WO2022264415A1 - Antenna device and wireless communication device - Google Patents

Antenna device and wireless communication device Download PDF

Info

Publication number
WO2022264415A1
WO2022264415A1 PCT/JP2021/023243 JP2021023243W WO2022264415A1 WO 2022264415 A1 WO2022264415 A1 WO 2022264415A1 JP 2021023243 W JP2021023243 W JP 2021023243W WO 2022264415 A1 WO2022264415 A1 WO 2022264415A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
patch
antenna device
parasitic elements
antennas
Prior art date
Application number
PCT/JP2021/023243
Other languages
French (fr)
Japanese (ja)
Inventor
聡史 ▲崎▼田
Original Assignee
Fcnt株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fcnt株式会社 filed Critical Fcnt株式会社
Priority to PCT/JP2021/023243 priority Critical patent/WO2022264415A1/en
Priority to JP2023528925A priority patent/JPWO2022264415A1/ja
Publication of WO2022264415A1 publication Critical patent/WO2022264415A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines

Definitions

  • the present invention relates to an antenna device and a wireless communication device.
  • an antenna device that performs communication in the millimeter wave band used in 5G is installed in wireless communication devices such as smartphones.
  • Such an antenna device employs, for example, a patch antenna (see Patent Documents 1 and 2, for example).
  • the above antenna device uses an array antenna in which multiple patch antennas are aligned. often formed. Forming an array antenna increases the peak intensity of radio waves (beams) emitted from the antenna device, but reduces the coverage range that can be covered by the antenna device. Therefore, the array antenna compensates for the decrease in the coverage range by scanning the peak direction of the beam by beamforming. Further, the prior art discloses that the directivity is controlled by changing the reactance of a parasitic element arranged around a single patch antenna.
  • One aspect of the disclosed technology aims to provide an antenna device and a wireless communication device that can expand the coverage range of the millimeter wave band more than before.
  • This antenna device includes a plurality of aligned patch antennas for emitting radio waves in a millimeter wave band, and a set of parasitic elements arranged to sandwich the patch antenna for each of the plurality of patch antennas. .
  • Each of the first set of parasitic elements arranged to sandwich the first patch antenna among the plurality of patch antennas sandwiches the second patch antenna arranged next to the first patch antenna.
  • the second set of parasitic elements is provided outside the region overlapping with the second set of parasitic elements.
  • the coverage range of the millimeter wave band can be expanded.
  • FIG. 1 is a diagram illustrating an example of an antenna device according to an embodiment.
  • FIG. 2 is a diagram illustrating an antenna of the antenna device according to the embodiment.
  • FIG. 3 is a diagram schematically showing the positional relationship of antennas arranged adjacent to each other.
  • FIG. 4 is a first diagram showing variations in which the angle between the alignment direction of the antenna and the arrangement direction of the conductor elements is changed.
  • FIG. 5 is a second diagram showing a variation in which the angle between the alignment direction of the antenna and the arrangement direction of the conductor elements is changed.
  • FIG. 6 is a diagram illustrating the intensity distribution of radio waves radiated by the antenna of the antenna device according to the embodiment.
  • FIG. 1 is a diagram illustrating an example of an antenna device according to an embodiment.
  • FIG. 2 is a diagram illustrating an antenna of the antenna device according to the embodiment.
  • FIG. 3 is a diagram schematically showing the positional relationship of antennas arranged adjacent to each other.
  • FIG. 4 is a first diagram showing variations
  • FIG. 7 is a first diagram illustrating the intensity distribution (dBi) of radio waves radiated by the antenna when the phase of the conductor element is changed.
  • FIG. 8 is a second diagram illustrating the intensity distribution (dBi) of radio waves radiated by the antenna when the phase of the conductor element is changed.
  • FIG. 9 is a third diagram illustrating the intensity distribution (dBi) of radio waves radiated by the antenna when the phase of the conductor element is changed.
  • FIG. 10 is a fourth diagram illustrating the intensity distribution (dBi) of radio waves radiated by the antenna when the phase of the conductor element is changed.
  • FIG. 11 is a diagram illustrating a radiation pattern of an antenna according to the embodiment; FIG.
  • FIG. 12 is a diagram showing an example of a conductor element provided with control elements exemplified by inductors and capacitors.
  • FIG. 13 is a diagram schematically showing a conductor element provided with a control element.
  • FIG. 14 is a diagram illustrating an example of an antenna device according to a comparative example;
  • FIG. 15 is a diagram illustrating the intensity distribution of radio waves radiated by the patch antenna of the antenna device according to the comparative example.
  • FIG. 16 is a diagram illustrating a radiation pattern of a patch antenna in a comparative example;
  • FIG. 17 is a diagram illustrating the intensity distribution (dBi) of radio waves radiated by the patch antenna of the antenna device according to the comparative example.
  • FIG. 18 is a diagram showing the relationship between the coverage range and the gain of the antenna device according to the comparative example.
  • FIG. 19 is a diagram showing the relationship between the coverage range and gain of the antenna device according to the embodiment.
  • FIG. 20 is a table comparing coverage ranges and gains of the antenna device according to the comparative example and the antenna device according to the embodiment based on FIGS. 18 and 19.
  • FIG. 21 is a diagram illustrating a smartphone in which an antenna device according to a comparative example is mounted;
  • FIG. 22 is a diagram illustrating a smart phone on which the antenna device according to this embodiment is mounted.
  • FIG. 23 is a diagram showing an example of an antenna device according to a first modified example.
  • FIG. 24 is a diagram showing an example of an antenna device according to a second modified example.
  • FIG. 25 is a first diagram showing a variation in which the angle between the alignment direction of the antennas and the arrangement direction of the conductor elements is changed in the second modification.
  • FIG. 26 is a second diagram showing a variation in which the angle between the alignment direction of the antennas and the arrangement direction of the conductor elements is changed in the second modification.
  • An antenna device has, for example, the following configuration.
  • An antenna device includes a plurality of aligned patch antennas for emitting radio waves in the millimeter wave band, and a set of parasitic elements arranged so as to sandwich the patch antenna for each of the plurality of patch antennas. And prepare.
  • Each of the first set of parasitic elements arranged to sandwich the first patch antenna among the plurality of patch antennas sandwiches the second patch antenna arranged next to the first patch antenna.
  • the second set of parasitic elements is provided outside the region overlapping with the second set of parasitic elements.
  • each patch antenna can be changed to the direction of the center line connecting the centers of a pair of parasitic elements.
  • each of the parasitic elements of the first set is provided outside the region overlapping the parasitic elements of the second set when viewed in the direction of the center line connecting the centers of the parasitic elements of the second set,
  • the gain of the patch antenna can be improved by arranging the parasitic element. Therefore, according to this antenna device, the coverage range of the millimeter wave band can be expanded.
  • “aligning” is not limited to aligning in one line, and may be aligning in two or more lines.
  • FIG. 1 is a diagram showing an example of an antenna device 1 according to an embodiment.
  • FIG. 1 is a plan view of the antenna device 1.
  • FIG. The antenna device 1 includes a substrate 20 and a plurality of antennas 10 arranged on the substrate 20 .
  • the antenna device 1 is an array antenna in which a plurality of antennas 10 are arranged in a line.
  • the substrate 20 is, for example, a printed circuit board.
  • a ground plane is formed on the surface of the substrate 20 on which the antennas 10 are aligned.
  • Four antennas 10 are arranged in a row on the substrate 20 .
  • the number of antennas 10 aligned on the substrate 20 is not limited to four, and may be three or less, or five. or more.
  • Antenna 10 includes patch antenna 11 , feeding point 12 and conductor element 13 .
  • the patch antenna 11 receives power from the feeding point 12 and emits radio waves.
  • the patch antenna 11 is, for example, square in plan view.
  • the antennas 10 are aligned at regular intervals along the alignment direction L1.
  • Each of the antennas 10 is arranged at an angle of 45 degrees with respect to the alignment direction L1 in which the antennas 10 are arranged.
  • a pair of vertices P1 and P2 that do not share a side are arranged in alignment direction L1. That is, the pair of vertices P1 and P2 that do not share the sides of the patch antenna 11 are aligned in the alignment direction L1.
  • the alignment interval D1 of the patch antennas 11 is substantially equal to the wavelength ⁇ of radio waves emitted by the patch antennas 11, for example.
  • the conductor element 13 is a parasitic element made of a conductor such as metal.
  • the conductor element 13 is formed, for example, in a rectangular shape in plan view, and the length of the long side is approximately equal to the length of one side of the antenna 10 .
  • the conductor element 13 is arranged so as to sandwich the patch antenna 11 with its long side facing the patch antenna 11 . Therefore, in each antenna 10, the conductor element 13, the patch antenna 11, and the conductor element 13 are arranged in this order along the arrangement direction L2 inclined by 45 degrees with respect to the alignment direction L1.
  • the arrangement direction L2 can be said to be the direction of a line segment connecting the centers of the conductor element 13, the patch antenna 11, and the conductor element 13 in each of the antennas 10, for example.
  • FIG. 2 is a diagram illustrating the antenna 10 of the antenna device 1 according to the embodiment.
  • 2A is a plan view of the antenna 10
  • FIG. 2B is a side view of the antenna 10.
  • FIG. 2A also shows the alignment direction L1.
  • a side length S1 of one side of the antenna 10 is approximately equal to ⁇ /2.
  • each of the conductor elements 13 is arranged in the radio wave emitting direction of the patch antenna 11 rather than the patch antenna 11 .
  • Each of the conductor elements 13 is provided in a direction of 45 degrees with respect to the normal line N1 of the patch antenna 11 and at a distance of ⁇ /4 from the patch antenna 11 .
  • the angle ⁇ formed by the normal N1 and the line segment L3 connecting the center of the patch antenna 11 and the center of the conductor element 13 is 45 degrees, and the length of the line segment L3 is ⁇ /4.
  • FIG. 3 is a diagram schematically showing the positional relationship of the antennas 10 arranged side by side.
  • FIG. 3 also shows an extension region R1 formed by extending the short side of the conductor element 13 which is rectangular in plan view.
  • the extension region R1 can be said to be a region that overlaps with the set of conductor elements 13 when viewed from the direction of the center line connecting the centers of the set of conductor elements 13 arranged to sandwich the antenna 10 .
  • the conductor element 13 in each of the antennas 10 is arranged outside the extension region R1 of the adjacent antenna 10 .
  • 4 and 5 are diagrams showing variations in which the angle between the alignment direction L1 of the antenna 10 and the arrangement direction L2 of the conductor element 13 is changed.
  • the angle between the alignment direction L1 and the arrangement direction L2 is 0 degrees
  • the angle between the alignment direction L1 and the arrangement direction L2 is 15 degrees.
  • the angle between the alignment direction L1 and the arrangement direction L2 is 30 degrees
  • the angle between the alignment direction L1 and the arrangement direction L2 is 60 degrees
  • the angle between the alignment direction L1 and the arrangement direction L2 is 75 degrees.
  • the extension region R1 for one conductor element 13 is illustrated to avoid complication of the drawings, but the extension region R1 extends to all the conductor elements 13 as illustrated in FIG. formed about.
  • the conductor element 13 of a certain antenna 10 is the extended area of the adjacent antenna 10.
  • Conductive element 13 is arranged in R1.
  • the conductor elements 13 of adjacent antennas have parasitic capacitance, which may reduce the gain of the patch antenna 11 .
  • the angle between the alignment direction L1 and the arrangement direction L2 is 30 degrees (FIG. 5A), 45 degrees (FIG. 3), 60 degrees (FIG. 5B), and 75 degrees (FIG. 5C).
  • the conductor element 13 of one antenna 10 is arranged outside the extension region R1 of the adjacent antenna 10 .
  • the gain of the patch antenna 11 is improved because the conductor elements 13 of adjacent antennas do not have parasitic capacitance. That is, in order to improve the gain of the antenna device 1 by arranging the conductor element 13, it is preferable that the angle between the alignment direction L1 and the arrangement direction L2 is 30 degrees or more.
  • FIG. 6 is a diagram illustrating the intensity distribution of radio waves radiated by the antenna 10 of the antenna device 1 according to the embodiment.
  • the peak direction of the radio waves radiated by the antenna 10 is in the direction of the polar angle of 30 degrees and the azimuth angle of 270 degrees.
  • FIGS. 7 to 10 are diagrams illustrating intensity distributions (dBi) of radio waves radiated by the antenna 10 when the phase of the conductor element 13 is changed when scanning the beam in the alignment direction L1.
  • the vertical axis indicates the polar angle in three-dimensional polar coordinates
  • the horizontal axis indicates the azimuth angle. That is, in FIGS. 7 to 10, the range larger than 90 degrees polar angle (upper side of the drawing) indicates the back side of the substrate 20, and the range smaller than 90 degrees polar angle (lower side of the drawing) indicates the front side of the substrate 20 (the antenna 10). side).
  • FIG. 7 illustrates a case where two conductor elements 13 included in the antenna 10 have the same phase.
  • FIG. 7 illustrates a case where two conductor elements 13 included in the antenna 10 have the same phase.
  • FIG. 8 illustrates a case where two conductor elements 13 included in the antenna 10 are out of phase.
  • FIG. 9 illustrates a case where two conductor elements 13 included in the antenna 10 are out of phase when the phase advance and phase delay are reversed from those in FIG.
  • FIG. 10 illustrates a case where the intensity distributions of radio waves illustrated in FIGS. 7 to 9 are synthesized. As can be understood with reference to FIG. 10, by controlling the phase of the conductor element 13, the peak direction of the radio waves emitted by the antenna 10 can be controlled.
  • FIG. 11 is a diagram illustrating the radiation pattern of the antenna 10 according to the embodiment.
  • the arrow A1 illustrates the direction in which the patch antenna 11 radiates strongly without the conductor element 13 .
  • Arrows A2 and A3 illustrate directions in which the antenna 10 radiates strongly.
  • the directions of the arrows A2 and A3 are changed by changing the inductance and reactance of the conductor element 13 . That is, the antenna 10 can control the phase of the conductor element 13 by changing the inductance and reactance of the conductor element 13, thereby controlling the radiation direction of strong radio waves.
  • FIG. 12 is a diagram showing an example of a conductor element 13 provided with a control element 131 exemplified by an inductor or a capacitor.
  • FIG. 12A shows a plan view of the antenna 10 provided with the control element 131.
  • FIG. 12(B) shows a side view of the antenna 10 provided with the control element 131 from the direction of the arrow in FIG. 12(A).
  • a control line 132 for controlling the control element 131 is connected to the conductor element 13 .
  • the control signal from the control line 132 can control the reactance and inductance of the control element 131 .
  • the control line 132 by arranging the control line 132 in a direction orthogonal to the substrate 20, a decrease in the gain of the patch antenna 11 is suppressed.
  • FIG. 13 is a diagram schematically showing the conductor element 13 provided with the control element 131.
  • FIG. FIG. 13A schematically shows conductor element 13 provided with variable inductor 1311 as control element 131 .
  • FIG. 13B schematically shows conductor element 13 provided with variable capacitor 1312 as control element 131 .
  • the variable inductor 1311 and the variable capacitor 1312 may be provided in the middle of the conductor element 13, for example.
  • FIG. 14 is a diagram showing an example of an antenna device 500 according to a comparative example.
  • the antenna device 500 differs from the antenna device 1 according to the embodiment in that the patch antennas 11 are arranged without being inclined with respect to the alignment direction L1 in which the patch antennas 11 are arranged, and that the conductor element 13 is not provided.
  • Antenna device 500 is an array antenna in which patch antennas 11 are arranged in a row.
  • FIG. 15 is a diagram illustrating the intensity distribution of radio waves radiated by the patch antenna 11 of the antenna device 500 according to the comparative example. It can be understood that the patch antenna 11 of the antenna device 500 radiates strong radio waves in the direction of the 0 degree polar angle.
  • FIG. 16 is a diagram illustrating a radiation pattern of patch antenna 11 in a comparative example.
  • the antenna device 500 can scan the peak direction of radio waves in a direction along the alignment direction L1 by beamforming. That is, the antenna device 500 can scan the peak direction of radio waves in the direction along the longitudinal direction of the substrate 20 .
  • FIG. 17 is a diagram illustrating the intensity distribution (dBi) of radio waves radiated by the patch antenna 11 of the antenna device 500 according to the comparative example when scanning the beam in the alignment direction L1.
  • the vertical axis indicates polar angles in three-dimensional polar coordinates
  • the horizontal axis indicates azimuth angles. That is, in FIG. 17, the range larger than 90 degrees polar angle (upper side of the figure) shows the back side of the substrate 20, and the range smaller than 90 degrees polar angle (lower side of the figure) shows the front side of the substrate 20 (where the patch antenna 11 is arranged). side).
  • FIG. 18 is a diagram showing the relationship between the coverage range and gain of the antenna device 500 according to the comparative example.
  • FIG. 19 is a diagram showing the relationship between the coverage range and the gain of the antenna device 1 according to the embodiment.
  • the vertical axis in FIGS. 18 and 19 indicates the coverage range, and the horizontal axis indicates the gain. 18 and 19, the coverage range is indicated by a cumulative distribution function (CDF).
  • CDF cumulative distribution function
  • the antenna device 1 according to the embodiment has ⁇ 11.1 dBi at a CDF gain of 20%, ⁇ 3.5 dBi at a CDF gain of 50%, and a maximum gain of 14.2 dBi. That is, it can be understood that the antenna device 1 according to the present embodiment has a wider coverage range that achieves a higher gain than the antenna device 500 according to the comparative example.
  • FIG. 21 is a diagram illustrating a smartphone in which the antenna device 500 according to the comparative example is mounted.
  • the housing of the smartphone that is formed in a substantially rectangular parallelepiped shape is indicated by a dotted line, and the antenna device 500 mounted inside the housing is indicated by a solid line.
  • three antenna devices 500 are mounted on the smart phone.
  • Two antenna devices 500 out of the antenna devices 500 mounted on the smart phone are arranged with the emission direction of radio waves facing the side surface of the housing.
  • One antenna device 500 among the antenna devices 500 mounted on the smart phone is arranged with the emission direction of radio waves facing the bottom surface of the housing.
  • the antenna device 500 scans the peak direction of the beam along the longitudinal direction of the substrate 20 . Therefore, for example, the antenna device 500 arranged with the radio wave emitting direction facing the side surface of the housing cannot scan the peak direction in the thickness direction of the housing.
  • FIG. 22 is a diagram illustrating a smartphone 300 on which the antenna device 1 according to this embodiment is mounted.
  • the beam scanning direction by beamforming can be shifted from the alignment direction L1. Therefore, when the antenna device 1 is mounted on the smartphone 300, even if the antenna device 1 is arranged so that the emission direction of radio waves faces the side surface of the housing, it is possible to scan the peak direction in the thickness direction of the housing. It becomes possible.
  • the antenna device 1 by arranging the conductor element 13, the direction of beamforming of the antenna device 1 can be changed from the direction along the alignment direction L1 to the direction along the arrangement direction L2. Therefore, the antenna device 1 according to the present embodiment can cover a range that could not be covered by beamforming by the antenna device 500 according to the comparative example.
  • the antenna device 1 including the conductor element 13 has a wider high-gain range than the antenna device 500 according to the comparative example. Therefore, according to this embodiment, the coverage range of the antenna device 1 can be improved.
  • the conductor element 13 is arranged within the extension region R1, the gain of the patch antenna 11 may decrease.
  • the conductor element 13 is arranged outside the extension region R1 of the antenna 10 arranged next to it.
  • FIG. 23 is a diagram showing an example of the antenna device 1a according to the first modified example.
  • FIG. 23 is a plan view of the antenna device 1a.
  • the alignment direction L1 and the arrangement direction L2 are parallel. That is, the angle between the alignment direction L1 and the arrangement direction L2 is 0 degrees.
  • the conductor elements 13 of the adjacent antennas 10 are arranged outside the extension region R1. Such an arrangement also improves the coverage of patch antenna 11 by providing conductor element 13 .
  • FIG. 24 is a diagram showing an example of an antenna device 1b according to a second modified example.
  • FIG. 24 is a plan view of the antenna device 1b.
  • a pair of conductor elements 13 are arranged so as to sandwich the patch antenna 11 .
  • An antenna device 1b according to the second modification includes an antenna 10a in which two sets of conductor elements 13 are arranged to sandwich a patch antenna 11 therebetween.
  • the arrangement direction L2 of one set of conductor elements 13 arranged so as to sandwich the patch antenna 11 and the arrangement direction L4 of the other set of conductor elements 13 are orthogonal to each other.
  • the antenna device 1b can support two polarization planes. That is, the antenna device 1b can scan the beamforming peak direction in the arrangement direction L2 and the arrangement direction L4.
  • 25 and 26 are diagrams showing variations in which the angle between the alignment direction L1 of the antenna 10 and the arrangement direction L2 of the conductor element 13 is changed.
  • the angle between the alignment direction L1 and the arrangement direction L2 is 0 degrees
  • the angle between the alignment direction L1 and the arrangement direction L2 is 15 degrees.
  • the angle between the alignment direction L1 and the arrangement direction L2 is 30 degrees in FIG. 26(A)
  • the angle between the alignment direction L1 and the arrangement direction L2 is 60 degrees in FIG.
  • the angle between the alignment direction L1 and the arrangement direction L2 is 75 degrees.
  • 25 and 26 each show the extension region R1 for one conductor element 13 in order to avoid complication of the drawings. formed about.
  • the gain of the patch antenna 11 is improved even if the conductor element 13 is arranged. That is, in order to improve the gain of the antenna device 1b by arranging the conductor element 13, it is preferable that the angle between the alignment direction L1 and the arrangement direction L2 is 30 degrees or more and 60 degrees or less.
  • the patch antenna 11 may have other shapes.
  • the patch antenna 11 may be circular, triangular, or polygonal with pentagons or more, for example.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

Provided are an antenna device and a wireless communication device capable of expanding the millimeter waveband coverage range relative to the prior art. The antenna device is provided with: a plurality of aligned patch antennas for emitting millimeter waveband radio waves; and, for each of the plurality of patch antennas, a set of parasitic elements disposed so as to sandwich the patch antenna. Each of a first set of parasitic elements disposed so as to sandwich a first patch antenna among the plurality of patch antennas is provided outside a region that overlaps a second set of parasitic elements in a directional view of a center line connecting the centers of each of the second set of parasitic elements, which are disposed so as to sandwich a second patch antenna disposed next to the first patch antenna.

Description

アンテナ装置及び無線通信装置Antenna device and wireless communication device
 本発明は、アンテナ装置及び無線通信装置に関する。 The present invention relates to an antenna device and a wireless communication device.
 近年、より高速な通信環境を実現するため、第5世代移動通信システム(5G)の普及が進められている。そのため、5Gで利用されるミリ波帯で通信を行うアンテナ装置がスマートフォン等の無線通信装置に搭載される。このようなアンテナ装置では、例えば、パッチアンテナが採用される(例えば、特許文献1、2参照)。 In recent years, the spread of the 5th generation mobile communication system (5G) has been promoted in order to realize a faster communication environment. Therefore, an antenna device that performs communication in the millimeter wave band used in 5G is installed in wireless communication devices such as smartphones. Such an antenna device employs, for example, a patch antenna (see Patent Documents 1 and 2, for example).
 従来から利用されているLong Term Evolution(LTE、4G)の電波よりもミリ波帯の電波は空間伝搬減衰量が多いことから、上記アンテナ装置では複数のパッチアンテナを整列して配置したアレーアンテナが形成されることが多い。アレーアンテナが形成されることでアンテナ装置から出射される電波(ビーム)のピーク強度は高められる一方で、アンテナ装置がカバーできるカバレッジ範囲が減少することになる。そこで、アレーアンテナでは、ビームフォーミングによってビームのピーク方向を走査することで、カバレッジ範囲の減少を補うことが行われる。また、先行文献には単独のパッチアンテナの周囲に配置された無給電素子のリアクタンスを変化させることで指向性を制御することが示されている。 Because the spatial propagation attenuation of millimeter-wave band radio waves is greater than that of Long Term Evolution (LTE, 4G) radio waves that have been used in the past, the above antenna device uses an array antenna in which multiple patch antennas are aligned. often formed. Forming an array antenna increases the peak intensity of radio waves (beams) emitted from the antenna device, but reduces the coverage range that can be covered by the antenna device. Therefore, the array antenna compensates for the decrease in the coverage range by scanning the peak direction of the beam by beamforming. Further, the prior art discloses that the directivity is controlled by changing the reactance of a parasitic element arranged around a single patch antenna.
特開2009-246460号公報JP 2009-246460 A 特開2012-120150号公報JP 2012-120150 A
 従来のアレーアンテナに無給電素子を配置してビームフォーミングとは異なる方向に指向性を制御しようとすると、隣り合った無給電素子同士が容量的に結合してしまい、意図したように指向性を制御できず、所望の特性が得られないという課題があった。そのため、ミリ波帯のカバレッジ範囲の拡大には改善の余地があった。 When parasitic elements are placed in a conventional array antenna to control the directivity in a direction different from beamforming, the adjacent parasitic elements are capacitively coupled, resulting in the intended directivity. There was a problem that it could not be controlled and desired characteristics could not be obtained. Therefore, there is room for improvement in expanding the coverage range of the millimeter wave band.
 開示の技術の1つの側面は、ミリ波帯のカバレッジ範囲を従来よりも拡大し得るアンテナ装置及び無線通信装置を提供することを目的とする。 One aspect of the disclosed technology aims to provide an antenna device and a wireless communication device that can expand the coverage range of the millimeter wave band more than before.
 開示の技術の1つの側面は、次のようなアンテナ装置によって例示される。本アンテナ装置は、ミリ波帯の電波を出射する整列された複数のパッチアンテナと、上記複数のパッチアンテナの夫々について、パッチアンテナを挟むように配置される一組の無給電素子と、を備える。上記複数のパッチアンテナのうちの第1のパッチアンテナを挟むように配置された第1組の無給電素子の夫々は、上記第1のパッチアンテナの隣に配置された第2のパッチアンテナを挟むように配置された第2組の無給電素子夫々の中心同士を結ぶ中心線の方向視において、上記第2組の無給電素子と重なる領域の外に設けられる。 One aspect of the disclosed technique is exemplified by the following antenna device. This antenna device includes a plurality of aligned patch antennas for emitting radio waves in a millimeter wave band, and a set of parasitic elements arranged to sandwich the patch antenna for each of the plurality of patch antennas. . Each of the first set of parasitic elements arranged to sandwich the first patch antenna among the plurality of patch antennas sandwiches the second patch antenna arranged next to the first patch antenna. When viewed from the direction of the center line connecting the centers of the second set of parasitic elements arranged in the manner described above, the second set of parasitic elements is provided outside the region overlapping with the second set of parasitic elements.
 開示の技術によれば、ミリ波帯のカバレッジ範囲を拡大することができる。 According to the disclosed technology, the coverage range of the millimeter wave band can be expanded.
図1は、実施形態に係るアンテナ装置の一例を示す図である。FIG. 1 is a diagram illustrating an example of an antenna device according to an embodiment. 図2は、実施形態に係るアンテナ装置のアンテナを例示する図である。FIG. 2 is a diagram illustrating an antenna of the antenna device according to the embodiment. 図3は、隣り合って配置されるアンテナの位置関係を模式的に示す図である。FIG. 3 is a diagram schematically showing the positional relationship of antennas arranged adjacent to each other. 図4は、アンテナの整列方向と導体素子の配置方向との角度を変えたバリエーションを示す第1の図である。FIG. 4 is a first diagram showing variations in which the angle between the alignment direction of the antenna and the arrangement direction of the conductor elements is changed. 図5は、アンテナの整列方向と導体素子の配置方向との角度を変えたバリエーションを示す第2の図である。FIG. 5 is a second diagram showing a variation in which the angle between the alignment direction of the antenna and the arrangement direction of the conductor elements is changed. 図6は、実施形態に係るアンテナ装置のアンテナが放射する電波の強度分布を例示する図である。FIG. 6 is a diagram illustrating the intensity distribution of radio waves radiated by the antenna of the antenna device according to the embodiment. 図7は、導体素子の位相を変えた場合におけるアンテナが放射する電波の強度分布(dBi)を例示する第1の図である。FIG. 7 is a first diagram illustrating the intensity distribution (dBi) of radio waves radiated by the antenna when the phase of the conductor element is changed. 図8は、導体素子の位相を変えた場合におけるアンテナが放射する電波の強度分布(dBi)を例示する第2の図である。FIG. 8 is a second diagram illustrating the intensity distribution (dBi) of radio waves radiated by the antenna when the phase of the conductor element is changed. 図9は、導体素子の位相を変えた場合におけるアンテナが放射する電波の強度分布(dBi)を例示する第3の図である。FIG. 9 is a third diagram illustrating the intensity distribution (dBi) of radio waves radiated by the antenna when the phase of the conductor element is changed. 図10は、導体素子の位相を変えた場合におけるアンテナが放射する電波の強度分布(dBi)を例示する第4の図である。FIG. 10 is a fourth diagram illustrating the intensity distribution (dBi) of radio waves radiated by the antenna when the phase of the conductor element is changed. 図11は、実施形態におけるアンテナの放射パターンを例示する図である。FIG. 11 is a diagram illustrating a radiation pattern of an antenna according to the embodiment; 図12は、インダクタやコンデンサによって例示される制御素子を設けた導体素子の一例を示す図である。FIG. 12 is a diagram showing an example of a conductor element provided with control elements exemplified by inductors and capacitors. 図13は、制御素子を設けた導体素子を模式的に示す図である。FIG. 13 is a diagram schematically showing a conductor element provided with a control element. 図14は、比較例に係るアンテナ装置の一例を示す図である。FIG. 14 is a diagram illustrating an example of an antenna device according to a comparative example; 図15は、比較例に係るアンテナ装置のパッチアンテナが放射する電波の強度分布を例示する図である。FIG. 15 is a diagram illustrating the intensity distribution of radio waves radiated by the patch antenna of the antenna device according to the comparative example. 図16は、比較例におけるパッチアンテナの放射パターンを例示する図である。FIG. 16 is a diagram illustrating a radiation pattern of a patch antenna in a comparative example; 図17は、比較例に係るアンテナ装置のパッチアンテナが放射する電波の強度分布(dBi)を例示する図である。FIG. 17 is a diagram illustrating the intensity distribution (dBi) of radio waves radiated by the patch antenna of the antenna device according to the comparative example. 図18は、比較例に係るアンテナ装置のカバレッジ範囲と利得の関係を示す図である。FIG. 18 is a diagram showing the relationship between the coverage range and the gain of the antenna device according to the comparative example. 図19は、実施形態に係るアンテナ装置のカバレッジ範囲と利得の関係を示す図である。FIG. 19 is a diagram showing the relationship between the coverage range and gain of the antenna device according to the embodiment. 図20は、図18及び図19を基に比較例に係るアンテナ装置と実施形態に係るアンテナ装置とのカバレッジ範囲及び利得を比較する表である。FIG. 20 is a table comparing coverage ranges and gains of the antenna device according to the comparative example and the antenna device according to the embodiment based on FIGS. 18 and 19. FIG. 図21は、比較例に係るアンテナ装置を実装したスマートフォンを例示する図である。FIG. 21 is a diagram illustrating a smartphone in which an antenna device according to a comparative example is mounted; 図22は、本実施形態に係るアンテナ装置を実装したスマートフォンを例示する図である。FIG. 22 is a diagram illustrating a smart phone on which the antenna device according to this embodiment is mounted. 図23は、第1変形例に係るアンテナ装置の一例を示す図である。FIG. 23 is a diagram showing an example of an antenna device according to a first modified example. 図24は、第2変形例に係るアンテナ装置の一例を示す図である。FIG. 24 is a diagram showing an example of an antenna device according to a second modified example. 図25は、第2変形例においてアンテナの整列方向と導体素子の配置方向との角度を変えたバリエーションを示す第1の図である。FIG. 25 is a first diagram showing a variation in which the angle between the alignment direction of the antennas and the arrangement direction of the conductor elements is changed in the second modification. 図26は、第2変形例においてアンテナの整列方向と導体素子の配置方向との角度を変えたバリエーションを示す第2の図である。FIG. 26 is a second diagram showing a variation in which the angle between the alignment direction of the antennas and the arrangement direction of the conductor elements is changed in the second modification.
 <実施形態>
 以下に示す実施形態の構成は例示であり、開示の技術は実施形態の構成に限定されない。実施形態に係るアンテナ装置は、例えば、以下の構成を備える。本実施形態に係るアンテナ装置は、ミリ波帯の電波を出射する整列された複数のパッチアンテナと、上記複数のパッチアンテナの夫々について、パッチアンテナを挟むように配置される一組の無給電素子と、を備える。上記複数のパッチアンテナのうちの第1のパッチアンテナを挟むように配置された第1組の無給電素子の夫々は、上記第1のパッチアンテナの隣に配置された第2のパッチアンテナを挟むように配置された第2組の無給電素子夫々の中心同士を結ぶ中心線の方向視において、上記第2組の無給電素子と重なる領域の外に設けられる。
<Embodiment>
The configuration of the embodiment shown below is an example, and the disclosed technology is not limited to the configuration of the embodiment. An antenna device according to an embodiment has, for example, the following configuration. An antenna device according to the present embodiment includes a plurality of aligned patch antennas for emitting radio waves in the millimeter wave band, and a set of parasitic elements arranged so as to sandwich the patch antenna for each of the plurality of patch antennas. And prepare. Each of the first set of parasitic elements arranged to sandwich the first patch antenna among the plurality of patch antennas sandwiches the second patch antenna arranged next to the first patch antenna. When viewed from the direction of the center line connecting the centers of the second set of parasitic elements arranged in the manner described above, the second set of parasitic elements is provided outside the region overlapping with the second set of parasitic elements.
 このようなアンテナ装置によれば、パッチアンテナ夫々におけるビームフォーミングの方向を一組の無給電素子の中心同士を結ぶ中心線の方向に変更することができる。また、第1組の無給電素子の夫々が第2組の無給電素子夫々の中心同士を結ぶ中心線の方向視において上記第2組の無給電素子と重なる領域の外に設けられることで、無給電素子を配置することによるパッチアンテナの利得を改善させることができる。そのため、本アンテナ装置によれば、ミリ波帯のカバレッジ範囲を拡大することができる。なお、上記アンテナ装置において、「整列」とは、一列に整列することに限定されず、二列以上に整列されてもよい。 According to such an antenna device, the direction of beamforming in each patch antenna can be changed to the direction of the center line connecting the centers of a pair of parasitic elements. Further, each of the parasitic elements of the first set is provided outside the region overlapping the parasitic elements of the second set when viewed in the direction of the center line connecting the centers of the parasitic elements of the second set, The gain of the patch antenna can be improved by arranging the parasitic element. Therefore, according to this antenna device, the coverage range of the millimeter wave band can be expanded. In addition, in the above antenna device, "aligning" is not limited to aligning in one line, and may be aligning in two or more lines.
 以下、図面を参照して上記アンテナ装置についてさらに説明する。図1は、実施形態に係るアンテナ装置1の一例を示す図である。図1は、アンテナ装置1を平面視した図である。アンテナ装置1は、基板20と、基板20上に配置された複数のアンテナ10を備える。アンテナ装置1は、複数のアンテナ10を一列に整列したアレーアンテナである。 The above antenna device will be further described below with reference to the drawings. FIG. 1 is a diagram showing an example of an antenna device 1 according to an embodiment. FIG. 1 is a plan view of the antenna device 1. FIG. The antenna device 1 includes a substrate 20 and a plurality of antennas 10 arranged on the substrate 20 . The antenna device 1 is an array antenna in which a plurality of antennas 10 are arranged in a line.
 基板20は、例えば、プリント基板である。基板20のアンテナ10が整列された面には、接地されたグランド面が形成される。基板20上には、4つのアンテナ10が一列に整列される。図1では、4つのアンテナ10が基板20上に整列されているが、基板20上に整列されるアンテナ10の数は4つに限定されず、3つ以下であってもよいし、5つ以上であってもよい。 The substrate 20 is, for example, a printed circuit board. A ground plane is formed on the surface of the substrate 20 on which the antennas 10 are aligned. Four antennas 10 are arranged in a row on the substrate 20 . Although four antennas 10 are aligned on the substrate 20 in FIG. 1, the number of antennas 10 aligned on the substrate 20 is not limited to four, and may be three or less, or five. or more.
 アンテナ10は、パッチアンテナ11、給電点12及び導体素子13を含む。パッチアンテナ11は、給電点12からの給電を受けて電波を出射する。パッチアンテナ11は、例えば、平面視において正方形に形成される。アンテナ10は、整列方向L1に沿って等間隔で整列される。アンテナ10の夫々は、アンテナ10が並べられた整列方向L1に対して45度傾けて配置される。その結果、パッチアンテナ11の4つの頂点のうち、辺を共有しない一組の頂点P1、P2は、整列方向L1上に配置される。すなわち、パッチアンテナ11の辺を共有しない一組の頂点P1、P2は、整列方向L1に並ぶ。パッチアンテナ11の整列間隔D1は、例えば、パッチアンテナ11が出射する電波の波長λと略等しい。 Antenna 10 includes patch antenna 11 , feeding point 12 and conductor element 13 . The patch antenna 11 receives power from the feeding point 12 and emits radio waves. The patch antenna 11 is, for example, square in plan view. The antennas 10 are aligned at regular intervals along the alignment direction L1. Each of the antennas 10 is arranged at an angle of 45 degrees with respect to the alignment direction L1 in which the antennas 10 are arranged. As a result, of the four vertices of patch antenna 11, a pair of vertices P1 and P2 that do not share a side are arranged in alignment direction L1. That is, the pair of vertices P1 and P2 that do not share the sides of the patch antenna 11 are aligned in the alignment direction L1. The alignment interval D1 of the patch antennas 11 is substantially equal to the wavelength λ of radio waves emitted by the patch antennas 11, for example.
 導体素子13は、金属等の導体で形成された無給電素子である。導体素子13は、例えば、平面視において長方形に形成され、その長辺の長さはアンテナ10の一辺の長さと略等しい。導体素子13は、その長辺をパッチアンテナ11に向けた状態でパッチアンテナ11を挟むように配置される。そのため、アンテナ10の夫々では、導体素子13、パッチアンテナ11、導体素子13は、整列方向L1に対して45度傾いた配置方向L2に沿って、この順で配置される。配置方向L2は、例えば、アンテナ10夫々において、導体素子13、パッチアンテナ11、導体素子13の中心を結ぶ線分の方向ということができる。 The conductor element 13 is a parasitic element made of a conductor such as metal. The conductor element 13 is formed, for example, in a rectangular shape in plan view, and the length of the long side is approximately equal to the length of one side of the antenna 10 . The conductor element 13 is arranged so as to sandwich the patch antenna 11 with its long side facing the patch antenna 11 . Therefore, in each antenna 10, the conductor element 13, the patch antenna 11, and the conductor element 13 are arranged in this order along the arrangement direction L2 inclined by 45 degrees with respect to the alignment direction L1. The arrangement direction L2 can be said to be the direction of a line segment connecting the centers of the conductor element 13, the patch antenna 11, and the conductor element 13 in each of the antennas 10, for example.
 図2は、実施形態に係るアンテナ装置1のアンテナ10を例示する図である。図2(A)はアンテナ10を平面視した図であり、図2(B)はアンテナ10の側面図である。図2(A)では、整列方向L1も図示している。アンテナ10の一辺の長さ辺長S1は、λ/2と略等しい。図2(B)を参照すると理解できるように、導体素子13の夫々は、パッチアンテナ11よりもパッチアンテナ11の電波出射方向に配置される。そして、導体素子13の夫々は、パッチアンテナ11の法線N1に対して45度の方向、かつ、パッチアンテナ11からλ/4の距離に設けられる。すなわち、パッチアンテナ11の中心と導体素子13の中心を結んだ線分L3と法線N1とのなす角度θは45度であり、線分L3の長さはλ/4である。このようにパッチアンテナ11と導体素子13とが配置方向L2に沿って配置されることで、アンテナ装置1の偏波方向を配置方向L2に沿った方向とすることができる。すなわち、アンテナ装置1では、ビームフォーミングによるビームの走査方向を、整列方向L1からずらすことができる。 FIG. 2 is a diagram illustrating the antenna 10 of the antenna device 1 according to the embodiment. 2A is a plan view of the antenna 10, and FIG. 2B is a side view of the antenna 10. FIG. FIG. 2A also shows the alignment direction L1. A side length S1 of one side of the antenna 10 is approximately equal to λ/2. As can be understood by referring to FIG. 2B, each of the conductor elements 13 is arranged in the radio wave emitting direction of the patch antenna 11 rather than the patch antenna 11 . Each of the conductor elements 13 is provided in a direction of 45 degrees with respect to the normal line N1 of the patch antenna 11 and at a distance of λ/4 from the patch antenna 11 . That is, the angle θ formed by the normal N1 and the line segment L3 connecting the center of the patch antenna 11 and the center of the conductor element 13 is 45 degrees, and the length of the line segment L3 is λ/4. By thus arranging the patch antenna 11 and the conductor element 13 along the arrangement direction L2, the polarization direction of the antenna device 1 can be set along the arrangement direction L2. That is, in the antenna device 1, the beam scanning direction by beamforming can be shifted from the alignment direction L1.
 図3は、隣り合って配置されるアンテナ10の位置関係を模式的に示す図である。図3には、平面視において長方形に形成された導体素子13の短辺を延長して形成される延長領域R1も図示されている。延長領域R1は、アンテナ10を挟むように配置される一組の導体素子13の中心同士を結ぶ中心線の方向視において、当該一組の導体素子13と重なる領域ということができる。アンテナ10の夫々において導体素子13は、隣に配置されたアンテナ10の延長領域R1の外に配置される。 FIG. 3 is a diagram schematically showing the positional relationship of the antennas 10 arranged side by side. FIG. 3 also shows an extension region R1 formed by extending the short side of the conductor element 13 which is rectangular in plan view. The extension region R1 can be said to be a region that overlaps with the set of conductor elements 13 when viewed from the direction of the center line connecting the centers of the set of conductor elements 13 arranged to sandwich the antenna 10 . The conductor element 13 in each of the antennas 10 is arranged outside the extension region R1 of the adjacent antenna 10 .
 ここで、導体素子13の配置について検討する。図4及び図5は、アンテナ10の整列方向L1と導体素子13の配置方向L2との角度を変えたバリエーションを示す図である。図4(A)では整列方向L1と配置方向L2との角度は0度であり、図4(B)では整列方向L1と配置方向L2との角度は15度である。図5(A)では整列方向L1と配置方向L2との角度は30度であり、図5(B)では整列方向L1と配置方向L2との角度は60度であり、図5(C)では整列方向L1と配置方向L2との角度は75度である。なお、図4及び図5の夫々では図面の煩雑化を避けるため一つの導体素子13についての延長領域R1を図示しているが、図3に例示するように延長領域R1はすべての導体素子13について形成される。 Here, the arrangement of the conductor elements 13 will be considered. 4 and 5 are diagrams showing variations in which the angle between the alignment direction L1 of the antenna 10 and the arrangement direction L2 of the conductor element 13 is changed. In FIG. 4A, the angle between the alignment direction L1 and the arrangement direction L2 is 0 degrees, and in FIG. 4B, the angle between the alignment direction L1 and the arrangement direction L2 is 15 degrees. In FIG. 5A, the angle between the alignment direction L1 and the arrangement direction L2 is 30 degrees, in FIG. 5B the angle between the alignment direction L1 and the arrangement direction L2 is 60 degrees, and in FIG. The angle between the alignment direction L1 and the arrangement direction L2 is 75 degrees. 4 and 5, the extension region R1 for one conductor element 13 is illustrated to avoid complication of the drawings, but the extension region R1 extends to all the conductor elements 13 as illustrated in FIG. formed about.
 整列方向L1と配置方向L2との角度が0度(図4(A))及び15度(図4(B))では、あるアンテナ10の導体素子13は隣に配置されたアンテナ10の延長領域R1内に導体素子13が配置される。この様な配置では隣り合ったアンテナの導体素子13同士が寄生容量を持ち、その影響でパッチアンテナ11の利得が低下する虞がある。一方、整列方向L1と配置方向L2との角度が30度(図5(A))、45度(図3)、60度(図5(B))、75度(図5(C))の場合には、あるアンテナ10の導体素子13は隣に配置されたアンテナ10の延長領域R1外に導体素子13が配置される。このように配置することで、隣り合ったアンテナの導体素子13同士が寄生容量を持つことは無いのでパッチアンテナ11の利得が改善される。すなわち、導体素子13を配置することによってアンテナ装置1の利得を改善させるには、整列方向L1と配置方向L2との角度が30度以上であることが好ましい。 When the angle between the alignment direction L1 and the arrangement direction L2 is 0 degrees (FIG. 4A) and 15 degrees (FIG. 4B), the conductor element 13 of a certain antenna 10 is the extended area of the adjacent antenna 10. Conductive element 13 is arranged in R1. In such an arrangement, the conductor elements 13 of adjacent antennas have parasitic capacitance, which may reduce the gain of the patch antenna 11 . On the other hand, when the angle between the alignment direction L1 and the arrangement direction L2 is 30 degrees (FIG. 5A), 45 degrees (FIG. 3), 60 degrees (FIG. 5B), and 75 degrees (FIG. 5C). In some cases, the conductor element 13 of one antenna 10 is arranged outside the extension region R1 of the adjacent antenna 10 . By arranging them in this manner, the gain of the patch antenna 11 is improved because the conductor elements 13 of adjacent antennas do not have parasitic capacitance. That is, in order to improve the gain of the antenna device 1 by arranging the conductor element 13, it is preferable that the angle between the alignment direction L1 and the arrangement direction L2 is 30 degrees or more.
 図6は、実施形態に係るアンテナ装置1のアンテナ10が放射する電波の強度分布を例示する図である。図6を参照すると理解できるように、アンテナ10が放射する電波のピーク方向は、極角30度、方位角270度の方向となっている。 FIG. 6 is a diagram illustrating the intensity distribution of radio waves radiated by the antenna 10 of the antenna device 1 according to the embodiment. As can be understood by referring to FIG. 6, the peak direction of the radio waves radiated by the antenna 10 is in the direction of the polar angle of 30 degrees and the azimuth angle of 270 degrees.
 図7から図10は、整列方向L1にビームを走査する際、導体素子13の位相を変えた場合におけるアンテナ10が放射する電波の強度分布(dBi)を例示する図である。図7から図10において、縦軸は3次元極座標における極角を示し、横軸は方位角を示す。すなわち、図7から図10において、極角90度より大きい範囲(図の上側)は基板20の裏側を示し、極角90度より小さい範囲(図の下側)は基板20の表側(アンテナ10が配置された側)を示す。図7は、アンテナ10が備える2つの導体素子13の位相を同相とした場合を例示する。図8は、アンテナ10が備える2つの導体素子13の位相を異相とした場合を例示する。図9は、位相の進み及び位相の遅れを図8と逆にした場合における、アンテナ10が備える2つの導体素子13の位相を異相とした場合を例示する。そして、図10は、図7から図9に例示した電波の強度分布を合成した場合を例示する。図10を参照すると理解できるように、導体素子13の位相を制御することで、アンテナ10が出射する電波のピーク方向を制御することができる。 7 to 10 are diagrams illustrating intensity distributions (dBi) of radio waves radiated by the antenna 10 when the phase of the conductor element 13 is changed when scanning the beam in the alignment direction L1. 7 to 10, the vertical axis indicates the polar angle in three-dimensional polar coordinates, and the horizontal axis indicates the azimuth angle. That is, in FIGS. 7 to 10, the range larger than 90 degrees polar angle (upper side of the drawing) indicates the back side of the substrate 20, and the range smaller than 90 degrees polar angle (lower side of the drawing) indicates the front side of the substrate 20 (the antenna 10). side). FIG. 7 illustrates a case where two conductor elements 13 included in the antenna 10 have the same phase. FIG. 8 illustrates a case where two conductor elements 13 included in the antenna 10 are out of phase. FIG. 9 illustrates a case where two conductor elements 13 included in the antenna 10 are out of phase when the phase advance and phase delay are reversed from those in FIG. FIG. 10 illustrates a case where the intensity distributions of radio waves illustrated in FIGS. 7 to 9 are synthesized. As can be understood with reference to FIG. 10, by controlling the phase of the conductor element 13, the peak direction of the radio waves emitted by the antenna 10 can be controlled.
 図11は、実施形態におけるアンテナ10の放射パターンを例示する図である。矢印A1は、導体素子13が無い場合、すなわち、パッチアンテナ11が強く放射する方向を例示する。矢印A2及び矢印A3は、アンテナ10が強く放射する方向を例示する。矢印A2及び矢印A3は、導体素子13のインダクタンスやリアクタンスを変更することで、方向が変わっている。すなわち、アンテナ10は、導体素子13のインダクタンスやリアクタンスを変更することで導体素子13の位相を制御し、強い電波の放射方向を制御することができる。 FIG. 11 is a diagram illustrating the radiation pattern of the antenna 10 according to the embodiment. The arrow A1 illustrates the direction in which the patch antenna 11 radiates strongly without the conductor element 13 . Arrows A2 and A3 illustrate directions in which the antenna 10 radiates strongly. The directions of the arrows A2 and A3 are changed by changing the inductance and reactance of the conductor element 13 . That is, the antenna 10 can control the phase of the conductor element 13 by changing the inductance and reactance of the conductor element 13, thereby controlling the radiation direction of strong radio waves.
 導体素子13の位相を制御するには、例えば、導体素子13にインダクタやコンデンサを設ければよい。図12は、インダクタやコンデンサによって例示される制御素子131を設けた導体素子13の一例を示す図である。図12(A)は制御素子131を設けたアンテナ10の平面図を示す。また、図12(B)は、図12(A)の矢印方向からの制御素子131を設けたアンテナ10の側面図を示す。導体素子13に制御素子131が設けられる場合、制御素子131を制御する制御線132を導体素子13に接続する。制御線132からの制御信号によって制御素子131のリアクタンスやインダクタンスを制御することができる。ここで、制御線132は、基板20と直交する方向に配置することで、パッチアンテナ11の利得低下が抑制される。 In order to control the phase of the conductor element 13, for example, an inductor or a capacitor may be provided in the conductor element 13. FIG. 12 is a diagram showing an example of a conductor element 13 provided with a control element 131 exemplified by an inductor or a capacitor. FIG. 12A shows a plan view of the antenna 10 provided with the control element 131. FIG. 12(B) shows a side view of the antenna 10 provided with the control element 131 from the direction of the arrow in FIG. 12(A). If the conductor element 13 is provided with the control element 131 , a control line 132 for controlling the control element 131 is connected to the conductor element 13 . The control signal from the control line 132 can control the reactance and inductance of the control element 131 . Here, by arranging the control line 132 in a direction orthogonal to the substrate 20, a decrease in the gain of the patch antenna 11 is suppressed.
 図13は、制御素子131を設けた導体素子13を模式的に示す図である。図13(A)は、制御素子131として可変インダクタ1311を設けた導体素子13を模式的に示す。また、図13(B)は、制御素子131として可変コンデンサ1312を設けた導体素子13を模式的に示す。図13(A)、(B)に例示するように、可変インダクタ1311や可変コンデンサ1312は、例えば、導体素子13の途中部分に設けられれば良い。そして、制御線132からの制御信号によって可変インダクタ1311のインダクタンスや可変コンデンサ1312の静電容量を制御(すなわち、リアクタンスを制御)することで、アンテナ10のビームのピーク方向を制御することができる。 FIG. 13 is a diagram schematically showing the conductor element 13 provided with the control element 131. FIG. FIG. 13A schematically shows conductor element 13 provided with variable inductor 1311 as control element 131 . FIG. 13B schematically shows conductor element 13 provided with variable capacitor 1312 as control element 131 . As illustrated in FIGS. 13A and 13B, the variable inductor 1311 and the variable capacitor 1312 may be provided in the middle of the conductor element 13, for example. By controlling the inductance of the variable inductor 1311 and the capacitance of the variable capacitor 1312 (that is, controlling the reactance) with a control signal from the control line 132, the beam peak direction of the antenna 10 can be controlled.
 <比較例>
 図14は、比較例に係るアンテナ装置500の一例を示す図である。アンテナ装置500は、パッチアンテナ11が並べられた整列方向L1に対して傾けずにパッチアンテナ11が配置されるとともに、導体素子13を備えない点で、実施形態に係るアンテナ装置1とは異なる。アンテナ装置500は、パッチアンテナ11を一列に整列したアレーアンテナである。
<Comparative example>
FIG. 14 is a diagram showing an example of an antenna device 500 according to a comparative example. The antenna device 500 differs from the antenna device 1 according to the embodiment in that the patch antennas 11 are arranged without being inclined with respect to the alignment direction L1 in which the patch antennas 11 are arranged, and that the conductor element 13 is not provided. Antenna device 500 is an array antenna in which patch antennas 11 are arranged in a row.
 図15は、比較例に係るアンテナ装置500のパッチアンテナ11が放射する電波の強度分布を例示する図である。アンテナ装置500のパッチアンテナ11は、極角0度の方向に強い電波を放射していることが理解できる。図16は、比較例におけるパッチアンテナ11の放射パターンを例示する図である。アンテナ装置500は、ビームフォーミングによって電波のピーク方向を整列方向L1に沿う方向に走査することができる。すなわち、アンテナ装置500は、電波のピーク方向を基板20の長手方向に沿う方向に走査することができる。 FIG. 15 is a diagram illustrating the intensity distribution of radio waves radiated by the patch antenna 11 of the antenna device 500 according to the comparative example. It can be understood that the patch antenna 11 of the antenna device 500 radiates strong radio waves in the direction of the 0 degree polar angle. FIG. 16 is a diagram illustrating a radiation pattern of patch antenna 11 in a comparative example. The antenna device 500 can scan the peak direction of radio waves in a direction along the alignment direction L1 by beamforming. That is, the antenna device 500 can scan the peak direction of radio waves in the direction along the longitudinal direction of the substrate 20 .
 図17は、整列方向L1にビームを走査する際、比較例に係るアンテナ装置500のパッチアンテナ11が放射する電波の強度分布(dBi)を例示する図である。図17において、縦軸は3次元極座標における極角を示し、横軸は方位角を示す。すなわち、図17において、極角90度より大きい範囲(図の上側)は基板20の裏側を示し、極角90度より小さい範囲(図の下側)は基板20の表側(パッチアンテナ11が配置された側)を示す。 FIG. 17 is a diagram illustrating the intensity distribution (dBi) of radio waves radiated by the patch antenna 11 of the antenna device 500 according to the comparative example when scanning the beam in the alignment direction L1. In FIG. 17, the vertical axis indicates polar angles in three-dimensional polar coordinates, and the horizontal axis indicates azimuth angles. That is, in FIG. 17, the range larger than 90 degrees polar angle (upper side of the figure) shows the back side of the substrate 20, and the range smaller than 90 degrees polar angle (lower side of the figure) shows the front side of the substrate 20 (where the patch antenna 11 is arranged). side).
 図18は、比較例に係るアンテナ装置500のカバレッジ範囲と利得の関係を示す図である。また、図19は、実施形態に係るアンテナ装置1のカバレッジ範囲と利得の関係を示す図である。図18及び図19の縦軸はカバレッジ範囲を示し、横軸は利得を示す。図18及び図19においてカバレッジ範囲は累積分布関数(cumulative distribution function、CDF)によって示される。そして、図20は、図18及び図19を基に比較例に係るアンテナ装置500と実施形態に係るアンテナ装置1とのカバレッジ範囲及び利得を比較する表である。比較例に係るアンテナ装置500では、CDF利得20%で-16.3dBi、CDF利得50%で-7.1dBi、最大利得が14.3dBiとなっている。一方、実施形態に係るアンテナ装置1では、CDF利得20%で-11.1dBi、CDF利得50%で-3.5dBi、最大利得14.2dBiとなっている。すなわち、本実施形態に係るアンテナ装置1は、比較例に係るアンテナ装置500よりも高い利得を実現するカバレッジ範囲が広くなっていることが理解できる。 FIG. 18 is a diagram showing the relationship between the coverage range and gain of the antenna device 500 according to the comparative example. Also, FIG. 19 is a diagram showing the relationship between the coverage range and the gain of the antenna device 1 according to the embodiment. The vertical axis in FIGS. 18 and 19 indicates the coverage range, and the horizontal axis indicates the gain. 18 and 19, the coverage range is indicated by a cumulative distribution function (CDF). 20 is a table comparing coverage ranges and gains of the antenna device 500 according to the comparative example and the antenna device 1 according to the embodiment based on FIGS. 18 and 19. FIG. In the antenna device 500 according to the comparative example, −16.3 dBi at a CDF gain of 20%, −7.1 dBi at a CDF gain of 50%, and a maximum gain of 14.3 dBi. On the other hand, the antenna device 1 according to the embodiment has −11.1 dBi at a CDF gain of 20%, −3.5 dBi at a CDF gain of 50%, and a maximum gain of 14.2 dBi. That is, it can be understood that the antenna device 1 according to the present embodiment has a wider coverage range that achieves a higher gain than the antenna device 500 according to the comparative example.
 図21は、比較例に係るアンテナ装置500を実装したスマートフォンを例示する図である。図21では、略直方体に形成されたスマートフォンの筐体を点線で示し、筐体内に実装されたアンテナ装置500を実線で示している。図21では、3つのアンテナ装置500がスマートフォンに実装されている。スマートフォンに実装されたアンテナ装置500のうちの2つのアンテナ装置500は、電波の出射方向を筐体の側面に向けて配置される。スマートフォンに実装されたアンテナ装置500のうちの1つのアンテナ装置500は、電波の出射方向を筐体の底面に向けて配置される。上記の通り、アンテナ装置500は、基板20の長手方向に沿う方向にビームのピーク方向を走査する。そのため、例えば、電波の出射方向を筐体の側面に向けて配置されたアンテナ装置500は、筐体の厚み方向にピーク方向を走査することはできない。 FIG. 21 is a diagram illustrating a smartphone in which the antenna device 500 according to the comparative example is mounted. In FIG. 21 , the housing of the smartphone that is formed in a substantially rectangular parallelepiped shape is indicated by a dotted line, and the antenna device 500 mounted inside the housing is indicated by a solid line. In FIG. 21, three antenna devices 500 are mounted on the smart phone. Two antenna devices 500 out of the antenna devices 500 mounted on the smart phone are arranged with the emission direction of radio waves facing the side surface of the housing. One antenna device 500 among the antenna devices 500 mounted on the smart phone is arranged with the emission direction of radio waves facing the bottom surface of the housing. As described above, the antenna device 500 scans the peak direction of the beam along the longitudinal direction of the substrate 20 . Therefore, for example, the antenna device 500 arranged with the radio wave emitting direction facing the side surface of the housing cannot scan the peak direction in the thickness direction of the housing.
 図22は、本実施形態に係るアンテナ装置1を実装したスマートフォン300を例示する図である。実施形態に係るアンテナ装置1では、上記の通り、ビームフォーミングによるビームの走査方向を整列方向L1からずらすことができる。そのため、アンテナ装置1がスマートフォン300に実装された場合、電波の出射方向を筐体の側面に向けて配置されたアンテナ装置1であっても、筐体の厚み方向にピーク方向を走査することが可能となる。 FIG. 22 is a diagram illustrating a smartphone 300 on which the antenna device 1 according to this embodiment is mounted. In the antenna device 1 according to the embodiment, as described above, the beam scanning direction by beamforming can be shifted from the alignment direction L1. Therefore, when the antenna device 1 is mounted on the smartphone 300, even if the antenna device 1 is arranged so that the emission direction of radio waves faces the side surface of the housing, it is possible to scan the peak direction in the thickness direction of the housing. It becomes possible.
 <実施形態の作用効果>
 本実施形態によれば、導体素子13を配置することで、アンテナ装置1のビームフォーミングの方向を整列方向L1に沿った方向から配置方向L2に沿った方向に変更することができる。そのため、本実施形態に係るアンテナ装置1は、比較例に係るアンテナ装置500によるビームフォーミングではカバーできなかった範囲をカバーすることができる。
<Action and effect of the embodiment>
According to this embodiment, by arranging the conductor element 13, the direction of beamforming of the antenna device 1 can be changed from the direction along the alignment direction L1 to the direction along the arrangement direction L2. Therefore, the antenna device 1 according to the present embodiment can cover a range that could not be covered by beamforming by the antenna device 500 according to the comparative example.
 導体素子13を備えるアンテナ装置1は、図18及び図19を参照して説明したように、比較例に係るアンテナ装置500よりも高利得の範囲が広くなっている。そのため、本実施形態によれば、アンテナ装置1のカバレッジ範囲を改善することができる。 As described with reference to FIGS. 18 and 19, the antenna device 1 including the conductor element 13 has a wider high-gain range than the antenna device 500 according to the comparative example. Therefore, according to this embodiment, the coverage range of the antenna device 1 can be improved.
 図4(A)、(B)に例示したように、延長領域R1内に導体素子13を配置してしまうと、パッチアンテナ11の利得が低下する虞がある。本実施形態では、アンテナ10の夫々において、導体素子13は隣に配置されたアンテナ10の延長領域R1の外に配置される。このように導体素子13が配置されることで、導体素子13を設けることによるパッチアンテナ11の利得の低下が抑制されるのみならず、図20を参照して説明したようにアンテナ装置11のカバレッジ範囲が改善される。 As illustrated in FIGS. 4A and 4B, if the conductor element 13 is arranged within the extension region R1, the gain of the patch antenna 11 may decrease. In this embodiment, in each of the antennas 10, the conductor element 13 is arranged outside the extension region R1 of the antenna 10 arranged next to it. By arranging the conductor element 13 in this way, not only is the decrease in the gain of the patch antenna 11 due to the provision of the conductor element 13 suppressed, but also the coverage of the antenna device 11 is reduced as described with reference to FIG. Improved range.
 <第1変形例>
 以上説明した実施形態では、整列方向L1に対して配置方向L2を傾けることで、隣り合ったアンテナ10の導体素子13を延長領域R1外に配置した。第1変形例では、実施形態とは異なる配置で隣り合ったアンテナ10の導体素子13を延長領域R1外に配置する例について説明する。
<First modification>
In the embodiment described above, by inclining the arrangement direction L2 with respect to the alignment direction L1, the conductor elements 13 of the adjacent antennas 10 are arranged outside the extension region R1. In the first modified example, an example will be described in which the conductor elements 13 of the adjacent antennas 10 are arranged outside the extension region R1 in a different arrangement from the embodiment.
 図23は、第1変形例に係るアンテナ装置1aの一例を示す図である。図23は、アンテナ装置1aを平面視した図である。アンテナ装置1aでは、整列方向L1と配置方向L2とが平行である。すなわち、整列方向L1と配置方向L2との角度は0度である。アンテナ装置1aでは、隣り合ったアンテナ10の位置を基板20の高さ方向にずらすことで、隣り合ったアンテナ10の導体素子13を延長領域R1外に配置する。このような配置によっても、導体素子13を設けることによるパッチアンテナ11のカバレッジ範囲が改善される。 FIG. 23 is a diagram showing an example of the antenna device 1a according to the first modified example. FIG. 23 is a plan view of the antenna device 1a. In the antenna device 1a, the alignment direction L1 and the arrangement direction L2 are parallel. That is, the angle between the alignment direction L1 and the arrangement direction L2 is 0 degrees. In the antenna device 1a, by shifting the positions of the adjacent antennas 10 in the height direction of the substrate 20, the conductor elements 13 of the adjacent antennas 10 are arranged outside the extension region R1. Such an arrangement also improves the coverage of patch antenna 11 by providing conductor element 13 .
 <第2変形例>
 以上説明した実施形態では、偏波面がひとつの場合について説明した。第2変形例では偏波面が2つの場合について説明する。図24は、第2変形例に係るアンテナ装置1bの一例を示す図である。図24は、アンテナ装置1bを平面視した図である。実施形態に係るアンテナ装置1では、一組の導体素子13がパッチアンテナ11を挟むように配置された。第2変形例に係るアンテナ装置1bでは、二組の導体素子13がパッチアンテナ11を挟むように配置されたアンテナ10aを備える。そして、パッチアンテナ11を挟むように配置される一方の組の導体素子13の配置方向L2と他方の組の導体素子13の配置方向L4とは直交する。配置方向L2と配置方向L4とが直交するように2組の導体素子13を配置することで、アンテナ装置1bは2つの偏波面に対応することができる。すなわち、アンテナ装置1bは、ビームフォーミングのピーク方向を、配置方向L2の方向及び配置方向L4の方向に走査することができる。
<Second modification>
In the embodiments described above, the case where there is one plane of polarization has been described. In the second modified example, a case where there are two planes of polarization will be described. FIG. 24 is a diagram showing an example of an antenna device 1b according to a second modified example. FIG. 24 is a plan view of the antenna device 1b. In the antenna device 1 according to the embodiment, a pair of conductor elements 13 are arranged so as to sandwich the patch antenna 11 . An antenna device 1b according to the second modification includes an antenna 10a in which two sets of conductor elements 13 are arranged to sandwich a patch antenna 11 therebetween. The arrangement direction L2 of one set of conductor elements 13 arranged so as to sandwich the patch antenna 11 and the arrangement direction L4 of the other set of conductor elements 13 are orthogonal to each other. By arranging two sets of conductor elements 13 so that the arrangement direction L2 and the arrangement direction L4 are perpendicular to each other, the antenna device 1b can support two polarization planes. That is, the antenna device 1b can scan the beamforming peak direction in the arrangement direction L2 and the arrangement direction L4.
 ここで、2組の導体素子13の配置について検討する。図25及び図26は、アンテナ10の整列方向L1と導体素子13の配置方向L2との角度を変えたバリエーションを示す図である。図25(A)では整列方向L1と配置方向L2との角度は0度であり、図25(B)では整列方向L1と配置方向L2との角度は15度である。図26(A)では整列方向L1と配置方向L2との角度は30度であり、図26(B)では整列方向L1と配置方向L2との角度は60度であり、図26(C)では整列方向L1と配置方向L2との角度は75度である。なお、図25及び図26の夫々では図面の煩雑化を避けるため一つの導体素子13についての延長領域R1を図示しているが、図3に例示するように延長領域R1はすべての導体素子13について形成される。 Here, the arrangement of the two sets of conductor elements 13 will be considered. 25 and 26 are diagrams showing variations in which the angle between the alignment direction L1 of the antenna 10 and the arrangement direction L2 of the conductor element 13 is changed. In FIG. 25A, the angle between the alignment direction L1 and the arrangement direction L2 is 0 degrees, and in FIG. 25B the angle between the alignment direction L1 and the arrangement direction L2 is 15 degrees. The angle between the alignment direction L1 and the arrangement direction L2 is 30 degrees in FIG. 26(A), the angle between the alignment direction L1 and the arrangement direction L2 is 60 degrees in FIG. The angle between the alignment direction L1 and the arrangement direction L2 is 75 degrees. 25 and 26 each show the extension region R1 for one conductor element 13 in order to avoid complication of the drawings. formed about.
 整列方向L1と配置方向L2との角度が0度(図25(A))、15度(図25(B))及び75度(図26(C))の場合では、あるアンテナ10aの導体素子13は隣に配置されたアンテナ10aの延長領域R1内に導体素子13が配置される。そのため、導体素子13の影響でパッチアンテナ11の利得が低下する虞がある。一方、整列方向L1と配置方向L2との角度が30度(図26(A))、45度(図24)、60度(図26(B))の場合には、あるアンテナ10aの導体素子13は隣に配置されたアンテナ10aの延長領域R1外に導体素子13が配置される。そのため、導体素子13を配置してもパッチアンテナ11の利得が改善される。すなわち、導体素子13を配置することによるアンテナ装置1bの利得を改善するには、整列方向L1と配置方向L2との角度が30度以上かつ60度以下であることが好ましい。 When the angle between the alignment direction L1 and the arrangement direction L2 is 0 degrees (FIG. 25(A)), 15 degrees (FIG. 25(B)), and 75 degrees (FIG. 26(C)), the conductor element of a certain antenna 10a A conductor element 13 is arranged in an extension region R1 of the adjacent antenna 10a. Therefore, the gain of the patch antenna 11 may be reduced due to the influence of the conductor element 13 . On the other hand, when the angle between the alignment direction L1 and the arrangement direction L2 is 30 degrees (FIG. 26(A)), 45 degrees (FIG. 24), and 60 degrees (FIG. 26(B)), the conductor element of a certain antenna 10a A conductive element 13 is arranged outside the extension region R1 of the adjacent antenna 10a. Therefore, the gain of the patch antenna 11 is improved even if the conductor element 13 is arranged. That is, in order to improve the gain of the antenna device 1b by arranging the conductor element 13, it is preferable that the angle between the alignment direction L1 and the arrangement direction L2 is 30 degrees or more and 60 degrees or less.
 <その他の変形>
 以上説明した実施形態や変形例では、矩形のパッチアンテナ11が採用されたが、パッチアンテナ11は他の形状であってもよい。パッチアンテナ11は、例えば、円形、三角形、5角形以上の多角形であってもよい。
<Other variations>
Although the rectangular patch antenna 11 is employed in the embodiments and modifications described above, the patch antenna 11 may have other shapes. The patch antenna 11 may be circular, triangular, or polygonal with pentagons or more, for example.
 以上で開示した実施形態や変形例は夫々組み合わせることができる。 The embodiments and modifications disclosed above can be combined.
 1、1a、1b・・アンテナ装置
 10、10a・・アンテナ
 11・・パッチアンテナ
 12・・給電点
 13・・導体素子
 20・・基板
 131・・制御素子
 132・・制御線
 300・・スマートフォン
 500・・アンテナ装置
 1311・・可変インダクタ
 1312・・可変コンデンサ
 L1・・整列方向
 L2・・配置方向
 L3・・線分
 L4・・配置方向
 D1・・整列間隔
 S1・・辺長
 N1・・法線
 R1・・延長領域
 P1、P2・・頂点
 A1、A2、A3・・矢印
REFERENCE SIGNS LIST 1, 1a, 1b Antenna device 10, 10a Antenna 11 Patch antenna 12 Feeding point 13 Conductor element 20 Substrate 131 Control element 132 Control line 300 Smart phone 500 Antenna device 1311 Variable inductor 1312 Variable capacitor L1 Alignment direction L2 Arrangement direction L3 Line segment L4 Arrangement direction D1 Alignment interval S1 Side length N1 Normal R1・Extension area P1, P2 ・・・ Vertex A1, A2, A3 ・・・ Arrow

Claims (9)

  1.  ミリ波帯の電波を出射する整列された複数のパッチアンテナと、
     前記複数のパッチアンテナの夫々について、パッチアンテナを挟むように配置される一組の無給電素子と、を備え、
     前記複数のパッチアンテナのうちの第1のパッチアンテナを挟むように配置された第1組の無給電素子の夫々は、前記第1のパッチアンテナの隣に配置された第2のパッチアンテナを挟むように配置された第2組の無給電素子夫々の中心同士を結ぶ中心線の方向視において、前記第2組の無給電素子と重なる領域の外に設けられる、
     アンテナ装置。
    a plurality of aligned patch antennas that emit millimeter waveband radio waves;
    a set of parasitic elements arranged to sandwich the patch antenna for each of the plurality of patch antennas;
    Each of the first set of parasitic elements arranged to sandwich the first patch antenna among the plurality of patch antennas sandwiches the second patch antenna arranged next to the first patch antenna. Provided outside the region overlapping the second set of parasitic elements when viewed from the direction of the center line connecting the centers of the second set of parasitic elements arranged in such a manner,
    antenna device.
  2.  前記第1組の無給電素子の中心同士を結ぶ中心線と、前記複数のパッチアンテナが整列された方向とのなす角は30度以上かつ60度以下である、
     請求項1に記載のアンテナ装置。
    The angle between the center line connecting the centers of the first set of parasitic elements and the direction in which the plurality of patch antennas are aligned is 30 degrees or more and 60 degrees or less.
    The antenna device according to claim 1.
  3.  前記第1組の無給電素子は、前記第1のパッチアンテナが出射する電波の出射方向に設けられ、
     前記第1組の無給電素子夫々の中心と、前記第1のパッチアンテナの中心とを結ぶ線分夫々の長さは、前記電波の1/2波長であり、
     前記第1のパッチアンテナの法線と前記線分夫々とのなす角は45度である、
     請求項1または2に記載のアンテナ装置。
    The first set of parasitic elements is provided in the emission direction of radio waves emitted from the first patch antenna,
    the length of each line segment connecting the center of each of the first set of parasitic elements and the center of the first patch antenna is 1/2 wavelength of the radio wave;
    The angle between the normal line of the first patch antenna and each of the line segments is 45 degrees,
    The antenna device according to claim 1 or 2.
  4.  前記無給電素子の夫々には、可変コンデンサまたは可変インダクタが設けられる、
     請求項1から3のいずれか一項に記載のアンテナ装置。
    Each of the parasitic elements is provided with a variable capacitor or a variable inductor,
    The antenna device according to any one of claims 1 to 3.
  5.  前記第1のパッチアンテナは矩形に形成され、
     前記第1のパッチアンテナの頂点のうち辺を共有しない一組の頂点が、前記複数のパッチアンテナが整列された方向に並ぶ、
     請求項1から4のいずれか一項に記載のアンテナ装置。
    The first patch antenna is formed in a rectangular shape,
    A pair of vertices that do not share a side among the vertices of the first patch antenna are aligned in the direction in which the plurality of patch antennas are aligned.
    The antenna device according to any one of claims 1 to 4.
  6.  前記複数のパッチアンテナの夫々は矩形に形成され、
     矩形に形成された前記複数のパッチアンテナの一辺の長さは、前記複数のパッチアンテナ夫々が出射する電波の1/2波長である、
     請求項1から5のいずれか一項に記載のアンテナ装置。
    each of the plurality of patch antennas is formed in a rectangular shape,
    The length of one side of the plurality of rectangular patch antennas is half the wavelength of the radio waves emitted from each of the plurality of patch antennas.
    The antenna device according to any one of claims 1 to 5.
  7.  前記複数のパッチアンテナの夫々の間隔は、前記複数のパッチアンテナの夫々が出射する電波の波長と等しい、
     請求項1から6のいずれか一項に記載のアンテナ装置。
    An interval between each of the plurality of patch antennas is equal to a wavelength of radio waves emitted from each of the plurality of patch antennas,
    The antenna device according to any one of claims 1 to 6.
  8.  前記複数のパッチアンテナの夫々について、前記一組の無給電素子とは別の方向からパッチアンテナを挟むように配置される一組の追加無給電素子をさらに備える、
     請求項1から7のいずれか一項に記載のアンテナ装置。
    For each of the plurality of patch antennas, further comprising a set of additional parasitic elements arranged so as to sandwich the patch antenna from a direction different from the set of parasitic elements,
    The antenna device according to any one of claims 1 to 7.
  9.  請求項1から8のいずれか一項に記載のアンテナ装置を備える、
     無線通信装置。
    An antenna device according to any one of claims 1 to 8,
    wireless communication device.
PCT/JP2021/023243 2021-06-18 2021-06-18 Antenna device and wireless communication device WO2022264415A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/023243 WO2022264415A1 (en) 2021-06-18 2021-06-18 Antenna device and wireless communication device
JP2023528925A JPWO2022264415A1 (en) 2021-06-18 2021-06-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023243 WO2022264415A1 (en) 2021-06-18 2021-06-18 Antenna device and wireless communication device

Publications (1)

Publication Number Publication Date
WO2022264415A1 true WO2022264415A1 (en) 2022-12-22

Family

ID=84525987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023243 WO2022264415A1 (en) 2021-06-18 2021-06-18 Antenna device and wireless communication device

Country Status (2)

Country Link
JP (1) JPWO2022264415A1 (en)
WO (1) WO2022264415A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166416A (en) * 2010-02-09 2011-08-25 Toyota Central R&D Labs Inc Antenna device
WO2017141698A1 (en) * 2016-02-15 2017-08-24 株式会社村田製作所 Antenna device
JP2017188779A (en) * 2016-04-05 2017-10-12 株式会社ユーシン Antenna device, radar device, and radio communication device
WO2019102988A1 (en) * 2017-11-21 2019-05-31 日立金属株式会社 Planar array antenna and wireless communication module
WO2020027058A1 (en) * 2018-08-02 2020-02-06 株式会社村田製作所 Antenna device
WO2020158810A1 (en) * 2019-01-31 2020-08-06 日立金属株式会社 Planar antenna, planar array antenna, multi-axial array antenna, wireless communication module, and wireless communication device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166416A (en) * 2010-02-09 2011-08-25 Toyota Central R&D Labs Inc Antenna device
WO2017141698A1 (en) * 2016-02-15 2017-08-24 株式会社村田製作所 Antenna device
JP2017188779A (en) * 2016-04-05 2017-10-12 株式会社ユーシン Antenna device, radar device, and radio communication device
WO2019102988A1 (en) * 2017-11-21 2019-05-31 日立金属株式会社 Planar array antenna and wireless communication module
WO2020027058A1 (en) * 2018-08-02 2020-02-06 株式会社村田製作所 Antenna device
WO2020158810A1 (en) * 2019-01-31 2020-08-06 日立金属株式会社 Planar antenna, planar array antenna, multi-axial array antenna, wireless communication module, and wireless communication device

Also Published As

Publication number Publication date
JPWO2022264415A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
US11205859B2 (en) Dual-polarized radiating element and antenna
US10910700B2 (en) Omnidirectional antenna for mobile communication service
US10033110B2 (en) Multi-band, multi-polarized wireless communication antenna
US20210249789A1 (en) Dual-polarized antenna, antenna array, and communications device
CN111373601A (en) Low cost high performance multi-band cellular antenna with concealed monolithic metal dipole
CN103390795B (en) A kind of directional diagram has the antenna of multiple restructural characteristic
CN107863996B (en) Omnidirectional array antenna and beam forming method thereof
US20060152413A1 (en) Antenna assembly
US10439283B2 (en) High coverage antenna array and method using grating lobe layers
KR20200141339A (en) Wideband antenna and antenna module including the same
CN108923112B (en) Antenna device and terminal equipment
CN107546478B (en) Wide-angle scanning phased array antenna adopting special directional diagram array elements and design method
US11374331B1 (en) Base station antenna including Fabrey-Perot cavities
WO2022264415A1 (en) Antenna device and wireless communication device
JP4588749B2 (en) Array antenna
WO2015159871A1 (en) Antenna and sector antenna
JP5605285B2 (en) Dipole array antenna
JP3822607B2 (en) Array antenna
US10199747B2 (en) Antenna and antenna array
KR102023108B1 (en) Directional patch array antenna for reducing coupling
JP3261606B2 (en) Antenna device
JP2005079982A (en) Combined antenna
KR102018778B1 (en) High Gain Antenna Using Lens
JP6245561B2 (en) Antenna device
JP2020036297A (en) Antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023528925

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946090

Country of ref document: EP

Kind code of ref document: A1