WO2022263693A1 - Synthesis of polyols by catalytic hydrogen transfer on ni-raney catalysts - Google Patents

Synthesis of polyols by catalytic hydrogen transfer on ni-raney catalysts Download PDF

Info

Publication number
WO2022263693A1
WO2022263693A1 PCT/ES2022/070368 ES2022070368W WO2022263693A1 WO 2022263693 A1 WO2022263693 A1 WO 2022263693A1 ES 2022070368 W ES2022070368 W ES 2022070368W WO 2022263693 A1 WO2022263693 A1 WO 2022263693A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
catalyst
sorbitol
raney
glucose
Prior art date
Application number
PCT/ES2022/070368
Other languages
Spanish (es)
French (fr)
Inventor
Beatriz GARCÍA SÁNCHEZ
José IGLESIAS MORÁN
Jovita MORENO VOZMEDIANO
Original Assignee
Universidad Rey Juan Carlos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Rey Juan Carlos filed Critical Universidad Rey Juan Carlos
Publication of WO2022263693A1 publication Critical patent/WO2022263693A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • B01J25/02Raney nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/24Tetrahydroxylic alcohols, e.g. pentaerythritol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/26Hexahydroxylic alcohols

Definitions

  • the present invention relates to the field of chemical synthesis of polyols, from monosaccharides or oligosaccharides, by hydrogenation by means of catalytic hydrogen transfer (TCH).
  • the chemical synthesis is carried out on a Ni-Raney-type Ni-AI alloy porous catalyst and uses diols as hydrogen donors in the TCH hydrogenation.
  • Polyols are compounds of great relevance in different productive sectors such as the food, cosmetic or pharmaceutical industry, among others. Some examples of polyols with a large market volume are sorbitol or xylitol, with sorbitol being the polyol with the highest production volume worldwide. Sorbitol is used as an additive in food, drugs or cosmetics and as an intermediate compound in obtaining high added value products derived from biomass.
  • Ni-Raney catalysts are porous catalysts derived from the dealumination of Ni-Al alloys, very active and low cost. This catalytic hydrogenation implies, on the one hand, the handling and consumption of large amounts of hydrogen gas and, on the other, the need to work at high pressures in the installation.
  • TCH Catalytic hydrogen transfer
  • Ni-Raney type catalyst refers to a porous catalyst of a dealaluminized Ni-AI alloy.
  • the Ni-Raney type catalyst is a solid catalyst composed of very fine grains.
  • the Ni-Raney type catalyst is produced by treating a Ni-Al alloy block with a concentrated sodium hydroxide solution. This treatment, called “activation”, dissolves most of the aluminum present in the block, leaving a porous nickel structure with a large surface area, which gives it its great catalytic activity.
  • a typical catalyst is 85% nickel by mass, a percentage that corresponds to about two nickel atoms for every aluminum atom. The aluminum that remains after activation helps to preserve the porous structure of the catalyst.
  • alcohol refers to an organic chemical compound that contains a hydroxyl group (-OH) in substitution of a hydrogen atom, of an alkane, covalently bonded to a carbon atom (C- OH) saturated.
  • diol refers to an alcohol containing two hydroxyl (-OH) groups.
  • polyol also referred to as a polyol, refers to an alcohol containing at least 3 hydroxyl (-OH) groups.
  • a polyol contains from 3 to 7 hydroxyl groups.
  • “monosaccharide” also called simple sugar, refers to the basic unit (monomer) of carbohydrates. It contains from 3 to 7 seven carbon atoms.
  • 5-carbon monosaccharides include, but are not limited to: xylose, arabinose, ribose, and lyxose.
  • 6 carbon monosaccharides include, but are not limited to: glucose, fructose, mannose, and galactose.
  • oligosaccharide refers to a compound that contains from 2 to 9 monosaccharides, linked by covalent bonding through glycosidic bonds, a covalent bond that is established between hydroxyl groups (-OH) of two monosaccharides.
  • Disaccharides are oligosaccharides that contain 2 monosaccharides.
  • Disaccharides include, but are not limited to: cellobiose, maltose, lactose, and sucrose.
  • sucgar encompasses the terms “monosaccharide” and “oligosaccharide”.
  • the present invention is based on the surprisingly high effectiveness of diols as hydrogen donors in the synthesis of polyols by TCH, from monosaccharides or oligosaccharides, on a Ni-Raney-type Ni-Al alloy porous catalyst, effectiveness evidenced in the examples of the present invention.
  • the diol of the present invention can be obtained from biomass resources, which implies the sustainability of the process of the invention.
  • the technical problem to be solved consists in providing a process for the synthesis of polyols, from monosaccharides or oligosaccharides, by hydrogenation by means of catalytic hydrogen transfer (TCH), over a Ni-Raney-type Ni-AI alloy porous catalyst, with a improved effectiveness.
  • TCH catalytic hydrogen transfer
  • 1-4-butanediol did not cause inhibition of the activity of the Ni-Raney catalyst in the TCH hydrogenation (Example 1 of the present invention).
  • the production yield of polyols from glucose when 1-4-butanediol is used as a hydrogen donor was 91% (Example 1 of the present invention). With this same diol, the polyol yield could be increased up to 100% under certain continuous operating conditions.
  • the present invention provides a process for the synthesis of a polyol, from a reaction substrate, by hydrogenation by catalytic hydrogen transfer (TCH), which comprises reacting said reaction substrate with a hydrogen donor, in the presence of a catalyst.
  • THC catalytic hydrogen transfer
  • Ni-Al alloy porous membrane of the Ni-Raney type wherein said reaction substrate is a monosaccharide or oligosaccharide and said hydrogen donor is a diol.
  • said monosaccharide is a pentose or a hexose.
  • said pentose is selected from the group consisting of: xylose, arabinose, ribose and lyxose.
  • said hexose is selected from the group consisting of: glucose, fructose, mannose and galactose. More preferably, said hexose is glucose or fructose.
  • said oligosaccharide is a disaccharide.
  • said disaccharide is selected from the group consisting of: cellobiose, maltose and lactose.
  • said diol is a C -C diol.
  • said C -C diol is selected from the group consisting of: 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,2-pentanediol , 1,5-pentanediol and 1,6-hexanediol.
  • the process of the invention is very versatile and allows a wide variety of polyols to be obtained.
  • said polyol is selected from the group consisting of: sorbitol, mannitol, xylitol, arabitol, ribitol, lixitol, cellobitol, maltitol and lactitol.
  • said catalyst is a porous Ni-AI alloy catalyst of the Ni-Raney type doped with Mo, or with Fe/Cr.
  • the process of the invention is carried out for a time between 30 minutes and 24 hours and at a temperature between 70 and 190 °C.
  • said time is between 30 minutes and 10 hours.
  • the process is carried out with stirring.
  • said agitation is at least 50 rpm. More preferably, said agitation is between 50 and 10,000 rpm. Even more preferably, said agitation is between 50 and 1000 rpm.
  • the catalyst/reaction substrate weight ratio is between 10/1 and 1/1000. In some preferred embodiments, the process of the invention is carried out under continuous or batch flow operating conditions.
  • Methanol, ethanol, 2-propanol, ethylene glycol, 1,2-propylene glycol (> 99.5%), 1,3-propanediol (98%), 1,2-butanediol (98%), 1,4-butanediol (99 %), 1,2-pentanediol (96%) and 1,5-pentanediol (98%) were purchased from Aldrich and used as hydrogen donors in catalytic transfer hydrogenations.
  • Ni-Raney catalysts from Johnson Matthey Process Technologies (trade references A-4000, A-5000 and A-7063) were used.
  • Ni-Raney catalyst Ni-Raney catalyst (Raney®-Nickel, W.R. Grace and Co. Raney® 4200) was used.
  • the TCH hydrogenation tests were carried out using a 100 mL capacity stainless steel reactor with temperature and pressure control. Typically, the examples were made from a slurry containing an appropriate amount of catalyst, sugar, and the hydrogen donor, which also acted as the reaction solvent. All the experiments were carried out under autogenous pressure conditions (after inerting the system). Aliquots of the reaction medium were withdrawn periodically for analytical purposes, over a set period of time. The reaction samples were separated from the catalyst by filtration and stored for later analysis.
  • diols with primary hydroxyl groups Two sets of diols have been tested: diols with primary hydroxyl groups and 1,2-diols. All the diols tested can be produced from lignocellulosic biomass, from which the sustainability of the process of the invention is derived. In order to evaluate the influence of the relative position of the hydroxyls and the effect of the size of the hydrogen donor, diols with 2 to 5 carbon atoms were tested.
  • 1,2-ethanediol and 1,3-propanediol produced limited yields of sorbitol (21.8% and 37.8%, respectively) and only during the start of the reaction, remaining practically unchanged for the rest of the reaction time.
  • Larger diols with primary hydroxyl groups e.g.
  • 1,4-butanediol and 1,5-pentanediol unlike the previously tested short-chain alcohols, show much better performance in terms of sorbitol production.
  • Both the four and five carbon atom primary diols provided rapid glucose conversion, along with high selectivity towards sorbitol.
  • no inhibition of catalyst activity was observed in the transfer hydrogenation.
  • 1,4-butanediol and 1,5-pentanediol did not produce etherification or isomerization derivatives of glucose, but mannitol and some other polyols.
  • 1,2-diols In relation to the 1,2-diols, all of them showed a good behavior as hydrogen donors.
  • the 1,2-diols produced, upon dehydrogenation, preferentially 1-hydroxyalkyl-2-ketones and minor amounts of 2-hydroxyaldehydes. This suggests that the dehydrogenation of 1,2-diols occurs preferentially at the secondary hydroxyl group, not the primary hydroxyl. All the 1,2-diols tested led to complete conversion of the substrate after 6 hours, with sorbitol being the main reaction product. The formation of small amounts of mannitol was also observed at prolonged reaction times. As in the case of diols with primary hydroxyl groups, the rate of substrate conversion increased with the size of the alkyl chain on the hydrogen donor.
  • 1,2-Butanediol and 1,2-pentanediol provided faster glucose conversion and higher sorbitol yields (90.8% and 68.0%, respectively, at 6 hours) compared to 1,2 - propanediol.
  • the lower yield of sorbitol obtained for 1,2-pentanediol at 6 hours it is most likely due to its transformation through the secondary reactions of hydroisomerization and hydrogenolysis that consume sorbitol, as suggested by the increasing yields obtained. of mannitol production.
  • Example 2 Synthesis of sorbitol from glucose by TCH using 1,4-butanediol as hydrogen donor on Ni-Raney catalysts doped with Fe/Cr and Mo
  • Figure 2 represents the results obtained in the catalytic transfer hydrogenation of glucose with 1,4-butanediol in the presence of undoped Ni-Raney catalysts and in the presence of Fe/Cr and Mo doped Ni-Raney catalysts.
  • Ni-Raney catalysts doped with Fe/Cr or Mo provided faster substrate conversion than the undoped catalyst, but also poorer sorbitol selectivity.
  • Ni-Raney catalysts doped with Fe/Cr or Mo produced a maximum yield of sorbitol during the first 2 hours of the reaction (61.1% and 67.6%, respectively), but this yield decreased subsequently.
  • the decrease in sorbitol yield is accompanied by the production of significant amounts of mannitol (up to 10.9% in the case of the catalyst doped with molybdenum). Sorbitol consumption can be attributed to hydroisomerization and hydrogenolysis side reactions.
  • reaction temperature 70-130°C.
  • reaction volume 100mL
  • [glucose] 90 mM
  • catalyst charge 1.65 g
  • reaction temperature 70-130°C.
  • the conversion of the substrate was complete in most cases, although longer times were required as the applied temperature decreased.
  • the sorbitol yield increased with decreasing reaction temperature, reaching 87.3% of the sorbitol yield after 6 hours at 90°C. Carrying out the reaction at a temperature of 70°C did not produce a higher yield of sorbitol because the conversion of the substrate decreased.
  • the Mo-doped Ni-Raney catalysts showed high stability, allowing continuous operation for long periods of time while maintaining high polyol yields (close to 100%).
  • the TCH hydrogenation tests were carried out in a 100 mL capacity stainless steel reactor with temperature and pressure control. 100 mL of a 45 mM or 90 mM solution of the corresponding monosaccharide or oligosaccharide in 1,4-butanediol were prepared and placed in contact with the catalyst. The tests were carried out under autogenous pressure, taking samples periodically until 6 hours, which were subsequently analyzed to determine the concentration of the different reaction products.
  • Figure 3 shows the results obtained in the TCH hydrogenation tests using 1,4-butanediol as hydrogen donor on Ni-Raney catalysts, from glucose (A), fructose (B), xylose (C), arabinose ( D), ribose (E), cellobiose (F) and maltose (G).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for synthesising a polyol from a reaction substrate by means of catalytic hydrogen transfer (CHT) hydrogenation, method that comprises causing said reaction substrate to react with a hydrogen donor in the presence of said porous catalyst having a Ni-Al alloy of the Ni-Raney type, wherein said reaction substrate is a monosaccharide or oligosaccharide and said hydrogen donor is a diol. Preferably, said monosaccharide or oligosaccharide is glucose, fructose, mannose, galactose, xylose, arabinose, ribose, lyxose, cellobiose, maltose or lactose; said diol is 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,2-pentanediol, 1,5-pentanediol or 1,6-hexanediol; and said polyol is sorbitol, mannitol, xylitol, arabitol, ribitol, lixitol, cellobitol, maltitol or lactitol.

Description

DESCRIPCIÓN DESCRIPTION
SÍNTESIS DE POLIOLES POR TRANSFERENCIA CATALÍTICA DE HIDRÓGENOSYNTHESIS OF POLYOLS BY CATALYTIC TRANSFER OF HYDROGEN
SOBRE CATALIZADORES Ni-RANEY ABOUT Ni-RANEY CATALYST
SECTOR DE LA TÉCNICA TECHNIQUE SECTOR
La presente invención se refiere al sector de la síntesis química de polioles, a partir de monosacáridos u oligosacáridos, por hidrogenación mediante transferencia catalítica de hidrógeno (TCH). La síntesis química se realiza sobre un catalizador poroso de aleación Ni-AI de tipo Ni-Raney y emplea dioles como dadores de hidrógeno en la hidrogenación mediante TCH. The present invention relates to the field of chemical synthesis of polyols, from monosaccharides or oligosaccharides, by hydrogenation by means of catalytic hydrogen transfer (TCH). The chemical synthesis is carried out on a Ni-Raney-type Ni-AI alloy porous catalyst and uses diols as hydrogen donors in the TCH hydrogenation.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Los polioles son compuestos de gran relevancia en diferentes sectores productivos como la industria alimentaria, cosmética o farmacéutica, entre otros. Algunos ejemplos de polioles con gran volumen de mercado son el sorbitol o el xilitol, siendo el sorbitol el poliol con mayor volumen de producción mundial. El sorbitol se utiliza como aditivo en alimentos, fármacos o cosméticos y como compuesto intermedio en la obtención de productos de alto valor añadido derivados de la biomasa. Polyols are compounds of great relevance in different productive sectors such as the food, cosmetic or pharmaceutical industry, among others. Some examples of polyols with a large market volume are sorbitol or xylitol, with sorbitol being the polyol with the highest production volume worldwide. Sorbitol is used as an additive in food, drugs or cosmetics and as an intermediate compound in obtaining high added value products derived from biomass.
Los procesos convencionales de producción de polioles se basan en transformar un azúcar de partida (glucosa para el sorbitol, xilosa para el xilitol, etc.) mediante hidrogenación catalítica con catalizadores Ni-Raney en una reacción de reducción que requiere el empleo de una corriente de hidrógeno gas. Los catalizadores Ni-Raney son catalizadores porosos derivados de la desaluminización de aleaciones Ni-AI, muy activos y de bajo coste. Esta hidrogenación catalítica implica, por un lado, la manipulación y consumo de importantes cantidades de hidrógeno gas y, por otro, la necesidad de trabajar a elevadas presiones en la instalación. Conventional polyol production processes are based on transforming a starting sugar (glucose for sorbitol, xylose for xylitol, etc.) by catalytic hydrogenation with Ni-Raney catalysts in a reduction reaction that requires the use of a current of hydrogen gas. Ni-Raney catalysts are porous catalysts derived from the dealumination of Ni-Al alloys, very active and low cost. This catalytic hydrogenation implies, on the one hand, the handling and consumption of large amounts of hydrogen gas and, on the other, the need to work at high pressures in the installation.
La transferencia catalítica de hidrógeno (TCH) es una alternativa muy interesante para la hidrogenación de azúcares, ya que elimina la utilización de hidrogeno gas y las altas presiones de operación. Así, el empleo de dadores de hidrógeno permite trabajar bajo condiciones de operación moderadas. La TCH se ha explorado en la transformación de glucosa en sorbitol utilizando alcoholes que contienen un solo grupo hidroxilo (-OH) como dadores de hidrógeno (García et al., 2019; García et al., 2020), aunque los resultados descritos en dichos documentos evidencian un bajo rendimiento en términos de productividad de sorbitol. Catalytic hydrogen transfer (TCH) is a very interesting alternative for the hydrogenation of sugars, since it eliminates the use of hydrogen gas and high operating pressures. Thus, the use of hydrogen donors allows working under moderate operating conditions. TCH has been explored in the transformation of glucose into sorbitol using alcohols that contain a single hydroxyl group (-OH) as hydrogen donors (García et al., 2019; García et al., 2020), although the results described in said documents show a low performance in terms of sorbitol productivity.
En el estado de la técnica se ha descrito la síntesis de polioles a partir de azúcares mediante TCH utilizando el diol 1-4-butanodiol como dador de hidrógeno, sobre catalizadores derivados de hidrotalcita (Scholz et al., 2015). Por otro lado, también se ha descrito la influencia de distintos alcoholes en la reacción de hidrogenación de fenol por TCH sobre catalizadores Ni-Raney y se ha observado que los dioles producen una inhibición de la actividad del catalizador Ni-Raney mayor que la producida por alcoholes que contienen un solo grupo hidroxilo (Kennema et al., 2017), lo que sin duda desalentaría a utilizar dioles para sintetizar polioles, a partir de monosacáridos u oligosacáridos, mediante TCH sobre catalizadores Ni-Raney. In the state of the art, the synthesis of polyols from sugars has been described by TCH using the diol 1,4-butanediol as hydrogen donor, on catalysts derived from hydrotalcite (Scholz et al., 2015). On the other hand, the influence of different alcohols on the phenol hydrogenation reaction by TCH on Ni-Raney catalysts has also been described and it has been observed that diols produce a greater inhibition of Ni-Raney catalyst activity than that produced by alcohols containing a single hydroxyl group (Kennema et al., 2017), which would undoubtedly discourage the use of diols to synthesize polyols, from monosaccharides or oligosaccharides, by TCH over Ni-Raney catalysts.
Aunque en el estado de la técnica se han obtenido progresos en los procedimientos de síntesis de polioles, a partir de monosacáridos u oligosacáridos, mediante TCH sobre catalizadores Ni-Raney, existe la necesidad de mejorar la eficiencia de producción de polioles mediante dicha técnica TCH. Although progress has been made in the state of the art in polyol synthesis procedures, from monosaccharides or oligosaccharides, by means of TCH on Ni-Raney catalysts, there is a need to improve the efficiency of polyol production using said TCH technique.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
A efectos de la presente invención, “catalizador de tipo Ni-Raney” se refiere a un catalizador poroso de una aleación Ni-AI deasaluminizada. El catalizador de tipo Ni- Raney es un catalizador sólido compuesto por granos muy finos. El catalizador de tipo Ni-Raney se produce tratando un bloque de aleación Ni-AI con una disolución concentrada de hidróxido de sodio. Este tratamiento, llamado "activación", disuelve la mayor parte del aluminio presente en el bloque, dejando una estructura de níquel porosa con una gran área superficial, lo que le confiere su gran actividad catalítica. Un catalizador típico tiene un 85% en masa de níquel, porcentaje que corresponde a unos dos átomos de níquel por cada átomo de aluminio. El aluminio que queda tras la activación contribuye a preservar la estructura porosa del catalizador. For purposes of the present invention, "Ni-Raney type catalyst" refers to a porous catalyst of a dealaluminized Ni-AI alloy. The Ni-Raney type catalyst is a solid catalyst composed of very fine grains. The Ni-Raney type catalyst is produced by treating a Ni-Al alloy block with a concentrated sodium hydroxide solution. This treatment, called "activation", dissolves most of the aluminum present in the block, leaving a porous nickel structure with a large surface area, which gives it its great catalytic activity. A typical catalyst is 85% nickel by mass, a percentage that corresponds to about two nickel atoms for every aluminum atom. The aluminum that remains after activation helps to preserve the porous structure of the catalyst.
A efectos de la presente invención, “alcohol” se refiere a un compuesto químico orgánico que contiene un grupo hidroxilo (-OH) en sustitución de un átomo de hidrógeno, de un alcano, enlazado de forma covalente a un átomo de carbono (C-OH) saturado. A efectos de la presente invención, “diol” se refiere a un alcohol que contiene dos grupos hidroxilo (-OH). For the purposes of the present invention, "alcohol" refers to an organic chemical compound that contains a hydroxyl group (-OH) in substitution of a hydrogen atom, of an alkane, covalently bonded to a carbon atom (C- OH) saturated. For purposes of the present invention, "diol" refers to an alcohol containing two hydroxyl (-OH) groups.
A efectos de la presente invención, “poliol”, también denominado polialcohol, se refiere a un alcohol que contiene al menos 3 grupos hidroxilo (-OH). Preferentemente, un poliol contiene de 3 a 7 grupos hidroxilo. For purposes of the present invention, "polyol", also referred to as a polyol, refers to an alcohol containing at least 3 hydroxyl (-OH) groups. Preferably, a polyol contains from 3 to 7 hydroxyl groups.
A efectos de la presente invención, “monosacárido”, también denominado azúcar simple, se refiere a la unidad básica (monómero) de los glúcidos. Contiene de 3 a 7 siete átomos de carbono. Monosacáridos de 5 átomos de carbono incluyen, entre otros: xilosa, arabinosa, ribosa y lixosa. Monosacáridos de 6 átomos de carbono incluyen, entre otros: glucosa, fructosa, mañosa y galactosa. For the purposes of the present invention, "monosaccharide", also called simple sugar, refers to the basic unit (monomer) of carbohydrates. It contains from 3 to 7 seven carbon atoms. 5-carbon monosaccharides include, but are not limited to: xylose, arabinose, ribose, and lyxose. 6 carbon monosaccharides include, but are not limited to: glucose, fructose, mannose, and galactose.
A efectos de la presente invención, “oligosacárido” se refiere a un compuesto que contiene de 2 a 9 monosacáridos, unidos por unión covalente mediante enlaces de tipo glicosídicos, un enlace covalente que se establece entre grupos hidroxilo (-OH) de dos monosacáridos. Los disacáridos son oligosacáridos que contienen 2 monosacáridos. Los disacáridos incluyen, entre otros: celobiosa, maltosa, lactosa y sacarosa. For the purposes of the present invention, "oligosaccharide" refers to a compound that contains from 2 to 9 monosaccharides, linked by covalent bonding through glycosidic bonds, a covalent bond that is established between hydroxyl groups (-OH) of two monosaccharides. Disaccharides are oligosaccharides that contain 2 monosaccharides. Disaccharides include, but are not limited to: cellobiose, maltose, lactose, and sucrose.
A efectos de la presente invención, el término “azúcar” engloba los términos “monosacárido” y “oligosacárido”. For purposes of the present invention, the term "sugar" encompasses the terms "monosaccharide" and "oligosaccharide".
La presente invención se basa en la sorprendente elevada efectividad de los dioles como dadores de hidrógeno en la síntesis por TCH de polioles, a partir de monosacáridos u oligosacáridos, sobre un catalizador poroso de aleación Ni-AI de tipo Ni-Raney, efectividad evidenciada en los ejemplos de la presente invención. The present invention is based on the surprisingly high effectiveness of diols as hydrogen donors in the synthesis of polyols by TCH, from monosaccharides or oligosaccharides, on a Ni-Raney-type Ni-Al alloy porous catalyst, effectiveness evidenced in the examples of the present invention.
Ventajosamente, además, el diol de la presente invención se puede obtener a partir de recursos de biomasa, lo que implica la sostenibilidad del procedimiento de la invención. Advantageously, furthermore, the diol of the present invention can be obtained from biomass resources, which implies the sustainability of the process of the invention.
El problema técnico a resolver consiste en proporcionar un procedimiento de síntesis de polioles, a partir de monosacáridos u oligosacáridos, por hidrogenación mediante transferencia catalítica de hidrógeno (TCH), sobre un catalizador poroso de aleación Ni- AI de tipo Ni-Raney, con una efectividad mejorada. El procedimiento de la presente invención proporciona una solución a dicho problema técnico. The technical problem to be solved consists in providing a process for the synthesis of polyols, from monosaccharides or oligosaccharides, by hydrogenation by means of catalytic hydrogen transfer (TCH), over a Ni-Raney-type Ni-AI alloy porous catalyst, with a improved effectiveness. The process of the present invention provides a solution to said technical problem.
Como se ha descrito anteriormente, en estado de la técnica se ha descrito que los dioles producen una inhibición de la actividad del catalizador Ni-Raney mayor que la producida por los alcoholes que contienen un solo grupo hidroxilo (-OH) (Kennema et al., 2017). En dicho documento del estado de la técnica, el 2-propanol, que contiene un solo grupo hidroxilo (-OH), provoca una baja inhibición del catalizador Ni-Raney, que corresponde a valores de 100-90% de rendimiento, mientras que el 1,4-butanodiol provoca una inhibición moderada del catalizador Ni-Raney, que corresponde a valores de 90-70 % de rendimiento. As previously described, in the state of the art it has been described that diols produce a greater inhibition of the activity of the Ni-Raney catalyst than that produced by alcohols that contain a single hydroxyl group (-OH) (Kennema et al. , 2017). In said prior art document, 2-propanol, which contains a single hydroxyl group (-OH), causes low inhibition of the Ni-Raney catalyst, which corresponds to values of 100-90% yield, while 1,4-Butanediol causes a moderate inhibition of the Ni-Raney catalyst, which corresponds to values of 90-70% yield.
Sorprendentemente, en el procedimiento de la invención, el 1-4-butanodiol no provocó inhibición de la actividad del catalizador Ni-Raney en la hidrogenación por TCH (Ejemplo 1 de la presente invención). Además, el rendimiento de producción en polioles a partir de glucosa cuando se utiliza el 1-4-butanodiol como dador de hidrógeno fue de 91% (Ejemplo 1 de la presente invención). Con este mismo diol, el rendimiento a polioles se pudo incrementar hasta el 100 % bajo ciertas condiciones de operación en continuo. Surprisingly, in the process of the invention, 1-4-butanediol did not cause inhibition of the activity of the Ni-Raney catalyst in the TCH hydrogenation (Example 1 of the present invention). In addition, the production yield of polyols from glucose when 1-4-butanediol is used as a hydrogen donor was 91% (Example 1 of the present invention). With this same diol, the polyol yield could be increased up to 100% under certain continuous operating conditions.
Las reivindicaciones dependientes describen realizaciones preferentes de dicho procedimiento de la invención. The dependent claims describe preferred embodiments of said method of the invention.
La presente invención proporciona un procedimiento de síntesis de un poliol, a partir de un sustrato de reacción, por hidrogenación mediante transferencia catalítica de hidrógeno (TCH), que comprende hacer reaccionar dicho sustrato de reacción con un dador de hidrógeno, en presencia de un catalizador poroso de aleación Ni-AI de tipo Ni- Raney, en el que dicho sustrato de reacción es un monosacárido u oligosacárido y dicho dador de hidrógeno es un diol. The present invention provides a process for the synthesis of a polyol, from a reaction substrate, by hydrogenation by catalytic hydrogen transfer (TCH), which comprises reacting said reaction substrate with a hydrogen donor, in the presence of a catalyst. Ni-Al alloy porous membrane of the Ni-Raney type, wherein said reaction substrate is a monosaccharide or oligosaccharide and said hydrogen donor is a diol.
En algunas realizaciones preferentes del procedimiento de la invención, dicho monosacárido es una pentosa o una hexosa. Preferentemente, dicha pentosa se selecciona del grupo que consiste en: xilosa, arabinosa, ribosa y lixosa. Preferentemente, dicha hexosa se selecciona del grupo que consiste en: glucosa, fructosa, mañosa y galactosa. Más preferentemente, dicha hexosa es glucosa o fructosa. In some preferred embodiments of the process of the invention, said monosaccharide is a pentose or a hexose. Preferably, said pentose is selected from the group consisting of: xylose, arabinose, ribose and lyxose. Preferably, said hexose is selected from the group consisting of: glucose, fructose, mannose and galactose. More preferably, said hexose is glucose or fructose.
En algunas realizaciones preferentes del procedimiento de la invención, dicho oligosacárido es un disacárido. Preferentemente, dicho disacárido se selecciona del grupo que consiste en: celobiosa, maltosa y lactosa. In some preferred embodiments of the method of the invention, said oligosaccharide is a disaccharide. Preferably, said disaccharide is selected from the group consisting of: cellobiose, maltose and lactose.
En algunas realizaciones preferentes del procedimiento de la invención, dicho diol es un diol C -C . Preferentemente, dicho diol C -C se selecciona del grupo que consiste en: 1 ,2-etanodiol, 1 ,2-propanodiol, 1,3-propanodiol, 1 ,2-butanodiol, 1,4-butanodiol, 1 ,2- pentanodiol, 1,5-pentanodiol y 1 ,6-hexanodiol. In some preferred embodiments of the process of the invention, said diol is a C -C diol. Preferably, said C -C diol is selected from the group consisting of: 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,2-pentanediol , 1,5-pentanediol and 1,6-hexanediol.
Ventajosamente, el procedimiento de la invención es muy versátil y permite obtener una gran variedad de polioles. Así, en realizaciones preferentes del procedimiento de la invención, dicho poliol se selecciona del grupo que consiste en: sorbitol, manitol, xilitol, arabitol, ribitol, lixitol, celobitol, maltitol y lactitol. Advantageously, the process of the invention is very versatile and allows a wide variety of polyols to be obtained. Thus, in preferred embodiments of the process of the invention, said polyol is selected from the group consisting of: sorbitol, mannitol, xylitol, arabitol, ribitol, lixitol, cellobitol, maltitol and lactitol.
En algunas realizaciones preferentes del procedimiento de la invención, dicho catalizador es un catalizador poroso de aleación Ni-AI de tipo Ni-Raney dopado con Mo, o con Fe/Cr. In some preferred embodiments of the process of the invention, said catalyst is a porous Ni-AI alloy catalyst of the Ni-Raney type doped with Mo, or with Fe/Cr.
En algunas realizaciones preferentes, el procedimiento de la invención se lleva a cabo durante un tiempo entre 30 minutos y 24 horas y a una temperatura entre 70 y 190 °C. In some preferred embodiments, the process of the invention is carried out for a time between 30 minutes and 24 hours and at a temperature between 70 and 190 °C.
Preferentemente, dicho tiempo es entre 30 minutos y 10 horas. Preferably, said time is between 30 minutes and 10 hours.
En algunas realizaciones preferentes, el procedimiento se lleva a cabo con agitación. In some preferred embodiments, the process is carried out with stirring.
Preferentemente, dicha agitación es al menos 50 rpm. Más preferentemente, dicha agitación es entre 50 y 10000 rpm. Aún más preferentemente, dicha agitación es entre 50 y 1000 rpm. Preferably, said agitation is at least 50 rpm. More preferably, said agitation is between 50 and 10,000 rpm. Even more preferably, said agitation is between 50 and 1000 rpm.
En algunas realizaciones preferentes del procedimiento de la invención, la relación en peso catalizador/sustrato de reacción es entre 10/1 y 1/1000. En algunas realizaciones preferentes, el procedimiento de la invención se lleva a cabo en condiciones de operación de flujo continuo o discontinuo. In some preferred embodiments of the process of the invention, the catalyst/reaction substrate weight ratio is between 10/1 and 1/1000. In some preferred embodiments, the process of the invention is carried out under continuous or batch flow operating conditions.
A lo largo de la descripción y las reivindicaciones, el término “comprende”, “que comprende” y sus variantes no son de naturaleza limitativa y, por lo tanto, no pretenden excluir otras características técnicas. El término “comprende”, “que comprende” y sus variantes, a lo largo de la descripción y las reivindicaciones, incluye, específicamente, el término “consiste en”, “que consiste en” y sus variantes. Throughout the description and claims, the terms "comprising", "comprising" and their variants are not of a limiting nature and, therefore, are not intended to exclude other technical characteristics. The term "comprising", "comprising" and their variants, throughout the description and claims, specifically includes the term "consisting of", "consisting of" and their variants.
Como se usa en esta descripción y en las reivindicaciones, las formas singulares “un”, “una”, “el”, “la” incluyen referencias a las formas plurales a menos que el contenido indique claramente lo contrario. As used in this description and in the claims, the singular forms "a", "an", "the", "the" include references to the plural forms unless the content clearly indicates otherwise.
A menos que se defina lo contrario, todos los términos técnicos y científicos utilizados a lo largo de la descripción y reivindicaciones, tienen el mismo significado que el comúnmente entendido por un experto en el campo de la invención. Unless otherwise defined, all technical and scientific terms used throughout the description and claims have the same meaning as that commonly understood by an expert in the field of the invention.
BREVE DESCRIPCIÓN DE LOS DIBUJOS BRIEF DESCRIPTION OF THE DRAWINGS
Figura 1. Resultados obtenidos en la hidrogenación por TCH de glucosa, en presencia de un catalizador Ni-Raney, a las 2, 4 y 6 horas de reacción, utilizando los dioles 1,2- etanodiol, 1,3-propanodiol, 1,4-butanodiol y 1,5-pentanodiol (A) como dadores de hidrógeno y utilizando los dioles 1,2-propanodiol, 1,2-butanodiol y 1,2-pentanodiol como dadores de hidrógeno (B). Figure 1. Results obtained in the hydrogenation by TCH of glucose, in the presence of a Ni-Raney catalyst, at 2, 4 and 6 hours of reaction, using the diols 1,2-ethanediol, 1,3-propanediol, 1, 4-butanediol and 1,5-pentanediol (A) as hydrogen donors and using the diols 1,2-propanediol, 1,2-butanediol and 1,2-pentanediol as hydrogen donors (B).
Figura 2. Resultados obtenidos en la hidrogenación por TCH de glucosa utilizando 1,4- butanodiol como dador de hidrógeno, a dos concentraciones de glucosa diferentes (90 y 360 mM), en presencia de un catalizador Ni-Raney sin dopar (A y B), catalizadores Ni- Raney dopados con Fe/Cr (C y D) y un catalizador Ni-Raney dopado con Mo (E y F). Figure 2. Results obtained in the hydrogenation of glucose by TCH using 1,4-butanediol as a hydrogen donor, at two different glucose concentrations (90 and 360 mM), in the presence of an undoped Ni-Raney catalyst (A and B ), Ni-Raney catalysts doped with Fe/Cr (C and D) and a Ni-Raney catalyst doped with Mo (E and F).
Figura 3. Resultados obtenidos en la hidrogenación por TCH utilizando 1,4-butanodiol como dador de hidrógeno, en presencia de catalizadores Ni-Raney, a partir de glucosa (A), fructosa (B), xilosa (C), arabinosa (D), ribosa (E), celobiosa (F) y maltosa (G), a las 2, 4 y 6 horas de reacción. DESCRIPCIÓN DE MODOS DE REALIZACIÓN Figure 3. Results obtained in hydrogenation by TCH using 1,4-butanediol as hydrogen donor, in the presence of Ni-Raney catalysts, from glucose (A), fructose (B), xylose (C), arabinose (D ), ribose (E), cellobiose (F) and maltose (G), at 2, 4 and 6 hours of reaction. DESCRIPTION OF EMBODIMENTS
Materiales y métodos Materials and methods
Reactivos reagents
Se utilizaron como materias primas de partida y como estándares en la calibración de técnicas analíticas los siguientes compuestos: D-Glucosa (³99,5%), fructosa (³99%), mañosa (³99%), sorbitol (99%), manitol (³98%), xilosa (³99%), xilitol (³99%), arabinosa (>98%), ribosa (99%), arabitol (99%), celobiosa (>99%, Across Organic), celobitol (>95%, Carbosynth), maltosa monohidratada (³98%) y maltitol (³98%). Metanol, etanol, 2-propanol, etilenglicol, 1,2-propilenglicol (> 99,5%), 1 ,3-propanodiol (98%), 1,2- butanodiol (98%), 1,4-butanodiol (99%), 1,2-pentanodiol (96%) y 1 ,5-pentanodiol (98%) se adquirieron de Aldrich y se utilizaron como dadores de hidrógeno en hidrogenaciones de transferencia catalítica. En los Ejemplos 1 y 2, se utilizaron catalizadores Ni-Raney de Johnson Matthey Process Technologies (referencias comerciales A-4000, A-5000 y A-7063). En el Ejemplo 3, se utilizó el catalizador Ni-Raney (Raney®-Nickel, W.R. Grace and Co. Raney® 4200). The following compounds were used as starting raw materials and as standards in the calibration of analytical techniques: D-Glucose (³99.5%), fructose (³99%), mannose (³99%), sorbitol (99%), mannitol ( ³98%), xylose (³99%), xylitol (³99%), arabinose (>98%), ribose (99%), arabitol (99%), cellobiose (>99%, Across Organic), cellobitol (>95% , Carbosynth), maltose monohydrate (³98%) and maltitol (³98%). Methanol, ethanol, 2-propanol, ethylene glycol, 1,2-propylene glycol (> 99.5%), 1,3-propanediol (98%), 1,2-butanediol (98%), 1,4-butanediol (99 %), 1,2-pentanediol (96%) and 1,5-pentanediol (98%) were purchased from Aldrich and used as hydrogen donors in catalytic transfer hydrogenations. In Examples 1 and 2, Ni-Raney catalysts from Johnson Matthey Process Technologies (trade references A-4000, A-5000 and A-7063) were used. In Example 3, Ni-Raney catalyst (Raney®-Nickel, W.R. Grace and Co. Raney® 4200) was used.
Ensayos de hidrogenación por TCH TCH hydrogenation tests
Los ensayos de hidrogenación por TCH se llevaron a cabo empleando un reactor de acero inoxidable de 100 mL de capacidad con control de temperatura y presión. Normalmente, los ejemplos se realizaron a partir de una suspensión que contenía una cantidad apropiada de catalizador, azúcar y el dador de hidrógeno, que también actuó como disolvente de reacción. Todos los experimentos se realizaron en condiciones de presión autógena (previa inertización del sistema). Se extrajeron periódicamente alícuotas del medio de reacción con fines analíticos, durante un período de tiempo establecido. Las muestras de reacción se separaron del catalizador mediante filtración y se almacenaron para su posterior análisis. The TCH hydrogenation tests were carried out using a 100 mL capacity stainless steel reactor with temperature and pressure control. Typically, the examples were made from a slurry containing an appropriate amount of catalyst, sugar, and the hydrogen donor, which also acted as the reaction solvent. All the experiments were carried out under autogenous pressure conditions (after inerting the system). Aliquots of the reaction medium were withdrawn periodically for analytical purposes, over a set period of time. The reaction samples were separated from the catalyst by filtration and stored for later analysis.
Ejemplo 1. Síntesis de sorbitol a partir de glucosa por TCH utilizando dioles como dadores de hidrógeno sobre catalizadores Ni-Raney Example 1. Synthesis of sorbitol from glucose by TCH using diols as hydrogen donors on Ni-Raney catalysts
Los resultados obtenidos en la reducción de glucosa a sorbitol por TCH utilizando diferentes dioles como dadores de hidrógeno se muestran en la Figura 1A y Figura 1B. Las condiciones de reacción fueron las siguientes: volumen de reacción = 100 mL; [glucosa] = 90 mM, relación en peso catalizador/sustrato = 1:1 ; temperatura de reacción = 130°C. The results obtained in the reduction of glucose to sorbitol by TCH using different diols as hydrogen donors are shown in Figure 1A and Figure 1B. The reaction conditions were as follows: reaction volume = 100 mL; [glucose] = 90 mM, catalyst/substrate weight ratio = 1:1; reaction temperature = 130°C.
Se han probado dos conjuntos de dioles: dioles con grupos hidroxilo primarios y 1,2- dioles. Todos los dioles ensayados se pueden producir a partir de biomasa lignocelulósica, de lo que se deriva la sostenibilidad del procedimiento de la invención. Con el objetivo de evaluar la influencia de la posición relativa de los hidroxilos y el efecto del tamaño del dador de hidrógeno, se ensayaron dioles de 2 a 5 átomos de carbono. Two sets of diols have been tested: diols with primary hydroxyl groups and 1,2-diols. All the diols tested can be produced from lignocellulosic biomass, from which the sustainability of the process of the invention is derived. In order to evaluate the influence of the relative position of the hydroxyls and the effect of the size of the hydrogen donor, diols with 2 to 5 carbon atoms were tested.
En el caso de dioles con grupos hidroxilo primarios, el 1 ,2-etanodiol y el 1 ,3-propanodiol produjeron rendimientos limitados de sorbitol (21 ,8% y 37,8%, respectivamente) y solo durante el comienzo de la reacción, permaneciendo prácticamente inalterados el resto del tiempo de reacción. Dioles más grandes con grupos hidroxilo primarios, p. ej., el 1,4- butanodiol y el 1,5-pentanodiol, a diferencia de los alcoholes de cadena corta probados anteriormente, muestran un rendimiento mucho mejor en términos de producción de sorbitol. Ambos, los dioles primarios de cuatro y cinco átomos de carbono proporcionaron una rápida conversión de glucosa, junto con una alta selectividad hacia el sorbitol. Además, sorprendentemente, no se observó inhibición de la actividad del catalizador en la hidrogenación por transferencia. En cuanto a los productos secundarios, el 1,4-butanodiol y el 1,5-pentanodiol no produjeron derivados de eterificación o isomerización de glucosa, sino manitol y algunos otros polioles. In the case of diols with primary hydroxyl groups, 1,2-ethanediol and 1,3-propanediol produced limited yields of sorbitol (21.8% and 37.8%, respectively) and only during the start of the reaction, remaining practically unchanged for the rest of the reaction time. Larger diols with primary hydroxyl groups, e.g. For example, 1,4-butanediol and 1,5-pentanediol, unlike the previously tested short-chain alcohols, show much better performance in terms of sorbitol production. Both the four and five carbon atom primary diols provided rapid glucose conversion, along with high selectivity towards sorbitol. Furthermore, surprisingly, no inhibition of catalyst activity was observed in the transfer hydrogenation. As for the secondary products, 1,4-butanediol and 1,5-pentanediol did not produce etherification or isomerization derivatives of glucose, but mannitol and some other polyols.
La detección de productos secundarios procedentes de la hidroisomerización y la hidrogenolisis evidencia la abundante disponibilidad de hidrógeno en la superficie de los catalizadores. Esto confirma el buen comportamiento tanto del 1,4-butanodiol como del 1 ,5-pentanodiol como dadores de hidrógeno. The detection of secondary products from hydroisomerization and hydrogenolysis evidences the abundant availability of hydrogen on the surface of the catalysts. This confirms the good behavior of both 1,4-butanediol and 1,5-pentanediol as hydrogen donors.
En relación con los 1,2-dioles, todos ellos mostraron un buen comportamiento como dadores de hidrógeno. Los 1,2-dioles produjeron, tras la deshidrogenación, preferentemente 1-hidroxialquil-2-cetonas y cantidades menores de 2-hidroxialdehídos. Esto sugiere que la deshidrogenación de los 1,2-dioles se produce preferentemente en el grupo hidroxilo secundario, no en el hidroxilo primario. T odos los 1 ,2-dioles ensayados condujeron a la conversión completa del sustrato después de 6 horas, siendo el sorbitol el principal producto de reacción. También se observó la formación de pequeñas cantidades de manitol en tiempos de reacción prolongados. Como en el caso de los dioles con grupos hidroxilo primarios, la velocidad de conversión del sustrato aumentó con el tamaño de la cadena de alquilo en el dador de hidrógeno. La comparación uno a uno entre isómeros de los dadores de hidrógeno (dioles con grupos hidroxilo primarios y 1 ,2-dioles) sugiere que los 1 ,2-dioles conducen a una conversión de sustrato más lenta que los dioles con grupos hidroxilo primarios, pero una mayor selectividad hacia el sorbitol, junto con una formación mínima de productos secundarios que vienen de la isomerización o eterificación de monosacáridos. Esto es especialmente evidente en el caso de los dioles de tres átomos de carbono (Figura 1B), en los que el 1,2-propanodiol proporcionó rendimientos de fructosa y sorbitol de 0,2% y 65,4%, respectivamente, después de 6 horas. Por el contrario, el 1 ,3-propanodiol dio lugar a los mismos productos con rendimientos del 9,2% y del 34,7%. El 1 ,2-butanodiol y el 1 ,2-pentanodiol proporcionaron una conversión de glucosa más rápida y mayores rendimientos de sorbitol (90,8% y 68,0%, respectivamente, a las 6 horas) en comparación con el 1,2- propanodiol. En cuanto al menor rendimiento de sorbitol obtenido para el 1,2- pentanodiol a las 6 horas, lo más probable es que se deba a su transformación a través de las reacciones secundarias de hidroisomerización e hidrogenolisis que consumen sorbitol, como sugieren los rendimientos crecientes obtenidos de producción de manitol. In relation to the 1,2-diols, all of them showed a good behavior as hydrogen donors. The 1,2-diols produced, upon dehydrogenation, preferentially 1-hydroxyalkyl-2-ketones and minor amounts of 2-hydroxyaldehydes. This suggests that the dehydrogenation of 1,2-diols occurs preferentially at the secondary hydroxyl group, not the primary hydroxyl. All the 1,2-diols tested led to complete conversion of the substrate after 6 hours, with sorbitol being the main reaction product. The formation of small amounts of mannitol was also observed at prolonged reaction times. As in the case of diols with primary hydroxyl groups, the rate of substrate conversion increased with the size of the alkyl chain on the hydrogen donor. One-to-one comparison between isomers of the hydrogen donors (diols with primary hydroxyl groups and 1,2-diols) suggests that 1,2-diols lead to slower substrate conversion than diols with primary hydroxyl groups, but a higher selectivity towards sorbitol, together with a minimum formation of secondary products that come from the isomerization or etherification of monosaccharides. This is especially evident in the case of the three-carbon diols (Figure 1B), where 1,2-propanediol gave yields of fructose and sorbitol of 0.2% and 65.4%, respectively, after 6 hours. In contrast, 1,3-propanediol gave rise to the same products with yields of 9.2% and 34.7%. 1,2-Butanediol and 1,2-pentanediol provided faster glucose conversion and higher sorbitol yields (90.8% and 68.0%, respectively, at 6 hours) compared to 1,2 - propanediol. Regarding the lower yield of sorbitol obtained for 1,2-pentanediol at 6 hours, it is most likely due to its transformation through the secondary reactions of hydroisomerization and hydrogenolysis that consume sorbitol, as suggested by the increasing yields obtained. of mannitol production.
Ejemplo 2. Síntesis de sorbitol a partir de glucosa por TCH utilizando 1,4- butanodiol como dador de hidrógeno sobre catalizadores Ni-Raney dopados con Fe/Cr y Mo Example 2. Synthesis of sorbitol from glucose by TCH using 1,4-butanediol as hydrogen donor on Ni-Raney catalysts doped with Fe/Cr and Mo
La Figura 2 representa los resultados obtenidos en la hidrogenación por transferencia catalítica de glucosa con 1,4-butanodiol en presencia de catalizadores Ni-Raney sin dopar y en presencia de catalizadores Ni-Raney dopados con Fe/Cr y Mo. Las condiciones de reacción fueran las siguientes: volumen de reacción = 100 mL; [glucosa] = 90 mM y 360 mM, carga de catalizador = 1 ,65 g; temperatura de reacción = 130°C. Figure 2 represents the results obtained in the catalytic transfer hydrogenation of glucose with 1,4-butanediol in the presence of undoped Ni-Raney catalysts and in the presence of Fe/Cr and Mo doped Ni-Raney catalysts. The reaction conditions were as follows: reaction volume = 100 mL; [glucose] = 90 mM and 360 mM, catalyst loading = 1.65 g; reaction temperature = 130°C.
Los resultados obtenidos con una concentración de glucosa 90 mM revelaron fuertes diferencias entre los catalizadores probados. Los catalizadores Ni-Raney dopados con Fe/Cr o Mo proporcionaron una conversión de sustrato más rápida que el catalizador no dopado, pero también una pobre selectividad hacia el sorbitol. Los catalizadores Ni- Raney dopados con Fe/Cr o Mo produjeron un rendimiento máximo de sorbitol durante las primeras 2 horas de la reacción (61,1% y 67,6%, respectivamente), pero dicho rendimiento disminuyó posteriormente. La disminución del rendimiento de sorbitol va acompañada de la producción de cantidades significativas de manitol (hasta un 10,9% en el caso del catalizador dopado con molibdeno). El consumo de sorbitol puede atribuirse a reacciones secundarias de hidroisomerización e hidrogenolisis. Estos resultados evidencian que los catalizadores Ni-Raney dopados con Fe/Cr y con Mo son muy eficientes para extraer hidrógeno del 1,4-butanodiol y usarlo en la hidrogenación de glucosa para dar lugar a sorbitol. The results obtained with a 90 mM glucose concentration revealed strong differences between the tested catalysts. Ni-Raney catalysts doped with Fe/Cr or Mo provided faster substrate conversion than the undoped catalyst, but also poorer sorbitol selectivity. Ni-Raney catalysts doped with Fe/Cr or Mo produced a maximum yield of sorbitol during the first 2 hours of the reaction (61.1% and 67.6%, respectively), but this yield decreased subsequently. The decrease in sorbitol yield is accompanied by the production of significant amounts of mannitol (up to 10.9% in the case of the catalyst doped with molybdenum). Sorbitol consumption can be attributed to hydroisomerization and hydrogenolysis side reactions. These results show that the Ni-Raney catalysts doped with Fe/Cr and with Mo are very efficient to extract hydrogen from 1,4-butanediol and use it in the hydrogenation of glucose to give rise to sorbitol.
Por otro lado, se realizaron también experimentos con una mayor concentración de glucosa. En estas condiciones, el catalizador Ni-Raney dopado con Mo fue el único catalizador capaz de convertir completamente el sustrato de partida, al tiempo que proporcionó un alto rendimiento de sorbitol (68,6% a las 4 horas), evidenciando su actividad catalítica superior. También se produjo fructosa, pero se convirtió completamente durante el transcurso de la reacción, probablemente para producir sorbitol y manitol. Así, en este caso, el origen del alto rendimiento en manitol (9,2%) puede atribuirse no solo a la hidroisomerización del sorbitol, sino también a la reducción de la fructosa. On the other hand, experiments were also carried out with a higher concentration of glucose. Under these conditions, the Mo-doped Ni-Raney catalyst was the only catalyst capable of completely converting the starting substrate, while providing a high yield of sorbitol (68.6% at 4 hours), evidencing its superior catalytic activity. . Fructose was also produced, but was completely converted during the course of the reaction, probably to produce sorbitol and mannitol. Thus, in this case, the origin of the high mannitol yield (9.2%) can be attributed not only to the hydroisomerization of sorbitol, but also to the reduction of fructose.
Los resultados anteriores evidencian la actividad catalítica superior del catalizador Ni- Raney dopado con Mo para la hidrogenación por TCH de glucosa a sorbitol usando 1 ,4- butanodiol como dador de hidrógeno. Sin embargo, si se utilizan concentraciones de glucosa en el rango de 90 mM, el catalizador Ni-Raney dopado con Mo también conduce a una alta actividad de las reacciones secundarias de hidroisomerización e hidrogenolisis que consumen sorbitol. Por otro lado, si se tratan disoluciones de glucosa más concentradas, la mejora de la isomerización de la glucosa conduce a mayores rendimientos hacia el manitol debido a la reducción de la fructosa. The above results evidence the superior catalytic activity of the Mo-doped Ni-Raney catalyst for the TCH hydrogenation of glucose to sorbitol using 1,4-butanediol as hydrogen donor. However, if glucose concentrations in the 90 mM range are used, the Mo-doped Ni-Raney catalyst also leads to high activity of the sorbitol-consuming hydroisomerization and hydrogenolysis side reactions. On the other hand, if more concentrated glucose solutions are treated, the improvement of glucose isomerization leads to higher yields towards mannitol due to the reduction of fructose.
También se evaluó el efecto de la temperatura con una concentración de glucosa de 90 mM, utilizando 1 ,4-butanodiol como dador de hidrógeno, en presencia de catalizadores Ni-Raney dopados con Mo. Las condiciones de reacción fueron las siguientes: volumen de reacción = 100 mL; [glucosa] = 90 mM; carga de catalizador = 1,65 g; temperatura de reacción = 70-130°C. En estas condiciones, la conversión del sustrato fue completa en la mayoría de los casos, aunque se requirieron tiempos más largos a medida que disminuía la temperatura aplicada. Por el contrario, el rendimiento de sorbitol aumentó al disminuir la temperatura de reacción, alcanzando el 87,3% del rendimiento de sorbitol después de 6 horas a 90°C. Realizar la reacción a una temperatura de 70°C no produjo un mayor rendimiento de sorbitol debido a que la conversión del sustrato disminuyó. A 90°C, se obtuvo una alta selectividad de la transformación de glucosa en sorbitol, consecuencia de la disminución de actividad de las reacciones secundarias de hidrogenolisis. Esto sugiere que la hidroisomerización y la hidrogenolisis del sorbitol son más sensibles a los cambios de temperatura que la hidrogenación por transferencia catalítica de la glucosa y que su actividad puede limitarse operando en condiciones de temperatura de reacción más bajas. No obstante, la disminución de la temperatura de reacción, aunque mejora en gran medida la selectividad hacia el sorbitol, también conduce a una velocidad sustancialmente más baja en la conversión del sustrato y, por tanto, también se reduce la productividad del sorbitol. The effect of temperature was also evaluated with a glucose concentration of 90 mM, using 1,4-butanediol as hydrogen donor, in the presence of Mo-doped Ni-Raney catalysts. The reaction conditions were as follows: reaction volume = 100mL; [glucose] = 90 mM; catalyst charge = 1.65 g; reaction temperature = 70-130°C. Under these conditions, the conversion of the substrate was complete in most cases, although longer times were required as the applied temperature decreased. On the contrary, the sorbitol yield increased with decreasing reaction temperature, reaching 87.3% of the sorbitol yield after 6 hours at 90°C. Carrying out the reaction at a temperature of 70°C did not produce a higher yield of sorbitol because the conversion of the substrate decreased. A 90°C, a high selectivity of the transformation of glucose into sorbitol was obtained, consequence of the decreased activity of the secondary reactions of hydrogenolysis. This suggests that the hydroisomerization and hydrogenolysis of sorbitol are more sensitive to temperature changes than the catalytic transfer hydrogenation of glucose and that its activity may be limited by operating at lower reaction temperature conditions. However, lowering the reaction temperature, while greatly improving the selectivity towards sorbitol, also leads to a substantially lower rate of substrate conversion and thus also reduces sorbitol productivity.
Los catalizadores Ni-Raney dopados con Mo mostraron una elevada estabilidad, permitiendo operar durante largos periodos de tiempo en continuo manteniendo altos rendimientos a polioles (próximos al 100 %). The Mo-doped Ni-Raney catalysts showed high stability, allowing continuous operation for long periods of time while maintaining high polyol yields (close to 100%).
Ejemplo 3. Síntesis de polioles a partir de varios azúcares por TCH utilizando 1,4- butanodiol como dador de hidrógeno sobre catalizadores Ni-Raney Example 3. Synthesis of polyols from various sugars by TCH using 1,4-butanediol as hydrogen donor over Ni-Raney catalysts
Los ensayos de hidrogenación por TCH se llevaron a cabo en un reactor de acero inoxidable de 100 mL de capacidad con control de temperatura y presión. Se prepararon 100 mL de una disolución de 45 mM o 90 mM del correspondiente monosacárido u oligosacárido en 1,4-butanodiol y se pusieron en contacto con el catalizador. Los ensayos se realizaron a presión autógena tomando muestras periódicamente hasta las 6 horas, que se analizaron posteriormente para determinar la concentración de los diferentes productos de reacción. The TCH hydrogenation tests were carried out in a 100 mL capacity stainless steel reactor with temperature and pressure control. 100 mL of a 45 mM or 90 mM solution of the corresponding monosaccharide or oligosaccharide in 1,4-butanediol were prepared and placed in contact with the catalyst. The tests were carried out under autogenous pressure, taking samples periodically until 6 hours, which were subsequently analyzed to determine the concentration of the different reaction products.
Los resultados obtenidos en los ensayos de hidrogenación por TCH utilizando 1 ,4- butanodiol como dador de hidrógeno sobre catalizadores Ni-Raney a partir de los monosacáridos glucosa, fructosa, xilosa, ribosa y arabinosa y de los disacáridos celobiosa y maltosa se resumen en la Tabla 1. Las condiciones de reacción fueron las siguientes: relación en peso catalizador/sustrato = 1 : 1 y temperatura de reacción = 90°C. La concentración de glucosa, fructosa, xilosa, ribosa y arabinosa fue 90 mM y la de celobiosa y maltosa fue 45 mM. Tabla 1. Resultados obtenidos con diferentes sustratos (tiempo de reacción = 6 horas)
Figure imgf000013_0001
The results obtained in the TCH hydrogenation tests using 1,4-butanediol as a hydrogen donor on Ni-Raney catalysts from glucose, fructose, xylose, ribose and arabinose monosaccharides and cellobiose and maltose disaccharides are summarized in Fig. Table 1. The reaction conditions were the following: catalyst/substrate weight ratio = 1:1 and reaction temperature = 90°C. The concentration of glucose, fructose, xylose, ribose and arabinose was 90 mM and that of cellobiose and maltose was 45 mM. Table 1. Results obtained with different substrates (reaction time = 6 hours).
Figure imgf000013_0001
Como puede apreciarse en la Tabla 1 , a las 6 horas, se obtuvo una conversión completa de los sustratos glucosa, xilosa, arabinosa y ribosa. Para el resto de los sustratos, se obtuvieron conversiones de sustrato superiores al 60%. En particular, se obtuvo una conversión del 63,2%, 73,2% y 94,0 % de fructosa, celobiosa y maltosa, respectivamente. As can be seen in Table 1, after 6 hours, a complete conversion of the glucose, xylose, arabinose and ribose substrates was obtained. For the rest of the substrates, substrate conversions greater than 60% were obtained. In particular, a conversion of 63.2%, 73.2% and 94.0% of fructose, cellobiose and maltose, respectively, was obtained.
La Figura 3 muestra los resultados obtenidos en los ensayos de hidrogenación por TCH utilizando 1,4-butanodiol como dador de hidrógeno sobre catalizadores Ni-Raney, a partir de glucosa (A), fructosa (B), xilosa (C), arabinosa (D), ribosa (E), celobiosa (F) y maltosa (G). Figure 3 shows the results obtained in the TCH hydrogenation tests using 1,4-butanediol as hydrogen donor on Ni-Raney catalysts, from glucose (A), fructose (B), xylose (C), arabinose ( D), ribose (E), cellobiose (F) and maltose (G).
Los resultados obtenidos en el presente ejemplo evidencian que el procedimiento de la invención es muy eficiente y versátil sobre una variedad de sustratos. The results obtained in the present example show that the process of the invention is very efficient and versatile on a variety of substrates.
LISTA DE REFERENCIAS BIBLIOGRÁFICAS LIST OF BIBLIOGRAPHICAL REFERENCES
García et al. (2019). Transformation of Glucose into Sorbitol on Raney Nickel Catalysts in the Absence of Molecular Hydrogen: Sugar Disproportionation vs Catalytic Hydrogen Transfer. Top. Catal., 62, 570-578. https://doi.org/10.1007/s11244-019-01156-3 Garcia et al. (2019). Transformation of Glucose into Sorbitol on Raney Nickel Catalysts in the Absence of Molecular Hydrogen: Sugar Disproportionation vs. Catalytic Hydrogen Transfer. Top. Catal., 62, 570-578. https://doi.org/10.1007/s11244-019-01156-3
García et al. (2020). Production of Sorbitol vía Catalytic Transfer Hydrogenation of Glucose. Appl. Sci., 10, 1843. https://doi.org/10.3390/app10051843 Garcia et al. (2020). Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose. Appl. Sci., 10, 1843. https://doi.org/10.3390/app10051843
Kennema et al. (2017). Liquid-Phase H-Transfer from 2-Propanol to Phenol on Raney Ni: Surface Processes and Inhibition. ACS Catal., 7(4), 2437-2445. https://doi.org/10.1021/acscatal.6b03201 Scholz et al. (2015). Continuous Transfer Hydrogenation of Sugars to Alditols with Bioderived Donors over Cu-Ni-AI Catalysts. ChemCatChem, 7, 1551-1558. https://doi.org/10.1002/cctc.201403005 Kennema et al. (2017). Liquid-Phase H-Transfer from 2-Propanol to Phenol on Raney Ni: Surface Processes and Inhibition. ACS Catal., 7(4), 2437-2445. https://doi.org/10.1021/acscatal.6b03201 Scholz et al. (2015). Continuous Transfer Hydrogenation of Sugars to Alditols with Bioderived Donors over Cu-Ni-AI Catalysts. ChemCatChem, 7, 1551-1558. https://doi.org/10.1002/cctc.201403005

Claims

REIVINDICACIONES
1. Un procedimiento de síntesis de un poliol a partir de un sustrato de reacción por hidrogenación mediante transferencia catalítica de hidrógeno (TCH), que comprende hacer reaccionar dicho sustrato de reacción con un dador de hidrógeno en presencia de un catalizador poroso de aleación Ni-AI de tipo Ni-Raney, en el que dicho sustrato de reacción es un monosacárido u oligosacárido y dicho dador de hidrógeno es un diol. 1. A process for synthesizing a polyol from a reaction substrate by hydrogenation by catalytic hydrogen transfer (TCH), which comprises reacting said reaction substrate with a hydrogen donor in the presence of a porous Ni-alloy catalyst. AI of the Ni-Raney type, wherein said reaction substrate is a monosaccharide or oligosaccharide and said hydrogen donor is a diol.
2. El procedimiento según la reivindicación 1, en el que dicho monosacárido es una pentosa o una hexosa. The process according to claim 1, wherein said monosaccharide is a pentose or a hexose.
3. El procedimiento según la reivindicación 2, en el que dicha pentosa se selecciona del grupo que consiste en: xilosa, arabinosa, ribosa y lixosa. The process according to claim 2, wherein said pentose is selected from the group consisting of: xylose, arabinose, ribose and lyxose.
4. El procedimiento según la reivindicación 2, en el que dicha hexosa se selecciona del grupo que consiste en: glucosa, fructosa, mañosa y galactosa. The process according to claim 2, wherein said hexose is selected from the group consisting of: glucose, fructose, mannose and galactose.
5. El procedimiento según la reivindicación 1, en el que dicho oligosacárido es un disacárido. The method according to claim 1, wherein said oligosaccharide is a disaccharide.
6. El procedimiento según la reivindicación 5, en el que dicho disacárido se selecciona del grupo que consiste en: celobiosa, maltosa y lactosa. The process according to claim 5, wherein said disaccharide is selected from the group consisting of: cellobiose, maltose and lactose.
7. El procedimiento según cualquiera de las reivindicaciones 1 a 6, en el que dicho diol es un diol C2-C6. The process according to any of claims 1 to 6, wherein said diol is a C2-C6 diol.
8. El procedimiento según la reivindicación 7, en el que dicho diol C2-C6 se selecciona del grupo que consiste en: 1,2-etanodiol, 1,2-propanodiol, 1,3-propanodiol, 1,2- butanodiol, 1,4-butanodiol, 1,2-pentanodiol, 1,5-pentanodiol y 1,6-hexanodiol. The process according to claim 7, wherein said C2-C6 diol is selected from the group consisting of: 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1 ,4-butanediol, 1,2-pentanediol, 1,5-pentanediol and 1,6-hexanediol.
9. El procedimiento según cualquiera de las reivindicaciones 1 a 8, en el que dicho poliol se selecciona del grupo que consiste en: sorbitol, manitol, xilitol, arabitol, ribitol, lixitol, celobitol, maltitol y lactitol. The process according to any of claims 1 to 8, wherein said polyol is selected from the group consisting of: sorbitol, mannitol, xylitol, arabitol, ribitol, lixitol, cellobitol, maltitol and lactitol.
10. El procedimiento según cualquiera de las reivindicaciones 1 a 9, en el que dicho catalizador es un catalizador poroso de aleación Ni-AI de tipo Ni-Raney dopado con Mo, o con Fe/Cr. The process according to any of claims 1 to 9, wherein said catalyst is a porous Ni-AI alloy catalyst of the Ni-Raney type doped with Mo, or with Fe/Cr.
11. El procedimiento según cualquiera de las reivindicaciones 1 a 10, caracterizado por que se lleva a cabo durante un tiempo entre 30 minutos y 24 horas y a una temperatura entre 70 y 190 °C. 11. The process according to any of claims 1 to 10, characterized in that it is carried out for a time between 30 minutes and 24 hours and at a temperature between 70 and 190 °C.
12. El procedimiento según cualquiera de las reivindicaciones 1 a 11, caracterizado por que se lleva a cabo con agitación. The process according to any of claims 1 to 11, characterized in that it is carried out with stirring.
13. El procedimiento según la reivindicación 12, caracterizado por que dicha agitación es al menos 50 rpm. The process according to claim 12, characterized in that said stirring is at least 50 rpm.
14. El procedimiento según cualquiera de las reivindicaciones 1 a 13, en el que la relación en peso catalizador/sustrato de reacción es entre 10/1 y 1/1000. The process according to any of claims 1 to 13, wherein the catalyst/reaction substrate weight ratio is between 10/1 and 1/1000.
15. El procedimiento según cualquiera de las reivindicaciones 1 a 14, caracterizado por que se lleva a cabo en condiciones de operación de flujo continuo o discontinuo. 15. The process according to any of claims 1 to 14, characterized in that it is carried out under continuous or discontinuous flow operating conditions.
PCT/ES2022/070368 2021-06-14 2022-06-10 Synthesis of polyols by catalytic hydrogen transfer on ni-raney catalysts WO2022263693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP202130545 2021-06-14
ES202130545A ES2930824B2 (en) 2021-06-14 2021-06-14 SYNTHESIS OF POLYOLS BY CATALYTIC HYDROGEN TRANSFER ON Ni-RANEY CATALYST

Publications (1)

Publication Number Publication Date
WO2022263693A1 true WO2022263693A1 (en) 2022-12-22

Family

ID=84525325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070368 WO2022263693A1 (en) 2021-06-14 2022-06-10 Synthesis of polyols by catalytic hydrogen transfer on ni-raney catalysts

Country Status (2)

Country Link
ES (1) ES2930824B2 (en)
WO (1) WO2022263693A1 (en)

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Chemistry, Process Design, and Safety for the Nitration Industry /ACS /Symposium Series", vol. 1359, 1 January 2020, AMERICAN CHEMICAL SOCIETY/OXFORD UNIVERSITY PRESS , US , ISSN: 0097-6156, article WIESFELD JAN J., HENSEN EMIEL J. M., NAKAJIMA KIYOTAKA: "Catalytic Conversion of Lignocellulosic Biomass:Application of Heterogeneous and Homogeneous Catalysts to Process Biomass into Value-Added Compounds", pages: 151 - 182, XP093016368, DOI: 10.1021/bk-2020-1359.ch005 *
AHMED, M.J. ET AL.: "Hydrogenation of glucose and fructose into hexitols over heterogeneous catalysts: A review", JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, vol. 96, 10 December 2018 (2018-12-10), pages 341 - 352, XP085614512, ISSN: 1876-1070, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/51876107018306400?via%3Dihub> [retrieved on 20220525], DOI: 10.1016/j.jtice. 2018.11.02 8 *
GARCÍA BEATRIZ, OROZCO-SAUMELL ANA, LÓPEZ GRANADOS MANUEL, MORENO JOVITA, IGLESIAS JOSE: "Catalytic Transfer Hydrogenation of Glucose to Sorbitol with Raney Ni Catalysts Using Biomass-Derived Diols as Hydrogen Donors", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, AMERICAN CHEMICAL SOCIETY, US, vol. 9, no. 44, 8 November 2021 (2021-11-08), US , pages 14857 - 14867, XP093016354, ISSN: 2168-0485, DOI: 10.1021/acssuschemeng.1c04957 *
GARCIA, B. ET AL.: "Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose", APPLIED SCIENCES, vol. 10, no. 5, 7 March 2020 (2020-03-07), pages 1843, XP093016354, ISSN: 2076-3417, Retrieved from the Internet <URL:https://www.mdpi.com/2076-3417/10/5/1843> [retrieved on 20220523], DOI: 10.3390/appl0051843 *
JOHNSTONE, A.W. ET AL.: "Heterogeneous Catalytic Transfer Hydrogenation and Its Relation to Other Methods for Reduction of Organic Compounds", CHEMICAL REVIEWS, vol. 85, 1985, pages 129 - 170, XP002182953, ISSN: 0009-2665, Retrieved from the Internet <URL:https://www.semanticscholar.org/paper/Heterogeneous-catalytic-transfer-hydrogenation-and-Johnstone-Wilby/2068952e350341f61d00e05c92fd492al9782e96> [retrieved on 20220524], DOI: 10.1021/CR00066A003 *
SCHOLZ DAVID, AELLIG CHRISTOF, MONDELLI CECILIA, PÉREZ-RAMÍREZ JAVIER: "Continuous Transfer Hydrogenation of Sugars to Alditols with Bioderived Donors over Cu-Ni-Al Catalysts", CHEMCATCHEM, vol. 7, no. 10, 18 May 2015 (2015-05-18), pages 1551 - 1558, XP093016362, ISSN: 1867-3880, DOI: 10.1002/cctc.201403005 *
TATHOD ANUP P., DHEPE PARESH L.: "Towards efficient synthesis of sugar alcohols from mono- and poly-saccharides: role of metals, supports & promoters", GREEN CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 16, no. 12, 1 January 2014 (2014-01-01), GB , pages 4944 - 4954, XP093016482, ISSN: 1463-9262, DOI: 10.1039/C4GC01264J *

Also Published As

Publication number Publication date
ES2930824B2 (en) 2023-09-18
ES2930824A1 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
US10294180B2 (en) Process for preparing ethylene glycol from a carbohydrate source
JP6861032B2 (en) How to make ethylene glycol from sugar
JP6522155B2 (en) Process for producing ethylene glycol from carbohydrate sources
US4476331A (en) Two stage hydrogenolysis of carbohydrate to glycols using sulfide modified ruthenium catalyst in second stage
ES2386002T3 (en) HYDROGENOLISIS OF SUGARS OF 5 CARBON ATOMS AND ALCOHOLS OF SUGARS OF 5 CARBON ATOMS.
JP6846202B2 (en) Method for Producing Ethylene Glycol from Sugar
AU735009B2 (en) Process for hydrogenation of sugars using a shell catalyst
US8329613B2 (en) Supported gold catalyst
US4487980A (en) Method for hydrogenating aqueous solutions of carbohydrates
CN105837643B (en) A kind of method that D-Glucose isomerization prepares D-Fructose
KR20190014071A (en) Continuous process for highly selective conversion of aldohexose-generating carbohydrates to ethylene glycol
Bodachivskyi et al. A systematic study of metal triflates in catalytic transformations of glucose in water and methanol: identifying the interplay of Brønsted and Lewis acidity
Murzin et al. Catalytic hydrogenation of sugars
JP4355805B2 (en) Method for producing α-hydroxycarboxylic acid ester
ES2930824B2 (en) SYNTHESIS OF POLYOLS BY CATALYTIC HYDROGEN TRANSFER ON Ni-RANEY CATALYST
US6103894A (en) Process for the hydrogenation of sugars
CN108348900B (en) Catalyst system and process for producing diols
US20210087129A1 (en) Process for making ethylene glycol and/or propylene glycol from aldose- and/or ketose-yielding carbohydrates with ex situ hydrogenolysis or hydrogenation catalyst treatment
NL2014120B1 (en) Process for preparing ethylene glycol from a carbohydrate.
EP2379477B1 (en) Catalytic method for the production of diol compounds, in particular 2-methyl-2,4-pentanediol
Usami et al. Efficient ketose production by a hydroxyapatite catalyst in a continuous flow module
Sulman et al. THE USE OF RU/MN 100 FOR MONOSACCHARIDE HYDROGENATION
WO2023018326A1 (en) Synthesis of alkyl triazole glycoside (atg) for oil in water application
CN108349857B (en) Catalyst system and process for producing diols
Terada et al. Synthesis of l-Rare Sugars from d-Sorbitol Using a TiO2 Photocatalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824353

Country of ref document: EP

Kind code of ref document: A1