域の円相当径を求める。具体的には、求められた面積Aから、(A/π)^(1/2)×2=Lにより、円相当径Lを算出する。ここで、演算子「^」は、べき乗を表す。
 以上の工程を、上記で得られた二値化処理済み画像(100画像)について実施する。
 こうして、個数分布Aが求められる。
(Method for measuring number distribution A)
In the present invention and the specification, "number distribution A" is a number distribution measured by the following method.
Using a scanning electron microscope (FE-SEM), a secondary electron image of the surface of the first magnetic layer of the magnetic recording medium to be measured is captured. As imaging conditions, the acceleration voltage is 5 kV, the working distance is 5 mm, and the imaging magnification is 10,000. At the time of imaging, a non-imaging area on the surface of the first magnetic layer is selected, focus is adjusted under the imaging conditions described above, and a secondary electron image is captured. A secondary electron image with a pixel count of 960 pixels×1280 pixels is obtained by deleting the portion (micron bar, cross mark, etc.) indicating the size and the like from the imaged image.
The above operation is performed 100 times at different locations on the surface of the first magnetic layer of the magnetic recording medium to be measured.
The secondary electron image obtained in this manner is taken into image processing software, and binarization processing is performed according to the following procedure. As image analysis software, for example, ImageJ, which is free software, can be used. The binarization process divides the image into a bright area (white area) and a dark area (black area).
The threshold value for binarizing the secondary electron image obtained above has a lower limit of 210 gradations and an upper limit of 255 gradations, and binarization is performed using these two thresholds. After the binarization processing, noise component removal processing is performed using image analysis software. Noise component removal processing can be performed, for example, by the following method. In the image analysis software ImageJ, noise cut processing Despeckle is selected to remove noise components.
For the binarized image thus obtained, the number of bright regions (that is, white portions) and the area of each bright region are determined by image analysis software. The equivalent circle diameter of each bright region is determined from the area of the bright region determined here. Specifically, from the determined area A, the equivalent circle diameter L is calculated by (A/π)̂(1/2)×2=L. Here, the operator "^" represents exponentiation.
The above steps are performed on the binarized images (100 images) obtained above.
Thus, the number distribution A is obtained.
(個数分布Bの測定方法)
 本発明および本明細書において、「個数分布B」は、以下の方法によって測定される個数分布である。
 走査型電子顕微鏡(FE-SEM)を用いて、測定対象の磁気記録媒体の第一の磁性層表面の二次電子像を撮像する。撮像条件として、加速電圧は2kVとし、作動距離は5mmとし、撮影倍率は1万倍とする。撮像時には、第一の磁性層表面の未撮像領域を選択し、上記の撮像条件下でフォーカス調整を行い、二次電子像を撮像する。撮像された画像からサイズ等を表示する部分(ミクロンバー、クロスマーク等)を消し、960pixel×1280pixelの画素数の二次電子像を取得する。
 以上の操作を、測定対象の磁気記録媒体の第一の磁性層表面の異なる箇所において100回実施する。
 こうして取得された二次電子像を、画像処理ソフトに取り込み、以下の手順により二値化処理を行う。画像解析ソフトとしては、例えば、フリーソフトのImageJを使用することができる。
 上記で取得された二次電子像を二値化処理するための閾値は、下限値を0諧調、上限値を75諧調とし、これら2つの閾値により二値化処理を実行する。二値化処理後に画像解析ソフトによってノイズ成分除去処理を行う。ノイズ成分除去処理は、例えば以下の方法により行うことができる。画像解析ソフトImageJにおいて、ノイズカット処理Despeckleを選択しノイズ成分の除去を行う。
 こうして得られた二値化処理済み画像において、画像解析ソフトによって、暗部領域(即ち黒色部分)の個数および各暗部領域の面積を求める。ここで求められた暗部領域の面積から、各暗部領域の円相当径を求める。具体的には、求められた面積Aから、(A/π)^(1/2)×2=Lにより、円相当径Lを算出する。
 以上の工程を、上記で得られた二値化処理済み画像(100画像)について実施する。こうして、個数分布Bが求められる。
(Method for measuring number distribution B)
In the present invention and the specification, "number distribution B" is a number distribution measured by the following method.
Using a scanning electron microscope (FE-SEM), a secondary electron image of the surface of the first magnetic layer of the magnetic recording medium to be measured is taken. As imaging conditions, the acceleration voltage is 2 kV, the working distance is 5 mm, and the imaging magnification is 10,000 times. At the time of imaging, a non-imaging area on the surface of the first magnetic layer is selected, focus is adjusted under the imaging conditions described above, and a secondary electron image is captured. A secondary electron image with a pixel count of 960 pixels×1280 pixels is obtained by deleting the portion (micron bar, cross mark, etc.) indicating the size and the like from the imaged image.
The above operation is performed 100 times at different locations on the surface of the first magnetic layer of the magnetic recording medium to be measured.
The secondary electron image obtained in this manner is taken into image processing software, and binarization processing is performed according to the following procedure. As image analysis software, for example, ImageJ, which is free software, can be used.
The threshold value for binarizing the secondary electron image obtained above has a lower limit value of 0 gradation and an upper limit value of 75 gradation, and the binarization process is performed using these two threshold values. After the binarization processing, noise component removal processing is performed using image analysis software. Noise component removal processing can be performed, for example, by the following method. In the image analysis software ImageJ, noise cut processing Despeckle is selected to remove noise components.
In the binarized image thus obtained, the number of dark regions (that is, black portions) and the area of each dark region are determined by image analysis software. The equivalent circle diameter of each dark region is obtained from the area of the dark region obtained here. Specifically, from the determined area A, the equivalent circle diameter L is calculated by (A/π)̂(1/2)×2=L.
The above steps are performed on the binarized images (100 images) obtained above. Thus, the number distribution B is obtained.
(個数分布Aおよび個数分布B)
 上記磁気記録媒体において、先に記載の方法により求められる個数分布Aは、下記(1)~(3):
 (1)円相当径が1nm以上50nm以下の明部領域が10000個以上30000個以下、
 (2)円相当径が51nm以上100nm以下の明部領域が7000個以上25000個以下、
 (3)円相当径が101nm以上の明部領域が1000個以上3000個以下、
 を満たすことが好ましい。
(Number distribution A and number distribution B)
In the above magnetic recording medium, the number distribution A determined by the method described above is the following (1) to (3):
(1) 10,000 or more and 30,000 or less bright regions with an equivalent circle diameter of 1 nm or more and 50 nm or less,
(2) 7000 or more and 25000 or less bright regions with an equivalent circle diameter of 51 nm or more and 100 nm or less;
(3) 1000 or more and 3000 or less bright regions with an equivalent circle diameter of 101 nm or more,
is preferably satisfied.
 更に、上記磁気記録媒体において、先に記載の方法により求められる個数分布Bは、下記(4)~(6):
 (4)円相当径が1nm以上50nm以下の暗部領域が200個以上50000個以下、
 (5)円相当径が51nm以上100nm以下の暗部領域が200個以上25000個以下、
 (6)円相当径が101nm以上の暗部領域が0個以上2000個以下、
 を満たすことが好ましい。
Furthermore, in the magnetic recording medium, the number distribution B obtained by the method described above is the following (4) to (6):
(4) 200 or more and 50,000 or less dark regions with an equivalent circle diameter of 1 nm or more and 50 nm or less;
(5) 200 or more and 25,000 or less dark regions with an equivalent circle diameter of 51 nm or more and 100 nm or less;
(6) 0 or more and 2000 or less dark regions having an equivalent circle diameter of 101 nm or more;
is preferably satisfied.
 第一の磁性層は、例えば、強磁性粉末に加えて非磁性粉末の1種以上を含む磁性層形成用組成物を用いて形成することができる。本発明者は、先に記載の方法により求められる個数分布Aおよび個数分布Bについて、個数分布Aは、第一の磁性層表面に研磨性を付与するために第一の磁性層に含まれる非磁性粉末(以下、「研磨剤」とも呼ぶ。)の第一の磁性層表面における存在状態の指標となり得るものであると考えている。また、個数分布Bは、摩擦特性制御のために第一の磁性層表面に適度な突起を形成すべく第一の磁性層に含まれる非磁性粉末(以下、「フィラー」とも呼ぶ。)の第一の磁性層表面における存在状態の指標となり得るものであると本発明者は考えている。そして、個数分布Aと個数分布Bとを上記のように制御することが、電磁変換特性の更なる向上に寄与し得る。これは、スペーシングロスの低減と、第一の磁性層表面と磁気ヘッドとの接触状態の安定性向上と、を両立する観点から、個数分布Aおよび個数分布Bが上記範囲であることが好ましいためと推察される。 The first magnetic layer can be formed, for example, using a magnetic layer-forming composition containing one or more non-magnetic powders in addition to ferromagnetic powder. With respect to the number distribution A and the number distribution B obtained by the method described above, the present inventors found that the number distribution A It is believed that the magnetic powder (hereinafter also referred to as "abrasive") can serve as an indicator of the state of existence on the surface of the first magnetic layer. The number distribution B is the number distribution of the non-magnetic powder (hereinafter also referred to as "filler") contained in the first magnetic layer to form moderate protrusions on the surface of the first magnetic layer for controlling the frictional characteristics. The present inventor believes that it can serve as an indicator of the state of existence on the surface of one magnetic layer. Controlling the number distribution A and the number distribution B as described above can contribute to further improvement of the electromagnetic conversion characteristics. From the viewpoint of achieving both a reduction in spacing loss and an improvement in the stability of the contact state between the surface of the first magnetic layer and the magnetic head, it is preferable that the number distribution A and the number distribution B are within the above ranges. presumed to be for this reason.
 上記(1)について、円相当径が1nm以上50nm以下の明部領域は、10000個以上30000個以下である。かかる明部領域の個数は、15000個以上であることが好ましく、20000個以上であることがより好ましい。また、かかる明部領域の個数は、28000個以下であることが好ましく、25000個以下であることがより好ましい。 Regarding (1) above, there are 10,000 or more and 30,000 or less bright regions with equivalent circle diameters of 1 nm or more and 50 nm or less. The number of bright regions is preferably 15000 or more, more preferably 20000 or more. In addition, the number of bright regions is preferably 28000 or less, more preferably 25000 or less.
 上記(2)について、円相当径が51nm以上100nm以下の明部領域は、7000個以上25000個以下である。かかる明部領域の個数は、8000個以上であることが好ましく、9000個以上であることがより好ましい。また、かかる明部領域の個数は、24000個以下であることが好ましく、23000個以下であることがより好ましい。 Regarding (2) above, the number of bright regions having equivalent circle diameters of 51 nm or more and 100 nm or less is 7000 or more and 25000 or less. The number of bright regions is preferably 8000 or more, more preferably 9000 or more. Also, the number of bright regions is preferably 24000 or less, more preferably 23000 or less.
 上記(3)について、円相当径が101nm以上の明部領域は、1000個以上3000個以下である。かかる明部領域の個数は、1500個以上であることが好ましく、2000個以上であることがより好ましい。また、かかる明部領域の個数は、2800個以下であることが好ましく、2500個以下であることがより好ましい。一形態では、上記明部領域の個数は、3000個未満であることができる。また、一形態では、上記明部領域の個数は、1000個超であることができる。 Regarding (3) above, the number of bright areas with an equivalent circle diameter of 101 nm or more is 1000 or more and 3000 or less. The number of bright regions is preferably 1500 or more, more preferably 2000 or more. In addition, the number of bright regions is preferably 2800 or less, more preferably 2500 or less. In one aspect, the number of bright regions may be less than 3000. Also, in one form, the number of bright regions may be more than 1,000.
 上記(4)について、円相当径が1nm以上50nm以下の暗部領域は、200個以上50000個以下である。かかる暗部領域の個数は、1000個以上であることが好ましく、2000個以上であることがより好ましく、3000個以上であることが更に好ましい。また、かかる暗部領域の個数は、40000個以下であることが好ましく、30000個以下であることがより好ましい。一形態では、上記暗部領域の個数は、1000個超であることができる。 Regarding (4) above, the number of dark regions with an equivalent circle diameter of 1 nm or more and 50 nm or less is 200 or more and 50000 or less. The number of such dark regions is preferably 1000 or more, more preferably 2000 or more, and even more preferably 3000 or more. Also, the number of such dark regions is preferably 40,000 or less, more preferably 30,000 or less. In one form, the number of dark regions can be greater than 1000.
 上記(5)について、円相当径が51nm以上100nm以下の暗部領域は、200個以上25000個以下である。かかる暗部領域の個数は、250個以上であることが好ましく、300個以上であることがより好ましい。また、かかる暗部領域の個数は、20000個以下であることが好ましく、15000個以下であることがより好ましい。 Regarding (5) above, the number of dark regions with an equivalent circle diameter of 51 nm or more and 100 nm or less is 200 or more and 25000 or less. The number of such dark regions is preferably 250 or more, more preferably 300 or more. Also, the number of such dark regions is preferably 20,000 or less, more preferably 15,000 or less.
 上記(6)について、円相当径が101nm以上の暗部領域は、0個以上2000個以下である。かかる暗部領域の個数は、10個以上であることが好ましく、20個以上であることがより好ましい。また、かかる暗部領域の個数は、1500個以下であることが好ましく、1000個以下であることがより好ましい。一形態では、上記暗部領域の個数は、200個未満であることができる。 Regarding (6) above, the number of dark regions with an equivalent circle diameter of 101 nm or more is 0 or more and 2000 or less. The number of such dark regions is preferably 10 or more, more preferably 20 or more. Also, the number of such dark regions is preferably 1500 or less, more preferably 1000 or less. In one aspect, the number of dark regions may be less than 200.
 個数分布Aおよび個数分布Bは、第一の磁性層を形成するために使用する第一の磁性層形成用組成物に添加する成分の種類、かかる組成物の調製方法(例えば、分散方法、分級方法等)によって制御することができる。制御方法の具体例については、後述の実施例も参照できる。 Number distribution A and number distribution B depend on the type of components added to the composition for forming the first magnetic layer used to form the first magnetic layer, the method of preparing such composition (e.g., dispersion method, classification method, etc.). method, etc.). For specific examples of the control method, the examples described later can also be referred to.
(強磁性粉末)
 第一の磁性層に含まれる強磁性粉末としては、各種磁気記録媒体において、一般に記録層と呼ばれる磁性層で用いられる強磁性粉末として公知の強磁性粉末を1種または2種以上組み合わせて使用することができる。かかる強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、第一の磁性層に含まれる強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、第一の磁性層に含まれる強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
(ferromagnetic powder)
As the ferromagnetic powder contained in the first magnetic layer, one or a combination of two or more ferromagnetic powders known as ferromagnetic powders generally used in magnetic layers generally called recording layers in various magnetic recording media are used. be able to. From the viewpoint of improving the recording density, it is preferable to use ferromagnetic powder having a small average particle size. From this point of view, the average particle size of the ferromagnetic powder contained in the first magnetic layer is preferably 50 nm or less, more preferably 45 nm or less, even more preferably 40 nm or less, and 35 nm or less. more preferably 30 nm or less, even more preferably 25 nm or less, and even more preferably 20 nm or less. On the other hand, from the viewpoint of magnetization stability, the average particle size of the ferromagnetic powder contained in the first magnetic layer is preferably 5 nm or more, more preferably 8 nm or more, and preferably 10 nm or more. More preferably, it is 15 nm or more, and even more preferably 20 nm or more.
六方晶フェライト粉末
 第一の磁性層に含まれる強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
Hexagonal Ferrite Powder A preferred specific example of the ferromagnetic powder contained in the first magnetic layer is hexagonal ferrite powder. For details of the hexagonal ferrite powder, for example, paragraphs 0012 to 0030 of JP-A-2011-225417, paragraphs 0134-0136 of JP-A-2011-216149, paragraphs 0013-0030 of JP-A-2012-204726 and Paragraphs 0029 to 0084 of JP-A-2015-127985 can be referred to.
 本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライトの結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライトの結晶構造に帰属される場合、六方晶フェライトの結晶構造が主相として検出されたと判断するものとする。六方晶フェライトの結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の六方晶フェライトに関する二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。 In the present invention and this specification, "hexagonal ferrite powder" refers to ferromagnetic powder in which the crystal structure of hexagonal ferrite is detected as the main phase by X-ray diffraction analysis. For example, when the highest intensity diffraction peak in an X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of hexagonal ferrite, it is determined that the crystal structure of hexagonal ferrite has been detected as the main phase. do. The crystal structure of hexagonal ferrite contains at least iron atoms, divalent metal atoms and oxygen atoms as constituent atoms. A divalent metal atom is a metal atom that can become a divalent cation as an ion, and examples thereof include alkaline earth metal atoms such as strontium, barium, and calcium atoms, and lead atoms. In the present invention and the specification, hexagonal strontium ferrite powder means that the main divalent metal atoms contained in this powder are strontium atoms, and hexagonal barium ferrite powder means that the main divalent metal atoms contained in this powder are a barium atom as a divalent metal atom. The main divalent metal atom means the divalent metal atom that accounts for the largest amount on an atomic % basis among the divalent metal atoms contained in the powder. However, rare earth atoms are not included in the divalent metal atoms for the above hexagonal ferrite. "Rare earth atoms" in the present invention and herein are selected from the group consisting of scandium atoms (Sc), yttrium atoms (Y), and lanthanide atoms. Lanthanide atoms include lanthanum atom (La), cerium atom (Ce), praseodymium atom (Pr), neodymium atom (Nd), promethium atom (Pm), samarium atom (Sm), europium atom (Eu), gadolinium atom (Gd ), terbium atom (Tb), dysprosium atom (Dy), holmium atom (Ho), erbium atom (Er), thulium atom (Tm), ytterbium atom (Yb), and lutetium atom (Lu) be.
 以下に、六方晶フェライト粉末の一形態である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。 The hexagonal strontium ferrite powder, which is one form of the hexagonal ferrite powder, will be described in more detail below.
 六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。 The activated volume of the hexagonal strontium ferrite powder is preferably in the range of 800-1600 nm 3 . A finely divided hexagonal strontium ferrite powder exhibiting an activation volume within the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion characteristics. The activated volume of the hexagonal strontium ferrite powder is preferably greater than or equal to 800 nm 3 , for example it may be greater than or equal to 850 nm 3 . Further, from the viewpoint of further improving electromagnetic conversion characteristics, the activated volume of the hexagonal strontium ferrite powder is more preferably 1500 nm 3 or less, further preferably 1400 nm 3 or less, and 1300 nm 3 or less. is more preferable, 1200 nm 3 or less is even more preferable, and 1100 nm 3 or less is even more preferable. The same is true for the activation volume of hexagonal barium ferrite powder.
 「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁界スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお、異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
 Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
The "activation volume" is a unit of magnetization reversal, and is an index indicating the magnetic size of a particle. The activation volume and the anisotropy constant Ku described in the present invention and this specification were measured using a vibrating sample magnetometer at magnetic field sweep speeds of 3 minutes and 30 minutes at the coercive force Hc measurement unit (measurement Temperature: 23° C.±1° C.), which is a value obtained from the following relational expression between Hc and activation volume V. Note that the unit of the anisotropy constant Ku is 1 erg/cc=1.0×10 −1 J/m 3 .
Hc=2Ku/Ms{1−[(kT/KuV)ln(At/0.693)] 1/2 }
[In the above formula, Ku: anisotropy constant (unit: J/m 3 ), Ms: saturation magnetization (unit: kA/m), k: Boltzmann constant, T: absolute temperature (unit: K), V: activity volume (unit: cm 3 ), A: spin precession frequency (unit: s −1 ), t: magnetic field reversal time (unit: s)]
 熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。 An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability. The hexagonal strontium ferrite powder can preferably have a Ku of 1.8×10 5 J/m 3 or more, more preferably 2.0×10 5 J/m 3 or more. Also, Ku of the hexagonal strontium ferrite powder can be, for example, 2.5×10 5 J/m 3 or less. However, the higher the Ku value, the higher the thermal stability, which is preferable.
 六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一形態では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
 希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
The hexagonal strontium ferrite powder may or may not contain rare earth atoms. When the hexagonal strontium ferrite powder contains rare earth atoms, it preferably contains 0.5 to 5.0 atomic % of rare earth atoms (bulk content) with respect to 100 atomic % of iron atoms. In one form, the hexagonal strontium ferrite powder containing rare earth atoms can have uneven distribution of rare earth atoms on the surface layer. In the present invention and in this specification, the term "rare earth atom surface uneven distribution" refers to the rare earth atom content ratio (hereinafter referred to as "Rare earth atom surface layer content" or simply "surface layer content" with respect to rare earth atoms.) is obtained by completely dissolving hexagonal strontium ferrite powder with acid. (hereinafter referred to as "rare earth atom bulk content" or simply "bulk content" with respect to rare earth atoms), and
Rare earth atom surface layer content/rare earth atom bulk content>1.0
means that the ratio of The rare earth atom content rate of the hexagonal strontium ferrite powder described later is synonymous with the rare earth atom bulk content rate. On the other hand, since partial dissolution using an acid dissolves the surface layer of the particles constituting the hexagonal strontium ferrite powder, the content of rare earth atoms in the solution obtained by partial dissolution is It is the rare earth atom content rate in the surface layer portion of the particles. The rare earth atom surface layer portion content ratio satisfies the ratio of "rare earth atom surface layer portion content/rare earth atom bulk content rate >1.0" means that the rare earth atoms are present in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder. It means that it is unevenly distributed (that is, it exists more than inside). In the present invention and in this specification, the term "surface layer portion" means a partial region extending from the surface toward the inside of a particle that constitutes the hexagonal strontium ferrite powder.
 六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
 また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を第一の磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって第一の磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気記録媒体の走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と第一の磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、第一の磁性層の強度が向上するためではないかと推察される。
 繰り返し再生における再生出力の低下を抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
When the hexagonal strontium ferrite powder contains rare earth atoms, the rare earth atom content (bulk content) is preferably in the range of 0.5 to 5.0 atomic % with respect to 100 atomic % of iron atoms. The fact that the rare earth atoms are contained in the bulk content in the above range and that the rare earth atoms are unevenly distributed in the surface layer of the particles constituting the hexagonal strontium ferrite powder contributes to suppressing the decrease in reproduction output during repeated reproduction. Conceivable. This is because the hexagonal strontium ferrite powder contains rare earth atoms with a bulk content within the above range, and the rare earth atoms are unevenly distributed in the surface layers of the particles constituting the hexagonal strontium ferrite powder. This is presumed to be due to the fact that The higher the anisotropy constant Ku, the more the occurrence of a phenomenon called thermal fluctuation can be suppressed (in other words, the thermal stability can be improved). By suppressing the occurrence of thermal fluctuation, it is possible to suppress a decrease in reproduction output in repeated reproduction. The uneven distribution of rare earth atoms in the particle surface layer of the hexagonal strontium ferrite powder contributes to stabilizing the spin of the iron (Fe) site in the crystal lattice of the surface layer, thereby increasing the anisotropy constant Ku. It is speculated that it will increase.
Further, the use of the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed on the surface layer as the ferromagnetic powder of the first magnetic layer suppresses abrasion of the surface of the first magnetic layer due to sliding with the magnetic head. It is speculated that it also contributes to That is, it is presumed that the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed on the surface layer can contribute to the improvement of the running durability of the magnetic recording medium. This is because the uneven distribution of rare earth atoms on the surfaces of the particles that make up the hexagonal strontium ferrite powder causes interaction between the particle surfaces and the organic substances (e.g., binders and/or additives) contained in the first magnetic layer. It is presumed that this is because it contributes to the improvement of the action and, as a result, the strength of the first magnetic layer is improved.
From the viewpoint of suppressing a decrease in reproduction output in repeated reproduction and/or from the viewpoint of further improving running durability, the rare earth atom content (bulk content) is in the range of 0.5 to 4.5 atomic %. is more preferably in the range of 1.0 to 4.5 atomic %, and even more preferably in the range of 1.5 to 4.5 atomic %.
 上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として1種の希土類原子のみ含んでもよく、2種以上の希土類原子を含んでもよい。2種以上の希土類原子を含む場合の上記バルク含有率は、2種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いられる場合の含有量または含有率とは、2種以上の合計についていうものとする。 The above bulk content is the content obtained by completely dissolving the hexagonal strontium ferrite powder. In the present invention and this specification, unless otherwise specified, the atomic content refers to the bulk content obtained by completely dissolving the hexagonal strontium ferrite powder. The hexagonal strontium ferrite powder containing rare earth atoms may contain only one kind of rare earth atoms as rare earth atoms, or may contain two or more kinds of rare earth atoms. When two or more rare earth atoms are included, the bulk content is determined for the total of two or more rare earth atoms. This point also applies to the present invention and other components in this specification. That is, unless otherwise specified, only one component may be used, or two or more components may be used. When two or more are used, the content or content refers to the total of two or more.
 六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか1種以上であればよい。繰り返し再生における再生出力の低下を抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。 When the hexagonal strontium ferrite powder contains rare earth atoms, the contained rare earth atoms may be any one or more rare earth atoms. Preferred rare earth atoms from the viewpoint of suppressing a decrease in reproduction output in repeated reproduction include neodymium atoms, samarium atoms, yttrium atoms and dysprosium atoms, more preferably neodymium atoms, samarium atoms and yttrium atoms, and neodymium atoms. More preferred.
 希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。 In the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed on the surface layer, the rare earth atoms need only be unevenly distributed on the surface layer of the particles constituting the hexagonal strontium ferrite powder, and the degree of uneven distribution is not limited. For example, for a hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer, the surface layer content of rare earth atoms obtained by partially dissolving under the melting conditions described later and the rare earth atoms obtained by completely dissolving under the melting conditions described later The ratio of atoms to the bulk content, "surface layer content/bulk content", is greater than 1.0 and can be 1.5 or greater. When the "surface layer content/bulk content" is greater than 1.0, it means that the rare earth atoms are unevenly distributed in the surface layer (ie, more present than in the interior) in the particles constituting the hexagonal strontium ferrite powder. do. In addition, the ratio between the surface layer content of rare earth atoms obtained by partial dissolution under the dissolution conditions described later and the bulk content of rare earth atoms obtained by complete dissolution under the dissolution conditions described later, "surface layer content/ The "bulk content" can be, for example, 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, 5.0 or less, or 4.0 or less. However, in the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer portion, the rare earth atoms may be unevenly distributed in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder. "Ratio" is not limited to the exemplified upper or lower limits.
 六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気記録媒体の第一の磁性層に含まれている六方晶ストロンチウムフェライト粉末については、第一の磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
 上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
 上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
 試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の原子分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。原子分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
 一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
 試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
Partial dissolution and total dissolution of hexagonal strontium ferrite powder are described below. For hexagonal strontium ferrite powders present as powders, sample powders for partial dissolution and total dissolution are taken from the same lot of powder. On the other hand, with respect to the hexagonal strontium ferrite powder contained in the first magnetic layer of the magnetic recording medium, part of the hexagonal strontium ferrite powder taken out from the first magnetic layer is partially melted, and the other part is melted. A portion is subjected to total lysis. The hexagonal strontium ferrite powder can be extracted from the magnetic layer, for example, by the method described in paragraph 0032 of JP-A-2015-91747.
The above-mentioned partial dissolution means dissolution to such an extent that residual hexagonal strontium ferrite powder can be visually confirmed in the liquid at the end of dissolution. For example, by partial dissolution, a region of 10 to 20% by mass of the particles constituting the hexagonal strontium ferrite powder can be dissolved out of 100% by mass of the entire particles. On the other hand, the above-mentioned complete dissolution means that the hexagonal strontium ferrite powder is dissolved to the point where no residue of the hexagonal strontium ferrite powder remains in the liquid at the end of dissolution.
The partial dissolution and the measurement of the surface layer content are performed, for example, by the following methods. However, the dissolution conditions such as the amount of sample powder described below are examples, and dissolution conditions that allow partial dissolution and complete dissolution can be arbitrarily adopted.
A container (for example, a beaker) containing 12 mg of sample powder and 10 mL of 1 mol/L hydrochloric acid is held on a hot plate with a set temperature of 70° C. for 1 hour. The resulting solution is filtered through a 0.1 μm membrane filter. Atomic analysis of the filtrate thus obtained is performed by an inductively coupled plasma (ICP) analyzer. In this way, the surface layer portion content of rare earth atoms relative to 100 atomic % of iron atoms can be obtained. When multiple types of rare earth atoms are detected by atomic analysis, the total content of all rare earth atoms is taken as the surface layer portion content. This point also applies to the measurement of the bulk content.
On the other hand, the measurement of the total dissolution and bulk content is carried out, for example, by the following method.
A container (for example, a beaker) containing 12 mg of sample powder and 10 mL of 4 mol/L hydrochloric acid is held on a hot plate with a set temperature of 80° C. for 3 hours. After that, the partial dissolution and the measurement of the surface layer portion content are carried out in the same manner as described above, and the bulk content with respect to 100 atom % of iron atoms can be obtained.
 磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体において記録層として機能し得る磁性層に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一形態では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁界強度15kOeで測定される値とする。 From the viewpoint of increasing the reproduction output when reproducing data recorded on a magnetic recording medium, it is desirable that the ferromagnetic powder contained in the magnetic layer that can function as a recording layer in the magnetic recording medium have a high mass magnetization σs. In this regard, hexagonal strontium ferrite powders containing rare earth atoms but not unevenly distributed in the surface layer of rare earth atoms tended to have a significantly lower σs than hexagonal strontium ferrite powders containing no rare earth atoms. On the other hand, hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer is considered preferable in terms of suppressing such a large decrease in σs. In one form, the σs of the hexagonal strontium ferrite powder can be 45 A·m 2 /kg or greater, and can also be 47 A·m 2 /kg or greater. On the other hand, from the viewpoint of noise reduction, σs is preferably 80 A·m 2 /kg or less, more preferably 60 A·m 2 /kg or less. σs can be measured using a known measuring device capable of measuring magnetic properties, such as a vibrating sample magnetometer. In the present invention and this specification, unless otherwise specified, the mass magnetization σs is a value measured at a magnetic field strength of 15 kOe.
 六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一形態では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一形態では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて1種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。 With respect to the content of constituent atoms (bulk content) of the hexagonal strontium ferrite powder, the strontium atom content can be, for example, in the range of 2.0 to 15.0 atomic percent with respect to 100 atomic percent of iron atoms. . In one form, the hexagonal strontium ferrite powder can have strontium atoms as the only divalent metal atoms contained in the powder. In yet another form, the hexagonal strontium ferrite powder can also contain one or more other divalent metal atoms in addition to the strontium atoms. For example, it can contain barium atoms and/or calcium atoms. When other divalent metal atoms other than strontium atoms are contained, the barium atom content and calcium atom content in the hexagonal strontium ferrite powder are, for example, 0.05 to 5 atoms per 100 atomic percent of iron atoms. can be in the range of .0 atomic %.
 六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または2種以上の結晶構造が検出されるものであることができる。例えば一形態では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下を抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一形態では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一形態では、ビスマス原子(Bi)を含まないものであることができる。 As crystal structures of hexagonal ferrite, magnetoplumbite type (also called “M type”), W type, Y type and Z type are known. The hexagonal strontium ferrite powder may have any crystal structure. The crystal structure can be confirmed by X-ray diffraction analysis. The hexagonal strontium ferrite powder can have a single crystal structure or two or more crystal structures detected by X-ray diffraction analysis. For example, in one form, a hexagonal strontium ferrite powder can be one in which only the M-type crystal structure is detected by X-ray diffraction analysis. For example, M-type hexagonal ferrite is represented by a composition formula of AFe 12 O 19 . Here, A represents a divalent metal atom, and if the hexagonal strontium ferrite powder is M-type, A is only a strontium atom (Sr), or if A contains a plurality of divalent metal atoms, , as described above, strontium atoms (Sr) account for the largest amount on an atomic % basis. The divalent metal atom content of the hexagonal strontium ferrite powder is usually determined by the type of crystal structure of the hexagonal ferrite, and is not particularly limited. The same applies to the iron atom content and the oxygen atom content. The hexagonal strontium ferrite powder contains at least iron atoms, strontium atoms and oxygen atoms, and may also contain rare earth atoms. Furthermore, the hexagonal strontium ferrite powder may or may not contain atoms other than these atoms. As an example, the hexagonal strontium ferrite powder may contain aluminum atoms (Al). The content of aluminum atoms can be, for example, 0.5 to 10.0 atomic % with respect to 100 atomic % of iron atoms. From the viewpoint of suppressing a decrease in reproduction output in repeated reproduction, the hexagonal strontium ferrite powder contains iron atoms, strontium atoms, oxygen atoms and rare earth atoms, and the content of atoms other than these atoms is 100 atomic % iron atoms. On the other hand, it is preferably 10.0 atomic % or less, more preferably in the range of 0 to 5.0 atomic %, and may be 0 atomic %. That is, in one form, the hexagonal strontium ferrite powder may contain no atoms other than iron atoms, strontium atoms, oxygen atoms and rare earth atoms. The content expressed in atomic % above is the content of each atom (unit: mass %) obtained by completely dissolving the hexagonal strontium ferrite powder, and converted to the value expressed in atomic % using the atomic weight of each atom. It is required by conversion. Further, in the present invention and this specification, the phrase "not containing" an atom means that the content of the atom as measured by an ICP analyzer after total dissolution is 0% by mass. The detection limit of an ICP analyzer is usually 0.01 ppm (parts per million) or less on a mass basis. The above "does not contain" shall be used in the sense of containing in an amount below the detection limit of the ICP analyzer. The hexagonal strontium ferrite powder, in one form, can be free of bismuth atoms (Bi).
金属粉末
 強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
Metal powder Ferromagnetic metal powder is also a preferred specific example of the ferromagnetic powder. For details of the ferromagnetic metal powder, for example, paragraphs 0137 to 0141 of JP-A-2011-216149 and paragraphs 0009-0023 of JP-A-2005-251351 can be referred to.
ε-酸化鉄粉末
 第一の磁性層に含まれる強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄の結晶構造に帰属される場合、ε-酸化鉄の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp. 5200-5206等を参照できる。ただし、上記磁気記録媒体の第一の磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
ε-Iron Oxide Powder A preferred specific example of the ferromagnetic powder contained in the first magnetic layer is ε-iron oxide powder. In the present invention and the specification, "ε-iron oxide powder" means a ferromagnetic powder in which the crystal structure of ε-iron oxide is detected as the main phase by X-ray diffraction analysis. For example, when the highest intensity diffraction peak in the X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of ε-iron oxide, it is determined that the crystal structure of ε-iron oxide has been detected as the main phase. shall be As a method for producing ε-iron oxide powder, a method of producing from goethite, a reverse micelle method, and the like are known. All of the above manufacturing methods are known. Also, a method for producing ε-iron oxide powder in which a part of Fe is substituted with substitution atoms such as Ga, Co, Ti, Al, and Rh is described in J. Am. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284, J.P. Mater. Chem. C, 2013, 1, pp. 5200-5206 and the like. However, the method for producing the ε-iron oxide powder that can be used as the ferromagnetic powder in the first magnetic layer of the magnetic recording medium is not limited to the methods mentioned here.
 ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。 The activated volume of the ε-iron oxide powder is preferably in the range of 300-1500 nm 3 . A finely divided ε-iron oxide powder exhibiting an activation volume in the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion properties. The activated volume of the ε-iron oxide powder is preferably greater than or equal to 300 nm 3 and may eg be greater than or equal to 500 nm 3 . In addition, from the viewpoint of further improving the electromagnetic conversion characteristics, the activated volume of the ε-iron oxide powder is more preferably 1400 nm 3 or less, further preferably 1300 nm 3 or less, and 1200 nm 3 or less. is more preferable, and 1100 nm 3 or less is even more preferable.
 熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。 An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability. The ε-iron oxide powder can preferably have a Ku of 3.0×10 4 J/m 3 or more, more preferably 8.0×10 4 J/m 3 or more. Also, Ku of the ε-iron oxide powder can be, for example, 3.0×10 5 J/m 3 or less. However, a higher Ku means a higher thermal stability, which is preferable, and thus is not limited to the values exemplified above.
 磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体において記録層として機能し得る磁性層に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一形態では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。 From the viewpoint of increasing the reproduction output when reproducing data recorded on a magnetic recording medium, it is desirable that the ferromagnetic powder contained in the magnetic layer that can function as a recording layer in the magnetic recording medium have a high mass magnetization σs. In this regard, in one aspect, the σs of the ε-iron oxide powder can be 8 A·m 2 /kg or greater, and can also be 12 A·m 2 /kg or greater. On the other hand, σs of the ε-iron oxide powder is preferably 40 A·m 2 /kg or less, more preferably 35 A·m 2 /kg or less, from the viewpoint of noise reduction.
 第一の磁性層における強磁性粉末の含有率(充填率)は、第一の磁性層の全質量に対して、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。第一の磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。 The ferromagnetic powder content (filling rate) in the first magnetic layer is preferably in the range of 50 to 90% by mass, more preferably 60 to 90% by mass, relative to the total mass of the first magnetic layer. is in the range of A high filling rate of the ferromagnetic powder in the first magnetic layer is preferable from the viewpoint of improving the recording density.
(結合剤)
 第一の磁性層は、強磁性粉末および結合剤を含む。第一の磁性層に含まれる結合剤については、第二の磁性層の結合剤に関する先の記載を参照できる。
(binder)
The first magnetic layer contains ferromagnetic powder and a binder. The binder contained in the first magnetic layer can be referred to the above description of the binder in the second magnetic layer.
(硬化剤)
 第一の磁性層形成用組成物は、結合剤として使用可能な樹脂とともに硬化剤を含むこともできる。硬化剤は、一形態では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一形態では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、第一の磁性層を形成するための工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で第一の磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、第一の磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、第一の磁性層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
(curing agent)
The composition for forming the first magnetic layer may contain a curing agent together with a resin that can be used as a binder. The curing agent can be, in one form, a thermosetting compound which is a compound in which a curing reaction (crosslinking reaction) proceeds by heating, and in another form, a photocuring compound in which a curing reaction (crosslinking reaction) proceeds by light irradiation. can be a chemical compound. As the curing reaction progresses in the process of forming the first magnetic layer, the curing agent reacts (crosslinks) with other components such as the binder to form the first magnetic layer. can be included in layers. In this respect, when the composition used for forming other layers contains a curing agent, the same applies to layers formed using this composition. Preferred curing agents are thermosetting compounds, preferably polyisocyanates. For details of the polyisocyanate, paragraphs 0124 to 0125 of JP-A-2011-216149 can be referred to. The curing agent is contained in the composition for forming the first magnetic layer in an amount of, for example, 0 to 80.0 parts by weight per 100.0 parts by weight of the binder. .0 to 80.0 parts by weight.
(添加剤)
 第一の磁性層には、必要に応じて1種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。例えば、潤滑剤については、特開2016-126817号公報の段落0030~0033、0035および0036を参照できる。後述する非磁性層に潤滑剤が含まれていてもよい。非磁性層に含まれ得る潤滑剤については、特開2016-126817号公報の段落0030、0031、0034~0036を参照できる。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。
(Additive)
The first magnetic layer may optionally contain one or more additives. Examples of additives include the curing agents described above. Additives contained in the magnetic layer include nonmagnetic powders, lubricants, dispersants, dispersing aids, antifungal agents, antistatic agents, antioxidants, and the like. For example, regarding lubricants, paragraphs 0030 to 0033, 0035 and 0036 of JP-A-2016-126817 can be referred to. A non-magnetic layer, which will be described later, may contain a lubricant. Paragraphs 0030, 0031, 0034 to 0036 of JP-A-2016-126817 can be referred to for lubricants that can be contained in the non-magnetic layer. Regarding the dispersant, paragraphs 0061 and 0071 of JP-A-2012-133837 can be referred to.
 第一の磁性層形成用組成物に添加し得る分散剤としては、カルボキシ基含有化合物、含窒素化合物等の強磁性粉末の分散性を高めるための公知の分散剤を挙げることもできる。例えば、含窒素化合物は、NHRで表される一級アミン、NHRで表される二級アミン、NRで表される三級アミンのいずれであってもよい。上記において、Rは含窒素化合物を構成する任意の構造を示し、複数存在するRは同一であっても異なっていてもよい。含窒素化合物は、分子中に複数の繰り返し構造を有する化合物(ポリマー)であってもよい。含窒素化合物の含窒素部が強磁性粉末の粒子表面への吸着部として機能することが、含窒素化合物が分散剤として働くことができる理由と考えられる。カルボキシ基含有化合物は、例えばオレイン酸等の脂肪酸を挙げることができる。カルボキシ基含有化合物については、カルボキシ基が強磁性粉末の粒子表面への吸着部として機能することが、カルボキシ基含有化合物が分散剤として働くことができる理由と考えられる。カルボキシ基含有化合物と含窒素化合物を併用することも、好ましい。これらの分散剤の使用量は適宜設定することができる。 Dispersants that can be added to the first magnetic layer-forming composition include known dispersants for enhancing the dispersibility of ferromagnetic powders such as carboxy group-containing compounds and nitrogen-containing compounds. For example, the nitrogen-containing compound may be any of a primary amine represented by NH2R , a secondary amine represented by NHR2, and a tertiary amine represented by NR3. In the above, R represents an arbitrary structure constituting the nitrogen-containing compound, and multiple Rs may be the same or different. The nitrogen-containing compound may be a compound (polymer) having multiple repeating structures in its molecule. The reason why the nitrogen-containing compound can work as a dispersing agent is considered to be that the nitrogen-containing portion of the nitrogen-containing compound functions as an adsorption portion to the particle surface of the ferromagnetic powder. Examples of carboxy group-containing compounds include fatty acids such as oleic acid. As for the carboxy group-containing compound, the reason why the carboxy group-containing compound can work as a dispersing agent is considered to be that the carboxy group functions as an adsorption site on the particle surface of the ferromagnetic powder. It is also preferable to use a carboxy group-containing compound and a nitrogen-containing compound in combination. The amount of these dispersants to be used can be set appropriately.
 分散剤を非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012-133837号公報の段落0061を参照できる。 A dispersant may be added to the composition for forming the non-magnetic layer. See paragraph 0061 of JP-A-2012-133837 for the dispersant that can be added to the composition for forming a non-magnetic layer.
研磨剤
 先に記載したように、個数分布Aは、第一の磁性層表面における研磨剤の存在状態の指標になり得ると考えられる。したがって、個数分布Aは、研磨剤として添加する非磁性粉末の種類等によって制御できる。研磨剤としては、モース硬度8超の非磁性粉末が好ましく、モース硬度9以上の非磁性粉末がより好ましい。モース硬度の最大値は10である。研磨剤は、無機物質の粉末であることができ、有機物質の粉末であることもできる。研磨剤は、無機または有機の酸化物の粉末または炭化物(カーバイド)の粉末であることができる。カーバイドとしては、ボロンカーバイド(例えばBC)、チタンカーバイド(例えばTiC)等を挙げることができる。また、研磨剤としては、ダイヤモンドも使用可能である。研磨剤は、一形態では、無機酸化物の粉末であることが好ましい。具体的には、無機酸化物としては、アルミナ(例えばAl)、酸化チタン(例えばTiO)、酸化セリウム(例えばCeO)、酸化ジルコニウム(例えばZrO)等を挙げることができ、中でもアルミナが好ましい。アルミナのモース硬度は約9である。アルミナ粉末については、特開2013-229090号公報の段落0021も参照できる。また、研磨剤の粒子サイズの指標としては、比表面積を用いることができる。比表面積が大きいほど研磨剤を構成する粒子の一次粒子の粒子サイズが小さいと考えることができる。研磨剤としては、BET(Brunauer-Emmett-Teller)法によって測定された比表面積(以下、「BET比表面積」と記載する。)が14m/g以上の研磨剤を使用することが好ましい。また、分散性の観点からは、BET比表面積が40m/g以下の研磨剤を使用することが好ましい。第一の磁性層における研磨剤の含有量は、強磁性粉末100.0質量部に対して1.0~20.0質量部であることが好ましく、1.0~15.0質量部であることがより好ましい。研磨剤としては、1種の非磁性粉末のみ使用することもでき、組成および/または物性(例えばサイズ)の異なる2種以上の非磁性粉末を使用することもできる。研磨剤として2種以上の非磁性粉末を使用する場合、研磨剤の含有量とは、それら2種以上の非磁性粉末の合計含有量をいうものとする。以上の点は、本発明および本明細書における各種成分の含有量についても同様である。研磨剤は、強磁性粉末と別に分散処理に付すこと(別分散)が好ましく、後述のフィラーとも別に分散処理に付すこと(別分散)がより好ましい。第一の磁性層形成用組成物の調製時、研磨剤の分散液(以下、「研磨剤液」とも記載する。)として、成分および/または分散条件が異なる2種以上の分散液を調製することは、個数分布Aを制御するうえで好ましい。
Abrasives As described above, the number distribution A can be considered as an indicator of the presence of abrasives on the surface of the first magnetic layer. Therefore, the number distribution A can be controlled by the type of non-magnetic powder added as an abrasive. As the abrasive, a non-magnetic powder having a Mohs hardness of more than 8 is preferable, and a non-magnetic powder having a Mohs hardness of 9 or more is more preferable. The maximum value of Mohs hardness is 10. The abrasive can be a powder of inorganic material or can be a powder of organic material. The abrasive can be an inorganic or organic oxide powder or carbide powder. Examples of carbide include boron carbide (eg, B 4 C), titanium carbide (eg, TiC), and the like. Diamond can also be used as the abrasive. In one form, the abrasive is preferably an inorganic oxide powder. Specifically, examples of inorganic oxides include alumina (e.g. Al 2 O 3 ), titanium oxide (e.g. TiO 2 ), cerium oxide (e.g. CeO 2 ), zirconium oxide (e.g. ZrO 2 ), etc. Among them, alumina is preferred. Alumina has a Mohs hardness of about 9. Regarding alumina powder, paragraph 0021 of JP-A-2013-229090 can also be referred to. Further, as an index of the particle size of the abrasive, the specific surface area can be used. It can be considered that the larger the specific surface area, the smaller the particle size of the primary particles constituting the abrasive. As the abrasive, it is preferable to use an abrasive having a specific surface area measured by the BET (Brunauer-Emmett-Teller) method (hereinafter referred to as "BET specific surface area") of 14 m 2 /g or more. From the viewpoint of dispersibility, it is preferable to use a polishing agent having a BET specific surface area of 40 m 2 /g or less. The content of the abrasive in the first magnetic layer is preferably 1.0 to 20.0 parts by mass, more preferably 1.0 to 15.0 parts by mass, per 100.0 parts by mass of the ferromagnetic powder. is more preferable. As the abrasive, only one type of non-magnetic powder can be used, or two or more types of non-magnetic powders having different compositions and/or physical properties (for example, size) can be used. When two or more kinds of non-magnetic powders are used as abrasives, the content of abrasives means the total content of these two or more kinds of non-magnetic powders. The above points also apply to the content of various components in the present invention and the present specification. The abrasive is preferably dispersed separately from the ferromagnetic powder (separate dispersion), and more preferably dispersed separately from the filler described later (separate dispersion). When preparing the first composition for forming the magnetic layer, two or more dispersions with different components and/or dispersion conditions are prepared as abrasive dispersions (hereinafter also referred to as "abrasive liquids"). This is preferable for controlling the number distribution A.
 研磨剤の分散液の分散状態の調整のために、分散剤を使用することもできる。研磨剤の分散性を高めるための分散剤として機能し得る化合物としては、フェノール性ヒドロキシ基を有する芳香族炭化水素化合物を挙げることができる。「フェノール性ヒドロキシ基」とは、芳香環に直接結合したヒドロキシ基をいう。上記芳香族炭化水素化合物に含まれる芳香環は、単環であってもよく、多環構造であってもよく、縮合環であってもよい。研磨剤の分散性向上の観点からは、ベンゼン環またはナフタレン環を含む芳香族炭化水素化合物が好ましい。また、上記芳香族炭化水素化合物は、フェノール性ヒドロキシ基以外の置換基を有していてもよい。フェノール性ヒドロキシ基以外の置換基としては、例えば、ハロゲン原子、アルキル基、アルコキシ基、アミノ基、アシル基、ニトロ基、ニトロソ基、ヒドロキシアルキル基等を挙げることができ、ハロゲン原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシアルキル基が好ましい。上記芳香族炭化水素化合物1分子中に含まれるフェノール性ヒドロキシ基は、1つであってもよく、2つ、3つ、またはそれ以上であってもよい。 A dispersant can also be used to adjust the dispersion state of the abrasive dispersion. A compound that can function as a dispersant for enhancing the dispersibility of the abrasive includes an aromatic hydrocarbon compound having a phenolic hydroxy group. A "phenolic hydroxy group" refers to a hydroxy group directly attached to an aromatic ring. The aromatic ring contained in the aromatic hydrocarbon compound may be monocyclic, polycyclic, or condensed. From the viewpoint of improving the dispersibility of the abrasive, aromatic hydrocarbon compounds containing a benzene ring or a naphthalene ring are preferred. Moreover, the aromatic hydrocarbon compound may have a substituent other than the phenolic hydroxy group. Examples of substituents other than phenolic hydroxy groups include halogen atoms, alkyl groups, alkoxy groups, amino groups, acyl groups, nitro groups, nitroso groups, hydroxyalkyl groups and the like. Alkoxy groups, amino groups and hydroxyalkyl groups are preferred. The number of phenolic hydroxy groups contained in one molecule of the aromatic hydrocarbon compound may be one, two, three or more.
 フェノール性ヒドロキシ基を有する芳香族炭化水素化合物の好ましい一形態としては、下記式100で表される化合物を挙げることができる。 A preferred form of the aromatic hydrocarbon compound having a phenolic hydroxy group is the compound represented by the following formula 100.
Figure JPOXMLDOC01-appb-C000001
[式100中、X101~X108のうちの2つはヒドロキシ基であり、他の6つはそれぞれ独立に水素原子または置換基を表す。]
Figure JPOXMLDOC01-appb-C000001
[In Formula 100, two of X 101 to X 108 are hydroxy groups, and the other six each independently represent a hydrogen atom or a substituent. ]
 式100で表される化合物において、2つのヒドロキシ基(フェノール性ヒドロキシ基)の置換位置は特に限定されるものではない。 In the compound represented by Formula 100, the substitution positions of the two hydroxy groups (phenolic hydroxy groups) are not particularly limited.
 式100で表される化合物は、X101~X108のうちの2つがヒドロキシ基(フェノール性ヒドロキシ基)であり、他の6つはそれぞれ独立に水素原子または置換基を表す。また、X101~X108のうち、2つのヒドロキシ基以外の部分がすべて水素原子であってもよく、一部またはすべてが置換基であってもよい。置換基としては、先に記載した置換基を例示することができる。2つのヒドロキシ基以外の置換基として、1つ以上のフェノール性ヒドロキシ基が含まれていてもよい。研磨剤の分散性向上の観点からは、X101~X108のうちの2つのヒドロキシ基以外はフェノール性ヒドロキシ基ではないことが好ましい。即ち、式100で表される化合物は、ジヒドロキシナフタレンまたはその誘導体であることが好ましく、2,3-ジヒドロキシナフタレンまたはその誘導体であることがより好ましい。X101~X108で表される置換基として好ましい置換基としては、ハロゲン原子(例えば塩素原子、臭素原子)、アミノ基、炭素数1~6(好ましくは1~4)のアルキル基、メトキシ基およびエトキシ基、アシル基、ニトロ基およびニトロソ基、ならびに-CHOH基を挙げることができる。 In the compound represented by Formula 100, two of X 101 to X 108 are hydroxy groups (phenolic hydroxy groups), and the other six independently represent hydrogen atoms or substituents. In addition, among X 101 to X 108 , all of the portions other than the two hydroxy groups may be hydrogen atoms, or some or all of them may be substituents. As the substituent, the substituents described above can be exemplified. One or more phenolic hydroxy groups may be included as substituents other than the two hydroxy groups. From the viewpoint of improving the dispersibility of the abrasive, it is preferable that the hydroxy groups other than the two hydroxy groups among X 101 to X 108 are not phenolic hydroxy groups. That is, the compound represented by formula 100 is preferably dihydroxynaphthalene or a derivative thereof, more preferably 2,3-dihydroxynaphthalene or a derivative thereof. Preferable substituents as the substituents represented by X 101 to X 108 include halogen atoms (eg, chlorine atom, bromine atom), amino groups, alkyl groups having 1 to 6 carbon atoms (preferably 1 to 4), and methoxy groups. and ethoxy, acyl, nitro and nitroso groups, and —CH 2 OH groups.
 また、研磨剤の分散性を高めるための分散剤については、特開2014-179149号公報の段落0024~0028も参照できる。 In addition, paragraphs 0024 to 0028 of JP-A-2014-179149 can also be referred to for the dispersant for enhancing the dispersibility of the abrasive.
 研磨剤の分散性を高めるための分散剤は、例えば研磨剤液の調製時(複数の研磨剤液を調製する場合には各研磨剤液について)、研磨剤100.0質量部に対して、例えば0.5~20.0質量部の割合で使用することができ、1.0~10.0質量部の割合で使用することが好ましい。 The dispersant for enhancing the dispersibility of the abrasive is, for example, when preparing the abrasive liquid (for each abrasive liquid when preparing a plurality of abrasive liquids), per 100.0 parts by mass of the abrasive: For example, it can be used in a proportion of 0.5 to 20.0 parts by mass, preferably in a proportion of 1.0 to 10.0 parts by mass.
フィラー
 先に記載したように、個数分布Bは、摩擦特性制御のために第一の磁性層表面に適度な突起を形成すべく第一の磁性層に含まれる非磁性粉末(フィラー)の磁性層表面における存在状態の指標になり得ると考えられる。したがって、個数分布Bは、フィラーとして添加する非磁性粉末の種類等によって制御できる。フィラーの一形態としては、カーボンブラックを挙げることができる。カーボンブラックのBET比表面積は、10m/g以上であることが好ましく、15m/g以上であることがより好ましい。カーボンブラックのBET比表面積は、分散性向上の容易性の観点からは、50m/g以下であることが好ましく、40m/g以下であることがより好ましい。また、フィラーの他の一形態としては、コロイド粒子を挙げることができる。コロイド粒子としては、入手容易性の点から無機コロイド粒子が好ましく、無機酸化物コロイド粒子がより好ましく、シリカコロイド粒子(コロイダルシリカ)がより一層好ましい。本発明および本明細書において、「コロイド粒子」とは、メチルエチルケトン、シクロヘキサノン、トルエンもしくは酢酸エチル、または上記溶媒の2種以上を任意の混合比で含む混合溶媒の少なくとも1つの有機溶媒100mLあたり1g添加した際に、沈降せず分散しコロイド分散体をもたらすことのできる粒子をいうものとする。コロイド粒子の平均粒子サイズは、例えば30~300nmであることができ、40~200nmであることが好ましい。第一の磁性層におけるフィラーの含有量は、強磁性粉末100.0質量部に対して、0.5~20.0質量部であることが好ましく、0.5~15.0質量部であることがより好ましい。フィラーは、強磁性粉末と別に分散処理に付すことが好ましく、研磨剤とも別に分散処理に付すことがより好ましい。磁性層形成用組成物の調製時、フィラーの分散液(以下、「フィラー液」とも記載する。)として、成分および/または分散条件が異なる2種以上の分散液を調製することは、個数分布Bを制御するうえで好ましい。
Filler As described above, the number distribution B is a magnetic layer of non-magnetic powder (filler) contained in the first magnetic layer in order to form moderate protrusions on the surface of the first magnetic layer for controlling friction characteristics. It is thought that it can be an index of the state of existence on the surface. Therefore, the number distribution B can be controlled by the type of non-magnetic powder added as a filler. One form of filler is carbon black. The BET specific surface area of carbon black is preferably 10 m 2 /g or more, more preferably 15 m 2 /g or more. The BET specific surface area of carbon black is preferably 50 m 2 /g or less, more preferably 40 m 2 /g or less, from the viewpoint of ease of improving dispersibility. Another form of filler is colloidal particles. The colloidal particles are preferably inorganic colloidal particles, more preferably inorganic oxide colloidal particles, and still more preferably silica colloidal particles (colloidal silica) from the viewpoint of availability. In the present invention and the specification, the term "colloidal particles" means methyl ethyl ketone, cyclohexanone, toluene, ethyl acetate, or at least one mixed solvent containing two or more of the above solvents in an arbitrary mixing ratio. A particle is defined as a particle that, when dispersed, does not settle but is capable of dispersing to provide a colloidal dispersion. The average particle size of the colloidal particles can be, for example, 30-300 nm, preferably 40-200 nm. The content of the filler in the first magnetic layer is preferably 0.5 to 20.0 parts by mass, more preferably 0.5 to 15.0 parts by mass, with respect to 100.0 parts by mass of the ferromagnetic powder. is more preferable. The filler is preferably dispersed separately from the ferromagnetic powder, and more preferably dispersed separately from the abrasive. When preparing the composition for forming the magnetic layer, preparing two or more types of dispersions with different components and/or dispersion conditions as filler dispersions (hereinafter also referred to as "filler liquids") can result in a number distribution It is preferable to control B.
 カーボンブラックの分散性向上の観点から、フィラー液の調製時、一形態では、下記式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を使用することができる。なお、「アルキルエステルアニオン」は、「アルキルカルボキシラートアニオン」と呼ぶこともできる。 From the viewpoint of improving the dispersibility of carbon black, in one form, a compound having an ammonium salt structure of an alkyl ester anion represented by the following formula 1 can be used when preparing the filler liquid. The "alkylester anion" can also be called an "alkylcarboxylate anion".
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式1中、Rは炭素数7以上のアルキル基または炭素数7以上のフッ化アルキル基を表し、Zはアンモニウムカチオンを表す。 In Formula 1, R represents an alkyl group having 7 or more carbon atoms or a fluorinated alkyl group having 7 or more carbon atoms, and Z + represents an ammonium cation.
 また、カーボンブラックの分散性向上の観点から、一形態では、上記塩構造を有する化合物を形成し得る2種以上の成分を、フィラー液の調製時に使用することができる。これにより、フィラー液の調製時、それら成分の少なくとも一部が、上記塩構造を有する化合物を形成し得る。 In addition, from the viewpoint of improving the dispersibility of carbon black, in one embodiment, two or more components capable of forming a compound having a salt structure can be used during preparation of the filler liquid. This allows at least a portion of these components to form a compound having the above salt structure during preparation of the filler liquid.
 特記しない限り、以下に記載されている基は置換基を有してもよく無置換であってもよい。また、置換基を有する基について「炭素数」とは、特記しない限り、置換基の炭素数を含まない炭素数を意味するものとする。本発明および本明細書において、置換基としては、例えば、アルキル基(例えば炭素数1~6のアルキル基)、ヒドロキシ基、アルコキシ基(例えば炭素数1~6のアルコキシ基)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子等)、シアノ基、アミノ基、ニトロ基、アシル基、カルボキシ基、カルボキシ基の塩、スルホン酸基、スルホン酸基の塩等を挙げることができる。 Unless otherwise specified, the groups described below may have a substituent or may be unsubstituted. In addition, the “carbon number” of a group having a substituent means the number of carbon atoms not including the number of carbon atoms of the substituent unless otherwise specified. In the present invention and the specification, substituents include, for example, alkyl groups (eg alkyl groups having 1 to 6 carbon atoms), hydroxy groups, alkoxy groups (eg alkoxy groups having 1 to 6 carbon atoms), halogen atoms (eg fluorine atom, chlorine atom, bromine atom, etc.), a cyano group, an amino group, a nitro group, an acyl group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, a salt of a sulfonic acid group, and the like.
 以下、式1について更に詳細に説明する。 Formula 1 will be described in more detail below.
 式1中、Rは、炭素数7以上のアルキル基または炭素数7以上のフッ化アルキル基を表す。フッ化アルキル基は、アルキル基を構成する水素原子の一部または全部がフッ素原子により置換された構造を有する。Rで表されるアルキル基またはフッ化アルキル基は、直鎖構造であってもよく、分岐を有する構造であってもよく、環状のアルキル基またはフッ化アルキル基でもよく、直鎖構造であることが好ましい。Rで表されるアルキル基またはフッ化アルキル基は、置換基を有していてもよく、無置換であってもよく、無置換であることが好ましい。Rで表されるアルキル基は、例えばC2n+1-で表すことができる。ここでnは7以上の整数を表す。また、Rで表されるフッ化アルキル基は、例えばC2n+1-で表されるアルキル基を構成する水素原子の一部または全部がフッ素原子により置換された構造を有することができる。Rで表されるアルキル基またはフッ化アルキル基の炭素数は、7以上であり、8以上であることが好ましく、9以上であることがより好ましく、10以上であることが更に好ましく、11以上であることが一層好ましく、12以上であることがより一層好ましく、13以上であることが更に一層好ましい。また、Rで表されるアルキル基またはフッ化アルキル基の炭素数は、20以下であることが好ましく、19以下であることがより好ましく、18以下であることが更に好ましい。 In Formula 1, R represents an alkyl group having 7 or more carbon atoms or a fluorinated alkyl group having 7 or more carbon atoms. A fluorinated alkyl group has a structure in which some or all of the hydrogen atoms constituting the alkyl group are substituted with fluorine atoms. The alkyl group or fluorinated alkyl group represented by R may have a linear structure, may have a branched structure, may be a cyclic alkyl group or fluorinated alkyl group, and has a linear structure. is preferred. The alkyl group or fluorinated alkyl group represented by R may have a substituent or may be unsubstituted, and is preferably unsubstituted. An alkyl group represented by R can be represented by, for example, C n H 2n+1 -. Here, n represents an integer of 7 or more. Further, the fluorinated alkyl group represented by R can have a structure in which, for example, some or all of the hydrogen atoms constituting the alkyl group represented by C n H 2n+1 - are substituted with fluorine atoms. The number of carbon atoms in the alkyl group or fluorinated alkyl group represented by R is 7 or more, preferably 8 or more, more preferably 9 or more, further preferably 10 or more, and 11 or more. more preferably, 12 or more, and even more preferably 13 or more. The number of carbon atoms in the alkyl group or fluorinated alkyl group represented by R is preferably 20 or less, more preferably 19 or less, and even more preferably 18 or less.
 式1中、Zはアンモニウムカチオンを表す。アンモニウムカチオンは、詳しくは、以下の構造を有する。本発明および本明細書において、化合物の一部を表す式中の「*」は、その一部の構造と隣接する原子との結合位置を表す。 In Formula 1, Z + represents an ammonium cation. The ammonium cation specifically has the following structure. In the present invention and this specification, "*" in formulas representing part of a compound represents the bonding position between the structure of that part and an adjacent atom.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 アンモニウムカチオンの窒素カチオンNと式1中の酸素アニオンOとが塩架橋基を形成して式1で表されるアルキルエステルアニオンのアンモニウム塩構造が形成され得る。式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物が第一の磁性層に含まれていることは、磁気記録媒体についてX線光電子分光法(ESCA;Electron Spectroscopy for Chemical Analysis)、赤外分光法(IR;infrared spectroscopy)等により分析を行うことによって確認できる。 The nitrogen cation N + of the ammonium cation and the oxygen anion O 2 in formula 1 can form a salt bridging group to form the ammonium salt structure of the alkyl ester anion represented by formula 1. The presence of the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 in the first magnetic layer was confirmed by X-ray photoelectron spectroscopy (ESCA) for the magnetic recording medium. It can be confirmed by analyzing by infrared spectroscopy (IR) or the like.
 一形態では、Zで表されるアンモニウムカチオンは、例えば、含窒素ポリマーの窒素原子がカチオンとなることによってもたらされ得る。含窒素ポリマーとは、窒素原子を含むポリマーを意味する。本発明および本明細書において、「ポリマー」および「重合体」との語は、ホモポリマーとコポリマーとを包含する意味で用いられる。窒素原子は、一形態ではポリマーの主鎖を構成する原子として含まれることができ、また一形態ではポリマーの側鎖を構成する原子として含まれることができる。 In one form, an ammonium cation represented by Z + can be provided, for example, by a nitrogen atom of a nitrogen-containing polymer becoming a cation. A nitrogen-containing polymer means a polymer containing nitrogen atoms. In the present invention and the specification, the terms "polymer" and "polymer" are used in the sense of including homopolymers and copolymers. A nitrogen atom can be contained as an atom constituting a main chain of a polymer in one form, and can be contained as an atom constituting a side chain of a polymer in one form.
 含窒素ポリマーの一形態としては、ポリアルキレンイミンを挙げることができる。ポリアルキレンイミンは、アルキレンイミンの開環重合体であって、下記式2で表される繰り返し単位を複数有するポリマーである。 One form of nitrogen-containing polymer is polyalkyleneimine. Polyalkyleneimine is a ring-opening polymer of alkyleneimine, and is a polymer having a plurality of repeating units represented by formula 2 below.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式2中の主鎖を構成する窒素原子Nが窒素カチオンNとなって式1中のZで表されるアンモニウムカチオンがもたらされ得る。そしてアルキルエステルアニオンと、例えば以下のようにアンモニウム塩構造を形成し得る。 The nitrogen atom N constituting the main chain in Formula 2 can become a nitrogen cation N + to provide an ammonium cation represented by Z + in Formula 1. and can form an ammonium salt structure with an alkyl ester anion, for example as follows.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 以下、式2について更に詳細に説明する。 Formula 2 will be described in more detail below.
 式2中、RおよびRは、それぞれ独立に水素原子またはアルキル基を表し、n1は2以上の整数を表す。 In Formula 2, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group, and n1 represents an integer of 2 or more.
 RまたはRで表されるアルキル基としては、例えば、炭素数1~6のアルキル基を挙げることができ、好ましくは炭素数1~3のアルキル基であり、より好ましくはメチル基またはエチル基であり、更に好ましくはメチル基である。RまたはRで表されるアルキル基は、好ましくは無置換アルキル基である。式2中のRおよびRの組み合わせとしては、一方が水素原子であって他方がアルキル基である形態、両方が水素原子である形態および両方がアルキル基(同一または異なるアルキル基)である形態があり、好ましくは両方が水素原子である形態である。ポリアルキレンイミンをもたらすアルキレンイミンとして、環を構成する炭素数が最少の構造はエチレンイミンであり、エチレンイミンの開環により得られたアルキレンイミン(エチレンイミン)の主鎖の炭素数は2である。したがって、式2中のn1は2以上である。式2中のn1は、例えば10以下、8以下、6以下または4以下であることができる。ポリアルキレンイミンは、式2で表される繰り返し構造として同一構造のみを含むホモポリマーであってもよく、式2で表される繰り返し構造として2種以上の異なる構造を含むコポリマーであってもよい。式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用可能なポリアルキレンイミンの数平均分子量は、例えば200以上であることができ、300以上であることが好ましく、400以上であることがより好ましい。また、上記ポリアルキレンイミンの数平均分子量は、例えば10,000以下であることができ、5,000以下であることが好ましく、2,000以下であることがより好ましい。 Examples of the alkyl group represented by R 1 or R 2 include an alkyl group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group. group, more preferably a methyl group. The alkyl group represented by R 1 or R 2 is preferably an unsubstituted alkyl group. The combination of R 1 and R 2 in Formula 2 includes a mode in which one is a hydrogen atom and the other is an alkyl group, a mode in which both are hydrogen atoms, and a mode in which both are alkyl groups (same or different alkyl groups). There is a form, preferably a form in which both are hydrogen atoms. As the alkyleneimine leading to polyalkyleneimine, the structure with the smallest number of carbon atoms constituting the ring is ethyleneimine, and the main chain of the alkyleneimine obtained by ring opening of ethyleneimine (ethyleneimine) has 2 carbon atoms. . Therefore, n1 in Formula 2 is 2 or more. n1 in Formula 2 can be, for example, 10 or less, 8 or less, 6 or less, or 4 or less. The polyalkyleneimine may be a homopolymer containing only the same structure as the repeating structure represented by Formula 2, or may be a copolymer containing two or more different structures as the repeating structure represented by Formula 2. . The number average molecular weight of the polyalkyleneimine that can be used to form the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 can be, for example, 200 or more, preferably 300 or more, It is more preferably 400 or more. The number average molecular weight of the polyalkyleneimine may be, for example, 10,000 or less, preferably 5,000 or less, and more preferably 2,000 or less.
 本発明および本明細書において、平均分子量(重量平均分子量および数平均分子量)とは、ゲル浸透クロマトグラフィー(GPC;Gel Permeation Chromatography)により測定され、標準ポリスチレン換算により求められる値をいうものとする。後述の実施例に示す平均分子量は、特記しない限り、GPCを用いて下記測定条件により測定された値を標準ポリスチレン換算して求めた値(ポリスチレン換算値)である。
 GPC装置:HLC-8220(東ソー社製)
 ガードカラム:TSKguardcolumn Super HZM-H
 カラム:TSKgel Super HZ 2000、TSKgel Super HZ 4000、TSKgel Super HZ-M(東ソー社製、4.6mm(内径)×15.0cm、3種カラムを直列連結)
 溶離液:テトラヒドロフラン(THF)、安定剤(2,6-ジ-t-ブチル-4-メチルフェノール)含有
 溶離液流速:0.35mL/分
 カラム温度:40℃
 インレット温度:40℃
 屈折率(RI;Refractive Index)測定温度:40℃
 サンプル濃度:0.3質量%
 サンプル注入量:10μL
In the present invention and the specification, the average molecular weight (weight average molecular weight and number average molecular weight) is measured by gel permeation chromatography (GPC; Gel Permeation Chromatography) and refers to a value determined by standard polystyrene conversion. Unless otherwise specified, the average molecular weight shown in the examples below is a value obtained by converting the value measured under the following measurement conditions using GPC into standard polystyrene (polystyrene conversion value).
GPC device: HLC-8220 (manufactured by Tosoh Corporation)
Guard column: TSKguardcolumn Super HZM-H
Column: TSKgel Super HZ 2000, TSKgel Super HZ 4000, TSKgel Super HZ-M (manufactured by Tosoh Corporation, 4.6 mm (inner diameter) × 15.0 cm, 3 types of columns connected in series)
Eluent: Tetrahydrofuran (THF) containing stabilizer (2,6-di-t-butyl-4-methylphenol) Eluent flow rate: 0.35 mL/min Column temperature: 40°C
Inlet temperature: 40°C
Refractive index (RI; Refractive Index) measurement temperature: 40°C
Sample concentration: 0.3% by mass
Sample injection volume: 10 μL
 また、含窒素ポリマーの他の一形態としては、ポリアリルアミンを挙げることができる。ポリアリルアミンは、アリルアミンの重合体であって、下記式3で表される繰り返し単位を複数有するポリマーである。 Another form of nitrogen-containing polymer is polyallylamine. Polyallylamine is a polymer of allylamine and is a polymer having a plurality of repeating units represented by Formula 3 below.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式3中の側鎖のアミノ基を構成する窒素原子Nが窒素カチオンNとなって式1中のZで表されるアンモニウムカチオンがもたらされ得る。そしてアルキルエステルアニオンと、例えば以下のようにアンモニウム塩構造を形成し得る。 The nitrogen atom N constituting the amino group of the side chain in Formula 3 can become a nitrogen cation N + to provide an ammonium cation represented by Z + in Formula 1. and can form an ammonium salt structure with an alkyl ester anion, for example as follows.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用可能なポリアリルアミンの重量平均分子量は、例えば200以上であることができ、1,000以上であることが好ましく、1,500以上であることがより好ましい。また、上記ポリアリルアミンの重量平均分子量は、例えば15,000以下であることができ、10,000以下であることが好ましく、8,000以下であることがより好ましい。 The weight average molecular weight of the polyallylamine that can be used to form the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 can be, for example, 200 or more, preferably 1,000 or more. , 1,500 or more. The weight average molecular weight of the polyallylamine may be, for example, 15,000 or less, preferably 10,000 or less, and more preferably 8,000 or less.
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物として、ポリアルキレンイミンまたはポリアリルアミン由来の構造を有する化合物が第一の磁性層に含まれることは、第一の磁性層表面を飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)等により分析することによって確認できる。 The presence of a compound having a structure derived from polyalkyleneimine or polyallylamine in the first magnetic layer as the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 is effective for flying on the surface of the first magnetic layer. It can be confirmed by analysis by time-of-flight secondary ion mass spectrometry (TOF-SIMS) or the like.
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、含窒素ポリマーと炭素数7以上の脂肪酸および炭素数7以上のフッ化脂肪酸からなる群から選ばれる脂肪酸類の1種以上との塩であることができる。塩を形成する含窒素ポリマーは、1種または2種以上の含窒素ポリマーであることができ、例えばポリアルキレンイミンおよびポリアリルアミンからなる群から選択される含窒素ポリマーであることができる。塩を形成する脂肪酸類は、炭素数7以上の脂肪酸および炭素数7以上のフッ化脂肪酸からなる群から選ばれる脂肪酸類の1種または2種以上であることができる。フッ化脂肪酸は、脂肪酸においてカルボキシ基COOHと結合しているアルキル基を構成する水素原子の一部または全部がフッ素原子に置換された構造を有する。例えば、含窒素ポリマーと上記脂肪酸類とを室温で混合することによって、塩形成反応は容易に進行し得る。室温とは、例えば20~25℃程度である。一形態では、フィラー液の成分として含窒素ポリマーの1種以上と上記脂肪酸類の1種以上を使用し、フィラー液の調製工程においてこれらを混合することによって、塩形成反応を進行させることができる。また、一形態では、フィラー液の調製前に、含窒素ポリマーの1種以上と上記脂肪酸類の1種以上とを混合して塩を形成した後に、この塩をフィラー液の成分として使用してフィラー液を調製することができる。なお、含窒素ポリマーと上記脂肪酸類とを混合して式1で表されるアルキルエステルアニオンのアンモニウム塩を形成する際、併せて含窒素ポリマーを構成する窒素原子と上記脂肪酸類のカルボキシ基とが反応して下記構造が形成される場合もあり、そのような構造を含む形態も上記化合物に包含される。 The compound having an ammonium salt structure of an alkyl ester anion represented by Formula 1 is a nitrogen-containing polymer and at least one fatty acid selected from the group consisting of fatty acids having 7 or more carbon atoms and fluorinated fatty acids having 7 or more carbon atoms. can be a salt of The salt-forming nitrogen-containing polymer can be one or more nitrogen-containing polymers, such as nitrogen-containing polymers selected from the group consisting of polyalkyleneimines and polyallylamines. Fatty acids that form salts can be one or more fatty acids selected from the group consisting of fatty acids having 7 or more carbon atoms and fluorinated fatty acids having 7 or more carbon atoms. A fluorinated fatty acid has a structure in which some or all of the hydrogen atoms constituting the alkyl group bonded to the carboxyl group COOH in the fatty acid are substituted with fluorine atoms. For example, by mixing the nitrogen-containing polymer and the fatty acid at room temperature, the salt formation reaction can proceed easily. Room temperature is, for example, about 20 to 25.degree. In one embodiment, one or more of the nitrogen-containing polymer and one or more of the above fatty acids are used as components of the filler liquid, and the salt formation reaction can be advanced by mixing them in the preparation process of the filler liquid. . In one embodiment, one or more of the nitrogen-containing polymer and one or more of the fatty acids are mixed to form a salt before preparing the filler liquid, and then the salt is used as a component of the filler liquid. A filler liquid can be prepared. When the nitrogen-containing polymer and the fatty acid are mixed to form the ammonium salt of the alkyl ester anion represented by the formula 1, the nitrogen atom constituting the nitrogen-containing polymer and the carboxy group of the fatty acid are also The following structures may be formed upon reaction, and forms containing such structures are also included in the above compounds.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記脂肪酸類としては、先に式1中のRとして記載したアルキル基を有する脂肪酸および先に式1中のRとして記載したフッ化アルキル基を有するフッ化脂肪酸を挙げることができる。 Examples of the above fatty acids include fatty acids having an alkyl group described above as R in Formula 1 and fluorinated fatty acids having a fluorinated alkyl group described as R in Formula 1 above.
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用する含窒素ポリマーと上記脂肪酸類との混合比は、含窒素ポリマー:上記脂肪酸類の質量比として、10:90~90:10であることが好ましく、20:80~85:15であることがより好ましく、30:70~80:20であることが更に好ましい。また、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、フィラー液の調製時(複数のフィラー液を調製する場合には各フィラー液について)、カーボンブラック100.0質量部に対して、例えば1.0~20.0質量部使用することができ、1.0~10.0質量部使用することが好ましい。また、例えばフィラー液の調製時(複数のフィラー液を調製する場合には各フィラー液について)、カーボンブラック100.0質量部あたり、0.1~10.0質量部の含窒素ポリマーを使用することができ、0.5~8.0質量部の含窒素ポリマーを使用することが好ましい。上記脂肪酸類は、カーボンブラック100.0質量部あたり、例えば0.05~10.0質量部使用することができ、0.1~5.0質量部使用することが好ましい。 The mixing ratio of the nitrogen-containing polymer and the fatty acid used to form the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 is 10:10 as a mass ratio of the nitrogen-containing polymer:the fatty acid. It is preferably from 90 to 90:10, more preferably from 20:80 to 85:15, even more preferably from 30:70 to 80:20. Further, the compound having an ammonium salt structure of the alkyl ester anion represented by Formula 1 is added to 100.0 parts by mass of carbon black at the time of preparing the filler liquid (for each filler liquid when preparing multiple filler liquids). For example, 1.0 to 20.0 parts by mass can be used, and 1.0 to 10.0 parts by mass is preferably used. Further, for example, when preparing a filler liquid (for each filler liquid when preparing a plurality of filler liquids), 0.1 to 10.0 parts by mass of a nitrogen-containing polymer is used per 100.0 parts by mass of carbon black. It is preferable to use 0.5 to 8.0 parts by weight of the nitrogen-containing polymer. The fatty acid can be used, for example, in an amount of 0.05 to 10.0 parts by mass, preferably 0.1 to 5.0 parts by mass, per 100.0 parts by mass of carbon black.
 以上説明した第一の磁性層は、例えば、非磁性支持体上に形成された第二の磁性層上に直接設けることができる。 The first magnetic layer described above can be directly provided, for example, on the second magnetic layer formed on the non-magnetic support.
<非磁性層>
 次に非磁性層について説明する。上記磁気記録媒体は、非磁性支持体表面上に直接第二の磁性層を有していてもよく、非磁性支持体表面上に非磁性粉末を含む非磁性層を介して第二の磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末でも有機物質の粉末でもよい。また、カーボンブラック等も使用できる。無機物質の粉末としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の粉末が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040および0041も参照できる。非磁性層における非磁性粉末の含有率(充填率)は、非磁性層の全質量に対して、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
<Nonmagnetic layer>
Next, the nonmagnetic layer will be explained. The magnetic recording medium may have the second magnetic layer directly on the surface of the non-magnetic support, or the second magnetic layer may be formed on the surface of the non-magnetic support via a non-magnetic layer containing non-magnetic powder. may have The non-magnetic powder used in the non-magnetic layer may be inorganic powder or organic powder. Carbon black or the like can also be used. Examples of powders of inorganic substances include powders of metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, and the like. These non-magnetic powders are commercially available and can be produced by known methods. For details, paragraphs 0146 to 0150 of Japanese Patent Application Laid-Open No. 2011-216149 can be referred to. For carbon black that can be used in the non-magnetic layer, see paragraphs 0040 and 0041 of JP-A-2010-24113. The nonmagnetic powder content (filling rate) in the nonmagnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass, based on the total mass of the nonmagnetic layer. .
 非磁性層は、結合剤を含み、1種以上の添加剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。 The non-magnetic layer contains a binder and can also contain one or more additives. Known techniques for nonmagnetic layers can be applied to other details such as binders and additives for the nonmagnetic layer. In addition, for example, the type and content of the binder, the type and content of the additive, and the like can be applied to known techniques related to magnetic layers.
 本発明および本明細書において、非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。 In the present invention and in this specification, non-magnetic layers include non-magnetic powders as well as substantially non-magnetic layers containing a small amount of ferromagnetic powders, for example as impurities or intentionally. Here, the substantially non-magnetic layer means that the residual magnetic flux density of this layer is 10 mT or less, the coercive force is 7.96 kA/m (100 Oe) or less, or the residual magnetic flux density is 10 mT or less. and a coercive force of 7.96 kA/m (100 Oe) or less. The non-magnetic layer preferably has no residual magnetic flux density and no coercive force.
<バックコート層>
 上記磁気記録媒体は、一形態では、非磁性支持体の第一の磁性層および第二の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することができる。また、他の一形態では、上記磁気記録媒体は、バックコート層を有さない磁気記録媒体であることもできる。上記磁気記録媒体がバックコート層を有する場合、バックコート層の非磁性粉末は、カーボンブラックおよび無機粉末のいずれか一方または両方であることが好ましい。バックコート層は、結合剤を含み、1種以上の添加剤を含むこともできる。バックコート層に含まれ得る結合剤および各種添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
<Back coat layer>
In one form of the magnetic recording medium, a backcoat layer containing a nonmagnetic powder and a binder is provided on the surface of the nonmagnetic support opposite to the surface having the first magnetic layer and the second magnetic layer. can have In another form, the magnetic recording medium may be a magnetic recording medium without a back coat layer. When the magnetic recording medium has a back coat layer, the non-magnetic powder in the back coat layer is preferably carbon black or inorganic powder, or both. The backcoat layer includes a binder and may also include one or more additives. As for the binder and various additives that can be contained in the backcoat layer, known techniques relating to the backcoat layer can be applied, and known techniques relating to the formulation of the magnetic layer and/or the non-magnetic layer can also be applied. For example, paragraphs 0018 to 0020 of JP-A-2006-331625 and US Pat. .
<非磁性支持体>
 次に、非磁性支持体(以下、単に「支持体」とも記載する。)について説明する。
 非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理等を行ってもよい。
<Nonmagnetic support>
Next, the non-magnetic support (hereinafter also simply referred to as "support") will be described.
Examples of the non-magnetic support include known materials such as biaxially stretched polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamideimide, and aromatic polyamide. Among these, polyethylene terephthalate, polyethylene naphthalate and polyamide are preferred. These supports may be previously subjected to corona discharge, plasma treatment, adhesion-enhancing treatment, heat treatment, or the like.
<各種厚み>
 非磁性支持体の厚みは、好ましくは3.0~5.0μmである。
 第一の磁性層の厚みは、用いる磁気ヘッドの飽和磁化量、ヘッドギャップ長、記録信号の帯域等により最適化することができ、例えば0.01μm~0.15μmであり、高密度記録化の観点から、好ましくは0.02μm~0.12μmであり、更に好ましくは0.03μm~0.1μmである。第一の磁性層は少なくとも一層あればよく、第一の磁性層を異なる磁気特性を有する二層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。二層以上に分離する場合の第一の磁性層の厚みとは、これらの層の合計厚みとする。この点は、第二の磁性層についても同様である。
 第二の磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
 非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
 バックコート層の厚みは、0.9μm以下であることが好ましく、0.1~0.7μmであることが更に好ましい。
 上記の各種厚みは、例えば以下の方法により求めることができる。
 磁気記録媒体の厚み方向の断面を、イオンビームにより露出させた後、露出した断面において走査型電子顕微鏡または透過型電子顕微鏡によって断面観察を行う。断面観察において任意の2箇所において求められた厚みの算術平均として、各種厚みを求めることができる。または、各種厚みは、製造条件等から算出される設計厚みとして求めることもできる。
<Various thicknesses>
The thickness of the nonmagnetic support is preferably 3.0 to 5.0 μm.
The thickness of the first magnetic layer can be optimized according to the saturation magnetization amount of the magnetic head to be used, the head gap length, the recording signal band, etc., and is, for example, 0.01 μm to 0.15 μm. From the point of view, it is preferably 0.02 μm to 0.12 μm, more preferably 0.03 μm to 0.1 μm. At least one first magnetic layer is sufficient, and the first magnetic layer may be separated into two or more layers having different magnetic properties, and a known multilayer magnetic layer configuration can be applied. The thickness of the first magnetic layer when separated into two or more layers is the total thickness of these layers. This point also applies to the second magnetic layer.
The thickness of the second magnetic layer is, for example, 0.1 to 1.5 μm, preferably 0.1 to 1.0 μm.
The thickness of the nonmagnetic layer is, for example, 0.1 to 1.5 μm, preferably 0.1 to 1.0 μm.
The thickness of the backcoat layer is preferably 0.9 μm or less, more preferably 0.1 to 0.7 μm.
The various thicknesses described above can be determined, for example, by the following methods.
After exposing a section of the magnetic recording medium in the thickness direction with an ion beam, the exposed section is observed with a scanning electron microscope or a transmission electron microscope. Various thicknesses can be determined as the arithmetic mean of the thicknesses determined at two arbitrary locations in cross-sectional observation. Alternatively, various thicknesses can be obtained as design thicknesses calculated from manufacturing conditions and the like.
<製造工程>
(各層形成用組成物の調製)
 第一の磁性層、第二の磁性層、非磁性層またはバックコート層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ二段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。溶媒としては、塗布型磁気記録媒体の製造に通常用いられる各種溶媒の1種または2種以上を用いることができる。溶媒については、例えば特開2011-216149号公報の段落0153を参照できる。また、個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程および分散後の粘度調整のための混合工程で分割して投入してもよい。上記磁気テープを製造するためには、公知の製造技術を各種工程において用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつものを使用することが好ましい。混練処理の詳細については、特開平1-106338号公報および特開平1-79274号公報を参照できる。分散機は公知のものを使用することができる。各層形成用組成物を調製する任意の段階において、公知の方法によってろ過を行ってもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
<Manufacturing process>
(Preparation of each layer-forming composition)
The steps of preparing a composition for forming the first magnetic layer, second magnetic layer, non-magnetic layer, or backcoat layer usually include at least a kneading step, a dispersing step, and before and after these steps. Optionally, a mixing step may be included. Each step may be divided into two or more stages. The components used for preparing each layer-forming composition may be added at the beginning or in the middle of any step. As the solvent, one or more of various solvents commonly used in the production of coating-type magnetic recording media can be used. Regarding the solvent, for example, paragraph 0153 of JP-A-2011-216149 can be referred to. Alternatively, individual components may be added in two or more steps. For example, the binder may be dividedly added in the kneading step, the dispersing step, and the mixing step for viscosity adjustment after dispersion. In order to manufacture the magnetic tape, known manufacturing techniques can be used in various steps. In the kneading step, it is preferable to use a kneader having a strong kneading force such as an open kneader, a continuous kneader, a pressure kneader or an extruder. Details of the kneading process can be referred to JP-A-1-106338 and JP-A-1-79274. A known disperser can be used. Filtration may be performed by a known method at any stage of preparing each layer-forming composition. Filtration can be performed, for example, by filter filtration. As a filter used for filtration, for example, a filter having a pore size of 0.01 to 3 μm (eg, glass fiber filter, polypropylene filter, etc.) can be used.
 第一の磁性層形成用組成物の調製に用いる研磨剤液は、強磁性粉末およびフィラーとは別分散して調製することが好ましい。研磨剤液における研磨剤の分散状態は、研磨剤の分散性向上のための分散剤の使用の有無、かかる分散剤の使用量、ビーズ分散等の分散処理の処理条件、遠心分離等の分級処理の処理条件等によって調整できる。そして研磨剤の分散状態を調整することは、個数分布Aを制御するうえで好ましい。研磨剤液は、好ましくは、強磁性粉末およびフィラーとは別に、研磨剤と溶媒と好ましくは結合剤とを含む研磨剤液の1種または2種以上として準備して、磁性層形成用組成物の調製に使用することができる。分散処理および分級処理には、市販の装置を使用することができる。これら処理を行うための条件は、特に限定されるものではなく、個数分布Aが先に記載した(1)~(3)を満たすように、使用する装置の種類等に応じて設定すればよい。 The abrasive liquid used to prepare the first magnetic layer-forming composition is preferably dispersed separately from the ferromagnetic powder and filler. The dispersion state of the abrasive in the abrasive liquid depends on whether or not a dispersant is used to improve the dispersibility of the abrasive, the amount of the dispersant used, the treatment conditions for dispersion treatment such as bead dispersion, and the classification treatment such as centrifugation. can be adjusted depending on the processing conditions, etc. It is preferable to control the number distribution A to adjust the dispersed state of the abrasive. The abrasive liquid is preferably prepared as one or more abrasive liquids containing an abrasive, a solvent, and preferably a binder separately from the ferromagnetic powder and the filler, and the composition for forming the magnetic layer is prepared. can be used for the preparation of A commercially available device can be used for the dispersion treatment and the classification treatment. The conditions for performing these treatments are not particularly limited, and may be set according to the type of apparatus to be used so that the number distribution A satisfies (1) to (3) described above. .
 また、第一の磁性層形成用組成物の調製に用いるフィラー液は、強磁性粉末および研磨剤とは別分散して調製することが好ましい。フィラー液におけるフィラーの分散状態は、フィラーの分散性向上のための成分の使用の有無、かかる成分の使用量、ビーズ分散等の分散処理の処理条件、遠心分離等の分級処理の処理条件等によって調整できる。一形態では、フィラー液の成分として、含窒素ポリマーの1種以上と先に記載した脂肪酸類の1種以上とを使用し、フィラー液の調製工程においてこれらを混合することによって、塩形成反応を進行させることができる。また、一形態では、フィラー液の調製前に、含窒素ポリマーの1種以上と上記脂肪酸類の1種以上とを混合して塩を形成した後に、この塩をフィラー液の成分として使用してフィラー液を調製することができる。フィラーの分散状態を調整することは、個数分布Bを制御するうえで好ましい。フィラー液は、好ましくは、強磁性粉末および研磨剤とは別に、フィラーと溶媒と好ましくは結合剤とを含む研磨剤液の1種または2種以上として準備して、磁性層形成用組成物の調製に使用することができる。撹拌、分散処理および分級処理には、市販の装置を使用することができる。これら処理を行うための条件は、特に限定されるものではなく、個数分布Bが先に記載した(4)~(6)を満たすように、使用する装置の種類等に応じて設定すればよい。 In addition, it is preferable to disperse and prepare the filler liquid used to prepare the first magnetic layer-forming composition separately from the ferromagnetic powder and the abrasive. The dispersion state of the filler in the filler liquid depends on whether or not a component is used to improve the dispersibility of the filler, the amount of such component used, the processing conditions for dispersion treatment such as bead dispersion, and the processing conditions for classification treatment such as centrifugation. Adjustable. In one embodiment, one or more of the nitrogen-containing polymer and one or more of the fatty acids described above are used as components of the filler liquid, and by mixing them in the preparation process of the filler liquid, the salt formation reaction is induced. can proceed. In one embodiment, one or more of the nitrogen-containing polymer and one or more of the fatty acids are mixed to form a salt before preparing the filler liquid, and then the salt is used as a component of the filler liquid. A filler liquid can be prepared. It is preferable to control the number distribution B to adjust the dispersed state of the filler. The filler liquid is preferably prepared as one or more abrasive liquids containing a filler, a solvent, and preferably a binder separately from the ferromagnetic powder and the abrasive. Can be used for preparation. Commercially available equipment can be used for stirring, dispersion treatment and classification treatment. The conditions for performing these treatments are not particularly limited, and may be set according to the type of apparatus used, etc. so that the number distribution B satisfies (4) to (6) described above. .
 第一の磁性層形成用組成物の分散処理に関しては、一形態では、強磁性粉末の分散処理を二段階の分散処理により行い、第一の段階の分散処理により強磁性粉末の粗大な凝集物を解砕した後、分散ビーズとの衝突によって強磁性粉末の粒子に加わる衝突エネルギーが第一の分散処理より小さな第二の段階の分散処理を行うことができる。かかる分散処理によれば、強磁性粉末の分散性向上とチッピング(粒子が一部欠けること)の発生の抑制とを両立することができると考えられる。この点は、後述する垂直方向角型比を制御するうえでも好ましい。 Regarding the first dispersing treatment of the composition for forming the magnetic layer, in one embodiment, the ferromagnetic powder is dispersed in two stages, and the ferromagnetic powder is dispersed in the first stage to form coarse agglomerates. After pulverizing, a second stage dispersion treatment can be performed in which the impact energy applied to the particles of the ferromagnetic powder by collision with the dispersion beads is smaller than that in the first dispersion treatment. It is believed that such dispersion treatment can both improve the dispersibility of the ferromagnetic powder and suppress the occurrence of chipping (partial chipping of particles). This point is also preferable for controlling the vertical squareness ratio, which will be described later.
 上記の二段階の分散処理の一例としては、強磁性粉末、結合剤および溶媒を、第一の分散ビーズの存在下で分散処理することにより分散液を得る第一の段階と、第一の段階で得られた分散液を、第一の分散ビーズよりビーズ径および密度が小さい第二の分散ビーズの存在下で分散処理する第二の段階と、を含む分散処理を挙げることができる。以下に、上記の分散処理について、更に説明する。 As an example of the two-step dispersion treatment, a first step of dispersing the ferromagnetic powder, the binder and the solvent in the presence of the first dispersing beads to obtain a dispersion liquid; and a second stage of dispersing the dispersion liquid obtained in (1) in the presence of second dispersing beads having a bead diameter and density smaller than those of the first dispersing beads. The above distributed processing will be further described below.
 第一の磁性層形成用組成物における強磁性粉末の分散性を高めるためには、上記の第一の段階および第二の段階は、強磁性粉末を他の粉末成分と混合する前の分散処理として行うことが好ましい。例えば、研磨剤およびフィラーと混合する前に、強磁性粉末、結合剤、溶媒および任意に添加される添加剤を含む液(磁性液)の分散処理として、上記の第一の段階および第二の段階を行うことが好ましい。 In order to improve the dispersibility of the ferromagnetic powder in the first magnetic layer-forming composition, the first step and the second step should be a dispersion treatment before mixing the ferromagnetic powder with other powder components. It is preferable to perform as For example, before mixing with an abrasive and a filler, as a dispersion treatment of a liquid (magnetic liquid) containing a ferromagnetic powder, a binder, a solvent and optionally added additives, the above first step and second step It is preferred to perform steps.
 第二の分散ビーズのビーズ径は、好ましくは、第一の分散ビーズのビーズ径の1/100以下であり、より好ましくは1/500以下である。また、第二の分散ビーズのビーズ径は、例えば第一の分散ビーズのビーズ径の1/10000以上であることができる。ただし、この範囲に限定されるものではない。例えば、第二の分散ビーズのビーズ径は、80~1000nmの範囲であることが好ましい。一方、第一の分散ビーズのビーズ径は、例えば0.2~1.0mmの範囲であることができる。
 なお、本発明および本明細書におけるビーズ径は、先に記載した粉末の平均粒子サイズの測定方法と同様の方法で測定される値とする。
The bead diameter of the second dispersed beads is preferably 1/100 or less, more preferably 1/500 or less of the bead diameter of the first dispersed beads. Also, the bead diameter of the second dispersed beads can be, for example, 1/10000 or more of the bead diameter of the first dispersed beads. However, it is not limited to this range. For example, the bead diameter of the second dispersed beads is preferably in the range of 80-1000 nm. On the other hand, the bead diameter of the first dispersed beads can range, for example, from 0.2 to 1.0 mm.
The bead diameter in the present invention and this specification is a value measured by the same method as the method for measuring the average particle size of the powder described above.
 上記の第二の段階は、質量基準で、第二の分散ビーズが、強磁性六方晶フェライト粉末の10倍以上の量で存在する条件下で行うことが好ましく、10倍~30倍の量で存在する条件下で行うことがより好ましい。
 一方、第一の段階における第一の分散ビーズ量も、上記範囲とすることが好ましい。
The above-mentioned second step is preferably carried out under conditions where the second dispersed beads are present in an amount of 10 times or more that of the ferromagnetic hexagonal ferrite powder on a mass basis, and in an amount of 10 to 30 times More preferably under existing conditions.
On the other hand, the amount of the first dispersed beads in the first stage is also preferably within the above range.
 第二の分散ビーズは、第一の分散ビーズより密度が小さいビーズである。「密度」は、分散ビーズの質量(単位:g)を体積(単位:cm)で除して求められる。測定は、アルキメデス法によって行われる。第二の分散ビーズの密度は、好ましくは3.7g/cm以下であり、より好ましくは3.5g/cm以下である。第二の分散ビーズの密度は、例えば2.0g/cm以上であってもよく、2.0g/cmを下回ってもよい。密度の点から好ましい第二の分散ビーズとしては、ダイヤモンドビーズ、炭化ケイ素ビーズ、窒化ケイ素ビーズ等を挙げることができ、密度および硬度の点で好ましい第二の分散ビーズとしては、ダイヤモンドビーズを挙げることができる。
 一方、第一の分散ビーズとしては、密度が3.7g/cm超の分散ビーズが好ましく、密度が3.8g/cm以上の分散ビーズがより好ましく、4.0g/cm以上の分散ビーズが更に好ましい。第一の分散ビーズの密度は、例えば7.0g/cm以下であってもよく、7.0g/cm超でもよい。第一の分散ビーズとしては、ジルコニアビーズ、アルミナビーズ等を用いることが好ましく、ジルコニアビーズを用いることがより好ましい。
The second dispersed beads are beads with a lower density than the first dispersed beads. "Density" is determined by dividing the mass (unit: g) of dispersed beads by the volume (unit: cm 3 ). Measurements are made by the Archimedes method. The density of the second dispersed beads is preferably 3.7 g/cm 3 or less, more preferably 3.5 g/cm 3 or less. The density of the second dispersed beads may be, for example, greater than or equal to 2.0 g/cm 3 or less than 2.0 g/cm 3 . Preferred second dispersed beads from the viewpoint of density include diamond beads, silicon carbide beads, silicon nitride beads, etc. Preferred second dispersed beads from the viewpoint of density and hardness include diamond beads. can be done.
On the other hand, as the first dispersion beads, dispersion beads with a density of more than 3.7 g/cm 3 are preferable, dispersion beads with a density of 3.8 g/cm 3 or more are more preferable, and dispersion beads with a density of 4.0 g/cm 3 or more are preferable. Beads are more preferred. The density of the first dispersed beads may be, for example, less than or equal to 7.0 g/cm 3 or greater than 7.0 g/cm 3 . As the first dispersed beads, zirconia beads, alumina beads, etc. are preferably used, and zirconia beads are more preferably used.
 分散時間は特に限定されるものではなく、用いる分散機の種類等に応じて設定すればよい。 The dispersion time is not particularly limited, and may be set according to the type of dispersion machine used.
(塗布工程)
 第二の磁性層は、例えば、第二の磁性層形成用組成物を、非磁性支持体表面上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。
 第一の磁性層は、例えば、第一の磁性層形成用組成物を、第二の磁性層形成用組成物と逐次または同時に重層塗布することにより形成することができる。
 バックコート層は、バックコート層形成用組成物を、非磁性支持体の第一の磁性層および第二の磁性層または更に非磁性層を有する(またはそれらの層が追って設けられる)表面とは反対側の表面に塗布することにより形成することができる。
 各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。
(Coating process)
The second magnetic layer is formed, for example, by directly coating the second magnetic layer-forming composition on the surface of the non-magnetic support, or by sequentially or simultaneously coating the second magnetic layer-forming composition with the non-magnetic layer-forming composition. can do.
The first magnetic layer can be formed, for example, by coating the first magnetic layer-forming composition and the second magnetic layer-forming composition sequentially or simultaneously.
The backcoat layer comprises a backcoat layer-forming composition applied to the surface of a non-magnetic support having a first magnetic layer and a second magnetic layer or a further non-magnetic layer (or those layers are subsequently provided). It can be formed by coating the opposite surface.
For details of coating for forming each layer, paragraph 0066 of JP-A-2010-231843 can be referred to.
(その他の工程)
 磁気記録媒体の製造のためのその他の各種工程については、公知技術を適用できる。各種工程については、例えば特開2010-231843号公報の段落0067~0070を参照できる。
 例えば、第一の磁性層形成用組成物の塗布層には、この塗布層が湿潤状態にあるうちに、配向ゾーンにおいて配向処理を行うことができる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
(Other processes)
Known techniques can be applied to other various steps for manufacturing the magnetic recording medium. For various steps, for example, paragraphs 0067 to 0070 of JP-A-2010-231843 can be referred to.
For example, the coating layer of the composition for forming the first magnetic layer can be subjected to orientation treatment in the orientation zone while the coating layer is in a wet state. Various known techniques including those described in paragraph 0052 of JP-A-2010-24113 can be applied to the alignment treatment. For example, the vertical alignment treatment can be performed by a known method such as a method using opposed magnets with different polarities. In the orientation zone, the drying speed of the coating layer can be controlled by the temperature and air volume of the drying air and/or the conveying speed in the orientation zone. Also, the coated layer may be pre-dried before being conveyed to the orientation zone.
 本発明の一態様にかかる磁気記録媒体は、テープ状の磁気記録媒体(磁気テープ)であることができ、ディスク状の磁気記録媒体(磁気ディスク)であることもできる。磁気テープは、例えば、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。例えば、各種工程を経ることによって得られた長尺状の磁気テープ原反を、公知の裁断機によって、磁気テープカートリッジに巻装すべき磁気テープの幅に裁断(スリット)することができる。上記の幅は規格にしたがい決定され、例えば、1/2インチである。1インチ=12.65mmである。 The magnetic recording medium according to one aspect of the present invention can be a tape-shaped magnetic recording medium (magnetic tape), or can be a disk-shaped magnetic recording medium (magnetic disk). A magnetic tape is housed in, for example, a magnetic tape cartridge, and the magnetic tape cartridge is loaded into a magnetic recording/reproducing apparatus. For example, a long magnetic tape material obtained through various processes can be cut (slit) into the width of the magnetic tape to be wound on the magnetic tape cartridge by a known cutting machine. The above widths are determined according to standards and are, for example, 1/2 inch. 1 inch = 12.65 mm.
(サーボパターン)
 磁気記録媒体には、磁気記録再生装置においてヘッドトラッキングを行うことを可能とするために、公知の方法によってサーボパターンを形成することもできる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。以下に、磁気テープを例として、サーボパターンの形成について説明する。
(servo pattern)
Servo patterns can also be formed on the magnetic recording medium by a known method in order to enable head tracking in a magnetic recording/reproducing apparatus. "Formation of servo patterns" can also be called "recording of servo signals." The formation of a servo pattern will be described below using a magnetic tape as an example.
 サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。 A servo pattern is usually formed along the longitudinal direction of the magnetic tape. Methods of control using servo signals (servo control) include timing-based servo (TBS), amplitude servo, frequency servo, and the like.
 ECMA(European Computer Manufacturers Association)―319(June 2001)に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。サーボシステムとは、サーボ信号を利用してヘッドトラッキングを行うシステムである。本発明および本明細書において、「タイミングベースサーボパターン」とは、タイミングベースサーボ方式のサーボシステムにおけるヘッドトラッキングを可能とするサーボパターンをいう。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。 As shown in ECMA (European Computer Manufacturers Association)-319 (June 2001), a magnetic tape conforming to the LTO (Linear Tape-Open) standard (generally called "LTO tape") adopts a timing-based servo system. ing. In this timing-based servo system, a servo pattern is composed of a plurality of non-parallel pairs of magnetic stripes (also called "servo stripes") arranged continuously in the longitudinal direction of the magnetic tape. A servo system is a system that performs head tracking using a servo signal. In the present invention and in this specification, the term "timing-based servo pattern" refers to a servo pattern that enables head tracking in a timing-based servo system servo system. The reason why the servo pattern is composed of a pair of non-parallel magnetic stripes as described above is to inform the servo signal reading element passing over the servo pattern of its passing position. Specifically, the pair of magnetic stripes are formed so that the interval between them changes continuously along the width direction of the magnetic tape. and the relative position of the servo signal reading element. This relative position information enables tracking of the data tracks. For this reason, a plurality of servo tracks are usually set on the servo pattern along the width direction of the magnetic tape.
 サーボバンドは、磁気テープの長手方向に連続するサーボパターンにより構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域が、データバンドである。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。 A servo band is composed of servo patterns that are continuous in the longitudinal direction of the magnetic tape. A plurality of servo bands are usually provided on the magnetic tape. For example, in LTO tape, the number is five. A data band is an area sandwiched between two adjacent servo bands. The data band is composed of a plurality of data tracks, each data track corresponding to each servo track.
 また、一形態では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。 In one form, as disclosed in JP-A-2004-318983, each servo band includes information indicating the number of the servo band ("servo band ID (identification)" or "UDIM (Unique Data Band Identification)"). Method (also called information) is embedded. This servo band ID is recorded by shifting a specific one of a plurality of pairs of servo stripes in the servo band so that the position thereof is relatively displaced in the longitudinal direction of the magnetic tape. Specifically, the method of shifting a specific one of a plurality of pairs of servo stripes is changed for each servo band. As a result, the recorded servo band ID is unique for each servo band, so that one servo band can be uniquely specified only by reading one servo band with a servo signal reading element.
 なお、サーボバンドを一意に特定する方法には、ECMA―319(June 2001)に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。 It should be noted that as a method for uniquely specifying a servo band, there is also a method using a staggered method as shown in ECMA-319 (June 2001). In this staggered method, groups of non-parallel pairs of magnetic stripes (servo stripes) arranged continuously in the longitudinal direction of the magnetic tape are recorded so as to be shifted in the longitudinal direction of the magnetic tape for each servo band. do. Since this combination of shifts between adjacent servo bands is unique for the entire magnetic tape, the servo band can be uniquely identified when reading the servo pattern with two servo signal reading elements. It is possible.
 また、各サーボバンドには、ECMA―319(June 2001)に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。 In each servo band, information indicating the position in the longitudinal direction of the magnetic tape (also called "LPOS (Longitudinal Position) information") is also usually embedded as indicated in ECMA-319 (June 2001). ing. Like the UDIM information, this LPOS information is also recorded by shifting the positions of a pair of servo stripes in the longitudinal direction of the magnetic tape. However, unlike the UDIM information, the same signal is recorded in each servo band in this LPOS information.
 上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
 また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
Other information different from the above UDIM and LPOS information can also be embedded in the servo band. In this case, the embedded information may be different for each servo band, such as UDIM information, or common to all servo bands, such as LPOS information.
Also, as a method of embedding information in the servo band, it is possible to adopt a method other than the above. For example, a predetermined code may be recorded by thinning out a predetermined pair from a group of paired servo stripes.
 サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、通常、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。 The servo pattern forming head is called a servo write head. A servo write head normally has a pair of gaps corresponding to the pair of magnetic stripes as many as the number of servo bands. Normally, a core and a coil are connected to each pair of gaps, and by supplying current pulses to the coils, a magnetic field generated in the core can generate a leakage magnetic field in the pair of gaps. When forming the servo pattern, the magnetic pattern corresponding to the pair of gaps is transferred onto the magnetic tape by inputting a current pulse while the magnetic tape is running over the servo write head, thereby forming the servo pattern. can be done. The width of each gap can be appropriately set according to the density of the servo pattern to be formed. The width of each gap can be set to, for example, 1 μm or less, 1 to 10 μm, or 10 μm or more.
 磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。 Before forming the servo pattern on the magnetic tape, the magnetic tape is usually demagnetized (erase). This erasing process can be performed by applying a uniform magnetic field to the magnetic tape using a DC magnet or an AC magnet. The erase process includes DC (Direct Current) erase and AC (Alternating Current) erase. AC erase is performed by gradually decreasing the strength of the magnetic field while reversing the direction of the magnetic field applied to the magnetic tape. DC erase, on the other hand, is performed by applying a unidirectional magnetic field to the magnetic tape. There are two methods of DC erase. The first method is a horizontal DC erase that applies a unidirectional magnetic field along the length of the magnetic tape. The second method is perpendicular DC erase, in which a unidirectional magnetic field is applied along the thickness of the magnetic tape. The erase process may be performed on the entire magnetic tape, or may be performed on each servo band of the magnetic tape.
 形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。 The direction of the magnetic field of the formed servo pattern is determined according to the erase direction. For example, when horizontal DC erasing is performed on a magnetic tape, the servo pattern is formed so that the direction of the magnetic field is opposite to the direction of erasing. As a result, the output of the servo signal obtained by reading the servo pattern can be increased. Incidentally, as disclosed in Japanese Patent Application Laid-Open No. 2012-53940, when a magnetic pattern is transferred to a perpendicular DC-erased magnetic tape using the gap, the formed servo pattern is read and obtained. The servo signal has a unipolar pulse shape. On the other hand, when a magnetic pattern is transferred to a magnetic tape that has been horizontally DC-erased using the gap, a servo signal obtained by reading the formed servo pattern has a bipolar pulse shape.
<垂直方向角型比>
 一形態では、上記磁気記録媒体の垂直方向角型比は、例えば0.60以上であることが好ましい。角型比の上限は、原理上、1.00以下である。上記磁気記録媒体の垂直方向角型比は、1.00以下であることができ、例えば、0.95以下、0.90以下、0.85以下または0.80以下であることができる。磁気記録媒体の垂直方向角型比の値が大きいことは、電磁変換特性の更なる向上の観点から好ましい。磁気記録媒体の垂直方向角型比は、垂直配向処理の実施等の公知の方法によって制御することができる。
<Vertical squareness ratio>
In one form, the vertical squareness ratio of the magnetic recording medium is preferably 0.60 or more, for example. The upper limit of the squareness ratio is, in principle, 1.00 or less. The perpendicular squareness ratio of the magnetic recording medium may be 1.00 or less, for example, 0.95 or less, 0.90 or less, 0.85 or less, or 0.80 or less. A magnetic recording medium having a large squareness ratio in the perpendicular direction is preferable from the viewpoint of further improving the electromagnetic conversion characteristics. The perpendicular squareness ratio of the magnetic recording medium can be controlled by a known method such as performing a perpendicular orientation treatment.
 本発明および本明細書において、「垂直方向角型比」とは、磁気記録媒体の垂直方向において測定される角型比である。角型比に関して記載する「垂直方向」とは、第一の磁性層表面に対して垂直な方向であり、厚み方向ということもできる。本発明および本明細書において、垂直方向角型比は、以下の方法によって求められる。
 測定対象の磁気記録媒体から振動試料型磁力計に導入可能なサイズのサンプル片を切り出す。このサンプル片について、振動試料型磁力計を用いて、最大印加磁界3979kA/m、測定温度296K、磁界掃引速度8.3kA/m/秒にて、サンプル片の垂直方向(第一の磁性層表面と直交する方向)に磁界を印加し、印加した磁界に対するサンプル片の磁化強度を測定する。磁化強度の測定値は、反磁界補正後の値として、かつ振動試料型磁力計のサンプルプローブの磁化をバックグラウンドノイズとして差し引いた値として得るものとする。最大印加磁界における磁化強度をMs、印加磁界ゼロにおける磁化強度をMrとしたとき、角型比SQ(Squareness Ratio)は、SQ=Mr/Msとして算出される値である。測定温度はサンプル片の温度をいい、サンプル片の周囲の雰囲気温度を測定温度にすることにより、温度平衡が成り立つことによってサンプル片の温度を測定温度にすることができる。
In the present invention and in this specification, the "perpendicular squareness ratio" is the squareness ratio measured in the perpendicular direction of the magnetic recording medium. The "perpendicular direction" described with respect to the squareness ratio is the direction perpendicular to the surface of the first magnetic layer, and can also be called the thickness direction. In the present invention and in this specification, the vertical squareness ratio is obtained by the following method.
A sample piece of a size that can be introduced into the vibrating sample magnetometer is cut out from the magnetic recording medium to be measured. Using a vibrating sample magnetometer, this sample piece was measured at a maximum applied magnetic field of 3979 kA/m, a measurement temperature of 296 K, and a magnetic field sweep rate of 8.3 kA/m/sec. A magnetic field is applied in the direction perpendicular to the direction of ), and the magnetization intensity of the sample piece is measured with respect to the applied magnetic field. The measured value of the magnetization intensity shall be obtained as a value after demagnetization correction and as a value obtained by subtracting the magnetization of the sample probe of the vibrating sample magnetometer as background noise. The squareness ratio SQ is a value calculated as SQ=Mr/Ms, where Ms is the magnetization intensity at the maximum applied magnetic field and Mr is the magnetization intensity at zero applied magnetic field. The measurement temperature refers to the temperature of the sample piece, and by setting the ambient temperature around the sample piece to the measurement temperature, the temperature equilibrium is established, whereby the temperature of the sample piece can be made the measurement temperature.
[磁気テープカートリッジ]
 本発明の一態様は、テープ状の上記磁気記録媒体(即ち磁気テープ)を含む磁気テープカートリッジに関する。
[Magnetic tape cartridge]
One aspect of the present invention relates to a magnetic tape cartridge including the tape-shaped magnetic recording medium (that is, magnetic tape).
 上記磁気テープカートリッジに含まれる磁気テープの詳細は、先に記載した通りである。 The details of the magnetic tape included in the magnetic tape cartridge are as described above.
 磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気テープ装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気テープ装置側のリールに巻取られる。磁気テープカートリッジから巻取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気テープ装置側のリール(巻取りリール)との間で、磁気テープの送り出しと巻取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻取りリールの両リールが、磁気テープカートリッジ内部に具備されている。上記磁気テープカートリッジは、単リール型および双リール型のいずれの磁気テープカートリッジであってもよい。上記磁気テープカートリッジは、本発明の一態様にかかる磁気記録媒体(磁気テープ)を含むものであればよく、その他については公知技術を適用することができる。 A magnetic tape cartridge generally contains a magnetic tape wound on a reel inside the cartridge body. The reel is rotatably provided inside the cartridge body. As the magnetic tape cartridge, a single reel type magnetic tape cartridge having one reel inside the cartridge body and a dual reel type magnetic tape cartridge having two reels inside the cartridge body are widely used. When a single-reel type magnetic tape cartridge is mounted on a magnetic tape device for recording and/or reproducing data on the magnetic tape, the magnetic tape is pulled out from the magnetic tape cartridge and wound on the reel of the magnetic tape device. be taken. A magnetic head is arranged in the magnetic tape transport path from the magnetic tape cartridge to the take-up reel. The magnetic tape is fed out and taken up between the reel (supply reel) of the magnetic tape cartridge and the reel (take-up reel) of the magnetic tape device. During this time, data is recorded and/or reproduced by contact and sliding between the magnetic head and the surface of the magnetic layer of the magnetic tape. On the other hand, a twin-reel type magnetic tape cartridge has both a supply reel and a take-up reel inside the magnetic tape cartridge. The magnetic tape cartridge may be either a single-reel type magnetic tape cartridge or a twin-reel type magnetic tape cartridge. The magnetic tape cartridge may include the magnetic recording medium (magnetic tape) according to one aspect of the present invention, and other known techniques can be applied.
[磁気記録再生装置]
 本発明の一態様は、上記磁気記録媒体を含む磁気記録再生装置に関する。上記磁気記録再生装置において、磁気記録媒体へのデータの記録および/または磁気記録媒体に記録されたデータの再生は、例えば、磁気記録媒体の磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。例えば、上記磁気記録再生装置は、本発明の一態様にかかる磁気テープカートリッジを着脱可能に含むことができる。
[Magnetic recording and reproducing device]
One aspect of the present invention relates to a magnetic recording/reproducing device including the magnetic recording medium. In the magnetic recording/reproducing apparatus, data is recorded on the magnetic recording medium and/or reproduced from the magnetic recording medium by, for example, contacting and sliding the magnetic layer surface of the magnetic recording medium and the magnetic head. It can be done by For example, the magnetic recording/reproducing device can detachably include a magnetic tape cartridge according to one aspect of the present invention.
<磁気ヘッド>
 本発明および本明細書において、「磁気記録再生装置」とは、磁気記録媒体へのデータの記録および磁気記録媒体に記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気記録再生装置に含まれる磁気ヘッドは、磁気記録媒体へのデータの記録を行うことができる記録ヘッドであることができ、磁気記録媒体に記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気記録再生装置は、一形態では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一形態では、上記磁気記録再生装置に含まれる磁気ヘッドは、記録素子と再生素子の両方を1つの磁気ヘッドに備えた構成を有することもできる。
 記録ヘッドは、垂直記録用磁気ヘッドまたは面内記録用磁気ヘッドであることができる。垂直記録用磁気ヘッドおよび面内記録用磁気ヘッドについては、それらヘッドに関する公知技術を適用できる。上記磁気記録媒体は、垂直記録方式で記録されたデータを再生する際、優れた電磁変換特性を発揮することができる。したがって、上記磁気記録再生装置に含まれる記録ヘッドは、垂直記録用磁気ヘッドであることが好ましい。
 再生ヘッドとしては、磁気記録媒体に記録された情報を感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、公知の各種MRヘッド(例えば、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等)を用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボパターン読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボパターン読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気記録再生装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、データバンドを挟んで隣り合う2本のサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)を、「データ用素子」と総称する。
<Magnetic head>
In the present invention and in this specification, the term "magnetic recording/reproducing apparatus" means a device capable of at least one of recording data on a magnetic recording medium and reproducing data recorded on the magnetic recording medium. do. Such devices are commonly called drives. The magnetic head included in the magnetic recording/reproducing device can be a recording head capable of recording data on a magnetic recording medium, and a reproducing head capable of reproducing data recorded on the magnetic recording medium. can also be In one form, the magnetic recording/reproducing apparatus can include both a recording head and a reproducing head as separate magnetic heads. In another form, the magnetic head included in the magnetic recording/reproducing device may have a configuration in which both the recording element and the reproducing element are provided in one magnetic head.
The recording head can be a magnetic head for perpendicular recording or a magnetic head for longitudinal recording. As for the magnetic head for perpendicular recording and the magnetic head for longitudinal recording, known techniques for these heads can be applied. The magnetic recording medium can exhibit excellent electromagnetic conversion characteristics when reproducing data recorded by the perpendicular recording method. Therefore, the recording head included in the magnetic recording/reproducing apparatus is preferably a magnetic head for perpendicular recording.
As a reproducing head, a magnetic head (MR head) including a magnetoresistive (MR) element as a reproducing element capable of reading information recorded on a magnetic recording medium with high sensitivity is preferable. As the MR head, various known MR heads (eg, GMR (Giant Magnetoresistive) head, TMR (Tunnel Magnetoresistive) head, etc.) can be used. A magnetic head for recording and/or reproducing data may also include a servo pattern reading element. Alternatively, the magnetic recording/reproducing apparatus may include a magnetic head (servo head) having a servo pattern reading element as a separate head from the magnetic head that records and/or reproduces data. For example, a magnetic head for recording data and/or reproducing recorded data (hereinafter also referred to as a "recording/reproducing head") may include two servo signal reading elements. can simultaneously read two adjacent servo bands across the data band. One or more data elements can be positioned between the two servo signal read elements. An element for recording data (recording element) and an element for reproducing data (reading element) are collectively referred to as a "data element".
 データの記録および/または記録されたデータの再生の際には、まず、サーボ信号を利用したヘッドトラッキングを行うことができる。即ち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御することができる。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
 また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
When recording data and/or reproducing recorded data, first, head tracking using a servo signal can be performed. That is, by causing the servo signal reading element to follow a predetermined servo track, the data element can be controlled to pass over the target data track. The movement of the data track is performed by changing the servo track read by the servo signal reading element in the tape width direction.
The record/playback head can also record and/or play back other data bands. In this case, the above-described UDIM information is used to move the servo signal reading element to a predetermined servo band, and tracking for that servo band can be started.
 図1に、磁気テープにおけるデータバンドおよびサーボバンドの配置例を示す。図1中、磁気テープMTの第一の磁性層には、複数のサーボバンド1が、ガイドバンド3に挟まれて配置されている。2本のサーボバンドに挟まれた複数の領域2が、データバンドである。サーボパターンは、磁化領域であって、サーボライトヘッドにより第一の磁性層の特定の領域を磁化することによって形成することができる。サーボライトヘッドにより磁化する領域(サーボパターンを形成する位置)は規格により定められている。例えば業界標準規格であるLTO Ultriumフォーマットテープには、磁気テープ製造時に、図2に示すようにテープ幅方向に対して傾斜した複数のサーボパターンが、サーボバンド上に形成される。詳しくは、図2中、サーボバンド1上のサーボフレームSFは、サーボサブフレーム1(SSF1)およびサーボサブフレーム2(SSF2)から構成される。サーボサブフレーム1は、Aバースト(図2中、符号A)およびBバースト(図2中、符号B)から構成される。AバーストはサーボパターンA1~A5から構成され、BバーストはサーボパターンB1~B5から構成される。一方、サーボサブフレーム2は、Cバースト(図2中、符号C)およびDバースト(図2中、符号D)から構成される。CバーストはサーボパターンC1~C4から構成され、DバーストはサーボパターンD1~D4から構成される。このような18本のサーボパターンが5本と4本のセットで、5、5、4、4、の配列で並べられたサブフレームに配置され、サーボフレームを識別するために用いられる。図2には、説明のために1つのサーボフレームを示した。ただし、実際には、タイミングベースサーボ方式のヘッドトラッキングが行われる磁気テープの磁性層には、各サーボバンドに、複数のサーボフレームが走行方向に配置されている。図2中、矢印は走行方向を示している。例えば、LTO Ultriumフォーマットテープは、通常、磁性層の各サーボバンドに、テープ長1mあたり5000以上のサーボフレームを有する。 Fig. 1 shows an example of the arrangement of data bands and servo bands on a magnetic tape. In FIG. 1, a plurality of servo bands 1 are sandwiched between guide bands 3 on the first magnetic layer of the magnetic tape MT. A plurality of areas 2 sandwiched between two servo bands are data bands. A servo pattern is a magnetized region that can be formed by magnetizing a specific region of the first magnetic layer with a servo write head. The area magnetized by the servo write head (the position where the servo pattern is formed) is defined by standards. For example, in the industry standard LTO Ultrium format tape, a plurality of servo patterns inclined with respect to the tape width direction as shown in FIG. 2 are formed on the servo band when the magnetic tape is manufactured. Specifically, in FIG. 2, the servo frame SF on servo band 1 is composed of servo subframe 1 (SSF1) and servo subframe 2 (SSF2). A servo subframe 1 is composed of an A burst (symbol A in FIG. 2) and a B burst (symbol B in FIG. 2). The A burst is composed of servo patterns A1 to A5, and the B burst is composed of servo patterns B1 to B5. On the other hand, servo subframe 2 is composed of a C burst (symbol C in FIG. 2) and a D burst (symbol D in FIG. 2). The C burst is composed of servo patterns C1 to C4, and the D burst is composed of servo patterns D1 to D4. Such 18 servo patterns are arranged in sets of 5 and 4 in subframes arranged in an array of 5, 5, 4, 4, and are used to identify servo frames. FIG. 2 shows one servo frame for explanation. In practice, however, a plurality of servo frames are arranged in the running direction in each servo band on the magnetic layer of the magnetic tape on which the head tracking of the timing-based servo system is performed. In FIG. 2, arrows indicate the direction of travel. For example, an LTO Ultrium format tape typically has 5000 or more servo frames per meter of tape length in each servo band of the magnetic layer.
 以下に、本発明を実施例に基づき説明する。ただし、本発明は実施例に示す実施形態に限定されるものではない。以下に記載の「部」、「%」の表示は、特に断らない限り、「質量部」、「質量%」を示す。また、以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。また、以下に記載の「eq」は、SI単位系に換算不可の単位である当量(equivalent)を示す。 The present invention will be described below based on examples. However, the present invention is not limited to the embodiments shown in Examples. "Parts" and "%" described below indicate "mass parts" and "mass%" unless otherwise specified. In addition, the processes and evaluations described below were performed in an environment with an ambient temperature of 23° C.±1° C. unless otherwise specified. Also, "eq" described below indicates an equivalent, which is a unit that cannot be converted into the SI unit system.
[第二の磁性層用の強磁性粉末の調製]
<強磁性粉末Aの調製>
 表1に示す割合(mol%基準)で表1に示す原料を秤量し、ミキサーにて混合し原料混合物を得た。
 得られた原料混合物を、白金ルツボで溶融温度1480℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約3g/秒で棒状に出湯させた。出湯液を水冷双ロールで圧延急冷して非晶質体を得た。
 得られた非晶質体280gを電気炉に仕込み、電気炉の炉内温度を表1に示す結晶化温度まで昇温し、同温度で5時間保持し強磁性粉末の粒子を析出(結晶化)させた。
 次いで析出した粒子を含む結晶化物を乳鉢で粗粉砕し、粗粉砕を入れたガラス瓶にビーズ径1mmのジルコニアビーズ1000gと濃度1%の酢酸を800ml加えてペイントシェーカーにて3時間分散処理を行った後、分散液をビーズと分離させてステンレスビーカーに入れた。分散液を液温80℃で3時間静置させてガラス成分(CaB)の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、内部雰囲気温度110℃の乾燥機内で6時間乾燥させて強磁性粉末を得た。
[Preparation of Ferromagnetic Powder for Second Magnetic Layer]
<Preparation of ferromagnetic powder A>
The raw materials shown in Table 1 were weighed in proportions (mol% basis) shown in Table 1 and mixed in a mixer to obtain a raw material mixture.
The raw material mixture thus obtained was melted in a platinum crucible at a melting temperature of 1480° C., and the melt was stirred while heating the outlet provided at the bottom of the platinum crucible to dispense the melt in the form of a rod at a rate of about 3 g/sec. . The tapped liquid was rolled and quenched with water-cooled twin rolls to obtain an amorphous body.
280 g of the obtained amorphous material was placed in an electric furnace, the temperature inside the electric furnace was raised to the crystallization temperature shown in Table 1, and the same temperature was maintained for 5 hours to deposit particles of the ferromagnetic powder (crystallization ).
Next, the crystallized product containing the precipitated particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a bead diameter of 1 mm and 800 ml of 1% concentration acetic acid were added to the glass bottle containing the coarsely pulverized particles, followed by dispersion treatment for 3 hours using a paint shaker. After that, the dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 80°C for 3 hours to dissolve the glass component (CaB 2 O 4 ), it was precipitated in a centrifugal separator and washed by repeating decantation, and the internal atmosphere temperature was 110°C. was dried in a dryer for 6 hours to obtain a ferromagnetic powder.
<強磁性粉末B~E、X、Yの調製>
 原料混合物の組成および結晶化温度を表1に記載のように変更した点以外、強磁性粉末Aの調製について記載した方法によって、各強磁性粉末を得た。
<Preparation of ferromagnetic powders B to E, X and Y>
Each ferromagnetic powder was obtained by the method described for the preparation of ferromagnetic powder A, except that the composition of the raw material mixture and the crystallization temperature were changed as shown in Table 1.
 上記で得られた強磁性粉末A~E、XおよびYがそれぞれスピネルフェライトであることを、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた各強磁性粉末はスピネルフェライトの結晶構造を示し、X線回折分析により検出された結晶相は、スピネルフェライトの単一相であった。
 PANalytical X’Pert Pro回折計、PIXcel検出器
 入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
 分散スリットの固定角:1/4度
 マスク:10mm
 散乱防止スリット:1/4度
 測定モード:連続
 1段階あたりの測定時間:3秒
 測定速度:毎秒0.017度
 測定ステップ:0.05度
To confirm that the ferromagnetic powders A to E, X and Y obtained above are each spinel ferrite, scan CuKα rays under the conditions of a voltage of 45 kV and an intensity of 40 mA, and measure the X-ray diffraction pattern under the following conditions ( X-ray diffraction analysis). Each of the ferromagnetic powders obtained above exhibited the crystal structure of spinel ferrite, and the crystal phase detected by X-ray diffraction analysis was a single phase of spinel ferrite.
PANalytical X'Pert Pro diffractometer, PIXcel detector Soller slits for incident and diffracted beams: 0.017 radians Fixed divergence slit angle: ¼ degree Mask: 10 mm
Anti-scattering slit: 1/4 degree Measurement mode: continuous Measurement time per step: 3 seconds Measurement speed: 0.017 degree per second Measurement step: 0.05 degree
<強磁性粉末の平均粒子サイズの測定>
 上記で得られた強磁性粉末A~E、XおよびYについて、それぞれ先に記載した方法によって平均粒子サイズを求めた。透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型を使用し、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を使用した。
<Measurement of average particle size of ferromagnetic powder>
For the ferromagnetic powders A to E, X and Y obtained above, the average particle size was determined by the method described above. A transmission electron microscope H-9000 made by Hitachi was used as the transmission electron microscope, and image analysis software KS-400 made by Carl Zeiss was used as the image analysis software.
<強磁性粉末の保磁力Hcの測定>
 上記で得られた強磁性粉末A~E、XおよびYについて、それぞれ先に記載した方法によって保磁力Hcを求めた。振動試料型磁力計としては、東英工業社製VSM(Vibrating Sample Magnetometer)を使用した。
<Measurement of coercive force Hc of ferromagnetic powder>
For the ferromagnetic powders A to E, X and Y obtained above, the coercive force Hc was determined by the method described above. As the vibrating sample magnetometer, a VSM (Vibrating Sample Magnetometer) manufactured by Toei Kogyo Co., Ltd. was used.
 以上の結果を表1に示す。 Table 1 shows the above results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[研磨剤液の調製]
<研磨剤液Aの調製>
 表2に示す研磨剤(アルミナ粉末)100.0部に対し、表2に示す量の2,3-ジヒドロキシナフタレン(東京化成社製)、極性基としてSONa基を有するポリエステルポリウレタン樹脂(東洋紡社製UR-4800(極性基量:80meq/kg))の32%溶液(溶媒はメチルエチルケトンとトルエンの混合溶媒)31.3部、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合液570.0部を混合し、ジルコニアビーズ(ビーズ径:0.1mm)存在下で、ペイントシェーカーにより、表2に示す時間(ビーズ分散時間)、分散させた。
 分散後、メッシュにより分散液とビーズとを分離して得られた分散液の遠心分離処理を実施した。遠心分離処理は、遠心分離器として日立工機社製CS150GXL(使用ローターは同社製S100AT6)を使用し、表2に示す回転数(rpm;rotation per minute)で表2に示す時間(遠心分離時間)、実施した。この遠心分離処理により、粒子サイズが比較的大きい粒子は沈殿し、粒子サイズが比較的小さい粒子は上澄み液に分散する。
 その後、デカンテーションにより上澄み液を回収した。この回収された液を、「研磨剤液A」と呼ぶ。
[Preparation of abrasive liquid]
<Preparation of Abrasive Liquid A>
For 100.0 parts of the abrasive (alumina powder) shown in Table 2, 2,3-dihydroxynaphthalene (manufactured by Tokyo Kasei Co., Ltd.) in the amount shown in Table 2 , a polyester polyurethane resin (Toyobo) having an SO Na group as a polar group 31.3 parts of a 32% solution (solvent is a mixed solvent of methyl ethyl ketone and toluene) of UR-4800 (amount of polar group: 80 meq/kg) manufactured by Co., Ltd.; 0.0 part was mixed and dispersed with a paint shaker in the presence of zirconia beads (bead diameter: 0.1 mm) for the time shown in Table 2 (bead dispersion time).
After dispersion, the dispersion obtained by separating the dispersion and the beads with a mesh was subjected to centrifugal separation. For the centrifugal separation, CS150GXL manufactured by Hitachi Koki Co., Ltd. (rotor used is S100AT6 manufactured by Hitachi Koki Co., Ltd.) is used as a centrifuge, and the rotation speed (rpm; rotation per minute) shown in Table 2 is used for the time shown in Table 2 (centrifugation time ),Carried out. By this centrifugation treatment, particles having a relatively large particle size are precipitated, and particles having a relatively small particle size are dispersed in the supernatant liquid.
After that, the supernatant was collected by decantation. This collected liquid is called "abrasive liquid A".
<研磨剤液B、Cの調製>
 各種項目を表2に示すように変更した点以外、研磨剤液Aの調製について記載した方法によって、研磨剤液Bおよび研磨剤液Cをそれぞれ調製した。
<Preparation of Abrasive Liquids B and C>
Abrasive liquid B and abrasive liquid C were each prepared by the method described for the preparation of abrasive liquid A, except that various items were changed as shown in Table 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[フィラー液の調製]
<フィラー液Dの調製>
 表3に示すフィラー(カーボンブラック)100.0部に対し、表3に示す量のポリエチレンイミン、表3に示す量のステアリン酸、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合液570.0部を混合し、ジルコニアビーズ(ビーズ径:0.1mm)存在下で、ペイントシェーカーにより、表3に示す時間(ビーズ分散時間)、分散させた。
 分散後、メッシュにより分散液とビーズとを分離して得られた分散液の遠心分離処理を実施した。遠心分離処理は、遠心分離器として日立工機社製CS150GXL(使用ローターは同社製S100AT6)を使用し、表3に示す回転数(rpm;rotation per minute)で表3に示す時間(遠心分離時間)、実施した。この遠心分離処理により、粒子サイズが比較的大きい粒子は沈殿し、粒子サイズが比較的小さい粒子は上澄み液に分散する。
 その後、デカンテーションにより上澄み液を回収した。この回収された液を、「フィラー液D」と呼ぶ。
[Preparation of filler liquid]
<Preparation of filler liquid D>
Per 100.0 parts of the filler (carbon black) shown in Table 3, polyethyleneimine in the amount shown in Table 3, stearic acid in the amount shown in Table 3, and a mixed solution of methyl ethyl ketone and cyclohexanone 1:1 (mass ratio) as a solvent 570 0.0 part was mixed and dispersed with a paint shaker in the presence of zirconia beads (bead diameter: 0.1 mm) for the time shown in Table 3 (bead dispersion time).
After dispersion, the dispersion obtained by separating the dispersion and the beads with a mesh was subjected to centrifugal separation. For the centrifugation treatment, CS150GXL manufactured by Hitachi Koki Co., Ltd. (rotor used is S100AT6 manufactured by Hitachi Koki Co., Ltd.) is used as a centrifuge, and the rotation speed (rpm; rotation per minute) shown in Table 3 is used for the time shown in Table 3 (centrifugation time ),Carried out. By this centrifugation treatment, particles having a relatively large particle size are precipitated, and particles having a relatively small particle size are dispersed in the supernatant liquid.
After that, the supernatant was collected by decantation. This collected liquid is called "filler liquid D".
 上記ポリエチレンイミンは、日本触媒社製の市販品(数平均分子量600)である。 The above polyethyleneimine is a commercial product (number average molecular weight 600) manufactured by Nippon Shokubai Co., Ltd.
<フィラー液E~Gの調製>
 各種項目を表3に示すように変更した点以外、フィラー液Dの調製について記載した方法によって、フィラー液E~Gをそれぞれ調製した。
<Preparation of filler liquids E to G>
Filler fluids EG were each prepared by the method described for the preparation of filler fluid D, except that various items were changed as shown in Table 3.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[実施例1]
<第一の磁性層形成用組成物の調製>
(磁性液)
強磁性粉末:100.0部
 平均粒子サイズ(平均板径)21nmの六方晶バリウムフェライト粉末(表4中、「BaFe」)
オレイン酸:2.0部
塩化ビニル共重合体(日本ゼオン製MR-104):10.0部
SONa基含有ポリウレタン樹脂:4.0部
  (重量平均分子量70000、SONa基:0.07meq/g)
アミン系ポリマー(ビックケミー社製DISPERBYK-102):6.0部
メチルエチルケトン:150.0部
シクロヘキサノン:150.0部
(研磨剤液)
表4に示す研磨剤液を、研磨剤液中の研磨剤量が表4に示す量となるように使用
(フィラー液)
表4に示すフィラー液を、フィラー液中のフィラー量が表4に示す量となるように使用
(その他の成分)
ステアリン酸:3.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:6.0部
メチルエチルケトン:110.0部
シクロヘキサノン:110.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)L):3.0部
[Example 1]
<Preparation of composition for forming first magnetic layer>
(Magnetic liquid)
Ferromagnetic powder: 100.0 parts Hexagonal barium ferrite powder with an average particle size (average plate diameter) of 21 nm (“BaFe” in Table 4)
Oleic acid: 2.0 parts Vinyl chloride copolymer (MR-104 manufactured by Zeon Corporation): 10.0 parts SO 3 Na group-containing polyurethane resin: 4.0 parts (weight average molecular weight: 70000, SO 3 Na group: 0.0 parts) 07 meq/g)
Amine polymer (DISPERBYK-102 manufactured by BYK-Chemie): 6.0 parts Methyl ethyl ketone: 150.0 parts Cyclohexanone: 150.0 parts (abrasive liquid)
The abrasive liquid shown in Table 4 was used so that the amount of abrasive in the abrasive liquid was the amount shown in Table 4 (filler liquid)
Use the filler liquid shown in Table 4 so that the amount of filler in the filler liquid is the amount shown in Table 4 (other ingredients)
Stearic acid: 3.0 parts Stearic acid amide: 0.3 parts Butyl stearate: 6.0 parts Methyl ethyl ketone: 110.0 parts Cyclohexanone: 110.0 parts Polyisocyanate (Coronate (registered trademark) L manufactured by Tosoh Corporation): 3 .0 copies
(調製方法)
 上記磁性液の各種成分を、バッチ式縦型サンドミルによりビーズ径0.5mmのジルコニアビーズ(第一の分散ビーズ、密度6.0g/cm)を使用して24時間分散し(第一の段階)、その後、0.5μmの孔径を有するフィルタを用いてろ過することにより分散液Aを調製した。ジルコニアビーズは、強磁性粉末の質量に対して、質量基準で10倍量用いた。
 その後、分散液Aをバッチ式縦型サンドミルによりビーズ径500nmのダイヤモンドビーズ(第二の分散ビーズ、密度3.5g/cm)を使用して1時間分散し(第二の段階)、遠心分離器を用いてダイヤモンドビーズを分離した分散液(分散液B)を調製した。ダイヤモンドビーズは、強磁性粉末の質量に対して、質量基準で10倍量用いた。
 上記で得た分散液B、研磨剤液、フィラー液、および上記のその他の成分をディゾルバー撹拌機に導入し、周速10m/秒で360分間撹拌した。その後、フロー式超音波分散機により流量7.5kg/分で60分間超音波分散処理を行った後に、孔径0.3μmのフィルタで3回ろ過して第一の磁性層形成用組成物を調製した。
(Preparation method)
Various components of the above magnetic liquid were dispersed for 24 hours using zirconia beads (first dispersion beads, density 6.0 g/cm 3 ) with a bead diameter of 0.5 mm in a batch-type vertical sand mill (first stage ), followed by filtration using a filter with a pore size of 0.5 μm to prepare Dispersion A. The zirconia beads were used in an amount 10 times the mass of the ferromagnetic powder.
After that, the dispersion liquid A was dispersed in a batch-type vertical sand mill using diamond beads with a bead diameter of 500 nm (second dispersion beads, density 3.5 g/cm 3 ) for 1 hour (second step), followed by centrifugation. A dispersion liquid (dispersion liquid B) was prepared by separating the diamond beads using a vessel. The amount of diamond beads used was 10 times the mass of the ferromagnetic powder.
Dispersion B obtained above, the abrasive liquid, the filler liquid, and the above-mentioned other components were introduced into a dissolver stirrer and stirred at a peripheral speed of 10 m/sec for 360 minutes. Then, after performing ultrasonic dispersion treatment for 60 minutes at a flow rate of 7.5 kg/min using a flow-type ultrasonic disperser, the mixture was filtered three times through a filter with a pore size of 0.3 μm to prepare a first magnetic layer-forming composition. did.
<第二の磁性層形成用組成物の調製>
 下記の第二の磁性層形成用組成物の各種成分を、バッチ式縦型サンドミルによりビーズ径0.1mmのジルコニアビーズを使用して24時間分散し、その後、0.5μmの孔径を有するフィルタを用いてろ過することにより、第二の磁性層形成用組成物を調製した。
<Preparation of composition for forming second magnetic layer>
Various components of the composition for forming the second magnetic layer described below were dispersed for 24 hours using zirconia beads with a bead diameter of 0.1 mm in a batch-type vertical sand mill. A second magnetic layer-forming composition was prepared by filtering using
強磁性粉末(表4参照):100.0部
SONa基含有ポリウレタン樹脂:18.0部
  (重量平均分子量70000、SONa基含有量0.2meq/g)
ステアリン酸:1.0部
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
Ferromagnetic powder (see Table 4): 100.0 parts SO 3 Na group-containing polyurethane resin: 18.0 parts (weight average molecular weight 70000, SO 3 Na group content 0.2 meq/g)
Stearic acid: 1.0 parts Cyclohexanone: 300.0 parts Methyl ethyl ketone: 300.0 parts
<非磁性層形成用組成物の調製>
 下記の非磁性層形成用組成物の各種成分を、バッチ式縦型サンドミルによりビーズ径0.1mmのジルコニアビーズを使用して24時間分散し、その後、0.5μmの孔径を有するフィルタを用いてろ過することにより、非磁性層形成用組成物を調製した。
<Preparation of composition for forming non-magnetic layer>
Various components of the following composition for forming a non-magnetic layer were dispersed for 24 hours in a batch-type vertical sand mill using zirconia beads with a bead diameter of 0.1 mm, and then filtered using a filter with a pore diameter of 0.5 μm. A composition for forming a non-magnetic layer was prepared by filtration.
非磁性無機粉末 α酸化鉄:100.0部
  (平均粒子サイズ10nm、BET比表面積75m/g)
カーボンブラック:25.0部
  (平均粒子サイズ20nm)
SONa基含有ポリウレタン樹脂:18.0部
  (重量平均分子量70000、SONa基含有量0.2meq/g)
ステアリン酸:1.0部
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
Non-magnetic inorganic powder α-iron oxide: 100.0 parts (average particle size 10 nm, BET specific surface area 75 m 2 /g)
Carbon black: 25.0 parts (average particle size 20 nm)
SO 3 Na group-containing polyurethane resin: 18.0 parts (weight average molecular weight 70000, SO 3 Na group content 0.2 meq/g)
Stearic acid: 1.0 parts Cyclohexanone: 300.0 parts Methyl ethyl ketone: 300.0 parts
<バックコート層形成用組成物の調製>
 下記のバックコート層形成用組成物の各種成分のうち潤滑剤(ステアリン酸およびステアリン酸ブチル)、ポリイソシアネートならびにシクロヘキサノン200.0部を除いた成分をオープンニーダにより混練および希釈した後、横型ビーズミル分散機によりビーズ径1mmのジルコニアビーズを用い、ビーズ充填率80体積%、ローター先端周速10m/秒で1パスあたりの滞留時間を2分間とし、12パスの分散処理に供した。その後、上記の残りの成分を添加してディゾルバー撹拌機で撹拌し、得られた分散液を1μmの孔径を有するフィルタを用いてろ過することにより、バックコート層形成用組成物を調製した。
<Preparation of Composition for Forming Backcoat Layer>
Of the various components of the composition for forming a backcoat layer described below, components other than lubricants (stearic acid and butyl stearate), polyisocyanate and 200.0 parts of cyclohexanone were kneaded and diluted in an open kneader, and then dispersed in a horizontal bead mill. Using zirconia beads with a bead diameter of 1 mm, 12 passes of dispersion treatment were performed with a bead filling rate of 80% by volume, a rotor tip peripheral speed of 10 m/sec, and a residence time of 2 minutes per pass. Thereafter, the remaining components were added and stirred with a dissolver stirrer, and the resulting dispersion was filtered through a filter having a pore size of 1 μm to prepare a composition for forming a backcoat layer.
非磁性無機粉末 α酸化鉄:80.0部
 (平均粒子サイズ0.15μm、BET比表面積52m/g)
カーボンブラック:20.0部
 (平均粒子サイズ20nm)
塩化ビニル共重合体:13.0部
スルホン酸塩基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:155.0部
メチルエチルケトン:155.0部
ステアリン酸:3.0部
ステアリン酸ブチル:3.0部
ポリイソシアネート:5.0部
シクロヘキサノン:200.0部
Non-magnetic inorganic powder α-iron oxide: 80.0 parts (average particle size 0.15 μm, BET specific surface area 52 m 2 /g)
Carbon black: 20.0 parts (average particle size 20 nm)
Vinyl chloride copolymer: 13.0 parts Sulfonic acid group-containing polyurethane resin: 6.0 parts Phenylphosphonic acid: 3.0 parts Cyclohexanone: 155.0 parts Methyl ethyl ketone: 155.0 parts Stearic acid: 3.0 parts Stearic acid Butyl: 3.0 parts Polyisocyanate: 5.0 parts Cyclohexanone: 200.0 parts
<磁気テープおよび磁気テープカートリッジの作製方法>
 厚み4.1μmのポリエチレンナフタレート製支持体の表面上に、乾燥後の厚みが0.7μmとなるように上記で調製した非磁性層形成用組成物を塗布および乾燥させて非磁性層を形成した。
 次いで、非磁性層上に乾燥後の厚みが0.1μmとなるように上記で調製した第二の磁性層形成用組成物を塗布および乾燥させて第二の磁性層を形成した。
 次いで、第二の磁性層上に乾燥後の厚みが0.1μmとなるように上記で調製した第一の磁性層形成用組成物を塗布して塗布層を形成した。
 その後、第一の磁性層形成用組成物の塗布層が湿潤状態にあるうちに、磁界強度0.3Tの磁界を塗布層の表面に対し垂直方向に印加して垂直配向処理を行った後、乾燥させ、第一の磁性層を形成した。
 その後、支持体の非磁性層、第二の磁性層および第一の磁性層を形成した表面とは反対側の表面に、乾燥後の厚みが0.3μmとなるように上記で調製したバックコート層形成用組成物を塗布および乾燥させてバックコート層を形成した。
 その後、金属ロールのみから構成されるカレンダロールを用いて、速度100m/分、線圧300kg/cm、および90℃のカレンダ温度(カレンダロールの表面温度)にて、表面平滑化処理(カレンダ処理)を行った。
 その後、雰囲気温度70℃の環境で36時間加熱処理を行った後、長尺状の磁気テープ原反を1/2インチ幅にスリットして、磁気テープを得た。得られた磁気テープの第一の磁性層に市販のサーボライターによってサーボ信号を記録することにより、LTO(Linear Tape-Open)Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターン(タイミングベースサーボパターン)を有する磁気テープを得た。こうして形成されたサーボパターンは、JIS(Japanese Industrial Standards) X6175:2006およびStandard ECMA-319(June 2001)の記載にしたがうサーボパターンである。得られた磁気テープ(テープ長:960m)を単リール型の磁気テープカートリッジに収容した。
 以上の工程を繰り返し、2つの磁気テープカートリッジを作製し、1つの磁気テープカートリッジは下記の個数分布Aおよび個数分布Bの測定のために使用し、もう1つの磁気テープカートリッジは下記の電磁変換特性の評価のために使用した。
<Magnetic Tape and Magnetic Tape Cartridge Manufacturing Method>
On the surface of a 4.1 μm-thick polyethylene naphthalate support, the composition for forming a non-magnetic layer prepared above was applied so as to give a thickness of 0.7 μm after drying, and dried to form a non-magnetic layer. did.
Next, the composition for forming the second magnetic layer prepared above was coated on the non-magnetic layer so that the thickness after drying was 0.1 μm, and dried to form a second magnetic layer.
Next, the composition for forming the first magnetic layer prepared above was coated on the second magnetic layer so that the thickness after drying was 0.1 μm to form a coating layer.
Thereafter, while the coated layer of the first magnetic layer-forming composition is in a wet state, a magnetic field having a magnetic field strength of 0.3 T is applied in a direction perpendicular to the surface of the coated layer to perform a vertical alignment treatment. It was dried to form the first magnetic layer.
After that, the above-prepared back coat was applied to the surface of the support opposite to the surface on which the non-magnetic layer, the second magnetic layer and the first magnetic layer were formed so that the thickness after drying was 0.3 μm. The layer-forming composition was applied and dried to form a backcoat layer.
After that, using a calender roll composed only of metal rolls, the surface is smoothed (calendered) at a speed of 100 m / min, a linear pressure of 300 kg / cm, and a calender temperature of 90 ° C. (calender roll surface temperature). did
Then, after performing heat treatment for 36 hours at an ambient temperature of 70° C., the long magnetic tape original was slit into 1/2 inch width to obtain a magnetic tape. By recording servo signals on the first magnetic layer of the obtained magnetic tape using a commercially available servo writer, the magnetic tape has a data band, a servo band, and a guide band arranged according to the LTO (Linear Tape-Open) Ultrium format. , and a magnetic tape having a servo pattern (timing-based servo pattern) arranged and shaped according to the LTO Ultrium format on the servo band. The servo pattern thus formed is a servo pattern according to the descriptions of JIS (Japanese Industrial Standards) X6175:2006 and Standard ECMA-319 (June 2001). The obtained magnetic tape (tape length: 960 m) was accommodated in a single reel type magnetic tape cartridge.
By repeating the above steps, two magnetic tape cartridges were produced. One magnetic tape cartridge was used for measuring the following number distribution A and number distribution B, and the other magnetic tape cartridge was used for the following electromagnetic conversion characteristics. used for the evaluation of
 磁気テープの第一の磁性層にポリエチレンイミンとステアリン酸により形成された、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を含む化合物が含まれることは、以下の方法により確認できる。
 磁気テープからサンプルを切り出し、磁性層表面(測定領域:300μm×700μm)においてESCA装置を用いてX線光電子分光分析を行う。詳しくは、下記測定条件でESCA装置によりワイドスキャン測定を行う。測定結果では、エステルアニオンの結合エネルギーの位置およびアンモニウムカチオンの結合エネルギーの位置にピークが確認される。
   装置:島津製作所製AXIS-ULTRA
   励起X線源:単色化Al-Kα線
   スキャン範囲:0~1200eV
   パスエネルギー:160eV
   エネルギー分解能:1eV/step
   取り込み時間:100ms/step
   積算回数:5
 また、磁気テープから長さ3cmのサンプル片を切り出し、第一の磁性層表面のATR-FT-IR(Attenuated total reflection-fourier transform-infrared spectrometer)測定(反射法)を行い、測定結果において、COOの吸収に対応する波数(1540cm-1または1430cm-1)、およびアンモニウムカチオンの吸収に対応する波数(2400cm-1)に吸収が確認される。
It can be confirmed by the following method that the first magnetic layer of the magnetic tape contains the compound containing the ammonium salt structure of the alkyl ester anion represented by the formula 1 formed by polyethyleneimine and stearic acid.
A sample is cut out from the magnetic tape, and X-ray photoelectron spectroscopic analysis is performed on the surface of the magnetic layer (measurement area: 300 μm×700 μm) using an ESCA device. Specifically, wide scan measurement is performed with an ESCA device under the following measurement conditions. In the measurement results, peaks are confirmed at the positions of the binding energy of the ester anion and the binding energy of the ammonium cation.
Apparatus: Shimadzu AXIS-ULTRA
Excitation X-ray source: Monochromatic Al-Kα ray Scan range: 0 to 1200 eV
Pass energy: 160 eV
Energy resolution: 1 eV/step
Acquisition time: 100ms/step
Cumulative count: 5
In addition, a sample piece having a length of 3 cm was cut from the magnetic tape, and the surface of the first magnetic layer was subjected to ATR-FT-IR (attenuated total reflection-fourier transform-infrared spectrometer) measurement (reflection method). Absorption is confirmed at the wavenumber (1540 cm −1 or 1430 cm −1 ) corresponding to the absorption of and the wavenumber (2400 cm −1 ) corresponding to the absorption of ammonium cation.
[実施例2~28、比較例1~25]
 表4に示す項目を表4に記載のように変更した点以外、実施例1について記載した方法で磁気テープカートリッジを作製した。
 表4中、「第二の磁性層なし」と記載されている比較例については、第二の磁性層を形成せず、非磁性層上に第一の磁性層を形成した。
[Examples 2 to 28, Comparative Examples 1 to 25]
A magnetic tape cartridge was produced by the method described for Example 1, except that the items shown in Table 4 were changed as shown in Table 4.
In Table 4, for the comparative examples described as "no second magnetic layer", the second magnetic layer was not formed, and the first magnetic layer was formed on the non-magnetic layer.
 表4中、「SrFe1」は、以下のように作製された六方晶ストロンチウムフェライト粉末を示す。
 SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
 得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
 作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
 次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
 上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
 上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
 別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
 上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
In Table 4, "SrFe1" indicates a hexagonal strontium ferrite powder produced as follows.
1707 g of SrCO3 , 687 g of H3BO3 , 1120 g of Fe2O3 , 45 g of Al(OH) 3 , 24 g of BaCO3, 13 g of CaCO3 , and 235 g of Nd2O3 were weighed and mixed in a mixer. A raw material mixture was obtained by mixing.
The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1390° C., and while the melt was being stirred, a tap hole provided at the bottom of the platinum crucible was heated, and the melt was tapped in a rod shape at a rate of about 6 g/sec. . The tapped liquid was rolled and quenched with a water-cooled twin roller to prepare an amorphous body.
280 g of the produced amorphous material was placed in an electric furnace, heated to 635° C. (crystallization temperature) at a heating rate of 3.5° C./min, and held at the same temperature for 5 hours to produce hexagonal strontium ferrite particles. Precipitated (crystallized).
Next, the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a particle size of 1 mm and 800 mL of 1% concentration of acetic acid aqueous solution were added to a glass bottle and dispersed for 3 hours using a paint shaker. did After that, the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifugal separator, washed by repeating decantation, and placed in a heating furnace at a temperature of 110°C for 6 hours. After drying for a few hours, hexagonal strontium ferrite powder was obtained.
The average particle size of the hexagonal strontium ferrite powder obtained above is 18 nm, the activation volume is 902 nm 3 , the anisotropy constant Ku is 2.2×10 5 J/m 3 , and the mass magnetization σs is 49 A·m 2 /. kg.
12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was partially dissolved under the dissolution conditions exemplified above. The surface layer content was determined.
Separately, 12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was completely dissolved under the dissolution conditions exemplified above. Atomic bulk content was determined.
The content of neodymium atoms (bulk content) with respect to 100 atomic % of iron atoms in the hexagonal strontium ferrite powder obtained above was 2.9 atomic %. The content of neodymium atoms in the surface layer was 8.0 atomic %. The ratio of the surface layer portion content rate to the bulk content rate, "surface layer portion content rate/bulk content rate", was 2.8, confirming that neodymium atoms were unevenly distributed in the surface layer of the particles.
 上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
 PANalytical X’Pert Pro回折計、PIXcel検出器
 入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
 分散スリットの固定角:1/4度
 マスク:10mm
 散乱防止スリット:1/4度
 測定モード:連続
 1段階あたりの測定時間:3秒
 測定速度:毎秒0.017度
 測定ステップ:0.05度
The fact that the powder obtained above exhibits the crystal structure of hexagonal ferrite can be confirmed by scanning CuKα rays under the conditions of a voltage of 45 kV and an intensity of 40 mA and measuring the X-ray diffraction pattern under the following conditions (X-ray diffraction analysis). confirmed. The powder obtained above exhibited a crystal structure of magnetoplumbite type (M type) hexagonal ferrite. The crystal phase detected by X-ray diffraction analysis was a magnetoplumbite single phase.
PANalytical X'Pert Pro diffractometer, PIXcel detector Soller slits for incident and diffracted beams: 0.017 radians Fixed divergence slit angle: ¼ degree Mask: 10 mm
Anti-scattering slit: 1/4 degree Measurement mode: Continuous Measurement time per step: 3 seconds Measurement speed: 0.017 degree per second Measurement step: 0.05 degree
 表4中、「SrFe2」は、以下のように作製された六方晶ストロンチウムフェライト粉末を示す。
 SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
 得られた原料混合物を、白金ルツボで溶融温度1380℃で溶解し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで圧延急冷して非晶質体を作製した。
 得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
 次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
 得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
In Table 4, "SrFe2" indicates hexagonal strontium ferrite powder produced as follows.
1725 g of SrCO3, 666 g of H3BO3 , 1332 g of Fe2O3 , 52 g of Al(OH) 3 , 34 g of CaCO3 and 141 g of BaCO3 were weighed and mixed in a mixer to obtain a raw material mixture.
The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1380° C., and the melt was stirred while heating the outlet provided at the bottom of the platinum crucible to dispense the melt in a rod shape at a rate of about 6 g/sec. . The tapped liquid was rolled and quenched with water-cooled twin rolls to prepare an amorphous body.
280 g of the obtained amorphous material was placed in an electric furnace, heated to 645° C. (crystallization temperature), and held at the same temperature for 5 hours to precipitate (crystallize) hexagonal strontium ferrite particles.
Next, the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads with a particle size of 1 mm and 800 mL of 1% concentration of acetic acid aqueous solution were added to a glass bottle, followed by dispersion treatment with a paint shaker for 3 hours. did After that, the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifugal separator, washed by repeating decantation, and placed in a heating furnace at a temperature of 110°C for 6 hours. After drying for a few hours, hexagonal strontium ferrite powder was obtained.
The obtained hexagonal strontium ferrite powder had an average particle size of 19 nm, an activated volume of 1102 nm 3 , an anisotropy constant Ku of 2.0×10 5 J/m 3 , and a mass magnetization σs of 50 A·m 2 /kg. there were.
 表4中、「ε-酸化鉄」は、以下のように作製されたε-酸化鉄粉末を示す。
 純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸水溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
 乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
 得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装着し、4時間の熱処理を施した。
 熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
 その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
 得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.28Co0.05Ti0.05Fe1.62)であった。また、先に六方晶ストロンチウムフェライト粉末SrFe1に関して記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単一相の結晶構造(ε-酸化鉄の結晶構造)を有することを確認した。
 得られたε-酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
In Table 4, "ε-iron oxide" indicates ε-iron oxide powder prepared as follows.
8.3 g of iron (III) nitrate nonahydrate, 1.3 g of gallium (III) nitrate octahydrate, 190 mg of cobalt (II) nitrate hexahydrate, 150 mg of titanium (IV) sulfate, and 4.0 g of an aqueous ammonia solution having a concentration of 25% was added to a solution of 1.5 g of polyvinylpyrrolidone (PVP) in an air atmosphere at an ambient temperature of 25° C. while stirring using a magnetic stirrer. , and the mixture was stirred for 2 hours while maintaining the ambient temperature of 25°C. An aqueous citric acid solution obtained by dissolving 1 g of citric acid in 9 g of pure water was added to the obtained solution, and the mixture was stirred for 1 hour. The precipitated powder after stirring was collected by centrifugation, washed with pure water, and dried in a heating furnace with an internal furnace temperature of 80°C.
800 g of pure water was added to the dried powder, and the powder was dispersed again in water to obtain a dispersion liquid. The obtained dispersion was heated to a liquid temperature of 50° C., and 40 g of an ammonia aqueous solution having a concentration of 25% was added dropwise while stirring. After stirring for 1 hour while maintaining the temperature at 50° C., 14 mL of tetraethoxysilane (TEOS) was added dropwise and the mixture was stirred for 24 hours. 50 g of ammonium sulfate was added to the obtained reaction solution, and the precipitated powder was collected by centrifugation, washed with pure water, and dried in a heating furnace at an internal temperature of 80°C for 24 hours to obtain a ferromagnetic powder precursor. Obtained.
The obtained ferromagnetic powder precursor was placed in a heating furnace having an internal temperature of 1000° C. in an air atmosphere, and subjected to a heat treatment for 4 hours.
The heat-treated ferromagnetic powder precursor is put into a 4 mol/L sodium hydroxide (NaOH) aqueous solution, and the liquid temperature is maintained at 70° C. and stirred for 24 hours to obtain a heat-treated ferromagnetic powder precursor. The silicic acid compound, which is an impurity, was removed from the
After that, the ferromagnetic powder from which the silicic acid compound was removed was collected by centrifugal separation and washed with pure water to obtain the ferromagnetic powder.
When the composition of the obtained ferromagnetic powder was confirmed by high-frequency inductively coupled plasma-optical emission spectrometry (ICP-OES), Ga, Co and Ti-substituted ε-iron oxide (ε-Ga 0 .28 Co 0.05 Ti 0.05 Fe 1.62 O 3 ). In addition, X-ray diffraction analysis was performed under the same conditions as those previously described for the hexagonal strontium ferrite powder SrFe1. From the peaks of the X-ray diffraction pattern, the obtained ferromagnetic powder had an α-phase and a γ-phase crystal structure. It was confirmed to have a single-phase ε-phase crystal structure (ε-iron oxide crystal structure) containing no
The resulting ε-iron oxide powder had an average particle size of 12 nm, an activated volume of 746 nm 3 , an anisotropy constant Ku of 1.2×10 5 J/m 3 and a mass magnetization σs of 16 A·m 2 /kg. there were.
 上記の六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
 また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁界強度1194kA/m(15kOe)で測定された値である。
The activation volume and anisotropy constant Ku of the hexagonal strontium ferrite powder and the ε-iron oxide powder were obtained by using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd.) for each ferromagnetic powder, as previously described. It is a value obtained by the method of
The mass magnetization σs is a value measured with a magnetic field strength of 1194 kA/m (15 kOe) using a vibrating sample magnetometer (manufactured by Toei Industry Co., Ltd.).
[個数分布Aおよび個数分布Bの測定]
 磁気テープカートリッジに収容されていた磁気テープについて、走査型電子顕微鏡(FE-SEM)として、日立製作所製FE-SEM S4800を用いて、以下の方法によって、第一の磁性層表面における個数分布Aおよび個数分布Bを求めた。
[Measurement of number distribution A and number distribution B]
The magnetic tape housed in the magnetic tape cartridge was subjected to the following method using an FE-SEM S4800 manufactured by Hitachi Ltd. as a scanning electron microscope (FE-SEM) to determine the number distribution A and the number distribution A on the surface of the first magnetic layer. A number distribution B was obtained.
(個数分布A)
 走査型電子顕微鏡(FE-SEM)を用いて、測定対象の磁気テープの第一の磁性層表面の二次電子像を撮像する。撮像条件として、加速電圧は5kVとし、作動距離は5mmとし、撮影倍率は1万倍とする。撮像時には、第一の磁性層表面の未撮像領域を選択し、上記の撮像条件下でフォーカス調整を行い、二次電子像を撮像する。撮像された画像からサイズ等を表示する部分(ミクロンバー、クロスマーク等)を消し、960pixel×1280pixelの画素数の二次電子像を取得する。
 以上の操作を、測定対象の磁気テープの第一の磁性層表面の異なる箇所において100回実施する。
 こうして取得された二次電子像を、画像処理ソフト(フリーソフトのImageJ)に取り込み、以下の手順により二値化処理を行う。
 上記で取得された二次電子像を二値化処理するための閾値は、下限値を210諧調、上限値を255諧調とし、これら2つの閾値により二値化処理を実行する。二値化処理後、画像解析ソフト(フリーソフトのImageJ)において、ノイズカット処理Despeckleを選択しノイズ成分の除去を行う。
 こうして得られた二値化処理済み画像について、画像解析ソフト(フリーソフトのImageJ)によって、明部領域(即ち白色部分)の個数および各明部領域の面積を求める。ここで求められた明部領域の面積Aから、各明部領域の円相当径Lを、(A/π)^(1/2)×2=Lにより、算出する。
 以上の工程を、上記で得られた二値化処理済み画像(100画像)について実施する。
 以上により、個数分布Aを求める。
(Number distribution A)
Using a scanning electron microscope (FE-SEM), a secondary electron image of the surface of the first magnetic layer of the magnetic tape to be measured is taken. As imaging conditions, the acceleration voltage is 5 kV, the working distance is 5 mm, and the imaging magnification is 10,000. At the time of imaging, a non-imaging area on the surface of the first magnetic layer is selected, focus is adjusted under the imaging conditions described above, and a secondary electron image is captured. A secondary electron image with a pixel count of 960 pixels×1280 pixels is obtained by deleting the portion (micron bar, cross mark, etc.) indicating the size and the like from the imaged image.
The above operation is performed 100 times at different locations on the surface of the first magnetic layer of the magnetic tape to be measured.
The secondary electron image obtained in this way is loaded into image processing software (Free software ImageJ), and binarization processing is performed according to the following procedure.
The threshold value for binarizing the secondary electron image obtained above has a lower limit of 210 gradations and an upper limit of 255 gradations, and binarization is performed using these two thresholds. After the binarization process, the noise component is removed by selecting the noise cut process Despeckle in the image analysis software (Free software ImageJ).
For the binarized image thus obtained, the number of bright regions (that is, white portions) and the area of each bright region are determined by image analysis software (Free software ImageJ). From the area A of the bright region obtained here, the equivalent circle diameter L of each bright region is calculated by (A/π)̂(1/2)×2=L.
The above steps are performed on the binarized images (100 images) obtained above.
The number distribution A is obtained from the above.
(個数分布B)
 走査型電子顕微鏡(FE-SEM)を用いて、測定対象の磁気テープの第一の磁性層表面の二次電子像を撮像する。撮像条件として、加速電圧は2kVとし、作動距離は5mmとし、撮影倍率は1万倍とする。撮像時には、第一の磁性層表面の未撮像領域を選択し、上記の撮像条件下でフォーカス調整を行い、二次電子像を撮像する。撮像された画像からサイズ等を表示する部分(ミクロンバー、クロスマーク等)を消し、960pixel×1280pixelの画素数の二次電子像を取得する。
 以上の操作を、測定対象の磁気テープの第一の磁性層表面の異なる箇所において100回実施する。
 こうして取得された二次電子像を、画像処理ソフト(フリーソフトのImageJ)に取り込み、以下の手順により二値化処理を行う。
 上記で取得された二次電子像を二値化処理するための閾値は、下限値を0諧調、上限値を75諧調とし、これら2つの閾値により二値化処理を実行する。二値化処理後、画像解析ソフト(フリーソフトのImageJ)において、ノイズカット処理Despeckleを選択しノイズ成分の除去を行う。
 こうして得られた二値化処理済み画像において、画像解析ソフト(フリーソフトのImageJ)によって、暗部領域(即ち黒色部分)の個数および各暗部領域の面積を求める。ここで求められた暗部領域の面積Aから、各暗部領域の円相当径Lを、(A/π)^(1/2)×2=Lにより、算出する。
 以上の工程を、上記で得られた二値化処理済み画像(100画像)について実施する。以上により、個数分布Bを求める。
(Number distribution B)
Using a scanning electron microscope (FE-SEM), a secondary electron image of the surface of the first magnetic layer of the magnetic tape to be measured is taken. As imaging conditions, the acceleration voltage is 2 kV, the working distance is 5 mm, and the imaging magnification is 10,000 times. At the time of imaging, a non-imaging area on the surface of the first magnetic layer is selected, focus is adjusted under the imaging conditions described above, and a secondary electron image is captured. A secondary electron image with a pixel count of 960 pixels×1280 pixels is obtained by deleting the portion (micron bar, cross mark, etc.) indicating the size and the like from the imaged image.
The above operation is performed 100 times at different locations on the surface of the first magnetic layer of the magnetic tape to be measured.
The secondary electron image obtained in this way is taken into image processing software (Free software ImageJ), and binarization processing is performed according to the following procedure.
The threshold value for binarizing the secondary electron image obtained above has a lower limit value of 0 gradation and an upper limit value of 75 gradation, and the binarization process is performed using these two threshold values. After the binarization process, the noise component is removed by selecting the noise cut process Despeckle in the image analysis software (Free software ImageJ).
In the binarized image thus obtained, the number of dark regions (that is, black portions) and the area of each dark region are determined by image analysis software (Free software ImageJ). From the area A of the dark region obtained here, the equivalent circle diameter L of each dark region is calculated by (A/π)̂(1/2)×2=L.
The above steps are performed on the binarized images (100 images) obtained above. The number distribution B is obtained from the above.
 上記の各磁気テープカートリッジに収容されていた磁気テープから垂直方向角型比を測定するためのサンプル片を切り出した。このサンプル片について、振動試料型磁力計として玉川製作所製TM-TRVSM5050-SMSL型を用いて、先に記載した方法によって垂直方向角型比を求めた。その結果、実施例1~28および比較例1~25の各磁気テープカートリッジから取り出した磁気テープの垂直方向角型比は、いずれも0.60以上1.00以下であった。 A sample piece for measuring the squareness ratio in the vertical direction was cut out from the magnetic tape contained in each of the magnetic tape cartridges described above. For this sample piece, the squareness ratio in the vertical direction was determined by the method described above using a TM-TRVSM5050-SMSL model manufactured by Tamagawa Seisakusho as a vibrating sample magnetometer. As a result, the vertical squareness ratio of the magnetic tapes taken out from the respective magnetic tape cartridges of Examples 1-28 and Comparative Examples 1-25 was 0.60 or more and 1.00 or less.
[電磁変換特性の評価(垂直記録方式)]
 各磁気テープカートリッジ内の磁気テープについて、特許第6531764号明細書(特許文献1)の段落0102に記載の方法によって、垂直記録方式で記録を行い、記録されたデータを再生してSNR(Signal-to-Noise Ratio)を求めた。SNRは、比較例1の値を基準(0dB)とする相対値として求めた。
[Evaluation of electromagnetic conversion characteristics (perpendicular recording method)]
The magnetic tape in each magnetic tape cartridge is recorded by the perpendicular recording method by the method described in paragraph 0102 of Japanese Patent No. 6531764 (Patent Document 1), and the recorded data is reproduced to obtain an SNR (Signal- to-Noise Ratio) was obtained. The SNR was obtained as a relative value with the value of Comparative Example 1 as a reference (0 dB).
 以上の結果を表4(表4-1~4-2)に示す。 The above results are shown in Table 4 (Tables 4-1 and 4-2).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表4に示す結果から、実施例1~28の塗布型磁気記録媒体が、垂直記録方式で記録されたデータを再生する際、優れた電磁変換特性(高SNR)を示したことが確認できる。 From the results shown in Table 4, it can be confirmed that the coated magnetic recording media of Examples 1 to 28 exhibited excellent electromagnetic conversion characteristics (high SNR) when reproducing data recorded by the perpendicular recording method.
 本発明の一態様は、記録密度の更なる向上が望まれる各種磁気記録用途において有用である。 One aspect of the present invention is useful in various magnetic recording applications where further improvement in recording density is desired.

Claims (16)

  1. 非磁性支持体と、強磁性粉末および結合剤を含む第一の磁性層と、を有し、
    前記非磁性支持体と前記第一の磁性層との間に、保磁力Hcが50Oe以下であって平均粒子サイズが50nm以下である強磁性粉末と、結合剤と、を含む第二の磁性層を更に有する磁気記録媒体。
    a non-magnetic support and a first magnetic layer comprising a ferromagnetic powder and a binder;
    A second magnetic layer containing a ferromagnetic powder having a coercive force Hc of 50 Oe or less and an average particle size of 50 nm or less and a binder between the non-magnetic support and the first magnetic layer A magnetic recording medium further comprising:
  2. 前記第一の磁性層の表面を走査型電子顕微鏡により加速電圧5kVで撮像して得られた二次電子像の二値化処理済み画像における複数の明部領域の円相当径の個数分布Aが、下記(1)~(3):
    (1)円相当径が1nm以上50nm以下の明部領域が10000個以上30000個以下、
    (2)円相当径が51nm以上100nm以下の明部領域が7000個以上25000個以下、
    (3)円相当径が101nm以上の明部領域が1000個以上3000個以下、
    を満たし、かつ
    前記第一の磁性層の表面を走査型電子顕微鏡により加速電圧2kVで撮像して得られた二次電子像の二値化処理済み画像における複数の暗部領域の円相当径の個数分布Bが、下記(4)~(6):
    (4)円相当径が1nm以上50nm以下の暗部領域が200個以上50000個以下、
    (5)円相当径が51nm以上100nm以下の暗部領域が200個以上25000個以下、
    (6)円相当径が101nm以上の暗部領域が0個以上2000個以下、
    を満たす、請求項1に記載の磁気記録媒体。
    A number distribution A of equivalent circle diameters of a plurality of bright regions in a binarized secondary electron image obtained by imaging the surface of the first magnetic layer with a scanning electron microscope at an acceleration voltage of 5 kV is , the following (1) to (3):
    (1) 10,000 or more and 30,000 or less bright regions having an equivalent circle diameter of 1 nm or more and 50 nm or less,
    (2) 7000 or more and 25000 or less bright regions with an equivalent circle diameter of 51 nm or more and 100 nm or less;
    (3) 1000 or more and 3000 or less bright regions with an equivalent circle diameter of 101 nm or more;
    and the number of equivalent circle diameters of a plurality of dark regions in a binarized secondary electron image obtained by imaging the surface of the first magnetic layer with a scanning electron microscope at an acceleration voltage of 2 kV. Distribution B is the following (4) to (6):
    (4) 200 or more and 50,000 or less dark regions with an equivalent circle diameter of 1 nm or more and 50 nm or less;
    (5) 200 or more and 25,000 or less dark regions with an equivalent circle diameter of 51 nm or more and 100 nm or less;
    (6) 0 or more and 2000 or less dark regions having an equivalent circle diameter of 101 nm or more;
    2. The magnetic recording medium according to claim 1, which satisfies:
  3. 前記磁気記録媒体の垂直方向角型比は0.60以上である、請求項1に記載の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein said magnetic recording medium has a perpendicular squareness ratio of 0.60 or more.
  4. 前記第二の磁性層に含まれる強磁性粉末の保磁力Hcは、10Oe以上50Oe以下である、請求項1に記載の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein the ferromagnetic powder contained in said second magnetic layer has a coercive force Hc of 10 Oe or more and 50 Oe or less.
  5. 前記第二の磁性層に含まれる強磁性粉末の平均粒子サイズは、5nm以上50nm以下である、請求項1に記載の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein the ferromagnetic powder contained in said second magnetic layer has an average particle size of 5 nm or more and 50 nm or less.
  6. 前記第二の磁性層に含まれる強磁性粉末は、スピネルフェライト粉末である、請求項1に記載の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein the ferromagnetic powder contained in said second magnetic layer is spinel ferrite powder.
  7. 前記第一の磁性層に含まれる強磁性粉末は、六方晶バリウムフェライト粉末である、請求項1に記載の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein the ferromagnetic powder contained in said first magnetic layer is hexagonal barium ferrite powder.
  8. 前記第一の磁性層に含まれる強磁性粉末は、六方晶ストロンチウムフェライト粉末である、請求項1に記載の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein the ferromagnetic powder contained in said first magnetic layer is hexagonal strontium ferrite powder.
  9. 前記第一の磁性層に含まれる強磁性粉末は、ε-酸化鉄粉末である、請求項1に記載の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein the ferromagnetic powder contained in said first magnetic layer is ε-iron oxide powder.
  10. 前記非磁性支持体と前記第二の磁性層との間に、非磁性粉末および結合剤を含む非磁性層を更に有する、請求項1に記載の磁気記録媒体。 2. The magnetic recording medium according to claim 1, further comprising a non-magnetic layer containing non-magnetic powder and a binder between said non-magnetic support and said second magnetic layer.
  11. 前記非磁性支持体の前記第一の磁性層および前記第二の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を更に有する、請求項1に記載の磁気記録媒体。 2. The method according to claim 1, further comprising a back coat layer containing a non-magnetic powder and a binder on the surface side opposite to the surface side having the first magnetic layer and the second magnetic layer of the non-magnetic support. A magnetic recording medium as described.
  12. 前記第一の磁性層の表面を走査型電子顕微鏡により加速電圧5kVで撮像して得られた二次電子像の二値化処理済み画像における複数の明部領域の円相当径の個数分布Aが、下記(1)~(3):
    (1)円相当径が1nm以上50nm以下の明部領域が10000個以上30000個以下、
    (2)円相当径が51nm以上100nm以下の明部領域が7000個以上25000個以下、
    (3)円相当径が101nm以上の明部領域が1000個以上3000個以下、
    を満たし、かつ
    前記第一の磁性層の表面を走査型電子顕微鏡により加速電圧2kVで撮像して得られた二次電子像の二値化処理済み画像における複数の暗部領域の円相当径の個数分布Bが、下記(4)~(6):
    (4)円相当径が1nm以上50nm以下の暗部領域が200個以上50000個以下、
    (5)円相当径が51nm以上100nm以下の暗部領域が200個以上25000個以下、
    (6)円相当径が101nm以上の暗部領域が0個以上2000個以下、
    を満たし、
    前記磁気記録媒体の垂直方向角型比は0.60以上であり、
    前記第二の磁性層に含まれる強磁性粉末の保磁力Hcは、10Oe以上50Oe以下であり、
    前記第二の磁性層に含まれる強磁性粉末の平均粒子サイズは、5nm以上50nm以下であり、
    前記第二の磁性層に含まれる強磁性粉末は、スピネルフェライト粉末であり、
    前記第一の磁性層に含まれる強磁性粉末は、六方晶バリウムフェライト粉末、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選択される強磁性粉末であり、
    前記非磁性支持体と前記第二の磁性層との間に、非磁性粉末および結合剤を含む非磁性層を更に有し、かつ
    前記非磁性支持体の前記第一の磁性層および前記第二の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を更に有する、請求項1に記載の磁気記録媒体。
    A number distribution A of equivalent circle diameters of a plurality of bright regions in a binarized secondary electron image obtained by imaging the surface of the first magnetic layer with a scanning electron microscope at an acceleration voltage of 5 kV is , the following (1) to (3):
    (1) 10,000 or more and 30,000 or less bright regions having an equivalent circle diameter of 1 nm or more and 50 nm or less,
    (2) 7000 or more and 25000 or less bright regions with an equivalent circle diameter of 51 nm or more and 100 nm or less;
    (3) 1000 or more and 3000 or less bright regions with an equivalent circle diameter of 101 nm or more;
    and the number of equivalent circle diameters of a plurality of dark regions in a binarized secondary electron image obtained by imaging the surface of the first magnetic layer with a scanning electron microscope at an accelerating voltage of 2 kV. Distribution B is the following (4) to (6):
    (4) 200 or more and 50,000 or less dark regions with an equivalent circle diameter of 1 nm or more and 50 nm or less;
    (5) 200 or more and 25,000 or less dark regions with an equivalent circle diameter of 51 nm or more and 100 nm or less;
    (6) 0 or more and 2000 or less dark regions having an equivalent circle diameter of 101 nm or more;
    The filling,
    The perpendicular squareness ratio of the magnetic recording medium is 0.60 or more,
    The ferromagnetic powder contained in the second magnetic layer has a coercive force Hc of 10 Oe or more and 50 Oe or less,
    The ferromagnetic powder contained in the second magnetic layer has an average particle size of 5 nm or more and 50 nm or less,
    The ferromagnetic powder contained in the second magnetic layer is spinel ferrite powder,
    The ferromagnetic powder contained in the first magnetic layer is ferromagnetic powder selected from the group consisting of hexagonal barium ferrite powder, hexagonal strontium ferrite powder and ε-iron oxide powder,
    A nonmagnetic layer containing nonmagnetic powder and a binder is further provided between the nonmagnetic support and the second magnetic layer, and the first magnetic layer and the second magnetic layer of the nonmagnetic support are further provided. 2. The magnetic recording medium according to claim 1, further comprising a backcoat layer containing a non-magnetic powder and a binder on the surface opposite to the surface having the magnetic layer.
  13. 磁気テープである、請求項1に記載の磁気記録媒体。 2. The magnetic recording medium of claim 1, which is a magnetic tape.
  14. 磁気テープである、請求項12に記載の磁気記録媒体。 13. The magnetic recording medium of claim 12, which is a magnetic tape.
  15. 請求項13または14に記載の磁気記録媒体を含む磁気テープカートリッジ。 A magnetic tape cartridge comprising the magnetic recording medium according to claim 13 or 14.
  16. 請求項1~14のいずれか1項に記載の磁気記録媒体を含む磁気記録再生装置。 A magnetic recording/reproducing apparatus comprising the magnetic recording medium according to any one of claims 1 to 14.
PCT/JP2022/023580 2021-06-17 2022-06-13 Magnetic recording medium, magnetic tape cartridge, and magnetic recording reproduction device WO2022264956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023529851A JPWO2022264956A1 (en) 2021-06-17 2022-06-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-100671 2021-06-17
JP2021100671 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022264956A1 true WO2022264956A1 (en) 2022-12-22

Family

ID=84526451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023580 WO2022264956A1 (en) 2021-06-17 2022-06-13 Magnetic recording medium, magnetic tape cartridge, and magnetic recording reproduction device

Country Status (2)

Country Link
JP (1) JPWO2022264956A1 (en)
WO (1) WO2022264956A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273237A (en) * 1987-04-30 1988-11-10 Ricoh Co Ltd Magneto-optical recording medium
JP2010231878A (en) * 2009-03-03 2010-10-14 Hitachi Maxell Ltd Magnetic recording medium
JP2011227975A (en) * 2010-04-22 2011-11-10 Hitachi Maxell Ltd Magnetic recording medium
JP2021034069A (en) * 2019-08-16 2021-03-01 ソニー株式会社 Magnetic recording medium, magnetic recording/reproducing apparatus and magnetic recording medium cartridge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273237A (en) * 1987-04-30 1988-11-10 Ricoh Co Ltd Magneto-optical recording medium
JP2010231878A (en) * 2009-03-03 2010-10-14 Hitachi Maxell Ltd Magnetic recording medium
JP2011227975A (en) * 2010-04-22 2011-11-10 Hitachi Maxell Ltd Magnetic recording medium
JP2021034069A (en) * 2019-08-16 2021-03-01 ソニー株式会社 Magnetic recording medium, magnetic recording/reproducing apparatus and magnetic recording medium cartridge

Also Published As

Publication number Publication date
JPWO2022264956A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
JP7220165B2 (en) Magnetic Recording Media, Magnetic Recording/Playback Devices, Magnetic Tape Cartridges, and Magnetic Tape Cartridge Groups
JP7277393B2 (en) Magnetic Recording Media, Magnetic Recording/Playback Devices, Magnetic Tape Cartridges, and Magnetic Tape Cartridge Groups
JP7249966B2 (en) Magnetic recording/reproducing device
JP7277395B2 (en) Magnetic Recording Media, Magnetic Recording/Playback Devices, Magnetic Tape Cartridges, and Magnetic Tape Cartridge Groups
JP7220166B2 (en) Magnetic Recording Media, Magnetic Recording/Playback Devices, Magnetic Tape Cartridges, and Magnetic Tape Cartridge Groups
JP7277394B2 (en) Magnetic Recording Media, Magnetic Recording/Playback Devices, Magnetic Tape Cartridges, and Magnetic Tape Cartridge Groups
US11348604B2 (en) Magnetic recording and reproducing device
US20220270644A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US20210383827A1 (en) Magnetic recording and reproducing device
JP7352536B2 (en) magnetic recording and reproducing device
JP7321124B2 (en) Magnetic tape devices, magnetic tapes and magnetic tape cartridges
JP7377164B2 (en) Magnetic recording media, magnetic tape cartridges, and magnetic recording and reproducing devices
JP7112979B2 (en) Magnetic recording medium and magnetic recording/reproducing device
WO2022264956A1 (en) Magnetic recording medium, magnetic tape cartridge, and magnetic recording reproduction device
US20220020393A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11276429B2 (en) Magnetic recording medium including compound having a salt structure and magnetic recording and reproducing apparatus
JP7264843B2 (en) Magnetic Recording Media, Magnetic Tape Cartridges and Magnetic Recording/Reproducing Devices
WO2023100879A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
JP7112976B2 (en) Magnetic recording medium and magnetic recording/reproducing device
WO2023100878A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
JP7128158B2 (en) Magnetic tapes, magnetic tape cartridges and magnetic recording/playback devices
JP2023069536A (en) Magnetic recording medium, magnetic tape cartridge and magnetic recording/reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824945

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529851

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824945

Country of ref document: EP

Kind code of ref document: A1