WO2022264285A1 - Stern tube seal system, marine vessel, and drain recovery unit - Google Patents

Stern tube seal system, marine vessel, and drain recovery unit Download PDF

Info

Publication number
WO2022264285A1
WO2022264285A1 PCT/JP2021/022739 JP2021022739W WO2022264285A1 WO 2022264285 A1 WO2022264285 A1 WO 2022264285A1 JP 2021022739 W JP2021022739 W JP 2021022739W WO 2022264285 A1 WO2022264285 A1 WO 2022264285A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal ring
air
stern tube
housing
seal
Prior art date
Application number
PCT/JP2021/022739
Other languages
French (fr)
Japanese (ja)
Inventor
瞬 種口
Original Assignee
バルチラジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バルチラジャパン株式会社 filed Critical バルチラジャパン株式会社
Priority to PCT/JP2021/022739 priority Critical patent/WO2022264285A1/en
Priority to JP2021540168A priority patent/JPWO2022264285A1/ja
Publication of WO2022264285A1 publication Critical patent/WO2022264285A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/36Shaft tubes

Definitions

  • the present disclosure relates to stern tube seal systems, vessels and drain recovery units.
  • the stern tube sealing device mounted on the ship is installed around the propeller shaft and prevents water from entering the ship by supplying air around the propeller shaft.
  • a stern tube sealing system with a stern tube sealing device comprises an air control unit for supplying air to the stern tube sealing device.
  • the stern tube seal system also includes a drain recovery unit that recovers air, seawater, and oil (eg, US Pat.
  • Conventional stern tube seal systems flow part of the air supplied to the stern tube seal system to the onboard drain recovery unit. Conventional stern tube sealing systems then collect leaked seawater or oil by flowing air to a drain collection unit.
  • the flow rate of air (drain air) flowing to the drain recovery unit is small.
  • the pressure of the air (drain air) flowing into the drain recovery unit is controlled by the seawater pressure, so it cannot be set freely and the pressure is not so high.
  • the drain recovery unit has a limit to the height at which it can be installed. Furthermore, since the air flowing through the drain pipe contains salt, salt crystals are likely to form. Salt crystals easily form in the drain pipe, making drain recovery difficult. Furthermore, in the case of ships with long drain pipes, it is difficult to collect the drain.
  • An object of the present disclosure is to provide a stern tube seal system, a vessel, and a drain recovery unit that have enhanced recovery capabilities for drain that has entered from the stern side.
  • the present disclosure is a stern tube seal system provided on a propeller shaft of a marine propeller, comprising: a housing provided around the propeller shaft; an air control unit for supplying air to a first space surrounded by a seal ring, a second seal ring, a third seal ring, the first seal ring, the second seal ring, the propeller shaft and the housing; an oil pump unit that supplies lubricating oil to a second space surrounded by two seal rings, the third seal ring, the propeller shaft and the housing; a discharge tank to which a pipe communicating with the first space is connected;
  • a stern tube sealing system comprising a drain recovery unit comprising a pressure reducing section for reducing the pressure inside a discharge tank below atmospheric pressure.
  • a stern tube seal system a vessel, and a drain recovery unit that have enhanced recovery capabilities for drain that has entered from the stern side.
  • FIG. 1 is a diagram showing an example of the system configuration of a ship according to this embodiment.
  • FIG. 2 is a diagram showing an example of a stern tube sealing device for a ship according to this embodiment.
  • FIG. 3 is a diagram showing an example of a seal ring of the stern tube seal system according to this embodiment.
  • FIG. 4 is a diagram showing an example of a drain recovery unit of the stern tube seal system according to this embodiment.
  • FIG. 5 is a diagram showing a modification of the drain recovery unit of the stern tube seal system according to this embodiment.
  • FIG. 6 is a diagram showing a modification of the system configuration of the ship according to this embodiment.
  • FIG. 1 is a diagram showing an example of the system configuration of a ship 1 according to this embodiment.
  • flow paths such as the air supply path 121 are schematically illustrated with thick lines.
  • the ship 1 includes a stern tube seal system 200.
  • the stern tube sealing system 200 comprises a stern tube structure 100 , an air control unit 30 , an oil tank unit 60 , an oil pump unit 70 and a drain recovery unit 80 .
  • the stern tube structure 100 is provided around the propeller shaft 2 of the ship 1. As shown in FIG. 1 , the stern tube structure 100 includes a stern tube 10 and a stern tube sealing device 101 .
  • the ship propeller 3 side is called the stern side
  • the side opposite to the ship propeller 3 is called the bow side.
  • the axial direction refers to the axial direction of the propeller shaft 2 of the ship propeller 3
  • the radial direction refers to the radial direction of the propeller shaft 2 of the ship propeller 3
  • the circumferential direction refers to the direction of the ship propeller 3. It indicates the circumferential direction of the propeller shaft 2 .
  • the stern tube 10 is a tubular member provided around the propeller shaft 2 .
  • the stern tube 10 covers the propeller shaft 2 from the radially outer side.
  • the stern tube 10 forms a stern tube bearing chamber 12 around the propeller shaft 2 .
  • the stern tube 10 forms a ring-shaped stern tube bearing chamber 12 extending radially outward of the propeller shaft 2 in the circumferential direction.
  • Lubricating oil is supplied into the stern tube bearing chamber 12 by an oil pump unit 70, which will be described later.
  • a bearing 11 a and a bearing 11 b that rotatably support the propeller shaft 2 are provided in the stern tube bearing chamber 12 .
  • Each of the bearings 11 a and 11 b is press-fitted into the stern tube 10 .
  • the bearing 11 a is provided on the stern side of the stern tube bearing chamber 12 .
  • the bearing 11 b is provided on the bow side of the stern tube bearing chamber 12 .
  • the stern tube sealing device 101 is provided adjacent to the stern tube 10 in the axial direction.
  • the stern tube sealing device 101 has a stern side sealing device 101a and a bow side sealing device 101b.
  • the stern tube seal device 101 prevents lubricating oil supplied to the stern tube bearing chamber 12 from leaking outboard or inboard from the stern tube 10 covering the propeller shaft 2 .
  • the stern side seal device 101a includes a housing 102, a first seal ring 105a, a second seal ring 105b and a third seal ring 105c.
  • the stern-side seal device 101a is connected to the stern tube 10 from outside the ship.
  • the housing 102 is composed of a plurality of tubular members connected by bolts or the like.
  • the propeller shaft 2 is inserted through the housing 102 . That is, the housing 102 is provided around the propeller shaft 2 .
  • the housing 102 also holds a first seal ring 105a, a second seal ring 105b and a third seal ring 105c. That is, each of the first seal ring 105 a , the second seal ring 105 b and the third seal ring 105 c is attached to the housing 102 .
  • the housing 102 is connected to the stern side of the stern tube 10 by bolts 104 from outside the boat.
  • Each of the first seal ring 105a, the second seal ring 105b and the third seal ring 105c is an annular member made of an elastic material.
  • the inner peripheral surfaces of the first seal ring 105 a , the second seal ring 105 b and the third seal ring 105 c are in sliding contact with the outer peripheral surface of the liner 4 .
  • the liner 4 is a cylindrical member made of a metal material. The liner 4 is fitted onto the propeller shaft 2 and fixed to the marine propeller 3 with bolts 5 to rotate together with the propeller shaft 2 .
  • the bow-side seal device 101b includes a housing 112, a fourth seal ring 105d and a fifth seal ring 105e.
  • the housing 112 is composed of a plurality of cylindrical members connected by bolts or the like.
  • the propeller shaft 2 is inserted through the housing 112 .
  • the housing 112 also holds a fourth seal ring 105d and a fifth seal ring 105e.
  • the housing 112 is connected to the bow side of the stern tube 10 with bolts 114 .
  • Each of the fourth seal ring 105d and the fifth seal ring 105e is an annular member made of an elastic material.
  • the inner peripheral surfaces of the fourth seal ring 105 d and the fifth seal ring 105 e are in sliding contact with the outer peripheral surface of the liner 6 .
  • the liner 6 is a cylindrical member made of a metal material. The liner 6 is fitted around the propeller shaft 2 and fixed to rotate together with the propeller shaft 2 .
  • An air supply section 120 is connected to the stern tube structure 100 .
  • the air supply section 120 includes the air control unit 30 and the air supply path 121 .
  • the air supply unit 120 supplies air to the stern-side sealing device 101a of the stern tube sealing device 101 . Specifically, the air supply unit 120 supplies air at a constant flow rate between the first seal ring 105a and the second seal ring 105b of the stern seal device 101a, the air pressure being adjusted to be equal to or higher than the seawater pressure.
  • the air control unit 30 includes a filter 31, a regulator 32, a flow meter 33, a flow controller 34, a check valve 35, a valve 36 and a pressure gauge 40 in order from the air source 38 toward the stern seal device 101a.
  • the valve 36 is normally open.
  • the air control unit 30 reduces the pressure of air supplied from an air source 38, such as a compressor, with the regulator 32, and supplies the air from the flow controller 34 through the air supply path 121 to the stern seal device 101a.
  • the flow controller 34 supplies air to the stern seal device 101a at a set flow rate in response to fluctuations in the seawater pressure that presses the first seal ring 105a of the stern seal device 101a. Adjust the supplied air pressure to be equal to or higher than the seawater pressure.
  • the air supply path 121 is formed from inside the ship through the stern tube 10 and the housing 102 of the stern side seal device 101a.
  • the air supply path 121 supplies air from the air control unit 30 to the stern seal device 101a.
  • the air supply path 121 is formed to communicate between the first seal ring 105a and the second seal ring 105b of the stern side seal device 101a.
  • the air supplied from the flow controller 34 of the air control unit 30 passes through the air supply path 121 and is guided to the stern side seal device 101a.
  • the air introduced into the stern seal device 101a is discharged to the outside (under the sea) of the stern seal device 101a from between the first seal ring 105a and the liner 4 against the seawater pressure.
  • An oil tank unit 60 and an oil pump unit 70 are connected to the stern tube structure 100 .
  • Lubricating oil supplied from the oil tank unit 60 is supplied from the oil pump unit 70 to the first oil chamber 108 a , the second oil chamber 108 b and the stern tube bearing chamber 12 . Also, the lubricating oil is recovered from the second oil chamber 108 b and the stern tube bearing chamber 12 to the oil tank unit 60 through the oil return passage 54 .
  • the oil tank unit 60 includes an oil tank 61 and a valve 62.
  • the valve 62 is interposed in the middle of the oil return passage 54 .
  • Valve 62 is normally open.
  • Air is supplied from the air control unit 30 to the oil tank 61 through the pressurization path 52 .
  • the air control unit 30 supplies air from the secondary side of the regulator 32 to the oil tank 61 through the pressure passage 52 .
  • the air control unit 30 has an air relay 37 as a pressure regulating valve in the middle of the pressurization path 52 .
  • the air relay 37 is connected to a pressure input signal path 53 drawn from the secondary side of the flow controller 34 .
  • the air relay 37 controls the chamber pressure of the oil tank 61 to be higher than that of the air supply passage 121 .
  • the oil pressure of the lubricating oil in the first oil chamber 108a is always higher than the seawater pressure and the air chamber pressure of the air chamber 107 by a constant pressure. controlled to be
  • the oil chamber pressure of the first oil chamber 108a is controlled to always be higher than the air chamber pressure of the air chamber 107 by a constant pressure. Also, the lip portion of the second seal ring 105b faces the bow side. Therefore, the lubricating oil in the first oil chamber 108 a can always press the lip portion of the second seal ring 105 b against the liner 4 . The lubricating oil in the first oil chamber 108a always presses the lip portion of the second seal ring 105b against the liner 4, so that the lip portion of the second seal ring 105b is always in sliding contact with the liner 4, and the air flows from the first oil chamber 108a. Leakage of lubricant into chamber 107 is prevented.
  • the oil pump unit 70 includes, in order from the oil tank 61 side, a filter 71, a circulation pump 72, a cooler 73, and a valve 74 at a position where the oil supply path 56 extending from the cooler 73 branches. Valve 74 is normally open.
  • the oil pump unit 70 supplies lubricating oil supplied from the oil tank unit 60 to the first oil chamber 108a, the stern tube bearing chamber 12 and the second oil chamber 108b. Lubricating oil is supplied to the stern tube bearing chamber 12 through the sliding surfaces between the liner 4 and the second seal ring 105b and the third seal ring 105c.
  • the lubricating oil is constantly circulated.
  • a discharge section 150 is connected to the stern tube structure 100 .
  • the discharge section 150 has a drain recovery unit 80 and a discharge path 152 .
  • Seawater and lubricating oil (drain) that have entered the stern seal device 101a are discharged from the stern seal device 101a to the discharge portion 150 .
  • the discharge passage 152 is formed to communicate between the first seal ring 105a and the second seal ring 105b of the stern side seal device 101a. Seawater and lubricating oil entering between the first seal ring 105a and the second seal ring 105b are discharged to the discharge path 152 .
  • the discharge path 152 is provided with a valve 153 for opening and closing the path.
  • the seawater and lubricating oil discharged to the discharge passage 152 are guided to the drain recovery unit 80 .
  • the drain recovery unit 80 includes a discharge tank 81 (see FIG. 4). The drain recovery unit 80 recovers seawater and lubricating oil discharged to the discharge path 152 to the discharge tank 81 .
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of the stern tube sealing device 101. As shown in FIG.
  • the stern side seal device 101a includes a housing 102, a first seal ring 105a, a second seal ring 105b, a third seal ring 105c and a packing ring .
  • the housing 102 includes, in order from the stern side, a first split housing 102a, a second split housing 102b, a third split housing 102c, a fourth split housing 102d and a fifth split housing 102e.
  • the housing 102 is formed with an air hole 102b1, an air supply passage 121, a housing oil passage 132b, and a discharge passage 152. As shown in FIG.
  • the first split housing 102a, the second split housing 102b, the third split housing 102c, the fourth split housing 102d, and the fifth split housing 102e are cylindrical members.
  • the first split housing 102a, the second split housing 102b, the third split housing 102c, the fourth split housing 102d, and the fifth split housing 102e are fixed to the stern tube 10 in a stacked state in which they are fitted together.
  • first split housing 102a, the second split housing 102b, the third split housing 102c, the fourth split housing 102d, and the fifth split housing 102e form annular grooves between adjacent split housings.
  • the housing 102 holds the first seal ring 105a, the second seal ring 105b, the third seal ring 105c, and the packing ring 106. As shown in FIG.
  • the housing 102 holds a packing ring 106 between the first split housing 102a and the second split housing 102b. Further, the housing 102 holds the first seal ring 105a between the second split housing 102b and the third split housing 102c. Further, the housing 102 holds a second seal ring 105b between the third split housing 102c and the fourth split housing 102d. Furthermore, the housing 102 holds a third seal ring 105c between the fourth split housing 102d and the fifth split housing 102e.
  • Each of the first seal ring 105a, the second seal ring 105b and the third seal ring 105c is an annular member made of an elastic material such as rubber.
  • Each of the first seal ring 105a, the second seal ring 105b, and the third seal ring 105c is held by the housing 102 so as to be in sliding contact with the outer peripheral surface of the liner 4. As shown in FIG.
  • Examples of elastic materials used for the first seal ring 105a, the second seal ring 105b, and the third seal ring 105c include rubber materials and resin materials other than rubber.
  • Examples of rubber materials include nitrile rubber (NBR), fluororubber (FR), natural rubber (NR), isobrene rubber (IR), butadiene rubber (BR), and styrene-butadiene rubber (SBR).
  • resin materials other than rubber include polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), fluororesins, and polyamide (PA).
  • FIG. 3 is a diagram illustrating the configuration of the first seal ring 105a. As shown in FIG. 3, the first seal ring 105a has a key portion 105a1, a heel portion 105a2, an arm portion 105a3 and a lip portion 105a4.
  • the key portion 105a1 is formed at the outer peripheral side end portion of the first seal ring 105a.
  • the key portion 105a1 is fitted and held in an annular groove formed by the adjacent groove 102b2 of the second split housing 102b and the groove 102c1 of the third split housing 102c.
  • the heel portion 105a2 is formed to extend from the key portion 105a1 toward the liner 4.
  • Arm portion 105a3 is formed to extend from the end of heel portion 105a2 to the stern side.
  • a backup ring 102c2 that supports the heel portion 105a2 and the arm portion 105a3 of the first seal ring 105a is formed in the third split housing 102c.
  • the lip portion 105a4 is formed at the inner peripheral side end portion of the arm portion 105a3.
  • the lip portion 105 a 4 is in sliding contact with the outer peripheral surface of the liner 4 .
  • the lip portion 105 a 4 has a spring groove 105 a 5 on the surface opposite to the liner 4 .
  • the lip portion 105a4 is pressed toward the liner 4 so as to be clamped by an annular spring 111 fitted in the spring groove 105a5.
  • the lip portion 105 a 4 is pressed by the spring 111 , so that the sliding contact portion 105 a 6 is elastically deformed and comes into sliding contact with the outer peripheral surface of the liner 4 .
  • the key portion 105a1 of the first seal ring 105a is held between the second split housing 102b and the third split housing 102c, and the sliding contact portion 105a6 of the lip portion 105a4 slides on the outer peripheral surface of the liner 4, as described above. touch.
  • the second seal ring 105b and the third seal ring 105c have the same shape as the first seal ring 105a. Further, the second seal ring 105b and the third seal ring 105c are held by the housing 102 and provided so as to be in sliding contact with the outer peripheral surface of the liner 4. As shown in FIG. However, the orientation of the second seal ring 105b and the third seal ring 105c is different from that of the first seal ring 105a. Specifically, the second seal ring 105b and the third seal ring 105c each have an arm portion extending from the heel portion toward the bow side, and a lip portion extending toward the bow side from the key portion held by the housing 102. It is provided so as to be in sliding contact with the liner 4 .
  • An air chamber 107 is formed between the first seal ring 105a and the second seal ring 105b. From the flow controller 34 of the air control unit 30, the air chamber 107 is supplied with a constant flow rate of air through the air supply path 121, the air pressure of which is adjusted to be equal to or higher than the seawater pressure on the stern side of the first seal ring 105a.
  • seawater By supplying air whose air pressure is equal to or higher than the seawater pressure to the air chamber 107, seawater is prevented from flowing into the air chamber 107 from between the lip portion of the first seal ring 105a and the liner 4. Seawater and lubricating oil that have entered the air chamber 107 are discharged from the discharge passage 152 and collected by the drain collection unit 80 .
  • a first oil chamber 108a is formed between the second seal ring 105b and the third seal ring 105c. Lubricating oil is supplied to the first oil chamber 108a through a housing oil passage 132b by an oil pump unit 70, which will be described later.
  • the supplied lubricating oil is sealed by the second seal ring 105b, so that the oil pressure becomes equal to or higher than the oil pressure of the lubricating oil in the stern tube bearing chamber 12. Therefore, the lubricating oil supplied to the first oil chamber 108a flows out from between the third seal ring 105c and the liner 4 to the stern tube 10 side.
  • the bow-side seal device 101b includes a housing 112, a fourth seal ring 105d and a fifth seal ring 105e.
  • the housing 112 has, in order from the stern side, a first split housing 112a, a second split housing 112b, and a third split housing 112c.
  • a housing oil passage 137 a and a housing oil passage 137 b are formed in the housing 112 .
  • the fourth seal ring 105d and the fifth seal ring 105e have the same shape as the first seal ring 105a, are held by the housing 112, and are provided so as to be in sliding contact with the outer peripheral surface of the liner 6.
  • the second oil chamber 108b is axially formed between the fourth seal ring 105d and the fifth seal ring 105e.
  • Lubricating oil is supplied to the second oil chamber 108b from a housing oil passage 137a by an oil pump unit 70, which will be described later. Also, the lubricating oil supplied to the second oil chamber 108b is returned to the oil tank unit 60 via the housing oil passage 137b.
  • the stern tube sealing device 101 prevents the lubricant from leaking out of the ship from the stern tube 10 by the stern side sealing device 101a due to the above configuration.
  • the bow side sealing device 101b prevents the lubricating oil from leaking into the ship.
  • the seawater and the lubricating oil are separated by the air chamber, and the possibility of the lubricating oil leaking out of the ship is reduced.
  • the third seal ring 105c can function as a spare seal ring on the lubricating oil side to prevent the lubricating oil from leaking overboard. With such a configuration, leakage of lubricating oil from the stern tube 10 to the outside of the ship is further reduced.
  • FIG. 4 is a diagram showing a schematic configuration of the drain recovery unit 80 according to this embodiment. Drain recovery unit 80 is used in stern tube seal system 200 .
  • the drain recovery unit 80 includes a discharge tank 81, an ejector 82, an orifice 84, and a level alarm 85.
  • the discharge tank 81 includes a valve 80v2, a valve 80v3, a valve 80v4 and a valve 80v5.
  • the valves 80v2 and 80v3 are normally closed.
  • the valves 80v4 and 80v5 are normally open.
  • a pressure gauge (not shown) is connected to the valve 80v4. The pressure gauge measures the pressure inside the discharge tank 81 .
  • Air, seawater, and lubricating oil from the air chamber 107 are collected from the discharge path 152 in the discharge tank 81 . During normal times, only air is recovered from the exhaust passage 152 . Collected air is discharged through orifice 84 . Also, when seawater or lubricating oil enters the air chamber 107 , the seawater and the lubricating oil are collected in the discharge tank 81 .
  • the level alarm 85 issues an alarm.
  • the user opens the valve 80v2 to discharge the seawater and lubricating oil accumulated in the discharge tank 81 .
  • the ejector 82 discharges air from within the discharge tank 81 .
  • the ejector 82 makes the pressure in the discharge tank 81 negative with respect to the atmospheric pressure. That is, the ejector 82 lowers the pressure of the discharge tank 81 below the atmospheric pressure.
  • the valve 84v3 is opened and the valves 80v4 and 80v5 are closed.
  • Air source 83 supplies pressurized air to ejector 82 via valve 80v1.
  • the ejector 82 to which the pressurized air is supplied forcibly exhausts the air from the discharge tank 81 to the outside through the valve 80v3.
  • the ejector 82 has a silencer 82a downstream.
  • the discharge tank 81 forcibly discharges air, seawater, and lubricating oil from the air chamber 107 by having a negative pressure by the ejector 82 .
  • the pressure in the discharge tank 81 can be set to a negative pressure to enhance the ability to recover the drain that has entered from the stern side.
  • the stern tube seal system recovers seawater and lubricating oil flowing through the discharge passage 152 by applying negative pressure to the discharge tank 81 and sucking it. Therefore, the flow rate of air (drain air) flowing through the discharge passage 152 can be increased. Also, the air (drain air) flowing through the discharge passage 152 can be sucked with a higher pressure difference.
  • the drain can be recovered even if, for example, salt crystals are formed in the discharge path 152. Also, even if the discharge path 152 is long, the drain air can be recovered strongly. Furthermore, even if the discharge passage 152 is tilted upward, for example, the drain air can be collected strongly.
  • the air chamber 107 is an example of a first space
  • the first oil chamber 108a is an example of a second space
  • the discharge passage 152 is an example of a pipe communicating with the first space
  • the ejector 82 is an example of a decompression unit.
  • FIG. 5 is a diagram showing a schematic configuration of the drain recovery unit 180 according to this embodiment.
  • the drain recovery unit 180 includes a ship bottom portion 180A and an operation portion 180B.
  • the ship bottom portion 180A is a portion of the drain recovery unit 180 that is provided under the scaffolding FL, that is, at the ship bottom.
  • the ship bottom 180A is provided in a place where people do not normally enter.
  • the operation unit 180B is provided on the scaffold FL.
  • the operation unit 180B is, for example, an operation panel. The user operates the drain collection unit 180 by operating the operation section 180B.
  • a bottom portion 180A of the drain recovery unit 180 includes a discharge tank 181 and a level alarm 185. Also, the discharge tank 181 of the ship bottom 180A is provided with a valve 180v2. The valve 180v2 is normally closed. In addition, the discharge tank 181 may be provided with a safety valve. Also, an air driven valve 180v6 is provided between the discharge path 152 and the discharge tank 181 . The air driven valve 180v6 is normally open.
  • the operating portion 180B of the drain recovery unit 180 includes an ejector 182 and an orifice 184.
  • the operation unit 180B also includes a valve 180v1, an air-driven valve 180v3, an air-driven valve 180v4, an air-driven valve 180v5, and a switching valve 180v7.
  • the valve 180v1 is normally closed.
  • the operation section 180B includes a filter 186, a regulator 187, a pressure gauge 188a, a pressure gauge 188b, a speed controller 189a and a speed controller 189b.
  • the air driven valve 180v3 is normally closed.
  • the air driven valve 180v4 and the air driven valve 180v5 are normally open.
  • the switching valve 180v7 switches the air that has passed through the regulator 187 to either path P1 or path P2.
  • the drain recovery unit 180 operates in three operating modes: normal operating mode, ejector operating mode, and drain discharge mode.
  • the discharge tank 181 collects air, seawater, and lubricating oil from the air chamber 107 through the discharge passage 152 .
  • the valves 180v1 and 180v2 are closed. Also, the speed controller 189a and the speed controller 189b are closed. Therefore, the air collected from the discharge passage 152 flows from the discharge tank 181 through the communication passage 180p1, the air driven valves 180v4 and 180v5 in order, and is discharged from the orifice 184. Seawater and lubricating oil collected from the discharge passage 152 are collected in the discharge tank 181 .
  • valve 180v7 In the ejector operation mode, the switching valve 180v7 is switched to path P1.
  • valve 180v1 In ejector operation mode, valve 180v1 is first opened from the state of normal operation mode. Air is supplied from the air source 183 to the regulator 187 when the valve 180v1 is opened. The regulator 187 adjusts the air pressure on the outlet side (the pressure of the pressure gauge 188a) to 0.4 megapascals, for example.
  • the air driven valve 180v3 When air is supplied from the air source 183 to the path P1, the air driven valve 180v3 is switched from closed to open. Further, when air is supplied from the air source 183 to the path P1, the air driven valve 180v5 is switched from open to closed.
  • the ejector 182 ejects air from inside the ejection tank 181 .
  • the ejector 182 makes the pressure in the discharge tank 181 negative with respect to the atmospheric pressure.
  • the discharge tank 81 forcibly discharges air, seawater and lubricating oil from the air chamber 107 by applying a negative pressure by the ejector 82 .
  • valve 180v1 and the speed controller 189a are closed.
  • seawater and lubricating oil collected in the discharge tank 181 are discharged from the discharge tank 181 to the external discharge groove DR.
  • the switching valve 180v7 is switched to path P2.
  • the valves 180v1 and 180v2 are opened from the state of the normal operation mode. Air is supplied from the air source 183 to the regulator 187 when the valve 180v1 is opened.
  • the regulator 187 adjusts the air pressure on the outlet side (the pressure of the pressure gauge 188a) to 0.4 megapascals, for example.
  • the air driven valve 180v4 is switched from open to closed. Further, when air is supplied from the air source 183 to the path P2, the air is supplied to the communication path 180p2, and the air driven valve 180v6 is switched from open to closed.
  • valves 180v1, 181v2 and the speed controller 189b are closed.
  • seawater and lubricating oil collected in the discharge tank 181 can be discharged to the outside. can.
  • the discharge tank 181 can be remotely controlled by the control panel.
  • operation unit 180B is an example of a decompression unit and a pressurization unit.
  • the stern seal device 101a includes a total of three seal rings, namely the first seal ring 105a, the second seal ring 105b and the third seal ring 105c. is not limited to three.
  • FIG. 6 is a diagram showing a modification of the system configuration of the ship according to this embodiment.
  • the marine vessel 1A includes a stern tube seal system 200A.
  • the stern tube seal system 200A includes a stern tube structure 100A instead of the stern tube structure 100 of the stern tube seal system 200.
  • the stern tube structure 100A includes a stern tube sealing device 101A in place of the stern tube sealing device 101 of the stern tube structure 100.
  • the stern tube sealing device 101A is provided adjacent to the stern tube 10 in the axial direction.
  • the stern tube sealing device 101A has a stern side sealing device 101Aa and a bow side sealing device 101b.
  • the stern tube seal device 101 prevents lubricating oil supplied to the stern tube bearing chamber 12 from leaking outboard or inboard from the stern tube 10 covering the propeller shaft 2 .
  • the stern-side seal device 101Aa includes a housing 102A, a 1a seal ring 105aa, a 1b seal ring 105ab, a second seal ring 105b and a third seal ring 105c. That is, the stern side seal device 101Aa includes four seal rings.
  • the decompression unit is not limited to the ejector, and for example, an exhaust pump or the like may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sealing Devices (AREA)

Abstract

The present invention is a stern tube seal system, disposed on a propeller shaft of a marine propeller, the system comprising: a housing disposed around the propeller shaft; a first seal ring, a second seal ring, and a third seal ring that are attached to the housing and are disposed in that order from the marine propeller side; an air control unit that supplies air to a first space bounded by the first seal ring, the second seal ring, the propeller shaft, and the housing; an oil pump unit that supplies lubricating oil to a second space bounded by the second seal ring, the third seal ring, the propeller shaft, and the housing; and a drain recovery unit that comprises a discharge tank, to which is connected piping that is in communication with the first space, and a decompression section that lowers the pressure within the discharge tank to below the atmospheric pressure.

Description

船尾管シールシステム、船舶及びドレン回収ユニットStern tube sealing systems, ships and drain recovery units
 本開示は、船尾管シールシステム、船舶及びドレン回収ユニットに関する。 The present disclosure relates to stern tube seal systems, vessels and drain recovery units.
 船舶に搭載される船尾管シール装置は、プロペラ軸の周囲に設置され、プロペラ軸の周囲に空気を供給することで船内への浸水を防止する。船尾管シール装置を有する船尾管シールシステムは、船尾管シール装置への空気の供給のために空気制御ユニットを備える。また、船尾管シールシステムは、空気、海水及び油を回収するドレン回収ユニットを備える(例えば特許文献1)。 The stern tube sealing device mounted on the ship is installed around the propeller shaft and prevents water from entering the ship by supplying air around the propeller shaft. A stern tube sealing system with a stern tube sealing device comprises an air control unit for supplying air to the stern tube sealing device. The stern tube seal system also includes a drain recovery unit that recovers air, seawater, and oil (eg, US Pat.
特許第6483938号公報Japanese Patent No. 6483938
 従来の船尾管シールシステムは、船尾管シールシステムに供給したエアの一部を船内のドレン回収ユニットに流す。そして、従来の船尾管シールシステムは、ドレン回収ユニットに、エアを流すことによって漏れた海水又は油を回収する。  Conventional stern tube seal systems flow part of the air supplied to the stern tube seal system to the onboard drain recovery unit. Conventional stern tube sealing systems then collect leaked seawater or oil by flowing air to a drain collection unit.
 しかしながら、ドレン回収ユニットに流れるエア(ドレンエア)の流量は小さい。また、ドレン回収ユニットに流れるエア(ドレンエア)の圧力は、海水圧により制御されているため、自由に設定できず、圧力もそれほど大きくない。 However, the flow rate of air (drain air) flowing to the drain recovery unit is small. In addition, the pressure of the air (drain air) flowing into the drain recovery unit is controlled by the seawater pressure, so it cannot be set freely and the pressure is not so high.
 また、ドレン回収ユニットは、設置する高さに制限がある。更に、ドレン配管を流れる空気は、塩気を含むため塩の結晶ができやすい。ドレン配管は、塩の結晶ができやすいため、ドレン回収が難しい。更に、ドレン配管が長い船の場合にはドレン回収が難しい。 Also, the drain recovery unit has a limit to the height at which it can be installed. Furthermore, since the air flowing through the drain pipe contains salt, salt crystals are likely to form. Salt crystals easily form in the drain pipe, making drain recovery difficult. Furthermore, in the case of ships with long drain pipes, it is difficult to collect the drain.
 本開示は、船尾側から侵入したドレンの回収能力を高めた船尾管シールシステム、船舶及びドレン回収ユニットを提供することを目的とする。 An object of the present disclosure is to provide a stern tube seal system, a vessel, and a drain recovery unit that have enhanced recovery capabilities for drain that has entered from the stern side.
 本開示は、船舶用プロペラのプロペラ軸に設けられる船尾管シールシステムであって、前記プロペラ軸の周囲に設けられるハウジングと、前記ハウジングに取り付けられ、前記船舶用プロペラの側から順に設けられる第1シールリング、第2シールリング及び第3シールリングと、前記第1シールリング、前記第2シールリング、前記プロペラ軸及び前記ハウジングにより囲まれる第1空間にエアを供給する空気制御ユニットと、前記第2シールリング、前記第3シールリング、前記プロペラ軸及び前記ハウジングにより囲まれる第2空間に潤滑油を供給する油ポンプユニットと、前記第1空間に連通した配管が接続される排出タンクと、前記排出タンクの内部の圧力を大気圧より低下させる減圧部と、を備えるドレン回収ユニットと、を備える船尾管シールシステムである。 The present disclosure is a stern tube seal system provided on a propeller shaft of a marine propeller, comprising: a housing provided around the propeller shaft; an air control unit for supplying air to a first space surrounded by a seal ring, a second seal ring, a third seal ring, the first seal ring, the second seal ring, the propeller shaft and the housing; an oil pump unit that supplies lubricating oil to a second space surrounded by two seal rings, the third seal ring, the propeller shaft and the housing; a discharge tank to which a pipe communicating with the first space is connected; A stern tube sealing system comprising a drain recovery unit comprising a pressure reducing section for reducing the pressure inside a discharge tank below atmospheric pressure.
 本開示によれば、船尾側から侵入したドレンの回収能力を高めた船尾管シールシステム、船舶及びドレン回収ユニットを提供できる。 According to the present disclosure, it is possible to provide a stern tube seal system, a vessel, and a drain recovery unit that have enhanced recovery capabilities for drain that has entered from the stern side.
図1は、本実施形態に係る船舶のシステム構成の一例を示す図である。FIG. 1 is a diagram showing an example of the system configuration of a ship according to this embodiment. 図2は、本実施形態に係る船舶の船尾管シール装置の一例を示す図である。FIG. 2 is a diagram showing an example of a stern tube sealing device for a ship according to this embodiment. 図3は、本実施形態に係る船尾管シールシステムのシールリングの一例を示す図である。FIG. 3 is a diagram showing an example of a seal ring of the stern tube seal system according to this embodiment. 図4は、本実施形態に係る船尾管シールシステムのドレン回収ユニットの一例を示す図である。FIG. 4 is a diagram showing an example of a drain recovery unit of the stern tube seal system according to this embodiment. 図5は、本実施形態に係る船尾管シールシステムのドレン回収ユニットの変形例を示す図である。FIG. 5 is a diagram showing a modification of the drain recovery unit of the stern tube seal system according to this embodiment. 図6は、本実施形態に係る船舶のシステム構成の変形例を示す図である。FIG. 6 is a diagram showing a modification of the system configuration of the ship according to this embodiment.
 以下、本発明の各実施形態について、添付の図面を参照しながら説明する。なお、各実施形態に係る明細書及び図面の記載に関して、実質的に同一の又は対応する機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する場合がある。また、理解を容易にするために、図面における各部の縮尺は、実際とは異なる場合がある。 Hereinafter, each embodiment of the present invention will be described with reference to the attached drawings. In addition, regarding the descriptions of the specifications and drawings according to each embodiment, components having substantially the same or corresponding functional configurations may be denoted by the same reference numerals, thereby omitting duplicate descriptions. Also, to facilitate understanding, the scale of each part in the drawings may differ from the actual scale.
 平行、直角、直交、水平、垂直、上下、左右などの方向には、実施形態の作用、効果を損なわない程度のずれが許容される。角部の形状は、直角に限られず、弓状に丸みを帯びてもよい。平行、直角、直交、水平、垂直には、略平行、略直角、略直交、略水平、略垂直が含まれてもよい。 In directions such as parallel, right angle, orthogonal, horizontal, vertical, up and down, left and right, misalignment to the extent that the action and effect of the embodiment are not impaired is allowed. The shape of the corners is not limited to right angles, and may be arcuately rounded. Parallel, right angle, orthogonal, horizontal, and vertical may include substantially parallel, substantially right angle, substantially orthogonal, substantially horizontal, and substantially vertical.
 <船舶1>
 最初に、本実施形態に係る船尾管シールシステム200が適用される船舶1について説明する。
<Ship 1>
First, the ship 1 to which the stern tube seal system 200 according to this embodiment is applied will be described.
 図1は、本実施形態に係る船舶1のシステム構成の一例を示す図である。図1においては、空気供給路121等の流路は、太線で模式的に図示されている。 FIG. 1 is a diagram showing an example of the system configuration of a ship 1 according to this embodiment. In FIG. 1 , flow paths such as the air supply path 121 are schematically illustrated with thick lines.
 船舶1は、船尾管シールシステム200を備える。船尾管シールシステム200は、船尾管構造100と、空気制御ユニット30と、油タンクユニット60と、油ポンプユニット70と、ドレン回収ユニット80と、を備える。 The ship 1 includes a stern tube seal system 200. The stern tube sealing system 200 comprises a stern tube structure 100 , an air control unit 30 , an oil tank unit 60 , an oil pump unit 70 and a drain recovery unit 80 .
 船尾管構造100は、船舶1のプロペラ軸2まわりに設けられる。図1に示すように、船尾管構造100は、船尾管10と、船尾管シール装置101とを含む。なお、以下の説明では、プロペラ軸2の軸方向に沿って船舶用プロペラ3側を船尾側、船舶用プロペラ3とは反対側を船首側という。また、軸方向とは、船舶用プロペラ3のプロペラ軸2の軸方向を指し、径方向とは、船舶用プロペラ3のプロペラ軸2の径方向を指し、周方向とは、船舶用プロペラ3のプロペラ軸2の周方向を指す。 The stern tube structure 100 is provided around the propeller shaft 2 of the ship 1. As shown in FIG. 1 , the stern tube structure 100 includes a stern tube 10 and a stern tube sealing device 101 . In the following description, along the axial direction of the propeller shaft 2, the ship propeller 3 side is called the stern side, and the side opposite to the ship propeller 3 is called the bow side. Further, the axial direction refers to the axial direction of the propeller shaft 2 of the ship propeller 3, the radial direction refers to the radial direction of the propeller shaft 2 of the ship propeller 3, and the circumferential direction refers to the direction of the ship propeller 3. It indicates the circumferential direction of the propeller shaft 2 .
 船尾管10は、プロペラ軸2まわりに設けられる管状の部材である。船尾管10は、径方向外側からプロペラ軸2を覆う。船尾管10は、プロペラ軸2の外周に船尾管軸受室12を形成する。例えば、船尾管10は、図1に示すように、プロペラ軸2の径方向外側に周方向に延在するリング状の船尾管軸受室12を形成する。船尾管軸受室12内には、後述する油ポンプユニット70により潤滑油が供給される。船尾管軸受室12内には、プロペラ軸2を回転可能に支持する軸受11a及び軸受11bが設けられる。軸受11a及び軸受11bのそれぞれは、船尾管10に圧入されている。軸受11aは船尾管軸受室12の船尾側に設けられる。軸受11bは、船尾管軸受室12の船首側に設けられる。 The stern tube 10 is a tubular member provided around the propeller shaft 2 . The stern tube 10 covers the propeller shaft 2 from the radially outer side. The stern tube 10 forms a stern tube bearing chamber 12 around the propeller shaft 2 . For example, as shown in FIG. 1, the stern tube 10 forms a ring-shaped stern tube bearing chamber 12 extending radially outward of the propeller shaft 2 in the circumferential direction. Lubricating oil is supplied into the stern tube bearing chamber 12 by an oil pump unit 70, which will be described later. A bearing 11 a and a bearing 11 b that rotatably support the propeller shaft 2 are provided in the stern tube bearing chamber 12 . Each of the bearings 11 a and 11 b is press-fitted into the stern tube 10 . The bearing 11 a is provided on the stern side of the stern tube bearing chamber 12 . The bearing 11 b is provided on the bow side of the stern tube bearing chamber 12 .
 船尾管シール装置101は、軸方向で船尾管10に隣接して設けられる。船尾管シール装置101は、船尾側シール装置101a及び船首側シール装置101bを有する。船尾管シール装置101は、船尾管軸受室12に供給される潤滑油が、プロペラ軸2を覆う船尾管10から船外又は船内に漏洩するのを防止する。 The stern tube sealing device 101 is provided adjacent to the stern tube 10 in the axial direction. The stern tube sealing device 101 has a stern side sealing device 101a and a bow side sealing device 101b. The stern tube seal device 101 prevents lubricating oil supplied to the stern tube bearing chamber 12 from leaking outboard or inboard from the stern tube 10 covering the propeller shaft 2 .
 船尾側シール装置101aは、ハウジング102、第1シールリング105a、第2シールリング105b及び第3シールリング105cを備える。船尾側シール装置101aは、船外から船尾管10に連結されている。 The stern side seal device 101a includes a housing 102, a first seal ring 105a, a second seal ring 105b and a third seal ring 105c. The stern-side seal device 101a is connected to the stern tube 10 from outside the ship.
 ハウジング102は、ボルト等によって連結された複数の筒状部材で構成される。ハウジング102には、プロペラ軸2が挿通されている。すなわち、ハウジング102は、プロペラ軸2の周囲に設けられる。また、ハウジング102は、第1シールリング105a、第2シールリング105b及び第3シールリング105cを保持する。すなわち、第1シールリング105a、第2シールリング105b及び第3シールリング105cのそれぞれは、ハウジング102に取り付けられる。更に、ハウジング102は、船外からボルト104によって船尾管10の船尾側に連結されている。 The housing 102 is composed of a plurality of tubular members connected by bolts or the like. The propeller shaft 2 is inserted through the housing 102 . That is, the housing 102 is provided around the propeller shaft 2 . The housing 102 also holds a first seal ring 105a, a second seal ring 105b and a third seal ring 105c. That is, each of the first seal ring 105 a , the second seal ring 105 b and the third seal ring 105 c is attached to the housing 102 . Furthermore, the housing 102 is connected to the stern side of the stern tube 10 by bolts 104 from outside the boat.
 第1シールリング105a、第2シールリング105b及び第3シールリング105cのそれぞれは、弾性材料で形成された円環状部材である。第1シールリング105a、第2シールリング105b及び第3シールリング105cのそれぞれの内周面は、ライナ4の外周面に摺接する。ライナ4は、金属材料で形成された円筒状部材である。ライナ4は、プロペラ軸2に外嵌してボルト5によって船舶用プロペラ3に固定されてプロペラ軸2と共に回転する。 Each of the first seal ring 105a, the second seal ring 105b and the third seal ring 105c is an annular member made of an elastic material. The inner peripheral surfaces of the first seal ring 105 a , the second seal ring 105 b and the third seal ring 105 c are in sliding contact with the outer peripheral surface of the liner 4 . The liner 4 is a cylindrical member made of a metal material. The liner 4 is fitted onto the propeller shaft 2 and fixed to the marine propeller 3 with bolts 5 to rotate together with the propeller shaft 2 .
 船首側シール装置101bは、ハウジング112、第4シールリング105d及び第5シールリング105eを備える。 The bow-side seal device 101b includes a housing 112, a fourth seal ring 105d and a fifth seal ring 105e.
 ハウジング112は、ボルト等によって連結された複数の筒状部材で構成される。ハウジング112には、プロペラ軸2が挿通されている。また、ハウジング112は、第4シールリング105d及び第5シールリング105eを保持する。ハウジング112は、ボルト114によって船尾管10の船首側に連結されている。 The housing 112 is composed of a plurality of cylindrical members connected by bolts or the like. The propeller shaft 2 is inserted through the housing 112 . The housing 112 also holds a fourth seal ring 105d and a fifth seal ring 105e. The housing 112 is connected to the bow side of the stern tube 10 with bolts 114 .
 第4シールリング105d及び第5シールリング105eのそれぞれは、弾性材料で形成された円環状部材である。第4シールリング105d及び第5シールリング105eのそれぞれの内周面はライナ6の外周面に摺接する。ライナ6は、金属材料で形成された円筒状部材である。ライナ6は、プロペラ軸2に外嵌して固定されてプロペラ軸2と共に回転する。 Each of the fourth seal ring 105d and the fifth seal ring 105e is an annular member made of an elastic material. The inner peripheral surfaces of the fourth seal ring 105 d and the fifth seal ring 105 e are in sliding contact with the outer peripheral surface of the liner 6 . The liner 6 is a cylindrical member made of a metal material. The liner 6 is fitted around the propeller shaft 2 and fixed to rotate together with the propeller shaft 2 .
 船尾管構造100には、空気供給部120が接続される。 An air supply section 120 is connected to the stern tube structure 100 .
 空気供給部120は、空気制御ユニット30及び空気供給路121を含む。空気供給部120は、船尾管シール装置101の船尾側シール装置101aに空気を供給する。具体的には、空気供給部120は、船尾側シール装置101aの第1シールリング105aと第2シールリング105bとの間に、空気圧を海水圧以上に調整した空気を一定の流量で供給する。 The air supply section 120 includes the air control unit 30 and the air supply path 121 . The air supply unit 120 supplies air to the stern-side sealing device 101a of the stern tube sealing device 101 . Specifically, the air supply unit 120 supplies air at a constant flow rate between the first seal ring 105a and the second seal ring 105b of the stern seal device 101a, the air pressure being adjusted to be equal to or higher than the seawater pressure.
 空気制御ユニット30は、空気源38から船尾側シール装置101aに向かって順に、フィルタ31、レギュレータ32、流量計33、フローコントローラ34、逆止弁35、バルブ36及び圧力計40を備える。バルブ36は、平時は開いている。空気制御ユニット30は、空気源38である例えばコンプレッサから供給された空気をレギュレータ32で減圧し、フローコントローラ34から空気供給路121を通じて船尾側シール装置101aに空気を供給する。 The air control unit 30 includes a filter 31, a regulator 32, a flow meter 33, a flow controller 34, a check valve 35, a valve 36 and a pressure gauge 40 in order from the air source 38 toward the stern seal device 101a. The valve 36 is normally open. The air control unit 30 reduces the pressure of air supplied from an air source 38, such as a compressor, with the regulator 32, and supplies the air from the flow controller 34 through the air supply path 121 to the stern seal device 101a.
 フローコントローラ34は、設定された流量で船尾側シール装置101aに空気を供給するように、船尾側シール装置101aの第1シールリング105aを押圧する海水圧の変動に応じて、空気供給路121に供給する空気圧を海水圧以上に調整する。 The flow controller 34 supplies air to the stern seal device 101a at a set flow rate in response to fluctuations in the seawater pressure that presses the first seal ring 105a of the stern seal device 101a. Adjust the supplied air pressure to be equal to or higher than the seawater pressure.
 空気供給路121は、船内から船尾管10及び船尾側シール装置101aのハウジング102を通るように形成される。空気供給路121は、空気制御ユニット30から船尾側シール装置101aに空気を供給する。空気供給路121は、船尾側シール装置101aの第1シールリング105aと第2シールリング105bとの間に通じるように形成されている。 The air supply path 121 is formed from inside the ship through the stern tube 10 and the housing 102 of the stern side seal device 101a. The air supply path 121 supplies air from the air control unit 30 to the stern seal device 101a. The air supply path 121 is formed to communicate between the first seal ring 105a and the second seal ring 105b of the stern side seal device 101a.
 空気制御ユニット30のフローコントローラ34から供給される空気は、空気供給路121を通って船尾側シール装置101aに導かれる。船尾側シール装置101aの内部に導かれた空気は、海水圧に抗して第1シールリング105aとライナ4との間から、船尾側シール装置101aの外部(海中)に排出される。 The air supplied from the flow controller 34 of the air control unit 30 passes through the air supply path 121 and is guided to the stern side seal device 101a. The air introduced into the stern seal device 101a is discharged to the outside (under the sea) of the stern seal device 101a from between the first seal ring 105a and the liner 4 against the seawater pressure.
 船尾管構造100には、油タンクユニット60及び油ポンプユニット70が接続される。第1油室108a、第2油室108b及び船尾管軸受室12には、油タンクユニット60から供給される潤滑油が油ポンプユニット70から供給される。また、第2油室108b及び船尾管軸受室12から油戻り路54を介して潤滑油が油タンクユニット60に回収される。 An oil tank unit 60 and an oil pump unit 70 are connected to the stern tube structure 100 . Lubricating oil supplied from the oil tank unit 60 is supplied from the oil pump unit 70 to the first oil chamber 108 a , the second oil chamber 108 b and the stern tube bearing chamber 12 . Also, the lubricating oil is recovered from the second oil chamber 108 b and the stern tube bearing chamber 12 to the oil tank unit 60 through the oil return passage 54 .
 油タンクユニット60は、油タンク61及びバルブ62を備える。バルブ62は、油戻り路54の途中に介在する。バルブ62は、平時には開いている。 The oil tank unit 60 includes an oil tank 61 and a valve 62. The valve 62 is interposed in the middle of the oil return passage 54 . Valve 62 is normally open.
 油タンク61には、空気制御ユニット30から加圧路52を介して空気が供給される。空気制御ユニット30は、レギュレータ32の二次側から加圧路52を介して油タンク61に空気を供給する。空気制御ユニット30は、加圧路52の途中に圧力調整弁であるエアリレー37を備える。エアリレー37には、フローコントローラ34の二次側から引き出された圧入力信号路53が接続される。エアリレー37により、空気供給路121より油タンク61の室圧が高くなるように制御される。すなわち、第1油室108aを空気制御ユニット30から空気が供給されることにより、第1油室108aにある潤滑油の油圧が、海水圧や空気室107の空気室圧力よりも常に一定圧高くなるように制御されている。 Air is supplied from the air control unit 30 to the oil tank 61 through the pressurization path 52 . The air control unit 30 supplies air from the secondary side of the regulator 32 to the oil tank 61 through the pressure passage 52 . The air control unit 30 has an air relay 37 as a pressure regulating valve in the middle of the pressurization path 52 . The air relay 37 is connected to a pressure input signal path 53 drawn from the secondary side of the flow controller 34 . The air relay 37 controls the chamber pressure of the oil tank 61 to be higher than that of the air supply passage 121 . That is, by supplying air from the air control unit 30 to the first oil chamber 108a, the oil pressure of the lubricating oil in the first oil chamber 108a is always higher than the seawater pressure and the air chamber pressure of the air chamber 107 by a constant pressure. controlled to be
 第1油室108aの油室圧力は空気室107の空気室圧力よりも常に一定圧高くなるように制御される。また、第2シールリング105bのリップ部は船首側に向いている。したがって、第1油室108aの潤滑油は第2シールリング105bのリップ部をライナ4に常時押し付けることができる。第1油室108aの潤滑油は第2シールリング105bのリップ部をライナ4に常時押し付けることにより、第2シールリング105bのリップ部はライナ4に常時摺接され、第1油室108aから空気室107への潤滑油の漏れが防止される。 The oil chamber pressure of the first oil chamber 108a is controlled to always be higher than the air chamber pressure of the air chamber 107 by a constant pressure. Also, the lip portion of the second seal ring 105b faces the bow side. Therefore, the lubricating oil in the first oil chamber 108 a can always press the lip portion of the second seal ring 105 b against the liner 4 . The lubricating oil in the first oil chamber 108a always presses the lip portion of the second seal ring 105b against the liner 4, so that the lip portion of the second seal ring 105b is always in sliding contact with the liner 4, and the air flows from the first oil chamber 108a. Leakage of lubricant into chamber 107 is prevented.
 油ポンプユニット70は、油タンク61側から順に、フィルタ71と、循環ポンプ72と、クーラー73と、クーラー73から延設する油供給路56が分岐した位置にバルブ74とを備える。バルブ74は、平時開いている。油ポンプユニット70は、油タンクユニット60から供給される潤滑油を第1油室108a、船尾管軸受室12及び第2油室108bに供給する。そして、ライナ4と第2シールリング105b及び第3シールリング105cの間の摺動面を介して船尾管軸受室12にまで潤滑油を供給する。そして、船尾管軸受室12及び第2油室108bより油戻り路54を介して油タンクユニット60に潤滑油を戻すことにより、潤滑油を常時循環させるようになっている。 The oil pump unit 70 includes, in order from the oil tank 61 side, a filter 71, a circulation pump 72, a cooler 73, and a valve 74 at a position where the oil supply path 56 extending from the cooler 73 branches. Valve 74 is normally open. The oil pump unit 70 supplies lubricating oil supplied from the oil tank unit 60 to the first oil chamber 108a, the stern tube bearing chamber 12 and the second oil chamber 108b. Lubricating oil is supplied to the stern tube bearing chamber 12 through the sliding surfaces between the liner 4 and the second seal ring 105b and the third seal ring 105c. By returning the lubricating oil from the stern tube bearing chamber 12 and the second oil chamber 108b to the oil tank unit 60 through the oil return path 54, the lubricating oil is constantly circulated.
 船尾管構造100には、排出部150が接続される。 A discharge section 150 is connected to the stern tube structure 100 .
 排出部150は、ドレン回収ユニット80及び排出路152を有する。排出部150には、船尾側シール装置101aに侵入した海水及び潤滑油(ドレン)が船尾側シール装置101aから排出される。排出路152は、船尾側シール装置101aの第1シールリング105aと第2シールリング105bとの間に通じるように形成される。排出路152には、第1シールリング105aと第2シールリング105bとの間に侵入した海水及び潤滑油が排出される。また、排出路152には、経路を開閉するためのバルブ153が設けられている。 The discharge section 150 has a drain recovery unit 80 and a discharge path 152 . Seawater and lubricating oil (drain) that have entered the stern seal device 101a are discharged from the stern seal device 101a to the discharge portion 150 . The discharge passage 152 is formed to communicate between the first seal ring 105a and the second seal ring 105b of the stern side seal device 101a. Seawater and lubricating oil entering between the first seal ring 105a and the second seal ring 105b are discharged to the discharge path 152 . Also, the discharge path 152 is provided with a valve 153 for opening and closing the path.
 排出路152に排出された海水及び潤滑油は、ドレン回収ユニット80に導かれる。ドレン回収ユニット80は、排出タンク81(図4参照)を備える。ドレン回収ユニット80は、排出路152に排出された海水及び潤滑油を排出タンク81に回収する。 The seawater and lubricating oil discharged to the discharge passage 152 are guided to the drain recovery unit 80 . The drain recovery unit 80 includes a discharge tank 81 (see FIG. 4). The drain recovery unit 80 recovers seawater and lubricating oil discharged to the discharge path 152 to the discharge tank 81 .
 次に、船尾管シール装置101の構成について説明する。図2は、船尾管シール装置101の概略構成を例示する断面図である。 Next, the configuration of the stern tube sealing device 101 will be described. FIG. 2 is a cross-sectional view illustrating a schematic configuration of the stern tube sealing device 101. As shown in FIG.
 図2に示すように、船尾側シール装置101aは、ハウジング102、第1シールリング105a、第2シールリング105b、第3シールリング105c及びパッキンリング106を備える。 As shown in FIG. 2, the stern side seal device 101a includes a housing 102, a first seal ring 105a, a second seal ring 105b, a third seal ring 105c and a packing ring .
 ハウジング102は、船尾側から順に、第1分割ハウジング102a、第2分割ハウジング102b、第3分割ハウジング102c、第4分割ハウジング102d及び第5分割ハウジング102eを備える。ハウジング102には、空気孔102b1、空気供給路121、ハウジング油路132b及び排出路152が形成されている。 The housing 102 includes, in order from the stern side, a first split housing 102a, a second split housing 102b, a third split housing 102c, a fourth split housing 102d and a fifth split housing 102e. The housing 102 is formed with an air hole 102b1, an air supply passage 121, a housing oil passage 132b, and a discharge passage 152. As shown in FIG.
 第1分割ハウジング102a、第2分割ハウジング102b、第3分割ハウジング102c、第4分割ハウジング102d及び第5分割ハウジング102eは、それぞれ円筒状の部材である。第1分割ハウジング102a、第2分割ハウジング102b、第3分割ハウジング102c、第4分割ハウジング102d及び第5分割ハウジング102eは、互いに嵌合して積層された状態で船尾管10に固定される。 The first split housing 102a, the second split housing 102b, the third split housing 102c, the fourth split housing 102d, and the fifth split housing 102e are cylindrical members. The first split housing 102a, the second split housing 102b, the third split housing 102c, the fourth split housing 102d, and the fifth split housing 102e are fixed to the stern tube 10 in a stacked state in which they are fitted together.
 また、第1分割ハウジング102a、第2分割ハウジング102b、第3分割ハウジング102c、第4分割ハウジング102d及び第5分割ハウジング102eは、それぞれ隣接する分割ハウジングとの間に環状溝を形成する。ハウジング102は、第1シールリング105a、第2シールリング105b及び第3シールリング105cと、パッキンリング106と、を保持する。 Also, the first split housing 102a, the second split housing 102b, the third split housing 102c, the fourth split housing 102d, and the fifth split housing 102e form annular grooves between adjacent split housings. The housing 102 holds the first seal ring 105a, the second seal ring 105b, the third seal ring 105c, and the packing ring 106. As shown in FIG.
 ハウジング102は、第1分割ハウジング102aと第2分割ハウジング102bとの間でパッキンリング106を保持する。また、ハウジング102は、第2分割ハウジング102bと第3分割ハウジング102cとの間で第1シールリング105aを保持する。更に、ハウジング102は、第3分割ハウジング102cと第4分割ハウジング102dとの間で第2シールリング105bを保持する。更にまた、ハウジング102は、第4分割ハウジング102dと第5分割ハウジング102eとの間で第3シールリング105cを保持する。 The housing 102 holds a packing ring 106 between the first split housing 102a and the second split housing 102b. Further, the housing 102 holds the first seal ring 105a between the second split housing 102b and the third split housing 102c. Further, the housing 102 holds a second seal ring 105b between the third split housing 102c and the fourth split housing 102d. Furthermore, the housing 102 holds a third seal ring 105c between the fourth split housing 102d and the fifth split housing 102e.
 第1シールリング105a、第2シールリング105b及び第3シールリング105cのそれぞれは、ゴム等の弾性材料で形成された円環状の部材である。第1シールリング105a、第2シールリング105b及び第3シールリング105cのそれぞれは、ライナ4の外周面に摺接するようにハウジング102に保持されている。 Each of the first seal ring 105a, the second seal ring 105b and the third seal ring 105c is an annular member made of an elastic material such as rubber. Each of the first seal ring 105a, the second seal ring 105b, and the third seal ring 105c is held by the housing 102 so as to be in sliding contact with the outer peripheral surface of the liner 4. As shown in FIG.
 第1シールリング105a、第2シールリング105b及び第3シールリング105cのそれぞれに用いられる弾性材料としては、ゴム材料や、ゴム以外の樹脂材料を挙げることができる。ゴム材料としては、ニトリルゴム(NBR)、フッ素ゴム(FR)、天然ゴム(NR)やイソブレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)等が挙げられる。一方、ゴム以外の樹脂材料としては、ポリテトラフルオロエチレン(PTFE)やポリエーテルエーテルケトン(PEEK)、フッ素樹脂、ポリアミド(PA)などが挙げられる。 Examples of elastic materials used for the first seal ring 105a, the second seal ring 105b, and the third seal ring 105c include rubber materials and resin materials other than rubber. Examples of rubber materials include nitrile rubber (NBR), fluororubber (FR), natural rubber (NR), isobrene rubber (IR), butadiene rubber (BR), and styrene-butadiene rubber (SBR). On the other hand, resin materials other than rubber include polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), fluororesins, and polyamide (PA).
 図3は、第1シールリング105aの構成を例示する図である。図3に示すように、第1シールリング105aは、キー部105a1、ヒール部105a2、アーム部105a3及びリップ部105a4を有する。 FIG. 3 is a diagram illustrating the configuration of the first seal ring 105a. As shown in FIG. 3, the first seal ring 105a has a key portion 105a1, a heel portion 105a2, an arm portion 105a3 and a lip portion 105a4.
 キー部105a1は、第1シールリング105aの外周側端部に形成される。キー部105a1は、隣接する第2分割ハウジング102bの溝102b2と第3分割ハウジング102cの溝102c1とで形成される環状溝に嵌合して保持される。 The key portion 105a1 is formed at the outer peripheral side end portion of the first seal ring 105a. The key portion 105a1 is fitted and held in an annular groove formed by the adjacent groove 102b2 of the second split housing 102b and the groove 102c1 of the third split housing 102c.
 ヒール部105a2は、キー部105a1からライナ4に向かって延伸するように形成されている。アーム部105a3は、ヒール部105a2の端部から船尾側に延伸するように形成されている。第3分割ハウジング102cには、第1シールリング105aのヒール部105a2及びアーム部105a3を支持するバックアップリング102c2が形成されている。 The heel portion 105a2 is formed to extend from the key portion 105a1 toward the liner 4. Arm portion 105a3 is formed to extend from the end of heel portion 105a2 to the stern side. A backup ring 102c2 that supports the heel portion 105a2 and the arm portion 105a3 of the first seal ring 105a is formed in the third split housing 102c.
 リップ部105a4は、アーム部105a3の内周側端部に形成される。リップ部105a4は、ライナ4の外周面に摺接する。リップ部105a4は、ライナ4とは反対側の面にスプリング溝105a5を有する。リップ部105a4は、スプリング溝105a5に嵌められている円環状のスプリング111によって締め付けられるようにライナ4に向かって押圧されている。リップ部105a4は、スプリング111に押圧されることで、摺接部105a6が弾性変形してライナ4の外周面に摺接する。 The lip portion 105a4 is formed at the inner peripheral side end portion of the arm portion 105a3. The lip portion 105 a 4 is in sliding contact with the outer peripheral surface of the liner 4 . The lip portion 105 a 4 has a spring groove 105 a 5 on the surface opposite to the liner 4 . The lip portion 105a4 is pressed toward the liner 4 so as to be clamped by an annular spring 111 fitted in the spring groove 105a5. The lip portion 105 a 4 is pressed by the spring 111 , so that the sliding contact portion 105 a 6 is elastically deformed and comes into sliding contact with the outer peripheral surface of the liner 4 .
 第1シールリング105aは、上記したように、キー部105a1が第2分割ハウジング102bと第3分割ハウジング102cとの間に保持され、リップ部105a4の摺接部105a6がライナ4の外周面に摺接する。 The key portion 105a1 of the first seal ring 105a is held between the second split housing 102b and the third split housing 102c, and the sliding contact portion 105a6 of the lip portion 105a4 slides on the outer peripheral surface of the liner 4, as described above. touch.
 第2シールリング105b及び第3シールリング105cは、第1シールリング105aと同様の形状を有する。また、第2シールリング105b及び第3シールリング105cは、それぞれハウジング102に保持されてライナ4の外周面に摺接するように設けられている。ただし、第2シールリング105b及び第3シールリング105cは、第1シールリング105aと向きが異なる。具体的には、第2シールリング105b及び第3シールリング105cは、それぞれ、アーム部がヒール部から船首側に向かって延伸し、リップ部がハウジング102に保持されるキー部よりも船首側でライナ4に摺接するように設けられている。 The second seal ring 105b and the third seal ring 105c have the same shape as the first seal ring 105a. Further, the second seal ring 105b and the third seal ring 105c are held by the housing 102 and provided so as to be in sliding contact with the outer peripheral surface of the liner 4. As shown in FIG. However, the orientation of the second seal ring 105b and the third seal ring 105c is different from that of the first seal ring 105a. Specifically, the second seal ring 105b and the third seal ring 105c each have an arm portion extending from the heel portion toward the bow side, and a lip portion extending toward the bow side from the key portion held by the housing 102. It is provided so as to be in sliding contact with the liner 4 .
 第1シールリング105aと第2シールリング105bとの間には、空気室107が形成される。空気室107には、空気制御ユニット30のフローコントローラ34から、空気圧が第1シールリング105aの船尾側の海水圧以上に調整された空気が、空気供給路121を通じて一定の流量で供給される。 An air chamber 107 is formed between the first seal ring 105a and the second seal ring 105b. From the flow controller 34 of the air control unit 30, the air chamber 107 is supplied with a constant flow rate of air through the air supply path 121, the air pressure of which is adjusted to be equal to or higher than the seawater pressure on the stern side of the first seal ring 105a.
 空気室107に空気圧が海水圧以上の空気が供給されることで、第1シールリング105aのリップ部とライナ4との間から空気室107への海水の流入が防止される。空気室107に侵入した海水や潤滑油は、排出路152から排出されてドレン回収ユニット80に回収される。 By supplying air whose air pressure is equal to or higher than the seawater pressure to the air chamber 107, seawater is prevented from flowing into the air chamber 107 from between the lip portion of the first seal ring 105a and the liner 4. Seawater and lubricating oil that have entered the air chamber 107 are discharged from the discharge passage 152 and collected by the drain collection unit 80 .
 第2シールリング105bと第3シールリング105cとの間には、第1油室108aが形成される。第1油室108aには、後述する油ポンプユニット70により、潤滑油がハウジング油路132bを通じて供給される。 A first oil chamber 108a is formed between the second seal ring 105b and the third seal ring 105c. Lubricating oil is supplied to the first oil chamber 108a through a housing oil passage 132b by an oil pump unit 70, which will be described later.
 第1油室108aでは、供給された潤滑油が第2シールリング105bによって封止されることで、油圧が船尾管軸受室12の潤滑油の油圧以上となる。このため、第1油室108aに供給された潤滑油は、第3シールリング105cとライナ4との間から船尾管10側に流出する。 In the first oil chamber 108a, the supplied lubricating oil is sealed by the second seal ring 105b, so that the oil pressure becomes equal to or higher than the oil pressure of the lubricating oil in the stern tube bearing chamber 12. Therefore, the lubricating oil supplied to the first oil chamber 108a flows out from between the third seal ring 105c and the liner 4 to the stern tube 10 side.
 船首側シール装置101bは、ハウジング112、第4シールリング105d及び第5シールリング105eを備える。 The bow-side seal device 101b includes a housing 112, a fourth seal ring 105d and a fifth seal ring 105e.
 ハウジング112は、船尾側から順に、第1分割ハウジング112a、第2分割ハウジング112b、第3分割ハウジング112cを有する。ハウジング112には、ハウジング油路137a及びハウジング油路137bが形成されている。 The housing 112 has, in order from the stern side, a first split housing 112a, a second split housing 112b, and a third split housing 112c. A housing oil passage 137 a and a housing oil passage 137 b are formed in the housing 112 .
 第4シールリング105d及び第5シールリング105eは、第1シールリング105aと同様の形状を有し、それぞれハウジング112に保持されてライナ6の外周面に摺接するように設けられている。第2油室108bは、軸方向で第4シールリング105d及び第5シールリング105eの間に形成される。 The fourth seal ring 105d and the fifth seal ring 105e have the same shape as the first seal ring 105a, are held by the housing 112, and are provided so as to be in sliding contact with the outer peripheral surface of the liner 6. The second oil chamber 108b is axially formed between the fourth seal ring 105d and the fifth seal ring 105e.
 第2油室108bには、後述する油ポンプユニット70により、潤滑油がハウジング油路137aから供給される。また、第2油室108bに供給される潤滑油は、ハウジング油路137bを介して油タンクユニット60に戻される。 Lubricating oil is supplied to the second oil chamber 108b from a housing oil passage 137a by an oil pump unit 70, which will be described later. Also, the lubricating oil supplied to the second oil chamber 108b is returned to the oil tank unit 60 via the housing oil passage 137b.
 船尾管シール装置101は、上記した構成により、船尾側シール装置101aが船尾管10から船外への潤滑油の漏洩を防止する。また、船尾管シール装置101は、船首側シール装置101bが船内への潤滑油の漏洩を防止する。更に、船尾管シール装置101の船尾側シール装置101aでは、海水と潤滑油とが空気室によって隔てられ、潤滑油が船外に漏洩する可能性が低減されている。更にまた、第2シールリング105bが故障した場合であっても、第3シールリング105cを潤滑油側の予備のシールリングとして機能させ、潤滑油が船外に漏洩するのを防止できる。このような構成により、船尾管10から船外への潤滑油の漏洩がより低減される。 The stern tube sealing device 101 prevents the lubricant from leaking out of the ship from the stern tube 10 by the stern side sealing device 101a due to the above configuration. In the stern tube sealing device 101, the bow side sealing device 101b prevents the lubricating oil from leaking into the ship. Furthermore, in the stern side seal device 101a of the stern tube seal device 101, the seawater and the lubricating oil are separated by the air chamber, and the possibility of the lubricating oil leaking out of the ship is reduced. Furthermore, even if the second seal ring 105b fails, the third seal ring 105c can function as a spare seal ring on the lubricating oil side to prevent the lubricating oil from leaking overboard. With such a configuration, leakage of lubricating oil from the stern tube 10 to the outside of the ship is further reduced.
 <第1実施形態>
 [ドレン回収ユニット80]
 第1実施形態に係るドレン回収ユニット80について説明する。図4は、本実施形態に係るドレン回収ユニット80の概略構成を示す図である。ドレン回収ユニット80は、船尾管シールシステム200に使用される。
<First embodiment>
[Drain recovery unit 80]
A drain recovery unit 80 according to the first embodiment will be described. FIG. 4 is a diagram showing a schematic configuration of the drain recovery unit 80 according to this embodiment. Drain recovery unit 80 is used in stern tube seal system 200 .
 ドレン回収ユニット80は、排出タンク81と、エゼクタ82と、オリフィス84と、レベル警報器85と、を備える。 The drain recovery unit 80 includes a discharge tank 81, an ejector 82, an orifice 84, and a level alarm 85.
 排出タンク81は、バルブ80v2、バルブ80v3、バルブ80v4及びバルブ80v5を備える。バルブ80v2、バルブ80v3は、平時閉じられている。バルブ80v4及びバルブ80v5は平時開いている。バルブ80v4には、図示しない圧力計が接続される。当該圧力計は、排出タンク81内の圧力を測定する。 The discharge tank 81 includes a valve 80v2, a valve 80v3, a valve 80v4 and a valve 80v5. The valves 80v2 and 80v3 are normally closed. The valves 80v4 and 80v5 are normally open. A pressure gauge (not shown) is connected to the valve 80v4. The pressure gauge measures the pressure inside the discharge tank 81 .
 排出タンク81には、空気室107から空気、海水や潤滑油が、排出路152から回収される。平時においては、排出路152から空気のみが回収される。回収された空気は、オリフィス84を介して排出する。また、空気室107に海水や潤滑油が浸入した際には、海水及び潤滑油を排出タンク81に回収する。 Air, seawater, and lubricating oil from the air chamber 107 are collected from the discharge path 152 in the discharge tank 81 . During normal times, only air is recovered from the exhaust passage 152 . Collected air is discharged through orifice 84 . Also, when seawater or lubricating oil enters the air chamber 107 , the seawater and the lubricating oil are collected in the discharge tank 81 .
 排出タンク81に海水及び潤滑油が回収されて液面のレベルが高くなると、レベル警報器85が警報を発する。ユーザはレベル警報器85が警報を発した場合は、バルブ80v2を開放して、排出タンク81に貯まった海水及び潤滑油を排出する。 When seawater and lubricating oil are collected in the discharge tank 81 and the liquid level rises, the level alarm 85 issues an alarm. When the level alarm device 85 issues an alarm, the user opens the valve 80v2 to discharge the seawater and lubricating oil accumulated in the discharge tank 81 .
 また、エゼクタ82は、排出タンク81内から空気を排出する。そして、エゼクタ82は、排出タンク81の圧力を大気圧に対して負圧にする。すなわち、エゼクタ82は、排出タンク81の圧力を大気圧より低下させる。エゼクタ82を動作させる際には、バルブ84v3を開放し、バルブ80v4及びバルブ80v5を閉じる。空気源83は、バルブ80v1を介して加圧空気をエゼクタ82に供給する。そして、加圧空気が供給されたエゼクタ82は、排出タンク81からバルブ80v3を介して空気を外部に強制排気する。なお、エゼクタ82は、下流にサイレンサ82aを備える。 In addition, the ejector 82 discharges air from within the discharge tank 81 . The ejector 82 makes the pressure in the discharge tank 81 negative with respect to the atmospheric pressure. That is, the ejector 82 lowers the pressure of the discharge tank 81 below the atmospheric pressure. When operating the ejector 82, the valve 84v3 is opened and the valves 80v4 and 80v5 are closed. Air source 83 supplies pressurized air to ejector 82 via valve 80v1. The ejector 82 to which the pressurized air is supplied forcibly exhausts the air from the discharge tank 81 to the outside through the valve 80v3. The ejector 82 has a silencer 82a downstream.
 排出タンク81は、エゼクタ82により負圧になることにより、空気室107から空気、海水及び潤滑油を強制的に排出させる。 The discharge tank 81 forcibly discharges air, seawater, and lubricating oil from the air chamber 107 by having a negative pressure by the ejector 82 .
 [作用・効果]
 第1実施形態に係る船尾管シールシステムによれば、排出タンク81の圧力を負圧にして、船尾側から侵入したドレンの回収能力を高めることができる。
[Action/effect]
According to the stern tube seal system according to the first embodiment, the pressure in the discharge tank 81 can be set to a negative pressure to enhance the ability to recover the drain that has entered from the stern side.
 第1実施形態に係る船尾管シールシステムは、排出路152を流れる海水や潤滑油を、排出タンク81を負圧にして吸引することにより回収する。したがって、排出路152を流れるエア(ドレンエア)の流量を大きくできる。また、排出路152を流れるエア(ドレンエア)をより高い圧力差で吸引できる。 The stern tube seal system according to the first embodiment recovers seawater and lubricating oil flowing through the discharge passage 152 by applying negative pressure to the discharge tank 81 and sucking it. Therefore, the flow rate of air (drain air) flowing through the discharge passage 152 can be increased. Also, the air (drain air) flowing through the discharge passage 152 can be sucked with a higher pressure difference.
 したがって、排出路152に例えば、塩の結晶ができていても、ドレンを回収できる。また、排出路152の経路が長くても、ドレンエアを強力に回収できる。さらに、排出路152が例えば上方に傾いていても、ドレンエアを強力に回収できる。 Therefore, even if, for example, salt crystals are formed in the discharge path 152, the drain can be recovered. Also, even if the discharge path 152 is long, the drain air can be recovered strongly. Furthermore, even if the discharge passage 152 is tilted upward, for example, the drain air can be collected strongly.
 なお、空気室107は第1空間の一例、第1油室108aは第2空間の一例、排出路152が第1空間に連通した配管の一例、エゼクタ82は減圧部の一例、である。 The air chamber 107 is an example of a first space, the first oil chamber 108a is an example of a second space, the discharge passage 152 is an example of a pipe communicating with the first space, and the ejector 82 is an example of a decompression unit.
 <第2実施形態>
 [ドレン回収ユニット180]
 第2実施形態に係るドレン回収ユニット180について説明する。図5は、本実施形態に係るドレン回収ユニット180の概略構成を示す図である。ドレン回収ユニット180は、船底部180Aと操作部180Bとを備える。船底部180Aは、ドレン回収ユニット180のうち、足場FLの下、すなわち、船底に設けられる部分である。船底部180Aは、平時人が立ち入らない場所に設けられる。操作部180Bは、足場FLの上に設けられる。操作部180Bは、例えば、操作盤である。ユーザは、操作部180Bを操作して、ドレン回収ユニット180を操作する。
<Second embodiment>
[Drain recovery unit 180]
A drain recovery unit 180 according to the second embodiment will be described. FIG. 5 is a diagram showing a schematic configuration of the drain recovery unit 180 according to this embodiment. The drain recovery unit 180 includes a ship bottom portion 180A and an operation portion 180B. The ship bottom portion 180A is a portion of the drain recovery unit 180 that is provided under the scaffolding FL, that is, at the ship bottom. The ship bottom 180A is provided in a place where people do not normally enter. The operation unit 180B is provided on the scaffold FL. The operation unit 180B is, for example, an operation panel. The user operates the drain collection unit 180 by operating the operation section 180B.
 ドレン回収ユニット180の船底部180Aは、排出タンク181と、レベル警報器185と、を備える。また、船底部180Aの排出タンク181は、バルブ180v2を備える。バルブ180v2は、平時閉じられている。なお、排出タンク181は、安全弁を備えてもよい。また、排出路152と排出タンク181との間には、エア駆動弁180v6が設けられる。エア駆動弁180v6は、平時開いている。 A bottom portion 180A of the drain recovery unit 180 includes a discharge tank 181 and a level alarm 185. Also, the discharge tank 181 of the ship bottom 180A is provided with a valve 180v2. The valve 180v2 is normally closed. In addition, the discharge tank 181 may be provided with a safety valve. Also, an air driven valve 180v6 is provided between the discharge path 152 and the discharge tank 181 . The air driven valve 180v6 is normally open.
 ドレン回収ユニット180の操作部180Bは、エゼクタ182と、オリフィス184と、を備える。また、操作部180Bは、バルブ180v1、エア駆動弁180v3、エア駆動弁180v4、エア駆動弁180v5及び切替弁180v7を備える。バルブ180v1は、平時閉じている。更に、操作部180Bは、フィルタ186、レギュレータ187、圧力計188a、圧力計188b、スピードコントローラ189a及びスピードコントローラ189bを備える。 The operating portion 180B of the drain recovery unit 180 includes an ejector 182 and an orifice 184. The operation unit 180B also includes a valve 180v1, an air-driven valve 180v3, an air-driven valve 180v4, an air-driven valve 180v5, and a switching valve 180v7. The valve 180v1 is normally closed. Furthermore, the operation section 180B includes a filter 186, a regulator 187, a pressure gauge 188a, a pressure gauge 188b, a speed controller 189a and a speed controller 189b.
 エア駆動弁180v3は、平時閉じている。エア駆動弁180v4及びエア駆動弁180v5は、平時開いている。切替弁180v7は、レギュレータ187を通過した空気を経路P1及び経路P2のいずれか一方に切り替える。 The air driven valve 180v3 is normally closed. The air driven valve 180v4 and the air driven valve 180v5 are normally open. The switching valve 180v7 switches the air that has passed through the regulator 187 to either path P1 or path P2.
 ドレン回収ユニット180は、通常動作モード、エゼクタ動作モード及びドレン排出モードの3つの動作モードで動作する。 The drain recovery unit 180 operates in three operating modes: normal operating mode, ejector operating mode, and drain discharge mode.
 [通常動作モード]
 通常動作モードでは、排出タンク181に、空気室107から空気、海水や潤滑油が、排出路152から回収される。
[Normal operation mode]
In the normal operation mode, the discharge tank 181 collects air, seawater, and lubricating oil from the air chamber 107 through the discharge passage 152 .
 通常動作モードでは、バルブ180v1及びバルブ180v2は閉じる。また、スピードコントローラ189a及びスピードコントローラ189bは閉じる。したがって、排出路152から回収された空気は、排出タンク181から連絡路180p1、エア駆動弁180v4及びエア駆動弁180v5を順に流れて、オリフィス184から排出される。また、排出路152から回収された海水及び潤滑油は、排出タンク181に回収される。 In the normal operation mode, the valves 180v1 and 180v2 are closed. Also, the speed controller 189a and the speed controller 189b are closed. Therefore, the air collected from the discharge passage 152 flows from the discharge tank 181 through the communication passage 180p1, the air driven valves 180v4 and 180v5 in order, and is discharged from the orifice 184. Seawater and lubricating oil collected from the discharge passage 152 are collected in the discharge tank 181 .
 [エゼクタ動作モード]
 エゼクタ動作モードでは、排出タンク181に、空気室107から空気、海水や潤滑油が、排出路152からより強く吸引されて回収される。
[Ejector operation mode]
In the ejector operation mode, the air, seawater, and lubricating oil from the air chamber 107 are more strongly sucked from the discharge passage 152 and collected into the discharge tank 181 .
 エゼクタ動作モードでは、切替弁180v7は、経路P1に切り替えられる。エゼクタ動作モードでは、最初に、通常動作モードの状態から、バルブ180v1を開く。バルブ180v1が開かれると、空気源183からレギュレータ187に空気が供給される。なお、レギュレータ187は、出口側の空気圧(圧力計188aの圧力)を例えば0.4メガパスカルに調整する。空気源183から経路P1に空気が供給されると、エア駆動弁180v3は、閉から開に切り替えられる。また、空気源183から経路P1に空気が供給されると、エア駆動弁180v5は、開から閉に切り替えられる。 In the ejector operation mode, the switching valve 180v7 is switched to path P1. In ejector operation mode, valve 180v1 is first opened from the state of normal operation mode. Air is supplied from the air source 183 to the regulator 187 when the valve 180v1 is opened. The regulator 187 adjusts the air pressure on the outlet side (the pressure of the pressure gauge 188a) to 0.4 megapascals, for example. When air is supplied from the air source 183 to the path P1, the air driven valve 180v3 is switched from closed to open. Further, when air is supplied from the air source 183 to the path P1, the air driven valve 180v5 is switched from open to closed.
 次に、エゼクタ動作モードでは、圧力計188bを見ながらスピードコントローラ189aを徐々に開ける。スピードコントローラ189aを徐々に開けると、エゼクタ182に空気が供給される。エゼクタ182に空気が供給されると、エゼクタ182は、排出タンク181から連絡路180p1、エア駆動弁180v4及びエア駆動弁180v3を順に空気を流して排出する。なお、エゼクタ182の排出側には、サイレンサ182aが設けられる。 Next, in the ejector operation mode, gradually open the speed controller 189a while watching the pressure gauge 188b. Air is supplied to the ejector 182 by gradually opening the speed controller 189a. When air is supplied to the ejector 182, the ejector 182 discharges the air from the discharge tank 181 through the communication path 180p1, the air driven valve 180v4 and the air driven valve 180v3 in order. A silencer 182a is provided on the ejection side of the ejector 182. As shown in FIG.
 エゼクタ182は、排出タンク181内から空気を排出する。そして、エゼクタ182は、排出タンク181の圧力を大気圧に対して負圧にする。排出タンク81は、エゼクタ82により負圧になることにより、空気室107から空気、海水及び潤滑油を強制的に排出させる。 The ejector 182 ejects air from inside the ejection tank 181 . The ejector 182 makes the pressure in the discharge tank 181 negative with respect to the atmospheric pressure. The discharge tank 81 forcibly discharges air, seawater and lubricating oil from the air chamber 107 by applying a negative pressure by the ejector 82 .
 そして、エゼクタ動作モードを終了する場合には、バルブ180v1及びスピードコントローラ189aを閉じる。 Then, when ending the ejector operation mode, the valve 180v1 and the speed controller 189a are closed.
 [ドレン排出モード]
 排出タンク181に海水及び潤滑油が回収されて液面のレベルが高くなると、レベル警報器185が警報を発する。ユーザはレベル警報器185が警報を発した場合は、ドレン排出モードで動作させる。
[Drain discharge mode]
When seawater and lubricating oil are collected in the discharge tank 181 and the liquid level rises, the level alarm 185 issues an alarm. The user operates in the drain discharge mode when the level alarm 185 issues an alarm.
 ドレン排出モードでは、排出タンク181に回収された海水や潤滑油を、排出タンク181から外部の排出溝DRに排出する。 In the drain discharge mode, seawater and lubricating oil collected in the discharge tank 181 are discharged from the discharge tank 181 to the external discharge groove DR.
 ドレン排出モードでは、切替弁180v7は、経路P2に切り替えられる。ドレン排出モードでは、最初に、通常動作モードの状態から、バルブ180v1及びバルブ180v2を開く。バルブ180v1が開かれると、空気源183からレギュレータ187に空気が供給される。なお、レギュレータ187は、出口側の空気圧(圧力計188aの圧力)を例えば0.4メガパスカルに調整する。空気源183から経路P2に空気が供給されると、エア駆動弁180v4は、開から閉に切り替えられる。また、空気源183から経路P2に空気が供給されると、連絡路180p2に空気が供給され、エア駆動弁180v6は、開から閉に切り替えられる。 In the drain discharge mode, the switching valve 180v7 is switched to path P2. In the drain discharge mode, first, the valves 180v1 and 180v2 are opened from the state of the normal operation mode. Air is supplied from the air source 183 to the regulator 187 when the valve 180v1 is opened. The regulator 187 adjusts the air pressure on the outlet side (the pressure of the pressure gauge 188a) to 0.4 megapascals, for example. When air is supplied from the air source 183 to the path P2, the air driven valve 180v4 is switched from open to closed. Further, when air is supplied from the air source 183 to the path P2, the air is supplied to the communication path 180p2, and the air driven valve 180v6 is switched from open to closed.
 次に、ドレン排出モードでは、圧力計188bを見ながらスピードコントローラ189bを徐々に開ける。スピードコントローラ189bを徐々に開けると、レギュレータ187から連絡路180p1を通って排出タンク181に空気が供給される。排出タンク181に空気が供給されると、排出タンク181に回収された海水及び潤滑油は、バルブ181v2を通って排出溝DRに排出される。 Next, in the drain discharge mode, gradually open the speed controller 189b while watching the pressure gauge 188b. When the speed controller 189b is gradually opened, air is supplied from the regulator 187 to the discharge tank 181 through the communication path 180p1. When air is supplied to the discharge tank 181, seawater and lubricating oil collected in the discharge tank 181 are discharged to the discharge groove DR through the valve 181v2.
 そして、ドレン排出モードを終了する場合には、バルブ180v1、バルブ181v2及びスピードコントローラ189bを閉じる。 Then, when ending the drain discharge mode, the valves 180v1, 181v2 and the speed controller 189b are closed.
 [作用・効果]
 第2実施形態に係る船尾管シールシステムによれば、第1実施形態に係る船尾管シールシステムの作用、効果に加えて、排出タンク181に回収された海水及び潤滑油を外部に排出することができる。
[Action/effect]
According to the stern tube seal system according to the second embodiment, in addition to the functions and effects of the stern tube seal system according to the first embodiment, seawater and lubricating oil collected in the discharge tank 181 can be discharged to the outside. can.
 また、通常運転時にアクセスしにくい場所に排出タンク181が設定されていたとしても、制御盤により遠隔で制御することができる。 Also, even if the discharge tank 181 is set in a location that is difficult to access during normal operation, it can be remotely controlled by the control panel.
 なお、操作部180Bは、減圧部及び加圧部の一例である。 Note that the operation unit 180B is an example of a decompression unit and a pressurization unit.
 <変形例>
 本実施形態の船尾管構造100においては、船尾側シール装置101aにおいて、第1シールリング105a、第2シールリング105b及び第3シールリング105cの合計3個のシールリングを備えていたが、シールリングの個数については、3個に限らない。
<Modification>
In the stern tube structure 100 of the present embodiment, the stern seal device 101a includes a total of three seal rings, namely the first seal ring 105a, the second seal ring 105b and the third seal ring 105c. is not limited to three.
 図6は、本実施形態に係る船舶のシステム構成の変形例を示す図である。船舶1Aは、船尾管シールシステム200Aを備える。船尾管シールシステム200Aは、船尾管シールシステム200の船尾管構造100に換えて、船尾管構造100Aを備える。船尾管構造100Aは、船尾管構造100の船尾管シール装置101に換えて、船尾管シール装置101Aを備える。 FIG. 6 is a diagram showing a modification of the system configuration of the ship according to this embodiment. The marine vessel 1A includes a stern tube seal system 200A. The stern tube seal system 200A includes a stern tube structure 100A instead of the stern tube structure 100 of the stern tube seal system 200. FIG. The stern tube structure 100A includes a stern tube sealing device 101A in place of the stern tube sealing device 101 of the stern tube structure 100. FIG.
 船尾管シール装置101Aは、軸方向で船尾管10に隣接して設けられる。船尾管シール装置101Aは、船尾側シール装置101Aa及び船首側シール装置101bを有する。船尾管シール装置101は、船尾管軸受室12に供給される潤滑油が、プロペラ軸2を覆う船尾管10から船外又は船内に漏洩するのを防止する。 The stern tube sealing device 101A is provided adjacent to the stern tube 10 in the axial direction. The stern tube sealing device 101A has a stern side sealing device 101Aa and a bow side sealing device 101b. The stern tube seal device 101 prevents lubricating oil supplied to the stern tube bearing chamber 12 from leaking outboard or inboard from the stern tube 10 covering the propeller shaft 2 .
 船尾側シール装置101Aaは、ハウジング102A、第1aシールリング105aa、第1bシールリング105ab、第2シールリング105b及び第3シールリング105cを備える。すなわち、船尾側シール装置101Aaは、4個のシールリングを備える。 The stern-side seal device 101Aa includes a housing 102A, a 1a seal ring 105aa, a 1b seal ring 105ab, a second seal ring 105b and a third seal ring 105c. That is, the stern side seal device 101Aa includes four seal rings.
 なお、減圧部は、エゼクタに限らず、例えば、排気ポンプ等を用いてもよい。 It should be noted that the decompression unit is not limited to the ejector, and for example, an exhaust pump or the like may be used.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The above-described embodiments may be omitted, substituted or modified in various ways without departing from the scope and spirit of the appended claims.
1 船舶
2 プロペラ軸
3 船舶用プロペラ
4、6 ライナ
10 船尾管
11a、11b 軸受
12 船尾管軸受室
30 空気制御ユニット
60 油タンクユニット
70 油ポンプユニット
80 ドレン回収ユニット
81 排出タンク
82 エゼクタ
100 船尾管構造
101、101A 船尾管シール装置
101a、101Aa 船尾側シール装置
101b 船首側シール装置
102 ハウジング
105a 第1シールリング
105b 第2シールリング
105c 第3シールリング
105d 第4シールリング
105e 第5シールリング
107 空気室
108a 第1油室
108b 第2油室
152 排出路
180 ドレン回収ユニット
180B 操作部
182 エゼクタ
200 船尾管シールシステム
1 Vessel 2 Propeller Shaft 3 Vessel Propellers 4, 6 Liner 10 Stern Tubes 11a, 11b Bearing 12 Stern Tube Bearing Chamber 30 Air Control Unit 60 Oil Tank Unit 70 Oil Pump Unit 80 Drain Recovery Unit 81 Discharge Tank 82 Ejector 100 Stern Tube Structure 101, 101A Stern tube sealing device 101a, 101Aa Aft side sealing device 101b Bow side sealing device 102 Housing 105a First seal ring 105b Second seal ring 105c Third seal ring 105d Fourth seal ring 105e Fifth seal ring 107 Air chamber 108a First oil chamber 108b Second oil chamber 152 Discharge path 180 Drain recovery unit 180B Operating portion 182 Ejector 200 Stern tube seal system

Claims (5)

  1.  船舶用プロペラのプロペラ軸に設けられる船尾管シールシステムであって、
     前記プロペラ軸の周囲に設けられるハウジングと、
     前記ハウジングに取り付けられ、前記船舶用プロペラの側から順に設けられる第1シールリング、第2シールリング及び第3シールリングと、
     前記第1シールリング、前記第2シールリング、前記プロペラ軸及び前記ハウジングにより囲まれる第1空間にエアを供給する空気制御ユニットと、
     前記第2シールリング、前記第3シールリング、前記プロペラ軸及び前記ハウジングにより囲まれる第2空間に潤滑油を供給する油ポンプユニットと、
     前記第1空間に連通した配管が接続される排出タンクと、前記排出タンクの内部の圧力を大気圧より低下させる減圧部と、を備えるドレン回収ユニットと、を備える、
    船尾管シールシステム。
    A stern tube seal system provided on a propeller shaft of a marine propeller, comprising:
    a housing provided around the propeller shaft;
    a first seal ring, a second seal ring and a third seal ring attached to the housing and provided in order from the marine propeller side;
    an air control unit that supplies air to a first space surrounded by the first seal ring, the second seal ring, the propeller shaft and the housing;
    an oil pump unit that supplies lubricating oil to a second space surrounded by the second seal ring, the third seal ring, the propeller shaft and the housing;
    a drain recovery unit comprising: a discharge tank to which a pipe communicating with the first space is connected;
    Stern tube sealing system.
  2.  前記減圧部は、エゼクタである、
    請求項1に記載の船尾管シールシステム。
    The decompression unit is an ejector,
    The stern tube sealing system of claim 1.
  3.  前記排出タンクを加圧する加圧部を更に備える、
    請求項1又は請求項2のいずれかに記載の船尾管シールシステム。
    Further comprising a pressurizing unit that pressurizes the discharge tank,
    3. A stern tube sealing system according to claim 1 or claim 2.
  4.  請求項1から請求項3のいずれか一項に記載の船尾管シールシステムを備える、
    船舶。
    A stern tube sealing system according to any one of claims 1 to 3,
    vessel.
  5.  船舶用プロペラのプロペラ軸に設けられ、前記船舶用プロペラの側から順に設けられる第1シールリング及び第2シールリングを備える船尾管シールシステムに使用されるドレン回収ユニットであって、
     前記第1シールリングと前記第2シールリングとにより囲まれ、エアが供給される第1空間に連通した配管が接続される排出タンクと、
     前記排出タンクの内部の圧力を大気圧より低下させる減圧部と、
    を備える、
    ドレン回収ユニット。
    A drain recovery unit used in a stern tube seal system provided on a propeller shaft of a marine propeller and comprising a first seal ring and a second seal ring provided in order from the marine propeller side,
    a discharge tank surrounded by the first seal ring and the second seal ring and connected to a pipe communicating with a first space to which air is supplied;
    a decompression unit that reduces the internal pressure of the discharge tank below atmospheric pressure;
    comprising
    Drain collection unit.
PCT/JP2021/022739 2021-06-15 2021-06-15 Stern tube seal system, marine vessel, and drain recovery unit WO2022264285A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/022739 WO2022264285A1 (en) 2021-06-15 2021-06-15 Stern tube seal system, marine vessel, and drain recovery unit
JP2021540168A JPWO2022264285A1 (en) 2021-06-15 2021-06-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022739 WO2022264285A1 (en) 2021-06-15 2021-06-15 Stern tube seal system, marine vessel, and drain recovery unit

Publications (1)

Publication Number Publication Date
WO2022264285A1 true WO2022264285A1 (en) 2022-12-22

Family

ID=84526379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022739 WO2022264285A1 (en) 2021-06-15 2021-06-15 Stern tube seal system, marine vessel, and drain recovery unit

Country Status (2)

Country Link
JP (1) JPWO2022264285A1 (en)
WO (1) WO2022264285A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251795A (en) * 1994-03-15 1995-10-03 Mitsubishi Heavy Ind Ltd Method for draining stern tube sealing device in contrarotating propeller vessel and drain pipe construction
JPH11304005A (en) * 1998-04-22 1999-11-05 Cobelco Marine Engineering:Kk Shaft seal device for marine propeller shaft
JP2001263874A (en) * 2000-03-16 2001-09-26 Hitachi Ltd Shaft sealing oil recovery device
JP2004308867A (en) * 2003-04-10 2004-11-04 Saginomiya Seisakusho Inc Drain oil collecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251795A (en) * 1994-03-15 1995-10-03 Mitsubishi Heavy Ind Ltd Method for draining stern tube sealing device in contrarotating propeller vessel and drain pipe construction
JPH11304005A (en) * 1998-04-22 1999-11-05 Cobelco Marine Engineering:Kk Shaft seal device for marine propeller shaft
JP2001263874A (en) * 2000-03-16 2001-09-26 Hitachi Ltd Shaft sealing oil recovery device
JP2004308867A (en) * 2003-04-10 2004-11-04 Saginomiya Seisakusho Inc Drain oil collecting device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EAGLE INDUSTRY: "KEMEL Type KEMEL AIR SEAL AX", INSTRUCTION MANUAL, 2017, pages 2 - 14 *
TAMURA KIYOSHI, TAMURA KIYOSHI: "Environment Preservation and Energy Savings in Bearings and Seals Used for Propulsion System", MARIN-ENJINIARINGU : NIHON-MARIN-ENJINIARINGU-GAKKAI-SHI = MARINE ENGINEERING : JOURNAL OF THE JAPAN INSTITUTION OF MARINE ENGINEERING, JAPAN INSTITUTION OF MARINE ENGINEERING, JAPAN, vol. 46, no. 1, 1 January 2011 (2011-01-01), JAPAN , pages 44 - 47, XP093017575, ISSN: 1346-1427, DOI: 10.5988/jime.46.44 *

Also Published As

Publication number Publication date
JPWO2022264285A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
US4984811A (en) Pressure control system for stern tube seals
EP2838789B1 (en) An arrangement for sealing a propeller shaft of a marine vessel and a method of controlling the operation thereof
NO971209L (en) Adjustable seal for propeller shaft
US4174672A (en) Ship&#39;s propeller shaft sealing assembly
KR102300096B1 (en) Shaft sealing device of double reversing propeller unit for marine use
WO2017122358A1 (en) Stern tube sealing system, stern tube sealing device, ship, and stern tube sealing method
JP2006234101A (en) Shaft sealing device of propeller shaft for vessel
WO2022264285A1 (en) Stern tube seal system, marine vessel, and drain recovery unit
KR20180079365A (en) Covering devices and thruster
JP3813842B2 (en) Water lubricated stern tube sealing device
JP5195187B2 (en) Stern tube shaft seal device
JP2003127988A (en) Sealing device for underwater structure
CN113825921B (en) Sealing device
JPH07242197A (en) Stern tube sealing device
JPH0332478Y2 (en)
US9868502B2 (en) Stern tube sealing device
JP2005133900A (en) Stern tube sealing device
JPH07242198A (en) Stern tube sealing device
JPH06323439A (en) Stern tube shaft seal device
KR102664812B1 (en) seal device
JPH05170183A (en) Stern pipe shaft seal device
JPH06344984A (en) Bulkhead sealing device for ship
JPS60161298A (en) Stern tube seal
EP3781847B1 (en) Emergency seal
JPH0645439Y2 (en) Stern tube sealing device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021540168

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE