JP2018090555A - Production method of rare saccharide from sugar alcohol by photocatalytic reaction - Google Patents

Production method of rare saccharide from sugar alcohol by photocatalytic reaction Download PDF

Info

Publication number
JP2018090555A
JP2018090555A JP2016243773A JP2016243773A JP2018090555A JP 2018090555 A JP2018090555 A JP 2018090555A JP 2016243773 A JP2016243773 A JP 2016243773A JP 2016243773 A JP2016243773 A JP 2016243773A JP 2018090555 A JP2018090555 A JP 2018090555A
Authority
JP
Japan
Prior art keywords
sugar
reaction
rare
sugar alcohol
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016243773A
Other languages
Japanese (ja)
Other versions
JP6737469B2 (en
Inventor
良博 金井
Yoshihiro Kanai
良博 金井
竜司 類家
Ryuji Ruike
竜司 類家
勇記 松本
Yuki Matsumoto
勇記 松本
坂口 謙吾
Kengo Sakaguchi
謙吾 坂口
菅原 二三男
Fumio Sugawara
二三男 菅原
木戸 茂
Shigeru Kido
茂 木戸
阿部 正彦
Masahiko Abe
正彦 阿部
一弥 中田
Kazuya Nakata
一弥 中田
藤嶋 昭
Akira Fujishima
昭 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Active Co Ltd
Original Assignee
Tokyo University of Science
Active Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, Active Co Ltd filed Critical Tokyo University of Science
Priority to JP2016243773A priority Critical patent/JP6737469B2/en
Publication of JP2018090555A publication Critical patent/JP2018090555A/en
Application granted granted Critical
Publication of JP6737469B2 publication Critical patent/JP6737469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To achieve a method of producing a high purity rare saccharide from an inexpensive saccharide and to provide a safe and inexpensive production method of the rare saccharide suitable for use in food products and cosmetics.SOLUTION: The production of a monosaccharide comprising a rare saccharide from a sugar alcohol by the strong oxidation characteristic of photocatalytic reactions using a photoresponsive catalyst as represented by the safe and low cost titanium oxide. By using a sugar alcohol as the raw material the reaction efficiency and selectivity of the photocatalytic reaction is improved, and by using metal supported titanium oxide as the photocatalyst the reaction efficiency of the photocatalytic reaction is improved. The reaction products obtained by the method can be used as a rare saccharide mixture. Furthermore, a high purity rare saccharide can be obtained by purifying with commonly used industrial purification methods.SELECTED DRAWING: Figure 3

Description

本発明は、光触媒反応を用いた希少糖を含む単糖の製造方法に関する。  The present invention relates to a method for producing monosaccharides containing rare sugars using a photocatalytic reaction.

希少糖は自然界に稀にしか存在しない単糖及びその誘導体と定義されている。天然に豊富に存在する単糖はD‐グルコースを始めとする数種類の限られた糖のみであり、その他の50種類以上はすべて希少糖と呼ばれる。近年、希少糖は、生体への安全性が高い糖骨格の化学構造を持ちながら、グルコースとは異なり代謝されにくい性質があることから、低カロリー甘味料として期待されている。また、希少糖の中には有用な生理活性を有するものもあり、産業的利用価値は極めて高い。しかし、希少糖を工業的に製造する方法としては、高純度で安価で大量に製造可能な方法については、未だ有効な手段がないのが現状である。  Rare sugars are defined as monosaccharides and their derivatives that rarely exist in nature. The only monosaccharides that are abundant in nature are only a few limited sugars, including D-glucose, and the other 50 or more are all called rare sugars. In recent years, rare sugars are expected as low-calorie sweeteners because they have a sugar skeleton chemical structure that is highly safe for living organisms, but are unlikely to be metabolized unlike glucose. In addition, some rare sugars have useful physiological activity, and the industrial utility value is extremely high. However, as a method for industrially producing rare sugars, there is no effective means for producing a high-purity, inexpensive, and mass-produced method.

希少糖を体系的に製造する方法としては、香川大学の何森教授らが発明した糖異性化酵素による画期的な方法が開示されている(特許文献1)。しかし、この方法は、製造過程において、工業製法としては高価である酵素触媒を用いて糖の変換を行なっており、安価な希少糖製造法という点において課題が残る。  As a method for systematically producing rare sugars, an epoch-making method using sugar isomerase invented by Professor Morimori et al. Of Kagawa University has been disclosed (Patent Document 1). However, in this process, sugar is converted using an enzyme catalyst that is expensive as an industrial process in the production process, and there remains a problem in terms of an inexpensive rare sugar production process.

希少糖を化学合成する方法としては、現実的に入手できる安価な炭素原料を考慮すると、二炭素あるいは三炭素の化合物からの増炭反応か、六炭糖からの減炭反応が考えられる。しかし、増炭反応による方法は、糖が有する不斉炭素の多い構造上の特徴により、立体化学を制御するための有機合成化学の高度な技術が必要であり、工業的な大量合成法として確立することは非常に困難である。  As a method for chemically synthesizing rare sugars, considering an inexpensive carbon raw material that can be actually obtained, a carbon increase reaction from a dicarbon or tricarbon compound or a carbon reduction reaction from a hexose can be considered. However, the method based on the carbon increase reaction requires advanced technology of synthetic organic chemistry to control stereochemistry due to the structural characteristics of sugars with many asymmetric carbons, and is established as an industrial mass synthesis method. It is very difficult to do.

減炭反応による方法のうち、一炭素減炭反応による方法では、D‐アラビノ酸カルシウムを過酸化水溶液で酸化する方法が開発されている(非特許文献1)。しかしこの方法は、酸化のために大量の過酸化水素を必要とする。他の方法ではD‐アラビノースオキシムを分解して製造する方法があるが、酢酸化アルドノニトリルを経由するため低収率である(非特許文献2)。四酢酸鉛を用いたD‐グルコースの酸化による方法も知られている(非特許文献3)。しかし、この方法は多段階の複雑な処理を必要とし、工業的製造法としては不適である。  Among the methods based on the carbon reduction reaction, a method based on the one carbon reduction reaction has been developed in which calcium D-arabinoate is oxidized with an aqueous peroxide solution (Non-patent Document 1). However, this method requires a large amount of hydrogen peroxide for oxidation. As another method, there is a method in which D-arabinose oxime is produced by decomposition, but the yield is low because it passes through acetic acid aldononitrile (Non-patent Document 2). A method by oxidation of D-glucose using lead tetraacetate is also known (Non-patent Document 3). However, this method requires multi-stage complicated processing and is not suitable as an industrial production method.

六炭糖からの二炭素を減炭する方法では、コバルト、ニッケル及びルテニウムなどの金属塩の存在の下、グルコン酸塩の水溶液を過酸化水素で酸化する方法として、87%の極めて高収率にD‐エリトロースを製造している(特許文献2)。しかしながらこの方法は、酸化のために大量の過酸化水素を必要とする。さらには食品添加物あるいは医薬品として応用する際に伴う健康被害や毒性による副作用の危険性を考慮すると、コバルト、ニッケル及びルテニウムなどの金属塩の存在は望ましくない。六炭糖からの二炭素を減炭する他の方法では、D‐グルコースを分解してD‐エリトロースを製造する方法として、超臨界状態あるいは亜臨界状態の水を溶媒として用い、D‐グルコースの希薄溶液(0.1〜10%)を高温(200〜800℃)高圧下(2〜90MPa)に処理する製造法が示されている(特許文献3)。この方法の収率と選択性は目覚ましいものではないが、大型の特殊設備が必要である。  In the method of reducing the two carbons from the hexose, a very high yield of 87% is obtained as a method of oxidizing an aqueous solution of gluconate with hydrogen peroxide in the presence of metal salts such as cobalt, nickel and ruthenium. In addition, D-erythrose is produced (Patent Document 2). However, this method requires a large amount of hydrogen peroxide for oxidation. Furthermore, the presence of metal salts such as cobalt, nickel and ruthenium is not desirable in view of the health hazards associated with application as food additives or pharmaceuticals and the risk of side effects due to toxicity. Another method for reducing the two carbons from hexose is to produce D-erythrose by decomposing D-glucose, using supercritical or subcritical water as a solvent. The manufacturing method which processes a dilute solution (0.1-10%) under high temperature (200-800 degreeC) high pressure (2-90 MPa) is shown (patent document 3). Although the yield and selectivity of this method are not remarkable, large special equipment is required.

光触媒を用いた糖の変換では、一炭素減炭反応による方法があり、D‐グルコース(六炭糖)を光触媒により分解することでD‐アラビノース(五炭糖)及びD‐エリトロース(四炭糖)が生成することが報告されている(非特許文献4)。しかし、上記のようなアルドースに対する光触媒反応の分解速度は遅く、目的の生成物は低収量となり、実用化は困難である。さらには、二炭素減炭された四炭糖を得る場合にはD‐グルコースからD‐アラビノースを経てD‐エリトロースを生成するため、四炭糖の収量としては極微量である。  In the conversion of sugar using photocatalyst, there is a method using a one-carbon decarburization reaction, and D-glucose (hexose) is decomposed by photocatalyst, so that D-arabinose (pentose) and D-erythrose (tetracarbon) ) Has been reported (Non-patent Document 4). However, the decomposition rate of the photocatalytic reaction to aldose as described above is slow, the target product is low in yield, and practical application is difficult. Furthermore, when obtaining a tetracarbon sugar reduced in carbon dioxide, D-erythrose is produced from D-glucose via D-arabinose, so that the yield of tetracarbon sugar is extremely small.

以上のように、希少糖を含む単糖の有効な工業的製造法は確立しておらず、市販価格も非常に高価なものとなっている。そのため、キシリトールやエリスリトールなどの一部の例外を除いて、市場への供給量は非常に少なく、現在、甘味料や食品添加物、機能性食品として市場へ流通するには至っていない。近年、希少糖を含む単糖の生物学的意義が見直され、応用研究も盛んに行われるようになり、様々な生理活性も見つかりつつある(非特許文献5)。今後、さらに産業的に重要な特性が見つかる可能性も高く、希少糖を安価に大量生産する技術の確立は急務である。  As described above, an effective industrial production method for monosaccharides including rare sugars has not been established, and the commercial price is very expensive. Therefore, with the exception of some exceptions such as xylitol and erythritol, the supply to the market is very small, and currently it has not been distributed to the market as a sweetener, food additive, or functional food. In recent years, the biological significance of monosaccharides including rare sugars has been reviewed, application research has been actively conducted, and various physiological activities have been found (Non-patent Document 5). In the future, it is highly likely that more industrially important characteristics will be found, and there is an urgent need to establish technology for mass-producing rare sugars at low cost.

特開2008−109933号公報JP 2008-109933 A 特開平10−84907号公報JP-A-10-84907 特開平10−298192号公報JP 10-298192 A

Ruff,Berichte der Deutschen Chemischen Gesellshaft 32(1899)553−554Ruff, Berichte der Deutschen Chemischen Gesellshaft 32 (1899) 553-554 Wohl A.,Ber.,Vol.65,168,1893Wohl A. Ber. , Vol. 65,168,1893 Whistler R.L.et.al.,Methods in Carbohydrate Research,Academic Press,Vol.1,64−66,1962Whistler R.W. L. et. al. , Methods in Carbohydrate Research, Academic Press, Vol. 1,64-66,1962 R.Chong et.al.,Journal of Catalysis,314,101−108,2014R. Chong et. al. , Journal of Catalysis, 314, 101-108, 2014. LI−LI LIU et.al.,Oncol Lett.2015 Feb;9(2):769−773LI-LI LIU et. al. , Oncol Lett. 2015 Feb; 9 (2): 769-773

これまでに知られている希少糖を含む単糖の製造法は、二炭素あるいは三炭素の化合物からの増炭反応経路では立体化学の制御と有機合成化学の高度な技術が必要であること、減炭反応経路では収率が低いこと、大量の酸化剤(過酸化水素など)や有害金属を必要とすること、精製が困難である、などの欠点がある。希少糖に期待される食品、化粧品、および医療品への用途を考慮した場合、安全性や大量合成の観点から工業的製造法には不適である。事実として、広く商業的に流通している高純度の希少糖は、キシリトールやエリスリトールなどの例外を除いて存在しておらず、一部で流通している研究試薬としての価格も非常に高価なものとなっている。  The production method of monosaccharides containing rare sugars known so far requires advanced techniques of stereochemistry control and organic synthetic chemistry in the carbon addition reaction route from dicarbon or tricarbon compounds, The carbon reduction reaction path has disadvantages such as low yield, a large amount of oxidizing agent (such as hydrogen peroxide) and harmful metals, and difficulty in purification. Considering the application to foods, cosmetics, and medical products expected of rare sugars, it is unsuitable for industrial production methods from the viewpoint of safety and mass synthesis. In fact, high-purity rare sugars that are widely distributed commercially do not exist with exceptions such as xylitol and erythritol, and the price as a research reagent that is distributed in part is very expensive. It has become a thing.

希少糖に期待される用途は、医薬品、食品、化粧品、有機合成のビルディングブロック等、多岐に渡るものの、安全で高純度の希少糖が入手困難である点が、市場流通における大きな障害となっている。したがって本発明は、高純度で安全性の高い希少糖を工業的に製造する方法を提供することを目的とする。  Although there are a wide range of uses for rare sugars such as pharmaceuticals, foods, cosmetics, and building blocks for organic synthesis, the difficulty in obtaining safe and high-purity rare sugars is a major obstacle to market distribution. Yes. Therefore, an object of the present invention is to provide a method for industrially producing a rare sugar with high purity and high safety.

本発明は、上記のような従来技術に伴う商業的困難を解消するために創案されたものである。酸化チタンに代表される光触媒を利用した光触媒反応は、強力な酸化力を有することが知られている。しかし、光触媒反応を糖分解に応用した例であるグルコース(六炭糖)を光触媒反応で分解する方法では、アラビノース(五炭糖)を経て、エリトロース(四炭糖)が生成される一炭素ずつの減炭反応となるため、希少糖の一つであるエリトロース生成量は微量であり、実用に値しないものであった。本出願人らは、光触媒反応による糖分解の研究を進めていく中で、光触媒反応の原料に糖アルコールを用いると、二炭素の減炭反応を優先的に引き起こすことができ、六炭糖の糖アルコールから希少な四炭糖を効率良く製造できることを見出した。さらには、光触媒である酸化チタンに対し、糖の酸化反応に適当な金属を担持させることにより、触媒反応速度を飛躍的に向上させることができることを見出した。この方法により、従来法であるグルコースを原料として光触媒反応を用いた場合に比較して、エリトロースを始めとする四炭糖の生成量を飛躍的に向上させることに成功した。また、この糖アルコールを原料とした光触媒反応では、副産物として別の六炭糖への変換や光学異性体への変換が一部起きることもわかり、これを利用した新たな糖変換方法としても有用な技術であることを見出した。  The present invention was devised to eliminate the commercial difficulties associated with the prior art as described above. It is known that a photocatalytic reaction using a photocatalyst represented by titanium oxide has a strong oxidizing power. However, in the method of decomposing glucose (hexose sugar), which is an example of applying photocatalytic reaction to saccharide decomposition, by photocatalytic reaction, one carbon at which erythrose (tetracarbon sugar) is produced via arabinose (pentose sugar) Therefore, the production amount of erythrose, which is one of rare sugars, was very small and was not practical. In the course of researching sugar decomposition by photocatalysis, the present applicants can preferentially induce a two-carbon reduction reaction when sugar alcohol is used as a raw material for photocatalysis, It has been found that a rare tetracarbon sugar can be efficiently produced from a sugar alcohol. Furthermore, the present inventors have found that the catalytic reaction rate can be remarkably improved by supporting a metal suitable for the oxidation reaction of sugar with respect to titanium oxide as a photocatalyst. By this method, compared with the conventional method using glucose as a raw material and using a photocatalytic reaction, the production amount of tetracarbons such as erythrose has been greatly improved. In addition, this photocatalytic reaction using sugar alcohol as a raw material also shows that some by-product conversion to another hexose sugar and conversion to optical isomers occur, which is also useful as a new sugar conversion method using this. I found out that it is a new technology.

光触媒技術を用いた本発明によって、従来入手困難であった四炭糖の希少糖であるエリトロースおよびトレオース、及びその他の希少糖を、高純度で安全性の高い形で提供できることとなる。光触媒反応で用いる酸化チタンは低価格で入手が容易である上、繰り返し利用が可能であり、工業生産に適した触媒である。さらに、光触媒反応は光触媒と光があれば進む反応であるため、工業的に汎用される簡易な装置構成で実現できる点も工業生産に適している。また、酸化チタン自体の安全性も高いが、光触媒反応は光照射と光触媒(酸化チタン)のみがあれば、水溶液中で進む反応であり、有機溶媒等、毒性の高い物質を全く使わない点でも安全性が高い。したがって、本発明によって提供されるエリトロースおよびトレオース、及びその他の希少糖は、大量生産が可能で、特に食品、化粧品、医薬品の用途に適応させやすい点で大きな産業的意義がある。  According to the present invention using the photocatalytic technique, erythrose and threose, which are rare sugars of tetracarbon sugar, which have been difficult to obtain, and other rare sugars can be provided in a highly pure and highly safe form. Titanium oxide used in the photocatalytic reaction is inexpensive and easily available, and can be used repeatedly, and is a catalyst suitable for industrial production. Furthermore, since the photocatalytic reaction is a reaction that proceeds if there is a photocatalyst and light, it is also suitable for industrial production in that it can be realized with a simple apparatus configuration that is widely used industrially. Titanium oxide itself is also highly safe, but the photocatalytic reaction is a reaction that proceeds in an aqueous solution if there is only light irradiation and photocatalyst (titanium oxide), and it does not use any highly toxic substances such as organic solvents. High safety. Therefore, the erythrose and threose and other rare sugars provided by the present invention can be mass-produced and have a great industrial significance in that they can be easily adapted to food, cosmetics and pharmaceutical applications.

本発明の希少糖製造方法の実施形態における従来法(原料:グルコース)と本発明(原料:糖アルコール)の反応効率の比較Comparison of reaction efficiency between the conventional method (raw material: glucose) and the present invention (raw material: sugar alcohol) in the embodiment of the method for producing a rare sugar of the present invention 本発明の希少糖製造方法の実施形態において、用いる光触媒に金属を担持することによる希少糖生成比率への促進効果In the embodiment of the method for producing a rare sugar of the present invention, the effect of promoting the rare sugar production ratio by supporting a metal on the photocatalyst to be used 本発明の希少糖製造方法の実施形態によって得られた糖の種類と組成Kind and composition of sugar obtained by the embodiment of the method for producing rare sugar of the present invention

本発明において糖アルコールとは、単糖のカルボニル基が還元されてヒドロキシ基になった構造の物質を包括的に指すものであり、炭素数は問わず、全ての糖アルコールに適用される。また、糖アルコール原料として、単糖を常法により還元し水素化したものを用いてもよい。単糖の水素化による糖アルコールへの変換については、一般的な化学還元剤を用いて収率良く還元できる方法が汎用されているのでそれを利用することができる。  In the present invention, the sugar alcohol comprehensively refers to substances having a structure in which the carbonyl group of a monosaccharide is reduced to a hydroxy group, and is applicable to all sugar alcohols regardless of the number of carbon atoms. Further, as a sugar alcohol raw material, a monosaccharide reduced and hydrogenated by a conventional method may be used. Regarding the conversion of monosaccharides into sugar alcohols by hydrogenation, methods that can be reduced with high yields using a general chemical reducing agent are widely used, and can be used.

本発明の光触媒による糖アルコール水溶液の酸化反応は、光触媒の有する強力な酸化力により、優先的に二炭素減炭反応を引き起こすことができる。化1に示したように、この二炭素減炭反応は、糖アルコールの両側の末端から進行する。このとき、減炭された側の末端の炭素のヒドロキシ基はアルデヒド基となり、残りの炭素のヒドロキシ基は立体構造を維持する。この反応の立体化学特性を利用すれば、糖アルコールの種類を変えることにより、任意の四炭糖(アルドテトロース)あるいは三炭糖(グリセルアルデヒド)を製造することができる。例えば、D‐グルシトール(一般名D‐ソルビトール)を原料として用いた場合、C1位とC2位の炭素が減炭されたD‐エリトロースと、C6位とC5位の炭素が減炭されたL−トレオースの2種類の四炭糖が生成される。同様に、D‐マンニトールを原料とすれば、両方の二炭素減炭反応においてD‐エリトロースが生成され、D‐イジトールを原料とすれば、両方の二炭素減炭反応においてD‐トレオースが生成される。さらに例を挙げれば、メソ体のキシリトールからはDL‐グリセルアルデヒドが生成され、D‐アラビニトールからはD‐グリセルアルデヒド、L‐アラビニトールからはL‐グリセルアルデヒドが生成される。なお、この二炭素減炭反応は上に例示した糖アルコールに限定されるものではなく、他の糖アルコールにも適用できる。  The oxidation reaction of the sugar alcohol aqueous solution by the photocatalyst of the present invention can preferentially cause a two-carbon decarburization reaction due to the strong oxidizing power of the photocatalyst. As shown in Chemical Formula 1, this two-carbon decarburization reaction proceeds from both ends of the sugar alcohol. At this time, the carbon group on the terminal carbon on the decarbonized side becomes an aldehyde group, and the hydroxy group of the remaining carbon maintains the three-dimensional structure. By utilizing the stereochemical characteristics of this reaction, any tetracarbon sugar (aldotetrose) or tricarbon sugar (glyceraldehyde) can be produced by changing the type of sugar alcohol. For example, when D-glucitol (generic name D-sorbitol) is used as a raw material, D-erythrose in which carbons at C1 and C2 positions are reduced, and L- in which carbon at C6 and C5 positions is reduced. Two types of tetrasaccharide throse are produced. Similarly, if D-mannitol is used as a raw material, D-erythrose is produced in both two-carbon decarburization reactions, and if D-iditol is used as a raw material, D-threose is produced in both two-carbon decarburization reactions. The For example, DL-glyceraldehyde is produced from meso-form xylitol, D-glyceraldehyde is produced from D-arabinitol, and L-glyceraldehyde is produced from L-arabinitol. This two-carbon decarburization reaction is not limited to the sugar alcohols exemplified above, and can be applied to other sugar alcohols.

Figure 2018090555
Figure 2018090555

本発明の光触媒による糖アルコールの酸化反応は、上記の二炭素減炭反応の他に、収量は低いものの、副産物として別の糖も生成する。化2に示したように、単糖ではアルデヒド基であるC1位とは逆の末端、すなわち六炭糖の糖アルコールのC6位(五炭糖ならC5位、四炭糖ならC4位)のヒドロキシ基を酸化することによりアルデヒド基が生じ、その結果、光触媒酸化を受けにくいアルドースの構造となり、副産物として残存する。このとき他の立体構造の変化は起きず、そのまま維持される。この反応の立体化学特性を利用すれば、単糖を還元し糖アルコールとした後、光触媒酸化反応を行うことによって、糖を同じ炭素数の別の糖に変換、あるいは、別の立体異性(D体またはL体)への変換ができる。例えば、D‐グルコースを還元し、D‐グルシトール(一般名D‐ソルビトール)を光触媒により酸化すれば、一部をL‐グロース(別の六炭糖)に変換することができる。同様に、D‐グロースからはL‐グルコース、D‐アルトロースからはD‐タロース、D‐タロースからはD‐アルトロース、D‐アラビノースからはD‐リキソース、D‐リキソースからはD‐アラビノースがそれぞれ生成される。さらに例を挙げれば、メソ体のキシリトール、及びメソ体のエリスリトールからはDL‐キシロース、及びDL‐エリトロースがそれぞれ生成される。なお、この糖アルコールを介した糖変換反応は、上に例示した糖に限定されるものではなく、他の単糖及び糖アルコールにも適用できる。  The sugar alcohol oxidation reaction by the photocatalyst of the present invention produces another sugar as a by-product in addition to the above-mentioned two-carbon decarburization reaction, although the yield is low. As shown in Chemical Formula 2, the hydroxy at the terminal opposite to the C1 position which is an aldehyde group in monosaccharide, that is, C6 position of sugar alcohol of hexose sugar (C5 position for pentose sugar, C4 position for pentose sugar) Oxidizing a group produces an aldehyde group, resulting in an aldose structure that is less susceptible to photocatalytic oxidation and remains as a byproduct. At this time, the other three-dimensional structure does not change and is maintained as it is. If the stereochemical properties of this reaction are utilized, a monosaccharide is reduced to a sugar alcohol and then subjected to a photocatalytic oxidation reaction to convert the sugar to another sugar having the same carbon number, or another stereoisomerism (D Body or L body). For example, if D-glucose is reduced and D-glucitol (generic name D-sorbitol) is oxidized by a photocatalyst, a part can be converted to L-gulose (another hexose). Similarly, L-glucose from D-growth, D-talose from D-altrose, D-altrose from D-talose, D-lyxose from D-arabinose, D-arabinose from D-lyxose Each is generated. For example, DL-xylose and DL-erythrose are produced from meso-form xylitol and meso-form erythritol, respectively. The sugar conversion reaction via the sugar alcohol is not limited to the sugars exemplified above, and can be applied to other monosaccharides and sugar alcohols.

Figure 2018090555
Figure 2018090555

本発明における光触媒反応とは、原料と光触媒に対し、その光触媒の光吸収特性および光反応活性に対応した紫外光から可視光領域の波長の光照射することによって行われる化学反応である。本発明における光触媒とは、基本原理として半導体性物質であれば、光触媒として光触媒反応を実施する事ができる。代表的な光触媒の例としては、酸化チタン、酸化タングステン、酸化スズ、チタン酸ストロンチウム、酸化ニオブ、タンタル酸カリウム、酸化ジルコニウム等がある。本発明における反応容器および光照射装置については、既存の光化学反応で常用される設備を適宜用いることができる。  The photocatalytic reaction in the present invention is a chemical reaction performed by irradiating a raw material and a photocatalyst with light having a wavelength in the ultraviolet to visible light region corresponding to the light absorption characteristics and photoreaction activity of the photocatalyst. If the photocatalyst in the present invention is a semiconducting substance as a basic principle, a photocatalytic reaction can be carried out as a photocatalyst. Typical examples of the photocatalyst include titanium oxide, tungsten oxide, tin oxide, strontium titanate, niobium oxide, potassium tantalate, zirconium oxide, and the like. About the reaction container and light irradiation apparatus in this invention, the equipment normally used by the existing photochemical reaction can be used suitably.

本発明の好ましい光触媒反応では、糖アルコール1種類あるいは複数の糖アルコールを含有する水溶液に対し、酸化チタン、好ましくは金属担持した酸化チタン存在下において、紫外光から可視光領域の波長を光照射することで実施される。  In a preferable photocatalytic reaction of the present invention, an aqueous solution containing one or more sugar alcohols is irradiated with light in the ultraviolet to visible light range in the presence of titanium oxide, preferably metal-supported titanium oxide. It is carried out.

本発明の好ましい金属担持酸化チタンの金属種については、貴金属であれば、酸化チタンに担持して用いることで、光触媒の二炭素減炭反応効率を上昇させることができる。貴金属とは、具体的には白金(Pt)、銅(Cu)、銀(Ag)、金(Au)、イリジウム(Ir)、パラジウム(Pd)、ルテニウム(Ru)、ロジウム(Rh)、オスミウム(Os)である。好ましくは、糖の化学変換に対して高い光触媒活性を示す白金(Pt)、銅(Cu)を担持した酸化チタンによって、本発明は実施される。酸化チタンへの担持形態としては、上記の例示した金属の単体、化合物、錯体の形を用いることができる。本発明の方法は、上記に例示した金属のいずれか一つ、あるいは複数の金属を担持した酸化チタンによっても実施可能である。  With respect to the metal species of the preferred metal-supported titanium oxide of the present invention, if it is a noble metal, the two-carbon decarburization reaction efficiency of the photocatalyst can be increased by supporting it on titanium oxide. Specifically, noble metals are platinum (Pt), copper (Cu), silver (Ag), gold (Au), iridium (Ir), palladium (Pd), ruthenium (Ru), rhodium (Rh), osmium ( Os). Preferably, the present invention is implemented by titanium oxide supporting platinum (Pt) or copper (Cu) that exhibits high photocatalytic activity for chemical conversion of sugar. As the supporting form on the titanium oxide, the above-exemplified metal simple substance, compound, complex form can be used. The method of the present invention can also be carried out with titanium oxide supporting any one or a plurality of metals exemplified above.

本発明の光触媒反応により得られた特定の希少糖を含む溶液は、原料の構造に由来する類縁の糖誘導体で構成される希少糖含有組成物である。したがって、反応粗精製物の形態としても食品、化粧品の用途に用いることができる。また、上記反応粗精製物を活性炭処理やイオン交換カラムクロマトグラフィーなどの工業的に汎用される精製を行うことで、容易に高純度希少糖液とすることができる。得られた高純度希少糖液は、食品、化粧品、医薬品、医薬品や化成品の原料中間体等の用途に用いることができる。  The solution containing the specific rare sugar obtained by the photocatalytic reaction of the present invention is a rare sugar-containing composition composed of a related sugar derivative derived from the structure of the raw material. Therefore, it can use for the use of a foodstuff and cosmetics also as a form of reaction crude refined | purified material. Moreover, it can be easily made into a high-purity rare sugar solution by subjecting the above-mentioned crude reaction product to industrially-purified purification such as activated carbon treatment or ion exchange column chromatography. The obtained high-purity rare sugar solution can be used for foods, cosmetics, pharmaceuticals, pharmaceuticals and chemicals as raw material intermediates.

以下に、本発明である光触媒を用いた糖アルコールからの希少糖製造方法の具体的な実施例を説明する。  Below, the specific Example of the rare sugar manufacturing method from sugar alcohol using the photocatalyst which is this invention is described.

<光触媒による六炭糖の糖アルコールから四炭糖の生成(二炭素減炭反応)>
従来技術である六炭糖を原料とした場合と、本発明である六炭糖の糖アルコールを原料とした場合との、光触媒反応によるD‐エリトロース(四炭糖)の生成率の比較をおこなった。単糖原料にはD‐グルコース、糖アルコール原料にはD‐グルシトール(六炭糖D‐グルコースの糖アルコール:一般名D‐ソルビトール)、及びD‐マンニトールを使用した。D‐グルシトール、及びD‐マンニトール各0.136gに対し、純水50mlを添加し、それぞれ15mMのD‐グルシトール水溶液、及びD‐マンニトール水溶液とした。同様に、D‐グルコース0.135gに対し、純水50mlを添加し、15mMのD‐グルコース水溶液とした。それぞれの水溶液へ酸化チタン(アナターゼ/ルチル形)25mgを添加し、低圧水銀ランプを用いて2mW/cmの強度で光照射をし、撹拌しながら室温(約25℃)で光触媒反応を行った。光触媒反応後の溶液から、遠心分離により酸化チタンを除去し、その上清に対して高速液体クロマトグラフィーによる定量分析を行うことで、生成されたD‐エリトロースを定量した。その結果、図1に示したように、従来技術であるD‐グルコースを原料とした場合に比較して、本発明であるD‐グルシトール、及びD‐マンニトールを原料とした場合では、D‐エリトロースの生成率が約4倍〜約5倍に向上した。
<Production of tetracarbon sugar from hexose sugar alcohol by photocatalyst (two-carbon reduction reaction)>
Comparison of the production rate of D-erythrose (tetracarbon sugar) by photocatalytic reaction between the case where the conventional hexose sugar is used as the raw material and the case where the hexose sugar alcohol of the present invention is used as the raw material. It was. D-glucose was used as a monosaccharide raw material, and D-glucitol (sugar alcohol of hexose D-glucose: generic name D-sorbitol) and D-mannitol were used as a sugar alcohol raw material. 50 ml of pure water was added to each 0.136 g of D-glucitol and D-mannitol to prepare 15 mM D-glucitol aqueous solution and D-mannitol aqueous solution, respectively. Similarly, 50 ml of pure water was added to 0.135 g of D-glucose to prepare a 15 mM D-glucose aqueous solution. Titanium oxide (anatase / rutile form) 25 mg was added to each aqueous solution, irradiated with light at an intensity of 2 mW / cm 2 using a low-pressure mercury lamp, and a photocatalytic reaction was performed at room temperature (about 25 ° C.) while stirring. . Titanium oxide was removed from the solution after the photocatalytic reaction by centrifugation, and the supernatant was quantitatively analyzed by high performance liquid chromatography to quantify the produced D-erythrose. As a result, as shown in FIG. 1, in the case where D-glucitol and D-mannitol according to the present invention are used as raw materials, compared to the case where D-glucose is used as a raw material, D-erythrose is used. The production rate of was improved from about 4 times to about 5 times.

<光触媒への金属担持による二炭素減炭反応の促進効果>
光触媒である酸化チタンに白金を担持したことによる二炭素減炭反応の促進効果について検証した。D‐グルシトール、及びD‐マンニトール各0.136gに対し、純水50mlを添加し、それぞれ15mMのD‐グルシトール水溶液、及びD‐マンニトール水溶液とした。そこへPt担持酸化チタン、及び酸化チタン(アナターゼ/ルチル形)各25mgを添加し、低圧水銀ランプを用いて2mW/cmの強度で光照射をし、撹拌しながら室温(約25℃)で光触媒反応を行った。光触媒反応後の溶液から、遠心分離により酸化チタンを除去し、その上清に対して高速液体クロマトグラフィーによる定量分析を行うことで、生成されたD‐エリトロースを定量した。その結果、図2に示したように、金属担持した酸化チタンを用いた方が、D‐グルシトールとD‐マンニトールの両方において、D‐エリトロースの生成率が約4倍に向上した。
<Acceleration effect of two-carbon decarburization reaction by metal loading on photocatalyst>
The effect of promoting the two-carbon decarburization reaction by supporting platinum on titanium oxide, a photocatalyst, was verified. 50 ml of pure water was added to each 0.136 g of D-glucitol and D-mannitol to prepare 15 mM D-glucitol aqueous solution and D-mannitol aqueous solution, respectively. Thereto, 25 mg each of Pt-supported titanium oxide and titanium oxide (anatase / rutile form) was added, and irradiated with light at an intensity of 2 mW / cm 2 using a low-pressure mercury lamp, and at room temperature (about 25 ° C.) with stirring. A photocatalytic reaction was performed. Titanium oxide was removed from the solution after the photocatalytic reaction by centrifugation, and the supernatant was quantitatively analyzed by high performance liquid chromatography to quantify the produced D-erythrose. As a result, as shown in FIG. 2, the use of metal-supported titanium oxide improved the production rate of D-erythrose about 4 times in both D-glucitol and D-mannitol.

<光触媒による糖アルコールの酸化による副生成物の分析>
実施例2と同様の方法で、D‐グルシトール及びD‐マンニトール水溶液に対し光触媒反応を行うことで得られる原料由来糖生成物を、適宜複数の分析カラムを用いて、高速液体クロマトグラフィーによって分析した。図3に示したように、D‐グルシトールからは、D‐エリトロース35.5%、L‐トレオース6.9%、L‐グロース3.8%、D‐グルコース4.0%、D‐アラビノース4.3%、L‐キシロース7.5%が検出された(百分率は原料に対する生成率を示す)。したがって、原料のD‐グルシトールの立体構造に準じて、二炭素減炭反応による主生成物であるD‐エリトロース及びL‐トレオースが確認され、糖アルコール末端の酸化による副生成物であるL‐グロース及びD‐グルコースが確認された。反応過程で生成したL‐グロース及びD‐グルコースの光触媒酸化(一炭素減炭反応)と思われるL‐キシロース及びD‐アラビノースの生成も確認された。
一方、D‐マンニトールからはD‐エリトロース38.5%、D‐マンノース4.9%、D‐アラビノース98%が検出された(百分率は原料に対する生成率を示す)。したがって、原料のD‐マンニトールの立体構造に準じて、二炭素減炭反応による主生成物であるD‐エリトロース、糖アルコール末端の酸化による副生成物であるD‐マンノースが確認された。反応過程で生成したD‐マンノースの光触媒酸化(一炭素減炭反応)と思われるD‐アラビノースの生成も一部あることが確認された。
また、D‐グルシトールとD‐マンニトールからの主生成物である二炭素減炭反応による四炭糖の総量を比較すると、想定された反応機構通り、同程度の総量となることを確認した。
<Analysis of by-products due to photocatalytic oxidation of sugar alcohol>
In the same manner as in Example 2, the raw material-derived sugar product obtained by photocatalytic reaction with D-glucitol and D-mannitol aqueous solution was analyzed by high performance liquid chromatography using a plurality of analytical columns as appropriate. . As shown in FIG. 3, from D-glucitol, D-erythrose 35.5%, L-threose 6.9%, L-gulose 3.8%, D-glucose 4.0%, D-arabinose 4 .3% and L-xylose 7.5% were detected (percentage indicates production rate relative to raw material). Therefore, D-erythrose and L-threose, which are the main products of the two-carbon decarburization reaction, are confirmed according to the three-dimensional structure of the raw material D-glucitol, and L-growth, which is a by-product by oxidation of the sugar alcohol terminal And D-glucose was confirmed. Formation of L-xylose and D-arabinose, which is considered to be photocatalytic oxidation (single carbon decarburization reaction) of L-growth and D-glucose produced in the reaction process, was also confirmed.
On the other hand, 38.5% of D-erythrose, 4.9% of D-mannose and 98% of D-arabinose were detected from D-mannitol (percentages indicate the production rate relative to the raw material). Therefore, according to the three-dimensional structure of the raw material D-mannitol, D-erythrose, which is the main product due to the two-carbon decarburization reaction, and D-mannose, which is a byproduct due to oxidation of the sugar alcohol terminal, were confirmed. It was also confirmed that there was some production of D-arabinose which seems to be photocatalytic oxidation (single carbon decarburization reaction) of D-mannose produced in the reaction process.
Moreover, when the total amount of tetracarbons by the two-carbon decarburization reaction which is the main product from D-glucitol and D-mannitol was compared, it was confirmed that the total amount was the same as the expected reaction mechanism.

Claims (7)

希少糖を製造する方法において、糖アルコールを原料とし、光触媒反応を用いることを特徴とする希少糖の製造方法。  A method for producing a rare sugar, characterized in that a sugar alcohol is used as a raw material and a photocatalytic reaction is used. 前記光触媒反応において、白金(Pt)、イリジウム(Ir)、パラジウム(Pd)、銅(Cu)、銀(Ag)、金(Au)のいずれか一つ、あるいは複数の金属を担持した酸化チタンを光触媒として用いることを特徴とする請求項1に記載の希少糖の製造方法。  In the photocatalytic reaction, any one of platinum (Pt), iridium (Ir), palladium (Pd), copper (Cu), silver (Ag), gold (Au), or titanium oxide supporting a plurality of metals is used. It uses as a photocatalyst, The manufacturing method of the rare sugar of Claim 1 characterized by the above-mentioned. 前記光触媒反応において、紫外から可視領域の波長の照射光を用いることを特徴とする請求項1に記載の希少糖の製造方法。  2. The method for producing a rare sugar according to claim 1, wherein irradiation light having a wavelength in the ultraviolet to visible region is used in the photocatalytic reaction. 前記糖アルコール原料が、グルシトール(一般名ソルビトール)、マンニトール、イジトール、ガラクチトール、アリトール、アリトリトール、アラビニトール、キシリトール、リビトール、エリトリトール、トレイトールのいずれか一つ、あるいは複数の混合物であることを特徴とする請求項1に記載の希少糖の製造方法。  The sugar alcohol raw material is one or a mixture of glucitol (generic name sorbitol), mannitol, iditol, galactitol, allitol, allitol, arabinitol, xylitol, ribitol, erythritol, threitol. The method for producing a rare sugar according to claim 1. 前記糖アルコール原料が、単糖を化学還元剤や微生物によって還元し水素化した糖アルコールであることを特徴とする請求項1に記載の希少糖の製造方法。  The method for producing a rare sugar according to claim 1, wherein the sugar alcohol raw material is a sugar alcohol obtained by reducing and hydrogenating a monosaccharide with a chemical reducing agent or a microorganism. 請求項1〜5のいずれかの方法で製造した希少糖含有組成物。  A rare sugar-containing composition produced by the method according to claim 1. 請求項1〜5のいずれかの方法で製造した希少糖含有組成物を精製して得た高純度希少糖。  A high-purity rare sugar obtained by refining the rare sugar-containing composition produced by the method according to claim 1.
JP2016243773A 2016-11-30 2016-11-30 Production method of rare sugars from sugar alcohol by photocatalysis Expired - Fee Related JP6737469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243773A JP6737469B2 (en) 2016-11-30 2016-11-30 Production method of rare sugars from sugar alcohol by photocatalysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243773A JP6737469B2 (en) 2016-11-30 2016-11-30 Production method of rare sugars from sugar alcohol by photocatalysis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019217915A Division JP6737481B2 (en) 2019-12-02 2019-12-02 Secondary products derived from rare sugars

Publications (2)

Publication Number Publication Date
JP2018090555A true JP2018090555A (en) 2018-06-14
JP6737469B2 JP6737469B2 (en) 2020-08-12

Family

ID=62563658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243773A Expired - Fee Related JP6737469B2 (en) 2016-11-30 2016-11-30 Production method of rare sugars from sugar alcohol by photocatalysis

Country Status (1)

Country Link
JP (1) JP6737469B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187537A (en) * 2017-04-28 2018-11-29 学校法人東京理科大学 Mesoporous titania internally supporting noble metal element, method for producing mesoporous titania internally supporting noble metal element, and method for selectively producing rare saccharide using titanium oxide supporting noble metal element
JP2020063265A (en) * 2019-12-02 2020-04-23 アクテイブ株式会社 Secondary product derived from rare saccharides
JP2020180148A (en) * 2020-07-09 2020-11-05 アクテイブ株式会社 Rare sugar-derived secondary product-derived material
WO2022145404A1 (en) 2020-12-28 2022-07-07 サントリーホールディングス株式会社 Beverage containing d-arabinose

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195475A (en) * 2006-12-04 2008-06-11 中国科学院大连化学物理研究所 Method for restraining generation of carbon monoxide in photocatalysis hydrogen production process
JP2010018528A (en) * 2008-07-09 2010-01-28 Matsutani Chem Ind Ltd Biological function improving composition comprising dietary fiber and rare sugar
CN103420795A (en) * 2012-05-18 2013-12-04 中国科学院大连化学物理研究所 Method of preparing dihydric alcohol from carbohydrate in low-boiling organic phase
JP2014500788A (en) * 2010-11-04 2014-01-16 中国科学院理化技術研究所 Semiconductor photocatalyst for photocatalysis and reforming of biomass derivatives to produce hydrogen and its production and application
JP2014100091A (en) * 2012-11-20 2014-06-05 Matsutani Chem Ind Ltd Rare sugar-containing powder
WO2015146849A1 (en) * 2014-03-25 2015-10-01 国立大学法人香川大学 Malaria transmission prevention agent having rare sugar as effective component thereof and malarial parasite growth regulating agent
JP2016106578A (en) * 2014-12-08 2016-06-20 ハイスキー食品工業株式会社 Konjak powder and rare sugar combined supplement
US20160244555A1 (en) * 2013-10-16 2016-08-25 Biochemtex S.P.A. Process for producing a stream comprising ethylene glycol

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195475A (en) * 2006-12-04 2008-06-11 中国科学院大连化学物理研究所 Method for restraining generation of carbon monoxide in photocatalysis hydrogen production process
JP2010018528A (en) * 2008-07-09 2010-01-28 Matsutani Chem Ind Ltd Biological function improving composition comprising dietary fiber and rare sugar
JP2014500788A (en) * 2010-11-04 2014-01-16 中国科学院理化技術研究所 Semiconductor photocatalyst for photocatalysis and reforming of biomass derivatives to produce hydrogen and its production and application
CN103420795A (en) * 2012-05-18 2013-12-04 中国科学院大连化学物理研究所 Method of preparing dihydric alcohol from carbohydrate in low-boiling organic phase
JP2014100091A (en) * 2012-11-20 2014-06-05 Matsutani Chem Ind Ltd Rare sugar-containing powder
US20160244555A1 (en) * 2013-10-16 2016-08-25 Biochemtex S.P.A. Process for producing a stream comprising ethylene glycol
WO2015146849A1 (en) * 2014-03-25 2015-10-01 国立大学法人香川大学 Malaria transmission prevention agent having rare sugar as effective component thereof and malarial parasite growth regulating agent
JP2016106578A (en) * 2014-12-08 2016-06-20 ハイスキー食品工業株式会社 Konjak powder and rare sugar combined supplement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187537A (en) * 2017-04-28 2018-11-29 学校法人東京理科大学 Mesoporous titania internally supporting noble metal element, method for producing mesoporous titania internally supporting noble metal element, and method for selectively producing rare saccharide using titanium oxide supporting noble metal element
JP7105464B2 (en) 2017-04-28 2022-07-25 学校法人東京理科大学 METHOD FOR PRODUCING MESOPOROUS TITANIA HAVING INTERNAL NOBLE METAL ELEMENTS AND METHOD FOR SELECTIVE PRODUCING RARE SUGAR USING TITANIUM OXIDE HOLDING NOBLE METAL ELEMENTS
JP2020063265A (en) * 2019-12-02 2020-04-23 アクテイブ株式会社 Secondary product derived from rare saccharides
JP2020180148A (en) * 2020-07-09 2020-11-05 アクテイブ株式会社 Rare sugar-derived secondary product-derived material
WO2022145404A1 (en) 2020-12-28 2022-07-07 サントリーホールディングス株式会社 Beverage containing d-arabinose

Also Published As

Publication number Publication date
JP6737469B2 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP6737469B2 (en) Production method of rare sugars from sugar alcohol by photocatalysis
JP5579990B2 (en) Electrolytic production of erythrose or erythritol
EP3227268B1 (en) Process for production of 2,5-bis-hydroxymethylfuran, 2,5-bis-hydroxymethyltetrahydrofuran, 1,6-hexanediol and 1,2,6-hexanetriol from 5-hydroxymethylfurfural
US20080210222A1 (en) Ruthenium catalysts
EP3284535A1 (en) Metallo-silicate material suitable for the conversion of sugars into lactic acid and 2-hydroxy-3-butenoic acid or esters thereof
AU2005228888B2 (en) Processes for the production of xylitol
JP2000103751A (en) Production of alcohol
WO2012167012A2 (en) Methods for the electrolytic production of erythritol
JP6778934B2 (en) Rare sugar-derived secondary product-derived material
JP6737481B2 (en) Secondary products derived from rare sugars
JP2018070575A (en) Method for producing aldotetrose (tetrose) by photocatalytic reaction
Ahmed et al. Optimization hydrogenation process of D-glucose to D-sorbitol over Raney nickel catalyst
DE102007005528A1 (en) Carbon-supported gold catalyst
JP2014172874A (en) Method for producing ketol compound
WO2008148549A2 (en) Novel reaction with a gold catalyst
Ahmed Kinetics studies of d-glucose hydrogenation over activated charcoal supported platinum catalyst
EP2799416A1 (en) METHOD OF PRODUCING 1-(2-t-BUTYL CYCLOHEXYLOXY)-2-BUTANOL
JP6159327B2 (en) Method for producing 2- (isopropylamino) ethanol
CN108349857B (en) Catalyst system and process for producing diols
JPS63295528A (en) Production of glyoxylic acids
US20210130269A1 (en) Catalytic production of 1,2,5,6-hexanetetrol from levoglucosenone
Hueso et al. Chapter Plasmonics Devoted to Photocatalytic Applications in Liquid, Gas, and Biological Environments
WO2022263693A1 (en) Synthesis of polyols by catalytic hydrogen transfer on ni-raney catalysts
JP2016124837A (en) Method for producing butadiene and metal oxide catalyst for use in the same
JP2008069392A (en) Method for producing d-glucosamic acid by electrolysis process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200709

R150 Certificate of patent or registration of utility model

Ref document number: 6737469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees