WO2022264728A1 - Current sensor holding structure, electric equipment, and inverter device - Google Patents

Current sensor holding structure, electric equipment, and inverter device Download PDF

Info

Publication number
WO2022264728A1
WO2022264728A1 PCT/JP2022/020327 JP2022020327W WO2022264728A1 WO 2022264728 A1 WO2022264728 A1 WO 2022264728A1 JP 2022020327 W JP2022020327 W JP 2022020327W WO 2022264728 A1 WO2022264728 A1 WO 2022264728A1
Authority
WO
WIPO (PCT)
Prior art keywords
current sensor
upper hook
main body
fitting
hook main
Prior art date
Application number
PCT/JP2022/020327
Other languages
French (fr)
Japanese (ja)
Inventor
佑磨 田中
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to JP2022528282A priority Critical patent/JPWO2022264728A1/ja
Publication of WO2022264728A1 publication Critical patent/WO2022264728A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a current sensor holding structure applied to electrical equipment such as an inverter device for electric vehicles.
  • Electric vehicles have built-in inverters that control the motors that drive the wheels. Further, in the inverter device, a current sensor is often used for control and measurement. 2. Description of the Related Art
  • a current sensor holder disclosed in Japanese Patent Application Laid-Open No. 2002-200313 is a prior art of a structure for holding a current sensor that is assembled in an inverter device for an electric vehicle.
  • the current sensor holder is generally made of resin molding, and the busbar and the casing that holds the busbar are insert-molded.
  • the hooks (snap fit) at the upper and lower portions of the current sensor holder and the positioning portions at the left and right portions of the current sensor holder mate the current sensor and the current sensor holder.
  • the current sensor is locked by the hooks of the upper and lower parts, but there is a gap between the lower surface of the hooks of the upper part and the upper surface of the current sensor.
  • the current sensor holder is designed so that when the current sensor is assembled, a gap is created between the lower surface of the hook of the upper portion and the upper surface of the current sensor. This gap is for facilitating the work of fitting the current sensor to the current sensor holder.
  • the busbar is inserted through the through-hole of the current sensor. This allows the current sensor to measure the current flowing through the busbar.
  • the inverter device attached to the vehicle is susceptible to vibration.
  • the conventional current sensor holding structure when the current sensor is assembled to the current sensor holder, there is a gap between the lower surface of the hook of the upper part and the upper surface of the current sensor, so the vibration that occurs when the vehicle is running is reduced. There is a concern that micro-sliding wear may occur in the current sensor holder. Due to this friction, the engaging surface of the hook at the upper portion with respect to the current sensor is gradually worn out, and eventually the current sensor may come off from the current sensor holder. In addition, since the resin thickness of the hooks in the upper portion is thin and weak against impact, they are likely to break when the holder is delivered separately.
  • an object of the present invention is to improve the vibration resistance of electrical equipment that uses a current sensor.
  • one aspect of the present invention includes a sensor accommodating portion that is fitted with a current sensor, an upper hook that abuts on the upper surface of the current sensor to lock the current sensor when the fitting is performed, and a current sensor when the fitting is performed.
  • a current sensor holding structure made of a resin molding having a lower hook that contacts the lower surface of the sensor and locks the current sensor.
  • the upper hook in the current sensor holding structure, includes an upper hook main body that abuts on the upper surface of the current sensor when the fitting is performed, and a hook main body at the tip of the upper hook main body. a locking main body portion arranged in the width direction of the upper hook main body portion for locking the current sensor by coming into contact with the end surface of the current sensor when the fitting is performed, wherein the width and thickness of the upper hook main body portion are the same as the above-mentioned It is set based on the following safety factor of the upper hook main body in the process of fitting and the following safety factor of the upper hook main body after the fitting.
  • Safety factor of the upper hook main body portion in the process leading to the fitting (breaking stress value of the upper hook main body portion in the process leading to the fitting) / (stress of the upper hook main body portion in the process leading to the fitting) value)
  • Safety factor of the upper hook main body after the fitting (breaking stress value of the upper hook main body after the fitting)/(stress value of the upper hook main body after the fitting)
  • the thickness of the upper hook main body is determined by the safety factor of the upper hook main body in the process leading to the fitting and the upper hook main body after the fitting.
  • the width of the upper hook main body is set to a thickness that makes the safety factor of the upper hook body equal to the safety factor of the upper hook main body in the process leading to the fitting and the safety factor of the upper hook main body after the fitting.
  • a margin of safety is set to a width exceeding a predetermined threshold.
  • the main body of the current sensor having a depth length shorter than the length of the upper hook is fitted with the upper hook so that the main body and the sensor are held together.
  • An auxiliary fitting portion that assists fitting with the accommodating portion is protruded.
  • An aspect of the present invention is an electrical device including the above current sensor holding structure.
  • One aspect of the present invention is an inverter device for an electric vehicle, the inverter device including the above-described current sensor holding structure.
  • FIG. 2 is a longitudinal sectional view of the current sensor holding structure; (a) A longitudinal sectional view for explaining setting of the thickness of the upper hook main body of the current sensor holding structure, (b) A plan view for explaining setting of the width of the upper hook main body. (a) A longitudinal sectional view of the current sensor holding structure for explaining the action of the current sensor holding structure, (b) A longitudinal sectional view of the upper hook of the current sensor holding structure.
  • FIG. 4 is a vertical cross-sectional view of the current sensor holding structure for explaining the operation of the current sensor holding structure; (a) A correlation diagram between the thickness of the upper hook main body and the safety factor, (b) A correlation diagram between the width of the upper hook main body and the safety factor.
  • a current sensor holding structure 1 that is one embodiment of the present invention shown in FIG. 1 is applied to a current sensor holder 3 that is one aspect of a housing that accommodates a current sensor 2 of an electrical device.
  • the electrical equipment include an inverter device for an electric vehicle.
  • the current sensor holding structure 1 locks the current sensor 2 to the current sensor holder 3 when the current sensor 2 is incorporated into the current sensor holder 3 as shown in the figure.
  • the current sensor 2 is a sensor that measures the three-phase output current of the electrical equipment.
  • the illustrated current sensor 2 is accommodated in the holder body portion 30 of the current sensor holder 3 with the three-phase bus bar 31 passing through the through hole 21 of the body portion 20 .
  • the current sensor holder 3 is formed by insert molding so that the bus bar 31 connected to the current sensor 2 is built in the holder main body 30 .
  • the current sensor holding structure 1 is made of resin molding, and has a sensor housing portion 10, an upper hook 11 and a lower hook 12 as shown in FIG.
  • the sensor accommodating portion 10 is formed inside the holder main body portion 30 of FIG. 1 and fitted with the current sensor 2 .
  • the upper hook 11 abuts on the upper surface 22 of the current sensor 2 to lock the current sensor 2 during the fitting.
  • the lower hook 12 abuts on the lower surface 23 of the current sensor 2 to lock the current sensor 2 during the fitting.
  • the upper hook 11 is integrally provided with a plurality (for example, three as shown) of upper hook body portions 13 and locking body portions 14 .
  • the upper hook main body portion 13 protrudes along the busbar 31 from the upper portion of the holder main body portion 30 and abuts on the upper surface 22 of the current sensor 2 during the fitting.
  • the width and thickness of the upper hook main body portion 13 are determined by the safety factor of the upper hook main body portion 13 in the process leading to the fitting and the upper hook main body portion after the fitting, as in formulas (1) and (2) described later. It is set based on a safety factor of 13.
  • the locking main body portion 14 is arranged in the width direction of the upper hook main body portion 13 at the distal end portion of the plurality of upper hook main body portions 13, and is brought into contact with the end surface 24 of the current sensor 2 to engage the current sensor 2 at the time of the fitting. stop.
  • the lower hook 12 consists of a plate-shaped lower hook main body portion 15 that abuts on the lower surface 23 of the main body portion 20 of the current sensor 2 during the fitting.
  • a locking hole 16 into which the lower locking portion 25 of the current sensor 2 is inserted is formed in the lower hook main body portion 15 during the fitting.
  • the lower engaging portion 25 has an inclined surface 26 that is inclined in the insertion direction of the current sensor 2 by protruding from the lower surface 23 of the main body portion 20 of the current sensor 2 so as to have an inverted trapezoidal shape in longitudinal section.
  • the inclined surface 26 allows the lower locking portion 25 of the current sensor 2 introduced into the sensor accommodating portion 10 to be easily inserted into the locking hole 16 .
  • the current sensor 2 When the current sensor 2 is fitted into the sensor accommodating portion 10 , not only the lower hook 12 but also the upper hook 11 abut against the current sensor 2 , and the current sensor 2 is held by the positioning portion 17 of the sensor accommodating portion 10 and the upper hook 11 and the lower hook 12 . is locked. As a result, the current sensor 2 can be held in a well-balanced manner, and furthermore, the contact area between the current sensor 2 and the sensor accommodating portion 10 is enlarged, and the holding force of the current sensor 2 is enhanced. Therefore, according to the current sensor holding structure 1, the vibration resistance and shock resistance of the electrical equipment in which the current sensor 2 is used are improved. It should be noted that the upper surface 22 of the current sensor 2 does not have to be entirely in contact with the upper hook 11, and if a portion of the upper surface 22 of the current sensor 2 is in contact with the upper hook 11, the holding force of the current sensor 2 is improved.
  • the contact between the upper surface 22 of the current sensor 2 and the upper hook 11 improves the holding force of the current sensor 2, but the upper hook 11 needs to be deformed more when the current sensor 2 is fitted.
  • the stress applied to the base of the upper hook indicated by the white circle increases.
  • the width W and thickness T of the upper hook main body 13 are set so that the stress applied to the base of the upper hook main body 13 of the upper hook 11 does not cause breakage.
  • the correlation between the safety factor defined by the following equations (1) and (2) and the width and thickness was derived by strength analysis. This strength analysis is performed under the condition that the resin of the current sensor holding structure is a specific material.
  • Safety factor of the upper hook body portion 13 in the process leading to the fitting (breaking stress value of the upper hook body portion 13 in the process leading to the fitting)/(stress of the upper hook body portion 13 in the process leading to the fitting) value)
  • Safety factor of upper hook main body 13 after fitting (breaking stress value of upper hook main body 13 after fitting)/(stress value of upper hook main body 13 after fitting)... (2)
  • the stress value of the upper hook main body 13 in the process leading to the fitting is, as shown in FIG. shows the stress value when the upper hook main body 13 is forcibly displaced by the length L that the upper hook main body portion 13 rides on.
  • the stress value of the upper hook main body 13 after fitting is obtained by applying the acceleration (specification value) in the direction of the white arrow to the current sensor 2 after fitting as shown in FIG.
  • the stress value at the root indicated by the white circle in the figure when applied to the portion 13 side is shown.
  • (a) of the figure shows a correlation diagram between the thickness T of the snap fit (upper hook body portion 13) and the safety factor.
  • a graph of the safety factor that decreases with increasing thickness T of the snap fit shows a graph of the safety factor of the snap fit in the process leading to the fitting.
  • the graph of the safety factor that increases as the thickness T of the snap fit increases shows the graph of the safety factor of the snap fit after the fitting.
  • the same figure (b) shows a correlation diagram between the width W of the snap fit and the safety factor.
  • a graph in which the slope of the safety factor with respect to the thickness T of the snap fit is small indicates the graph of the safety factor of the snap fit in the process leading to the fitting.
  • the graph with a large slope indicates the graph of the safety factor of the snap-fit after fitting.
  • the thickness of the upper hook main body 13 is the thickness at which the safety factor of the upper hook main body 13 in the process leading to the fitting and the safety factor of the upper hook main body 13 after the fitting are equal. was adopted as the optimal value.
  • the width of the upper hook main body portion 13 is determined by a predetermined threshold (in this embodiment, 1.70) was taken as the optimal value.
  • the optimal value for the thickness T of the upper hook main body 13 is 1.3 mm, and the optimal value for the width W of the upper hook main body 13 is 4.8 mm. obtained as
  • the current sensor can be fitted into the current sensor holder without breaking the root due to forced displacement of the upper hook.
  • the strength of the snap fit of the current sensor holder 3 is improved, the base of the upper hook main body 13 is broken, the current sensor 2, the current It prevents fine sliding wear of the sensor holder 3 and improves the holding force of the current sensor 2 . Therefore, the vibration resistance of the electrical equipment to which the current sensor holder 3 is applied is improved.
  • the current sensor holder of the present invention is not limited to the above embodiments, and may be applied to devices other than inverter devices for electric vehicles, and can be applied to general electrical equipment that receives vibration.
  • Embodiment 2 When applying the current sensor holding structure 1 of Embodiment 1 to the small current sensor 2 having a short depth length a2 shown in FIG . must be shortened accordingly.
  • e1 (3.[delta] .t )/( 2.L12 ) ( 3 )
  • the strain rate e 1 is reduced by reducing the amount of deflection ⁇ and the thickness t based on the equation (3).
  • the auxiliary fitting portion 28 is provided integrally with the housing portion 27 by molding the resin forming the housing portion 27 . Further, the depth length a 3 of the contact surface between the upper hook 11 and the housing portion 27 and the auxiliary fitting portion 28 when the housing portion 27 of the current sensor 2 is fitted with the upper hook 11 is equal to the length of the upper hook 11 . is set equal to L3 .
  • the main body portion 20 (housing portion 27) of the current sensor 2 is provided with the auxiliary fitting portion 28, so that the length L3 of the upper hook 11 can be increased. can be guaranteed for a long time. Therefore, it is possible to reduce the strain factor e2 of the root portion of the upper hook 11 when the current sensor 2 and the sensor housing portion 10 are fitted together, and it is applicable to a small current sensor 2 having a short depth length a2 in FIG. 7(d). Even in this case, the safety factor against breakage of the upper hook 11 shown in FIG. 9 is improved.
  • the length L3 of the upper hook 11 can be secured long, in addition to the effect of the first embodiment, the deformation of the upper hook 11 itself becomes easy, and the current required to generate the same deflection amount at the time of fitting. The force for pressing the sensor 2 is reduced, and the assembling workability is also improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

A current sensor holding structure 1 has a sensor housing part 10, upper hooks 11, and lower hooks 12. The sensor housing part 10 is formed within a holder body section 30 and engages with a current sensor 2. When engaged, the upper hooks 11 contact an upper surface 22 of the current sensor 2 so as to fasten the current sensor 2. When engaged, the lower hooks 12 contact a lower surface 23 of the current sensor 2 so as to fasten the current sensor 2. Each of the upper hooks 11 is integrally provided with a plurality of upper hook body sections 13 and a fastening body section 14. At the upper part of the holder body section 30, the upper hook body sections 13 project along a bus bar 31 so as to contact the upper surface 22 of the current sensor 2 when engaged. At the tip end sections of the plurality of the upper hook body sections 13, the fastening body sections 14 are disposed in the width direction of the upper hook body sections 13 so as to contact an end surface 24 of the current sensor 2 when engaged, and thereby fasten the current sensor 2.

Description

電流センサ保持構造、電気機器及びインバータ装置Current sensor holding structure, electrical equipment and inverter device
 本発明は、電気自動車用のインバータ装置等の電気機器に適用される電流センサの保持構造に関する。 The present invention relates to a current sensor holding structure applied to electrical equipment such as an inverter device for electric vehicles.
 電気自動車には、車輪を駆動するためのモータを制御するインバータ装置が内蔵されている。また、インバータ装置においては、制御や計測用に電流センサを用いることが多い。電動自動車用のインバータ装置に組み付けられる電流センサの保持構造の先行技術として例えば特許文献1に開示の電流センサホルダーが挙げられる。 Electric vehicles have built-in inverters that control the motors that drive the wheels. Further, in the inverter device, a current sensor is often used for control and measurement. 2. Description of the Related Art For example, a current sensor holder disclosed in Japanese Patent Application Laid-Open No. 2002-200313 is a prior art of a structure for holding a current sensor that is assembled in an inverter device for an electric vehicle.
 電流センサホルダーは、一般的には樹脂成型品からなり、バスバーとこのバスバーを保持するケーシングがインサート成型されている。そして、電流センサが電流センサホルダーに組み付けられる際には、電流センサホルダーの上下部位のフック(スナップフィット)及び左右部位の位置決め部の機能により、電流センサと電流センサホルダーとが嵌合する。このとき、電流センサホルダーにおいて、電流センサは上下部位のフックにより係止されるが、上部位のフックの下面と電流センサの上面との間に隙間が生じた状態となっている。 The current sensor holder is generally made of resin molding, and the busbar and the casing that holds the busbar are insert-molded. When the current sensor is attached to the current sensor holder, the hooks (snap fit) at the upper and lower portions of the current sensor holder and the positioning portions at the left and right portions of the current sensor holder mate the current sensor and the current sensor holder. At this time, in the current sensor holder, the current sensor is locked by the hooks of the upper and lower parts, but there is a gap between the lower surface of the hooks of the upper part and the upper surface of the current sensor.
 つまり、前記電流センサホルダーは電流センサが組付けられると上部位のフックの下面と電流センサの上面との間に隙間が生じるように設計されている。この隙間は、電流センサの電流センサホルダーへの嵌合作業を容易にするためのものである。 In other words, the current sensor holder is designed so that when the current sensor is assembled, a gap is created between the lower surface of the hook of the upper portion and the upper surface of the current sensor. This gap is for facilitating the work of fitting the current sensor to the current sensor holder.
 電流センサホルダーに電流センサが組み付けられた後、電流センサの貫通孔にバスバーが挿通される。これにより、電流センサはバスバーに流れる電流を計測できる。 After the current sensor is attached to the current sensor holder, the busbar is inserted through the through-hole of the current sensor. This allows the current sensor to measure the current flowing through the busbar.
特開2016-206015号公報JP 2016-206015 A
 電気自動車の走行時に、車両に取り付けられているインバータ装置は振動を受けやすい。従来の電流センサ保持構造は、電流センサが電流センサホルダーに組み付けられると、上部位のフックの下面と電流センサの上面との間に隙間が生じた状態となるので、前記車両の走行時に生じる振動により電流センサホルダーに微摺動摩耗を引き起こす懸念がある。そして、この摩擦に因り前記電流センサに対する上部位のフックの係止面が徐々に摩耗し、ひいては電流センサが電流センサホルダーから外れるおそれが生じる。また、上部位のフックは樹脂厚が薄く、衝撃に弱い箇所であるため、ホルダー単品の納入時に折れ易くなる。 When an electric vehicle is running, the inverter device attached to the vehicle is susceptible to vibration. In the conventional current sensor holding structure, when the current sensor is assembled to the current sensor holder, there is a gap between the lower surface of the hook of the upper part and the upper surface of the current sensor, so the vibration that occurs when the vehicle is running is reduced. There is a concern that micro-sliding wear may occur in the current sensor holder. Due to this friction, the engaging surface of the hook at the upper portion with respect to the current sensor is gradually worn out, and eventually the current sensor may come off from the current sensor holder. In addition, since the resin thickness of the hooks in the upper portion is thin and weak against impact, they are likely to break when the holder is delivered separately.
 本発明は、以上の事情を鑑み、電流センサが用いられる電気機器の耐振動性の向上を図ることを課題とする。 In view of the above circumstances, an object of the present invention is to improve the vibration resistance of electrical equipment that uses a current sensor.
 そこで、本発明の一態様は、電流センサと嵌合するセンサ収容部と、前記嵌合時に前記電流センサの上面と当接して当該電流センサを係止する上フックと、前記嵌合時に当該電流センサの下面と当接して当該電流センサを係止する下フックと、を有する樹脂成型品からなる電流センサ保持構造である。 Accordingly, one aspect of the present invention includes a sensor accommodating portion that is fitted with a current sensor, an upper hook that abuts on the upper surface of the current sensor to lock the current sensor when the fitting is performed, and a current sensor when the fitting is performed. A current sensor holding structure made of a resin molding having a lower hook that contacts the lower surface of the sensor and locks the current sensor.
 本発明の一態様は、前記電流センサ保持構造において、前記上フックは、前記嵌合時に前記電流センサの上面と当接する上フック本体部と、この上フック本体部の先端部にて当該フック本体部の幅方向に配されて前記嵌合時に前記電流センサの端面と当接して当該電流センサを係止する係止本体部と、を備え、前記上フック本体部の幅及び厚さは、前記嵌合に至る過程の当該上フック本体部の以下の安全率と前記嵌合した後の当該上フック本体部の以下の安全率とに基づき設定される。 According to one aspect of the present invention, in the current sensor holding structure, the upper hook includes an upper hook main body that abuts on the upper surface of the current sensor when the fitting is performed, and a hook main body at the tip of the upper hook main body. a locking main body portion arranged in the width direction of the upper hook main body portion for locking the current sensor by coming into contact with the end surface of the current sensor when the fitting is performed, wherein the width and thickness of the upper hook main body portion are the same as the above-mentioned It is set based on the following safety factor of the upper hook main body in the process of fitting and the following safety factor of the upper hook main body after the fitting.
 前記嵌合に至る過程の前記上フック本体部の安全率=(前記嵌合に至る過程の前記上フック本体部の破断応力値)/(前記嵌合に至る過程の前記上フック本体部の応力値)
 前記嵌合した後の前記上フック本体部の安全率=(前記嵌合した後の前記上フック本体部の破断応力値)/(前記嵌合した後の前記上フック本体部の応力値)
 本発明の一態様は、前記電流センサ保持構造において、前記上フック本体部の厚さは、前記嵌合に至る過程の前記上フック本体部の安全率と前記嵌合した後の前記上フック本体部の安全率が等しくなる厚さに設定され、前記上フック本体部の幅は、前記嵌合に至る過程の前記上フック本体部の安全率と前記嵌合した後の前記上フック本体部の安全率が所定の閾値を超える幅に設定される。
Safety factor of the upper hook main body portion in the process leading to the fitting = (breaking stress value of the upper hook main body portion in the process leading to the fitting) / (stress of the upper hook main body portion in the process leading to the fitting) value)
Safety factor of the upper hook main body after the fitting=(breaking stress value of the upper hook main body after the fitting)/(stress value of the upper hook main body after the fitting)
According to one aspect of the present invention, in the current sensor holding structure, the thickness of the upper hook main body is determined by the safety factor of the upper hook main body in the process leading to the fitting and the upper hook main body after the fitting. The width of the upper hook main body is set to a thickness that makes the safety factor of the upper hook body equal to the safety factor of the upper hook main body in the process leading to the fitting and the safety factor of the upper hook main body after the fitting. A margin of safety is set to a width exceeding a predetermined threshold.
 本発明の一態様は、前記電流センサ保持構造において、奥行長さが前記上フックの長さよりも短い前記電流センサの本体部には、当該上フックと嵌合することで当該本体部と前記センサ収容部との嵌合を補助する補助嵌合部が突設される。 In one aspect of the present invention, in the current sensor holding structure, the main body of the current sensor having a depth length shorter than the length of the upper hook is fitted with the upper hook so that the main body and the sensor are held together. An auxiliary fitting portion that assists fitting with the accommodating portion is protruded.
 本発明の一態様は、上記の電流センサ保持構造を備えた電気機器である。 An aspect of the present invention is an electrical device including the above current sensor holding structure.
 本発明の一態様は、電気自動車用のインバータ装置であって、上記の電流センサ保持構造を備えたインバータ装置である。 One aspect of the present invention is an inverter device for an electric vehicle, the inverter device including the above-described current sensor holding structure.
 以上の本発明によれば電流センサが用いられる電気機器の耐振動性の向上を図ることができる。 According to the present invention described above, it is possible to improve the vibration resistance of electrical equipment in which a current sensor is used.
(a)本発明の実施形態におけるインバータ装置の電流センサ保持構造の組み立て過程を示した斜視図、(b)当該電流センサ保持構造による電流センサの保持状態の斜視図。(a) The perspective view which showed the assembly process of the current sensor holding structure of the inverter apparatus in embodiment of this invention, (b) The perspective view of the holding state of the current sensor by the said current sensor holding structure. 前記電流センサ保持構造の縦断面図。FIG. 2 is a longitudinal sectional view of the current sensor holding structure; (a)前記電流センサ保持構造の上フック本体部の厚さ設定を説明した縦断面図、(b)当該上フック本体部の幅設定を説明した平面図。(a) A longitudinal sectional view for explaining setting of the thickness of the upper hook main body of the current sensor holding structure, (b) A plan view for explaining setting of the width of the upper hook main body. (a)前記電流センサ保持構造の作用を説明した当該電流センサ保持構造の縦断面図、(b)当該電流センサ保持構造の上フックの縦断面図。(a) A longitudinal sectional view of the current sensor holding structure for explaining the action of the current sensor holding structure, (b) A longitudinal sectional view of the upper hook of the current sensor holding structure. 前記電流センサ保持構造の作用を説明した当該電流センサ保持構造の縦断面図。FIG. 4 is a vertical cross-sectional view of the current sensor holding structure for explaining the operation of the current sensor holding structure; (a)前記上フック本体部の厚さと安全率の相関図、(b)当該上フック本体部の幅と安全率の相関図。(a) A correlation diagram between the thickness of the upper hook main body and the safety factor, (b) A correlation diagram between the width of the upper hook main body and the safety factor. (a)本発明の一態様である電流センサ保持構造の組み立て過程を示した斜視図、(b)当該電流センサ保持構造による電流センサの保持状態の斜視図、(c)当該電流センサ保持構造の上フックの側面図、(d)奥行長さの短い電流センサが適用される当該電流センサ保持構造の組み立て過程を示した斜視図、(e)当該電流センサ保持構造による当該奥行長さの短い電流センサの保持状態の斜視図、(f)当該奥行長さの短い電流センサを係止する当該上フックの側面図。(a) a perspective view showing the assembly process of the current sensor holding structure that is one aspect of the present invention, (b) a perspective view of the current sensor holding state by the current sensor holding structure, (c) the current sensor holding structure Side view of the upper hook, (d) Perspective view showing the assembly process of the current sensor holding structure to which the current sensor with a short depth is applied, (e) Current with a short depth by the current sensor holding structure The perspective view of the holding state of a sensor, (f) The side view of the said upper hook which latches the current sensor with short depth length. (a)補助係止部を備えた電流センサの本体部の斜視図、(b)当該電流センサを係止する本発明の一態様である電流センサ保持構造の側面図。(a) A perspective view of a main body of a current sensor provided with an auxiliary locking portion, (b) a side view of a current sensor holding structure, which is one aspect of the present invention and locks the current sensor. (a)補助係止部を備えた電流センサを保持する本発明の一態様である電流センサ保持構造の組み立て過程を示した斜視図、(b)当該電流センサ保持構造による当該電流センサの保持状態の斜視図、(c)当該電流センサを係止する上フックの側面図。(a) A perspective view showing an assembly process of a current sensor holding structure that holds a current sensor provided with an auxiliary locking portion, and (b) a state in which the current sensor is held by the current sensor holding structure. , and (c) a side view of an upper hook that locks the current sensor.
 以下に図面を参照しながら本発明の実施形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 [実施形態1]
 図1に示された本発明の一実施形態である電流センサ保持構造1は、電気機器の電流センサ2を収容した筐体の一態様である電流センサホルダー3に適用される。前記電気機器としては、例えば、電気自動車用のインバータ装置が挙げられる。
[Embodiment 1]
A current sensor holding structure 1 that is one embodiment of the present invention shown in FIG. 1 is applied to a current sensor holder 3 that is one aspect of a housing that accommodates a current sensor 2 of an electrical device. Examples of the electrical equipment include an inverter device for an electric vehicle.
 電流センサ保持構造1は、同図のように電流センサ2が電流センサホルダー3に組み込まれると、電流センサ2を電流センサホルダー3に係止する。 The current sensor holding structure 1 locks the current sensor 2 to the current sensor holder 3 when the current sensor 2 is incorporated into the current sensor holder 3 as shown in the figure.
 電流センサ2は、前記電気機器の三相の出力電流を計測するセンサである。特に、図示の電流センサ2は、その本体部20の貫通孔21に前記三相のバスバー31が貫通した状態で、電流センサホルダー3のホルダー本体部30内に収容される。 The current sensor 2 is a sensor that measures the three-phase output current of the electrical equipment. In particular, the illustrated current sensor 2 is accommodated in the holder body portion 30 of the current sensor holder 3 with the three-phase bus bar 31 passing through the through hole 21 of the body portion 20 .
 電流センサホルダー3は、インサート成形により、ホルダー本体部30内で電流センサ2と接続されるバスバー31が内蔵された状態で形成される。 The current sensor holder 3 is formed by insert molding so that the bus bar 31 connected to the current sensor 2 is built in the holder main body 30 .
 電流センサ保持構造1は、樹脂成型品からなり、図2に示したようにセンサ収容部10、上フック11及び下フック12を有する。センサ収容部10は、図1のホルダー本体部30内に形成され、電流センサ2と嵌合する。上フック11は、前記嵌合時に電流センサ2の上面22と当接して電流センサ2を係止する。下フック12は、前記嵌合時に電流センサ2の下面23と当接して電流センサ2を係止する。 The current sensor holding structure 1 is made of resin molding, and has a sensor housing portion 10, an upper hook 11 and a lower hook 12 as shown in FIG. The sensor accommodating portion 10 is formed inside the holder main body portion 30 of FIG. 1 and fitted with the current sensor 2 . The upper hook 11 abuts on the upper surface 22 of the current sensor 2 to lock the current sensor 2 during the fitting. The lower hook 12 abuts on the lower surface 23 of the current sensor 2 to lock the current sensor 2 during the fitting.
 上フック11は、複数(例えば図示のように三つ)の上フック本体部13と、係止本体部14と、一体的に備える。上フック本体部13は、ホルダー本体部30の上部にて、バスバー31に沿って突設されて前記嵌合時に電流センサ2の上面22と当接する。 The upper hook 11 is integrally provided with a plurality (for example, three as shown) of upper hook body portions 13 and locking body portions 14 . The upper hook main body portion 13 protrudes along the busbar 31 from the upper portion of the holder main body portion 30 and abuts on the upper surface 22 of the current sensor 2 during the fitting.
 上フック本体部13の幅及び厚さは、後述の式(1)(2)のように、前記嵌合に至る過程の上フック本体部13の安全率と前記嵌合後の上フック本体部13の安全率とに基づき設定される。 The width and thickness of the upper hook main body portion 13 are determined by the safety factor of the upper hook main body portion 13 in the process leading to the fitting and the upper hook main body portion after the fitting, as in formulas (1) and (2) described later. It is set based on a safety factor of 13.
 係止本体部14は、複数の上フック本体部13の先端部にて上フック本体部13の幅方向に配されて前記嵌合時に電流センサ2の端面24と当接して電流センサ2を係止する。 The locking main body portion 14 is arranged in the width direction of the upper hook main body portion 13 at the distal end portion of the plurality of upper hook main body portions 13, and is brought into contact with the end surface 24 of the current sensor 2 to engage the current sensor 2 at the time of the fitting. stop.
 下フック12は、前記嵌合時に電流センサ2の本体部20の下面23と当接する板状の下フック本体部15からなる。下フック本体部15には、前記嵌合時に電流センサ2の下係止部25が挿入する係止孔16が形成されている。 The lower hook 12 consists of a plate-shaped lower hook main body portion 15 that abuts on the lower surface 23 of the main body portion 20 of the current sensor 2 during the fitting. A locking hole 16 into which the lower locking portion 25 of the current sensor 2 is inserted is formed in the lower hook main body portion 15 during the fitting.
 下係止部25は、電流センサ2の本体部20の下面23にて縦断面逆台形状に突設されることで、電流センサ2の挿入方向に傾斜する傾斜面26を有する。この傾斜面26により、センサ収容部10に導入された電流センサ2の下係止部25が容易に係止孔16に挿入される。 The lower engaging portion 25 has an inclined surface 26 that is inclined in the insertion direction of the current sensor 2 by protruding from the lower surface 23 of the main body portion 20 of the current sensor 2 so as to have an inverted trapezoidal shape in longitudinal section. The inclined surface 26 allows the lower locking portion 25 of the current sensor 2 introduced into the sensor accommodating portion 10 to be easily inserted into the locking hole 16 .
 図1,2を参照して電流センサ保持構造1の作用について説明する。 The action of the current sensor holding structure 1 will be described with reference to FIGS.
 電流センサ2がセンサ収容部10と嵌合すると、下フック12だけでなく上フック11も電流センサ2と当接し、センサ収容部10の位置決め部17と上フック11と下フック12により電流センサ2が係止される。これにより、電流センサ2をバランスよく保持でき、さらには、電流センサ2とセンサ収容部10との接触面積が拡大し、電流センサ2の保持力が高まる。したがって、電流センサ保持構造1によれば、電流センサ2が用いられる電気機器の耐振動性や耐衝撃性が向上する。尚、電流センサ2の上面22の全てが上フック11に接していなくともよく、電流センサ2の上面22の一部が上フック11に接していれば、電流センサ2の保持力が向上する。 When the current sensor 2 is fitted into the sensor accommodating portion 10 , not only the lower hook 12 but also the upper hook 11 abut against the current sensor 2 , and the current sensor 2 is held by the positioning portion 17 of the sensor accommodating portion 10 and the upper hook 11 and the lower hook 12 . is locked. As a result, the current sensor 2 can be held in a well-balanced manner, and furthermore, the contact area between the current sensor 2 and the sensor accommodating portion 10 is enlarged, and the holding force of the current sensor 2 is enhanced. Therefore, according to the current sensor holding structure 1, the vibration resistance and shock resistance of the electrical equipment in which the current sensor 2 is used are improved. It should be noted that the upper surface 22 of the current sensor 2 does not have to be entirely in contact with the upper hook 11, and if a portion of the upper surface 22 of the current sensor 2 is in contact with the upper hook 11, the holding force of the current sensor 2 is improved.
 以下に電流センサ保持構造1の実施例について説明する。 An example of the current sensor holding structure 1 will be described below.
 電流センサ2の上面22と上フック11との当接により、電流センサ2の保持力は向上するが、電流センサ2の嵌合時に上フック11をより大きく変形させる必要があるため、図4の白丸で示した上フックの根元に掛かる応力は増加する。 The contact between the upper surface 22 of the current sensor 2 and the upper hook 11 improves the holding force of the current sensor 2, but the upper hook 11 needs to be deformed more when the current sensor 2 is fitted. The stress applied to the base of the upper hook indicated by the white circle increases.
 そこで、上フック11の上フック本体部13の根元に掛かる応力による破断がおきないように上フック本体部13の幅Wと厚さTが設定される。本設定にあたり、以下の式(1)(2)により定義される安全率と幅、厚さとの相関を強度解析により導き出した。この強度解析は、電流センサ保持構造の樹脂が特定の材質の条件のもと行っている。
前記嵌合に至る過程の上フック本体部13の安全率=(前記嵌合に至る過程の上フック本体部13の破断応力値)/(前記嵌合に至る過程の上フック本体部13の応力値)…(1)
前記嵌合した後の上フック本体部13の安全率=(前記嵌合した後の上フック本体部13の破断応力値)/(前記嵌合した後の上フック本体部13の応力値)…(2)
 式(1)において、前記嵌合に至る過程の上フック本体部13の応力値は、図4のように前記嵌合に至る過程で上フック本体部13が電流センサ2に対して白矢印方向に乗り上げる長さLの分、上フック本体部13に強制変位させた時の応力値を示す。
Therefore, the width W and thickness T of the upper hook main body 13 are set so that the stress applied to the base of the upper hook main body 13 of the upper hook 11 does not cause breakage. For this setting, the correlation between the safety factor defined by the following equations (1) and (2) and the width and thickness was derived by strength analysis. This strength analysis is performed under the condition that the resin of the current sensor holding structure is a specific material.
Safety factor of the upper hook body portion 13 in the process leading to the fitting=(breaking stress value of the upper hook body portion 13 in the process leading to the fitting)/(stress of the upper hook body portion 13 in the process leading to the fitting) value) (1)
Safety factor of upper hook main body 13 after fitting=(breaking stress value of upper hook main body 13 after fitting)/(stress value of upper hook main body 13 after fitting)... (2)
In the formula (1), the stress value of the upper hook main body 13 in the process leading to the fitting is, as shown in FIG. shows the stress value when the upper hook main body 13 is forcibly displaced by the length L that the upper hook main body portion 13 rides on.
 式(2)において、前記嵌合した後の上フック本体部13の応力値は、図5のように嵌合した後に電流センサ2に対して白矢印方向の加速度(仕様値)を上フック本体部13側に与えた時の同図の白丸で示した根元の応力値を示す。 In equation (2), the stress value of the upper hook main body 13 after fitting is obtained by applying the acceleration (specification value) in the direction of the white arrow to the current sensor 2 after fitting as shown in FIG. The stress value at the root indicated by the white circle in the figure when applied to the portion 13 side is shown.
 上記の強度解析の結果を図6に示した。 The results of the above strength analysis are shown in Fig. 6.
 同図(a)は、スナップフィット(上フック本体部13)の厚さTと安全率の相関図を示す。前記スナップフィットの厚さTの増加と共に減少する安全率のグラフは、前記嵌合に至る過程の当該スナップフィットの安全率のグラフを示す。一方、スナップフィットの厚さTの増加と共に増加する安全率のグラフは、前記嵌合した後の当該スナップフィットの安全率のグラフを示す。 (a) of the figure shows a correlation diagram between the thickness T of the snap fit (upper hook body portion 13) and the safety factor. A graph of the safety factor that decreases with increasing thickness T of the snap fit shows a graph of the safety factor of the snap fit in the process leading to the fitting. On the other hand, the graph of the safety factor that increases as the thickness T of the snap fit increases shows the graph of the safety factor of the snap fit after the fitting.
 同図(b)は、前記スナップフィットの幅Wと安全率の相関図を示す。前記スナップフィットの厚さTに対する安全率の傾きが小さいグラフは、前記嵌合に至る過程の前記スナップフィットの安全率のグラフを示す。一方、前記傾きが大きいグラフは、嵌合した後の前記スナップフィットの安全率のグラフを示す。 The same figure (b) shows a correlation diagram between the width W of the snap fit and the safety factor. A graph in which the slope of the safety factor with respect to the thickness T of the snap fit is small indicates the graph of the safety factor of the snap fit in the process leading to the fitting. On the other hand, the graph with a large slope indicates the graph of the safety factor of the snap-fit after fitting.
 同図の相関から、上フック本体部13の厚さは、前記嵌合に至る過程の上フック本体部13の安全率と前記嵌合した後の上フック本体部13の安全率が等しくなる厚さを最適値として採用した。また、上フック本体部13の幅は、前記嵌合に至る過程の上フック本体部13の安全率と前記嵌合した後の上フック本体部13の安全率が所定の閾値(本実施例では1.70)を超える幅を最適値として採用した。 From the correlation in the figure, the thickness of the upper hook main body 13 is the thickness at which the safety factor of the upper hook main body 13 in the process leading to the fitting and the safety factor of the upper hook main body 13 after the fitting are equal. was adopted as the optimal value. The width of the upper hook main body portion 13 is determined by a predetermined threshold (in this embodiment, 1.70) was taken as the optimal value.
 以上の解析結果によれば、図3に例示したように、上フック本体部13の厚さTは、1.3mmが最適値として、上フック本体部13の幅Wは4.8mmが最適値として得られた。 According to the above analysis results, as illustrated in FIG. 3, the optimal value for the thickness T of the upper hook main body 13 is 1.3 mm, and the optimal value for the width W of the upper hook main body 13 is 4.8 mm. obtained as
 前記幅は大きく設定すると、応力の安全率は向上するが、その反面嵌合に必要な荷重が増えるため、適度に安全率を確保できる幅寸法を採用した。本態様であれば、上フックの強制変位で根元を破断させることなく、電流センサの電流センサホルダーへの嵌合が可能となる。 If the width is set large, the safety factor of stress improves, but on the other hand, the load required for fitting increases, so a width dimension that can ensure a moderate safety factor was adopted. According to this aspect, the current sensor can be fitted into the current sensor holder without breaking the root due to forced displacement of the upper hook.
 以上の実施例から明らかように、実施形態1の電流センサ保持構造1によれば、電流センサホルダー3のスナップフィットの強度を向上させ、上フック本体部13の根元の破断、電流センサ2、電流センサホルダー3の微摺動摩耗を防き、電流センサ2の保持力を向上させる。したがって、電流センサホルダー3が適用される電気機器の耐振動性が向上する。 As is clear from the above examples, according to the current sensor holding structure 1 of Embodiment 1, the strength of the snap fit of the current sensor holder 3 is improved, the base of the upper hook main body 13 is broken, the current sensor 2, the current It prevents fine sliding wear of the sensor holder 3 and improves the holding force of the current sensor 2 . Therefore, the vibration resistance of the electrical equipment to which the current sensor holder 3 is applied is improved.
 尚、本発明の電流センサホルダーは、上記の実施形態に限定することなく、電気自動車用のインバータ装置以外に適用してもよく、振動を受ける電気機器全般に適用できる。 It should be noted that the current sensor holder of the present invention is not limited to the above embodiments, and may be applied to devices other than inverter devices for electric vehicles, and can be applied to general electrical equipment that receives vibration.
 [実施形態2]
 実施形態1の電流センサ保持構造1を図7(d)に示した奥行長さa2の短い小型の電流センサ2に適用する場合、上フック11の長さL2を奥行長さa2に合わせて短くする必要がある。
[Embodiment 2]
When applying the current sensor holding structure 1 of Embodiment 1 to the small current sensor 2 having a short depth length a2 shown in FIG . must be shortened accordingly.
 同図(a)~(c)のような長さL1及び肉厚tの上フック11と奥行長さa1が長さL1と同等の電流センサ2とが嵌合する場合、上フック11の根元部のひずみ率e1は、以下の式(3)で示される。 When the upper hook 11 of length L 1 and wall thickness t as shown in FIGS. The distortion factor e 1 at the root of is given by the following equation (3).
 e1=(3・δ・t)/(2・L1 2) …(3)
 ひずみ率e1は、式(3)に基づき、たわみ量δ及び肉厚tを小さくすれば小さくなる。
e1=(3.[delta] .t )/( 2.L12 ) ( 3 )
The strain rate e 1 is reduced by reducing the amount of deflection δ and the thickness t based on the equation (3).
 しかしながら、電流センサホルダー3への電流センサ2の組み付け作業の容易性及び上フック11の機械的強度を考慮すると、上フック11のたわみ量δと肉厚tをある程度確保する必要がある。 However, considering the ease of assembling the current sensor 2 to the current sensor holder 3 and the mechanical strength of the upper hook 11, it is necessary to secure the deflection amount δ and thickness t of the upper hook 11 to some extent.
 同図(d)に示された長さL1よりも短い奥行長さa2の短い電流センサ2が奥行長さa2と同等の長さL2の上フック11と嵌合する場合、長さL2の上フック11の根元部のひずみ率e2は、以下の式(4)から明らかなように、長さL1の上フック11の根元部のひずみ率e1よりも大きくなる。 When the short current sensor 2 with a depth length a 2 shorter than the length L 1 shown in FIG. The strain rate e 2 of the root portion of the upper hook 11 of length L 2 is larger than the strain rate e 1 of the root portion of the upper hook 11 of length L 1 , as is apparent from the following equation (4).
 e2=(3・δ・t)/(2・L2 2) …(4)
 そこで、実施形態2の電流センサ保持構造1は、図8,9のように、奥行長さa2が上フック11(上フック本体部13)の長さL3よりも短い電流センサ2の本体部20のハウジング部27において、上フック11と嵌合することで本体部20とセンサ収容部10との嵌合を補助する補助嵌合部28が突設される。
e2 = (3.[delta].t)/( 2.L22 ) ( 4 )
Therefore, in the current sensor holding structure 1 of the second embodiment, as shown in FIGS. In the housing portion 27 of the portion 20 , an auxiliary fitting portion 28 that assists the fitting between the body portion 20 and the sensor housing portion 10 by fitting with the upper hook 11 is protruded.
 補助嵌合部28は、ハウジング部27を構成する樹脂の成形によりハウジング部27と一体的に設けられる。また、電流センサ2のハウジング部27が上フック11と嵌合した際の上フック11とハウジング部27及び補助嵌合部28との当接面の奥行長さa3は、上フック11の長さL3と同等に設定される。 The auxiliary fitting portion 28 is provided integrally with the housing portion 27 by molding the resin forming the housing portion 27 . Further, the depth length a 3 of the contact surface between the upper hook 11 and the housing portion 27 and the auxiliary fitting portion 28 when the housing portion 27 of the current sensor 2 is fitted with the upper hook 11 is equal to the length of the upper hook 11 . is set equal to L3 .
 図8,9を参照して実施形態2の電流センサ保持構造1の作用について説明する。 The action of the current sensor holding structure 1 of Embodiment 2 will be described with reference to FIGS.
 電流センサ2の本体部20がセンサ収容部10と嵌合すると、下フック12だけでなく上フック11も電流センサ2と当接し、センサ収容部10の位置決め部17と上フック11と下フック12により電流センサ2が係止される。このとき、電流センサ2の補助嵌合部28は上フック11(上フック本体部13、係止本体部14)と嵌合することで、電流センサ2(本体部20)とセンサ収容部10との嵌合が補助される。 When the body portion 20 of the current sensor 2 is fitted to the sensor housing portion 10, not only the lower hook 12 but also the upper hook 11 abuts against the current sensor 2, and the positioning portion 17 of the sensor housing portion 10, the upper hook 11 and the lower hook 12 are brought into contact with each other. , the current sensor 2 is locked. At this time, the auxiliary fitting portion 28 of the current sensor 2 is fitted with the upper hook 11 (upper hook main body portion 13, locking main body portion 14) so that the current sensor 2 (main body portion 20) and the sensor housing portion 10 are connected. is assisted in fitting.
 以上の実施形態2の電流センサ保持構造1によれば、電流センサ2の本体部20(ハウジング部27)に補助嵌合部28が設けられたことで、上フック11の長さL3をより長く確保できる。したがって、電流センサ2とセンサ収容部10との嵌合時に上フック11の根元部のひずみ率e2を低減でき、図7(d)の奥行長さa2の短い小型の電流センサ2に適用する場合でも図9の上フック11の破損に対する安全率が向上する。そして、上フック11の長さL3を長く確保できることで、実施形態1の効果に加えて、上フック11自体の変形が容易となり、前記嵌合時に同じたわみ量を発生させるために必要な電流センサ2を押す力が低減し、前記組み立て作業性も向上する。 According to the current sensor holding structure 1 of Embodiment 2 described above, the main body portion 20 (housing portion 27) of the current sensor 2 is provided with the auxiliary fitting portion 28, so that the length L3 of the upper hook 11 can be increased. can be guaranteed for a long time. Therefore, it is possible to reduce the strain factor e2 of the root portion of the upper hook 11 when the current sensor 2 and the sensor housing portion 10 are fitted together, and it is applicable to a small current sensor 2 having a short depth length a2 in FIG. 7(d). Even in this case, the safety factor against breakage of the upper hook 11 shown in FIG. 9 is improved. Since the length L3 of the upper hook 11 can be secured long, in addition to the effect of the first embodiment, the deformation of the upper hook 11 itself becomes easy, and the current required to generate the same deflection amount at the time of fitting. The force for pressing the sensor 2 is reduced, and the assembling workability is also improved.

Claims (6)

  1.  電流センサと嵌合するセンサ収容部と、
     前記嵌合時に前記電流センサの上面と当接して当該電流センサを係止する上フックと、
     前記嵌合時に当該電流センサの下面と当接して当該電流センサを係止する下フックと、
    を有する樹脂成型品からなる電流センサ保持構造。
    a sensor accommodating portion that fits with the current sensor;
    an upper hook that abuts on the upper surface of the current sensor to lock the current sensor when the fitting is performed;
    a lower hook that engages the current sensor by coming into contact with the lower surface of the current sensor when the fitting is performed;
    A current sensor holding structure made of a resin molded product having
  2.  前記上フックは、
    前記嵌合時に前記電流センサの上面と当接する上フック本体部と、
    この上フック本体部の先端部にて当該上フック本体部の幅方向に配されて前記嵌合時に前記電流センサの端面と当接して当該電流センサを係止する係止本体部と
    を備え、
     前記上フック本体部の幅及び厚さは、前記嵌合に至る過程の当該上フック本体部の以下の安全率と前記嵌合した後の当該上フック本体部の以下の安全率とに基づき設定される請求項1に記載の電流センサ保持構造。
     前記嵌合に至る過程の前記上フック本体部の安全率=(前記嵌合に至る過程の前記上フック本体部の破断応力値)/(前記嵌合に至る過程の前記上フック本体部の応力値)
     前記嵌合した後の前記上フック本体部の安全率=(前記嵌合した後の前記上フック本体部の破断応力値)/(前記嵌合した後の前記上フック本体部の応力値)
    The upper hook is
    an upper hook main body that abuts on the upper surface of the current sensor during the fitting;
    an engaging main body portion disposed in the width direction of the upper hook main body portion at the distal end portion of the upper hook main body portion and engaging the current sensor by coming into contact with the end face of the current sensor during the fitting;
    The width and thickness of the upper hook main body are set based on the following safety factors of the upper hook main body in the process leading to the fitting and the following safety factors of the upper hook main body after the fitting: The current sensor holding structure according to claim 1.
    Safety factor of the upper hook main body portion in the process leading to the fitting = (breaking stress value of the upper hook main body portion in the process leading to the fitting) / (stress of the upper hook main body portion in the process leading to the fitting) value)
    Safety factor of the upper hook main body after the fitting=(breaking stress value of the upper hook main body after the fitting)/(stress value of the upper hook main body after the fitting)
  3.  前記上フック本体部の厚さは、前記嵌合に至る過程の前記上フック本体部の安全率と前記嵌合した後の前記上フック本体部の安全率が等しくなる厚さに設定され、
     前記上フック本体部の幅は、前記嵌合に至る過程の前記上フック本体部の安全率と前記嵌合した後の前記上フック本体部の安全率が所定の閾値を超える幅に設定される請求項2に記載の電流センサ保持構造。
    The thickness of the upper hook main body is set to a thickness that makes the safety factor of the upper hook main body in the process leading to the fitting equal to the safety factor of the upper hook main body after the fitting,
    The width of the upper hook main body is set to a width in which the safety factor of the upper hook main body in the process leading to the fitting and the safety factor of the upper hook main body after the fitting exceed a predetermined threshold. The current sensor holding structure according to claim 2.
  4.  奥行長さが前記上フックの長さよりも短い前記電流センサの本体部には、当該上フックと嵌合することで当該本体部と前記センサ収容部との嵌合を補助する補助嵌合部が突設される請求項1に記載の電流センサ保持構造。 The main body of the current sensor, whose depth length is shorter than the length of the upper hook, has an auxiliary fitting portion that assists the fitting of the main body and the sensor accommodating portion by fitting with the upper hook. The current sensor holding structure according to claim 1, wherein the current sensor holding structure protrudes.
  5.  請求項1から4のいずれか1項に記載の電流センサ保持構造を備えた電気機器。 An electrical device comprising the current sensor holding structure according to any one of claims 1 to 4.
  6.  電気自動車用のインバータ装置であって、
     請求項1から4のいずれか1項に記載の電流センサ保持構造を備えたインバータ装置。
    An inverter device for an electric vehicle,
    An inverter device comprising the current sensor holding structure according to any one of claims 1 to 4.
PCT/JP2022/020327 2021-06-14 2022-05-16 Current sensor holding structure, electric equipment, and inverter device WO2022264728A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022528282A JPWO2022264728A1 (en) 2021-06-14 2022-05-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021098710 2021-06-14
JP2021-098710 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022264728A1 true WO2022264728A1 (en) 2022-12-22

Family

ID=84526176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020327 WO2022264728A1 (en) 2021-06-14 2022-05-16 Current sensor holding structure, electric equipment, and inverter device

Country Status (2)

Country Link
JP (1) JPWO2022264728A1 (en)
WO (1) WO2022264728A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060659A (en) * 1997-07-29 2000-05-09 Lucent Technologies Inc. Electronic isolation shield and a method of determining the minimum number of securing points required on the shield to sufficiently secure the shield to a circuit board
JP2011053061A (en) * 2009-09-01 2011-03-17 Tokai Rika Co Ltd Current sensor and method for manufacturing sensor module for use in the same
WO2016171039A1 (en) * 2015-04-23 2016-10-27 カルソニックカンセイ株式会社 Bus bar assemble type electric current sensor
JP2020128935A (en) * 2019-02-08 2020-08-27 矢崎総業株式会社 Current sensor and service plug

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754937Y2 (en) * 1990-11-30 1995-12-18 エスエムケイ株式会社 Connector fixing structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060659A (en) * 1997-07-29 2000-05-09 Lucent Technologies Inc. Electronic isolation shield and a method of determining the minimum number of securing points required on the shield to sufficiently secure the shield to a circuit board
JP2011053061A (en) * 2009-09-01 2011-03-17 Tokai Rika Co Ltd Current sensor and method for manufacturing sensor module for use in the same
WO2016171039A1 (en) * 2015-04-23 2016-10-27 カルソニックカンセイ株式会社 Bus bar assemble type electric current sensor
JP2020128935A (en) * 2019-02-08 2020-08-27 矢崎総業株式会社 Current sensor and service plug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Factor of safety", 8 May 2021 (2021-05-08), pages 1 - 6, XP093014996, Retrieved from the Internet <URL:https://en.wikipedia.org/w/index.php?title=Factor_of_safety&oldid=1022053690> [retrieved on 20220616] *

Also Published As

Publication number Publication date
JPWO2022264728A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
JP5225878B2 (en) Current detector assembly structure
CN109038038B (en) Connector with a locking member
CN110073554B (en) Connector with a locking member
JP2010063268A (en) Electrical junction box
JP2011097707A (en) Stud bolt assembly and electrical junction box with the same
WO2022264728A1 (en) Current sensor holding structure, electric equipment, and inverter device
JP2018056071A (en) Terminal holding structure and molding
US20200350532A1 (en) Housing part
JP5651437B2 (en) High pressure connector
JP2005317363A (en) Connector
JPH09186013A (en) Latch device and electric device using the same
US10333287B2 (en) Clearance filling structure of accommodation box, electric connection box, and wire harness
CN114851971A (en) Touch sensor unit
US10654441B2 (en) Buckle device
KR20180124767A (en) Plug and method of attaching a vibration protection to a plug
JP4858075B2 (en) In-vehicle electrical junction box
JP4583193B2 (en) connector
JP2006004901A (en) Connector device
US10096925B2 (en) Connector
JP2010287464A (en) Connector
JP6277110B2 (en) Electrical junction box
JP2007104815A (en) Box fixing structure
JP6490969B2 (en) Fuse unit
JP7062344B2 (en) connector
CN110832709B (en) Connector with a locking member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022528282

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824722

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824722

Country of ref document: EP

Kind code of ref document: A1