WO2023100879A1 - Magnetic tape, magnetic tape cartridge, and magnetic tape device - Google Patents

Magnetic tape, magnetic tape cartridge, and magnetic tape device Download PDF

Info

Publication number
WO2023100879A1
WO2023100879A1 PCT/JP2022/043993 JP2022043993W WO2023100879A1 WO 2023100879 A1 WO2023100879 A1 WO 2023100879A1 JP 2022043993 W JP2022043993 W JP 2022043993W WO 2023100879 A1 WO2023100879 A1 WO 2023100879A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic tape
magnetic
powder
alfesil
layer
Prior art date
Application number
PCT/JP2022/043993
Other languages
French (fr)
Japanese (ja)
Inventor
成人 笠田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023100879A1 publication Critical patent/WO2023100879A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/18Driving; Starting; Stopping; Arrangements for control or regulation thereof
    • G11B15/43Control or regulation of mechanical tension of record carrier, e.g. tape tension
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/037Single reels or spools
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/708Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by addition of non-magnetic particles to the layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/852Orientation in a magnetic field

Abstract

Provided is a magnetic tape having a non-magnetic support and a magnetic layer containing a ferromagnetic powder. The non-magnetic support is a polyethylene naphthalate support that has a Young's modulus of at least 10,000 MPa in the width direction. The ratio (AlFeSil wear value 2 / AlFeSil wear value 1) of the change in the AlFeSil wear value before and after storing of the tape, as measured for the surface of the magnetic layer in an environment having a temperature of 23°C and a relative humidity of 50%, is at least 0.7. Also provided are a magnetic tape cartridge and a magnetic tape device that include the magnetic tape.

Description

磁気テープ、磁気テープカートリッジおよび磁気テープ装置Magnetic tapes, magnetic tape cartridges and magnetic tape devices
 本発明は、磁気テープ、磁気テープカートリッジおよび磁気テープ装置に関する。 The present invention relates to magnetic tapes, magnetic tape cartridges, and magnetic tape devices.
 磁気記録媒体にはテープ状のものとディスク状のものがあり、データバックアップ、アーカイブ等のデータストレージ用途には、テープ状の磁気記録媒体、即ち磁気テープが主に用いられている(例えば特許文献1参照)。 Magnetic recording media include tape-shaped and disk-shaped magnetic recording media. Tape-shaped magnetic recording media, that is, magnetic tapes, are mainly used for data storage applications such as data backups and archives (see, for example, Patent Documents 1).
特許第6635216号明細書Patent No. 6635216
 磁気テープへのデータの記録は、通常、磁気テープ装置(一般に「ドライブ」と呼ばれる。)内で磁気テープを走行させ、磁気ヘッドを磁気テープのデータバンドに追従させてデータバンド上にデータを記録することにより行われる。これにより、データバンドにデータトラックが形成される。また、記録されたデータの再生時には、磁気テープ装置内で磁気テープを走行させ、磁気ヘッドを磁気テープのデータバンドに追従させてデータバンド上に記録されたデータの読み取りを行う。 Data is recorded on a magnetic tape by running the magnetic tape inside a magnetic tape device (generally called a "drive") and making the magnetic head follow the data band of the magnetic tape to record data on the data band. It is done by A data track is thereby formed in the data band. When reproducing the recorded data, the magnetic tape is run in the magnetic tape device and the magnetic head follows the data band of the magnetic tape to read the data recorded on the data band.
 以上のような記録および/または再生において磁気ヘッドが磁気テープのデータバンドに追従する精度を高めるために、サーボ信号を利用してヘッドトラッキングを行うシステム(以下、「サーボシステム」と記載する。)が実用化されている。
 更に、サーボ信号を利用して走行中の磁気テープの幅方向の寸法情報を取得し、取得された寸法情報に応じて磁気テープの長手方向にかかるテンションを調整することによって、磁気テープの幅方向の寸法を制御することも行われている(一例として、特許文献1の段落0117等参照)。上記のテンション調整は、記録または再生時、磁気テープの幅変形によってデータを記録または再生するための磁気ヘッドが狙いのトラック位置からずれてしまい、記録済データの上書き、再生不良等の現象が発生してしまうことを抑制することに寄与し得ると考えられる。磁気記録については、優れた電磁変換特性が得られることが求められるため、上記のようなテンション調整を行いながら磁気テープを磁気テープ装置内で走行させてデータの記録および/または再生を行う際、電磁変換特性の低下が少ないことは望ましい。
In order to improve the accuracy with which the magnetic head follows the data band of the magnetic tape during recording and/or reproduction as described above, a system (hereinafter referred to as "servo system") that performs head tracking using a servo signal is employed. has been put into practical use.
Furthermore, by using a servo signal to acquire dimension information in the width direction of the running magnetic tape and adjusting the tension applied in the longitudinal direction of the magnetic tape according to the acquired dimension information, (see, for example, paragraph 0117 of Patent Document 1). The above tension adjustment causes the magnetic head for recording or reproducing data to deviate from the intended track position due to the width deformation of the magnetic tape during recording or reproduction, causing phenomena such as overwriting of recorded data and defective reproduction. It is thought that it can contribute to suppressing the fact that For magnetic recording, it is required to obtain excellent electromagnetic conversion characteristics. It is desirable that the deterioration of the electromagnetic conversion characteristics is small.
 本発明の一態様は、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際に電磁変換特性の低下が少ない磁気テープを提供することを主な目的とする。 One aspect of the present invention is to provide a magnetic tape whose electromagnetic conversion characteristics are less degraded when recording and/or reproducing is performed by controlling the dimension in the width direction of the magnetic tape by adjusting the tension applied in the longitudinal direction of the magnetic tape. The main purpose is to provide
 本発明の一態様は、以下の通りである。
[1]非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気テープであって、
上記非磁性支持体は、幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体であり、かつ
温度23℃相対湿度50%の環境において、上記磁性層の表面について測定されるAlFeSil摩耗値の保存前後の変化率、AlFeSil摩耗値2/AlFeSil摩耗値1、は0.7以上であり、
上記AlFeSil摩耗値1は、上記磁気テープの長手方向に2.0N(ニュートン)のテンションをかけて測定されるAlFeSil摩耗値であり、
上記AlFeSil摩耗値2は、上記AlFeSil摩耗値1の測定後の磁気テープをLTO(登録商標:Linear Tape-Open)8ヘッドに対して1500回往復摺動させた後、24時間保存後に磁気テープの長手方向に2.0Nのテンションをかけて測定されるAlFeSil摩耗値である、磁気テープ。
[2]上記AlFeSil摩耗値2/AlFeSil摩耗値1は、0.7以上1.0以下である、[1]に記載の磁気テープ。
[3]上記磁性層は、1種以上の非磁性粉末を更に含む、[1]または[2]に記載の磁気テープ。
[4]上記非磁性粉末は、アルミナ粉末を含む、[3]に記載の磁気テープ。
[5]上記非磁性支持体と上記磁性層との間に、非磁性粉末を含む非磁性層を更に有する、[1]~[4]のいずれかに記載の磁気テープ。
[6]上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を更に有する、[1]~[5]のいずれかに記載の磁気テープ。
[7]テープ厚みが5.2μm以下である、[1]~[6]のいずれかに記載の磁気テープ。
[8]上記ポリエチレンナフタレート支持体の幅方向のヤング率は、10000MPa以上20000MPa以下である、[1]~[7]のいずれかに記載の磁気テープ。
[9]垂直方向角型比が0.60以上である、[1]~[8]のいずれかに記載の磁気テープ。
[10][1]~[9]のいずれかに記載の磁気テープを含む磁気テープカートリッジ。
[11][1]~[9]のいずれかに記載の磁気テープを含む磁気テープ装置。
[12]磁気テープ装置内を走行する磁気テープの長手方向にかかるテンションを調整可能なテンション調整機構を有する、[11]に記載の磁気テープ装置。
One aspect of the present invention is as follows.
[1] A magnetic tape having a non-magnetic support and a magnetic layer containing ferromagnetic powder,
The non-magnetic support is a polyethylene naphthalate support having a Young's modulus in the width direction of 10,000 MPa or more, and stores the AlFeSil wear value measured on the surface of the magnetic layer in an environment with a temperature of 23° C. and a relative humidity of 50%. The rate of change before and after, AlFeSil wear value 2/AlFeSil wear value 1, is 0.7 or more,
The AlFeSil abrasion value 1 is an AlFeSil abrasion value measured by applying a tension of 2.0 N (Newton) in the longitudinal direction of the magnetic tape,
The AlFeSil abrasion value 2 is obtained by sliding the magnetic tape after the measurement of the AlFeSil abrasion value 1 back and forth against an LTO (registered trademark: Linear Tape-Open) 8 head 1500 times, and then storing the magnetic tape for 24 hours. Magnetic tape, AlFeSil abrasion value measured under 2.0 N tension in the longitudinal direction.
[2] The magnetic tape according to [1], wherein the AlFeSil wear value 2/AlFeSil wear value 1 is 0.7 or more and 1.0 or less.
[3] The magnetic tape of [1] or [2], wherein the magnetic layer further contains one or more non-magnetic powders.
[4] The magnetic tape according to [3], wherein the non-magnetic powder contains alumina powder.
[5] The magnetic tape according to any one of [1] to [4], further comprising a nonmagnetic layer containing nonmagnetic powder between the nonmagnetic support and the magnetic layer.
[6] The magnetic field according to any one of [1] to [5], further comprising a back coat layer containing a non-magnetic powder on the surface side opposite to the surface side having the magnetic layer of the non-magnetic support. tape.
[7] The magnetic tape according to any one of [1] to [6], which has a tape thickness of 5.2 μm or less.
[8] The magnetic tape according to any one of [1] to [7], wherein the polyethylene naphthalate support has a Young's modulus in the width direction of 10000 MPa or more and 20000 MPa or less.
[9] The magnetic tape according to any one of [1] to [8], which has a vertical squareness ratio of 0.60 or more.
[10] A magnetic tape cartridge containing the magnetic tape according to any one of [1] to [9].
[11] A magnetic tape device including the magnetic tape according to any one of [1] to [9].
[12] The magnetic tape device according to [11], which has a tension adjusting mechanism capable of adjusting the tension applied to the magnetic tape running in the magnetic tape device in the longitudinal direction.
 本発明の一態様によれば、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際、電磁変換特性の低下が少ない磁気テープを提供することができる。また、本発明の一態様によれば、上記磁気テープを含む磁気テープカートリッジおよび磁気テープ装置を提供することができる。 According to one aspect of the present invention, when recording and/or reproducing is performed by controlling the dimension in the width direction of the magnetic tape by adjusting the tension applied in the longitudinal direction of the magnetic tape, the electromagnetic conversion characteristics are less deteriorated. A tape can be provided. Further, according to one aspect of the present invention, it is possible to provide a magnetic tape cartridge and a magnetic tape device containing the above magnetic tape.
データバンドおよびサーボバンドの配置例を示す。An example arrangement of data bands and servo bands is shown. LTO Ultriumフォーマットテープのサーボパターン配置例を示す。An example of servo pattern arrangement for an LTO Ultrium format tape is shown. 磁気テープ装置の一例を示す概略図である。1 is a schematic diagram showing an example of a magnetic tape device; FIG.
[磁気テープ]
 本発明の一態様は、非磁性支持体と強磁性粉末を含む磁性層とを有する磁気テープに関する。上記非磁性支持体は、幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体である。温度23℃相対湿度50%の環境において、上記磁性層の表面について測定されるAlFeSil摩耗値の保存前後の変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)は、0.7以上である。本発明および本明細書において、「磁性層(の)表面」とは、磁気テープの磁性層側表面と同義である。上記AlFeSil摩耗値1は、上記磁気テープの長手方向に2.0Nのテンションをかけて測定されるAlFeSil摩耗値である。上記AlFeSil摩耗値2は、上記AlFeSil摩耗値1の測定後の磁気テープをLTO8ヘッドに対して1500回往復摺動させた後、24時間保存後に磁気テープの長手方向に2.0Nのテンションをかけて測定されるAlFeSil摩耗値である。
[Magnetic tape]
One aspect of the present invention relates to a magnetic tape having a non-magnetic support and a magnetic layer containing ferromagnetic powder. The non-magnetic support is a polyethylene naphthalate support having a Young's modulus of 10000 MPa or more in the width direction. In an environment with a temperature of 23° C. and a relative humidity of 50%, the change rate of the AlFeSil wear value measured on the surface of the magnetic layer before and after storage (AlFeSil wear value 2/AlFeSil wear value 1) is 0.7 or more. In the present invention and this specification, the term "(the) surface of the magnetic layer" is synonymous with the magnetic layer side surface of the magnetic tape. The AlFeSil abrasion value 1 is an AlFeSil abrasion value measured by applying a tension of 2.0 N in the longitudinal direction of the magnetic tape. The above AlFeSil abrasion value 2 was obtained by sliding the magnetic tape after the measurement of the above AlFeSil abrasion value 1 back and forth against an LTO8 head 1500 times, storing the magnetic tape for 24 hours, and then applying a tension of 2.0 N in the longitudinal direction of the magnetic tape. is the AlFeSil wear value measured by
 磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御する磁気テープ装置では、より大きなテンションを磁気テープの長手方向にかけるほど、磁気テープの幅方向の寸法をより大きく収縮させることができ(即ち、より幅狭にすることができ)、そのテンションを小さくするほど、その収縮の程度を小さくすることができる。こうして磁気テープの長手方向にかけるテンションを調整することによって、磁気テープの幅方向の寸法を制御することができる。
 一方、磁気テープへのデータの記録および記録されたデータの再生は、通常、磁気テープの磁性層表面と磁気ヘッドとを接触させて摺動させることによって行われる。上記のようなテンション調整が行われると、磁気テープの長手方向に大きなテンションが加わり得ることが、電磁変換特性低下の要因になり得ると本発明者は考えた。詳しくは、以下のように本発明者は考えた。磁気テープの走行を繰り返すと、磁気テープ表面(詳しくは磁性層表面)の研磨力は低下する傾向があり、かかる傾向は、磁気テープの走行中に磁気テープの長手方向に大きなテンションが加わるほど顕著になり得る。磁気テープ表面の研磨力の低下は、磁気テープのヘッドクリーニング力を低下させることにつながる。磁気テープのヘッドクリーニング力が低下すると、磁気テープとの摺動によって磁気ヘッドに付着した異物(一般に「デブリ(debris)」とも呼ばれる。)が磁気ヘッドに残留し易くなってしまい、この異物の存在によってスペーシングロスが生じ、電磁変換特性は低下してしまう。
 本発明者は検討を重ねる中で、上記の繰り返し走行により低下した研磨力を、短期間で低下前の状態に近づけること(以下、「研磨特性の早期回復」ともいう。)ができれば、繰り返し走行により低下した研磨力を早期に改善させることが可能になると考え、更に鋭意検討を重ねた。研磨特性の早期回復が可能になれば、例えば、記録終了から次の記録までの間隔または記録終了から再生までの間隔を短くしても、電磁変換特性の低下を抑制することができる。
 かかる鋭意検討の結果、本発明者は、温度23℃相対湿度50%の環境において上記磁性層の表面について測定されるAlFeSil摩耗値の保存前後の変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)が0.7以上の磁気テープは、研磨特性の早期回復が可能であり、これにより、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際、繰り返し走行によって低下した電磁変換特性を低下前の状態に短期間で近づけることが可能になることを新たに見出すに至った。なお、測定環境の温度および湿度は、磁気テープの使用環境の温度および湿度の例示的な値として採用したものである。したがって、上記磁気テープへのデータの記録および記録されたデータの再生が行われる環境は、上記温度および湿度の環境に限定されるものではない。AlFeSil摩耗値を測定する際に磁気テープの長手方向にかけるテンションについても、上記のようなテンション調整が行われる場合に磁気テープの長手方向に加わり得る大きなテンションの例示的な値として採用したものである。したがって、上記磁気テープへのデータの記録および記録されたデータの再生が行われる際に磁気テープの長手方向にかかるテンションも、上記テンションに限定されるものではない。
 更に本発明者は、上記磁気テープが、非磁性支持体として幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体を含むことは、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して良好に記録および/または再生を行うことを可能にすることに寄与し得ると考えている。
 ただし、本明細書に記載されている本発明者の推察によって、本発明は限定されるものではない。
In a magnetic tape device that controls the widthwise dimension of a magnetic tape by adjusting the tension applied in the longitudinal direction of the magnetic tape, the greater the tension applied to the magnetic tape in the longitudinal direction, the greater the widthwise dimension of the magnetic tape. It can be shrunk more (i.e. narrower), and the less the tension, the less it shrunk. By adjusting the tension applied in the longitudinal direction of the magnetic tape in this manner, the dimension of the magnetic tape in the width direction can be controlled.
On the other hand, the recording of data on the magnetic tape and the reproduction of the recorded data are usually performed by bringing the surface of the magnetic layer of the magnetic tape and the magnetic head into contact with each other and sliding them. The inventor of the present invention considered that when the tension is adjusted as described above, a large tension applied in the longitudinal direction of the magnetic tape may be a factor in the deterioration of the electromagnetic conversion characteristics. In detail, the present inventor considered as follows. Repeated running of the magnetic tape tends to reduce the polishing force of the surface of the magnetic tape (specifically, the surface of the magnetic layer), and this tendency is more pronounced as greater tension is applied to the magnetic tape in its longitudinal direction while the magnetic tape is running. can be A decrease in the abrasiveness of the surface of the magnetic tape leads to a decrease in the head cleaning ability of the magnetic tape. When the head cleaning force of the magnetic tape is lowered, foreign matter (generally called "debris") adhered to the magnetic head due to sliding against the magnetic tape tends to remain on the magnetic head, and the existence of this foreign matter. Due to this, spacing loss occurs and the electromagnetic conversion characteristics deteriorate.
In the course of repeated studies, the inventors of the present invention have found that if it is possible to bring the polishing force, which has decreased due to the above repeated running, closer to the state before the decrease in a short period of time (hereinafter also referred to as "early recovery of polishing characteristics"), the repeated running can be performed. The inventors thought that it would be possible to improve the reduced polishing power at an early stage, and further conducted intensive studies. If the polishing characteristics can be recovered early, for example, even if the interval from the end of recording to the next recording or the interval from the end of recording to reproduction is shortened, the deterioration of the electromagnetic conversion characteristics can be suppressed.
As a result of such intensive studies, the present inventors have found the rate of change in the AlFeSil wear value measured on the surface of the magnetic layer in an environment of 23° C. and 50% relative humidity before and after storage (AlFeSil wear value 2/AlFeSil wear value 1). is 0.7 or more, it is possible to quickly recover the polishing characteristics, and by adjusting the tension applied in the longitudinal direction of the magnetic tape, the dimension in the width direction of the magnetic tape can be controlled for recording and/or recording. Alternatively, the present inventors have newly found that the electromagnetic conversion characteristics, which have deteriorated due to repeated running, can be brought close to the state before deterioration in a short period of time during reproduction. The temperature and humidity of the measurement environment are adopted as exemplary values of the temperature and humidity of the environment in which the magnetic tape is used. Therefore, the environment in which data is recorded on the magnetic tape and the recorded data is reproduced is not limited to the temperature and humidity environment described above. The tension applied in the longitudinal direction of the magnetic tape when measuring the AlFeSil abrasion value was also adopted as an exemplary value of the large tension that can be applied in the longitudinal direction of the magnetic tape when the tension adjustment is performed as described above. be. Therefore, the tension applied in the longitudinal direction of the magnetic tape when recording data on the magnetic tape and reproducing the recorded data is not limited to the tension described above.
Furthermore, the present inventor believes that the magnetic tape includes a polyethylene naphthalate support having a Young's modulus in the width direction of 10000 MPa or more as a non-magnetic support, by adjusting the tension applied in the longitudinal direction of the magnetic tape. It is thought that it can contribute to enabling good recording and/or reproduction by controlling the dimension in the width direction.
However, the present invention is not limited by the conjectures of the inventors described herein.
 本発明および本明細書において、AlFeSil摩耗値1は、温度23℃相対湿度50%の環境において、以下の方法によって測定される値である。
 測定対象の磁気テープを、リールテスターを用い、下記走行条件Aで走行させたときのAlFeSil角柱の摩耗幅を測定する。AlFeSil角柱とは、センダスト系の合金であるAlFeSil製の角柱である。評価には、ECMA(European  Computer  Manufacturers  Association)-288/AnnexH/H2に規定されているAlFeSil角柱を用いる。AlFeSil角柱の摩耗幅は、AlFeSil角柱のエッジを光学顕微鏡を用いて上方から観察し、特開2007-026564号公報の段落0015に同公報の図1に基づき説明されている摩耗幅として求める。
(走行条件A)
 温度23℃相対湿度50%の環境において、磁気テープの磁性層表面を、AlFeSil角柱の長手方向と直交するように、AlFeSil角柱の一稜辺にラップ角12°とし、磁気テープの長手方向にかけるテンションを2.0Nとして接触させる。この状態で、測定対象の磁気テープの長手方向の長さ580mにわたる部分を3m/秒の速さで走行させて1往復させる。
 上記走行後のAlFeSil角柱の摩耗幅を、AlFeSil摩耗値1とする。
In the present invention and this specification, the AlFeSil abrasion value 1 is a value measured by the following method in an environment of temperature 23° C. and relative humidity 50%.
The wear width of the AlFeSil prism is measured when the magnetic tape to be measured is run under the following running condition A using a reel tester. The AlFeSil prism is a prism made of AlFeSil, which is a sendust-based alloy. AlFeSil prisms defined in ECMA (European Computer Manufacturers Association)-288/AnnexH/H2 are used for the evaluation. The wear width of the AlFeSil prism is obtained by observing the edge of the AlFeSil prism from above using an optical microscope and obtaining the wear width described in paragraph 0015 of JP-A-2007-026564 based on FIG. 1 of the same publication.
(Running condition A)
In an environment with a temperature of 23° C. and a relative humidity of 50%, the surface of the magnetic layer of the magnetic tape is applied in the longitudinal direction of the magnetic tape so that one edge of the AlFeSil prism is perpendicular to the longitudinal direction of the AlFeSil prism with a wrap angle of 12°. The contact is made with a tension of 2.0N. In this state, a portion of the magnetic tape to be measured over a length of 580 m in the longitudinal direction is run at a speed of 3 m/sec to make one reciprocation.
The wear width of the AlFeSil prism after running is defined as an AlFeSil wear value of 1.
 本発明および本明細書において、AlFeSil摩耗値2は、温度23℃相対湿度50%の環境において、以下の方法によって測定される値である。
 上記AlFeSil摩耗値1を測定した後の磁気テープを、リールテスターを用い、下記走行条件Bで走行させる。
(走行条件B)
 温度23℃相対湿度50%の環境において、磁気テープの磁性層表面をLTO8ヘッドにラップ角4°で接触させ、磁気テープの長手方向に2.0Nのテンションをかけ、測定対象の磁気テープをLTO8ヘッドに対して4m/秒の速さで1500回往復摺動させる。かかる往復摺動において、測定対象の磁気テープの少なくともAlFeSil摩耗値1を求めるために走行させた部分(長手方向の長さ580mにわたる部分)を含む部分をLTO8ヘッドに対して摺動させる。
 上記往復摺動後の磁気テープを、同環境(温度23℃相対湿度50%)にて、少なくともAlFeSil摩耗値1を求めるために走行させた部分(長手方向の長さ580mにわたる部分)がリールに巻かれた状態で24時間保存する。上記保存後1時間以内に、上記磁気テープのAlFeSil摩耗値1を求めるために走行させた部分(長手方向の長さ580mにわたる部分)を、同環境(温度23℃相対湿度50%)において走行条件Aで走行させる。
 上記走行後のAlFeSil角柱の摩耗幅を、AlFeSil摩耗値2とする。
In the present invention and this specification, the AlFeSil abrasion value 2 is a value measured by the following method in an environment of temperature 23° C. and relative humidity 50%.
Using a reel tester, the magnetic tape after measuring the AlFeSil abrasion value 1 is run under the following running condition B.
(Driving condition B)
In an environment with a temperature of 23°C and a relative humidity of 50%, the magnetic layer surface of the magnetic tape is brought into contact with the LTO8 head at a wrap angle of 4°, and a tension of 2.0 N is applied in the longitudinal direction of the magnetic tape. The head is reciprocatingly slid 1500 times at a speed of 4 m/sec. In such reciprocating sliding, a portion of the magnetic tape to be measured, which includes at least the portion that was run to obtain an AlFeSil wear value of 1 (a portion extending over a length of 580 m in the longitudinal direction), is slid against the LTO8 head.
The magnetic tape after reciprocating sliding was run in the same environment (temperature 23 ° C. relative humidity 50%) to obtain at least an AlFeSil wear value of 1 (a portion extending over a length of 580 m in the longitudinal direction) on the reel. Store rolled up for 24 hours. Within 1 hour after the storage, the portion of the magnetic tape that was run to obtain the AlFeSil abrasion value of 1 (the portion extending over a length of 580 m in the longitudinal direction) was run under the same environment (temperature 23 ° C. relative humidity 50%). Run with A.
The wear width of the AlFeSil prism after running is defined as an AlFeSil wear value 2 .
 本発明および本明細書において、温度23℃相対湿度50%の環境において、磁気テープの磁性層の表面について測定されるAlFeSil摩耗値の保存前後の変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)は、上記方法によって求められたAlFeSil摩耗値1およびAlFeSil摩耗値2から算出される。以下において、上記変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)を、「保存前後のAlFeSil摩耗値変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)」とも記載する。 In the present invention and this specification, the rate of change in the AlFeSil abrasion value before and after storage (AlFeSil abrasion value 2/AlFeSil abrasion value 1) measured on the surface of the magnetic layer of the magnetic tape in an environment with a temperature of 23° C. and a relative humidity of 50%. is calculated from the AlFeSil wear value 1 and the AlFeSil wear value 2 obtained by the above method. Hereinafter, the rate of change (AlFeSil wear value 2/AlFeSil wear value 1) is also referred to as "AlFeSil wear value change rate before and after storage (AlFeSil wear value 2/AlFeSil wear value 1)".
 本発明および本明細書において、「LTO8ヘッド」とは、LTO8規格にしたがう磁気ヘッドである。上記LTO8ヘッドとしては、LTO8ドライブに搭載されている磁気ヘッドを取り出して使用してもよく、LTO8ドライブ用の磁気ヘッドとして市販されている磁気ヘッドを使用してもよい。ここでLTO8ドライブとは、LTO8規格にしたがうドライブ(磁気テープ装置)である。LTO9ドライブとは、LTO9規格にしたがうドライブであり、他の世代(Generation)のドライブについても同様である。また、上記走行条件Bでの磁気テープの走行において、各測定対象の磁気テープに対して、新品の(即ち未使用の)LTO8ヘッドを使用するものとする。なお、LTO8規格が近年の高密度記録化に対応し得る規格であることを考慮し、上記走行条件Bでの磁気テープの走行において使用する磁気ヘッドとしてLTO8を採用したものであって、上記磁気テープはLTO8ドライブにおいて使用されるものに限定されない。上記磁気テープには、LTO8ドライブにおいてデータの記録および/再生が行われてもよく、LTO9ドライブまたは更に次世代のドライブにおいてデータの記録および/再生が行われてもよく、または、LTO7等のLTO8より前の世代のドライブにおいてデータの記録および/再生が行われてもよい。 In the present invention and this specification, an "LTO8 head" is a magnetic head conforming to the LTO8 standard. As the LTO8 head, a magnetic head mounted on the LTO8 drive may be taken out and used, or a magnetic head commercially available as a magnetic head for the LTO8 drive may be used. Here, the LTO8 drive is a drive (magnetic tape device) conforming to the LTO8 standard. An LTO9 drive is a drive conforming to the LTO9 standard, and the same applies to drives of other Generations. Also, in running the magnetic tape under the running condition B, it is assumed that a new (that is, unused) LTO8 head is used for each magnetic tape to be measured. Considering that the LTO8 standard is a standard that can cope with recent high-density recording, LTO8 is adopted as the magnetic head used for running the magnetic tape under the running condition B. Tapes are not limited to those used in LTO8 drives. The magnetic tape may be used for recording and/or reproducing data in an LTO8 drive, may be used for recording and/or reproducing data in an LTO9 drive or a further next generation drive, or may be used for LTO8 such as LTO7. Data may be recorded and/or played back on earlier generation drives.
<保存前後のAlFeSil摩耗値変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)>
 上記磁気テープの研磨特性に関して、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際の電磁変換特性低下を抑制する観点から、保存前後のAlFeSil摩耗値変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)は、0.7以上であり、0.8以上であることが好ましく、0.9以上であることが更に好ましい。保存前後のAlFeSil摩耗値変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)は、例えば1.0以下、1.0未満または0.9以下であることができる。保存前後のAlFeSil摩耗値変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)の値が1.0により近いことは、繰り返し走行により低下した磁気テープ表面の研磨力を短期間で低下前の状態により近づけることができることを意味し得るため、好ましい。AlFeSil摩耗値1およびAlFeSil摩耗値2は、それぞれ、例えば、8μm以上もしくは10μm以上であることができ、また、25μm以下もしくは22μm以下であることができる。上記磁気テープの研磨特性は、例えば、磁性層を作製するために使用する成分の種類、磁性層形成用組成物の調製方法等によって調整することができる。この点の詳細については、後述する。
<AlFeSil wear value change rate before and after storage (AlFeSil wear value 2/AlFeSil wear value 1)>
With respect to the polishing characteristics of the magnetic tape, from the viewpoint of suppressing the deterioration of the electromagnetic conversion characteristics when recording and/or reproducing by controlling the dimension in the width direction of the magnetic tape by adjusting the tension applied in the longitudinal direction of the magnetic tape. The AlFeSil wear value change rate before and after storage (AlFeSil wear value 2/AlFeSil wear value 1) is 0.7 or more, preferably 0.8 or more, and more preferably 0.9 or more. The AlFeSil abrasion value change rate before and after storage (AlFeSil abrasion value 2/AlFeSil abrasion value 1) can be, for example, 1.0 or less, 1.0 or less, or 0.9 or less. The fact that the AlFeSil abrasion value change rate before and after storage (AlFeSil abrasion value 2/AlFeSil abrasion value 1) is closer to 1.0 means that the polishing force on the surface of the magnetic tape, which has decreased due to repeated running, can be reduced in a short period of time by the state before the decrease. It is preferable because it can mean that it can be brought closer. AlFeSil wear value 1 and AlFeSil wear value 2 can be, for example, ≧8 μm or ≧10 μm, and ≦25 μm or ≦22 μm, respectively. The abrasive properties of the magnetic tape can be adjusted by, for example, the type of components used for forming the magnetic layer, the preparation method of the composition for forming the magnetic layer, and the like. Details of this point will be described later.
<垂直方向角型比>
 一形態では、上記磁気テープの垂直方向角型比は、例えば0.55以上であることができ、0.60以上であることが好ましい。上記磁気テープの垂直方向角型比が0.60以上であることは、電磁変換特性向上の観点から好ましい。角型比の上限は、原理上、1.00以下である。上記磁気テープの垂直方向角型比は、1.00以下であることができ、0.95以下、0.90以下、0.85以下または0.80以下であることができる。磁気テープの垂直方向角型比の値が大きいことは、電磁変換特性向上の観点から好ましい。磁気テープの垂直方向角型比は、垂直配向処理の実施等の公知の方法によって制御することができる。
<Vertical squareness ratio>
In one form, the vertical squareness ratio of the magnetic tape can be, for example, 0.55 or more, preferably 0.60 or more. It is preferable from the viewpoint of improving the electromagnetic conversion characteristics that the vertical squareness ratio of the magnetic tape is 0.60 or more. The upper limit of the squareness ratio is, in principle, 1.00 or less. The vertical squareness ratio of the magnetic tape may be 1.00 or less, 0.95 or less, 0.90 or less, 0.85 or less, or 0.80 or less. A magnetic tape having a large squareness ratio in the vertical direction is preferable from the viewpoint of improving electromagnetic conversion characteristics. The perpendicular squareness ratio of the magnetic tape can be controlled by a known method such as performing a perpendicular orientation treatment.
 本発明および本明細書において、「垂直方向角型比」とは、磁気テープの垂直方向において測定される角型比である。角型比に関して記載する「垂直方向」とは、磁性層表面と直交する方向であり、厚み方向ということもできる。本発明および本明細書において、垂直方向角型比は、以下の方法によって求められる。
 測定対象の磁気テープから振動試料型磁力計に導入可能なサイズのサンプル片を切り出す。このサンプル片について、振動試料型磁力計を用いて、最大印加磁界3979kA/m、測定温度296K、磁界掃引速度8.3kA/m/秒にて、サンプル片の垂直方向(磁性層表面と直交する方向)に磁界を印加し、印加した磁界に対するサンプル片の磁化強度を測定する。磁化強度の測定値は、反磁界補正後の値として、かつ振動試料型磁力計のサンプルプローブの磁化をバックグラウンドノイズとして差し引いた値として得るものとする。最大印加磁界における磁化強度をMs、印加磁界ゼロにおける磁化強度をMrとしたとき、角型比SQは、SQ=Mr/Msとして算出される値である。測定温度はサンプル片の温度をいい、サンプル片の周囲の雰囲気温度を測定温度にすることにより、温度平衡が成り立つことによってサンプル片の温度を測定温度にすることができる。
In the present invention and herein, the "vertical squareness ratio" is the squareness ratio measured in the perpendicular direction of the magnetic tape. The "perpendicular direction" described with respect to the squareness ratio is the direction orthogonal to the surface of the magnetic layer, and can also be called the thickness direction. In the present invention and this specification, the vertical squareness ratio is obtained by the following method.
A sample piece of a size that can be introduced into the vibrating sample magnetometer is cut out from the magnetic tape to be measured. Using a vibrating sample magnetometer, this sample piece was measured at a maximum applied magnetic field of 3979 kA/m, a measurement temperature of 296 K, and a magnetic field sweep rate of 8.3 kA/m/sec. direction) and measure the magnetization strength of the sample piece with respect to the applied magnetic field. The measured value of the magnetization intensity shall be obtained as a value after demagnetization correction and as a value obtained by subtracting the magnetization of the sample probe of the vibrating sample magnetometer as background noise. The squareness ratio SQ is a value calculated as SQ=Mr/Ms, where Ms is the magnetization intensity at the maximum applied magnetic field and Mr is the magnetization intensity at zero applied magnetic field. The measurement temperature refers to the temperature of the sample piece, and by setting the ambient temperature around the sample piece to the measurement temperature, the temperature equilibrium is established, whereby the temperature of the sample piece can be made the measurement temperature.
 以下、上記磁気テープについて、更に詳細に説明する。 The magnetic tape will be described in more detail below.
<磁性層>
(強磁性粉末)
 磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を1種または2種以上組み合わせて使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
<Magnetic layer>
(ferromagnetic powder)
As the ferromagnetic powder contained in the magnetic layer, one or a combination of two or more ferromagnetic powders known as ferromagnetic powders used in the magnetic layers of various magnetic recording media can be used. From the viewpoint of improving the recording density, it is preferable to use ferromagnetic powder having a small average particle size. From this point, the average particle size of the ferromagnetic powder is preferably 50 nm or less, more preferably 45 nm or less, even more preferably 40 nm or less, even more preferably 35 nm or less, and 30 nm or less. It is even more preferably 25 nm or less, and even more preferably 20 nm or less. On the other hand, from the viewpoint of magnetization stability, the average particle size of the ferromagnetic powder is preferably 5 nm or more, more preferably 8 nm or more, still more preferably 10 nm or more, and 15 nm or more. is more preferable, and 20 nm or more is even more preferable.
六方晶フェライト粉末
 強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
Hexagonal Ferrite Powder A preferred specific example of the ferromagnetic powder is hexagonal ferrite powder. For details of the hexagonal ferrite powder, for example, paragraphs 0012 to 0030 of JP-A-2011-225417, paragraphs 0134-0136 of JP-A-2011-216149, paragraphs 0013-0030 of JP-A-2012-204726 and Paragraphs 0029 to 0084 of JP-A-2015-127985 can be referred to.
 本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライトの結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライトの結晶構造に帰属される場合、六方晶フェライトの結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライトの結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。 In the present invention and this specification, "hexagonal ferrite powder" refers to ferromagnetic powder in which the crystal structure of hexagonal ferrite is detected as the main phase by X-ray diffraction analysis. The main phase refers to the structure to which the highest intensity diffraction peak is attributed in the X-ray diffraction spectrum obtained by X-ray diffraction analysis. For example, when the highest intensity diffraction peak in an X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of hexagonal ferrite, it is determined that the crystal structure of hexagonal ferrite has been detected as the main phase. do. When only a single structure is detected by X-ray diffraction analysis, this detected structure is taken as the main phase. The crystal structure of hexagonal ferrite contains at least iron atoms, divalent metal atoms and oxygen atoms as constituent atoms. A divalent metal atom is a metal atom that can become a divalent cation as an ion, and examples thereof include alkaline earth metal atoms such as strontium, barium, and calcium atoms, and lead atoms. In the present invention and the specification, hexagonal strontium ferrite powder means that the main divalent metal atoms contained in this powder are strontium atoms, and hexagonal barium ferrite powder means that the main divalent metal atoms contained in this powder are a barium atom as a divalent metal atom. The main divalent metal atom means the divalent metal atom that accounts for the largest amount on an atomic % basis among the divalent metal atoms contained in the powder. However, the above divalent metal atoms do not include rare earth atoms. "Rare earth atoms" in the present invention and herein are selected from the group consisting of scandium atoms (Sc), yttrium atoms (Y), and lanthanide atoms. Lanthanide atoms include lanthanum atom (La), cerium atom (Ce), praseodymium atom (Pr), neodymium atom (Nd), promethium atom (Pm), samarium atom (Sm), europium atom (Eu), gadolinium atom (Gd ), terbium atom (Tb), dysprosium atom (Dy), holmium atom (Ho), erbium atom (Er), thulium atom (Tm), ytterbium atom (Yb), and lutetium atom (Lu) be.
 以下に、六方晶フェライト粉末の一形態である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。 The hexagonal strontium ferrite powder, which is one form of the hexagonal ferrite powder, will be described in more detail below.
 六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。 The activated volume of the hexagonal strontium ferrite powder is preferably in the range of 800-1600 nm 3 . A finely divided hexagonal strontium ferrite powder exhibiting an activation volume within the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion characteristics. The activated volume of the hexagonal strontium ferrite powder is preferably greater than or equal to 800 nm 3 , for example it may be greater than or equal to 850 nm 3 . Further, from the viewpoint of further improving electromagnetic conversion characteristics, the activated volume of the hexagonal strontium ferrite powder is more preferably 1500 nm 3 or less, further preferably 1400 nm 3 or less, and 1300 nm 3 or less. is more preferable, 1200 nm 3 or less is even more preferable, and 1100 nm 3 or less is even more preferable. The same is true for the activation volume of hexagonal barium ferrite powder.
 「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
 Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
The "activation volume" is a unit of magnetization reversal, and is an index indicating the magnetic size of a particle. The activation volume and the anisotropy constant Ku described in the present invention and this specification were measured using a vibrating sample magnetometer at magnetic field sweep speeds of 3 minutes and 30 minutes at the coercive force Hc measurement unit (measurement Temperature: 23° C.±1° C.), which is a value obtained from the following relational expression between Hc and activation volume V. In terms of the units of the anisotropy constant Ku, 1 erg/cc=1.0×10 −1 J/m 3 .
Hc=2Ku/Ms{1−[(kT/KuV)ln(At/0.693)] 1/2 }
[In the above formula, Ku: anisotropy constant (unit: J/m 3 ), Ms: saturation magnetization (unit: kA/m), k: Boltzmann constant, T: absolute temperature (unit: K), V: activity volume (unit: cm 3 ), A: spin precession frequency (unit: s −1 ), t: magnetic field reversal time (unit: s)]
 熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。 An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability. The hexagonal strontium ferrite powder can preferably have a Ku of 1.8×10 5 J/m 3 or more, more preferably 2.0×10 5 J/m 3 or more. Also, Ku of the hexagonal strontium ferrite powder can be, for example, 2.5×10 5 J/m 3 or less. However, the higher the Ku value, the higher the thermal stability, which is preferable.
 六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一形態では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
 希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
The hexagonal strontium ferrite powder may or may not contain rare earth atoms. When the hexagonal strontium ferrite powder contains rare earth atoms, it preferably contains 0.5 to 5.0 atomic % of rare earth atoms (bulk content) with respect to 100 atomic % of iron atoms. In one form, the hexagonal strontium ferrite powder containing rare earth atoms can have uneven distribution of rare earth atoms on the surface layer. In the present invention and in this specification, the term "rare earth atom surface uneven distribution" refers to the rare earth atom content ratio (hereinafter referred to as "Rare earth atom surface layer content" or simply "surface layer content" with respect to rare earth atoms.) is obtained by completely dissolving hexagonal strontium ferrite powder with acid. (hereinafter referred to as "rare earth atom bulk content" or simply "bulk content" with respect to rare earth atoms), and
Rare earth atom surface layer content/rare earth atom bulk content>1.0
means that the ratio of The rare earth atom content rate of the hexagonal strontium ferrite powder described later is synonymous with the rare earth atom bulk content rate. On the other hand, since partial dissolution using an acid dissolves the surface layer of the particles constituting the hexagonal strontium ferrite powder, the content of rare earth atoms in the solution obtained by partial dissolution is It is the rare earth atom content rate in the surface layer of the particles. The rare earth atom surface layer portion content ratio satisfies the ratio of "rare earth atom surface layer portion content/rare earth atom bulk content ratio >1.0" means that the rare earth atoms are present in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder. It means that it is unevenly distributed (that is, it exists more than inside). In the present invention and in this specification, the term "surface layer portion" means a partial region extending from the surface toward the inside of a particle that constitutes the hexagonal strontium ferrite powder.
 六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
 また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気テープの走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
 繰り返し再生における再生出力の低下を抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
When the hexagonal strontium ferrite powder contains rare earth atoms, the rare earth atom content (bulk content) is preferably in the range of 0.5 to 5.0 atomic % with respect to 100 atomic % of iron atoms. The fact that the rare earth atoms are contained in the bulk content in the above range and that the rare earth atoms are unevenly distributed in the surface layer of the particles constituting the hexagonal strontium ferrite powder contributes to suppressing the decrease in reproduction output during repeated reproduction. Conceivable. This is because the hexagonal strontium ferrite powder contains rare earth atoms with a bulk content within the above range, and the rare earth atoms are unevenly distributed in the surface layers of the particles constituting the hexagonal strontium ferrite powder. This is presumed to be due to the fact that The higher the anisotropy constant Ku, the more the occurrence of a phenomenon called thermal fluctuation can be suppressed (in other words, the thermal stability can be improved). By suppressing the occurrence of thermal fluctuation, it is possible to suppress a decrease in reproduction output in repeated reproduction. The uneven distribution of rare earth atoms in the particle surface layer of the hexagonal strontium ferrite powder contributes to stabilizing the spin of the iron (Fe) site in the crystal lattice of the surface layer, thereby increasing the anisotropy constant Ku. It is speculated that it will increase.
In addition, it is speculated that the use of hexagonal strontium ferrite powder, which has rare earth atoms unevenly distributed in the surface layer, as the ferromagnetic powder for the magnetic layer contributes to suppressing abrasion of the magnetic layer surface due to sliding against the magnetic head. be. That is, it is presumed that the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed on the surface layer can contribute to the improvement of the running durability of the magnetic tape. This is because the uneven distribution of rare earth atoms on the surfaces of the particles that make up the hexagonal strontium ferrite powder improves the interaction between the particle surfaces and organic substances (e.g., binders and/or additives) contained in the magnetic layer. and as a result, the strength of the magnetic layer is improved.
From the viewpoint of suppressing a decrease in reproduction output in repeated reproduction and/or from the viewpoint of further improving running durability, the rare earth atom content (bulk content) is in the range of 0.5 to 4.5 atomic %. is more preferably in the range of 1.0 to 4.5 atomic %, and even more preferably in the range of 1.5 to 4.5 atomic %.
 上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として1種の希土類原子のみ含んでもよく、2種以上の希土類原子を含んでもよい。2種以上の希土類原子を含む場合の上記バルク含有率とは、2種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いられる場合の含有量または含有率とは、2種以上の合計についていうものとする。 The above bulk content is the content obtained by completely dissolving the hexagonal strontium ferrite powder. In the present invention and this specification, unless otherwise specified, the atomic content refers to the bulk content obtained by completely dissolving the hexagonal strontium ferrite powder. The hexagonal strontium ferrite powder containing rare earth atoms may contain only one kind of rare earth atoms as rare earth atoms, or may contain two or more kinds of rare earth atoms. When two or more rare earth atoms are contained, the bulk content is obtained for the total of two or more rare earth atoms. This point also applies to the present invention and other components in this specification. That is, unless otherwise specified, only one component may be used, or two or more components may be used. When two or more are used, the content or content refers to the total of two or more.
 六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか1種以上であればよい。繰り返し再生における再生出力の低下を抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。 When the hexagonal strontium ferrite powder contains rare earth atoms, the contained rare earth atoms may be any one or more rare earth atoms. Preferred rare earth atoms from the viewpoint of suppressing a decrease in reproduction output in repeated reproduction include neodymium atoms, samarium atoms, yttrium atoms and dysprosium atoms, more preferably neodymium atoms, samarium atoms and yttrium atoms, and neodymium atoms. More preferred.
 希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。 In the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed on the surface layer, the rare earth atoms need only be unevenly distributed on the surface layer of the particles constituting the hexagonal strontium ferrite powder, and the degree of uneven distribution is not limited. For example, for a hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer, the surface layer content of rare earth atoms obtained by partially dissolving under the dissolving conditions described later and the rare earth elements obtained by completely dissolving under the dissolving conditions described later The ratio of atoms to the bulk content, "surface layer content/bulk content", is greater than 1.0 and can be 1.5 or more. When the "surface layer content/bulk content" is greater than 1.0, it means that the rare earth atoms are unevenly distributed in the surface layer (ie, more present than in the interior) in the particles constituting the hexagonal strontium ferrite powder. do. In addition, the ratio between the surface layer content of rare earth atoms obtained by partial dissolution under the dissolution conditions described later and the bulk content of rare earth atoms obtained by complete dissolution under the dissolution conditions described later, "surface layer content/ The "bulk content" can be, for example, 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, 5.0 or less, or 4.0 or less. However, in the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer portion, the rare earth atoms should be unevenly distributed in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder. "Ratio" is not limited to the exemplified upper or lower limits.
 六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気テープの磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
 上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
 上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
 試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP:Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
 一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
 試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
Partial dissolution and total dissolution of hexagonal strontium ferrite powder are described below. For hexagonal strontium ferrite powders present as powders, sample powders for partial dissolution and total dissolution are taken from the same lot of powder. On the other hand, as for the hexagonal strontium ferrite powder contained in the magnetic layer of the magnetic tape, part of the hexagonal strontium ferrite powder taken out from the magnetic layer is subjected to partial melting, and the other part is subjected to complete melting. The hexagonal strontium ferrite powder can be extracted from the magnetic layer, for example, by the method described in paragraph 0032 of JP-A-2015-91747.
The partial dissolution means dissolution to such an extent that residual hexagonal strontium ferrite powder can be visually confirmed in the liquid at the end of dissolution. For example, by partial dissolution, a region of 10 to 20% by mass of the particles constituting the hexagonal strontium ferrite powder can be dissolved out of 100% by mass of the entire particles. On the other hand, the above-mentioned complete dissolution means that the hexagonal strontium ferrite powder is dissolved to the point where no residue of the hexagonal strontium ferrite powder remains in the liquid at the end of dissolution.
The partial dissolution and the measurement of the surface layer content are performed, for example, by the following methods. However, the dissolution conditions such as the amount of sample powder described below are examples, and dissolution conditions that allow partial dissolution and complete dissolution can be arbitrarily adopted.
A container (for example, a beaker) containing 12 mg of sample powder and 10 mL of 1 mol/L hydrochloric acid is held on a hot plate with a set temperature of 70° C. for 1 hour. The resulting solution is filtered through a 0.1 μm membrane filter. Elemental analysis of the filtrate thus obtained is performed by an inductively coupled plasma (ICP) analyzer. In this way, the surface layer portion content of rare earth atoms relative to 100 atomic % of iron atoms can be obtained. When multiple types of rare earth atoms are detected by elemental analysis, the total content of all rare earth atoms is taken as the surface layer portion content. This point also applies to the measurement of the bulk content.
On the other hand, the measurement of the total dissolution and bulk content is carried out, for example, by the following method.
A container (for example, a beaker) containing 12 mg of sample powder and 10 mL of 4 mol/L hydrochloric acid is held on a hot plate with a set temperature of 80° C. for 3 hours. After that, the partial dissolution and the measurement of the surface layer portion content are carried out in the same manner as described above, and the bulk content with respect to 100 atom % of iron atoms can be obtained.
 磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一形態では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。 From the viewpoint of increasing the reproduction output when reproducing data recorded on the magnetic tape, it is desirable that the ferromagnetic powder contained in the magnetic tape have a high mass magnetization σs. In this regard, hexagonal strontium ferrite powders containing rare earth atoms but not unevenly distributed in the surface layer of rare earth atoms tended to have a significantly lower σs compared to hexagonal strontium ferrite powders containing no rare earth atoms. On the other hand, hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer is considered preferable in terms of suppressing such a large decrease in σs. In one form, the σs of the hexagonal strontium ferrite powder can be 45 A·m 2 /kg or greater, and can also be 47 A·m 2 /kg or greater. On the other hand, from the viewpoint of noise reduction, σs is preferably 80 A·m 2 /kg or less, more preferably 60 A·m 2 /kg or less. σs can be measured using a known measuring device capable of measuring magnetic properties, such as a vibrating sample magnetometer. In the present invention and this specification, unless otherwise specified, mass magnetization σs is a value measured at a magnetic field strength of 15 kOe. 1 [kOe]=10 6 /4π [A/m].
 六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一形態では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一形態では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて1種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。 With respect to the content of constituent atoms (bulk content) of the hexagonal strontium ferrite powder, the strontium atom content can be, for example, in the range of 2.0 to 15.0 atomic % with respect to 100 atomic % of iron atoms. . In one form, the hexagonal strontium ferrite powder can have strontium atoms as the only divalent metal atoms contained in the powder. In yet another form, the hexagonal strontium ferrite powder can also contain one or more other divalent metal atoms in addition to the strontium atoms. For example, it can contain barium atoms and/or calcium atoms. When other divalent metal atoms other than strontium atoms are contained, the barium atom content and calcium atom content in the hexagonal strontium ferrite powder are, for example, 0.05 to 5 atoms per 100 atomic percent of iron atoms. can be in the range of .0 atomic %.
 六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または2種以上の結晶構造が検出されるものであることができる。例えば一形態では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下を抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一形態では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一形態では、ビスマス原子(Bi)を含まないものであることができる。 As crystal structures of hexagonal ferrite, magnetoplumbite type (also called “M type”), W type, Y type and Z type are known. The hexagonal strontium ferrite powder may have any crystal structure. The crystal structure can be confirmed by X-ray diffraction analysis. The hexagonal strontium ferrite powder can have a single crystal structure or two or more crystal structures detected by X-ray diffraction analysis. For example, in one form, a hexagonal strontium ferrite powder can be one in which only the M-type crystal structure is detected by X-ray diffraction analysis. For example, M-type hexagonal ferrite is represented by a composition formula of AFe 12 O 19 . Here, A represents a divalent metal atom, and if the hexagonal strontium ferrite powder is M-type, A is only a strontium atom (Sr), or if A contains a plurality of divalent metal atoms, , as described above, strontium atoms (Sr) account for the largest amount on an atomic % basis. The divalent metal atom content of the hexagonal strontium ferrite powder is usually determined by the type of crystal structure of the hexagonal ferrite, and is not particularly limited. The same applies to the iron atom content and the oxygen atom content. The hexagonal strontium ferrite powder contains at least iron atoms, strontium atoms and oxygen atoms, and may also contain rare earth atoms. Furthermore, the hexagonal strontium ferrite powder may or may not contain atoms other than these atoms. As an example, the hexagonal strontium ferrite powder may contain aluminum atoms (Al). The content of aluminum atoms can be, for example, 0.5 to 10.0 atomic % with respect to 100 atomic % of iron atoms. From the viewpoint of suppressing a decrease in reproduction output in repeated reproduction, the hexagonal strontium ferrite powder contains iron atoms, strontium atoms, oxygen atoms and rare earth atoms, and the content of atoms other than these atoms is 100 atomic % iron atoms. On the other hand, it is preferably 10.0 atomic % or less, more preferably in the range of 0 to 5.0 atomic %, and may be 0 atomic %. That is, in one form, the hexagonal strontium ferrite powder may contain no atoms other than iron atoms, strontium atoms, oxygen atoms and rare earth atoms. The content expressed in atomic % above is the content of each atom (unit: mass %) obtained by completely dissolving the hexagonal strontium ferrite powder, and converted to the value expressed in atomic % using the atomic weight of each atom. It is required by conversion. Moreover, in the present invention and this specification, the phrase "not containing" an atom means that the content of the atom is 0% by mass as measured by an ICP analyzer after being completely dissolved. The detection limit of an ICP analyzer is usually 0.01 ppm (parts per million) or less on a mass basis. The above "does not contain" shall be used in the sense of containing in an amount below the detection limit of the ICP analyzer. The hexagonal strontium ferrite powder, in one form, can be free of bismuth atoms (Bi).
金属粉末
 強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
Metal powder Ferromagnetic metal powder is also a preferred specific example of the ferromagnetic powder. For details of the ferromagnetic metal powder, for example, paragraphs 0137 to 0141 of JP-A-2011-216149 and paragraphs 0009-0023 of JP-A-2005-251351 can be referred to.
ε-酸化鉄粉末
 強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄の結晶構造に帰属される場合、ε-酸化鉄の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気テープの磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
ε-iron oxide powder A preferred specific example of the ferromagnetic powder is ε-iron oxide powder. In the present invention and the specification, "ε-iron oxide powder" means a ferromagnetic powder in which the crystal structure of ε-iron oxide is detected as the main phase by X-ray diffraction analysis. For example, when the highest intensity diffraction peak in the X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of ε-iron oxide, it is determined that the crystal structure of ε-iron oxide has been detected as the main phase. shall be As a method for producing ε-iron oxide powder, a method of producing from goethite, a reverse micelle method, and the like are known. All of the above manufacturing methods are known. Also, a method for producing ε-iron oxide powder in which a part of Fe is substituted with substitution atoms such as Ga, Co, Ti, Al, and Rh is described in J. Am. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284, J.P. Mater. Chem. C, 2013, 1, pp. 5200-5206 and the like. However, the method for producing the ε-iron oxide powder that can be used as the ferromagnetic powder in the magnetic layer of the magnetic tape is not limited to the methods mentioned here.
 ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。 The activated volume of the ε-iron oxide powder is preferably in the range of 300-1500 nm 3 . A finely divided ε-iron oxide powder exhibiting an activation volume in the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion properties. The activated volume of the ε-iron oxide powder is preferably greater than or equal to 300 nm 3 and may eg be greater than or equal to 500 nm 3 . Further, from the viewpoint of further improving the electromagnetic conversion characteristics, the activated volume of the ε-iron oxide powder is more preferably 1400 nm 3 or less, further preferably 1300 nm 3 or less, and 1200 nm 3 or less. is more preferable, and 1100 nm 3 or less is even more preferable.
 熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。 An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability. The ε-iron oxide powder can preferably have a Ku of 3.0×10 4 J/m 3 or more, more preferably 8.0×10 4 J/m 3 or more. Also, Ku of the ε-iron oxide powder can be, for example, 3.0×10 5 J/m 3 or less. However, a higher Ku means a higher thermal stability, which is preferable, and thus is not limited to the values exemplified above.
 磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一形態では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。 From the viewpoint of increasing the reproduction output when reproducing data recorded on the magnetic tape, it is desirable that the ferromagnetic powder contained in the magnetic tape have a high mass magnetization σs. In this regard, in one aspect, the σs of the ε-iron oxide powder can be 8 A·m 2 /kg or greater, and can also be 12 A·m 2 /kg or greater. On the other hand, σs of the ε-iron oxide powder is preferably 40 A·m 2 /kg or less, more preferably 35 A·m 2 /kg or less, from the viewpoint of noise reduction.
 本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
 粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントするか、ディスプレイに表示する等して、粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
 以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
In the present invention and this specification, unless otherwise specified, the average particle size of various powders such as ferromagnetic powder is a value measured by the following method using a transmission electron microscope.
The powder is photographed using a transmission electron microscope at a magnification of 100,000 times, and printed on photographic paper or displayed on a display so that the total magnification is 500,000 times to obtain a photograph of the particles that make up the powder. . The particles of interest are selected from the photograph of the particles obtained, and the contours of the particles are traced with a digitizer to measure the size of the particles (primary particles). Primary particles refer to individual particles without agglomeration.
The above measurements are performed on 500 randomly selected particles. The arithmetic mean of the particle sizes of the 500 particles thus obtained is taken as the average particle size of the powder. As the transmission electron microscope, for example, Hitachi's H-9000 transmission electron microscope can be used. Further, the particle size can be measured using known image analysis software such as Carl Zeiss image analysis software KS-400. Unless otherwise specified, the average particle size shown in the examples below was measured using a transmission electron microscope H-9000 manufactured by Hitachi, and image analysis software KS-400 manufactured by Carl Zeiss as image analysis software. value. In the present invention and herein, powder means a collection of particles. For example, ferromagnetic powder means an aggregate of ferromagnetic particles. In addition, the aggregation of a plurality of particles is not limited to the form in which the particles constituting the aggregation are in direct contact, but also includes the form in which a binder, an additive, etc., which will be described later, is interposed between the particles. be. The term particles is sometimes used to describe powders.
 粒子サイズ測定のために磁気テープから試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。 As a method for collecting sample powder from a magnetic tape for particle size measurement, for example, the method described in paragraph 0015 of JP-A-2011-048878 can be adopted.
 本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
In the present invention and this specification, unless otherwise specified, the size of the particles constituting the powder (particle size) is the shape of the particles observed in the above particle photographs.
(1) In the case of needle-like, spindle-like, columnar (however, the height is greater than the maximum major diameter of the bottom surface), etc., the length of the major axis constituting the particle, that is, the major axis length,
(2) In the case of a plate-like or columnar shape (where the thickness or height is smaller than the maximum major diameter of the plate surface or bottom surface), it is expressed by the maximum major diameter of the plate surface or bottom surface,
(3) If the particle is spherical, polyhedral, irregular, or the like, and the major axis of the particle cannot be specified from the shape, it is represented by the equivalent circle diameter. The equivalent circle diameter is obtained by the circular projection method.
 また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
 そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
In addition, the average acicular ratio of the powder is obtained by measuring the length of the minor axis of the particles in the above measurement, that is, the minor axis length, and obtaining the value of (long axis length / minor axis length) of each particle. It refers to the arithmetic mean of the values obtained for the particles. Here, unless otherwise specified, the minor axis length is the length of the minor axis constituting the particle in the case of (1) in the definition of the particle size, and the thickness or height in the case of (2). In the case of (3), since there is no distinction between the major axis and the minor axis, (long axis length/short axis length) is regarded as 1 for convenience.
Unless otherwise specified, when the particle shape is specific, for example, in the case of the definition (1) of the particle size, the average particle size is the average major axis length, and in the case of the definition (2), the average particle size is Average plate diameter. In the case of the same definition (3), the average particle size is the average diameter (also referred to as average particle size or average particle size).
 磁性層における強磁性粉末の含有率(充填率)は、磁性層の総質量に対して、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。 The ferromagnetic powder content (filling rate) in the magnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass, relative to the total mass of the magnetic layer. A high filling rate of the ferromagnetic powder in the magnetic layer is preferable from the viewpoint of improving the recording density.
(結合剤)
 上記磁気テープは塗布型の磁気テープであることができ、磁性層に結合剤を含むことができる。結合剤とは、1種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。また、結合剤は、電子線硬化型樹脂等の放射線硬化型樹脂であってもよい。放射線硬化型樹脂については、特開2011-048878号公報の段落0044~0045を参照できる。
 結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。結合剤は、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができる。
(Binder)
The magnetic tape may be a coated magnetic tape, and the magnetic layer may contain a binder. A binder is one or more resins. As the binder, various resins commonly used as binders for coating-type magnetic recording media can be used. Examples of binders include polyurethane resins, polyester resins, polyamide resins, vinyl chloride resins, acrylic resins obtained by copolymerizing styrene, acrylonitrile, methyl methacrylate, etc., cellulose resins such as nitrocellulose, epoxy resins, phenoxy resins, polyvinyl acetal, A resin selected from polyvinyl alkylal resins such as polyvinyl butyral can be used singly, or a plurality of resins can be mixed and used. Preferred among these are polyurethane resins, acrylic resins, cellulose resins, and vinyl chloride resins. These resins may be homopolymers or copolymers. These resins can also be used as binders in the non-magnetic layer and/or backcoat layer, which will be described later. Paragraphs 0028 to 0031 of JP-A-2010-24113 can be referred to for the above binders. The binder may also be a radiation-curable resin such as an electron beam-curable resin. Regarding the radiation curable resin, paragraphs 0044 to 0045 of JP-A-2011-048878 can be referred to.
The weight-average molecular weight of the resin used as the binder can be, for example, 10,000 or more and 200,000 or less. The binder can be used in an amount of, for example, 1.0 to 30.0 parts by weight per 100.0 parts by weight of the ferromagnetic powder.
(硬化剤)
 結合剤とともに硬化剤を使用することもできる。硬化剤は、一形態では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一形態では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁気テープの製造工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層等の各層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
(curing agent)
A hardening agent can also be used with the binder. The curing agent can be, in one form, a thermosetting compound which is a compound in which a curing reaction (crosslinking reaction) proceeds by heating, and in another form, a photocuring compound in which a curing reaction (crosslinking reaction) proceeds by light irradiation. can be a chemical compound. The curing agent can be contained in the magnetic layer in a state in which at least a portion thereof has reacted (crosslinked) with other components such as a binder as the curing reaction progresses during the manufacturing process of the magnetic tape. Preferred curing agents are thermosetting compounds, preferably polyisocyanates. For details of the polyisocyanate, paragraphs 0124 to 0125 of JP-A-2011-216149 can be referred to. The curing agent is contained in the composition for forming the magnetic layer in an amount of, for example, 0 to 80.0 parts by weight per 100.0 parts by weight of the binder. It can be used in an amount of 80.0 parts by weight.
(添加剤)
 磁性層には、必要に応じて1種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。
(Additive)
The magnetic layer may optionally contain one or more additives. Examples of additives include the curing agents described above. Additives contained in the magnetic layer include nonmagnetic powders, lubricants, dispersants, dispersing aids, antifungal agents, antistatic agents, antioxidants, and the like.
 磁性層形成用組成物に添加し得る分散剤としては、カルボキシ基含有化合物、含窒素化合物等の強磁性粉末の分散性を高めるための公知の分散剤を挙げることもできる。例えば、含窒素化合物は、NHRで表される一級アミン、NHRで表される二級アミン、NRで表される三級アミンのいずれであってもよい。上記において、Rは含窒素化合物を構成する任意の構造を示し、複数存在するRは同一であっても異なっていてもよい。含窒素化合物は、分子中に複数の繰り返し構造を有する化合物(ポリマー)であってもよい。含窒素化合物の含窒素部が強磁性粉末の粒子表面への吸着部として機能することが、含窒素化合物が分散剤として働くことができる理由と考えられる。カルボキシ基含有化合物は、例えばオレイン酸等の脂肪酸を挙げることができる。カルボキシ基含有化合物については、カルボキシ基が強磁性粉末の粒子表面への吸着部として機能することが、カルボキシ基含有化合物が分散剤として働くことができる理由と考えられる。カルボキシ基含有化合物と含窒素化合物を併用することも、好ましい。これらの分散剤の使用量は適宜設定することができる。 Examples of the dispersant that can be added to the composition for forming the magnetic layer include known dispersants for enhancing the dispersibility of ferromagnetic powder such as carboxy group-containing compounds and nitrogen-containing compounds. For example, the nitrogen-containing compound may be any of a primary amine represented by NH2R , a secondary amine represented by NHR2 , and a tertiary amine represented by NR3 . In the above, R represents an arbitrary structure constituting the nitrogen-containing compound, and multiple Rs may be the same or different. The nitrogen-containing compound may be a compound (polymer) having multiple repeating structures in its molecule. The reason why the nitrogen-containing compound can work as a dispersing agent is considered to be that the nitrogen-containing portion of the nitrogen-containing compound functions as an adsorption portion to the particle surface of the ferromagnetic powder. Examples of carboxy group-containing compounds include fatty acids such as oleic acid. As for the carboxy group-containing compound, the reason why the carboxy group-containing compound can work as a dispersing agent is considered to be that the carboxy group functions as an adsorption site on the particle surface of the ferromagnetic powder. It is also preferable to use a carboxy group-containing compound and a nitrogen-containing compound in combination. The amount of these dispersants to be used can be set appropriately.
 分散剤を非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012-133837号公報の段落0061を参照できる。 A dispersant may be added to the composition for forming the non-magnetic layer. See paragraph 0061 of JP-A-2012-133837 for the dispersant that can be added to the composition for forming a non-magnetic layer.
 磁性層に添加し得る添加剤としては、例えば、特開2016-51493号公報に記載されているポリアルキレンイミン系ポリマーを挙げることもできる。かかるポリアルキレンイミン系ポリマーについては、特開2016-51493号公報の段落0035~0077および同公報の実施例の記載を参照できる。 Examples of additives that can be added to the magnetic layer include polyalkyleneimine-based polymers described in JP-A-2016-51493. For such a polyalkyleneimine-based polymer, reference can be made to paragraphs 0035 to 0077 of JP-A-2016-51493 and the examples in the same publication.
 磁性層に含まれ得る非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末等が挙げられる。 The non-magnetic powder that can be contained in the magnetic layer includes a non-magnetic powder that can function as an abrasive, a non-magnetic powder that can function as a protrusion-forming agent that forms moderately protruding protrusions on the surface of the magnetic layer, and the like. mentioned.
 研磨剤としては、モース硬度8超の非磁性粉末が好ましく、モース硬度9以上の非磁性粉末がより好ましい。モース硬度の最大値は10である。研磨剤は、無機物質の粉末であることができ、有機物質の粉末であることもできる。研磨剤は、無機または有機の酸化物の粉末または炭化物(カーバイド)の粉末であることができる。カーバイドとしては、ボロンカーバイド(例えばBC)、チタンカーバイド(例えばTiC)等を挙げることができる。また、研磨剤としては、ダイヤモンドも使用可能である。研磨剤は、一形態では、無機酸化物の粉末であることが好ましい。具体的には、無機酸化物としては、アルミナ(例えばAl)、酸化チタン(例えばTiO)、酸化セリウム(例えばCeO)、酸化ジルコニウム(例えばZrO)等を挙げることができ、中でもアルミナが好ましい。アルミナのモース硬度は約9である。アルミナ粉末については、特開2013-229090号公報の段落0021も参照できる。また、研磨剤の粒子サイズの指標としては、比表面積を用いることができる。比表面積が大きいほど研磨剤を構成する粒子の一次粒子の粒子サイズが小さいと考えることができる。研磨剤としては、BET(Brunauer-Emmett-Teller)法によって測定された比表面積(以下、「BET比表面積」と記載する。)が14m/g以上の研磨剤を使用することが好ましい。また、分散性の観点からは、BET比表面積が40m/g以下の研磨剤を使用することが好ましい。磁性層における研磨剤の含有量は、強磁性粉末100.0質量部に対して1.0~20.0質量部であることが好ましく、1.0~15.0質量部であることがより好ましい。研磨剤としては、1種の非磁性粉末のみ使用することもでき、組成および/または物性(例えばサイズ)の異なる2種以上の非磁性粉末を使用することもできる。研磨剤として2種以上の非磁性粉末を使用する場合、研磨剤の含有量とは、それら2種以上の非磁性粉末の合計含有量をいうものとする。以上の点は、本発明および本明細書における各種成分の含有量についても同様である。研磨剤は、強磁性粉末と別に分散処理に付すこと(別分散)が好ましく、後述の突起形成剤とも別に分散処理に付すこと(別分散)がより好ましい。磁性層形成用組成物の調製時、研磨剤の分散液(以下、「研磨剤液」とも記載する。)として、成分および/または分散条件が異なる2種以上の分散液を調製することは、磁気テープの研磨特性を制御するうえで好ましい。 As the abrasive, a non-magnetic powder having a Mohs hardness of more than 8 is preferable, and a non-magnetic powder having a Mohs hardness of 9 or more is more preferable. The maximum value of Mohs hardness is 10. The abrasive can be a powder of inorganic material or can be a powder of organic material. The abrasive can be an inorganic or organic oxide powder or carbide powder. Examples of carbide include boron carbide (eg, B 4 C), titanium carbide (eg, TiC), and the like. Diamond can also be used as the abrasive. In one form, the abrasive is preferably an inorganic oxide powder. Specifically, examples of inorganic oxides include alumina (e.g. Al 2 O 3 ), titanium oxide (e.g. TiO 2 ), cerium oxide (e.g. CeO 2 ), zirconium oxide (e.g. ZrO 2 ), and the like. Among them, alumina is preferred. Alumina has a Mohs hardness of about 9. Regarding alumina powder, paragraph 0021 of JP-A-2013-229090 can also be referred to. Further, as an index of the particle size of the abrasive, the specific surface area can be used. It can be considered that the larger the specific surface area, the smaller the particle size of the primary particles constituting the abrasive. As the abrasive, it is preferable to use an abrasive having a specific surface area measured by the BET (Brunauer-Emmett-Teller) method (hereinafter referred to as "BET specific surface area") of 14 m 2 /g or more. From the viewpoint of dispersibility, it is preferable to use a polishing agent having a BET specific surface area of 40 m 2 /g or less. The content of the abrasive in the magnetic layer is preferably 1.0 to 20.0 parts by mass, more preferably 1.0 to 15.0 parts by mass, per 100.0 parts by mass of the ferromagnetic powder. preferable. As the abrasive, only one type of non-magnetic powder can be used, or two or more types of non-magnetic powders having different compositions and/or physical properties (for example, size) can be used. When two or more kinds of non-magnetic powders are used as abrasives, the content of abrasives means the total content of these two or more kinds of non-magnetic powders. The above points also apply to the content of various components in the present invention and the present specification. The abrasive is preferably dispersed separately from the ferromagnetic powder (separate dispersion), and more preferably dispersed separately from the protrusion forming agent described later (separate dispersion). When preparing the composition for forming the magnetic layer, preparing two or more types of dispersions with different components and/or dispersion conditions as abrasive dispersions (hereinafter also referred to as "abrasive liquids") is It is preferable for controlling the polishing properties of the magnetic tape.
 研磨剤液の分散状態の調整のために、分散剤を使用することもできる。研磨剤の分散性を高めるための分散剤として機能し得る化合物としては、フェノール性ヒドロキシ基を有する芳香族炭化水素化合物を挙げることができる。「フェノール性ヒドロキシ基」とは、芳香環に直接結合したヒドロキシ基をいう。上記芳香族炭化水素化合物に含まれる芳香環は、単環であってもよく、多環構造であってもよく、縮合環であってもよい。研磨剤の分散性向上の観点からは、ベンゼン環またはナフタレン環を含む芳香族炭化水素化合物が好ましい。また、上記芳香族炭化水素化合物は、フェノール性ヒドロキシ基以外の置換基を有していてもよい。フェノール性ヒドロキシ基以外の置換基としては、例えば、ハロゲン原子、アルキル基、アルコキシ基、アミノ基、アシル基、ニトロ基、ニトロソ基、ヒドロキシアルキル基等を挙げることができ、ハロゲン原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシアルキル基が好ましい。上記芳香族炭化水素化合物1分子中に含まれるフェノール性ヒドロキシ基は、1つであってもよく、2つ、3つ、またはそれ以上であってもよい。 A dispersant can also be used to adjust the dispersion state of the abrasive liquid. A compound that can function as a dispersant for enhancing the dispersibility of the abrasive includes an aromatic hydrocarbon compound having a phenolic hydroxy group. A "phenolic hydroxy group" refers to a hydroxy group directly attached to an aromatic ring. The aromatic ring contained in the aromatic hydrocarbon compound may be monocyclic, polycyclic, or condensed. From the viewpoint of improving the dispersibility of the abrasive, aromatic hydrocarbon compounds containing a benzene ring or a naphthalene ring are preferred. Moreover, the aromatic hydrocarbon compound may have a substituent other than the phenolic hydroxy group. Examples of substituents other than phenolic hydroxy groups include halogen atoms, alkyl groups, alkoxy groups, amino groups, acyl groups, nitro groups, nitroso groups, hydroxyalkyl groups and the like. Alkoxy groups, amino groups and hydroxyalkyl groups are preferred. The number of phenolic hydroxy groups contained in one molecule of the aromatic hydrocarbon compound may be one, two, three or more.
 フェノール性ヒドロキシ基を有する芳香族炭化水素化合物の好ましい一形態としては、下記式100で表される化合物を挙げることができる。 A preferred form of the aromatic hydrocarbon compound having a phenolic hydroxy group is the compound represented by the following formula 100.
Figure JPOXMLDOC01-appb-C000001
[式100中、X101~X108のうちの2つはヒドロキシ基であり、他の6つはそれぞれ独立に水素原子または置換基を表す。]
Figure JPOXMLDOC01-appb-C000001
[In Formula 100, two of X 101 to X 108 are hydroxy groups, and the other six each independently represent a hydrogen atom or a substituent. ]
 式100で表される化合物において、2つのヒドロキシ基(フェノール性ヒドロキシ基)の置換位置は特に限定されるものではない。 In the compound represented by Formula 100, the substitution positions of the two hydroxy groups (phenolic hydroxy groups) are not particularly limited.
 式100中、X101~X108のうちの2つがヒドロキシ基(フェノール性ヒドロキシ基)であり、他の6つはそれぞれ独立に水素原子または置換基を表す。また、X101~X108のうち、2つのヒドロキシ基以外の部分がすべて水素原子であってもよく、一部またはすべてが置換基であってもよい。置換基としては、先に記載した置換基を例示することができる。2つのヒドロキシ基以外の置換基として、1つ以上のフェノール性ヒドロキシ基が含まれていてもよい。研磨剤の分散性向上の観点からは、X101~X108のうちの2つのヒドロキシ基以外はフェノール性ヒドロキシ基ではないことが好ましい。即ち、式100で表される化合物は、ジヒドロキシナフタレンまたはその誘導体であることが好ましく、2,3-ジヒドロキシナフタレンまたはその誘導体であることがより好ましい。X101~X108で表される置換基として好ましい置換基としては、ハロゲン原子(例えば塩素原子、臭素原子)、アミノ基、炭素数1~6(好ましくは1~4)のアルキル基、メトキシ基およびエトキシ基、アシル基、ニトロ基およびニトロソ基、ならびに-CHOH基を挙げることができる。 In Formula 100, two of X 101 to X 108 are hydroxy groups (phenolic hydroxy groups), and the other 6 each independently represent a hydrogen atom or a substituent. In addition, among X 101 to X 108 , all of the portions other than the two hydroxy groups may be hydrogen atoms, or some or all of them may be substituents. As the substituent, the substituents described above can be exemplified. One or more phenolic hydroxy groups may be included as substituents other than the two hydroxy groups. From the viewpoint of improving the dispersibility of the abrasive, it is preferable that the hydroxy groups other than two among X 101 to X 108 are not phenolic hydroxy groups. That is, the compound represented by formula 100 is preferably dihydroxynaphthalene or a derivative thereof, more preferably 2,3-dihydroxynaphthalene or a derivative thereof. Preferable substituents as the substituents represented by X 101 to X 108 include halogen atoms (eg, chlorine atom, bromine atom), amino groups, alkyl groups having 1 to 6 carbon atoms (preferably 1 to 4), and methoxy groups. and ethoxy, acyl, nitro and nitroso groups, and —CH 2 OH groups.
 また、研磨剤の分散性を高めるための分散剤については、特開2014-179149号公報の段落0024~0028も参照できる。 In addition, paragraphs 0024 to 0028 of JP-A-2014-179149 can also be referred to for the dispersant for enhancing the dispersibility of the abrasive.
 研磨剤の分散性を高めるための分散剤は、例えば研磨剤液の調製時(複数の研磨剤液を調製する場合には各研磨剤液について)、研磨剤100.0質量部に対して、例えば0.5~20.0質量部の割合で使用することができ、1.0~10.0質量部の割合で使用することが好ましい。 The dispersant for enhancing the dispersibility of the abrasive is, for example, when preparing the abrasive liquid (for each abrasive liquid when preparing a plurality of abrasive liquids), per 100.0 parts by mass of the abrasive: For example, it can be used in a proportion of 0.5 to 20.0 parts by mass, preferably in a proportion of 1.0 to 10.0 parts by mass.
 突起形成剤の一形態としては、カーボンブラックを挙げることができる。カーボンブラックの平均粒子サイズは、5~200nmの範囲であることが好ましく、10~150nmの範囲であることがより好ましい。また、カーボンブラックのBET比表面積は、10m/g以上であることが好ましく、15m/g以上であることがより好ましい。カーボンブラックのBET比表面積は、分散性向上の容易性の観点からは、50m/g以下であることが好ましく、40m/g以下であることがより好ましい。また、突起形成剤の他の一形態としては、コロイド粒子を挙げることができる。コロイド粒子としては、入手容易性の点から無機コロイド粒子が好ましく、無機酸化物コロイド粒子がより好ましく、シリカコロイド粒子(コロイダルシリカ)がより一層好ましい。本発明および本明細書において、「コロイド粒子」とは、メチルエチルケトン、シクロヘキサノン、トルエンもしくは酢酸エチル、または上記溶媒の2種以上を任意の混合比で含む混合溶媒の少なくとも1つの有機溶媒100mLあたり1g添加した際に、沈降せず分散しコロイド分散体をもたらすことのできる粒子をいうものとする。コロイド粒子の平均粒子サイズは、例えば30~300nmであることができ、40~200nmであることが好ましい。磁性層における突起形成剤の含有量は、強磁性粉末100.0質量部に対して、0.5~4.0質量部であることが好ましく、0.5~3.5質量部であることがより好ましい。突起形成剤は、強磁性粉末と別に分散処理に付すことが好ましく、研磨剤とも別に分散処理に付すことがより好ましい。磁性層形成用組成物の調製時、突起形成剤の分散液(以下、「突起形成剤液」とも記載する。)として、成分および/または分散条件が異なる2種以上の分散液を調製することもできる。 One form of protrusion-forming agent is carbon black. The average particle size of carbon black is preferably in the range of 5-200 nm, more preferably in the range of 10-150 nm. The BET specific surface area of carbon black is preferably 10 m 2 /g or more, more preferably 15 m 2 /g or more. The BET specific surface area of carbon black is preferably 50 m 2 /g or less, more preferably 40 m 2 /g or less, from the viewpoint of ease of improving dispersibility. Moreover, colloidal particles can be mentioned as another form of the projection forming agent. The colloidal particles are preferably inorganic colloidal particles, more preferably inorganic oxide colloidal particles, and still more preferably silica colloidal particles (colloidal silica) from the viewpoint of availability. In the present invention and the specification, the term "colloidal particles" means methyl ethyl ketone, cyclohexanone, toluene or ethyl acetate, or at least one mixed solvent containing two or more of the above solvents in an arbitrary mixing ratio. A particle is defined as a particle that, when dispersed, does not settle but can disperse to provide a colloidal dispersion. The average particle size of the colloidal particles can be, for example, 30-300 nm, preferably 40-200 nm. The content of the protrusion-forming agent in the magnetic layer is preferably 0.5 to 4.0 parts by mass, more preferably 0.5 to 3.5 parts by mass, per 100.0 parts by mass of the ferromagnetic powder. is more preferred. The protrusion-forming agent is preferably dispersed separately from the ferromagnetic powder, and more preferably dispersed separately from the abrasive. When preparing the composition for forming the magnetic layer, prepare two or more dispersions with different components and/or dispersion conditions as a dispersion of the protrusion-forming agent (hereinafter also referred to as "protrusion-forming agent liquid"). can also
 また、磁性層に含まれ得る添加剤の一形態としては、下記式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を挙げることができる。 In addition, one form of additive that can be contained in the magnetic layer is a compound having an ammonium salt structure of an alkyl ester anion represented by Formula 1 below.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式1中、Rは炭素数7以上のアルキル基または炭素数7以上のフッ化アルキル基を表し、Zはアンモニウムカチオンを表す。) (In Formula 1, R represents an alkyl group having 7 or more carbon atoms or a fluorinated alkyl group having 7 or more carbon atoms, and Z + represents an ammonium cation.)
 本発明者は、上記化合物は、潤滑剤として機能し得ると考えている。この点について、以下に更に説明する。
 潤滑剤は、流体潤滑剤と境界潤滑剤とに大別できる。本発明者は、上記式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、流体潤滑剤として機能し得ると考えている。流体潤滑剤は、それ自身が磁性層表面に液膜を形成することにより、磁性層へ潤滑性を付与する役割を果たすことができると考えられる。磁気テープの研磨特性を制御するためには、磁性層表面において流体潤滑剤が液膜を形成していることは望ましいと推察される。また、流体潤滑剤の液膜に関しては、より安定な摺動を可能にする観点からは、磁性層表面で液膜を形成している流体潤滑剤は適量にすることが望ましいと考えられる。この点に関して、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を含む上記化合物は、比較的少量でも流体潤滑剤として優れた役割を果たすことができると考えられる。そのため、上記化合物を磁性層に含有させることは、磁気テープの磁性層表面と磁気ヘッドとの摺動安定性を向上させることにつながると考えられる。
The inventor believes that the compounds can function as lubricants. This point will be further explained below.
Lubricants can be broadly classified into fluid lubricants and boundary lubricants. The present inventor believes that the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 above can function as a fluid lubricant. It is believed that the fluid lubricant itself can play a role in providing lubricity to the magnetic layer by forming a liquid film on the surface of the magnetic layer. In order to control the polishing characteristics of the magnetic tape, it is presumed that it is desirable for the fluid lubricant to form a liquid film on the surface of the magnetic layer. Regarding the liquid film of the fluid lubricant, it is considered desirable to use an appropriate amount of the fluid lubricant forming the liquid film on the surface of the magnetic layer from the viewpoint of enabling more stable sliding. In this regard, it is believed that the compounds containing the ammonium salt structure of the alkyl ester anion represented by Formula 1 can play an excellent role as fluid lubricants even in relatively small amounts. Therefore, it is considered that the inclusion of the above compound in the magnetic layer leads to improved sliding stability between the magnetic layer surface of the magnetic tape and the magnetic head.
 以下、上記化合物について、更に詳細に説明する。 The above compounds will be described in more detail below.
 本発明および本明細書において、特記しない限り、記載されている基は置換基を有してもよく無置換であってもよい。また、置換基を有する基について「炭素数」とは、特記しない限り、置換基の炭素数を含まない炭素数を意味するものとする。本発明および本明細書において、置換基としては、例えば、アルキル基(例えば炭素数1~6のアルキル基)、ヒドロキシ基、アルコキシ基(例えば炭素数1~6のアルコキシ基)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子等)、シアノ基、アミノ基、ニトロ基、アシル基、カルボキシ基、カルボキシ基の塩、スルホン酸基、スルホン酸基の塩等を挙げることができる。 In the present invention and this specification, unless otherwise specified, the groups described may have a substituent or may be unsubstituted. In addition, the “carbon number” of a group having a substituent means the number of carbon atoms not including the number of carbon atoms of the substituent unless otherwise specified. In the present invention and the specification, substituents include, for example, alkyl groups (eg alkyl groups having 1 to 6 carbon atoms), hydroxy groups, alkoxy groups (eg alkoxy groups having 1 to 6 carbon atoms), halogen atoms (eg fluorine atom, chlorine atom, bromine atom, etc.), a cyano group, an amino group, a nitro group, an acyl group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, a salt of a sulfonic acid group, and the like.
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、磁性層に含まれる少なくとも一部が磁性層表面で液膜を形成することができ、一部が磁性層内部に含まれ磁気ヘッドとの摺動時等に磁性層表面に移動して液膜を形成することもできる。また、一部は後述する非磁性層に含まれることができ、磁性層に移動し更に磁性層表面に移動して液膜を形成することもできる。なお、「アルキルエステルアニオン」は、「アルキルカルボキシラートアニオン」と呼ぶこともできる。 At least part of the compound having an ammonium salt structure of an alkyl ester anion represented by formula 1 is contained in the magnetic layer and is capable of forming a liquid film on the surface of the magnetic layer. It is also possible to form a liquid film by moving to the surface of the magnetic layer during sliding with the head. Also, part of it can be contained in a non-magnetic layer, which will be described later, and can also migrate to the magnetic layer and then to the surface of the magnetic layer to form a liquid film. The "alkylester anion" can also be called an "alkylcarboxylate anion".
 式1中、Rは、炭素数7以上のアルキル基または炭素数7以上のフッ化アルキル基を表す。フッ化アルキル基は、アルキル基を構成する水素原子の一部または全部がフッ素原子により置換された構造を有する。Rで表されるアルキル基またはフッ化アルキル基は、直鎖構造であってもよく、分岐を有する構造であってもよく、環状のアルキル基またはフッ化アルキル基でもよく、直鎖構造であることが好ましい。Rで表されるアルキル基またはフッ化アルキル基は、置換基を有していてもよく、無置換であってもよく、無置換であることが好ましい。Rで表されるアルキル基は、例えばC2n+1-で表すことができる。ここでnは7以上の整数を表す。また、Rで表されるフッ化アルキル基は、例えばC2n+1-で表されるアルキル基を構成する水素原子の一部または全部がフッ素原子により置換された構造を有することができる。Rで表されるアルキル基またはフッ化アルキル基の炭素数は、7以上であり、8以上であることが好ましく、9以上であることがより好ましく、10以上であることが更に好ましく、11以上であることが一層好ましく、12以上であることがより一層好ましく、13以上であることが更に一層好ましい。また、Rで表されるアルキル基またはフッ化アルキル基の炭素数は、20以下であることが好ましく、19以下であることがより好ましく、18以下であることが更に好ましい。 In Formula 1, R represents an alkyl group having 7 or more carbon atoms or a fluorinated alkyl group having 7 or more carbon atoms. A fluorinated alkyl group has a structure in which some or all of the hydrogen atoms constituting the alkyl group are substituted with fluorine atoms. The alkyl group or fluorinated alkyl group represented by R may have a linear structure, may have a branched structure, may be a cyclic alkyl group or fluorinated alkyl group, and has a linear structure. is preferred. The alkyl group or fluorinated alkyl group represented by R may have a substituent or may be unsubstituted, and is preferably unsubstituted. An alkyl group represented by R can be represented by, for example, C n H 2n+1 -. Here, n represents an integer of 7 or more. Further, the fluorinated alkyl group represented by R can have a structure in which, for example, some or all of the hydrogen atoms constituting the alkyl group represented by C n H 2n+1 - are substituted with fluorine atoms. The number of carbon atoms in the alkyl group or fluorinated alkyl group represented by R is 7 or more, preferably 8 or more, more preferably 9 or more, further preferably 10 or more, and 11 or more. more preferably, 12 or more, and even more preferably 13 or more. The number of carbon atoms in the alkyl group or fluorinated alkyl group represented by R is preferably 20 or less, more preferably 19 or less, and even more preferably 18 or less.
 式1中、Zはアンモニウムカチオンを表す。アンモニウムカチオンは、詳しくは、以下の構造を有する。本発明および本明細書において、化合物の一部を表す式中の「*」は、その一部の構造と隣接する原子との結合位置を表す。 In Formula 1, Z + represents an ammonium cation. The ammonium cation specifically has the following structure. In the present invention and this specification, "*" in formulas representing part of a compound represents the bonding position between the structure of that part and an adjacent atom.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 アンモニウムカチオンの窒素カチオンNと式1中の酸素アニオンOとが塩架橋基を形成して式1で表されるアルキルエステルアニオンのアンモニウム塩構造が形成され得る。式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物が磁性層に含まれることは、磁気テープについてX線光電子分光法(ESCA:Electron Spectroscopy for Chemical Analysis)、赤外分光法(IR:infrared spectroscopy)等により分析を行うことによって確認できる。 The nitrogen cation N + of the ammonium cation and the oxygen anion O 2 in formula 1 can form a salt bridging group to form the ammonium salt structure of the alkyl ester anion represented by formula 1. The presence of the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 in the magnetic layer can be confirmed by X-ray photoelectron spectroscopy (ESCA) and infrared spectroscopy (IR) for the magnetic tape. It can be confirmed by analyzing by infrared spectroscopy) or the like.
 一形態では、Zで表されるアンモニウムカチオンは、例えば、含窒素ポリマーの窒素原子がカチオンとなることによってもたらされ得る。含窒素ポリマーとは、窒素原子を含むポリマーを意味する。本発明および本明細書において、「ポリマー」および「重合体」との語は、ホモポリマーとコポリマーとを包含する意味で用いられる。窒素原子は、一形態ではポリマーの主鎖を構成する原子として含まれることができ、また一形態ではポリマーの側鎖を構成する原子として含まれることができる。 In one form, an ammonium cation represented by Z + can be provided, for example, by a nitrogen atom of a nitrogen-containing polymer becoming a cation. A nitrogen-containing polymer means a polymer containing nitrogen atoms. In the present invention and the specification, the terms "polymer" and "polymer" are used in the sense of including homopolymers and copolymers. A nitrogen atom can be contained as an atom constituting a main chain of a polymer in one form, and can be contained as an atom constituting a side chain of a polymer in one form.
 含窒素ポリマーの一形態としては、ポリアルキレンイミンを挙げることができる。ポリアルキレンイミンは、アルキレンイミンの開環重合体であって、下記式2で表される繰り返し単位を複数有するポリマーである。 One form of nitrogen-containing polymer is polyalkyleneimine. Polyalkyleneimine is a ring-opening polymer of alkyleneimine, and is a polymer having a plurality of repeating units represented by formula 2 below.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式2中の主鎖を構成する窒素原子Nが窒素カチオンNとなって式1中のZで表されるアンモニウムカチオンがもたらされ得る。そしてアルキルエステルアニオンと、例えば以下のようにアンモニウム塩構造を形成し得る。 The nitrogen atom N constituting the main chain in Formula 2 can become a nitrogen cation N + to provide an ammonium cation represented by Z + in Formula 1. and can form an ammonium salt structure with an alkyl ester anion, for example as follows.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 以下、式2について更に詳細に説明する。 Formula 2 will be described in more detail below.
 式2中、RおよびRは、それぞれ独立に水素原子またはアルキル基を表し、n1は2以上の整数を表す。 In Formula 2, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group, and n1 represents an integer of 2 or more.
 RまたはRで表されるアルキル基としては、例えば、炭素数1~6のアルキル基を挙げることができ、好ましくは炭素数1~3のアルキル基であり、より好ましくはメチル基またはエチル基であり、更に好ましくはメチル基である。RまたはRで表されるアルキル基は、好ましくは無置換アルキル基である。式2中のRおよびRの組み合わせとしては、一方が水素原子であって他方がアルキル基である形態、両方が水素原子である形態および両方がアルキル基(同一または異なるアルキル基)である形態があり、好ましくは両方が水素原子である形態である。ポリアルキレンイミンをもたらすアルキレンイミンとして、環を構成する炭素数が最少の構造はエチレンイミンであり、エチレンイミンの開環により得られたアルキレンイミン(エチレンイミン)の主鎖の炭素数は2である。したがって、式2中のn1は2以上である。式2中のn1は、例えば10以下、8以下、6以下または4以下であることができる。ポリアルキレンイミンは、式2で表される繰り返し構造として同一構造のみを含むホモポリマーであってもよく、式2で表される繰り返し構造として2種以上の異なる構造を含むコポリマーであってもよい。式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用可能なポリアルキレンイミンの数平均分子量は、例えば200以上であることができ、300以上であることが好ましく、400以上であることがより好ましい。また、上記ポリアルキレンイミンの数平均分子量は、例えば10,000以下であることができ、5,000以下であることが好ましく、2,000以下であることがより好ましい。 The alkyl group represented by R 1 or R 2 includes, for example, an alkyl group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group. group, more preferably a methyl group. The alkyl group represented by R 1 or R 2 is preferably an unsubstituted alkyl group. The combination of R 1 and R 2 in Formula 2 includes a mode in which one is a hydrogen atom and the other is an alkyl group, a mode in which both are hydrogen atoms, and a mode in which both are alkyl groups (same or different alkyl groups). There is a form, preferably a form in which both are hydrogen atoms. As the alkyleneimine leading to polyalkyleneimine, the structure with the smallest number of carbon atoms constituting the ring is ethyleneimine, and the main chain of the alkyleneimine obtained by ring opening of ethyleneimine (ethyleneimine) has 2 carbon atoms. . Therefore, n1 in Formula 2 is 2 or more. n1 in Formula 2 can be, for example, 10 or less, 8 or less, 6 or less, or 4 or less. The polyalkyleneimine may be a homopolymer containing only the same structure as the repeating structure represented by Formula 2, or may be a copolymer containing two or more different structures as the repeating structure represented by Formula 2. . The number average molecular weight of the polyalkyleneimine that can be used to form the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 can be, for example, 200 or more, preferably 300 or more, 400 or more is more preferable. The number average molecular weight of the polyalkyleneimine may be, for example, 10,000 or less, preferably 5,000 or less, and more preferably 2,000 or less.
 本発明および本明細書において、平均分子量(重量平均分子量および数平均分子量)とは、ゲル浸透クロマトグラフィー(GPC:Gel Permeation Chromatography)により測定され、標準ポリスチレン換算により求められる値をいうものとする。後述の実施例に示す平均分子量は、特記しない限り、GPCを用いて下記測定条件により測定された値を標準ポリスチレン換算して求めた値(ポリスチレン換算値)である。
 GPC装置:HLC-8220(東ソー社製)
 ガードカラム:TSKguardcolumn Super HZM-H
 カラム:TSKgel Super HZ 2000、TSKgel Super HZ 4000、TSKgel Super HZ-M(東ソー社製、4.6mm(内径)×15.0cm、3種カラムを直列連結)
 溶離液:テトラヒドロフラン(THF)、安定剤(2,6-ジ-t-ブチル-4-メチルフェノール)含有
 溶離液流速:0.35mL/分
 カラム温度:40℃
 インレット温度:40℃
 屈折率(RI:Refractive Index)測定温度:40℃
 サンプル濃度:0.3質量%
 サンプル注入量:10μL
In the present invention and this specification, the average molecular weight (weight average molecular weight and number average molecular weight) is measured by gel permeation chromatography (GPC: Gel Permeation Chromatography) and refers to a value determined by standard polystyrene conversion. Unless otherwise specified, the average molecular weight shown in the examples below is a value obtained by converting the value measured under the following measurement conditions using GPC into standard polystyrene (polystyrene conversion value).
GPC device: HLC-8220 (manufactured by Tosoh Corporation)
Guard column: TSKguardcolumn Super HZM-H
Column: TSKgel Super HZ 2000, TSKgel Super HZ 4000, TSKgel Super HZ-M (manufactured by Tosoh Corporation, 4.6 mm (inner diameter) × 15.0 cm, 3 types of columns connected in series)
Eluent: Tetrahydrofuran (THF) containing stabilizer (2,6-di-t-butyl-4-methylphenol) Eluent flow rate: 0.35 mL/min Column temperature: 40°C
Inlet temperature: 40°C
Refractive index (RI: Refractive Index) measurement temperature: 40 ° C.
Sample concentration: 0.3% by mass
Sample injection volume: 10 μL
 また、含窒素ポリマーの他の一形態としては、ポリアリルアミンを挙げることができる。ポリアリルアミンは、アリルアミンの重合体であって、下記式3で表される繰り返し単位を複数有するポリマーである。 Another form of nitrogen-containing polymer is polyallylamine. Polyallylamine is a polymer of allylamine and is a polymer having a plurality of repeating units represented by Formula 3 below.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式3中の側鎖のアミノ基を構成する窒素原子Nが窒素カチオンNとなって式1中のZで表されるアンモニウムカチオンがもたらされ得る。そしてアルキルエステルアニオンと、例えば以下のようにアンモニウム塩構造を形成し得る。 The nitrogen atom N constituting the amino group of the side chain in Formula 3 can become a nitrogen cation N + to provide an ammonium cation represented by Z + in Formula 1. and can form an ammonium salt structure with an alkyl ester anion, for example, as follows.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用可能なポリアリルアミンの重量平均分子量は、例えば 200以上であることができ、1,000以上であることが好ましく、1,500以上であることがより好ましい。また、上記ポリアルキレンイミンの重量平均分子量は、例えば15,000以下であることができ、10,000以下であることが好ましく、8,000以下であることがより好ましい。 The weight-average molecular weight of the polyallylamine that can be used to form the compound having the ammonium salt structure of the alkyl ester anion represented by formula 1 can be, for example, 200 or more, preferably 1,000 or more. , 1,500 or more. The weight average molecular weight of the polyalkyleneimine may be, for example, 15,000 or less, preferably 10,000 or less, and more preferably 8,000 or less.
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物として、ポリアルキレンイミンまたはポリアリルアミン由来の構造を有する化合物が含まれることは、磁性層表面を飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)等により分析することによって確認できる。 The inclusion of a compound having a structure derived from polyalkyleneimine or polyallylamine as a compound having an ammonium salt structure of an alkyl ester anion represented by Formula 1 is useful for the magnetic layer surface to be analyzed by time-of-flight secondary ion mass spectrometry ( It can be confirmed by analysis using TOF-SIMS: Time-of-Flight Secondary Ion Mass Spectrometry) or the like.
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、含窒素ポリマーと炭素数7以上の脂肪酸および炭素数7以上のフッ化脂肪酸からなる群から選ばれる脂肪酸類の1種以上との塩であることができる。塩を形成する含窒素ポリマーは、1種または2種以上の含窒素ポリマーであることができ、例えばポリアルキレンイミンおよびポリアリルアミンからなる群から選択される含窒素ポリマーであることができる。塩を形成する脂肪酸類は、炭素数7以上の脂肪酸および炭素数7以上のフッ化脂肪酸からなる群から選ばれる脂肪酸類の1種または2種以上であることができる。フッ化脂肪酸は、脂肪酸においてカルボキシ基COOHと結合しているアルキル基を構成する水素原子の一部または全部がフッ素原子に置換された構造を有する。例えば、含窒素ポリマーと上記脂肪酸類とを室温で混合することによって、塩形成反応は容易に進行し得る。室温とは、例えば20~25℃程度である。一形態では、磁性層形成用組成物の成分として含窒素ポリマーの1種以上と脂肪酸類の1種以上を使用し、磁性層形成用組成物の調製工程においてこれらを混合することによって、塩形成反応を進行させることができる。また、一形態では、磁性層形成用組成物の調製前に、含窒素ポリマーの1種以上と脂肪酸類の1種以上とを混合して塩を形成した後に、この塩を磁性層形成用組成物の成分として使用して磁性層形成用組成物を調製することができる。この点は、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を含む非磁性層を形成する場合にも当てはまる。例えば、磁性層に関しては、強磁性粉末100.0質量部あたり0.1~10.0質量部の含窒素ポリマーを使用することができ、0.5~8.0質量部の含窒素ポリマーを使用することが好ましい。上記脂肪酸類は、強磁性粉末100.0質量部あたり、例えば0.05~10.0質量部使用することができ、0.1~5.0質量部使用することが好ましい。また、磁性層形成用組成物の調製時、研磨剤を、強磁性粉末と別分散することができ、突起形成剤とも別分散することもできる。そのような別分散において、研磨剤を、含窒素ポリマーの1種以上と脂肪酸類の1種以上と混合することによって、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を研磨剤へ効率的に吸着させることもできる。例えば、研磨剤1.0質量部あたり、0.01~1.0質量部の含窒素ポリマーを混合することができ、0.01~1.0質量部の脂肪酸類を混合することができる。また、一形態では、含窒素ポリマーの1種以上と脂肪酸類の1種以上とを混合して塩を形成した後に、上記別分散において、この塩を研磨剤と混合することもできる。例えば、かかる塩を、研磨剤1.0質量部あたり、0.03~3.0質量部混合することができる。本発明者は、上記成分とともに研磨剤を別分散することは、保存前後のAlFeSil摩耗値変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)を0.7以上に制御するうえで好ましいと考えている。詳しくは、上記成分とともに研磨剤を別分散することにより、上記の塩によって研磨剤を被覆することができ、これにより、上記の塩等の潤滑剤として機能し得る成分が磁性層の内部から表面に早期に供給され易くなると本発明者は考えている。このことが、繰り返し走行によって低下した磁気テープ表面の研磨力を短期間で低下前の状態に近づけることを可能にすることに寄与すると、本発明者は推察している。また、非磁性層に関しては、非磁性粉末100.0質量部あたり、例えば0.1~10.0質量部の含窒素ポリマーを使用することができ、0.5~8.0質量部の含窒素ポリマーを使用することが好ましい。上記脂肪酸類は、非磁性粉末100.0質量部あたり、例えば0.05~10.0質量部使用することができ、0.1~5.0質量部使用することが好ましい。なお、含窒素ポリマーと上記脂肪酸類とを混合して式1で表されるアルキルエステルアニオンのアンモニウム塩を形成する際、併せて含窒素ポリマーを構成する窒素原子と上記脂肪酸類のカルボキシ基とが反応して下記構造が形成される場合もあり、そのような構造を含む形態も上記化合物に包含される。 The compound having an ammonium salt structure of an alkyl ester anion represented by Formula 1 is a nitrogen-containing polymer and at least one fatty acid selected from the group consisting of fatty acids having 7 or more carbon atoms and fluorinated fatty acids having 7 or more carbon atoms. can be a salt of The salt-forming nitrogen-containing polymer can be one or more nitrogen-containing polymers, such as nitrogen-containing polymers selected from the group consisting of polyalkyleneimines and polyallylamines. Fatty acids that form salts can be one or more fatty acids selected from the group consisting of fatty acids having 7 or more carbon atoms and fluorinated fatty acids having 7 or more carbon atoms. A fluorinated fatty acid has a structure in which some or all of the hydrogen atoms constituting the alkyl group bonded to the carboxyl group COOH in the fatty acid are substituted with fluorine atoms. For example, by mixing the nitrogen-containing polymer and the fatty acid at room temperature, the salt formation reaction can proceed easily. Room temperature is, for example, about 20 to 25.degree. In one embodiment, one or more nitrogen-containing polymers and one or more fatty acids are used as components of the composition for forming the magnetic layer, and these are mixed in the process of preparing the composition for forming the magnetic layer to form a salt. Allow the reaction to proceed. In one embodiment, before preparing the magnetic layer-forming composition, one or more nitrogen-containing polymers and one or more fatty acids are mixed to form a salt, and then the salt is added to the magnetic layer-forming composition. A composition for forming a magnetic layer can be prepared by using it as a component of a material. This point also applies to the formation of a non-magnetic layer containing a compound having an ammonium salt structure of an alkyl ester anion represented by formula (1). For example, for the magnetic layer, 0.1 to 10.0 parts by weight of nitrogen-containing polymer can be used per 100.0 parts by weight of ferromagnetic powder, and 0.5 to 8.0 parts by weight of nitrogen-containing polymer can be used. It is preferred to use For example, 0.05 to 10.0 parts by weight, preferably 0.1 to 5.0 parts by weight, of the fatty acid can be used per 100.0 parts by weight of the ferromagnetic powder. Further, when preparing the composition for forming the magnetic layer, the abrasive can be dispersed separately from the ferromagnetic powder, and can also be dispersed separately from the protrusion-forming agent. In such a separate dispersion, a compound having an ammonium salt structure of an alkyl ester anion represented by Formula 1 is added to the abrasive by mixing the abrasive with one or more nitrogen-containing polymers and one or more fatty acids. It can also be efficiently adsorbed to. For example, 0.01 to 1.0 parts by mass of a nitrogen-containing polymer and 0.01 to 1.0 parts by mass of fatty acids can be mixed with 1.0 parts by mass of the abrasive. In one embodiment, one or more nitrogen-containing polymers and one or more fatty acids are mixed to form a salt, and then the salt can be mixed with the abrasive in the separate dispersion. For example, 0.03 to 3.0 parts by mass of such a salt can be mixed with 1.0 part by mass of the abrasive. The present inventor believes that dispersing the abrasive separately together with the above components is preferable for controlling the rate of change in AlFeSil wear value before and after storage (AlFeSil wear value 2/AlFeSil wear value 1) to 0.7 or more. there is More specifically, by separately dispersing the abrasive together with the above components, the abrasive can be coated with the above salt, so that the component capable of functioning as a lubricant, such as the above salt, can be transferred from the inside of the magnetic layer to the surface. The inventor believes that it will be easier to supply to the early stage. The present inventors speculate that this contributes to making it possible to bring the polishing force on the surface of the magnetic tape, which has decreased due to repeated running, closer to the state before the decrease in a short period of time. Regarding the non-magnetic layer, for example, 0.1 to 10.0 parts by mass of nitrogen-containing polymer can be used per 100.0 parts by mass of non-magnetic powder, and 0.5 to 8.0 parts by mass of nitrogen-containing polymer can be used. It is preferred to use nitrogen polymers. The above fatty acid can be used, for example, in an amount of 0.05 to 10.0 parts by mass, preferably 0.1 to 5.0 parts by mass, per 100.0 parts by mass of the non-magnetic powder. When the nitrogen-containing polymer and the fatty acid are mixed to form the ammonium salt of the alkyl ester anion represented by the formula 1, the nitrogen atom constituting the nitrogen-containing polymer and the carboxy group of the fatty acid are also The following structures may be formed upon reaction, and forms containing such structures are also included in the above compounds.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記脂肪酸類としては、先に式1中のRとして記載したアルキル基を有する脂肪酸および先に式1中のRとして記載したフッ化アルキル基を有するフッ化脂肪酸を挙げることができる。 Examples of the above fatty acids include fatty acids having an alkyl group described above as R in Formula 1 and fluorinated fatty acids having a fluorinated alkyl group described as R in Formula 1 above.
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用する含窒素ポリマーと上記脂肪酸類との混合比は、含窒素ポリマー:上記脂肪酸類の質量比として、10:90~90:10であることが好ましく、20:80~85:15であることがより好ましく、30:70~80:20であることが更に好ましい。また、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、磁性層に強磁性粉末100.0質量部に対して0.01質量部以上含まれることが好ましく、0.1質量部以上含まれることがより好ましく、0.5質量部以上含まれることが更に好ましい。ここで磁性層における上記化合物の含有量とは、磁性層表面に液膜を形成している量と磁性層内部に含まれる量との合計量をいうものとする。一方、磁性層の強磁性粉末の含有量が多いことは高密度記録化の観点から好ましい。したがって、高密度記録化の観点からは強磁性粉末以外の成分の含有量が少ないことは好ましい。この観点から、磁性層の上記化合物の含有量は、強磁性粉末100.0質量部に対して15.0質量部以下であることが好ましく、10.0質量部以下であることがより好ましく、8.0質量部以下であることが更に好ましい。また、磁性層を形成するために使用される磁性層形成用組成物の上記化合物の含有量の好ましい範囲も同様である。 The mixing ratio of the nitrogen-containing polymer and the fatty acid used to form the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 is 10:10 as a mass ratio of the nitrogen-containing polymer:the fatty acid. It is preferably from 90 to 90:10, more preferably from 20:80 to 85:15, even more preferably from 30:70 to 80:20. The compound having an ammonium salt structure of an alkyl ester anion represented by Formula 1 is preferably contained in the magnetic layer in an amount of 0.01 parts by weight or more, preferably 0.1 parts by weight, per 100.0 parts by weight of the ferromagnetic powder. It is more preferable to contain 1 part or more, and it is still more preferable to contain 0.5 parts by mass or more. Here, the content of the compound in the magnetic layer means the sum of the amount forming the liquid film on the surface of the magnetic layer and the amount contained inside the magnetic layer. On the other hand, a high content of ferromagnetic powder in the magnetic layer is preferable from the viewpoint of high-density recording. Therefore, from the viewpoint of high-density recording, it is preferable that the content of components other than the ferromagnetic powder is small. From this viewpoint, the content of the compound in the magnetic layer is preferably 15.0 parts by mass or less, more preferably 10.0 parts by mass or less, relative to 100.0 parts by mass of the ferromagnetic powder. It is more preferably 8.0 parts by mass or less. The same applies to the preferred range of the content of the above compounds in the composition for forming the magnetic layer used to form the magnetic layer.
 磁性層には、潤滑剤として機能し得る更なる成分の1種以上が含まれていてもよい。潤滑剤として機能し得る成分としては、例えば、脂肪酸エステル、脂肪酸アミド等を挙げることができる。脂肪酸エステルとしては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等のエステルを挙げることができる。具体例としては、例えば、ミリスチン酸ブチル、パルミチン酸ブチル、ステアリン酸ブチル、ネオペンチルグリコールジオレエート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、オレイン酸オレイル、ステアリン酸イソセチル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸アミル、ステアリン酸ブトキシエチル等を挙げることができる。磁性層形成用組成物または磁性層における脂肪酸エステル含有量は、強磁性粉末100.0質量部あたり、例えば0.1~10.0質量部であり、好ましくは1.0~7.0質量部である。脂肪酸アミドとしては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等の各種脂肪酸のアミド、具体的にはラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド等を挙げることができる。磁性層の脂肪酸アミド含有量は、強磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~2.0質量部であり、より好ましくは0~1.0質量部である。また、非磁性層にも潤滑剤として機能し得る成分の1種以上が含まれていてもよい。例えば、非磁性層に、脂肪酸、脂肪酸エステルおよび脂肪酸アミドからなる群から選ばれる成分の1種以上が含まれていてもよい。非磁性層形成用組成物または非磁性層における脂肪酸含有量は、非磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは1.0~10.0質量部であり、より好ましくは1.0~7.0質量部である。非磁性層形成用組成物または非磁性層における脂肪酸エステル含有量は、非磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは0.1~8.0質量部である。非磁性層形成用組成物または非磁性層の脂肪酸アミド含有量は、非磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~1.0質量部である。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤を非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012-133837号公報の段落0061を参照できる。 The magnetic layer may contain one or more additional components that can function as lubricants. Examples of components that can function as lubricants include fatty acid esters and fatty acid amides. Examples of fatty acid esters include esters of lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, erucic acid and elaidic acid. Specific examples include butyl myristate, butyl palmitate, butyl stearate, neopentyl glycol dioleate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, oleyl oleate, isocetyl stearate, and stearin. Examples include isotridecyl stearate, octyl stearate, isooctyl stearate, amyl stearate, butoxyethyl stearate and the like. The fatty acid ester content in the composition for forming the magnetic layer or in the magnetic layer is, for example, 0.1 to 10.0 parts by weight, preferably 1.0 to 7.0 parts by weight, per 100.0 parts by weight of the ferromagnetic powder. is. Examples of fatty acid amides include amides of various fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, erucic acid, and elaidic acid, specifically lauric acid amide. , myristic acid amide, palmitic acid amide, stearic acid amide, and the like. The fatty acid amide content of the magnetic layer is, for example, 0 to 3.0 parts by weight, preferably 0 to 2.0 parts by weight, more preferably 0 to 1.0 parts by weight, per 100.0 parts by weight of the ferromagnetic powder. part by mass. In addition, the non-magnetic layer may also contain one or more components capable of functioning as a lubricant. For example, the non-magnetic layer may contain one or more components selected from the group consisting of fatty acids, fatty acid esters and fatty acid amides. The fatty acid content in the composition for forming the nonmagnetic layer or in the nonmagnetic layer is, for example, 0 to 10.0 parts by mass, preferably 1.0 to 10.0 parts by mass, per 100.0 parts by mass of the nonmagnetic powder. Yes, more preferably 1.0 to 7.0 parts by mass. The fatty acid ester content in the composition for forming the non-magnetic layer or the non-magnetic layer is, for example, 0 to 10.0 parts by weight, preferably 0.1 to 8.0 parts by weight, per 100.0 parts by weight of the non-magnetic powder. is. The fatty acid amide content of the composition for forming the nonmagnetic layer or the nonmagnetic layer is, for example, 0 to 3.0 parts by weight, preferably 0 to 1.0 parts by weight, per 100.0 parts by weight of the nonmagnetic powder. . Regarding the dispersant, paragraphs 0061 and 0071 of JP-A-2012-133837 can be referred to. A dispersant may be added to the non-magnetic layer forming composition. See paragraph 0061 of JP-A-2012-133837 for the dispersant that can be added to the composition for forming a non-magnetic layer.
<非磁性層>
 次に非磁性層について説明する。上記磁気テープは、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末(無機粉末)でも有機物質の粉末(有機粉末)でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有率(充填率)は、非磁性層の総質量に対して、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
<Non-Magnetic Layer>
Next, the nonmagnetic layer will be explained. The magnetic tape may have a magnetic layer directly on a non-magnetic support, or may have a non-magnetic layer containing non-magnetic powder between the non-magnetic support and the magnetic layer. The non-magnetic powder used in the non-magnetic layer may be inorganic powder (inorganic powder) or organic powder (organic powder). Carbon black or the like can also be used. Examples of inorganic substances include metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides. These non-magnetic powders are commercially available and can be produced by known methods. For details, paragraphs 0146 to 0150 of JP-A-2011-216149 can be referred to. For carbon black that can be used in the non-magnetic layer, see paragraphs 0040 to 0041 of JP-A-2010-24113. The nonmagnetic powder content (filling rate) in the nonmagnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass, relative to the total mass of the nonmagnetic layer. .
 非磁性層は、結合剤を含むことができ、添加剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。 The non-magnetic layer can contain a binder and can also contain additives. Known techniques for nonmagnetic layers can be applied to other details such as binders and additives for the nonmagnetic layer. Also, for example, the type and content of the binder, the type and content of the additive, etc., can be applied to known techniques relating to the magnetic layer.
 上記磁気テープの非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。 The non-magnetic layer of the magnetic tape includes, in addition to non-magnetic powder, a substantially non-magnetic layer containing a small amount of ferromagnetic powder, for example, as an impurity or intentionally. Here, the substantially non-magnetic layer means that the residual magnetic flux density of this layer is 10 mT or less, the coercive force is 7.96 kA/m (100 Oe) or less, or the residual magnetic flux density is 10 mT or less. and a coercive force of 7.96 kA/m (100 Oe) or less. The non-magnetic layer preferably has no residual magnetic flux density and no coercive force.
<非磁性支持体>
 次に、非磁性支持体について説明する。上記磁気テープは、非磁性支持体(以下、単に「支持体」とも記載する。)として、幅方向のヤング率が10000MPa(メガパスカル)以上のポリエチレンナフタレート支持体を含む。
<Nonmagnetic support>
Next, the non-magnetic support will be described. The magnetic tape includes a polyethylene naphthalate support having a Young's modulus in the width direction of 10000 MPa (megapascal) or more as a non-magnetic support (hereinafter also simply referred to as "support").
 ポリエチレンナフタレート(PEN)は、ナフタレン環および複数のエステル結合を含む樹脂(即ちナフタレン環を含むポリエステル)であって、2,6-ナフタレンジカルボン酸ジメチルとエチレングリコールとのエステル化反応を行い、その後にエステル交換反応および重縮合反応を行って得ることができる樹脂である。本発明および本明細書における「ポリエチレンナフタレート」には、上記成分に加えて1種以上の他の成分(例えば、共重合成分、末端または側鎖に導入される成分等)を有する構造のものも包含される。本発明および本明細書において、「ポリエチレンナフタレート支持体」とは、少なくとも1層のポリエチレンナフタレートフィルムを含む支持体を意味する。「ポリエチレンナフタレートフィルム」とは、このフィルムを構成する成分の中で質量基準で最も多くを占める成分がポリエチレンナフタレートであるフィルムをいうものとする。本発明および本明細書における「ポリエチレンナフタレート支持体」には、この支持体に含まれる樹脂フィルムがすべてポリエチレンナフタレートフィルムであるものと、ポリエチレンナフタレートフィルムと他の樹脂フィルムとを含むものとが包含される。ポリエチレンナフタレート支持体の具体的形態としては、単層のポリエチレンナフタレートフィルム、構成成分が同じ2層以上のポリエチレンナフタレートフィルムの積層フィルム、構成成分が異なる2層以上のポリエチレンナフタレートフィルムの積層フィルム、1層以上のポリエチレンナフタレートフィルムおよび1層以上のポリエチレンナフタレートフィルム以外の樹脂フィルムを含む積層フィルム等を挙げることができる。積層フィルムにおいて隣り合う2層の間に接着層等が任意に含まれていてもよい。また、ポリエチレンナフタレート支持体には、一方または両方の表面に蒸着等によって形成された金属膜および/または金属酸化物膜が任意に含まれていてもよい。 Polyethylene naphthalate (PEN) is a resin containing a naphthalene ring and a plurality of ester bonds (that is, a polyester containing a naphthalene ring). It is a resin that can be obtained by subjecting a transesterification reaction and a polycondensation reaction to In the present invention and herein, "polyethylene naphthalate" has a structure having one or more other components (e.g., copolymer components, components introduced into terminals or side chains, etc.) in addition to the above components. is also included. In the present invention and herein, "polyethylene naphthalate support" means a support comprising at least one layer of polyethylene naphthalate film. The term "polyethylene naphthalate film" refers to a film in which polyethylene naphthalate is the most abundant component on a mass basis among the components constituting this film. The "polyethylene naphthalate support" in the present invention and the specification includes those in which all the resin films contained in this support are polyethylene naphthalate films, and those in which polyethylene naphthalate films and other resin films are included. is included. Specific forms of the polyethylene naphthalate support include a single-layer polyethylene naphthalate film, a laminated film of two or more layers of polyethylene naphthalate films having the same constituents, and a laminate of two or more layers of polyethylene naphthalate films having different constituents. Films, laminated films containing one or more layers of polyethylene naphthalate films and one or more layers of resin films other than polyethylene naphthalate films, and the like can be mentioned. An adhesive layer or the like may optionally be included between two adjacent layers in the laminated film. The polyethylene naphthalate support may also optionally include a metal film and/or a metal oxide film formed by vapor deposition or the like on one or both surfaces.
 また、非磁性支持体は、二軸延伸フィルムであることができ、コロナ放電、プラズマ処理、易接着処理、熱処理等が施されたフィルムであってもよい。 In addition, the non-magnetic support can be a biaxially stretched film, and may be a film subjected to corona discharge, plasma treatment, easy adhesion treatment, heat treatment, or the like.
 本発明および本明細書において、非磁性支持体のヤング率は、温度23℃相対湿度50%の測定環境において、以下の方法によって測定される値である。後掲の表に示されているヤング率は、万能引張試験装置として東洋ボールドウィン社製テンシロンを使用して以下の方法によって求めた値である。
 測定対象の非磁性支持体から切り出した試料片を、チャック間距離100mm、引張速度10mm/分およびチャート速度500mm/分の条件で、万能引張試験装置にて引っ張る。万能引張試験装置としては、例えば、東洋ボールドウィン社製テンシロン等の市販の万能引張試験装置または公知の構成の万能引張試験装置を使用することができる。こうして得られた荷重-伸び曲線の立ち上がり部の接線より、上記試料片の長手方向および幅方向のヤング率をそれぞれ算出する。ここで試料片の長手方向および幅方向とは、この試料片が磁気テープに含まれていたときの長手方向および幅方向を意味する。
 例えば、磁気テープから磁性層等の非磁性支持体以外の部分を公知の方法(例えば有機溶媒を使用した脱膜等)によって除去した後、上記方法によって非磁性支持体の長手方向および幅方向のヤング率を求めることもできる。
In the present invention and this specification, the Young's modulus of a non-magnetic support is a value measured by the following method in a measurement environment of 23° C. and 50% relative humidity. The Young's modulus shown in the table below is a value determined by the following method using Tensilon manufactured by Toyo Baldwin Co., Ltd. as a universal tensile tester.
A sample piece cut out from a non-magnetic support to be measured is pulled by a universal tensile tester under the conditions of a distance between chucks of 100 mm, a tensile speed of 10 mm/min and a chart speed of 500 mm/min. As the universal tensile tester, for example, a commercially available universal tensile tester such as Tensilon manufactured by Toyo Baldwin Co., Ltd. or a universal tensile tester with a known configuration can be used. The Young's modulus in the longitudinal direction and width direction of the sample piece is calculated from the tangent to the rising portion of the load-elongation curve thus obtained. Here, the longitudinal direction and width direction of the sample piece mean the longitudinal direction and width direction when this sample piece is included in the magnetic tape.
For example, after removing portions other than the non-magnetic support, such as the magnetic layer, from the magnetic tape by a known method (e.g., film removal using an organic solvent, etc.), the longitudinal direction and width direction of the non-magnetic support are removed by the above method. Young's modulus can also be obtained.
 上記ポリエチレンナフタレート支持体の幅方向のヤング率は、10000MPa以上である。このことが、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して良好に記録および/または再生を行うことが、上記磁気テープによって可能になる理由と本発明者は考えている。上記ポリエチレンナフタレート支持体の幅方向のヤング率は、例えば11000MPa以上であることもできる。また上記ポリエチレンナフタレート支持体の幅方向のヤング率は、例えば、20000MPa以下、18000MPa以下、16000MPa以下もしくは14000MPa以下であってもよく、ここに例示した値を上回ってもよい。 The Young's modulus of the polyethylene naphthalate support in the width direction is 10000 MPa or more. This is the reason why the above-mentioned magnetic tape makes it possible to control the dimension of the magnetic tape in the width direction by adjusting the tension applied to the magnetic tape in the longitudinal direction and to perform good recording and/or reproduction. The inventor thinks The widthwise Young's modulus of the polyethylene naphthalate support may be, for example, 11000 MPa or more. The widthwise Young's modulus of the polyethylene naphthalate support may be, for example, 20,000 MPa or less, 18,000 MPa or less, 16,000 MPa or less, or 14,000 MPa or less, or may exceed the values exemplified here.
 上記ポリエチレンナフタレート支持体は、幅方向のヤング率が10000MPa以上であればよく、長手方向のヤング率は特に限定されるものではない。一形態では、上記ポリエチレンナフタレート支持体の長手方向のヤング率は、2500MPa以上であることが好ましく、3000MPa以上であることがより好ましい。また、上記ポリエチレンナフタレート支持体の長手方向のヤング率は、例えば、10000MPa以下、9000MPa以下、8000MPa以下、7000MPa以下または6000MPa以下であることができる。磁気テープの製造時、非磁性支持体は、通常、フィルムのMD方向(Machine direction)を長手方向、TD方向(Transverse diretion)を幅方向として使用される。非磁性支持体の長手方向のヤング率と幅方向のヤング率は、一形態では同じ値であることができ、他の一形態では異なる値であることができる。一形態では、上記ポリエチレンナフタレート支持体の幅方向のヤング率は、長手方向のヤング率より大きな値であることができる。非磁性支持体のヤング率は、支持体を構成する成分の種類および混合比、支持体の製造条件等によって制御することができる。例えば、二軸延伸処理において各方向での延伸倍率を調整することによって、長手方向におけるヤング率と幅方向におけるヤング率をそれぞれ制御することができる。 The polyethylene naphthalate support may have a Young's modulus of 10000 MPa or more in the width direction, and the Young's modulus in the longitudinal direction is not particularly limited. In one form, the longitudinal Young's modulus of the polyethylene naphthalate support is preferably 2500 MPa or more, more preferably 3000 MPa or more. The longitudinal Young's modulus of the polyethylene naphthalate support may be, for example, 10000 MPa or less, 9000 MPa or less, 8000 MPa or less, 7000 MPa or less, or 6000 MPa or less. When manufacturing a magnetic tape, a non-magnetic support is generally used with the MD (machine direction) of the film as the longitudinal direction and the TD (transverse direction) as the width direction. The Young's modulus in the longitudinal direction and the Young's modulus in the width direction of the non-magnetic support can be the same value in one form, and can be different values in another form. In one form, the Young's modulus in the width direction of the polyethylene naphthalate support may be larger than the Young's modulus in the longitudinal direction. The Young's modulus of the non-magnetic support can be controlled by the types and mixing ratios of the components constituting the support, manufacturing conditions of the support, and the like. For example, the Young's modulus in the longitudinal direction and the Young's modulus in the width direction can be controlled by adjusting the draw ratio in each direction in the biaxial stretching process.
<バックコート層>
 上記テープは、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することもでき、有さないこともできる。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層は、結合剤を含むことができ、添加剤を含むこともできる。バックコート層の非磁性粉末、結合剤、添加剤等の詳細については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
<Back coat layer>
The tape may or may not have a backcoat layer containing nonmagnetic powder on the surface of the nonmagnetic support opposite to the surface having the magnetic layer. The backcoat layer preferably contains one or both of carbon black and inorganic powder. The backcoat layer may contain a binder and may also contain additives. For the details of the non-magnetic powder, binders, additives, etc. of the back coat layer, known techniques for the back coat layer can be applied, and known techniques for the magnetic layer and/or the non-magnetic layer can also be applied. For example, paragraphs 0018 to 0020 of JP-A-2006-331625 and US Pat. .
<各種厚み>
 磁気テープの厚み(総厚)に関して、近年の情報量の莫大な増大に伴い、磁気テープには記録容量を高めること(高容量化)が求められている。高容量化のための手段としては、磁気テープの厚みを薄くし、磁気テープカートリッジ1巻あたりに収容される磁気テープ長を増すことが挙げられる。この点から、上記磁気テープの厚み(総厚)は、5.6μm以下であることが好ましく、5.5μm以下であることがより好ましく、5.4μm以下であることがより好ましく、5.3μm以下であることが更に好ましく、5.2μm以下であることが一層好ましい。また、ハンドリングの容易性の観点からは、磁気テープの厚みは3.0μm以上であることが好ましく、3.5μm以上であることがより好ましい。
<Various thicknesses>
As for the thickness (total thickness) of magnetic tapes, with the enormous increase in the amount of information in recent years, magnetic tapes are required to have a higher recording capacity (higher capacity). Means for increasing the capacity include reducing the thickness of the magnetic tape and increasing the length of the magnetic tape that can be accommodated in one roll of the magnetic tape cartridge. From this point, the thickness (total thickness) of the magnetic tape is preferably 5.6 μm or less, more preferably 5.5 μm or less, more preferably 5.4 μm or less, and more preferably 5.3 μm. It is more preferably 5.2 μm or less, and even more preferably 5.2 μm or less. From the viewpoint of ease of handling, the thickness of the magnetic tape is preferably 3.0 μm or more, more preferably 3.5 μm or more.
 磁気テープの厚み(総厚)は、以下の方法によって測定することができる。
 磁気テープの任意の部分からテープサンプル(例えば長さ5~10cm)を10枚切り出し、これらテープサンプルを重ねて厚みを測定する。測定された厚みを10分の1して得られた値(テープサンプル1枚当たりの厚み)を、テープ厚みとする。上記厚み測定は、0.1μmオーダーでの厚み測定が可能な公知の測定器を用いて行うことができる。
The thickness (total thickness) of the magnetic tape can be measured by the following method.
Ten tape samples (for example, 5 to 10 cm in length) are cut out from an arbitrary portion of the magnetic tape, these tape samples are overlapped, and the thickness is measured. The value (thickness per tape sample) obtained by dividing the measured thickness by 1/10 is taken as the tape thickness. The thickness measurement can be performed using a known measuring instrument capable of measuring thickness on the order of 0.1 μm.
 非磁性支持体の厚みは、例えば3.0μm以上であることができ、また、例えば5.0μm以下、4.8μm以下、4.6μm以下、4.4μm以下もしくは4.2μm以下であることができる。
 磁性層の厚みは、用いる磁気ヘッドの飽和磁化量、ヘッドギャップ長、記録信号の帯域等に応じて最適化することができ、一般には0.01μm~0.15μmであり、高密度記録化の観点から、好ましくは0.02μm~0.12μmであり、更に好ましくは0.03μm~0.1μmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する二層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。二層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
 非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
 バックコート層の厚みは、0.9μm以下であることが好ましく、0.1~0.7μmであることが更に好ましい。
 磁性層の厚み等の各種厚みは、例えば、以下の方法により求めることができる。
 磁気テープの厚み方向の断面を、イオンビームにより露出させた後、露出した断面において走査型電子顕微鏡または透過型電子顕微鏡によって断面観察を行う。断面観察において任意の2箇所において求められた厚みの算術平均として、各種厚みを求めることができる。または、各種厚みは、製造条件等から算出される設計厚みとして求めることもできる。
The thickness of the nonmagnetic support can be, for example, 3.0 μm or more, and can be, for example, 5.0 μm or less, 4.8 μm or less, 4.6 μm or less, 4.4 μm or less, or 4.2 μm or less. can.
The thickness of the magnetic layer can be optimized according to the saturation magnetization amount of the magnetic head to be used, the head gap length, the recording signal band, etc., and is generally 0.01 μm to 0.15 μm. From the point of view, it is preferably 0.02 μm to 0.12 μm, more preferably 0.03 μm to 0.1 μm. At least one magnetic layer is sufficient, and the magnetic layer may be separated into two or more layers having different magnetic properties, and a known multilayer magnetic layer structure can be applied. The thickness of the magnetic layer when separated into two or more layers is the total thickness of these layers.
The thickness of the nonmagnetic layer is, for example, 0.1 to 1.5 μm, preferably 0.1 to 1.0 μm.
The thickness of the backcoat layer is preferably 0.9 μm or less, more preferably 0.1 to 0.7 μm.
Various thicknesses such as the thickness of the magnetic layer can be obtained, for example, by the following methods.
After exposing a section of the magnetic tape in the thickness direction with an ion beam, the exposed section is observed with a scanning electron microscope or a transmission electron microscope. Various thicknesses can be determined as the arithmetic mean of the thicknesses determined at two arbitrary locations in cross-sectional observation. Alternatively, various thicknesses can be obtained as design thicknesses calculated from manufacturing conditions and the like.
<製造方法>
(各層形成用組成物の調製)
 磁性層、非磁性層またはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体を製造するために一般に使用される各種有機溶媒を用いることができる。中でも、塗布型磁気記録媒体に通常使用される結合剤の溶解性の観点からは、各層形成用組成物には、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン等のケトン溶媒の1種以上が含まれることが好ましい。各層形成用組成物における溶媒量は特に限定されるものではなく、通常の塗布型磁気記録媒体の各層形成用組成物と同様にすることができる。また、各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程、および分散後の粘度調整のための混合工程で分割して投入してもよい。また、先に記載したように、磁性層形成用組成物の成分として、含窒素ポリマーの1種以上と上記脂肪酸類の1種以上とを使用し、磁性層形成用組成物の調製工程においてこれらを混合することによって、塩形成反応を進行させることができる。また、一形態では、磁性層形成用組成物の調製前に、含窒素ポリマーの1種以上と脂肪酸類の1種以上とを混合して塩を形成した後に、この塩を磁性層形成用組成物の成分として使用して磁性層形成用組成物を調製することができる。この点は、非磁性層形成用組成物の調製工程についても当てはまる。一形態では、磁性層形成用組成物を調製する工程において、突起形成剤を含む分散液(以下、「突起形成剤液」と記載する。)を調製した後、この突起形成剤液を、磁性層形成用組成物のその他の成分の1種以上と混合することができる。研磨剤の別分散時(即ち研磨剤液の調製時)、先に記載した成分を混合することもできる。また、分散処理後にろ過を行ってもよい。ろ過に用いるフィルタについては以下の記載を参照できる。
<Manufacturing method>
(Preparation of each layer-forming composition)
A composition for forming a magnetic layer, a non-magnetic layer, or a backcoat layer usually contains a solvent along with the various components described above. As the solvent, various organic solvents generally used for producing coating type magnetic recording media can be used. Among them, from the viewpoint of the solubility of binders commonly used in coating-type magnetic recording media, each layer-forming composition contains ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, isophorone, and tetrahydrofuran. It is preferable that one or more of The amount of solvent in each layer-forming composition is not particularly limited, and can be the same as in each layer-forming composition for a conventional coating type magnetic recording medium. In addition, the step of preparing each layer-forming composition can usually include at least a kneading step, a dispersing step, and a mixing step provided before or after these steps as required. Each step may be divided into two or more stages. The components used for preparing each layer-forming composition may be added at the beginning or in the middle of any step. Individual ingredients may be added in portions in two or more steps. For example, the binder may be added separately in the kneading process, the dispersing process, and the mixing process for adjusting the viscosity after dispersion. As described above, one or more nitrogen-containing polymers and one or more of the above fatty acids are used as components of the composition for forming the magnetic layer, and these are used in the preparation process of the composition for forming the magnetic layer. By mixing, the salt-forming reaction can proceed. In one embodiment, before preparing the magnetic layer-forming composition, one or more nitrogen-containing polymers and one or more fatty acids are mixed to form a salt, and then the salt is added to the magnetic layer-forming composition. A composition for forming a magnetic layer can be prepared by using it as a component of a material. This point also applies to the process of preparing the composition for forming the non-magnetic layer. In one embodiment, in the step of preparing a composition for forming a magnetic layer, after preparing a dispersion containing a protrusion-forming agent (hereinafter referred to as "protrusion-forming agent liquid"), this protrusion-forming agent liquid is added to a magnetic It can be mixed with one or more other components of the layer-forming composition. During the separate dispersion of the abrasive (ie, during the preparation of the abrasive liquid), the ingredients previously described can also be mixed. Moreover, you may filter after a dispersion|distribution process. The following description can be referred to for the filter used for filtration.
 上記磁気テープの製造工程では、従来の公知の製造技術を一部または全部の工程において用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報および特開平1-79274号公報に記載されている。また、各層形成用組成物を分散させるために、ガラスビーズおよび/またはその他のビーズを用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズは、粒径(ビーズ径)と充填率を最適化して用いることが好ましい。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。 In the manufacturing process of the magnetic tape, conventional known manufacturing techniques can be used in part or all of the process. In the kneading step, it is preferable to use a kneader having a strong kneading force such as an open kneader, continuous kneader, pressure kneader, extruder or the like. Details of these kneading treatments are described in Japanese Patent Application Laid-Open Nos. 1-106338 and 1-79274. Also, glass beads and/or other beads can be used to disperse each layer forming composition. As such dispersing beads, zirconia beads, titania beads, and steel beads, which are high specific gravity dispersing beads, are suitable. It is preferable to optimize the particle diameter (bead diameter) and the packing rate of these dispersed beads. A known disperser can be used. Each layer-forming composition may be filtered by a known method before being applied to the coating step. Filtration can be performed, for example, by filter filtration. As a filter used for filtration, for example, a filter having a pore size of 0.01 to 3 μm (eg, glass fiber filter, polypropylene filter, etc.) can be used.
(塗布工程)
 磁性層は、磁性層形成用組成物を、例えば、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。配向処理を行う場合、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、配向ゾーンにおいて塗布層に対して配向処理が行われる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
 バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。
(Coating process)
The magnetic layer can be formed, for example, by directly coating the magnetic layer-forming composition on the non-magnetic support, or by sequentially or simultaneously coating the magnetic layer-forming composition with the non-magnetic layer-forming composition. When the orientation treatment is performed, the orientation treatment is applied to the coating layer of the composition for forming the magnetic layer in the orientation zone while the coating layer is in a wet state. Various known techniques including those described in paragraph 0052 of JP-A-2010-24113 can be applied to the alignment treatment. For example, the vertical alignment treatment can be performed by a known method such as a method using opposed magnets with different poles. In the orientation zone, the drying speed of the coating layer can be controlled by the temperature and air volume of the drying air and/or the conveying speed in the orientation zone. Also, the coated layer may be pre-dried before being conveyed to the orientation zone.
The backcoat layer can be formed by coating a composition for forming a backcoat layer on the opposite side of the non-magnetic support from the side having the magnetic layer (or the side on which the magnetic layer is to be provided later). For details of coating for forming each layer, paragraph 0066 of JP-A-2010-231843 can be referred to.
(その他の工程)
 上記塗布工程を行った後、磁気テープの表面平滑性を高めるためにカレンダ処理を施すことができる。カレンダ条件について、カレンダ圧力は、例えば200~500kN/m、好ましくは250~350kN/mであり、カレンダ温度は、例えば70~120℃、好ましくは80~100℃であり、カレンダ速度は、例えば50~300m/分、好ましくは80~200m/分である。また、カレンダロールとして表面が硬いロールを使用するほど、また段数を増やすほど、磁性層表面は平滑化する傾向がある。
 磁気テープ製造のためのその他の各種工程については、特開2010-231843号公報の段落0067~0070を参照できる。
 各種工程を経ることによって、長尺状の磁気テープ原反を得ることができる。得られた磁気テープ原反は、公知の裁断機によって、磁気テープカートリッジに収容すべき磁気テープの幅に裁断(スリット)される。上記の幅は規格にしたがい決定でき、通常、1/2インチである。1/2インチ=12.65mmである。
 スリットして得られた磁気テープには、通常、サーボパターンが形成される。
(Other processes)
After performing the coating step, the magnetic tape may be subjected to calendering treatment to increase the surface smoothness. With respect to the calender conditions, the calender pressure is for example 200-500 kN/m, preferably 250-350 kN/m, the calender temperature is for example 70-120° C., preferably 80-100° C., and the calender speed is for example 50 ~300 m/min, preferably 80-200 m/min. In addition, the surface of the magnetic layer tends to become smoother as a roll with a harder surface is used as the calender roll and as the number of stages is increased.
For various other steps for manufacturing the magnetic tape, paragraphs 0067 to 0070 of JP-A-2010-231843 can be referred to.
Through various processes, a long magnetic tape raw material can be obtained. The obtained magnetic tape material is cut (slit) to the width of the magnetic tape to be accommodated in the magnetic tape cartridge by a known cutting machine. The above width can be determined according to standards and is typically 1/2 inch. 1/2 inch = 12.65 mm.
Servo patterns are usually formed on the magnetic tape obtained by slitting.
(サーボパターンの形成)
 「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。以下に、サーボパターンの形成について説明する。
(Formation of servo pattern)
"Formation of servo patterns" can also be called "recording of servo signals." Formation of the servo pattern will be described below.
 サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。 A servo pattern is usually formed along the longitudinal direction of the magnetic tape. Methods of control using servo signals (servo control) include timing-based servo (TBS), amplitude servo, frequency servo, and the like.
 ECMA(European Computer Manufacturers Association)―319(June 2001)に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。本発明および本明細書において、「タイミングベースサーボパターン」とは、タイミングベースサーボ方式のサーボシステムにおけるヘッドトラッキングを可能とするサーボパターンをいう。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。 As shown in ECMA (European Computer Manufacturers Association)-319 (June 2001), a magnetic tape conforming to the LTO (Linear Tape-Open) standard (generally called "LTO tape") adopts a timing-based servo system. ing. In this timing-based servo system, a servo pattern is composed of a plurality of non-parallel pairs of magnetic stripes (also called "servo stripes") arranged continuously in the longitudinal direction of the magnetic tape. In the present invention and in this specification, the term "timing-based servo pattern" refers to a servo pattern that enables head tracking in a timing-based servo system servo system. The reason why the servo pattern is composed of a pair of non-parallel magnetic stripes is to inform the servo signal reading element passing over the servo pattern of its passing position. Specifically, the pair of magnetic stripes are formed so that the interval between them changes continuously along the width direction of the magnetic tape. and the relative position of the servo signal reading element. This relative position information enables tracking of the data tracks. For this reason, a plurality of servo tracks are usually set on the servo pattern along the width direction of the magnetic tape.
 サーボバンドは、磁気テープの長手方向に連続するサーボパターンにより構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域が、データバンドである。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。 A servo band is composed of servo patterns that are continuous in the longitudinal direction of the magnetic tape. A plurality of servo bands are usually provided on the magnetic tape. For example, in LTO tape, the number is five. A data band is an area sandwiched between two adjacent servo bands. The data band is composed of a plurality of data tracks, each data track corresponding to each servo track.
 また、一形態では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。 In one form, as disclosed in JP-A-2004-318983, each servo band includes information indicating the number of the servo band ("servo band ID (identification)" or "UDIM (Unique Data Band Identification)"). Method (also called information) is embedded. This servo band ID is recorded by shifting a specific one of a plurality of pairs of servo stripes in the servo band so that the position thereof is relatively displaced in the longitudinal direction of the magnetic tape. Specifically, the method of shifting a specific one of a plurality of pairs of servo stripes is changed for each servo band. As a result, the recorded servo band ID is unique for each servo band, so that one servo band can be uniquely specified only by reading one servo band with a servo signal reading element.
 なお、サーボバンドを一意に特定する方法には、ECMA―319(June 2001)に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。 It should be noted that as a method for uniquely specifying a servo band, there is also a method using a staggered method as shown in ECMA-319 (June 2001). In this staggered method, groups of non-parallel pairs of magnetic stripes (servo stripes) arranged continuously in the longitudinal direction of the magnetic tape are recorded so as to be shifted in the longitudinal direction of the magnetic tape for each servo band. do. Since this combination of shifts between adjacent servo bands is unique for the entire magnetic tape, the servo band can be uniquely identified when reading the servo pattern with two servo signal reading elements. It is possible.
 また、各サーボバンドには、ECMA―319(June 2001)に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。 In each servo band, information indicating the position in the longitudinal direction of the magnetic tape (also called "LPOS (Longitudinal Position) information") is also usually embedded as indicated in ECMA-319 (June 2001). ing. Like the UDIM information, this LPOS information is also recorded by shifting the positions of a pair of servo stripes in the longitudinal direction of the magnetic tape. However, unlike the UDIM information, the same signal is recorded in each servo band in this LPOS information.
 上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
 また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
Other information different from the above UDIM and LPOS information can also be embedded in the servo band. In this case, the embedded information may be different for each servo band, such as UDIM information, or common to all servo bands, such as LPOS information.
Also, as a method of embedding information in the servo band, it is possible to adopt a method other than the above. For example, a predetermined code may be recorded by thinning out a predetermined pair from a group of paired servo stripes.
 サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、通常、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。 The servo pattern forming head is called a servo write head. A servo write head normally has a pair of gaps corresponding to the pair of magnetic stripes as many as the number of servo bands. Normally, a core and a coil are connected to each pair of gaps, and by supplying current pulses to the coils, a magnetic field generated in the core can generate a leakage magnetic field in the pair of gaps. When forming the servo pattern, the magnetic pattern corresponding to the pair of gaps is transferred onto the magnetic tape by inputting a current pulse while the magnetic tape is running over the servo write head, thereby forming the servo pattern. can be done. The width of each gap can be appropriately set according to the density of the servo pattern to be formed. The width of each gap can be set to, for example, 1 μm or less, 1 to 10 μm, or 10 μm or more.
 磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。 Before forming the servo pattern on the magnetic tape, the magnetic tape is usually demagnetized (erase). This erasing process can be performed by applying a uniform magnetic field to the magnetic tape using a DC magnet or an AC magnet. The erase process includes DC (Direct Current) erase and AC (Alternating Current) erase. AC erase is performed by gradually decreasing the strength of the magnetic field while reversing the direction of the magnetic field applied to the magnetic tape. DC erase, on the other hand, is performed by applying a unidirectional magnetic field to the magnetic tape. There are two methods of DC erase. The first method is a horizontal DC erase that applies a unidirectional magnetic field along the length of the magnetic tape. The second method is perpendicular DC erase, in which a unidirectional magnetic field is applied along the thickness of the magnetic tape. The erase process may be performed on the entire magnetic tape, or may be performed on each servo band of the magnetic tape.
 形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。 The direction of the magnetic field of the formed servo pattern is determined according to the erase direction. For example, when horizontal DC erasing is performed on a magnetic tape, the servo pattern is formed so that the direction of the magnetic field is opposite to the direction of erasing. As a result, the output of the servo signal obtained by reading the servo pattern can be increased. Incidentally, as disclosed in Japanese Patent Application Laid-Open No. 2012-53940, when a magnetic pattern is transferred to a perpendicular DC-erased magnetic tape using the gap, the formed servo pattern is read and obtained. The servo signal has a unipolar pulse shape. On the other hand, when a magnetic pattern is transferred to a magnetic tape that has been horizontally DC-erased using the gap, a servo signal obtained by reading the formed servo pattern has a bipolar pulse shape.
[磁気テープカートリッジ]
 本発明の一態様は、上記磁気テープを含む磁気テープカートリッジに関する。 
[Magnetic tape cartridge]
One aspect of the present invention relates to a magnetic tape cartridge including the above magnetic tape.
 上記磁気テープカートリッジに含まれる磁気テープの詳細は、先に記載した通りである。 The details of the magnetic tape included in the magnetic tape cartridge are as described above.
 磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気テープ装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気テープ装置側のリールに巻取られる。磁気テープカートリッジから巻取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気テープ装置側のリール(巻取りリール)との間で、磁気テープの送り出しと巻取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻取りリールの両リールが、磁気テープカートリッジ内部に具備されている。 A magnetic tape cartridge generally contains a magnetic tape wound on a reel inside the cartridge body. The reel is rotatably provided inside the cartridge body. As magnetic tape cartridges, a single reel type magnetic tape cartridge having one reel inside the cartridge body and a dual reel type magnetic tape cartridge having two reels inside the cartridge body are widely used. When a single-reel type magnetic tape cartridge is mounted on a magnetic tape device for recording and/or reproducing data on the magnetic tape, the magnetic tape is pulled out from the magnetic tape cartridge and wound on the reel of the magnetic tape device. be taken. A magnetic head is arranged in the magnetic tape transport path from the magnetic tape cartridge to the take-up reel. The magnetic tape is fed out and taken up between the reel (supply reel) of the magnetic tape cartridge and the reel (take-up reel) of the magnetic tape device. During this time, data is recorded and/or reproduced by contact and sliding between the magnetic head and the surface of the magnetic layer of the magnetic tape. On the other hand, a twin-reel type magnetic tape cartridge has both a supply reel and a take-up reel inside the magnetic tape cartridge.
 上記磁気テープカートリッジは、一形態では、カートリッジメモリを含むことができる。カートリッジメモリは、例えば不揮発メモリであることができ、テンション調整情報が既に記録されているメモリであるか、またはテンション調整情報が記録されるメモリであることができる。テンション調整情報は、磁気テープの長手方向にかかるテンションを調整するための情報である。カートリッジメモリについては、後述の記載も参照できる。 In one form, the magnetic tape cartridge can include a cartridge memory. The cartridge memory can be, for example, a non-volatile memory, and can be a memory in which tension adjustment information is already recorded, or a memory in which tension adjustment information is recorded. The tension adjustment information is information for adjusting the tension applied to the magnetic tape in the longitudinal direction. Regarding the cartridge memory, reference can also be made to the later description.
 上記磁気テープおよび磁気テープカートリッジは、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御する磁気テープ装置(換言すれば磁気記録再生システム)において、好適に使用され得る。 The above magnetic tape and magnetic tape cartridge are preferably used in a magnetic tape device (in other words, a magnetic recording/reproducing system) that controls the widthwise dimension of the magnetic tape by adjusting the tension applied to the magnetic tape in the longitudinal direction. obtain.
[磁気テープ装置]
 本発明の一態様は、上記磁気テープを含む磁気テープ装置に関する。上記磁気テープ装置において、磁気テープへのデータの記録および/または磁気テープに記録されたデータの再生は、磁気テープの磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気テープ装置は、本発明の一態様にかかる磁気テープカートリッジを着脱可能に含むことができる。
[Magnetic tape device]
One aspect of the present invention relates to a magnetic tape device including the above magnetic tape. In the above magnetic tape device, data recording on the magnetic tape and/or reproduction of data recorded on the magnetic tape can be performed by bringing the surface of the magnetic layer of the magnetic tape and the magnetic head into contact with each other and sliding the magnetic head. . The magnetic tape device can detachably include the magnetic tape cartridge according to one aspect of the present invention.
 上記磁気テープカートリッジは、磁気ヘッドを備えた磁気テープ装置に装着させ、データの記録および/または再生を行うために用いることができる。本発明および本明細書において、「磁気テープ装置」とは、磁気テープへのデータの記録および磁気テープに記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気テープ装置に含まれる磁気ヘッドは、磁気テープへのデータの記録を行うことができる記録ヘッドであることができ、磁気テープに記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気テープ装置は、一形態では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一形態では、上記磁気テープ装置に含まれる磁気ヘッドは、記録素子と再生素子の両方を1つの磁気ヘッドに備えた構成を有することもできる。再生ヘッドとしては、磁気テープに記録された情報を感度よく読み取ることができる磁気抵抗効果型(MR:Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、公知の各種MRヘッド(例えば、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等)を用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気テープ装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、データバンドを挟んで隣り合う2本のサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)を、「データ用素子」と総称する。 The magnetic tape cartridge can be mounted on a magnetic tape device having a magnetic head and used to record and/or reproduce data. In the present invention and in this specification, the term "magnetic tape device" means a device capable of at least one of recording data on a magnetic tape and reproducing data recorded on the magnetic tape. Such devices are commonly called drives. The magnetic head included in the magnetic tape device can be a recording head capable of recording data on the magnetic tape, and a reproducing head capable of reproducing data recorded on the magnetic tape. can also In one form, the magnetic tape device can include both a recording head and a reproducing head as separate magnetic heads. In another form, the magnetic head included in the magnetic tape device may have a configuration in which both the recording element and the reproducing element are provided in one magnetic head. As a reproducing head, a magnetic head (MR head) including a magnetoresistive (MR) element capable of reading information recorded on a magnetic tape with high sensitivity as a reproducing element is preferable. As the MR head, various known MR heads (for example, GMR (Giant Magnetoresistive) head, TMR (Tunnel Magnetoresistive) head, etc.) can be used. A magnetic head for recording and/or reproducing data may also include a servo signal reading element. Alternatively, the magnetic tape device may include a magnetic head (servo head) having a servo signal reading element as a separate head from the magnetic head for recording and/or reproducing data. For example, a magnetic head for recording data and/or reproducing recorded data (hereinafter also referred to as a "recording/reproducing head") may include two servo signal reading elements. can simultaneously read two adjacent servo bands across the data band. One or more data elements can be positioned between the two servo signal read elements. An element for recording data (recording element) and an element for reproducing data (reading element) are collectively referred to as a "data element".
 再生素子として再生素子幅が狭い再生素子を使用してデータの再生を行うことにより、高密度記録されたデータを高感度に再生することができる。この観点から、再生素子の再生素子幅は、0.8μm以下であることが好ましい。再生素子の再生素子幅は、例えば0.3μm以上であることができる。ただし、この値を下回ることも上記観点からは好ましい。
 他方、再生素子幅が狭くなるほど、オフトラックに起因する再生不良等の現象が発生し易くなる。このような現象の発生を抑制するために、磁気テープの長手方向にかかるテンションを調整することによって、磁気テープの幅方向の寸法を制御する磁気テープ装置は好ましい。
 ここで「再生素子幅」とは、再生素子幅の物理的な寸法をいうものとする。かかる物理的な寸法は、光学顕微鏡、走査型電子顕微鏡等により測定が可能である。
By reproducing data using a reproducing element having a narrow reproducing element width as a reproducing element, data recorded at a high density can be reproduced with high sensitivity. From this point of view, the read element width of the read element is preferably 0.8 μm or less. The read element width of the read element can be, for example, 0.3 μm or more. However, falling below this value is also preferable from the above viewpoint.
On the other hand, the narrower the width of the reproducing element, the more likely it is that phenomena such as poor reproduction due to off-track will occur. In order to suppress the occurrence of such a phenomenon, a magnetic tape device that controls the widthwise dimension of the magnetic tape by adjusting the tension applied to the magnetic tape in the longitudinal direction is preferable.
Here, the "reproducing element width" means the physical dimension of the reproducing element width. Such physical dimensions can be measured with an optical microscope, scanning electron microscope, or the like.
 データの記録および/または記録されたデータの再生の際には、まず、サーボ信号を用いたトラッキングを行うことができる。即ち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御することができる。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
 また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
When recording data and/or reproducing recorded data, first, tracking using a servo signal can be performed. That is, by causing the servo signal reading element to follow a predetermined servo track, the data element can be controlled to pass over the target data track. The movement of the data track is performed by changing the servo track read by the servo signal reading element in the tape width direction.
The record/playback head can also record and/or play back other data bands. In this case, the above-described UDIM information is used to move the servo signal reading element to a predetermined servo band, and tracking for that servo band can be started.
 図1に、データバンドおよびサーボバンドの配置例を示す。図1中、磁気テープMTの磁性層には、複数のサーボバンド1が、ガイドバンド3に挟まれて配置されている。2本のサーボバンドに挟まれた複数の領域2が、データバンドである。サーボパターンは、磁化領域であって、サーボライトヘッドにより磁性層の特定の領域を磁化することによって形成される。サーボライトヘッドにより磁化する領域(サーボパターンを形成する位置)は規格により定められている。例えば業界標準規格であるLTO Ultriumフォーマットテープには、磁気テープ製造時に、図2に示すようにテープ幅方向に対して傾斜した複数のサーボパターンが、サーボバンド上に形成される。詳しくは、図2中、サーボバンド1上のサーボフレームSFは、サーボサブフレーム1(SSF1)およびサーボサブフレーム2(SSF2)から構成される。サーボサブフレーム1は、Aバースト(図2中、符号A)およびBバースト(図2中、符号B)から構成される。AバーストはサーボパターンA1~A5から構成され、BバーストはサーボパターンB1~B5から構成される。一方、サーボサブフレーム2は、Cバースト(図2中、符号C)およびDバースト(図2中、符号D)から構成される。CバーストはサーボパターンC1~C4から構成され、DバーストはサーボパターンD1~D4から構成される。このような18本のサーボパターンが5本と4本のセットで、5、5、4、4、の配列で並べられたサブフレームに配置され、サーボフレームを識別するために用いられる。図2には、説明のために1つのサーボフレームを示した。ただし、実際には、タイミングベースサーボ方式のヘッドトラッキングが行われる磁気テープの磁性層には、各サーボバンドに、複数のサーボフレームが走行方向に配置されている。図2中、矢印は走行方向を示している。例えば、LTO Ultriumフォーマットテープは、通常、磁性層の各サーボバンドに、テープ長1mあたり5000以上のサーボフレームを有する。 Fig. 1 shows an example of the arrangement of data bands and servo bands. In FIG. 1, a plurality of servo bands 1 are sandwiched between guide bands 3 on the magnetic layer of the magnetic tape MT. A plurality of areas 2 sandwiched between two servo bands are data bands. A servo pattern is a magnetized region formed by magnetizing a specific region of a magnetic layer with a servo write head. The area magnetized by the servo write head (the position where the servo pattern is formed) is defined by standards. For example, in the industry standard LTO Ultrium format tape, a plurality of servo patterns inclined with respect to the tape width direction as shown in FIG. 2 are formed on the servo band when the magnetic tape is manufactured. Specifically, in FIG. 2, the servo frame SF on servo band 1 is composed of servo subframe 1 (SSF1) and servo subframe 2 (SSF2). A servo subframe 1 is composed of an A burst (symbol A in FIG. 2) and a B burst (symbol B in FIG. 2). The A burst is composed of servo patterns A1 to A5, and the B burst is composed of servo patterns B1 to B5. On the other hand, servo subframe 2 is composed of a C burst (symbol C in FIG. 2) and a D burst (symbol D in FIG. 2). The C burst is composed of servo patterns C1 to C4, and the D burst is composed of servo patterns D1 to D4. Such 18 servo patterns are arranged in sets of 5 and 4 in subframes arranged in an array of 5, 5, 4, 4, and are used to identify servo frames. FIG. 2 shows one servo frame for explanation. In practice, however, a plurality of servo frames are arranged in the running direction in each servo band on the magnetic layer of the magnetic tape on which the head tracking of the timing-based servo system is performed. In FIG. 2, arrows indicate the direction of travel. For example, an LTO Ultrium format tape typically has 5000 or more servo frames per meter of tape length in each servo band of the magnetic layer.
 磁気テープ装置は、磁気テープ装置内を走行する磁気テープの長手方向にかかるテンションを調整可能なテンション調整機構を有することができる。かかるテンション調整機構は、磁気テープの長手方向にかかるテンションを可変に制御することができ、好ましくは、磁気テープの長手方向にかかるテンションを調整することによって、磁気テープの幅方向の寸法を制御することができる。上記テンション調整において、磁気テープの長手方向にかかるテンションは変化し得る。以下に、図3を参照して、かかる磁気テープ装置の一例について説明する。ただし本発明は、図3に示す例に限定されるものではない。 The magnetic tape device can have a tension adjustment mechanism that can adjust the tension applied to the magnetic tape running in the magnetic tape device in the longitudinal direction. Such a tension adjusting mechanism can variably control the tension applied to the magnetic tape in the longitudinal direction, and preferably controls the widthwise dimension of the magnetic tape by adjusting the tension applied in the longitudinal direction of the magnetic tape. be able to. In the tension adjustment described above, the tension applied to the magnetic tape in the longitudinal direction can be changed. An example of such a magnetic tape device will be described below with reference to FIG. However, the present invention is not limited to the example shown in FIG.
<磁気テープ装置の構成>
 図3に示す磁気テープ装置10は、制御装置11からの命令により記録再生ヘッドユニット12を制御し、磁気テープMTへのデータの記録および再生を行う。
 磁気テープ装置10は、磁気テープカートリッジリールと巻取りリールを回転制御するスピンドルモーター17A、17Bおよびそれらの駆動装置18A、18Bから磁気テープの長手方向に加わるテンションの検出および調整が可能な構成を有している。
 磁気テープ装置10は、磁気テープカートリッジ13を装填可能な構成を有している。
 磁気テープ装置10は、磁気テープカートリッジ13内のカートリッジメモリ131について読み取りおよび書き込みが可能なカートリッジメモリリードライト装置14を有している。
 磁気テープ装置10に装着された磁気テープカートリッジ13からは、磁気テープMTの端部またはリーダーピンが自動のローディング機構または手動により引き出され、磁気テープMTの磁性層表面が記録再生ヘッドユニット12の記録再生ヘッド表面に接する向きでガイドローラー15A、15Bを通して記録再生ヘッド上をパスし、磁気テープMTが巻取りリール16に巻取られる。
 制御装置11からの信号によりスピンドルモーター17Aとスピンドルモーター17Bの回転およびトルクが制御され、磁気テープMTが任意の速度とテンションで走行される。テープ速度の制御には、磁気テープ上に予め形成されたサーボパターンを利用することができる。テンションの検出のために、磁気テープカートリッジ13と巻取りリール16との間にテンション検出機構を設けてもよい。テンションの制御は、スピンドルモーター17Aおよび17Bによる制御の他に、ガイドローラー15Aおよび15Bを用いて行ってもよい。
 カートリッジメモリリードライト装置14は、制御装置11からの命令により、カートリッジメモリ131の情報の読み出しと書き込みが可能に構成されている。カートリッジメモリリードライト装置14とカートリッジメモリ131との間の通信方式としては、例えば、ISO(International Organization for Standardization)14443方式を採用できる。
<Configuration of magnetic tape device>
The magnetic tape device 10 shown in FIG. 3 controls the recording/reproducing head unit 12 according to commands from the control device 11 to record and reproduce data on the magnetic tape MT.
The magnetic tape device 10 has a structure capable of detecting and adjusting the tension applied in the longitudinal direction of the magnetic tape from spindle motors 17A and 17B that control the rotation of the magnetic tape cartridge reel and take-up reel, and their drive devices 18A and 18B. are doing.
The magnetic tape device 10 has a configuration in which a magnetic tape cartridge 13 can be loaded.
The magnetic tape device 10 has a cartridge memory read/write device 14 capable of reading from and writing to the cartridge memory 131 in the magnetic tape cartridge 13 .
From the magnetic tape cartridge 13 mounted on the magnetic tape device 10 , the end of the magnetic tape MT or the leader pin is pulled out by an automatic loading mechanism or manually, and the magnetic layer surface of the magnetic tape MT is recorded by the recording/reproducing head unit 12 . The magnetic tape MT is wound onto the take-up reel 16 by passing over the recording/reproducing head through the guide rollers 15A and 15B so as to contact the surface of the reproducing head.
A signal from the controller 11 controls the rotation and torque of the spindle motors 17A and 17B to run the magnetic tape MT at an arbitrary speed and tension. A servo pattern preformed on the magnetic tape can be used to control the tape speed. A tension detection mechanism may be provided between the magnetic tape cartridge 13 and the take-up reel 16 to detect tension. Tension control may be performed using guide rollers 15A and 15B in addition to control by spindle motors 17A and 17B.
The cartridge memory read/write device 14 is configured to be able to read and write information from the cartridge memory 131 according to commands from the control device 11 . As a communication method between the cartridge memory read/write device 14 and the cartridge memory 131, for example, the ISO (International Organization for Standardization) 14443 method can be adopted.
 制御装置11は、例えば、制御部、記憶部、通信部等を含む。 The control device 11 includes, for example, a control section, a storage section, a communication section, and the like.
 記録再生ヘッドユニット12は、例えば、記録再生ヘッド、記録再生ヘッドのトラック幅方向の位置を調整するサーボトラッキングアクチュエータ、記録再生アンプ19、制御装置11と接続するためのコネクタケーブル等から構成される。記録再生ヘッドは、例えば、磁気テープにデータを記録する記録素子、磁気テープのデータを再生する再生素子および磁気テープ上に記録されたサーボ信号を読み取るサーボ信号読み取り素子から構成される。1つの磁気ヘッド内に、記録素子、再生素子、サーボ信号読み取り素子は、例えば、それぞれ1個以上搭載されている。または、磁気テープの走行方向に応じた複数の磁気ヘッド内に別々にそれぞれの素子を有していてもよい。 The recording/reproducing head unit 12 is composed of, for example, a recording/reproducing head, a servo tracking actuator for adjusting the position of the recording/reproducing head in the track width direction, a recording/reproducing amplifier 19, a connector cable for connecting to the control device 11, and the like. A recording/reproducing head is composed of, for example, a recording element for recording data on a magnetic tape, a reproducing element for reproducing data from the magnetic tape, and a servo signal reading element for reading a servo signal recorded on the magnetic tape. For example, one or more recording elements, one or more reproducing elements, and one or more servo signal reading elements are mounted in one magnetic head. Alternatively, each element may be separately provided in a plurality of magnetic heads corresponding to the traveling direction of the magnetic tape.
 記録再生ヘッドユニット12は、制御装置11からの命令に応じて、磁気テープMTに対してデータを記録することが可能に構成されている。また、制御装置11からの命令に応じて、磁気テープMTに記録されたデータを再生することが可能に構成されている。 The recording/reproducing head unit 12 is configured to be able to record data on the magnetic tape MT according to commands from the control device 11 . Further, according to a command from the control device 11, the data recorded on the magnetic tape MT can be reproduced.
 制御装置11は、磁気テープMTの走行時にサーボバンドから読み取られるサーボ信号から磁気テープの走行位置を求め、狙いの走行位置(トラック位置)に記録素子および/または再生素子が位置するように、サーボトラッキングアクチュエータを制御する機構を有している。このトラック位置の制御は、例えば、フィードバック制御により行われる。
 制御装置11は、磁気テープMTの走行時に隣り合う2本のサーボバンドから読み取られるサーボ信号から、サーボバンド間隔を求める機構を有している。またサーボバンド間隔が狙いの値になるように、スピンドルモーター17Aおよびスピンドルモーター17Bのトルクおよび/またはガイドローラー15Aおよび15Bを制御して磁気テープの長手方向のテンションを制御する機構を有している。このテンションの制御は、例えば、フィードバック制御により行われる。また、制御装置11は、求めたサーボバンド間隔の情報を、制御装置11の内部の記憶部、カートリッジメモリ131、外部の接続機器等に保存することができる。
The controller 11 determines the running position of the magnetic tape from the servo signal read from the servo band while the magnetic tape MT is running, and controls the servo so that the recording element and/or the reproducing element are positioned at the target running position (track position). It has a mechanism for controlling the tracking actuator. This track position control is performed, for example, by feedback control.
The control device 11 has a mechanism for obtaining a servo band interval from servo signals read from two adjacent servo bands while the magnetic tape MT is running. It also has a mechanism for controlling the tension in the longitudinal direction of the magnetic tape by controlling the torque of the spindle motor 17A and the spindle motor 17B and/or the guide rollers 15A and 15B so that the servo band interval becomes a target value. . This tension control is performed, for example, by feedback control. Further, the control device 11 can store the obtained servo band interval information in a storage unit inside the control device 11, the cartridge memory 131, an external connected device, or the like.
 以下に、本発明を実施例に基づき説明する。ただし、本発明は実施例に示す実施形態に限定されるものではない。以下に記載の「部」、「%」の表示は、特記しない限り、「質量部」、「質量%」を示す。以下に記載の工程および評価は、特記しない限り、温度23℃±1℃の環境において行った。また、以下に記載の「eq」は、SI単位系に換算不可の単位である当量(equivalent)を示す。 The present invention will be described below based on examples. However, the present invention is not limited to the embodiments shown in Examples. Unless otherwise specified, "parts" and "%" described below indicate "mass parts" and "mass%". The processes and evaluations described below were performed in an environment at a temperature of 23°C ± 1°C unless otherwise specified. Also, "eq" described below indicates an equivalent, which is a unit that cannot be converted into the SI unit system.
[非磁性支持体]
 表2中、「PEN」はポリエチレンナフタレート支持体を示す。表2中のヤング率は、先に記載の方法によって測定された値である。
[Nonmagnetic support]
In Table 2, "PEN" indicates polyethylene naphthalate support. Young's modulus in Table 2 is a value measured by the method described above.
[強磁性粉末]
 表2中、「BaFe」は、平均粒子サイズ(平均板径)21nmの六方晶バリウムフェライト粉末である。
[Ferromagnetic powder]
In Table 2, "BaFe" is hexagonal barium ferrite powder with an average particle size (average plate diameter) of 21 nm.
 表2中、「SrFe1」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
 SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
 得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
 作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
 次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gおよび濃度1%の酢酸水溶液800mlを加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈殿させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
 上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
 上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
 別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
 上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
 上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
 PANalytical X’Pert Pro回折計、PIXcel検出器
 入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
 分散スリットの固定角:1/4度
 マスク:10mm
 散乱防止スリット:1/4度
 測定モード:連続
 1段階あたりの測定時間:3秒
 測定速度:毎秒0.017度
 測定ステップ:0.05度
In Table 2, "SrFe1" is hexagonal strontium ferrite powder produced by the following method.
1707 g of SrCO3, 687 g of H3BO3 , 1120 g of Fe2O3 , 45 g of Al(OH) 3 , 24 g of BaCO3 , 13 g of CaCO3 , and 235 g of Nd2O3 were weighed and mixed in a mixer. A raw material mixture was obtained by mixing.
The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1390° C., and while the melt was being stirred, a tap hole provided at the bottom of the platinum crucible was heated, and the melt was tapped in a rod shape at a rate of about 6 g/sec. . The tapped liquid was rolled and quenched with a water-cooled twin roller to prepare an amorphous body.
280 g of the produced amorphous material was placed in an electric furnace, heated to 635° C. (crystallization temperature) at a heating rate of 3.5° C./min, and held at the same temperature for 5 hours to produce hexagonal strontium ferrite particles. Precipitated (crystallized).
Next, the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a particle size of 1 mm and 800 ml of a 1% concentration aqueous solution of acetic acid were added to a glass bottle and dispersed for 3 hours using a paint shaker. did After that, the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifuge and washed by repeating decantation. After drying for a few hours, hexagonal strontium ferrite powder was obtained.
The average particle size of the hexagonal strontium ferrite powder obtained above is 18 nm, the activation volume is 902 nm 3 , the anisotropy constant Ku is 2.2×10 5 J/m 3 , and the mass magnetization σs is 49 A·m 2 /. kg.
12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was partially dissolved under the dissolution conditions exemplified above. The surface layer content was determined.
Separately, 12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was completely dissolved under the dissolution conditions exemplified above. Atomic bulk content was determined.
The content of neodymium atoms (bulk content) with respect to 100 atomic % of iron atoms in the hexagonal strontium ferrite powder obtained above was 2.9 atomic %. The content of neodymium atoms in the surface layer was 8.0 atomic %. The ratio of the surface layer portion content rate to the bulk content rate, "surface layer portion content rate/bulk content rate", was 2.8, confirming that neodymium atoms were unevenly distributed in the surface layer of the particles.
The fact that the powder obtained above exhibits the crystal structure of hexagonal ferrite is confirmed by scanning CuKα rays under the conditions of a voltage of 45 kV and an intensity of 40 mA and measuring the X-ray diffraction pattern under the following conditions (X-ray diffraction analysis). confirmed. The powder obtained above exhibited a crystal structure of magnetoplumbite-type (M-type) hexagonal ferrite. The crystal phase detected by X-ray diffraction analysis was a magnetoplumbite single phase.
PANalytical X'Pert Pro diffractometer, PIXcel detector Soller slits for incident and diffracted beams: 0.017 radians Fixed divergence slit angle: ¼ degree Mask: 10 mm
Anti-scattering slit: 1/4 degree Measurement mode: continuous Measurement time per step: 3 seconds Measurement speed: 0.017 degree per second Measurement step: 0.05 degree
 表2中、「SrFe2」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
 SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
 得られた原料混合物を、白金ルツボで溶融温度1380℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで圧延急冷して非晶質体を作製した。
 得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
 次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gおよび濃度1%の酢酸水溶液800mlを加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈殿させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
 得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
In Table 2, "SrFe2" is hexagonal strontium ferrite powder produced by the following method.
1725 g of SrCO3, 666 g of H3BO3 , 1332 g of Fe2O3 , 52 g of Al(OH) 3 , 34 g of CaCO3 and 141 g of BaCO3 were weighed and mixed in a mixer to obtain a raw material mixture.
The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1380° C., and while the melt was being stirred, a tap hole provided at the bottom of the platinum crucible was heated, and the melt was tapped in a rod shape at a rate of about 6 g/sec. . The tapped liquid was rolled and quenched with water-cooled twin rolls to prepare an amorphous body.
280 g of the obtained amorphous material was placed in an electric furnace, heated to 645° C. (crystallization temperature), and held at the same temperature for 5 hours to precipitate (crystallize) hexagonal strontium ferrite particles.
Next, the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a particle size of 1 mm and 800 ml of a 1% concentration aqueous solution of acetic acid were added to a glass bottle and dispersed for 3 hours using a paint shaker. did After that, the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifuge, washed by repeating decantation, and placed in a heating furnace at a temperature of 110°C for 6 hours. After drying for a few hours, hexagonal strontium ferrite powder was obtained.
The obtained hexagonal strontium ferrite powder had an average particle size of 19 nm, an activated volume of 1102 nm 3 , an anisotropy constant Ku of 2.0×10 5 J/m 3 , and a mass magnetization σs of 50 A·m 2 /kg. there were.
 表2中、「ε-酸化鉄」は、以下の方法により作製されたε-酸化鉄粉末である。
 純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
 乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。   
 得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装填し、4時間の加熱処理を施した。
 加熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、加熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
 その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
 得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES:Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.28Co0.05Ti0.05Fe1.62)であった。また、先にSrFe1について記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄の結晶構造)を有することを確認した。
 得られたε-酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
In Table 2, "ε-iron oxide" is ε-iron oxide powder prepared by the following method.
8.3 g of iron (III) nitrate nonahydrate, 1.3 g of gallium (III) nitrate octahydrate, 190 mg of cobalt (II) nitrate hexahydrate, 150 mg of titanium (IV) sulfate, and 4.0 g of an aqueous ammonia solution having a concentration of 25% was added to a solution of 1.5 g of polyvinylpyrrolidone (PVP) in an air atmosphere at an ambient temperature of 25° C. while stirring using a magnetic stirrer. , and the mixture was stirred for 2 hours while maintaining the ambient temperature of 25°C. A citric acid solution obtained by dissolving 1 g of citric acid in 9 g of pure water was added to the obtained solution, and the mixture was stirred for 1 hour. The powder precipitated after stirring was collected by centrifugation, washed with pure water, and dried in a heating furnace with an internal furnace temperature of 80°C.
800 g of pure water was added to the dried powder, and the powder was dispersed again in water to obtain a dispersion liquid. The obtained dispersion was heated to a liquid temperature of 50° C., and 40 g of a 25% concentration aqueous ammonia solution was added dropwise while stirring. After stirring for 1 hour while maintaining the temperature at 50° C., 14 mL of tetraethoxysilane (TEOS) was added dropwise and the mixture was stirred for 24 hours. 50 g of ammonium sulfate was added to the obtained reaction solution, and the precipitated powder was collected by centrifugation, washed with pure water, and dried in a heating furnace at an internal temperature of 80°C for 24 hours to obtain a ferromagnetic powder precursor. Obtained.
The obtained ferromagnetic powder precursor was placed in a heating furnace with an internal temperature of 1000° C. in an air atmosphere, and heat-treated for 4 hours.
The heat-treated ferromagnetic powder precursor was put into a 4 mol/L sodium hydroxide (NaOH) aqueous solution, and the liquid temperature was maintained at 70° C. and stirred for 24 hours to obtain the heat-treated ferromagnetic powder. A silicic acid compound as an impurity was removed from the precursor.
After that, the ferromagnetic powder from which the silicic acid compound was removed was collected by centrifugal separation and washed with pure water to obtain the ferromagnetic powder.
When the composition of the obtained ferromagnetic powder was confirmed by high-frequency inductively coupled plasma-optical emission spectrometry (ICP-OES), Ga, Co and Ti-substituted ε-iron oxide (ε-Ga 0 .28 Co 0.05 Ti 0.05 Fe 1.62 O 3 ). In addition, X-ray diffraction analysis was performed under the same conditions as those described above for SrFe1, and from the peaks of the X-ray diffraction pattern, it was confirmed that the obtained ferromagnetic powder did not contain the crystal structure of α phase and γ phase, ε It was confirmed to have a single-phase crystal structure (ε-iron oxide crystal structure).
The resulting ε-iron oxide powder had an average particle size of 12 nm, an activated volume of 746 nm 3 , an anisotropy constant Ku of 1.2×10 5 J/m 3 and a mass magnetization σs of 16 A·m 2 /kg. there were.
 上記の六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
 また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁場強度15kOeで測定された値である。
The activation volume and anisotropy constant Ku of the above hexagonal strontium ferrite powder and ε-iron oxide powder were obtained using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd.) for each ferromagnetic powder, as previously described. It is a value obtained by the method of
Also, the mass magnetization σs is a value measured at a magnetic field strength of 15 kOe using a vibrating sample magnetometer (manufactured by Toei Industry Co., Ltd.).
[研磨剤液の調製]
<研磨剤液A1の調製>
 表1に示す研磨剤(アルミナ粉末)100.0部に対し、表1に示す量の2,3-ジヒドロキシナフタレン(東京化成社製)、表1に示す量のポリエチレンイミン(日本触媒社製、数平均分子量300)、表1に示す量のステアリン酸、極性基としてSONa基を有するポリエステルポリウレタン樹脂(東洋紡社製UR-4800(極性基量:80meq/kg))の32%溶液(溶媒はメチルエチルケトンとトルエンの混合溶媒)31.3部、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合液570.0部を混合し、ジルコニアビーズ(ビーズ径:0.1mm)存在下で、ペイントシェーカーにより、表1に示す時間(ビーズ分散時間)、分散させた。
 分散後、メッシュにより分散液とビーズとを分離して得られた分散液の遠心分離処理を実施した。遠心分離処理は、遠心分離器として日立工機社製CS150GXL(使用ローターは同社製S100AT6)を使用し、表1に示す回転数(rpm:rotation per minute)で表1に示す時間(遠心分離時間)、実施した。この遠心分離処理により、粒子サイズが比較的大きい粒子は沈殿し、粒子サイズが比較的小さい粒子は上澄み液に分散する。
 その後、デカンテーションにより上澄み液を回収した。この回収された液を、「研磨剤液A1」と呼ぶ。
[Preparation of abrasive liquid]
<Preparation of abrasive liquid A1>
For 100.0 parts of the abrasive (alumina powder) shown in Table 1, the amount shown in Table 1 of 2,3-dihydroxynaphthalene (manufactured by Tokyo Kasei Co., Ltd.), the amount shown in Table 1 of polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., number average molecular weight 300), stearic acid in the amount shown in Table 1, and a polyester polyurethane resin having an SO Na group as a polar group (UR-4800 manufactured by Toyobo Co., Ltd. (polar group weight: 80 meq/kg)) 32% solution (solvent is a mixed solvent of methyl ethyl ketone and toluene), and 570.0 parts of a mixture of methyl ethyl ketone and cyclohexanone (1:1 mass ratio) as a solvent are mixed, and in the presence of zirconia beads (bead diameter: 0.1 mm), Dispersed with a paint shaker for the time shown in Table 1 (bead dispersion time).
After dispersion, the dispersion obtained by separating the dispersion and the beads with a mesh was subjected to centrifugal separation. In the centrifugation process, CS150GXL manufactured by Hitachi Koki Co., Ltd. (rotor used is S100AT6 manufactured by Hitachi Koki Co., Ltd.) is used as a centrifuge, and the rotation speed (rpm: rotation per minute) shown in Table 1 is used for the time shown in Table 1 (centrifugation time ),carried out. By this centrifugation treatment, particles having a relatively large particle size are precipitated, and particles having a relatively small particle size are dispersed in the supernatant liquid.
After that, the supernatant was collected by decantation. This collected liquid is called "abrasive liquid A1".
<研磨剤液A2、B1、B2、C1、C2の調製>
 各種項目を表1に示すように変更した点以外、研磨剤液A1の調製方法と同様にして研磨剤液A2~C2をそれぞれ調製した。
<Preparation of Abrasive Liquids A2, B1, B2, C1 and C2>
Abrasive liquids A2 to C2 were prepared in the same manner as for abrasive liquid A1, except that various items were changed as shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[例A1]
<磁性層形成用組成物の調製>
(磁性液)
 強磁性粉末(表2参照):100.0部
 オレイン酸:2.0部
 塩化ビニル共重合体(日本ゼオン製MR-104):10.0部
 SONa基含有ポリウレタン樹脂:4.0部
  (重量平均分子量70000、SONa基:0.07meq/g)
 ポリアルキレンイミン系ポリマー(特開2016-51493号公報の段落0115~0123に記載の方法により得られた合成品):6.0部
 メチルエチルケトン:150.0部
 シクロヘキサノン:150.0部
(研磨剤液)
 表2に示す研磨剤液を、研磨剤液中の研磨剤量が表2に示す量となるように使用
(その他の成分)
 カーボンブラック(平均粒子サイズ:20nm):0.7部
 ポリエチレンイミン(日本触媒社製、数平均分子量300):表2参照
 ステアリン酸:表2参照
 ステアリン酸アミド:0.3部
 ステアリン酸ブチル:6.0部
 メチルエチルケトン:110.0部
 シクロヘキサノン:110.0部
 ポリイソシアネート(東ソー社製コロネート(登録商標)L):3.0部
[Example A1]
<Preparation of Composition for Forming Magnetic Layer>
(Magnetic liquid)
Ferromagnetic powder (see Table 2): 100.0 parts Oleic acid: 2.0 parts Vinyl chloride copolymer (MR-104 manufactured by Zeon Corporation): 10.0 parts SO 3 Na group-containing polyurethane resin: 4.0 parts (Weight average molecular weight 70000, SO 3 Na group: 0.07 meq/g)
Polyalkyleneimine polymer (synthetic product obtained by the method described in paragraphs 0115 to 0123 of JP-A-2016-51493): 6.0 parts methyl ethyl ketone: 150.0 parts cyclohexanone: 150.0 parts (abrasive liquid )
Use the abrasive liquid shown in Table 2 so that the amount of abrasive in the abrasive liquid is the amount shown in Table 2 (other components)
Carbon black (average particle size: 20 nm): 0.7 parts Polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., number average molecular weight 300): See Table 2 Stearic acid: See Table 2 Stearamide: 0.3 parts Butyl stearate: 6 .0 part Methyl ethyl ketone: 110.0 parts Cyclohexanone: 110.0 parts Polyisocyanate (Coronate (registered trademark) L manufactured by Tosoh Corporation): 3.0 parts
(調製方法)
 上記磁性液の各種成分を、バッチ式縦型サンドミルによりビーズ径0.5mmのジルコニアビーズ(第一の分散ビーズ、密度6.0g/cm)を使用して24時間分散し(第一の段階)、その後、0.5μmの孔径を有するフィルタを用いてろ過することにより分散液Aを調製した。ジルコニアビーズは、強磁性粉末の質量に対して、質量基準で10倍量用いた。
 その後、分散液Aをバッチ式縦型サンドミルによりビーズ径500nmのダイヤモンドビーズ(第二の分散ビーズ、密度3.5g/cm)を使用して1時間分散し(第二の段階)、遠心分離器を用いてダイヤモンドビーズを分離した分散液(分散液B)を調製した。ダイヤモンドビーズは、強磁性粉末の質量に対して、質量基準で10倍量用いた。
 上記で得た分散液B、研磨剤液および上記のその他の成分をディゾルバー撹拌機に導入し、周速10m/秒で360分間撹拌した。その後、フロー式超音波分散機により流量7.5kg/分で60分間超音波分散処理を行った後に、孔径0.3μmのフィルタで3回ろ過して磁性層形成用組成物を調製した。
(Preparation method)
Various components of the above magnetic liquid were dispersed for 24 hours using zirconia beads (first dispersion beads, density 6.0 g/cm 3 ) with a bead diameter of 0.5 mm in a batch-type vertical sand mill (first stage ), followed by filtration using a filter with a pore size of 0.5 μm to prepare Dispersion A. The zirconia beads were used in an amount 10 times the mass of the ferromagnetic powder.
After that, the dispersion liquid A was dispersed in a batch-type vertical sand mill using diamond beads with a bead diameter of 500 nm (second dispersion beads, density 3.5 g/cm 3 ) for 1 hour (second step), followed by centrifugation. A dispersion liquid (dispersion liquid B) was prepared by separating the diamond beads using a vessel. The amount of diamond beads used was 10 times the mass of the ferromagnetic powder.
Dispersion B obtained above, the abrasive liquid and the above-mentioned other components were introduced into a dissolver stirrer and stirred for 360 minutes at a peripheral speed of 10 m/sec. Then, after performing ultrasonic dispersion treatment for 60 minutes at a flow rate of 7.5 kg/min using a flow-type ultrasonic disperser, the mixture was filtered three times through a filter with a pore size of 0.3 μm to prepare a composition for forming a magnetic layer.
<非磁性層形成用組成物の調製>
 下記の非磁性層形成用組成物の各種成分を、バッチ式縦型サンドミルによりビーズ径0.1mmのジルコニアビーズを使用して24時間分散し、その後、0.5μmの孔径を有するフィルタを用いてろ過することにより、非磁性層形成用組成物を調製した。
<Preparation of composition for forming non-magnetic layer>
Various components of the following composition for forming a non-magnetic layer were dispersed for 24 hours in a batch-type vertical sand mill using zirconia beads with a bead diameter of 0.1 mm, and then filtered using a filter with a pore diameter of 0.5 μm. A composition for forming a non-magnetic layer was prepared by filtration.
非磁性無機粉末 α酸化鉄:100.0部
  (平均粒子サイズ10nm、BET比表面積75m/g)
カーボンブラック:25.0部
  (平均粒子サイズ20nm)
SONa基含有ポリウレタン樹脂:18.0部
  (重量平均分子量70000、SONa基含有量0.2meq/g)
ステアリン酸:1.0部
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
Non-magnetic inorganic powder α-iron oxide: 100.0 parts (average particle size 10 nm, BET specific surface area 75 m 2 /g)
Carbon black: 25.0 parts (average particle size 20 nm)
SO 3 Na group-containing polyurethane resin: 18.0 parts (weight average molecular weight 70000, SO 3 Na group content 0.2 meq/g)
Stearic acid: 1.0 parts Cyclohexanone: 300.0 parts Methyl ethyl ketone: 300.0 parts
<バックコート層形成用組成物の調製>
 下記のバックコート層形成用組成物の各種成分のうち潤滑剤(ステアリン酸およびステアリン酸ブチル)、ポリイソシアネートならびにシクロヘキサノン200.0部を除いた成分をオープンニーダにより混練および希釈した後、横型ビーズミル分散機によりビーズ径1mmのジルコニアビーズを用い、ビーズ充填率80体積%、ローター先端周速10m/秒で1パスあたりの滞留時間を2分間とし、12パスの分散処理に供した。その後、上記の残りの成分を添加してディゾルバーで撹拌し、得られた分散液を1μmの孔径を有するフィルタを用いてろ過することにより、バックコート層形成用組成物を調製した。
<Preparation of Composition for Forming Backcoat Layer>
Of the various components of the composition for forming a backcoat layer described below, components other than lubricants (stearic acid and butyl stearate), polyisocyanate and 200.0 parts of cyclohexanone were kneaded and diluted in an open kneader, and then dispersed in a horizontal bead mill. Using zirconia beads with a bead diameter of 1 mm, 12 passes of dispersion treatment were performed with a bead filling rate of 80% by volume, a rotor tip peripheral speed of 10 m/sec, and a residence time of 2 minutes per pass. Thereafter, the remaining components were added and stirred with a dissolver, and the resulting dispersion was filtered through a filter having a pore size of 1 μm to prepare a composition for forming a backcoat layer.
非磁性無機粉末 α酸化鉄:80.0部
 (平均粒子サイズ0.15μm、BET比表面積52m/g)
カーボンブラック:20.0部
 (平均粒子サイズ20nm)
塩化ビニル共重合体:13.0部
スルホン酸塩基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:155.0部
メチルエチルケトン:155.0部
ステアリン酸:3.0部
ステアリン酸ブチル:3.0部
ポリイソシアネート:5.0部
シクロヘキサノン:200.0部
Non-magnetic inorganic powder α-iron oxide: 80.0 parts (average particle size 0.15 μm, BET specific surface area 52 m 2 /g)
Carbon black: 20.0 parts (average particle size 20 nm)
Vinyl chloride copolymer: 13.0 parts Sulfonic acid group-containing polyurethane resin: 6.0 parts Phenylphosphonic acid: 3.0 parts Cyclohexanone: 155.0 parts Methyl ethyl ketone: 155.0 parts Stearic acid: 3.0 parts Stearic acid Butyl: 3.0 parts Polyisocyanate: 5.0 parts Cyclohexanone: 200.0 parts
<磁気テープおよび磁気テープカートリッジの作製>
 厚み4.2μmの表2に示す二軸延伸された支持体の表面上に、乾燥後の厚みが0.6μmとなるように上記で調製した非磁性層形成用組成物を塗布および乾燥させて非磁性層を形成した。
 次いで、非磁性層上に乾燥後の厚みが0.1μmとなるように上記で調製した磁性層形成用組成物を塗布して塗布層を形成した。
 その後、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、磁場強度0.3Tの磁場を塗布層の表面に対し垂直方向に印加して垂直配向処理を行った後、乾燥させ、磁性層を形成した。
 その後、支持体の非磁性層および磁性層を形成した表面とは反対側の表面に、乾燥後の厚みが0.3μmとなるように上記で調製したバックコート層形成用組成物を塗布および乾燥させてバックコート層を形成した。
 その後、金属ロールのみから構成されるカレンダロールを用いて、速度100m/分、線圧294kN/m、および90℃のカレンダ温度(カレンダロールの表面温度)にて、表面平滑化処理(カレンダ処理)を行った。こうして、長尺状の磁気テープ原反を得た。
 その後、雰囲気温度70℃の環境で36時間加熱処理を行った後、長尺状の磁気テープ原反を1/2インチ幅にスリットして、磁気テープを得た。
 得られた磁気テープの磁性層に市販のサーボライターによってサーボ信号を記録することにより、LTO(Linear Tape-Open) Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターン(タイミングベースサーボパターン)を有する磁気テープを得た。こうして形成されたサーボパターンは、JIS(Japanese Industrial Standards) X6175:2006およびStandard ECMA-319(June 2001)の記載にしたがうサーボパターンである。サーボバンドの合計本数は5、データバンドの合計本数は4である。
 こうしてサーボ信号が記録された磁気テープ(長さ960m)を、磁気テープカートリッジ(LTO Ultrium8データカートリッジ)のリールに巻取った。
 こうして、磁気テープがリールに巻装された例A1の磁気テープカートリッジを作製した。
<Production of magnetic tape and magnetic tape cartridge>
On the surface of the biaxially stretched support shown in Table 2 having a thickness of 4.2 μm, the non-magnetic layer-forming composition prepared above was coated and dried so as to give a thickness of 0.6 μm after drying. A non-magnetic layer was formed.
Next, the composition for forming a magnetic layer prepared above was coated on the non-magnetic layer so that the thickness after drying was 0.1 μm to form a coating layer.
Thereafter, while the coating layer of the composition for forming the magnetic layer is in a wet state, a magnetic field with a magnetic field strength of 0.3 T is applied in a direction perpendicular to the surface of the coating layer to perform a vertical alignment treatment, followed by drying. A magnetic layer was formed.
After that, the composition for forming a backcoat layer prepared above was coated on the surface of the support opposite to the surface on which the non-magnetic layer and the magnetic layer were formed, and dried so as to give a thickness of 0.3 μm after drying. to form a back coat layer.
After that, using a calender roll composed only of metal rolls, the surface is smoothed (calendered) at a speed of 100 m / min, a linear pressure of 294 kN / m, and a calender temperature of 90 ° C. (surface temperature of the calender roll). did Thus, a long magnetic tape raw material was obtained.
Then, after performing heat treatment for 36 hours at an ambient temperature of 70° C., the long magnetic tape original was slit into 1/2 inch width to obtain a magnetic tape.
By recording a servo signal on the magnetic layer of the obtained magnetic tape with a commercially available servo writer, a data band, a servo band, and a guide band are arranged in accordance with the LTO (Linear Tape-Open) Ultrium format, and the servo A magnetic tape having a servo pattern (timing-based servo pattern) arranged and shaped according to the LTO Ultrium format on the band was obtained. The servo pattern thus formed is a servo pattern according to the descriptions of JIS (Japanese Industrial Standards) X6175:2006 and Standard ECMA-319 (June 2001). The total number of servo bands is five, and the total number of data bands is four.
The magnetic tape (length 960 m) on which the servo signals were thus recorded was wound around the reel of a magnetic tape cartridge (LTO Ultrium 8 data cartridge).
In this way, a magnetic tape cartridge of Example A1 in which the magnetic tape was wound around the reel was produced.
 磁気テープの磁性層にポリエチレンイミンとステアリン酸により形成された、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を含む化合物が含まれることは、以下の方法により確認できる。
 磁気テープからサンプルを切り出し、磁性層表面(測定領域:300μm×700μm)においてESCA装置を用いてX線光電子分光分析を行う。詳しくは、下記測定条件でESCA装置によりワイドスキャン測定を行う。測定結果では、エステルアニオンの結合エネルギーの位置およびアンモニウムカチオンの結合エネルギーの位置にピークが確認される。
   装置:島津製作所製AXIS-ULTRA
   励起X線源:単色化Al-Kα線
   スキャン範囲:0~1200eV
   パスエネルギー:160eV
   エネルギー分解能:1eV/step
   取り込み時間:100ms/step
   積算回数:5
 また、磁気テープから長さ3cmのサンプル片を切り出し、磁性層表面のATR-FT-IR(Attenuated total reflection-fourier transform-infrared spectrometer)測定(反射法)を行い、測定結果において、COOの吸収に対応する波数(1540cm-1または1430cm-1)、およびアンモニウムカチオンの吸収に対応する波数(2400cm-1)に吸収が確認される。
It can be confirmed by the following method that the magnetic layer of the magnetic tape contains the compound containing the ammonium salt structure of the alkyl ester anion represented by the formula 1 formed by polyethyleneimine and stearic acid.
A sample is cut out from the magnetic tape, and X-ray photoelectron spectroscopic analysis is performed on the surface of the magnetic layer (measurement area: 300 μm×700 μm) using an ESCA device. Specifically, wide scan measurement is performed with an ESCA device under the following measurement conditions. In the measurement results, peaks are confirmed at the positions of the binding energy of the ester anion and the binding energy of the ammonium cation.
Apparatus: Shimadzu AXIS-ULTRA
Excitation X-ray source: Monochromatic Al-Kα ray Scan range: 0 to 1200 eV
Pass energy: 160 eV
Energy resolution: 1 eV/step
Acquisition time: 100ms/step
Cumulative count: 5
In addition, a sample piece with a length of 3 cm was cut from the magnetic tape, and the surface of the magnetic layer was subjected to ATR-FT-IR (attenuated total reflection-fourier transform-infrared spectrometer) measurement ( reflection method). (1540 cm −1 or 1430 cm −1 ) and a wave number (2400 cm −1 ) corresponding to the absorption of ammonium cations.
[例A2~A12、例B1~B11]
 表2に示す項目を表2に示すように変更した点以外、例A1について記載した方法により磁気テープおよび磁気テープカートリッジを得た。
 例A2~A12、例B2~B4およびB6~B11において、磁性層形成用組成物の調製時、その他の成分として、例A1と同様にポリエチレンイミンおよびステアリン酸を添加した。例B1および例B5においては、磁性層形成用組成物の調製時、その他の成分として、例A1と同様にステアリン酸を添加し、ポリエチレンイミンは添加しなかった。また、例B1~B8では、ポリエチレンイミンおよびステアリン酸を添加せずに調製された研磨剤液を使用して磁性層形成用組成物を調製した。
[Examples A2 to A12, Examples B1 to B11]
A magnetic tape and a magnetic tape cartridge were obtained by the method described for Example A1, except that the items shown in Table 2 were changed as shown in Table 2.
In Examples A2 to A12, Examples B2 to B4 and B6 to B11, polyethyleneimine and stearic acid were added as other components in the preparation of the magnetic layer forming compositions in the same manner as in Example A1. In Examples B1 and B5, stearic acid was added as another component in the preparation of the magnetic layer-forming composition in the same manner as in Example A1, but polyethyleneimine was not added. In Examples B1 to B8, magnetic layer-forming compositions were prepared using abrasive solutions prepared without adding polyethylenimine and stearic acid.
 上記の各例について、それぞれ磁気テープカートリッジを3つ作製し、1つは下記の電磁変換特性の低下に関する評価に使用し、1つは下記の記録再生性能の評価に使用し、他の1つは下記の磁気テープの評価に使用した。 For each of the above examples, three magnetic tape cartridges were produced, one was used for the evaluation of deterioration in electromagnetic conversion characteristics described below, one was used for the evaluation of recording and reproduction performance described below, and the other was used for evaluation. was used to evaluate the following magnetic tapes.
[電磁変換特性の低下に関する評価(SNR(Signal-to-Noise-Ratio)低下量)]
 以下の方法によって、電磁変換特性の低下に関する評価として、SNR低下量を求めた。下記の記録および再生は、磁気ヘッドを固定した1/2インチリールテスターを用いて行った。
 各例の磁気テープ(磁気テープ全長:960m)に対して、温度23℃相対湿度50%の環境において、磁気テープの長手方向に2.0Nのテンションをかけて記録および再生を1500パス行った。磁気テープと磁気ヘッドとの相対速度は8m/秒とし、記録は、記録ヘッドとしてMIG(Metal-in-gap)ヘッド(ギャップ長0.15μm、トラック幅1.0μm)を使用し、記録電流を各磁気テープの最適記録電流に設定して行った。再生は、再生ヘッドとしてGMR(Giant-magnetoresistive)ヘッド(素子厚み15nm、シールド間隔0.1μm、再生素子幅0.8μm)を使用して行った。線記録密度300kfciの信号を記録し、再生信号をシバソク社製のスペクトラムアナライザーで測定した。単位kfciとは、線記録密度の単位(SI単位系に換算不可)である。信号としては、磁気テープ走行開始後に信号が十分に安定した部分を使用した。
 走行後の磁気テープを、温度23℃相対湿度50%の環境に24時間保存した後、1時間以内に上記と同様の条件で記録および再生を行った。
 保存前の100パス目のSNRと保存後の100パス目のSNRとの差分(保存前の100パス目のSNR-保存後の100パス目のSNR)を算出し、SNR低下量とした。
[Evaluation regarding deterioration of electromagnetic conversion characteristics (SNR (Signal-to-Noise-Ratio) reduction amount)]
The amount of SNR decrease was obtained as an evaluation of the decrease in electromagnetic conversion characteristics by the following method. The following recording and reproduction were performed using a 1/2 inch reel tester with a fixed magnetic head.
The magnetic tape (total length of magnetic tape: 960 m) of each example was subjected to 1,500 passes of recording and reproduction by applying a tension of 2.0 N in the longitudinal direction of the magnetic tape in an environment of a temperature of 23° C. and a relative humidity of 50%. The relative speed between the magnetic tape and the magnetic head was 8 m/sec, and recording was performed using a MIG (Metal-in-gap) head (gap length 0.15 μm, track width 1.0 μm) as the recording head, and recording current was The optimum recording current was set for each magnetic tape. Reproduction was performed using a GMR (Giant-Magnetoresistive) head (element thickness: 15 nm, shield interval: 0.1 μm, reproduction element width: 0.8 μm). A signal with a linear recording density of 300 kfci was recorded, and the reproduced signal was measured with a spectrum analyzer manufactured by Shibasoku. The unit kfci is the unit of linear recording density (cannot be converted to the SI unit system). As the signal, a portion where the signal was sufficiently stabilized after the magnetic tape started running was used.
After running, the magnetic tape was stored for 24 hours in an environment with a temperature of 23° C. and a relative humidity of 50%, and then recording and reproduction were performed under the same conditions as above within 1 hour.
The difference between the SNR of the 100th pass before storage and the SNR of the 100th pass after storage (SNR of 100th pass before storage - SNR of 100th pass after storage) was calculated and used as the SNR decrease amount.
[記録再生性能の評価]
 記録再生性能の評価を、図3に示した構成の磁気テープ装置を用いて行った。記録再生ヘッドユニット12に搭載された記録再生ヘッドは、再生素子(再生素子幅:0.8μm)および記録素子を32チャンネル以上有し、その両側にサーボ信号読み取り素子を有する。
 各例の磁気テープカートリッジを、雰囲気温度23℃相対湿度50%の環境に5日間以上置いた。こうして環境に馴染ませた後、引き続き同環境において、以下のようにデータの記録を行った。
 磁気テープ装置に磁気テープカートリッジをセットし、磁気テープをローディングする。次にサーボトラッキングを行いながら記録再生ヘッドユニットにより磁気テープに特定のデータパターンを有する疑似ランダムデータの記録を行う。その際にテープ長手方向にかけるテンションは0.7Nとする。データの記録では、隣接トラック間の(PES1+PES2)/2の値の差が1.16μmとなるように3往復以上の記録を行う。データの記録と同時に、テープ全長のサーボバンド間隔の値を長手位置の1m毎に測定し、カートリッジメモリに記録する。
 上記のようにデータの記録を行った磁気テープカートリッジを、雰囲気温度60℃相対湿度20%の保存環境に72時間置いた。
 その後、磁気テープカートリッジを、雰囲気温度23℃相対湿度50%の環境に5日間以上置いた。こうして環境に馴染ませた後、引き続き同環境において、以下のようにデータの再生を行った。
 磁気テープ装置に磁気テープカートリッジをセットし、磁気テープをローディングする。次にサーボトラッキングを行いながら記録再生ヘッドユニットにより磁気テープに記録されたデータの再生を行う。その際、再生と同時にサーボバンド間隔の値を測定し、カートリッジメモリに記録された情報に基づき、同じ長手位置における記録時のサーボバンド間隔との差分の絶対値が0に近づくように、テープ長手方向にかけるテンションを調整する。再生時は、サーボバンド間隔の測定とそれに基づいたテンション調整がリアルタイムに連続して行われる。各例において、上記テンション調整のために制御装置11が使用したテンションの値は0.2~1.2Nの範囲であった。
 上記再生におけるチャンネル数は32チャンネルであり、再生時、32チャンネルすべてのデータが正しく読み取られた場合に記録再生性能「3」と評価し、31~28チャンネルのデータが正しく読み取られた場合に記録再生性能「2」と評価し、それ以外の場合を記録再生性能「1」と評価した。
[Evaluation of recording/playback performance]
Evaluation of recording/reproducing performance was performed using a magnetic tape device having the configuration shown in FIG. The recording/reproducing head mounted on the recording/reproducing head unit 12 has 32 or more channels of reproducing elements (reproducing element width: 0.8 μm) and recording elements, and has servo signal reading elements on both sides thereof.
The magnetic tape cartridge of each example was placed in an environment with an ambient temperature of 23° C. and a relative humidity of 50% for 5 days or more. After acclimatizing to the environment in this way, data was recorded as follows in the same environment.
Set the magnetic tape cartridge in the magnetic tape device and load the magnetic tape. Next, pseudo-random data having a specific data pattern is recorded on the magnetic tape by the recording/reproducing head unit while performing servo tracking. At that time, the tension applied in the longitudinal direction of the tape is 0.7N. In data recording, three or more reciprocations are performed so that the difference in the value of (PES1+PES2)/2 between adjacent tracks is 1.16 μm. Simultaneously with data recording, the value of the servo band interval over the entire length of the tape is measured every 1 m of the longitudinal position and recorded in the cartridge memory.
The magnetic tape cartridge on which data was recorded as described above was placed in a storage environment with an ambient temperature of 60° C. and a relative humidity of 20% for 72 hours.
After that, the magnetic tape cartridge was placed in an environment with an ambient temperature of 23° C. and a relative humidity of 50% for 5 days or longer. After acclimatization to the environment, the data was reproduced in the same environment as follows.
Set the magnetic tape cartridge in the magnetic tape device and load the magnetic tape. Next, while performing servo tracking, the data recorded on the magnetic tape is reproduced by the recording/reproducing head unit. At that time, the value of the servo band interval is measured at the same time as the reproduction. Adjust the tension in the direction. During playback, measurement of the servo band interval and adjustment of tension based thereon are continuously performed in real time. In each example, the tension values used by the controller 11 for the above tension adjustments ranged from 0.2 to 1.2N.
The number of channels in the above playback is 32 channels, and the recording/playback performance is evaluated as "3" when the data of all 32 channels are correctly read during playback, and the recording is performed when the data of the 31st to 28th channels are correctly read. The reproduction performance was evaluated as "2", and the other cases were evaluated as the recording and reproduction performance as "1".
[磁気テープの評価]
(1)AlFeSil摩耗値1、AlFeSil摩耗値2、保存前後のAlFeSil摩耗値変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)
 各例の磁気テープカートリッジから磁気テープを取り出し、温度23℃相対湿度50%の環境において、先に記載した方法によってAlFeSil摩耗値1およびAlFeSil摩耗値2を求めた。LTO8ヘッドとしては、市販のLTO8ヘッド(IBM社製)を使用した。求められたAlFeSil摩耗値1およびAlFeSil摩耗値2から、保存前後のAlFeSil摩耗値変化率(AlFeSil摩耗値2/AlFeSil摩耗値1を算出した。
[Evaluation of magnetic tape]
(1) AlFeSil wear value 1, AlFeSil wear value 2, AlFeSil wear value change rate before and after storage (AlFeSil wear value 2/AlFeSil wear value 1)
The magnetic tape was taken out from the magnetic tape cartridge of each example, and the AlFeSil abrasion value 1 and the AlFeSil abrasion value 2 were determined in an environment of temperature 23° C. and relative humidity 50% by the method described above. As the LTO8 head, a commercially available LTO8 head (manufactured by IBM) was used. From the obtained AlFeSil wear value 1 and AlFeSil wear value 2, the rate of change in AlFeSil wear value before and after storage (AlFeSil wear value 2/AlFeSil wear value 1) was calculated.
(2)テープ厚み
 各例の磁気テープカートリッジから取りだした磁気テープの任意の部分からテープサンプル(長さ5cm)を10枚切り出し、これらテープサンプルを重ねて厚みを測定した。厚みの測定は、MARH社製Millimar 1240コンパクトアンプとMillimar 1301誘導プローブのデジタル厚み計を用いて行った。測定された厚みを10分の1して得られた値(テープサンプル1枚当たりの厚み)を、テープ厚みとした。各磁気テープについて、テープ厚みは、いずれも5.2μmであった。
(2) Tape thickness Ten tape samples (5 cm in length) were cut out from an arbitrary portion of the magnetic tape taken out from the magnetic tape cartridge of each example, and these tape samples were stacked to measure the thickness. Thickness measurements were made using a MARH Millimar 1240 compact amplifier and a Millimar 1301 inductive probe digital thickness gauge. The value (thickness per tape sample) obtained by dividing the measured thickness by 1/10 was taken as the tape thickness. Each magnetic tape had a tape thickness of 5.2 μm.
 以上の結果を、表2(表2-1~表2-2)に示す。 The above results are shown in Table 2 (Tables 2-1 and 2-2).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表2に示す結果から、以下の点を確認することができる。
 保存前後のAlFeSil摩耗値変化率(AlFeSil摩耗値2/AlFeSil摩耗値1)が0.7以上である例A1~A12およびB9~B11の磁気テープが、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御する磁気テープ装置において、電磁変換特性低下の抑制が可能な磁気テープであることが確認できる。この結果には、例A1~A24および例B9~B11の磁気テープでは、繰り返し走行によって低下した磁気テープ表面の研磨力を短期間で低下前の状態に近づけることができたことが寄与していると本発明者は推察している。
 例A1~A12と例B1~B11との対比から、非磁性支持体として幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体を含む磁気テープが、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御する磁気テープ装置において好適に使用できる磁気テープであることが確認できる。
From the results shown in Table 2, the following points can be confirmed.
The magnetic tapes of Examples A1 to A12 and B9 to B11 in which the AlFeSil abrasion value change rate (AlFeSil abrasion value 2/AlFeSil abrasion value 1) before and after storage is 0.7 or more adjusts the tension applied to the magnetic tape in the longitudinal direction. Therefore, it can be confirmed that the magnetic tape can suppress the deterioration of the electromagnetic conversion characteristics in the magnetic tape device for controlling the dimension of the magnetic tape in the width direction. This result is due to the fact that in the magnetic tapes of Examples A1 to A24 and Examples B9 to B11, the polishing force on the surface of the magnetic tape, which had decreased due to repeated running, could be brought close to the state before the decrease in a short period of time. The inventor of the present invention conjectures that
From the comparison between Examples A1 to A12 and Examples B1 to B11, the magnetic tape including a polyethylene naphthalate support having a Young's modulus in the width direction of 10000 MPa or more as a non-magnetic support adjusts the tension applied in the longitudinal direction of the magnetic tape. Therefore, it can be confirmed that the magnetic tape can be suitably used in a magnetic tape device for controlling the dimension in the width direction of the magnetic tape.
 磁気テープ作製時に垂直配向処理を行わなかった点以外、例A1と同様の方法で磁気テープカートリッジを作製した。
 上記磁気テープカートリッジから取り出した磁気テープからサンプル片を切り出した。このサンプル片について、振動試料型磁力計として玉川製作所製TM-TRVSM5050-SMSL型を用いて、先に記載した方法によって垂直方向角型比を求めたところ、0.55であった。
 例A1の磁気テープカートリッジからも磁気テープを取り出し、この磁気テープから切り出したサンプル片について同様に垂直方向角型比を求めたところ、0.60であった。
A magnetic tape cartridge was produced in the same manner as in Example A1, except that no vertical alignment treatment was performed during the production of the magnetic tape.
A sample piece was cut out from the magnetic tape taken out from the magnetic tape cartridge. The squareness ratio in the vertical direction of this sample piece was found to be 0.55 by using the TM-TRVSM5050-SMSL model manufactured by Tamagawa Seisakusho as a vibrating sample magnetometer by the method described above.
A magnetic tape was taken out from the magnetic tape cartridge of Example A1, and the vertical squareness ratio of a sample piece cut out from this magnetic tape was similarly determined to be 0.60.
 上記2つの磁気テープカートリッジから取り出した磁気テープを、それぞれ1/2インチリールテスターに取り付け、以下の方法によって電磁変換特性(SNR:Signal-to-Noise Ratio)を評価した。その結果、例A1の磁気テープカートリッジから取り出した磁気テープについて、垂直配向処理なしで作製された上記磁気テープと比べて、2dB高いSNRの値が得られた。
 温度23℃相対湿度50%の環境において、磁気テープの長手方向に0.7Nのテンションをかけて記録および再生を10パス行った。磁気テープと磁気ヘッドとの相対速度は6m/秒とし、記録は、記録ヘッドとしてMIG(Metal-in-gap)ヘッド(ギャップ長0.15μm、トラック幅1.0μm)を使用し、記録電流を各磁気テープの最適記録電流に設定して行った。再生は、再生ヘッドとしてGMR(Giant-magnetoresistive)ヘッド(素子厚み15nm、シールド間隔0.1μm、再生素子幅0.8μm)を使用して行った。線記録密度300kfciの信号を記録し、再生信号をシバソク社製のスペクトラムアナライザーで測定した。単位kfciとは、線記録密度の単位(SI単位系に換算不可)である。信号としては、磁気テープ走行開始後に信号が十分に安定した部分を使用した。
The magnetic tapes taken out from the above two magnetic tape cartridges were each attached to a 1/2 inch reel tester, and the electromagnetic conversion characteristics (SNR: Signal-to-Noise Ratio) were evaluated by the following method. As a result, a 2 dB higher SNR value was obtained for the magnetic tape taken out from the magnetic tape cartridge of Example A1 than for the magnetic tape produced without the perpendicular orientation treatment.
Ten passes of recording and reproduction were performed by applying a tension of 0.7 N in the longitudinal direction of the magnetic tape in an environment of 23° C. and 50% relative humidity. The relative speed between the magnetic tape and the magnetic head was 6 m/sec, and recording was performed using a MIG (Metal-in-gap) head (gap length 0.15 μm, track width 1.0 μm) as a recording head, and recording current. The optimum recording current was set for each magnetic tape. Reproduction was performed using a GMR (Giant-Magnetoresistive) head (element thickness: 15 nm, shield interval: 0.1 μm, reproduction element width: 0.8 μm). A signal with a linear recording density of 300 kfci was recorded, and the reproduced signal was measured with a spectrum analyzer manufactured by Shibasoku. The unit kfci is the unit of linear recording density (cannot be converted to the SI unit system). As the signal, a portion where the signal was sufficiently stabilized after the magnetic tape started running was used.
 本発明の一態様は、各種データストレージの技術分野において有用である。 One aspect of the present invention is useful in various data storage technical fields.

Claims (12)

  1. 非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気テープであって、
    前記非磁性支持体は、幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体であり、かつ
    温度23℃相対湿度50%の環境において、前記磁性層の表面について測定されるAlFeSil摩耗値の保存前後の変化率、AlFeSil摩耗値2/AlFeSil摩耗値1、は0.7以上であり、
    前記AlFeSil摩耗値1は、前記磁気テープの長手方向に2.0Nのテンションをかけて測定されるAlFeSil摩耗値であり、
    前記AlFeSil摩耗値2は、前記AlFeSil摩耗値1の測定後の磁気テープをLTO8ヘッドに対して1500回往復摺動させた後、24時間保存後に磁気テープの長手方向に2.0Nのテンションをかけて測定されるAlFeSil摩耗値である、磁気テープ。
    A magnetic tape having a non-magnetic support and a magnetic layer containing ferromagnetic powder,
    The non-magnetic support is a polyethylene naphthalate support having a Young's modulus in the width direction of 10,000 MPa or more, and stores the AlFeSil wear value measured on the surface of the magnetic layer in an environment with a temperature of 23° C. and a relative humidity of 50%. The rate of change before and after, AlFeSil wear value 2/AlFeSil wear value 1, is 0.7 or more,
    The AlFeSil abrasion value 1 is an AlFeSil abrasion value measured by applying a tension of 2.0 N in the longitudinal direction of the magnetic tape,
    The AlFeSil abrasion value 2 was obtained by sliding the magnetic tape after the measurement of the AlFeSil abrasion value 1 back and forth against an LTO8 head 1500 times, storing the magnetic tape for 24 hours, and applying a tension of 2.0 N in the longitudinal direction of the magnetic tape. magnetic tape, which is an AlFeSil wear value measured by
  2. 前記AlFeSil摩耗値2/AlFeSil摩耗値1は、0.7以上1.0以下である、請求項1に記載の磁気テープ。 2. The magnetic tape according to claim 1, wherein said AlFeSil wear value 2/AlFeSil wear value 1 is 0.7 or more and 1.0 or less.
  3. 前記磁性層は、1種以上の非磁性粉末を更に含む、請求項1に記載の磁気テープ。 2. The magnetic tape of claim 1, wherein the magnetic layer further comprises one or more non-magnetic powders.
  4. 前記非磁性粉末は、アルミナ粉末を含む、請求項3に記載の磁気テープ。 4. The magnetic tape of claim 3, wherein the non-magnetic powder includes alumina powder.
  5. 前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を更に有する、請求項1に記載の磁気テープ。 2. The magnetic tape according to claim 1, further comprising a non-magnetic layer containing non-magnetic powder between said non-magnetic support and said magnetic layer.
  6. 前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を更に有する、請求項1に記載の磁気テープ。 2. The magnetic tape according to claim 1, further comprising a back coat layer containing a non-magnetic powder on the surface side opposite to the surface side having the magnetic layer of the non-magnetic support.
  7. テープ厚みが5.2μm以下である、請求項1に記載の磁気テープ。 2. The magnetic tape according to claim 1, wherein the tape thickness is 5.2 [mu]m or less.
  8. 前記ポリエチレンナフタレート支持体の幅方向のヤング率は、10000MPa以上20000MPa以下である、請求項1に記載の磁気テープ。 2. The magnetic tape according to claim 1, wherein the polyethylene naphthalate support has a Young's modulus in the width direction of 10000 MPa or more and 20000 MPa or less.
  9. 垂直方向角型比が0.60以上である、請求項1に記載の磁気テープ。 2. The magnetic tape of claim 1, having a vertical squareness ratio of 0.60 or more.
  10. 請求項1~9のいずれか1項に記載の磁気テープを含む磁気テープカートリッジ。 A magnetic tape cartridge containing the magnetic tape according to any one of claims 1 to 9.
  11. 請求項1~9のいずれか1項に記載の磁気テープを含む磁気テープ装置。 A magnetic tape device comprising the magnetic tape according to any one of claims 1 to 9.
  12. 磁気テープ装置内を走行する磁気テープの長手方向にかかるテンションを調整可能なテンション調整機構を有する、請求項11に記載の磁気テープ装置。 12. The magnetic tape device according to claim 11, further comprising a tension adjusting mechanism capable of adjusting tension applied to the magnetic tape running in the magnetic tape device in the longitudinal direction.
PCT/JP2022/043993 2021-12-02 2022-11-29 Magnetic tape, magnetic tape cartridge, and magnetic tape device WO2023100879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021195832 2021-12-02
JP2021-195832 2021-12-02

Publications (1)

Publication Number Publication Date
WO2023100879A1 true WO2023100879A1 (en) 2023-06-08

Family

ID=86612324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043993 WO2023100879A1 (en) 2021-12-02 2022-11-29 Magnetic tape, magnetic tape cartridge, and magnetic tape device

Country Status (1)

Country Link
WO (1) WO2023100879A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093138A (en) * 1999-09-21 2001-04-06 Sony Corp Magnetic recording medium
JP2002367151A (en) * 2001-06-08 2002-12-20 Sony Corp Magnetic recording medium
JP2004288332A (en) * 2003-03-24 2004-10-14 Hitachi Maxell Ltd Magnetic recording medium
JP2006277838A (en) * 2005-03-29 2006-10-12 Fuji Photo Film Co Ltd Magnetic recording medium
JP2022127014A (en) * 2021-02-19 2022-08-31 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge and magnetic tape device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093138A (en) * 1999-09-21 2001-04-06 Sony Corp Magnetic recording medium
JP2002367151A (en) * 2001-06-08 2002-12-20 Sony Corp Magnetic recording medium
JP2004288332A (en) * 2003-03-24 2004-10-14 Hitachi Maxell Ltd Magnetic recording medium
JP2006277838A (en) * 2005-03-29 2006-10-12 Fuji Photo Film Co Ltd Magnetic recording medium
JP2022127014A (en) * 2021-02-19 2022-08-31 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge and magnetic tape device

Similar Documents

Publication Publication Date Title
JP7220165B2 (en) Magnetic Recording Media, Magnetic Recording/Playback Devices, Magnetic Tape Cartridges, and Magnetic Tape Cartridge Groups
JP7249966B2 (en) Magnetic recording/reproducing device
US11869555B2 (en) Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device
US11869553B2 (en) Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device
US11869557B2 (en) Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device
US11854586B2 (en) Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device
US20240105229A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
JP2023049189A (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
JP7352535B2 (en) magnetic recording and reproducing device
JP2023050108A (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
JP2023073302A (en) Magnetic tape, magnetic tape cartridge and magnetic tape device
US20220270644A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US20220254373A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP2023050114A (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
US20220020392A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP7321124B2 (en) Magnetic tape devices, magnetic tapes and magnetic tape cartridges
JP7352536B2 (en) magnetic recording and reproducing device
JP7266012B2 (en) Magnetic tapes, magnetic tape cartridges and magnetic tape devices
WO2023100879A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
WO2023100878A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
JP7351811B2 (en) Magnetic tape, magnetic tape cartridges and magnetic tape devices
WO2023100884A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
WO2023008293A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
WO2023100883A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
WO2023008292A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901311

Country of ref document: EP

Kind code of ref document: A1