WO2022264549A1 - Agglomerated ore assessing method and agglomerated ore - Google Patents

Agglomerated ore assessing method and agglomerated ore Download PDF

Info

Publication number
WO2022264549A1
WO2022264549A1 PCT/JP2022/010210 JP2022010210W WO2022264549A1 WO 2022264549 A1 WO2022264549 A1 WO 2022264549A1 JP 2022010210 W JP2022010210 W JP 2022010210W WO 2022264549 A1 WO2022264549 A1 WO 2022264549A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduction
post
agglomerate
mass
ore
Prior art date
Application number
PCT/JP2022/010210
Other languages
French (fr)
Japanese (ja)
Inventor
祐哉 守田
隆英 樋口
哲也 山本
寿幸 廣澤
友司 岩見
謙弥 堀田
頌平 藤原
健太 竹原
大輔 井川
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202280042099.4A priority Critical patent/CN117480268A/en
Priority to EP22824549.4A priority patent/EP4353840A1/en
Priority to BR112023026307A priority patent/BR112023026307A2/en
Priority to AU2022294395A priority patent/AU2022294395A1/en
Priority to CA3222719A priority patent/CA3222719A1/en
Priority to JP2022532023A priority patent/JP7111284B1/en
Publication of WO2022264549A1 publication Critical patent/WO2022264549A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Provided is an agglomerated ore assessing method that enables assessment of clustering of reduced iron while taking into consideration the thermal compensation attributed to sensible heat in blown air when reduction is performed at a high hydrogen concentration. The present invention involves: producing a post-reduction aggregate by reducing an agglomerated ore at 1000-1200°C while applying a predetermined load thereon; performing a rotation process on the post-reduction aggregate by using a rotation testing machine; measuring a cluster strength CS of the post-reduction aggregate as calculated by formula (1); and assessing the clustering characteristics of the agglomerated ore by using the cluster strength CS. (1): CS=(W'/W)×100, wherein CS represents the cluster strength (mass %), W represents the mass (g) of the post-reduction aggregate having a particle size equal to or more than the maximum particle size of the agglomerated ore, and W' represents the mass (g) of the post-reduction aggregate obtained after the rotation process using the rotation testing machine and having a particle size equal to or more than the maximum particle size of the agglomerated ore.

Description

塊成鉱の評価方法および塊成鉱Evaluation method of agglomerate ore and agglomerate ore
 本発明は、塊成鉱のクラスタリングを評価する塊成鉱の評価方法および塊成鉱に関する。 The present invention relates to an agglomerate evaluation method and an agglomerate ore for evaluating clustering of agglomerate ore.
 COの増加による地球温暖化が、国際的な問題として大きく取り上げられており、その排出量を削減することが全世界的な課題となっている。世界の粗鋼生産約19億トンの内、約14億トンが、高炉-転炉法により生産されている。高炉-転炉法では、石炭を使用するため、2t-CO/t-Feと大量のCOを排出する。残りの約5億トンが、高炉-転炉法以外の方法である直接還元プロセスにより生産されている。直接還元プロセスのうち60%以上を占めるMIDREX(登録商標)に代表されるシャフト炉固体還元+電炉法であれば、1.1~1.2t-CO/t-Fe程度までCO排出量を削減できる。製鉄業からのCO排出量を減らすためには高炉-転炉法から直接還元プロセスへシフトし、さらには水素による還元割合を増やしていくことが必要である。 Global warming due to an increase in CO 2 has been taken up as an international problem, and reducing its emission has become a global issue. About 1.4 billion tons of the world crude steel production of about 1.9 billion tons is produced by the blast furnace-converter process. Since the blast furnace-converter process uses coal, it emits a large amount of CO 2 of 2t-CO 2 /t-Fe. The remaining approximately 500 million tons are produced by direct reduction processes other than the blast furnace-converter process. If the shaft furnace solid reduction + electric furnace method represented by MIDREX (registered trademark), which accounts for more than 60% of the direct reduction process, the CO 2 emission is about 1.1 to 1.2 t-CO 2 /t-Fe. can be reduced. In order to reduce CO 2 emissions from the steel industry, it is necessary to shift from the blast furnace-converter process to the direct reduction process and further increase the reduction rate with hydrogen.
 直接還元プロセスで使用される原料は、高炉-転炉法に比べて鉄品位が高くなる傾向にある。特に、シャフト炉による還元では、炉内の通気性を確保するため、粒度の揃ったペレットが原料として使用される。還元が進行し原料が炉内を降下してくると、シャフト炉下部の羽口前の高温部に堆積した原料からの荷重を受けて、還元鉄粒子どうしが固着するクラスタリングが発生することが知られている。クラスタリングが発生すると、還元鉄をシャフト炉から排出できなくなり問題である。クラスタリングを防ぐためには、シャフト炉へ装入する原料性状の管理が重要となる。 The raw material used in the direct reduction process tends to have a higher iron grade than the blast furnace-converter method. In particular, in reduction using a shaft furnace, pellets of uniform particle size are used as raw materials in order to ensure air permeability in the furnace. It is known that as the reduction progresses and the raw material descends in the furnace, the reduced iron particles adhere to each other due to the load from the raw material accumulated in the high-temperature part in front of the tuyere at the bottom of the shaft furnace, causing clustering. It is If clustering occurs, it becomes a problem that the reduced iron cannot be discharged from the shaft furnace. In order to prevent clustering, it is important to control the properties of the raw material charged into the shaft furnace.
 従来、非特許文献1に記載のMIDREX hot load testにて、塊成化原料が還元時にどの程度固着するか評価が行われている。非特許文献1によれば、2000gの試料を炉内に充填し、850℃の等温環境下45%H+30%CO+15%CO+10%N組成の気流40L/min中で、還元率95%まで還元させている。還元開始60分後に147kPaの荷重を試料の充填層表面にかける。冷却後還元生成したクラスターを1mのタンブラー試験機で10回転させた後、+25mm粒子をクラスターと定義してその割合をクラスター指標として評価している。 Conventionally, in the MIDREX hot load test described in Non-Patent Document 1, an evaluation is performed to what extent the agglomerated raw material sticks during reduction. According to Non-Patent Document 1, a 2000 g sample is filled in a furnace, and an air flow of 40 L/min with a composition of 45% H 2 + 30% CO + 15% CO 2 + 10% N 2 in an isothermal environment of 850 ° C. The reduction rate is 95. % is returned. 60 minutes after the start of reduction, a load of 147 kPa is applied to the surface of the packed layer of the sample. After the clusters formed by reduction after cooling were rotated 10 times in a 1 m tumbler tester, +25 mm particles were defined as clusters, and the ratio thereof was evaluated as a cluster index.
 非特許文献1に記載のクラスター評価方法では、ガス中にCOやCOが入っているため、純水素中で還元した時の装入物の凝集性については十分に評価できていない。水素による還元反応の高速化により還元が早期に完了し、金属鉄が増えることで炉内充填物のクラスタリングが激しくなる場合に、その解砕性を評価できない可能性がある。ガス成分にCOやCOが入っていると還元鉄への浸炭が発生しクラスタリングしづらくなるため(非特許文献2のFig6)、従来の評価法ではクラスタリングが抑制されてしまい、水素還元シャフト炉内のクラスタリング現象を正しく評価できない可能性がある。 In the cluster evaluation method described in Non-Patent Document 1, since CO and CO 2 are contained in the gas, the cohesiveness of the charge when reduced in pure hydrogen cannot be sufficiently evaluated. If hydrogen accelerates the reduction reaction and completes the reduction early, increasing the amount of metallic iron and causing severe clustering of the in-furnace filling, there is a possibility that the crushability cannot be evaluated. If CO or CO2 is contained in the gas component, carburization of the reduced iron occurs and clustering becomes difficult (Fig. 6 of Non-Patent Document 2). It is possible that the clustering phenomenon in
 また、酸化鉄の還元で、CO還元は発熱反応であるのに対してH還元は吸熱反応であるため、CO還元を減らしてH還元の割合を増やすと系内への熱補償が必要となる。この熱補償の方法として、送風温度と送風流量を上げることが考えられる。この場合には、羽口前には還元の完了した粒子が存在し、粒子温度が送風ガス温度近くまで上昇した粒子が存在すると考えられる。したがって、従来法の95%還元時点では、水素還元時に熱の吸収があり粒子温度が低下することと、試験温度が850℃と低いことからクラスタリングしづらくなる。このため、従来の評価方法では、H還元の割合が高く送風顕熱で熱補償を行った場合の水素還元シャフト炉内のクラスタリングを正しく評価できない可能性がある。 Also, in the reduction of iron oxide, CO reduction is an exothermic reaction, whereas H2 reduction is an endothermic reaction. becomes. As a method for this heat compensation, it is conceivable to raise the air temperature and the air flow rate. In this case, it is conceivable that particles that have undergone reduction are present in front of the tuyere, and particles whose particle temperature has risen close to the temperature of the blowing gas are present. Therefore, at the point of 95% reduction in the conventional method, heat is absorbed during hydrogen reduction, the temperature of the particles decreases, and the test temperature is as low as 850° C., making it difficult for clustering to occur. For this reason, the conventional evaluation method may not be able to correctly evaluate the clustering in the hydrogen reduction shaft furnace when the ratio of H2 reduction is high and thermal compensation is performed with the sensible heat of blown air.
 本発明は、このような事情に鑑みてなされたものであって、その目的とするところは、高水素濃度で還元した場合の送風顕熱による熱補償を考慮した還元鉄のクラスタリングを評価できる塊成鉱の評価方法を提供するとともに、その評価方法に基づく塊成鉱を提供することにある。 The present invention has been made in view of such circumstances, and its purpose is to evaluate the clustering of reduced iron in consideration of the heat compensation due to the sensible heat of blown air when reducing at a high hydrogen concentration. It is to provide a lump ore evaluation method and to provide agglomerate ore based on the evaluation method.
 本発明は、塊成鉱を1000℃以上1200℃以下で所定の加重を加えながら還元させて還元後凝集物を作製し、回転試験機を用いて前記還元後凝集物を回転処理し、下記(1)式で算出される前記還元後凝集物のクラスター強度CSを測定し、前記クラスター強度CSを用いて前記塊成鉱のクラスタリング性を評価することを特徴とする、塊成鉱の評価方法である。
 CS=(W’/W)×100・・・(1)
 ここで、CSはクラスター強度(質量%)であり、Wは前記塊成鉱の最大粒径以上となる還元後凝集物の質量(g)であり、W’は前記塊成鉱の最大粒径以上となる前記回転試験機で回転処理後の還元後凝集物の質量(g)である。
In the present invention, agglomerates are reduced at 1000° C. or higher and 1200° C. or lower while applying a predetermined load to prepare post-reduction aggregates, and the post-reduction aggregates are subjected to rotation treatment using a rotation tester, and the following ( 1) A method for evaluating an agglomerate ore, characterized in that the cluster strength CS of the post-reduction agglomerate calculated by the formula is measured, and the clustering property of the agglomerate ore is evaluated using the cluster strength CS. be.
CS=(W′/W)×100 (1)
Here, CS is the cluster strength (% by mass), W is the mass (g) of the post-reduction agglomerate that is equal to or larger than the maximum particle size of the agglomerate ore, and W′ is the maximum particle size of the agglomerate ore. It is the mass (g) of the post-reduction agglomerate after the rotation treatment with the rotation tester described above.
 なお、前記のように構成される本発明に係る塊成鉱の評価方法においては、
(1)C原子を有する化合物を含まない還元ガスを用いて、前記還元後凝集物を作製すること、
(2)Hを70体積%以上含む還元ガスを用いて、前記還元後凝集物を作製すること、
がより好ましい解決手段となるものと考えられる。
In addition, in the method for evaluating agglomerate ore according to the present invention configured as described above,
(1) using a reducing gas that does not contain a compound having a C atom to prepare the post-reduction aggregate;
( 2 ) using a reducing gas containing 70% by volume or more of H2 to prepare the post-reduction aggregates;
is considered to be a more preferable solution.
 また、本発明は、上述した塊成鉱の評価方法において、1000℃で還元された前記還元後凝集物と、前記還元後凝集物を30rpmで30回転させた前記回転処理後の還元後凝集物と、を用いて測定されるクラスター強度CS30が0質量%であることを特徴とする、塊成鉱である。 Further, in the method for evaluating agglomerate ore described above, the present invention provides the post-reduction aggregate reduced at 1000° C. and the post-reduction aggregate after the rotation treatment in which the post-reduction aggregate is rotated 30 times at 30 rpm. and a cluster strength CS30 of 0% by mass.
 なお、前記のように構成される本発明に係る塊成鉱においては、
(1)粒径が8mm以上であること、
(2)トータルFeが64.5質量%以下であること、
(3)下記(2)式を満足すること、
 Al+SiO≧3.5質量%・・・(2)
 ここで、Alは塊成鉱におけるAlの成分濃度(質量%)であり、SiOは塊成鉱におけるSiOの成分濃度(質量%)である。
がより好ましい解決手段となるものと考えられる。
In addition, in the agglomerate ore according to the present invention configured as described above,
(1) having a particle size of 8 mm or more;
(2) Total Fe is 64.5% by mass or less,
(3) satisfy the following formula (2);
Al 2 O 3 +SiO 2 ≧3.5% by mass (2)
Here, Al 2 O 3 is the component concentration (% by mass) of Al 2 O 3 in the agglomerate ore, and SiO 2 is the component concentration (% by mass) of SiO 2 in the agglomerate ore.
is considered to be a more preferable solution.
 上述したように構成される本発明によれば、従来よりも高温でクラスタリング評価を行うので、水素還元における送風顕熱による熱補償を考慮して塊成鉱のクラスタリングを評価できる塊成鉱の評価方法を得ることができる。これにより、シャフト炉内のクラスタリングを正しく評価でき、本発明の評価方法に基づき良好な特性の塊成鉱を得ることができる。 According to the present invention configured as described above, the clustering evaluation is performed at a higher temperature than conventionally, so the evaluation of the agglomerate ore can evaluate the clustering of the agglomerate ore in consideration of the heat compensation due to the sensible heat of the blown air in the hydrogen reduction. You can get a way. As a result, clustering in the shaft furnace can be correctly evaluated, and an agglomerate with good properties can be obtained based on the evaluation method of the present invention.
実施例1~6および比較例1のクラスター強度CS(質量%)とCS30(質量%)とを示すグラフである。4 is a graph showing cluster strength CS 0 (mass %) and CS 30 (mass %) of Examples 1 to 6 and Comparative Example 1. FIG.
 以下、本発明の実施の形態について具体的に説明する。なお、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be specifically described. It should be noted that the following embodiments are intended to exemplify apparatuses and methods for embodying the technical idea of the present invention, and are not intended to limit the configurations to those described below. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.
<本実施形態の塊成鉱の評価方法について>
 本実施形態の塊成鉱の評価方法について、具体的な評価方法を以下に説明する。
 まず、塊成化した製鉄原料(塊成鉱)500g±5gをふるいにかけ粒度分布を測定し、塊成鉱の最大粒径を決定する。次に、塊成鉱をN雰囲気において1000℃(この温度は1000℃~1200℃の所定の温度であり、ここでは1000℃とする)まで5℃/minで昇温する。その際、1000℃到達時に1kg/cmの荷重がかかるように徐々に負荷をかける。次に、1000℃で1kg/cmの荷重をかけたままN-20体積%Hにガスを切り替え、このガスを24L/minの流量で流して3時間保持する。次に、N雰囲気に切り替えて室温まで冷却する。このようにして還元後凝集物を作製する。
<Method for evaluating agglomerate ore according to the present embodiment>
Concerning the evaluation method of the agglomerate ore of the present embodiment, a specific evaluation method will be described below.
First, 500 g±5 g of the agglomerated iron-making raw material (agglomerate ore) is sieved and the particle size distribution is measured to determine the maximum particle size of the agglomerate ore. Next, the agglomerate ore is heated to 1000° C. (this temperature is a predetermined temperature between 1000° C. and 1200° C., here 1000° C.) at a rate of 5° C./min in an N 2 atmosphere. At that time, a load is gradually applied so that a load of 1 kg/cm 2 is applied when the temperature reaches 1000°C. Next, the gas is switched to N 2 -20% by volume H 2 at 1000° C. with a load of 1 kg/cm 2 applied, and this gas is flowed at a flow rate of 24 L/min and held for 3 hours. Then switch to N2 atmosphere and cool to room temperature. Thus, a post-reduction aggregate is produced.
 次に、還元前の塊成鉱の最大粒径の篩目の篩を用い還元後凝集物を篩い、篩上の還元後凝集物と篩下の還元後凝集物との秤量を行う。このとき、篩上の還元後凝集物の質量をW(g)とする。次に、篩上の還元後凝集物をI型回転試験機(132mmφ×700mm)に供し、30rpmで30回転させる。次に、取り出した還元後凝集物を同じ篩にかけて、篩上の還元後凝集物と篩下の還元後凝集物との秤量を行う。このとき、篩上の還元後凝集物の質量をW’30(g)とする。その後、得られたWとW’30とを用い、以下の(3)式からクラスター強度CS30(質量%)を測定する。
 CS30=(W’30/W)×100・・・(3)
Next, the post-reduction agglomerates are sieved using a sieve having the maximum particle size of the agglomerate ore before reduction, and the post-reduction agglomerates on the sieve and the post-reduction agglomerates under the sieve are weighed. At this time, the mass of the post-reduction aggregates on the sieve is W (g). Next, the reduced aggregate on the sieve is subjected to an I-type rotation tester (132 mmφ×700 mm) and rotated 30 times at 30 rpm. Next, the collected post-reduction aggregates are passed through the same sieve, and the post-reduction aggregates on the sieve and the post-reduction aggregates under the sieve are weighed. At this time, the mass of the post-reduction aggregate on the sieve is W′ 30 (g). After that, using the obtained W and W' 30 , the cluster strength CS 30 (% by mass) is measured from the following equation (3).
CS30 = ( W'30 /W) x 100 (3)
 I型回転試験機の回転数および回転回数は、還元に用いるシャフト炉で焼成鉱に加えられる衝撃に対応させて適宜調整してよい。当該衝撃に対応させた回転数および回数回数で処理した場合のクラスター強度をCSとすると、上記WとI型回転試験機で回転処理した後の篩上の還元後凝集物の質量W’とを用い、以下の(1)式からクラスター強度CS(質量%)を測定できる。
 CS=(W’/W)×100・・・(1)
 このように、1000℃以上1200℃以下で還元後凝集物を作製することで、送風顕熱による熱補償を実施しながら水素還元を行った場合のクラスタリングを正しく評価できる。
The number of revolutions and the number of revolutions of the I-type rotation tester may be appropriately adjusted according to the impact applied to the calcined ore in the shaft furnace used for reduction. Let CS be the cluster strength when processed at the number of rotations and the number of times corresponding to the impact, and the mass W 'of the post-reduction aggregates on the sieve after rotation processing with the above W and the I-type rotation tester. , the cluster strength CS (% by mass) can be measured from the following formula (1).
CS=(W′/W)×100 (1)
Thus, by producing post-reduction aggregates at 1000° C. or higher and 1200° C. or lower, it is possible to correctly evaluate clustering when hydrogen reduction is performed while heat compensation is performed by air sensible heat.
 上述したように、ガス成分にCOやCO、メタンなどC原子を有する化合物が入っていると還元鉄への浸炭が発生しクラスタリングしづらくなる。このため、C原子を有する化合物のガス濃度が低く、H濃度を高めた還元ガスを用いた還元におけるクラスタリングの評価が正しく行えない場合がある。これに対し、本実施形態では、N-20体積%HガスであってC原子を有する化合物を含有しない還元ガスを用いてクラスタリングを評価する。これにより、C原子を有する化合物を含有しない還元ガスを用いた場合のクラスタリングを正しく評価できる。さらに、このような還元ガスを用いることで、従来よりも使用するガス種が少なく簡便に評価できる。以上の観点から、本実施形態の塊成鉱の評価方法では、C原子を有する化合物を含まない還元ガスを用いて、還元後凝集物を作製することが好ましい。さらに、Hを70体積%以上含む還元ガスを用いて還元後凝集物を作製することが好ましい。これにより、H濃度を70体積%以上に高めた還元ガスを用いた塊成鉱の還元を模擬でき、当該還元におけるクラスタリングを評価できる。 As described above, if the gas component contains a compound having a C atom such as CO, CO 2 , or methane, carburization of the reduced iron occurs, making clustering difficult. Therefore, the gas concentration of the compound having C atoms is low, and clustering in reduction using a reducing gas with an increased H 2 concentration may not be correctly evaluated. In contrast, in the present embodiment, clustering is evaluated using a reducing gas that is N 2 -20% by volume H 2 gas and does not contain a compound having a C atom. This makes it possible to correctly evaluate clustering when using a reducing gas that does not contain a compound having a C atom. Furthermore, by using such a reducing gas, fewer types of gases are used than in the past, and evaluation can be performed easily. From the above point of view, in the method for evaluating agglomerate ore of the present embodiment, it is preferable to prepare the post-reduction agglomerate using a reducing gas that does not contain a compound having a C atom. Furthermore, it is preferable to prepare the post-reduction agglomerate using a reducing gas containing 70% by volume or more of H 2 . This makes it possible to simulate the reduction of agglomerate ore using a reducing gas with an H 2 concentration increased to 70% by volume or more, and to evaluate the clustering in the reduction.
<本実施形態の塊成鉱について>
 本実施形態の塊成鉱は、上述した本発明に係る塊成鉱の評価方法で測定されるクラスター強度CS30が0質量%であることを特徴とする。クラスター強度CS30が0質量%であれば、塊成鉱の高温での解砕性が良好であることがわかる。そのため、この塊成鉱を用いてシャフト炉などで還元鉄を製造すれば、H濃度を高めた還元ガスを用いても、クラスタリングを好適に抑制できる。
<Regarding agglomerate ore of the present embodiment>
The agglomerate ore of the present embodiment is characterized in that the cluster strength CS30 measured by the agglomerate ore evaluation method according to the present invention is 0% by mass. It can be seen that when the cluster strength CS30 is 0% by mass, the agglomerate ore has good crushability at high temperatures. Therefore, if reduced iron is produced in a shaft furnace or the like using this agglomerate ore, clustering can be suitably suppressed even if a reducing gas with an increased H 2 concentration is used.
 なお、本実施形態の塊成鉱において、塊成鉱の粒径は8mm以上であることが好ましい。粒径を8mm以上とすることで、粒子間の接触面積を小さくできるので、クラスタリングをより抑制できる。ここで、粒径8mm以上とは目開き8mmの篩で篩上となる塊成鉱の粒径である。また、塊成鉱のトータルFeは64.5質量%以下であることが好ましい。ここでトータルFeとは、金属FeならびにFe化合物(酸化鉄、カルシウムフェライト、硫化鉄など)に含まれるFeの成分濃度(質量%)である。トータルFeが64.5質量%以下の製鉄原料を用いることでクラスタリングをより抑制できる。さらに、塊成鉱が、以下の(2)式を満たすことが好ましい。
 Al+SiO≧3.5質量%・・・(2)
 ここで、Alは塊成鉱におけるAlの成分濃度(質量%)であり、SiOは塊成鉱におけるSiOの成分濃度(質量%)である。
In addition, in the agglomerate ore of the present embodiment, the particle size of the agglomerate ore is preferably 8 mm or more. By setting the particle size to 8 mm or more, the contact area between particles can be reduced, so clustering can be further suppressed. Here, the particle size of 8 mm or more is the particle size of the agglomerate ore that passes through a sieve with an opening of 8 mm. Further, the total Fe content of the agglomerate ore is preferably 64.5% by mass or less. Here, total Fe is the component concentration (% by mass) of Fe contained in metal Fe and Fe compounds (iron oxide, calcium ferrite, iron sulfide, etc.). Clustering can be further suppressed by using ironmaking raw materials having a total Fe content of 64.5% by mass or less. Furthermore, the agglomerate ore preferably satisfies the following formula (2).
Al 2 O 3 +SiO 2 ≧3.5% by mass (2)
Here, Al 2 O 3 is the component concentration (% by mass) of Al 2 O 3 in the agglomerate ore, and SiO 2 is the component concentration (% by mass) of SiO 2 in the agglomerate ore.
 クラスタリングは金属鉄同士が固相接合することで発生する。塊成鉱に含まれるAlやSiOといった脈石分の成分濃度が増えると、還元鉄粒子表面の鉄濃度が低下するので金属鉄同士の固相接合が抑制され、これによりクラスタリングが抑制される。このように、Al+SiO≧3.5質量%を満足する脈石分を多く含む塊成鉱は、Al+SiO<3.5質量%となる従来の塊成鉱よりもクラスタリングが抑制されるので、当該塊成鉱を水素還元鉄の製造に用いることが好ましい。 Clustering is caused by the solid state bonding of metallic irons. When the concentration of gangue components such as Al 2 O 3 and SiO 2 contained in the agglomerate ore increases, the iron concentration on the surface of the reduced iron particles decreases, thereby suppressing the solid phase bonding between metallic irons, thereby preventing clustering. Suppressed. Thus, the agglomerate containing a large amount of gangue that satisfies Al 2 O 3 + SiO 2 ≥ 3.5% by mass is higher than the conventional agglomerate that satisfies Al 2 O 3 + SiO 2 < 3.5% by mass. Since the clustering is also suppressed, it is preferable to use the agglomerate ore for the production of hydrogen-reduced iron.
 以下に、発明の実施例について詳細に説明する。
 上述した塊成鉱の評価方法に従って実施例1~6の塊成鉱および比較例1のペレットのクラスタリングを評価した。実施例1~6の塊成鉱および比較例1のペレットの焼成温度および成分組成を下記表1に示す。なお、比較例1としては、従来より用いられている原料から作製されたペレットを用いた。
Examples of the invention are described in detail below.
The clustering of the agglomerates of Examples 1 to 6 and the pellets of Comparative Example 1 was evaluated according to the method for evaluating agglomerates described above. Table 1 below shows the sintering temperatures and component compositions of the agglomerates of Examples 1 to 6 and the pellets of Comparative Example 1. In Comparative Example 1, pellets made from conventionally used raw materials were used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 クラスタリングの評価として評価前のクラスター強度CSと30回転後のクラスター強度CS30とを求めた。CSは回転処理前なので100.0質量%になる。評価結果を下記表2および図1に示す。また、還元温度および還元ガス組成を以下の表2に示す。 As an evaluation of clustering, a cluster strength CS of 0 before evaluation and a cluster strength CS of 30 after 30 rotations were obtained. CS 0 is 100.0% by mass because it is before the rotation treatment. The evaluation results are shown in Table 2 below and FIG. Also, the reduction temperature and the reduction gas composition are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図1および表2に示すように、Al+SiO≧3.5質量%を満足する実施例1~6の塊成鉱はいずれもクラスター強度CS30が0質量%となり、クラスター強度CS30が57.0質量%と高い比較例1と比べて、解砕性が良好であることがわかった。この結果から、Al+SiO≧3.5質量%を満足する実施例1~6の塊成鉱は、クラスタリングが抑制できる塊成鉱であるといえ、当該塊成鉱をシャフト炉を用いた水素還元用に用いることが好ましいことが確認された。 As shown in FIG. 1 and Table 2, all of the agglomerates of Examples 1 to 6 satisfying Al 2 O 3 +SiO 2 ≧3.5% by mass had a cluster strength CS 30 of 0% by mass, and the cluster strength CS Compared to Comparative Example 1 in which 30 was as high as 57.0% by mass, it was found that the crushability was good. From this result, it can be said that the agglomerates of Examples 1 to 6 satisfying Al 2 O 3 +SiO 2 ≧3.5% by mass are agglomerates capable of suppressing clustering, and the agglomerates can be treated in a shaft furnace. It was confirmed that it is preferable to use for the hydrogen reduction used.
 本発明の塊成鉱の評価方法によれば、従来よりも高温でのクラスタリングを評価するので、水素還元における送風顕熱による熱補償を考慮して塊成鉱のクラスタリングを評価でき、産業上有用である。また、これにより、シャフト炉内のクラスタリングを正しく評価でき、本発明の評価方法に基づき良好な特性の塊成鉱を得ることができる点でも産業上有用である。 According to the method for evaluating agglomerate ore of the present invention, clustering is evaluated at a higher temperature than before, so it is possible to evaluate clustering of agglomerate ore in consideration of thermal compensation due to sensible heat of air blowing in hydrogen reduction, which is industrially useful. is. In addition, this is industrially useful in that clustering in the shaft furnace can be correctly evaluated, and agglomerates with good properties can be obtained based on the evaluation method of the present invention.

Claims (7)

  1.  塊成鉱を1000℃以上1200℃以下で所定の加重を加えながら還元させて還元後凝集物を作製し、回転試験機を用いて前記還元後凝集物を回転処理し、下記(1)式で算出される前記還元後凝集物のクラスター強度CSを測定し、前記クラスター強度CSを用いて前記塊成鉱のクラスタリング性を評価することを特徴とする、塊成鉱の評価方法。
     CS=(W’/W)×100・・・(1)
     ここで、CSはクラスター強度(質量%)であり、Wは前記塊成鉱の最大粒径以上となる還元後凝集物の質量(g)であり、W’は前記塊成鉱の最大粒径以上となる前記回転試験機で回転処理後の還元後凝集物の質量(g)である。
    Agglomerate ore is reduced at 1000° C. or higher and 1200° C. or lower while applying a predetermined load to prepare a post-reduction aggregate, and the post-reduction aggregate is subjected to rotation treatment using a rotation tester, and is subjected to the following formula (1). A method for evaluating an agglomerate ore, comprising measuring the calculated cluster strength CS of the post-reduction agglomerate, and evaluating the clustering property of the agglomerate ore using the cluster strength CS.
    CS=(W′/W)×100 (1)
    Here, CS is the cluster strength (% by mass), W is the mass (g) of the post-reduction agglomerate that is equal to or larger than the maximum particle size of the agglomerate ore, and W′ is the maximum particle size of the agglomerate ore. It is the mass (g) of the post-reduction agglomerate after the rotation treatment with the rotation tester described above.
  2.  C原子を有する化合物を含まない還元ガスを用いて、前記還元後凝集物を作製することを特徴とする、請求項1に記載の塊成鉱の評価方法。 The method for evaluating agglomerate ore according to claim 1, wherein the post-reduction aggregate is produced using a reducing gas that does not contain a compound having a C atom.
  3.  Hを70体積%以上含む還元ガスを用いて、前記還元後凝集物を作製することを特徴とする、請求項1または請求項2に記載の塊成鉱の評価方法。 The method for evaluating agglomerate ore according to claim 1 or 2, wherein the post-reduction agglomerate is produced using a reducing gas containing 70% by volume or more of H2.
  4.  請求項1から請求項3のいずれか一項に記載の塊成鉱の評価方法において、1000℃で還元された前記還元後凝集物と、前記還元後凝集物を30rpmで30回転させた前記回転処理後の還元後凝集物と、を用いて測定されるクラスター強度CS30が0質量%であることを特徴とする、塊成鉱。 The method for evaluating agglomerate ore according to any one of claims 1 to 3, wherein the post-reduction aggregate reduced at 1000 ° C. and the post-reduction aggregate rotated 30 times at 30 rpm Aggregate ore characterized by having a cluster strength CS30 of 0% by weight, measured using post-reduction agglomerates after treatment.
  5.  粒径が8mm以上であることを特徴とする、請求項4に記載の塊成鉱。 The agglomerate ore according to claim 4, characterized by having a particle size of 8 mm or more.
  6.  トータルFeが64.5質量%以下であることを特徴とする、請求項4または請求項5に記載の塊成鉱。 The agglomerate ore according to claim 4 or 5, characterized in that the total Fe is 64.5% by mass or less.
  7.  下記(2)式を満足することを特徴とする、請求項4から請求項6のいずれか一項に記載の塊成鉱。
     Al+SiO≧3.5質量%・・・(2)
     ここで、Alは塊成鉱におけるAlの成分濃度(質量%)であり、SiOは塊成鉱におけるSiOの成分濃度(質量%)である。

     
    7. The agglomerate ore according to any one of claims 4 to 6, which satisfies the following formula (2).
    Al 2 O 3 +SiO 2 ≧3.5% by mass (2)
    Here, Al 2 O 3 is the component concentration (% by mass) of Al 2 O 3 in the agglomerate ore, and SiO 2 is the component concentration (% by mass) of SiO 2 in the agglomerate ore.

PCT/JP2022/010210 2021-06-18 2022-03-09 Agglomerated ore assessing method and agglomerated ore WO2022264549A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202280042099.4A CN117480268A (en) 2021-06-18 2022-03-09 Lump ore evaluation method and lump ore
EP22824549.4A EP4353840A1 (en) 2021-06-18 2022-03-09 Agglomerated ore assessing method and agglomerated ore
BR112023026307A BR112023026307A2 (en) 2021-06-18 2022-03-09 EVALUATION METHOD OF AGGLOMERATED ORE AND AGGLOMERATED ORE
AU2022294395A AU2022294395A1 (en) 2021-06-18 2022-03-09 Agglomerated ore assessing method and agglomerated ore
CA3222719A CA3222719A1 (en) 2021-06-18 2022-03-09 Agglomerated ore assessing method and agglomerated ore
JP2022532023A JP7111284B1 (en) 2021-06-18 2022-03-09 Evaluation method of agglomerate ore and agglomerate ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-101337 2021-06-18
JP2021101337 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022264549A1 true WO2022264549A1 (en) 2022-12-22

Family

ID=84526083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010210 WO2022264549A1 (en) 2021-06-18 2022-03-09 Agglomerated ore assessing method and agglomerated ore

Country Status (1)

Country Link
WO (1) WO2022264549A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057694A1 (en) * 2022-09-16 2024-03-21 Jfeスチール株式会社 Reduced iron production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037575A (en) * 2012-08-15 2014-02-27 Nippon Steel & Sumitomo Metal Production method of reduced iron
WO2015016145A1 (en) * 2013-07-29 2015-02-05 新日鐵住金株式会社 Raw material for direct reduction applications, method for producing raw material for direct reduction applications, and method for producing reduced iron
US20180320246A1 (en) * 2015-10-23 2018-11-08 Sabic Global Technologies B.V. Electric arc furnace dust as coating material for iron ore pellets for use in direct reduction processes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037575A (en) * 2012-08-15 2014-02-27 Nippon Steel & Sumitomo Metal Production method of reduced iron
WO2015016145A1 (en) * 2013-07-29 2015-02-05 新日鐵住金株式会社 Raw material for direct reduction applications, method for producing raw material for direct reduction applications, and method for producing reduced iron
US20180320246A1 (en) * 2015-10-23 2018-11-08 Sabic Global Technologies B.V. Electric arc furnace dust as coating material for iron ore pellets for use in direct reduction processes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENTARO KANEKO: "Clustering Phenomena during Iron Oxide Reduction in Shaft Furnace", TETSU-TO-HAGANE, THE 64TH YEAR, no. 6, 1978, pages 681 - 690
L. LUJ. PAND. ZHU: "Iron Ore", ELSEVIER LTD., article "Quality requirements of iron ore for iron production", pages: 475 - 504

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057694A1 (en) * 2022-09-16 2024-03-21 Jfeスチール株式会社 Reduced iron production method
JP7477064B1 (en) 2022-09-16 2024-05-01 Jfeスチール株式会社 Method for producing reduced iron

Similar Documents

Publication Publication Date Title
WO2022264549A1 (en) Agglomerated ore assessing method and agglomerated ore
US9169532B2 (en) Process for the improvement of reducibility of ore pellets
JP2010096592A (en) Evaluation method of blended iron ore for sintering
JP5565481B2 (en) Evaluation method of compound iron ore for sintering
CA2430027C (en) Carbon containing nonfired agglomerated ore for blast furnace and production method thereof
Zhang et al. Roasting characteristics of specularite pellets with modified humic acid based (MHA) binder under different oxygen atmospheres
JP7111284B1 (en) Evaluation method of agglomerate ore and agglomerate ore
Guo et al. Effects of MgO additive on metallurgical properties of fluxed-pellet
Monsen et al. Characterization of DR pellets for DRI applications
Pal et al. Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making
WO2011021560A1 (en) Unfired carbon-containing agglomerate and production method therefor
JPH1161284A (en) Evaluation test method of reduction degradation characteristic of sintered ore
Pal et al. Development of fluxed iron oxide pellets strengthened by CO2 treatment for use in basic oxygen steel making
JP5020446B2 (en) Method for producing sintered ore
US4518428A (en) Agglomerates containing olivine
JP5498919B2 (en) Method for producing reduced iron
EP2495339B1 (en) Method for operating blast furnace
AMINI et al. An Investigation on the Reduction of Iron Ore Pellets in Fixed Bed of Domestic Non–Coking Coals
Kim et al. Effects of K2CO3 addition on the physicochemical properties of goethite composite pellets with different basicities (CaO/SiO2)
Robinson Studies in low temperature self-reduction of by-products from integrated iron and steelmaking
JPS604891B2 (en) Coarse ore-containing pellets
KR100236197B1 (en) The method for preventing sticking of pellets or ores in coal based ironmaking process
JP2023018430A (en) Estimation method of cohesive zone slag amount in blast furnace and operation method
JP2023131283A (en) Reduced pellet production method
US4144053A (en) Processes for blast furnace operations

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022532023

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3222719

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: P6003240/2023

Country of ref document: AE

WWE Wipo information: entry into national phase

Ref document number: 2022824549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2022294395

Country of ref document: AU

Ref document number: AU2022294395

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2023134469

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2022824549

Country of ref document: EP

Effective date: 20231218

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023026307

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022294395

Country of ref document: AU

Date of ref document: 20220309

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023026307

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231213