WO2022264427A1 - Semiconductor device manufacturing apparatus and manufacturing method - Google Patents

Semiconductor device manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
WO2022264427A1
WO2022264427A1 PCT/JP2021/023268 JP2021023268W WO2022264427A1 WO 2022264427 A1 WO2022264427 A1 WO 2022264427A1 JP 2021023268 W JP2021023268 W JP 2021023268W WO 2022264427 A1 WO2022264427 A1 WO 2022264427A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
capillary
tail
index
semiconductor device
Prior art date
Application number
PCT/JP2021/023268
Other languages
French (fr)
Japanese (ja)
Inventor
広幸 笠間
Original Assignee
株式会社新川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新川 filed Critical 株式会社新川
Priority to JP2023529182A priority Critical patent/JPWO2022264427A1/ja
Priority to CN202180090045.0A priority patent/CN116686072A/en
Priority to PCT/JP2021/023268 priority patent/WO2022264427A1/en
Priority to KR1020237027971A priority patent/KR20230130123A/en
Publication of WO2022264427A1 publication Critical patent/WO2022264427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/788Means for moving parts
    • H01L2224/78821Upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/789Means for monitoring the connection process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector

Definitions

  • This specification discloses a semiconductor device manufacturing apparatus and manufacturing method comprising a capillary through which a wire is inserted and a clamper that grips the wire.
  • Patent Document 1 discloses a semiconductor device manufacturing apparatus (referred to as "bonding device") is disclosed.
  • a wire connects the first bond point and the second bond point. Further, in the manufacturing apparatus, when the second bond for bonding the wire to the second bond point is completed, the capillary is moved with the clamper open to form a tail, and then the capillary is moved with the clamper closed. perform a tail cut to cut the wire.
  • this specification discloses a semiconductor device manufacturing apparatus that provides an evaluation index for quantitatively evaluating the adequacy of the operating conditions of the manufacturing apparatus.
  • the apparatus for manufacturing a semiconductor device disclosed in this specification includes a capillary, through which a wire is inserted, which presses and bonds the wire extending from the tip thereof to a target surface, and which moves in conjunction with the capillary to grip the wire.
  • a moving mechanism having one or more drive motors to move the capillary by the power of the drive motor; a position sensor for detecting the position of the capillary as a detection position; the capillary, the clamper, and a controller for controlling driving of the movement mechanism, wherein the controller moves the capillary in the away direction with the clamper closed after joining the wire to the target surface and forming the tail.
  • a tail cut process for cutting the tail by moving it; a peak value of a deviation between a command position for movement of the capillary immediately after cutting the wire and the detected position; and an index measurement process of measuring the current value as a fracture index.
  • the controller may also measure a breaking distance, which is a moving distance of the capillary from when the clamper is closed until the wire is cut.
  • a UI device for receiving an operation input from an operator and outputting information to the operator, and the controller performs the tail cutting process two or more times when the operator instructs measurement of the fracture index.
  • the measurement values of the fracture index obtained by each of the tail cutting processes performed two or more times may be presented to the operator via the UI device.
  • the controller may present, in a graph format, a list of measured values of the rupture index obtained in each of the two or more tail cutting processes.
  • controller may output an alarm when the fracture index is out of a predetermined reference range.
  • a clamper is closed to hold the wire, and then the capillary is moved to the target surface. a peak value of the deviation between the command position for movement of the capillary immediately after cutting the wire and the detected position, or the wire and an index measuring step of measuring the current value of the drive motor at the time of cutting as a fracture index.
  • the breaking strength is provided quantitatively, so the operator can easily evaluate whether the operating conditions are appropriate.
  • FIG. 10 is a diagram showing an example of temporal changes in positional deviation obtained during tail cut processing; It is a figure which shows an example of a measurement mode screen.
  • FIG. 10 is a diagram showing an example of a graph screen of fracture indices presented to an operator; It is a figure which shows an example of the graph screen of the breaking distance shown to an operator. 4 is a flow chart showing the flow of processing by the controller during mass production of products;
  • FIG. 1 is a diagram showing the configuration of a manufacturing apparatus 10.
  • This manufacturing apparatus 10 is a wire bonding apparatus that connects a first bonding point B1 and a second bonding point B2 with a wire W.
  • the first bonding point B1 is set on a pad of a semiconductor chip 110.
  • the second bonding point B2 is set on the lead of the substrate 100, which is the lead frame on which the semiconductor chip 110 is mounted.
  • the manufacturing apparatus 10 includes a bonding head 12, a moving mechanism 18, a stage 14, a rotating spool 42, a torch electrode 43, a controller 50, and a UI device 60.
  • the bonding head 12 includes an ultrasonic horn 24 and a clamper 34.
  • the ultrasonic horn 24 is a rod-like member composed of a proximal portion, a flange portion, a horn portion, and a distal portion from the proximal end to the distal end.
  • An ultrasonic oscillator 26 that vibrates according to a drive signal from the controller 50 is arranged at the proximal end.
  • the flange portion is attached to the moving mechanism 18 so as to resonate at a node of the ultrasonic vibration.
  • the horn portion is an arm that extends longer than the diameter of the base end portion, and has a structure that expands the amplitude of vibration generated by the ultrasonic oscillator 26 and transmits it to the tip end portion.
  • a capillary 30 is replaceably attached to the tip.
  • the capillary 30 is a tubular member through which the wire W is inserted.
  • the ultrasonic horn 24 as a whole has a resonant structure that resonates with the vibration of the ultrasonic oscillator 26.
  • the ultrasonic oscillator 26 and the flange are positioned at vibration nodes during resonance, and the capillary 30 is positioned at the vibration antinode. It is structured like this. With these configurations, the ultrasonic horn 24 functions as a transducer that converts electrical drive signals into mechanical vibrations.
  • the clamper 34 has a piezoelectric element that performs opening and closing operations based on a control signal from the controller 50, and is configured to grip and release the wire W at predetermined timings. This clamper 34 can move together with the capillary 30 .
  • the moving mechanism 18 moves the bonding head 12 and thus the capillary 30 horizontally and vertically, and has an XY table and an elevating mechanism (not shown).
  • the moving mechanism 18 has one or more drive motors 22 , and the power output from the drive motors 22 moves the bonding head 12 .
  • a position sensor 28 detects the position of the capillary 30 .
  • the rotating spool 42 replaceably holds the reel around which the wire W is wound.
  • the rotating spool 42 is configured to let out the wire W according to the progress of bonding.
  • the material of the wire W is selected for ease of processing and low electrical resistance.
  • gold (Au), silver (Ag), aluminum (Al), copper (Cu), or the like is usually used.
  • the torch electrode 43 is connected to a high voltage power source (not shown) through a discharge stabilizing resistor (not shown).
  • the torch electrode 43 generates a spark (discharge) based on a control signal from the controller 50, and the heat of the spark causes a ball, that is, FAB (Free Air Ball) to be formed at the tip of the wire W drawn out from the tip of the capillary 30.
  • FAB Free Air Ball
  • the stage 14 supports the substrate 100.
  • a semiconductor chip 110 is mounted in advance on the substrate.
  • a heater 46 is provided inside the stage 14 to heat the substrate 100 and the semiconductor chip 110 to a temperature suitable for bonding.
  • the UI device 60 is a device that receives operation input from the operator and outputs information to the operator.
  • This UI device 60 has an input device 62 and an output device 64 .
  • the input device 62 receives operation input from the operator, and has, for example, a keyboard, mouse, trackball, touch panel, joystick, and the like.
  • the output device 64 outputs information to the operator, and has, for example, a display, a speaker, a printer, and the like.
  • the controller 50 controls driving of the manufacturing apparatus 10 based on a predetermined software program. Specifically, the controller 50 specifically controls the position of the capillary 30 by driving and controlling the moving mechanism 18 . The controller 50 also performs opening/closing control of the clamper 34, application control of the discharge voltage, and driving control of the heater 46 of the stage 14 according to the progress of the bonding process. In the process of wire bonding, a second bonder process of bonding the wire W to the second bond point B2 and a tail cut process of cutting the tail of the wire W are performed. , a predetermined evaluation index indicating the quality of the operating conditions in the tail cut process is also measured. As the evaluation indices, the rupture index Sb and the rupture distance Ds correspond, and these will be explained in detail later. Note that the controller 50 is physically a computer having a processor 52 that executes various calculations and a memory 54 that stores programs and data.
  • FIG. 1 are image diagrams showing the flow of wire bonding.
  • a wire W is used to connect between the first bonding point B1 and the second bonding point B2.
  • the first bond point B1 is a pad provided on the upper surface of the semiconductor chip 110
  • the second bond point B2 is a lead provided on the surface of the substrate 100.
  • FIG. 1 is a pad provided on the upper surface of the semiconductor chip 110
  • the second bond point B2 is a lead provided on the surface of the substrate 100.
  • the controller 50 forms an FAB at the end of the wire W, as shown in FIG. 2A. That is, a torch electrode 43 applied with a predetermined high voltage is brought close to a part of the wire W extending from the tip of the capillary 30 to generate electric discharge between the tip of the wire W and the torch electrode 43 . This discharge causes the tip of the wire W to melt. The molten wire material then forms a spherical FAB due to surface forces.
  • the controller 50 executes the 1st bonder to bond the FAB to the first bond point B1, as shown in FIG. 2B. That is, the controller 50 moves the capillary 30 directly above the first bond point B1. After that, the controller 50 lowers the capillary 30 to bring the FAB into contact with the first bonding point B1 and press the FAB with the tip surface of the capillary 30 . At this time, the controller 50 drives the ultrasonic oscillator 26 to generate ultrasonic vibrations in the ultrasonic horn 24 and apply ultrasonic vibrations to the FAB. Furthermore, the controller 50 turns on the heater 46 of the stage 14 to heat the substrate 100 and the semiconductor chip 110 to a predetermined temperature. As a result, the FAB is subjected to load, ultrasonic vibration, and heat from the heater 46, thereby bonding the FAB to the first bonding point B1.
  • the controller 50 forms a loop connecting the first bond point B1 and the second bond point B2 by moving the capillary 30 along a predefined locus. That is, by moving the capillary 30 with the clamper 34 open, the wire W is let out from the rotating spool 42 to form a loop.
  • the controller 50 executes a second bonder that bonds the wire W to the second bond point B2, as shown in FIG. 2D. Specifically, the controller 50 causes the capillary 30 to land on the second bonding point B2, and presses the wire W with the tip surface of the capillary 30 against the second bonding point B2. At the same time, the ultrasonic oscillator 26 is driven to apply ultrasonic vibration to the tip of the capillary 30 . Then, the wire W is bonded to the second bonding point B2 by this ultrasonic vibration, load and heat from the heater 46 .
  • the controller 50 After the wire W is bonded to the second bond point B2, the controller 50 then forms a tail, as shown in FIG. 2E. Specifically, the controller 50 moves the capillary 30 away from the substrate 100 while the clamper 34 is open. This movement forms a tail, which is a portion of wire extending from the tip of capillary 30 . Also, the amount of movement is determined according to the required tail distance.
  • the controller 50 cuts the tail as shown in FIG. 2F. Specifically, the controller 50 moves the capillary 30 away from the substrate 100 while the clamper 34 is closed. Thereby, the wire W is torn off. Thereafter, similar processing is repeated.
  • the wire W is mechanically pulled and torn off in the tail cut process after the second bonder process and tail forming process.
  • a reaction force acts on the wire W inserted through the capillary 30 . If this reaction force is excessive, an S-shaped bend occurs in which the wire W inserted through the capillary 30 is bent in an S-shape.
  • problems such as a no-tail in which the tail is less than the desired length and lead non-bonding in which the bonding point is peeled off occur. Problems such as S-shaped bending, no tail, and lead non-bonding (hereinafter collectively referred to as "disconnection defects") lead to deterioration in the quality of semiconductor devices.
  • the operating conditions include, for example, the load value applied to the wire W, the speed at which the capillary 30 is moved, the movement trajectory of the capillary 30, the heating temperature of the heater 46, and the like.
  • the operator adjusts the operating conditions according to the presence or absence of cutting defects, but conventionally there was no index for quantitatively evaluating the quality of these operating conditions. Therefore, conventionally, the operator has to check the presence or absence of cutting defects by looking at the actually manufactured product, and adjust the operating conditions according to the confirmation result, which is very troublesome.
  • the fracture index Sb and the fracture distance Ds are measured as evaluation indices for quantitatively evaluating the quality of the operating conditions, particularly the quality of the operating conditions in the second bonder process, the tail forming process, and the tail cutting process. , and presents the measurement results to the operator. This will be explained in detail below.
  • the fracture index Sb and the fracture distance Ds will be explained.
  • the controller 50 closes the clamper 34 and moves the capillary 30 away from the second bond point B2 to cut the tail.
  • a parameter indicating the force required to cut the tail is acquired as the fracture index Sb.
  • the moving distance of the capillary 30 from when the clamper 34 is closed until the tail is cut is acquired as the breaking distance Ds.
  • the controller 50 generates a command position P* that causes the capillary 30 to gradually move in the separation direction during the tail cutting process, and inputs it to the moving mechanism 18 .
  • a driver of the drive motor 22 provided in the moving mechanism 18 calculates a position deviation ⁇ P, which is the difference between the command position P* and the detected position Pd detected by the position sensor 28, and calculates a value corresponding to the position deviation ⁇ P. is applied to the drive motor 22 .
  • the drive motor 22 outputs torque proportional to the applied current. When the tail is cut by the output of torque, the reaction causes the capillary 30 to temporarily overshoot greatly in the separation direction.
  • FIG. 3 is a diagram showing an example of temporal changes in the positional deviation ⁇ P obtained during the tail cut process.
  • the tail is cut at time t1, and the position deviation ⁇ P peaks immediately after time t1.
  • This peak becomes larger as the recoil at the time of cutting is larger, and as a result, the force required for cutting is larger. Therefore, in this example, the peak value of the positional deviation ⁇ P is measured as the fracture index Sb.
  • the moving distance of the capillary 30 until this peak value is obtained is measured as the breaking distance Ds.
  • the breaking index Sb and the breaking distance Ds can be used as indices indicating the magnitude of the force required to break the wire W, that is, the breaking strength.
  • the fracture index Sb and the fracture distance Ds greatly affect the presence or absence of poor bonding.
  • the fracture index Sb and the fracture distance Ds are larger than when no S-shaped bend occurs.
  • S-shaped bending occurs when the breakage index Sb exceeds a certain value. Therefore, the presence or absence of S-shaped bending can be determined by monitoring the fracture index Sb.
  • the maximum value of the fracture index Sb at which no S-shaped bend occurs (hereinafter referred to as “permissible maximum strength Smax”) varies depending on the type of wire W. As shown in FIG. When the wire W has the same composition, the larger the diameter of the wire W, the larger the allowable maximum strength Smax.
  • the controller 50 measures the rupture index Sb and the rupture distance Ds, and presents the measurement results to the operator via the output device 64.
  • the operator can determine the presence or absence of joint failure, and thus the quality of the operating conditions, based on the presented fracture index Sb and fracture distance Ds.
  • the range of values of the fracture index Sb and the fracture distance Ds in which poor bonding does not occur that is, the permissible range varies depending on the type of wire W (ie, composition, diameter, manufacturing method, etc.), and is determined in advance by experiment or the like.
  • a measurement mode is prepared for measuring the evaluation indices of the operating conditions described above, that is, the rupture index Sb and the rupture distance Ds.
  • the display shows the measurement mode screen 70 shown in FIG.
  • the operator can specify a start number 71, which is the wire number for starting the measurement of the evaluation index, and a measurement number 72, which is the number of wires to be measured. Also, the operator can set different operating conditions for each wire number in advance.
  • the controller 50 When the start button is selected, the controller 50 performs wire bonding processing in order from the designated wire number to the number of pieces to be measured. In the example of FIG. 4, the starting number is 81 and the number of measurements is 15, so the controller 50 performs the bonding process for 15 wires W with wire numbers 81-85.
  • the controller 50 measures the rupture index Sb and the rupture distance Ds as evaluation indices for each bonding process, and temporarily stores the results in the memory 54 .
  • the controller 50 presents the measurement results to the operator. Since a plurality of rupture indices Sb and rupture distances Ds can be obtained (that is, the number of measurements), the controller 50 presents statistical values of the plurality of rupture indices Sb and rupture distances Ds to the operator as measurement results.
  • the final value, maximum value, minimum value, average value, and standard deviation of a plurality of rupture indexes Sb and rupture distances Ds are displayed in the measurement result column 73 as the measurement results.
  • a graph button 74 is also provided on the measurement mode screen 70 .
  • this graph button 74 is selected, the operator is presented with a plurality of measured values of the rupture index Sb and the rupture distance Ds in graph form.
  • 5A and 5B are diagrams showing examples of graph screens of the rupture index Sb and the rupture distance Ds, respectively, presented to the operator.
  • the graph screen has a field 75 for selecting the type of evaluation index to be displayed, and a graph of the selected type of evaluation index is displayed.
  • the horizontal axis is the wire number
  • the vertical axis is the measurement value of the evaluation index (that is, the fracture index Sb or the fracture distance Ds).
  • the operator can easily identify the wire numbers with defective joints.
  • the wire number 88 has both high fracture index Sb and high fracture distance Ds, so it can be inferred that S-shaped bending has occurred.
  • Wire No. 91 does not have a high fracture index Sb, but has a high fracture distance Ds.
  • the operator can more easily determine whether the operating conditions are appropriate or not, and can more easily adjust the operating conditions. If the range of the evaluation index in which poor bonding does not occur, that is, the allowable range is known, the upper limit and lower limit of the allowable range may be displayed on the graph. With such a configuration, the operator can more intuitively determine whether the bonding conditions are appropriate.
  • the controller 50 may continuously or intermittently measure the evaluation index. Then, if the evaluation index is out of the prescribed allowable range, the controller 50 may output an alarm and interrupt the production of the product.
  • FIG. 6 is a flow chart showing the flow of processing by the controller 50 during mass production of products.
  • the controller 50 performs bonding of the n-th wire W according to the operating conditions set by the operator (S12). During the bonding process, the controller 50 measures the fracture index Sb. Then, the obtained fracture index Sb is compared with a predetermined allowable maximum strength Smax (S14). As a result of the comparison, if Sb ⁇ Smax, it is determined that there is no problem, and the next wire W bonding process is executed (S16, S18, S12). On the other hand, when Sb>Smax, there is a high possibility that an S-shaped bend has occurred. In this case, the controller 50 outputs an alarm (S20) and suspends production of the product.
  • S20 an alarm
  • the peak value of the positional deviation ⁇ P immediately after the tail is cut is obtained as the breakage index Sb.
  • the fracture index Sb may be another parameter, such as the applied current value of the drive motor 22 at the time of cutting, as long as it is a parameter representing the force required to cut the tail.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)

Abstract

This semiconductor device manufacturing apparatus comprises: a capillary (30); a clamper (34); a shifting mechanism (18) having one or more driving motors (22); a position sensor (28) that detects the position of the capillary (30); and a controller (50) that controls the driving of the capillary (30), the clamper (34) and the shifting mechanism (18). The controller (50) is configured to execute: a tail cut processing that cuts a tail by shifting the capillary (30) in such a direction that the capillary (30) moves away from a surface of interest with the clamper (34) closed; and an index measurement processing that measures a rupture index Sb that is the peak value of a positional deviation of the capillary (30) immediately after the cutting of the wire W or that is the current values of the driving motors (22) at the time of cutting the wire W.

Description

半導体装置の製造装置および製造方法Semiconductor device manufacturing apparatus and manufacturing method
 本明細書は、ワイヤが挿通されるキャピラリと、前記ワイヤを把持するクランパと、を備えた半導体装置の製造装置および製造方法を開示する。 This specification discloses a semiconductor device manufacturing apparatus and manufacturing method comprising a capillary through which a wire is inserted and a clamper that grips the wire.
 半導体チップの電極と基板の電極とを導電性のワイヤで接続して半導体装置を製造する製造装置が従来から広く知られている。例えば、特許文献1には、ワイヤが挿通されるキャピラリ(特許文献1では「ボンディングツール」と呼ぶ)と、ワイヤを把持するクランパと、を備えた半導体装置の製造装置(特許文献1では「ボンディング装置」と呼ぶ)が開示されている。 A manufacturing apparatus that manufactures semiconductor devices by connecting electrodes of a semiconductor chip and electrodes of a substrate with conductive wires has been widely known. For example, Patent Document 1 discloses a semiconductor device manufacturing apparatus (referred to as "bonding device") is disclosed.
 こうした製造装置では、第1ボンド点と第2ボンド点をワイヤで接続する。また、製造装置では、第2ボンド点にワイヤをボンディングする2ndボンドが完了すれば、クランパを開いた状態でキャピラリを移動させてテールを形成したうえで、クランパを閉じた状態でキャピラリを移動させてワイヤをカットするテールカットを実行する。 In such manufacturing equipment, a wire connects the first bond point and the second bond point. Further, in the manufacturing apparatus, when the second bond for bonding the wire to the second bond point is completed, the capillary is moved with the clamper open to form a tail, and then the capillary is moved with the clamper closed. perform a tail cut to cut the wire.
特開2012-256861号公報JP 2012-256861 A
 ここで、2ndボンドおよびテールカットを実行する際の製造装置の動作条件が適切でない場合、第2ボンド点においてワイヤが十分に接合されないNSOLや、十分な長さのテールが形成されないNotail、キャピラリに挿通されたワイヤがS字状に撓むS字曲がり等の不良が発生する。しかし、従来、動作条件の適否を定量的に評価する指標がなかった。その結果、従来、オペレータは、実際に製造された半導体装置の品質検査の結果を見ながら、経験に基づいて動作条件を修正するしかなく、動作条件の絞り込みに時間がかかっていた。また、従来、不良の有無を確認するためには、実際に製造された半導体装置を検査する必要があり、製造過程で不良の有無を判断することは難しかった。 Here, if the operating conditions of the manufacturing equipment when performing the 2nd bond and the tail cut are not appropriate, NSOL where the wire is not sufficiently bonded at the 2nd bond point, Notail where the tail of sufficient length is not formed, and capillary Defects such as S-shaped bending, in which the inserted wire bends in an S-shape, occur. However, conventionally, there has been no index for quantitatively evaluating the adequacy of operating conditions. As a result, conventionally, the operator had no choice but to correct the operating conditions based on his/her experience while looking at the results of the quality inspection of actually manufactured semiconductor devices, and it took a long time to narrow down the operating conditions. In addition, conventionally, in order to confirm the presence or absence of defects, it is necessary to inspect actually manufactured semiconductor devices, and it has been difficult to determine the presence or absence of defects during the manufacturing process.
 そこで、本明細書では、製造装置の動作条件の適否を定量的に評価するための評価指標を提供する半導体装置の製造装置を開示する。 Therefore, this specification discloses a semiconductor device manufacturing apparatus that provides an evaluation index for quantitatively evaluating the adequacy of the operating conditions of the manufacturing apparatus.
 本明細書で開示する半導体装置の製造装置は、ワイヤが挿通され、先端から延出する前記ワイヤを対象面に押圧して接合するキャピラリと、前記キャピラリと連動して移動し、前記ワイヤを把持するクランパと、1以上の駆動モータを有し、前記駆動モータの動力で前記キャピラリを移動させる移動機構と、前記キャピラリの位置を検出位置として検出する位置センサと、前記キャピラリ、前記クランパ、および、前記移動機構の駆動を制御するコントローラと、を備え、前記コントローラは、前記ワイヤの前記対象面への接合およびテールの形成を行った後、前記クランパを閉じた状態で前記キャピラリを前記離れる方向に移動させることで前記テールを切断するテールカット処理と、前記ワイヤの切断直後における前記キャピラリの移動の指令位置と前記検出位置との偏差のピーク値、または、前記ワイヤの切断時における前記駆動モータの電流値を破断指標として測定する指標測定処理と、を実行するように構成されている、ことを特徴とする。 The apparatus for manufacturing a semiconductor device disclosed in this specification includes a capillary, through which a wire is inserted, which presses and bonds the wire extending from the tip thereof to a target surface, and which moves in conjunction with the capillary to grip the wire. a moving mechanism having one or more drive motors to move the capillary by the power of the drive motor; a position sensor for detecting the position of the capillary as a detection position; the capillary, the clamper, and a controller for controlling driving of the movement mechanism, wherein the controller moves the capillary in the away direction with the clamper closed after joining the wire to the target surface and forming the tail. a tail cut process for cutting the tail by moving it; a peak value of a deviation between a command position for movement of the capillary immediately after cutting the wire and the detected position; and an index measurement process of measuring the current value as a fracture index.
 この場合、前記コントローラは、前記指標測定処理において、さらに、前記クランパを閉じてから前記ワイヤが切断されるまでの前記キャピラリの移動距離である破断距離も測定してもよい。 In this case, in the index measurement process, the controller may also measure a breaking distance, which is a moving distance of the capillary from when the clamper is closed until the wire is cut.
 さらに、オペレータからの操作入力を受け付けるとともに、前記オペレータに情報を出力するUI装置を備え、前記コントローラは、前記オペレータから前記破断指標の測定が指示された場合、前記テールカット処理を、2回以上繰り返し実行し、2回以上の前記テールカット処理それぞれで得られた前記破断指標の測定値を、前記UI装置を介して前記オペレータに提示してもよい。 Further, a UI device is provided for receiving an operation input from an operator and outputting information to the operator, and the controller performs the tail cutting process two or more times when the operator instructs measurement of the fracture index. The measurement values of the fracture index obtained by each of the tail cutting processes performed two or more times may be presented to the operator via the UI device.
 この場合、前記コントローラは、2回以上の前記テールカット処理それぞれで得られた前記破断指標の測定値の一覧をグラフ形式で提示してもよい。 In this case, the controller may present, in a graph format, a list of measured values of the rupture index obtained in each of the two or more tail cutting processes.
 また、前記コントローラは、前記破断指標が予め規定された基準範囲以外の場合、アラームを出力してもよい。 Further, the controller may output an alarm when the fracture index is out of a predetermined reference range.
 本明細書で開示する半導体装置の製造方法は、キャピラリの先端から延出するワイヤを対象面に押圧して接合した後、クランパを閉じて前記ワイヤを把持した状態で、前記キャピラリを前記対象面から離れる方向に移動させるテールカットステップと、前記テールカット処理と並行して実行され、前記ワイヤの切断直後における前記キャピラリの移動の指令位置と前記検出位置との偏差のピーク値、または、前記ワイヤの切断時における前記駆動モータの電流値を破断指標として測定する指標測定ステップと、を備える、ことを特徴とする。 In the method for manufacturing a semiconductor device disclosed in this specification, after a wire extending from the tip of a capillary is pressed against a target surface to be bonded, a clamper is closed to hold the wire, and then the capillary is moved to the target surface. a peak value of the deviation between the command position for movement of the capillary immediately after cutting the wire and the detected position, or the wire and an index measuring step of measuring the current value of the drive motor at the time of cutting as a fracture index.
 本明細書で開示する技術によれば、破断強度が定量的に提供されるため、オペレータは、動作条件の適否を容易に評価できる。 According to the technology disclosed in this specification, the breaking strength is provided quantitatively, so the operator can easily evaluate whether the operating conditions are appropriate.
製造装置の構成を示す図である。It is a figure which shows the structure of a manufacturing apparatus. ワイヤボンディングの流れを示すイメージ図である。It is an image figure which shows the flow of wire bonding. ワイヤボンディングの流れを示すイメージ図である。It is an image figure which shows the flow of wire bonding. ワイヤボンディングの流れを示すイメージ図である。It is an image figure which shows the flow of wire bonding. ワイヤボンディングの流れを示すイメージ図である。It is an image figure which shows the flow of wire bonding. ワイヤボンディングの流れを示すイメージ図である。It is an image figure which shows the flow of wire bonding. ワイヤボンディングの流れを示すイメージ図である。It is an image figure which shows the flow of wire bonding. テールカット処理の際に得られる位置偏差の経時変化の一例を示す図である。FIG. 10 is a diagram showing an example of temporal changes in positional deviation obtained during tail cut processing; 測定モード画面の一例を示す図である。It is a figure which shows an example of a measurement mode screen. オペレータに提示される破断指標のグラフ画面の一例を示す図である。FIG. 10 is a diagram showing an example of a graph screen of fracture indices presented to an operator; オペレータに提示される破断距離のグラフ画面の一例を示す図である。It is a figure which shows an example of the graph screen of the breaking distance shown to an operator. 製品量産時におけるコントローラの処理の流れを示すフローチャートである。4 is a flow chart showing the flow of processing by the controller during mass production of products;
 以下、図面を参照して半導体装置の製造装置10について説明する。図1は、製造装置10の構成を示す図である。この製造装置10は、第一ボンド点B1と第二ボンド点B2との間をワイヤWで接続するワイヤボンディング装置であり、一般に、第一ボンド点B1は、半導体チップ110のパッド上に設定されており、第二ボンド点B2は、半導体チップ110をマウントしたリードフレームである基板100のリード上に設定されている。 The semiconductor device manufacturing apparatus 10 will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of a manufacturing apparatus 10. As shown in FIG. This manufacturing apparatus 10 is a wire bonding apparatus that connects a first bonding point B1 and a second bonding point B2 with a wire W. Generally, the first bonding point B1 is set on a pad of a semiconductor chip 110. The second bonding point B2 is set on the lead of the substrate 100, which is the lead frame on which the semiconductor chip 110 is mounted.
 製造装置10は、ボンディングヘッド12と、移動機構18と、ステージ14と、回転スプール42と、トーチ電極43と、コントローラ50と、UI装置60と、を備えている。 The manufacturing apparatus 10 includes a bonding head 12, a moving mechanism 18, a stage 14, a rotating spool 42, a torch electrode 43, a controller 50, and a UI device 60.
 ボンディングヘッド12は、超音波ホーン24と、クランパ34と、を備えている。超音波ホーン24は、基端から先端にかけて、基端部、フランジ部、ホーン部、および先端部の各部で構成された棒状部材である。基端部には、コントローラ50からの駆動信号に応じて振動する超音波発振器26が配置されている。フランジ部は超音波振動の節となる位置で、移動機構18に共振可能に取り付けられている。ホーン部は、基端部の径に比べて長く延在するアームであり、超音波発振器26による振動の振幅を拡大して先端部に伝える構造を備えている。先端部には、キャピラリ30が交換可能に取り付けられている。キャピラリ30は、ワイヤWが挿通される筒状部材である。超音波ホーン24は、全体として超音波発振器26の振動に共鳴する共振構造を備えており、共振時の振動の節に超音波発振器26およびフランジが位置し、振動の腹にキャピラリ30が位置するような構造に構成されている。これらの構成により、超音波ホーン24は、電気的な駆動信号を機械的な振動に変換するトランスデューサとして機能する。 The bonding head 12 includes an ultrasonic horn 24 and a clamper 34. The ultrasonic horn 24 is a rod-like member composed of a proximal portion, a flange portion, a horn portion, and a distal portion from the proximal end to the distal end. An ultrasonic oscillator 26 that vibrates according to a drive signal from the controller 50 is arranged at the proximal end. The flange portion is attached to the moving mechanism 18 so as to resonate at a node of the ultrasonic vibration. The horn portion is an arm that extends longer than the diameter of the base end portion, and has a structure that expands the amplitude of vibration generated by the ultrasonic oscillator 26 and transmits it to the tip end portion. A capillary 30 is replaceably attached to the tip. The capillary 30 is a tubular member through which the wire W is inserted. The ultrasonic horn 24 as a whole has a resonant structure that resonates with the vibration of the ultrasonic oscillator 26. The ultrasonic oscillator 26 and the flange are positioned at vibration nodes during resonance, and the capillary 30 is positioned at the vibration antinode. It is structured like this. With these configurations, the ultrasonic horn 24 functions as a transducer that converts electrical drive signals into mechanical vibrations.
 クランパ34は、コントローラ50の制御信号に基づいて開閉動作を行う圧電素子を備えており、所定のタイミングでワイヤWを把持したり解放したりできるように構成されている。このクランパ34は、キャピラリ30とともに移動できる。 The clamper 34 has a piezoelectric element that performs opening and closing operations based on a control signal from the controller 50, and is configured to grip and release the wire W at predetermined timings. This clamper 34 can move together with the capillary 30 .
 移動機構18は、ボンディングヘッド12、ひいては、キャピラリ30を水平方向および鉛直方向に移動させるもので、XYテーブルと、昇降機構(図示せず)と、を有している。移動機構18は、1以上の駆動モータ22を有しており、この駆動モータ22から出力される動力で、ボンディングヘッド12を移動させる。なお、キャピラリ30の位置は、位置センサ28により検出される。 The moving mechanism 18 moves the bonding head 12 and thus the capillary 30 horizontally and vertically, and has an XY table and an elevating mechanism (not shown). The moving mechanism 18 has one or more drive motors 22 , and the power output from the drive motors 22 moves the bonding head 12 . A position sensor 28 detects the position of the capillary 30 .
 回転スプール42は、ワイヤWが巻回されたリールを交換可能に保持する。回転スプール42は、ボンディングの進捗に応じて、ワイヤWを繰り出すように構成されている。なお、ワイヤWの材料は、加工の容易さと電気抵抗の低さから選択される。ワイヤWの材料としては、通常、金(Au)、銀(Ag)、アルミニウム(Al)又は銅(Cu)等が用いられる。 The rotating spool 42 replaceably holds the reel around which the wire W is wound. The rotating spool 42 is configured to let out the wire W according to the progress of bonding. The material of the wire W is selected for ease of processing and low electrical resistance. As a material of the wire W, gold (Au), silver (Ag), aluminum (Al), copper (Cu), or the like is usually used.
 トーチ電極43は、図示しない放電安定化抵抗を介して図示しない高電圧電源に接続されている。トーチ電極43は、コントローラ50からの制御信号に基づいてスパーク(放電)を発生し、スパークの熱によってキャピラリ30の先端から繰り出されているワイヤWの先端にボール、すなわちFAB(Free Air Ball)を形成する。 The torch electrode 43 is connected to a high voltage power source (not shown) through a discharge stabilizing resistor (not shown). The torch electrode 43 generates a spark (discharge) based on a control signal from the controller 50, and the heat of the spark causes a ball, that is, FAB (Free Air Ball) to be formed at the tip of the wire W drawn out from the tip of the capillary 30. Form.
 ステージ14は、基板100を支持する。基板には、予め、半導体チップ110がマウントされている。このステージ14の内部には、ヒータ46が設けられており、基板100および半導体チップ110を、ボンディングに適する温度にまで加熱できる。 The stage 14 supports the substrate 100. A semiconductor chip 110 is mounted in advance on the substrate. A heater 46 is provided inside the stage 14 to heat the substrate 100 and the semiconductor chip 110 to a temperature suitable for bonding.
 UI装置60は、オペレータからの操作入力を受け付けるとともに、オペレータに情報を出力する装置である。このUI装置60は、入力装置62と、出力装置64と、を有する。入力装置62は、オペレータからの操作入力を受け付けるもので、例えば、キーボード、マウス、トラックボール、タッチパネル、ジョイスティック等を有する。出力装置64は、オペレータに情報を出力するもので、例えば、ディスプレイ、スピーカー、プリンタ等を有する。 The UI device 60 is a device that receives operation input from the operator and outputs information to the operator. This UI device 60 has an input device 62 and an output device 64 . The input device 62 receives operation input from the operator, and has, for example, a keyboard, mouse, trackball, touch panel, joystick, and the like. The output device 64 outputs information to the operator, and has, for example, a display, a speaker, a printer, and the like.
 コントローラ50は、所定のソフトウェアプログラムに基づき、製造装置10の駆動を制御する。具体的には、コントローラ50は、具体的には、移動機構18を駆動制御することでキャピラリ30の位置を制御する。また、コントローラ50は、ボンディング処理の進行状況に応じて、クランパ34の開閉制御、放電電圧の印加制御、ステージ14のヒータ46の駆動制御も行なう。また、ワイヤボンディングの過程で、ワイヤWを第二ボンド点B2にボンディングする2ndボンダ処理、および、ワイヤWのテールを切断するテールカット処理を行うが、コントローラ50は、この第二ボンド処理、および、テールカット処理における動作条件の良否を示す所定の評価指標も測定する。評価指標としては、破断指標Sbおよび破断距離Dsが該当するが、これらについては、後に詳説する。なお、コントローラ50は、物理的には、各種演算を実行するプロセッサ52と、プログラムおよびデータを記憶するメモリ54と、を有したコンピュータである。 The controller 50 controls driving of the manufacturing apparatus 10 based on a predetermined software program. Specifically, the controller 50 specifically controls the position of the capillary 30 by driving and controlling the moving mechanism 18 . The controller 50 also performs opening/closing control of the clamper 34, application control of the discharge voltage, and driving control of the heater 46 of the stage 14 according to the progress of the bonding process. In the process of wire bonding, a second bonder process of bonding the wire W to the second bond point B2 and a tail cut process of cutting the tail of the wire W are performed. , a predetermined evaluation index indicating the quality of the operating conditions in the tail cut process is also measured. As the evaluation indices, the rupture index Sb and the rupture distance Ds correspond, and these will be explained in detail later. Note that the controller 50 is physically a computer having a processor 52 that executes various calculations and a memory 54 that stores programs and data.
 次に、製造装置10で行うワイヤボンディングの流れについて説明する。図2A~図22Fは、ワイヤボンディングの流れを示すイメージ図である。ワイヤボンディングでは、第一ボンド点B1と第二ボンド点B2との間をワイヤWで接続する。第一ボンド点B1は、半導体チップ110の上面に設けられたパッドであり、第二ボンド点B2は、基板100の表面に設けられたリードである。 Next, the flow of wire bonding performed by the manufacturing apparatus 10 will be described. 2A to 22F are image diagrams showing the flow of wire bonding. In wire bonding, a wire W is used to connect between the first bonding point B1 and the second bonding point B2. The first bond point B1 is a pad provided on the upper surface of the semiconductor chip 110, and the second bond point B2 is a lead provided on the surface of the substrate 100. FIG.
 ワイヤボンディングの際、コントローラ50は、図2Aに示すように、ワイヤWの末端にFABを形成する。すなわち、キャピラリ30の先端から延出したワイヤWの一部に、所定の高電圧に印加されたトーチ電極43を近づけて、ワイヤWの先端とトーチ電極43との間で放電を発生させる。この放電により、ワイヤWの先端が溶融する。そして、溶融したワイヤ材料が表面量力によって球状のFABを形成する。 During wire bonding, the controller 50 forms an FAB at the end of the wire W, as shown in FIG. 2A. That is, a torch electrode 43 applied with a predetermined high voltage is brought close to a part of the wire W extending from the tip of the capillary 30 to generate electric discharge between the tip of the wire W and the torch electrode 43 . This discharge causes the tip of the wire W to melt. The molten wire material then forms a spherical FAB due to surface forces.
 続いて、コントローラ50は、図2Bに示すように、FABを第一ボンド点B1にボンディングする1stボンダを実行する。すなわち、コントローラ50は、キャピラリ30を、第一ボンド点B1の真上に移動させる。その後、コントローラ50は、キャピラリ30を下降させて、FABを第一ボンド点B1に接触させるとともに、当該FABをキャピラリ30の先端面で押圧させる。また、このとき、コントローラ50は、超音波発振器26を駆動し、超音波ホーン24に超音波振動を発生させ、FABに超音波振動を付加する。さらに、コントローラ50は、ステージ14のヒータ46をONして、基板100および半導体チップ110を所定の温度に加熱する。これにより、FABには、荷重、超音波振動、および、ヒータ46による熱が作用し、これにより、FABが、第一ボンド点B1にボンディングされる。 Subsequently, the controller 50 executes the 1st bonder to bond the FAB to the first bond point B1, as shown in FIG. 2B. That is, the controller 50 moves the capillary 30 directly above the first bond point B1. After that, the controller 50 lowers the capillary 30 to bring the FAB into contact with the first bonding point B1 and press the FAB with the tip surface of the capillary 30 . At this time, the controller 50 drives the ultrasonic oscillator 26 to generate ultrasonic vibrations in the ultrasonic horn 24 and apply ultrasonic vibrations to the FAB. Furthermore, the controller 50 turns on the heater 46 of the stage 14 to heat the substrate 100 and the semiconductor chip 110 to a predetermined temperature. As a result, the FAB is subjected to load, ultrasonic vibration, and heat from the heater 46, thereby bonding the FAB to the first bonding point B1.
 次に、コントローラ50は、図2Cに示すように、キャピラリ30を予め規定された軌跡に従って移動させることで、第一ボンド点B1と第二ボンド点B2とを接続するループを形成する。すなわち、クランパ34を開いた状態で、キャピラリ30を移動させることで、ワイヤWが回転スプール42から繰り出され、ループが形成される。 Next, as shown in FIG. 2C, the controller 50 forms a loop connecting the first bond point B1 and the second bond point B2 by moving the capillary 30 along a predefined locus. That is, by moving the capillary 30 with the clamper 34 open, the wire W is let out from the rotating spool 42 to form a loop.
 次に、コントローラ50は、図2Dに示すように、ワイヤWを第二ボンド点B2にボンディングする2ndボンダを実行する。具体的には、コントローラ50は、キャピラリ30を第二ボンド点B2に着地させ、ワイヤWをキャピラリ30の先端面で第二ボンド点B2に押圧する。また、同時に、超音波発振器26を駆動して、キャピラリ30の先端に超音波振動を付加する。そして、この超音波振動、荷重およびヒータ46からの熱により、ワイヤWが第二ボンド点B2に接合される。 Next, the controller 50 executes a second bonder that bonds the wire W to the second bond point B2, as shown in FIG. 2D. Specifically, the controller 50 causes the capillary 30 to land on the second bonding point B2, and presses the wire W with the tip surface of the capillary 30 against the second bonding point B2. At the same time, the ultrasonic oscillator 26 is driven to apply ultrasonic vibration to the tip of the capillary 30 . Then, the wire W is bonded to the second bonding point B2 by this ultrasonic vibration, load and heat from the heater 46 .
 ワイヤWが第二ボンド点B2に接合されれば、続いて、コントローラ50は、図2Eに示すように、テールを形成する。具体的には、コントローラ50は、クランパ34を開いた状態で、キャピラリ30を、基板100から離れる方向に移動させる。この移動により、キャピラリ30の先端から延出するワイヤ部分であるテールが形成される。また、この移動量は、必要となるテールの距離に応じて決定される。 After the wire W is bonded to the second bond point B2, the controller 50 then forms a tail, as shown in FIG. 2E. Specifically, the controller 50 moves the capillary 30 away from the substrate 100 while the clamper 34 is open. This movement forms a tail, which is a portion of wire extending from the tip of capillary 30 . Also, the amount of movement is determined according to the required tail distance.
 テールが形成できれば、コントローラ50は、図2Fに示すように、テールの切断を行う。具体的には、コントローラ50は、クランパ34を閉じた状態で、キャピラリ30を基板100から離れる方向に移動させる。これにより、ワイヤWが、引きちぎられる。以降、同様の処理が繰り返される。 If the tail can be formed, the controller 50 cuts the tail as shown in FIG. 2F. Specifically, the controller 50 moves the capillary 30 away from the substrate 100 while the clamper 34 is closed. Thereby, the wire W is torn off. Thereafter, similar processing is repeated.
 ここで、以上の説明で明らかな通り、ワイヤWは、2ndボンダ処理およびテール形成処理の後、テールカット処理において、機械的に引っ張られて引きちぎられる。この引きちぎりの際、キャピラリ30に挿通されたワイヤWには、反力が作用する。この反力が過大であると、キャピラリ30に挿通されるワイヤWがS字状に曲がるS字曲がりが生じる。また、ワイヤWの接合強度、および、テール形成処理およびテールカット処理の動作条件によっては、テールが所望の長さに満たないノーテールや、接合点が剥離するリード不着といった問題も生じる。こうしたS字曲がり、ノーテール、リード不着といった問題(以下、まとめて「切断不良」と呼ぶ)は、半導体装置の品質低下を招く。 Here, as is clear from the above description, the wire W is mechanically pulled and torn off in the tail cut process after the second bonder process and tail forming process. When the wire is torn off, a reaction force acts on the wire W inserted through the capillary 30 . If this reaction force is excessive, an S-shaped bend occurs in which the wire W inserted through the capillary 30 is bent in an S-shape. In addition, depending on the bonding strength of the wire W and the operating conditions of the tail forming process and the tail cutting process, problems such as a no-tail in which the tail is less than the desired length and lead non-bonding in which the bonding point is peeled off occur. Problems such as S-shaped bending, no tail, and lead non-bonding (hereinafter collectively referred to as "disconnection defects") lead to deterioration in the quality of semiconductor devices.
 そのため、従来から、オペレータは、切断不良が生じないように、2ndボンダ処理、テール形成処理、テールカット処理における動作条件を調整している。ここで、動作条件としては、例えば、ワイヤWに付加する荷重値や、キャピラリ30を移動させる速度、キャピラリ30の移動軌跡、ヒータ46の加熱温度等を含む。 Therefore, conventionally, operators adjust the operating conditions in the second bonder process, tail forming process, and tail cutting process so as not to cause poor cutting. Here, the operating conditions include, for example, the load value applied to the wire W, the speed at which the capillary 30 is moved, the movement trajectory of the capillary 30, the heating temperature of the heater 46, and the like.
 オペレータは、切断不良の有無に応じて、動作条件を調整しているが、従来、この動作条件の良否を定量的に評価する指標がなかった。そのため、従来、オペレータは、実際に製造された製品を見て切断不良の有無を確認し、その確認結果に応じて動作条件を調整する必要があり、非常に手間であった。 The operator adjusts the operating conditions according to the presence or absence of cutting defects, but conventionally there was no index for quantitatively evaluating the quality of these operating conditions. Therefore, conventionally, the operator has to check the presence or absence of cutting defects by looking at the actually manufactured product, and adjust the operating conditions according to the confirmation result, which is very troublesome.
 そこで、本明細書では、動作条件の良否、特に、2ndボンダ処理、テール形成処理、テールカット処理における動作条件の良否を定量的に評価する評価指標として、破断指標Sbおよび破断距離Dsを測定し、その測定結果をオペレータに提示している。以下、これについて詳説する。 Therefore, in this specification, the fracture index Sb and the fracture distance Ds are measured as evaluation indices for quantitatively evaluating the quality of the operating conditions, particularly the quality of the operating conditions in the second bonder process, the tail forming process, and the tail cutting process. , and presents the measurement results to the operator. This will be explained in detail below.
 はじめに、破断指標Sbおよび破断距離Dsについて説明する。上述した通り、本例では、2ndボンダ処理およびテール形成処理が完了すれば、続いて、テールカット処理を行う。このテールカット処理において、コントローラ50は、クランパ34を閉じたうえで、キャピラリ30を第二ボンド点B2から離間方向に移動させることで、テールを切断する。本例では、このテールの切断に要する力を示すパラメータを破断指標Sbとして取得する。また、クランパ34を閉じてからテールが切断されるまでのキャピラリ30の移動距離を、破断距離Dsとして取得する。 First, the fracture index Sb and the fracture distance Ds will be explained. As described above, in this example, after the second bonder process and the tail forming process are completed, the tail cutting process is performed. In this tail cutting process, the controller 50 closes the clamper 34 and moves the capillary 30 away from the second bond point B2 to cut the tail. In this example, a parameter indicating the force required to cut the tail is acquired as the fracture index Sb. Also, the moving distance of the capillary 30 from when the clamper 34 is closed until the tail is cut is acquired as the breaking distance Ds.
 より具体的に説明すると、コントローラ50は、テールカット処理の際、キャピラリ30が徐々に離間方向に移動するような指令位置P*を生成し、移動機構18に入力する。移動機構18に設けられた駆動モータ22のドライバは、この指令位置P*と、位置センサ28で検出された検出位置Pdとの差分である位置偏差ΔPを算出し、位置偏差ΔPに応じた値の電流を駆動モータ22に印加する。駆動モータ22は、印加電流に比例したトルクを出力する。トルクの出力によりテールが切断されると、その反動で、キャピラリ30は、一時的に、離間方向に大きくオーバーシュートする。 More specifically, the controller 50 generates a command position P* that causes the capillary 30 to gradually move in the separation direction during the tail cutting process, and inputs it to the moving mechanism 18 . A driver of the drive motor 22 provided in the moving mechanism 18 calculates a position deviation ΔP, which is the difference between the command position P* and the detected position Pd detected by the position sensor 28, and calculates a value corresponding to the position deviation ΔP. is applied to the drive motor 22 . The drive motor 22 outputs torque proportional to the applied current. When the tail is cut by the output of torque, the reaction causes the capillary 30 to temporarily overshoot greatly in the separation direction.
 図3は、テールカット処理の際に得られる位置偏差ΔPの経時変化の一例を示す図である。図3の例では、テールは、時刻t1において切断されており、この時刻t1の直後において、位置偏差ΔPがピークを取る。このピークは、切断時の反動が大きいほど、ひいては、切断に要する力が大きいほど、大きくなる。そこで、本例では、この位置偏差ΔPのピーク値を、破断指標Sbとして測定する。また、このピーク値が得られるまでのキャピラリ30の移動距離を、破断距離Dsとして測定する。この破断指標Sbや破断距離Dsは、ワイヤWの破断に要する力の大きさ、すなわち、破断強度を示す指標として用いることができる。 FIG. 3 is a diagram showing an example of temporal changes in the positional deviation ΔP obtained during the tail cut process. In the example of FIG. 3, the tail is cut at time t1, and the position deviation ΔP peaks immediately after time t1. This peak becomes larger as the recoil at the time of cutting is larger, and as a result, the force required for cutting is larger. Therefore, in this example, the peak value of the positional deviation ΔP is measured as the fracture index Sb. Also, the moving distance of the capillary 30 until this peak value is obtained is measured as the breaking distance Ds. The breaking index Sb and the breaking distance Ds can be used as indices indicating the magnitude of the force required to break the wire W, that is, the breaking strength.
 ここで、この破断指標Sbおよび破断距離Dsは、接合不良の有無に大きく影響する。例えば、S字曲がりが発生する場合、S字曲がりが発生しない場合に比べて、破断指標Sbおよび破断距離Dsが大きくなる。特に、ワイヤWの種類が同じの場合、破断指標Sbが一定以上になると、S字曲がりが発生する。そのため、破断指標Sbを監視することで、S字曲がりの有無を判断できる。なお、S字曲がりが生じない破断指標Sbの最大値(以下「許容最大強度Smax」という)は、ワイヤWの種類によって異なる。この許容最大強度Smaxは、ワイヤWの組成が同じ場合、ワイヤWの径が大きいほど、大きくなる。また、ワイヤWが第二ボンド点B2に適切に接合していないリード不着が発生している場合、リード不着が発生していない場合と比べて、破断指標Sbに大きな差は生じないが、破断距離Dsが大きくなる。したがって、そのため、破断距離Dsを監視することで、リード不着の有無を判断できる。 Here, the fracture index Sb and the fracture distance Ds greatly affect the presence or absence of poor bonding. For example, when an S-shaped bend occurs, the fracture index Sb and the fracture distance Ds are larger than when no S-shaped bend occurs. In particular, when the wire W is of the same type, S-shaped bending occurs when the breakage index Sb exceeds a certain value. Therefore, the presence or absence of S-shaped bending can be determined by monitoring the fracture index Sb. Note that the maximum value of the fracture index Sb at which no S-shaped bend occurs (hereinafter referred to as “permissible maximum strength Smax”) varies depending on the type of wire W. As shown in FIG. When the wire W has the same composition, the larger the diameter of the wire W, the larger the allowable maximum strength Smax. In addition, when there is a lead failure where the wire W is not properly bonded to the second bonding point B2, there is no significant difference in the fracture index Sb compared to when there is no lead failure. The distance Ds increases. Accordingly, by monitoring the breaking distance Ds, it is possible to determine the presence or absence of lead non-bonding.
 コントローラ50は、こうした破断指標Sbおよび破断距離Dsを測定し、測定結果を、出力装置64を介してオペレータに提示する。オペレータは、提示された破断指標Sbおよび破断距離Dsに基づいて、接合不良の有無、ひいては、動作条件の良否を判断できる。なお、接合不良が生じない破断指標Sbおよび破断距離Dsの値の範囲、すなわち、許容範囲は、ワイヤWの種類(すなわち組成や径、製法等)によって異なるため、予め実験等で求めておく。 The controller 50 measures the rupture index Sb and the rupture distance Ds, and presents the measurement results to the operator via the output device 64. The operator can determine the presence or absence of joint failure, and thus the quality of the operating conditions, based on the presented fracture index Sb and fracture distance Ds. Note that the range of values of the fracture index Sb and the fracture distance Ds in which poor bonding does not occur, that is, the permissible range varies depending on the type of wire W (ie, composition, diameter, manufacturing method, etc.), and is determined in advance by experiment or the like.
 次に、本例の製造装置10におけるユーザインターフェースについて説明する。本例の製造装置10では、上述した動作条件の評価指標、すなわち、破断指標Sbおよび破断距離Dsを測定するための測定モードが用意されている。オペレータが測定モードを選択した場合、ディスプレイには、図4に示す測定モード画面70が表示される。測定モード画面70において、オペレータは、評価指標の測定を開始するワイヤ番号である開始番号71と、測定を行うワイヤの本数である測定個数72と、を指定できる。また、オペレータは、予め、ワイヤ番号ごとに異なる動作条件を設定できる。 Next, the user interface in the manufacturing apparatus 10 of this example will be explained. In the manufacturing apparatus 10 of this example, a measurement mode is prepared for measuring the evaluation indices of the operating conditions described above, that is, the rupture index Sb and the rupture distance Ds. When the operator selects the measurement mode, the display shows the measurement mode screen 70 shown in FIG. On the measurement mode screen 70, the operator can specify a start number 71, which is the wire number for starting the measurement of the evaluation index, and a measurement number 72, which is the number of wires to be measured. Also, the operator can set different operating conditions for each wire number in advance.
 スタートボタンを選択すると、コントローラ50は、指定されたワイヤ番号から測定個数の分だけ順に、ワイヤボンディング処理を実行する。図4の例の場合、開始番号が81、測定個数が15であるため、コントローラ50は、ワイヤ番号81~85までの15本のワイヤWについてボンディング処理を実行する。 When the start button is selected, the controller 50 performs wire bonding processing in order from the designated wire number to the number of pieces to be measured. In the example of FIG. 4, the starting number is 81 and the number of measurements is 15, so the controller 50 performs the bonding process for 15 wires W with wire numbers 81-85.
 コントローラ50は、ボンディング処理ごとに、評価指標として、破断指標Sbおよび破断距離Dsを測定し、結果をメモリ54に一時保存する。そして、指定された測定個数分のボンディング処理が終了すれば、コントローラ50は、その測定結果をオペレータに提示する。破断指標Sbおよび破断距離Dsは、いずれも、複数(すなわち測定個数分)得られるため、コントローラ50は、この複数の破断指標Sbおよび破断距離Dsの統計値を測定結果としてオペレータに提示する。図4の例では、測定結果として、複数の破断指標Sbおよび破断距離Dsの最終値、最大値、最小値、平均値、標準偏差を測定結果欄73に表示する。 The controller 50 measures the rupture index Sb and the rupture distance Ds as evaluation indices for each bonding process, and temporarily stores the results in the memory 54 . When the bonding process for the specified number of measurements is completed, the controller 50 presents the measurement results to the operator. Since a plurality of rupture indices Sb and rupture distances Ds can be obtained (that is, the number of measurements), the controller 50 presents statistical values of the plurality of rupture indices Sb and rupture distances Ds to the operator as measurement results. In the example of FIG. 4, the final value, maximum value, minimum value, average value, and standard deviation of a plurality of rupture indexes Sb and rupture distances Ds are displayed in the measurement result column 73 as the measurement results.
 また、測定モード画面70には、グラフボタン74が設けられている。このグラフボタン74を選択すると、複数の破断指標Sbおよび破断距離Dsの測定値が、グラフ形式でオペレータに提示される。図5Aおよび図5Bは、それぞれ、オペレータに提示される破断指標Sbおよび破断距離Dsのグラフ画面の一例を示す図である。図5Aおよび図5Bに示すように、グラフ画面には、表示する評価指標の種類選択欄75があり、選択された種類の評価指標のグラフが表示される。また、グラフは、横軸がワイヤ番号、縦軸が評価指標(すなわち破断指標Sbまたは破断距離Ds)の測定値となる。 A graph button 74 is also provided on the measurement mode screen 70 . When this graph button 74 is selected, the operator is presented with a plurality of measured values of the rupture index Sb and the rupture distance Ds in graph form. 5A and 5B are diagrams showing examples of graph screens of the rupture index Sb and the rupture distance Ds, respectively, presented to the operator. As shown in FIGS. 5A and 5B, the graph screen has a field 75 for selecting the type of evaluation index to be displayed, and a graph of the selected type of evaluation index is displayed. In the graph, the horizontal axis is the wire number, and the vertical axis is the measurement value of the evaluation index (that is, the fracture index Sb or the fracture distance Ds).
 かかるグラフを参照することで、オペレータは、接合不良の生じているワイヤ番号を容易に特定できる。図5A、図5Bの例では、ワイヤ番号88は、破断指標Sbおよび破断距離Dsがともに高いため、S字曲がりが生じていると推測できる。また、ワイヤ番号91は、破断指標Sbは高くないが、破断距離Dsが高いため、リード不着が生じていると推測できる。そして、このように評価指標に基づいて、接合不良の有無を判断できることで、オペレータは、動作条件の適否をより簡易に判断でき、動作条件をより簡易に調整できる。なお、接合不良が生じない評価指標の範囲、すなわち、許容範囲が分かっている場合には、当該許容範囲の上限値および下限値を、グラフに表示してもよい。かかる構成とすることで、オペレータは、より直感的に、ボンディング条件の適否を判断できる。 By referring to such a graph, the operator can easily identify the wire numbers with defective joints. In the examples of FIGS. 5A and 5B, the wire number 88 has both high fracture index Sb and high fracture distance Ds, so it can be inferred that S-shaped bending has occurred. Wire No. 91 does not have a high fracture index Sb, but has a high fracture distance Ds. By determining the presence or absence of poor bonding based on the evaluation index in this way, the operator can more easily determine whether the operating conditions are appropriate or not, and can more easily adjust the operating conditions. If the range of the evaluation index in which poor bonding does not occur, that is, the allowable range is known, the upper limit and lower limit of the allowable range may be displayed on the graph. With such a configuration, the operator can more intuitively determine whether the bonding conditions are appropriate.
 こうしたグラフを参考にして、動作条件の調整ができれば、オペレータは、調整後の動作条件で、製品の量産を開始する。このとき、動作条件は、接合不良が発生しない条件に調整されている。しかしながら、製品の製造を繰り返していくと、温度変化やロットごとの個体差、外乱等に起因して、接合不良が生じる場合がある。こうした接合不良の発生を検知するために、コントローラ50は、連続的、または、間欠的に評価指標の測定を行ってもよい。そして、評価指標が、規定の許容範囲から外れている場合、コントローラ50は、アラームを出力して、製品の製造を中断してもよい。 If the operating conditions can be adjusted by referring to these graphs, the operator will start mass production of the product under the adjusted operating conditions. At this time, the operating conditions are adjusted to conditions that do not cause poor bonding. However, as products are manufactured repeatedly, defective bonding may occur due to temperature changes, individual differences between lots, disturbances, and the like. In order to detect the occurrence of such poor bonding, the controller 50 may continuously or intermittently measure the evaluation index. Then, if the evaluation index is out of the prescribed allowable range, the controller 50 may output an alarm and interrupt the production of the product.
 図6は、製品量産時におけるコントローラ50の処理の流れを示すフローチャートである。図6に示すように、コントローラ50は、オペレータにより設定された動作条件に従って、n番目のワイヤWのボンディングを実行する(S12)。そのボンディング処理の過程で、コントローラ50は、破断指標Sbを測定する。そして、得られた破断指標Sbを、予め規定された許容最大強度Smaxと比較する(S14)。比較の結果、Sb≦Smaxの場合には、問題はないとは判断し、次のワイヤWのボンディング処理を実行する(S16,S18,S12)。一方、Sb>Smaxの場合、S字曲がりが発生している可能性が高い。この場合、コントローラ50は、アラームを出力し(S20)、製品の製造を一時中断する。 FIG. 6 is a flow chart showing the flow of processing by the controller 50 during mass production of products. As shown in FIG. 6, the controller 50 performs bonding of the n-th wire W according to the operating conditions set by the operator (S12). During the bonding process, the controller 50 measures the fracture index Sb. Then, the obtained fracture index Sb is compared with a predetermined allowable maximum strength Smax (S14). As a result of the comparison, if Sb≦Smax, it is determined that there is no problem, and the next wire W bonding process is executed (S16, S18, S12). On the other hand, when Sb>Smax, there is a high possibility that an S-shaped bend has occurred. In this case, the controller 50 outputs an alarm (S20) and suspends production of the product.
 このように、製品の量産過程で破断指標Sbを監視することで、接合不良を早期に発見でき、最終的に得られる製品の品質をより向上できる。なお、図6では、破断指標Sbのみを監視していているが、当然ながら、破断指標Sbに加えて破断距離Dsも管理してもよい。また、これまでの説明では、ワイヤボンディングを行う製造装置10を例に挙げて説明したが、本明細書で開示の技術は、テールカット処理を実行する製造装置であれば、他の種類の製造装置に適用されてもよい。したがって、本明細書で開示の技術は、半導体チップ110にバンプを形成するバンプボンディング装置に適用されてもよい。 In this way, by monitoring the fracture index Sb during the mass production process of the product, it is possible to detect joining defects at an early stage and further improve the quality of the final product. In FIG. 6, only the rupture index Sb is monitored, but of course, the rupture distance Ds may also be managed in addition to the rupture index Sb. Further, in the description so far, the manufacturing apparatus 10 that performs wire bonding has been described as an example. Apparatus may be applied. Therefore, the technology disclosed in this specification may be applied to a bump bonding apparatus that forms bumps on the semiconductor chip 110 .
 また、これまでの説明では、テールの切断直後における位置偏差ΔPのピーク値を破断指標Sbとして取得している。しかし、破断指標Sbは、テールの切断に要する力を表すパラメータであれば他のパラメータ、例えば、切断時における駆動モータ22の印可電流値でもよい。 Also, in the explanation so far, the peak value of the positional deviation ΔP immediately after the tail is cut is obtained as the breakage index Sb. However, the fracture index Sb may be another parameter, such as the applied current value of the drive motor 22 at the time of cutting, as long as it is a parameter representing the force required to cut the tail.
 10 製造装置、12 ボンディングヘッド、14 ステージ、18 移動機構、22 駆動モータ、24 超音波ホーン、26 超音波発振器、28 位置センサ、30 キャピラリ、34 クランパ、42 回転スプール、43 トーチ電極、46 ヒータ、50 コントローラ、52 プロセッサ、54 メモリ、60 UI装置、62 入力装置、64 出力装置、70 測定モード画面、71 開始番号、72 測定個数、73 測定結果欄、74 グラフボタン、75 種類選択欄、100 基板、110 半導体チップ、B1 第一ボンド点、B2 第二ボンド点。 10 manufacturing equipment, 12 bonding head, 14 stage, 18 movement mechanism, 22 drive motor, 24 ultrasonic horn, 26 ultrasonic oscillator, 28 position sensor, 30 capillary, 34 clamper, 42 rotating spool, 43 torch electrode, 46 heater, 50 controller, 52 processor, 54 memory, 60 UI device, 62 input device, 64 output device, 70 measurement mode screen, 71 start number, 72 number of measurements, 73 measurement result column, 74 graph button, 75 type selection column, 100 circuit board , 110 semiconductor chip, B1 first bond point, B2 second bond point.

Claims (6)

  1.  ワイヤが挿通され、先端から延出する前記ワイヤを対象面に押圧して接合するキャピラリと、
     前記キャピラリと連動して移動し、前記ワイヤを把持するクランパと、
     1以上の駆動モータを有し、前記駆動モータの動力で前記キャピラリを移動させる移動機構と、
     前記キャピラリの位置を検出位置として検出する位置センサと、
     前記キャピラリ、前記クランパ、および、前記移動機構の駆動を制御するコントローラと、
     を備え、前記コントローラは、
     前記ワイヤの前記対象面への接合およびテールの形成を行った後、前記クランパを閉じた状態で前記キャピラリを前記離れる方向に移動させることで前記テールを切断するテールカット処理と、
     前記ワイヤの切断直後における前記キャピラリの移動の指令位置と前記検出位置との偏差のピーク値、または、前記ワイヤの切断時における前記駆動モータの電流値を破断指標として測定する指標測定処理と、
     を実行するように構成されていることを特徴とする半導体装置の製造装置。
    a capillary through which a wire is inserted and which presses and joins the wire extending from the tip to a target surface;
    a clamper that moves in conjunction with the capillary and grips the wire;
    a moving mechanism having one or more drive motors and moving the capillary with the power of the drive motors;
    a position sensor that detects the position of the capillary as a detection position;
    a controller that controls driving of the capillary, the clamper, and the movement mechanism;
    wherein the controller comprises:
    a tail cutting process in which, after joining the wire to the target surface and forming the tail, the tail is cut by moving the capillary in the separating direction with the clamper closed;
    an index measurement process of measuring, as a breakage index, the peak value of the deviation between the commanded position for movement of the capillary immediately after the wire is cut and the detected position, or the current value of the drive motor when the wire is cut;
    A manufacturing apparatus for a semiconductor device, characterized in that it is configured to execute:
  2.  請求項1に記載の半導体装置の製造装置であって、
     前記コントローラは、前記指標測定処理において、さらに、前記クランパを閉じてから前記ワイヤが切断されるまでの前記キャピラリの移動距離である破断距離も測定する、
     ことを特徴とする半導体装置の製造装置。
    The semiconductor device manufacturing apparatus according to claim 1,
    In the index measurement process, the controller also measures a breaking distance, which is a moving distance of the capillary from when the clamper is closed until the wire is cut.
    A semiconductor device manufacturing apparatus characterized by:
  3.  請求項1または2に記載の半導体装置の製造装置であって、さらに、
     オペレータからの操作入力を受け付けるとともに、前記オペレータに情報を出力するUI装置を備え、
     前記コントローラは、前記オペレータから前記破断指標の測定が指示された場合、前記テールカット処理を、2回以上繰り返し実行し、2回以上の前記テールカット処理それぞれで得られた前記破断指標の測定値を、前記UI装置を介して前記オペレータに提示する、
     ことを特徴とする半導体装置の製造装置。
    3. The semiconductor device manufacturing apparatus according to claim 1, further comprising:
    A UI device that receives an operation input from an operator and outputs information to the operator,
    When the operator instructs measurement of the rupture index, the controller repeats the tail cut process two or more times, and measures the rupture index obtained in each of the two or more tail cut processes. is presented to the operator via the UI device,
    A semiconductor device manufacturing apparatus characterized by:
  4.  請求項3に記載の半導体装置の製造装置であって、
     前記コントローラは、2回以上の前記テールカット処理それぞれで得られた前記破断指標の測定値の一覧をグラフ形式で提示する、ことを特徴とする半導体装置の製造装置。
    The semiconductor device manufacturing apparatus according to claim 3,
    The semiconductor device manufacturing apparatus, wherein the controller presents, in a graph format, a list of the measurement values of the fracture index obtained in each of the tail cutting processes two or more times.
  5.  請求項1から4のいずれか1項に記載の半導体装置の製造装置であって、
     前記コントローラは、前記破断指標が予め規定された基準範囲以外の場合、アラームを出力する、ことを特徴とする半導体装置の製造装置。
    The semiconductor device manufacturing apparatus according to any one of claims 1 to 4,
    The manufacturing apparatus of a semiconductor device, wherein the controller outputs an alarm when the fracture index is out of a predetermined reference range.
  6.  キャピラリの先端から延出するワイヤを対象面に押圧して接合した後、クランパを閉じて前記ワイヤを把持した状態で、前記キャピラリを前記対象面から離れる方向に移動させるテールカットステップと、
     前記テールカット処理と並行して実行され、前記ワイヤの切断直後における前記キャピラリの移動の指令位置と前記検出位置との偏差のピーク値、または、前記ワイヤの切断時における前記駆動モータの電流値を破断指標として測定する指標測定ステップと、
     を備える、
     ことを特徴とする半導体装置の製造方法。
    a tail cutting step of moving the capillary in a direction away from the target surface after the wire extending from the tip of the capillary is pressed against the target surface to be joined, and then the clamper is closed and the wire is gripped;
    The peak value of the deviation between the commanded position for movement of the capillary immediately after cutting the wire and the detected position, or the current value of the drive motor at the time of cutting the wire, is executed in parallel with the tail cutting process. an index measuring step of measuring as a fracture index;
    comprising
    A method of manufacturing a semiconductor device, characterized by:
PCT/JP2021/023268 2021-06-18 2021-06-18 Semiconductor device manufacturing apparatus and manufacturing method WO2022264427A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023529182A JPWO2022264427A1 (en) 2021-06-18 2021-06-18
CN202180090045.0A CN116686072A (en) 2021-06-18 2021-06-18 Apparatus and method for manufacturing semiconductor device
PCT/JP2021/023268 WO2022264427A1 (en) 2021-06-18 2021-06-18 Semiconductor device manufacturing apparatus and manufacturing method
KR1020237027971A KR20230130123A (en) 2021-06-18 2021-06-18 Manufacturing apparatus and manufacturing method for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023268 WO2022264427A1 (en) 2021-06-18 2021-06-18 Semiconductor device manufacturing apparatus and manufacturing method

Publications (1)

Publication Number Publication Date
WO2022264427A1 true WO2022264427A1 (en) 2022-12-22

Family

ID=84526020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023268 WO2022264427A1 (en) 2021-06-18 2021-06-18 Semiconductor device manufacturing apparatus and manufacturing method

Country Status (4)

Country Link
JP (1) JPWO2022264427A1 (en)
KR (1) KR20230130123A (en)
CN (1) CN116686072A (en)
WO (1) WO2022264427A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270440A (en) * 1996-03-29 1997-10-14 Matsushita Electric Ind Co Ltd Method and apparatus for mounting semiconductor
JPH10312259A (en) * 1997-05-09 1998-11-24 Kokusai Electric Co Ltd Process data display controller for semiconductor manufacture device
JP2008108971A (en) * 2006-10-26 2008-05-08 Toshiba Corp Wire bonding apparatus and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734236B2 (en) 2011-05-17 2015-06-17 株式会社新川 Wire bonding apparatus and bonding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270440A (en) * 1996-03-29 1997-10-14 Matsushita Electric Ind Co Ltd Method and apparatus for mounting semiconductor
JPH10312259A (en) * 1997-05-09 1998-11-24 Kokusai Electric Co Ltd Process data display controller for semiconductor manufacture device
JP2008108971A (en) * 2006-10-26 2008-05-08 Toshiba Corp Wire bonding apparatus and method

Also Published As

Publication number Publication date
JPWO2022264427A1 (en) 2022-12-22
CN116686072A (en) 2023-09-01
KR20230130123A (en) 2023-09-11

Similar Documents

Publication Publication Date Title
WO2018110417A1 (en) Wire bonding device and wire bonding method
US8800843B2 (en) Bonding apparatus
JP6118960B2 (en) Wire bonding apparatus and semiconductor device manufacturing method
JP4787374B2 (en) Semiconductor device manufacturing method and wire bonding apparatus
JPS5950536A (en) Wire bonding device
WO2022264427A1 (en) Semiconductor device manufacturing apparatus and manufacturing method
US6237833B1 (en) Method of checking wirebond condition
JP2003152033A (en) Method for testing bonded connection and wire bonder
TWI830250B (en) Semiconductor device manufacturing apparatus and manufacturing method
US20160358883A1 (en) Bump forming method, bump forming apparatus, and semiconductor device manufacturing method
JP2004140357A (en) Method for determining optimum bond adhesion parameter when bonding by using wire bonder
KR101643247B1 (en) Method for testing wire bonding and apparatus for testing wire bonding
US20110062216A1 (en) Method for manufacturing semiconductor device and bonding apparatus
WO2023181413A1 (en) Semiconductor device manufacturing device and inspection method
KR101548949B1 (en) Ultrasonic bonding typed metal wire bonding apparatus
TWI847614B (en) Semiconductor device manufacturing apparatus and inspection method
WO2022269772A1 (en) Bump-forming device, bump-forming method, and bump-forming program
JP4234688B2 (en) Bonding method and bonding apparatus
KR102536694B1 (en) Wire bonding device and wire bonding method
WO2022130617A1 (en) Wire bonding device, wire cutting method, and program
JP2888335B2 (en) Wire bonding apparatus and wire bonding method
JP2022061631A (en) Ultrasonic bonding device, control device and control method
TW202238858A (en) Methods of determining shear strength of bonded free air balls on wire bonding machines
JPH0645412A (en) Apparatus and method for wire bonding
JPH08181161A (en) Bonding equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946101

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 202180090045.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023529182

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237027971

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237027971

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946101

Country of ref document: EP

Kind code of ref document: A1