WO2022262465A1 - 基于opc ua的时间敏感网络集中用户配置方法及系统 - Google Patents

基于opc ua的时间敏感网络集中用户配置方法及系统 Download PDF

Info

Publication number
WO2022262465A1
WO2022262465A1 PCT/CN2022/091493 CN2022091493W WO2022262465A1 WO 2022262465 A1 WO2022262465 A1 WO 2022262465A1 CN 2022091493 W CN2022091493 W CN 2022091493W WO 2022262465 A1 WO2022262465 A1 WO 2022262465A1
Authority
WO
WIPO (PCT)
Prior art keywords
opc
server
tsn
information
configuration
Prior art date
Application number
PCT/CN2022/091493
Other languages
English (en)
French (fr)
Inventor
王平
蒲宬亘
王仪
杨一夫
曾凡川
Original Assignee
重庆邮电大学工业互联网研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆邮电大学工业互联网研究院 filed Critical 重庆邮电大学工业互联网研究院
Publication of WO2022262465A1 publication Critical patent/WO2022262465A1/zh
Priority to US18/500,024 priority Critical patent/US11929873B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/801Real time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1073Registration or de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/141Setup of application sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/51Discovery or management thereof, e.g. service location protocol [SLP] or web services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/18Multiprotocol handlers, e.g. single devices capable of handling multiple protocols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • This application relates to the technical field of industrial communication, and in particular to an OPC UA-based time-sensitive network centralized user configuration method and system.
  • Time Sensitive Network is a set of standards that support real-time data transmission. Its characteristics of low latency, low jitter and extremely low packet loss rate can provide deterministic communication guarantee for industrial applications, and time-sensitive
  • the configuration of mechanisms is key to the full deployment and integration of time-sensitive networks.
  • the configuration process of the TSN network is relatively cumbersome, and the dependence on manual configuration is strong.
  • OPC UA Open Platform Communications Unified Architecture
  • Batch TSN flow configuration is performed by means of a method to realize the automatic discovery of TSN network user equipment and the method of effective transmission and configuration of scheduling information.
  • the purpose of this application is to provide an OPC UA-based centralized user configuration method and system for time-sensitive networks.
  • OPC UA By applying OPC UA to the user side of TSN network scheduling configuration, automatic user discovery and multi-user configuration of TSN networks can be completed.
  • Functions such as protocol data aggregation and transmission and configuration of network scheduling requirements parameters.
  • the present application provides an OPC UA-based time-sensitive network centralized user configuration system
  • the user configuration system at least includes a user terminal station, a UA-TSN configuration management middleware, and a centralized user configuration entity
  • the user terminal station includes field devices and UA-TSN coordinators using different industrial protocols; after the OPC UA server embedded in the field device in the user terminal station actively registers with the UA-TSN coordinator, the UA-TSN
  • the configuration management middleware obtains the OPC UA address information list by accessing the UA-TSN coordinator; the UA-TSN configuration management middleware communicates with the field devices in the user terminal station through the corresponding OPC UA address information and collects device information ;
  • the centralized user configuration entity extracts and parses the aggregated TSN flow requirement information in the UA-TSN configuration management middleware; performs scheduling calculation on the TSN flow requirement information to complete the configuration.
  • the UA-TSN configuration management middleware includes a data management module, a data distribution and control module, a user data aggregation module, and a user discovery module;
  • the data management module is responsible for storing data information in the system, and The information is stored in the local database;
  • the data distribution and control module is responsible for distributing and controlling the OPC UA address information list, TSN flow demand information and scheduling result information table;
  • the user data aggregation module is responsible for connecting field devices and Data is aggregated into the server address space;
  • the user equipment discovery module is responsible for establishing a connection with the discovery server in the UA-TSN coordinator, and obtains the OPC UA address information list of the field equipment.
  • the centralized user configuration entity includes an OPC UA client, a TSN scheduling control module, a management module, and a communication interface;
  • the OPC UA client is responsible for communicating with the UA-TSN configuration management middleware to obtain an integrated TSN flow demand information;
  • the TSN scheduling control module is responsible for the control of data flow transmission and configuration process;
  • the management module is responsible for information management;
  • the communication interface ensures the data interaction between the centralized user configuration entity and other external entities.
  • the management module includes a configuration state management unit, a user resource management unit, and a network topology management unit; the user resource management unit and the network topology management unit are responsible for managing corresponding information acquired corresponding to TSN user flow requirements ;
  • the configuration status management unit is responsible for distributing the TSN user communication configuration results returned from other external entities.
  • the present application also provides a preferred OPC UA-based time-sensitive network centralized user configuration system
  • the user configuration system at least includes user terminal stations, UA-TSN configuration management middleware, centralized User configuration entity and centralized network configuration entity
  • the user terminal station includes field devices and UA-TSN coordinators using different industrial protocols
  • the embedded OPC UA server of the field device in the user terminal station actively sends UA-TSN coordinator
  • the UA-TSN configuration management middleware obtains the OPC UA address information list by accessing the UA-TSN coordinator
  • the UA-TSN configuration management middleware communicates with the user terminal station through the corresponding OPC UA address information communicate with field devices and collect device information
  • the centralized user configuration entity extracts and parses the TSN flow requirement information in the UA-TSN configuration management middleware
  • the centralized network configuration entity performs scheduling calculations to complete the configuration.
  • the application provides a centralized user configuration method based on OPC UA time-sensitive network, the method comprising:
  • the embedded OPC UA server of the field device in the user terminal station obtains the data information of the field device in real time, and constructs the OPC UA information model of the TSN network;
  • the embedded OPC UA server actively registers with the UA-TSN coordinator in the user terminal station where it is located, and stores the address information of its server in the UA-TSN coordinator;
  • the UA-TSN configuration management middleware communicates with the UA-TSN coordinator to discover and obtain the address information list of all registered embedded OPC UA servers in the user terminal station;
  • the UA-TSN configuration management middleware is respectively connected to the field devices in the user terminal station, reads the data information in the OPC UA server embedded in it, and unifies all the acquired data information collection and management;
  • the OPC UA client in the centralized user configuration entity completes the initialization, then initiates a connection establishment request to the UA-TSN message broker middleware, reads the TSN flow requirements and network topology information stored in the user data aggregation module, and reads information is processed.
  • said constructing the OPC UA information model of the TSN network includes constructing a static data information model according to a predefined XML format document or a preset program or/and connecting the embedded OPC UA server with the real-time data source of the field device Binding, when the real-time data source information changes dynamically, call a predefined function to write new data values to construct a dynamic data information model.
  • said embedded OPC UA server actively registers with the UA-TSN coordinator in its user terminal station including:
  • Start described embedded OPC UA server to collect the data information of field equipment, call described analytic function to obtain the dynamic data of field equipment;
  • the first registration client starts and queries the LDS-ME discovery server in the UA-TSN coordinator, and when the first registration client queries the LDS-ME discovery server, the embedded OPC UA is completed in the LDS-ME discovery server register.
  • the communication between the UA-TSN configuration management middleware and the UA-TSN coordinator is that the UA-TSN configuration management middleware communicates with the LDS-ME discovery server in the UA-TSN coordinator through its user equipment discovery module, wherein the The discovery process of the user equipment discovery module and the LDS-ME discovery server includes:
  • the UA-TSN configuration management middleware is respectively connected to a plurality of field devices in the user terminal station, and communicates with the embedded OPC UA server of the user equipment through its user data aggregation module, wherein the user data aggregation module
  • the communication process with described embedded OPC UA server comprises:
  • OPC UA client create and initialize a plurality of OPC UA clients according to the obtained address information, and the OPC UA client connects to the corresponding embedded OPC UA server according to the URL address information; the OPC UA client reads the data of the embedded OPC UA server , and write data among the third OPC UA server address space;
  • the third OPC UA server When the third OPC UA server receives the stop signal, the data interaction is interrupted, the communication connection between the OPC UA client and the embedded OPC UA server is disconnected, and the third OPC UA server stops and releases the server address space.
  • the application also provides a preferred OPC UA-based time-sensitive network centralized user configuration method, the method comprising:
  • the embedded OPC UA server of the industrial equipment in the user terminal station acquires the data information of the equipment in real time, and constructs the OPC UA information model of the TSN network;
  • the embedded OPC UA server actively registers with the UA-TSN coordinator in the user terminal station where it is located, and the LDS-ME discovery server in the coordinator stores the registered OPC UA server address information;
  • the UA-TSN configuration management middleware communicates with the LDS-ME discovery server in the coordinator through its user equipment discovery module to obtain a list of address information of all registered embedded OPC UA servers;
  • the user data aggregation module is respectively connected to the field devices in the user terminal station, reads the data information in the address space of the embedded OPC UA server, and collects and aggregates all the obtained data information in a unified manner. manage;
  • the OPC UA client in the centralized user configuration entity (CUC) completes initialization, then initiates a connection establishment request to the UA-TSN message broker middleware, reads the TSN flow requirements and network topology information stored in the user data aggregation module, and Further process the read data information, waiting for the call of the centralized network configuration entity (CNC);
  • the CUC entity transmits the processed flow demand information to the CNC entity. After the CUC entity initiates a TSN flow scheduling calculation request, the CNC entity starts the calculation of the TSN flow scheduling and returns the result of the scheduling request (success or failure);
  • the CUC entity When the TSN flow scheduling calculation is completed, the CUC entity requests the CNC entity to return the detailed content of the calculated TSN scheduling result information table, which contains key information of TSN network configuration, such as flow identifier, transmission window, and end-to-end delay. ;
  • CUC returns the obtained TSN flow scheduling result information table to UA-TSN configuration management middleware, and then forwards the corresponding information to the field equipment in the user terminal station.
  • the field equipment can send and receive data information regularly according to the scheduling results, etc. operate.
  • This application provides a standardized, interoperable, safe and reliable data interaction scheme for the user-side scheduling configuration of time-sensitive networks in large-scale industrial automation production systems. That is, the use of OPC UA realizes the automatic discovery of TSN network user equipment and multi-protocol data aggregation, realizes the automatic transmission and configuration of TSN network scheduling information, reduces the operational complexity of the TSN network configuration process, and solves the problem of large-scale TSN flow configuration. The process is relatively cumbersome, and manual configuration is highly dependent.
  • Fig. 1 is the system structural diagram of the time-sensitive network centralized user configuration method based on OPC UA in one embodiment of the present application;
  • Fig. 2 is a time-sensitive network based on OPC UA in a preferred embodiment of the present application and concentrates on user configuration system structural diagram;
  • Fig. 3 is a time-sensitive network based on OPC UA in a more preferred embodiment of the present application and concentrates on user configuration system structure diagram;
  • Fig. 4 is a kind of OPC UA-based time-sensitive network centralized user configuration method flowchart in the embodiment of the present application
  • Fig. 5 is the registration flowchart of embedded OPC UA server in the embodiment of the present application.
  • Fig. 6 is the operation flowchart of embedded OPC UA server in the embodiment of the present application.
  • FIG. 7 is a flow chart of user equipment discovery in an embodiment of the present application.
  • FIG. 8 is a flow chart of the operation of the user equipment discovery module in the embodiment of the present application.
  • Fig. 9 is a communication flowchart of the user data aggregation module in the embodiment of the present application.
  • Fig. 10 is a flow chart of the operation of the user data aggregation module described in the embodiment of the present application.
  • Fig. 11 is a kind of preferred OPC UA-based time-sensitive network centralized user configuration method flowchart in the embodiment of the present application;
  • Fig. 12 is a sequence flow chart of the execution of each entity in the preferred embodiment of the present application.
  • Fig. 1 is a system structural diagram of an OPC UA-based time-sensitive network centralized user configuration method in an embodiment of the present application.
  • the user configuration system includes at least a user terminal station, a UA-TSN configuration management middleware and Centralized user configuration entity; the user terminal station includes field devices and UA-TSN coordinators using different industrial protocols; after the OPC UA server embedded in the field device in the user terminal station actively registers with the UA-TSN coordinator, The UA-TSN configuration management middleware obtains the OPC UA address information list by accessing the UA-TSN coordinator; the UA-TSN configuration management middleware communicates with the field device in the user terminal station through the corresponding OPC UA address information Communicating and collecting device information; the centralized user configuration entity extracts and parses the TSN flow requirement information aggregated in the UA-TSN configuration management middleware; performs scheduling calculation on the TSN flow requirement information to complete the configuration.
  • Fig. 2 is a structural diagram of a time-sensitive network centralized user configuration system based on OPC UA in a preferred embodiment of the present application.
  • the user terminal station includes multiple industrial field devices (Talker or Listener), each Each field device contains a single embedded OPC UA server.
  • the Talker or Listener here refers to the object attribute of the current field device as the sender or receiver during the communication process, not the field device The limitation of its own attributes.
  • the UA-TSN configuration management middleware implements functions such as automatic discovery and data aggregation of user equipment, and the UA-TSN configuration management middleware includes a data management module, a data distribution and control module, a user data aggregation module, and a user discovery module; Described data management module adopts MySQL database to realize, is responsible for storing data information in the system, and data is saved in local database, so that operator manages; Described data distribution and control module is responsible for OPC UA address information list, TSN Flow demand information and TSN flow scheduling result information are distributed and controlled; the user equipment discovery module is an LDS-ME discovery server, and the user equipment discovery module is responsible for establishing a connection with the discovery server in the UA-TSN coordinator, obtaining The address information list of field equipment; Described user data aggregation module realizes for an OPC UA aggregation server, and described user data aggregation module is responsible for connecting field equipment and all equipment data is aggregated among its server address space.
  • the centralized user configuration entity includes an OPC UA client, a TSN scheduling control module, a management module, and a communication interface;
  • the OPC UA client is responsible for communicating with the UA-TSN configuration management middleware to obtain integrated TSN stream demand information ;
  • the TSN scheduling control module is responsible for the control of the data stream transmission and configuration process;
  • the management module is responsible for information management, that is, managing the corresponding information of the obtained TSN user flow requirements and responsible for managing and distributing the TSN user communication configuration returned from the CNC The result;
  • the communication interface guarantees the data interaction between the centralized user configuration entity and other external entities, where the other external entities may be the centralized network configuration entity CNC, or an external web server and so on.
  • the management module includes a configuration state management unit, a user resource management unit, and a network topology management unit; the user resource management unit and the network topology management unit are responsible for managing the corresponding information obtained by TSN user flow requirements ;
  • the configuration status management unit is responsible for distributing the TSN user communication configuration results returned from other external entities.
  • Fig. 3 is a time-sensitive network based on OPC UA in a more preferred embodiment of the present application centralized user configuration system structure diagram, as shown in Fig. 3, described user configuration system at least includes user terminal station, UA-TSN configuration management Middleware, centralized user configuration entity, centralized network configuration entity, web server and TSN switch; the user terminal station includes field devices and UA-TSN coordinators using different industrial protocols; the field device in the user terminal station After the embedded OPC UA server actively registers with the UA-TSN coordinator, the UA-TSN configuration management middleware obtains the OPC UA address information list by accessing the UA-TSN coordinator; the UA-TSN configuration management middleware passes The corresponding OPC UA address information communicates with the field devices in the user terminal station and collects device information; the centralized user configuration entity can communicate with the web server through its communication interface; the centralized user configuration entity extracts and parses the UA- The TSN flow requirement information in the TSN configuration management middleware; the TSN flow requirement information is transmitted
  • the user terminal station #A represents the terminal station of the sender
  • the user terminal station #B represents the receiver's Terminal station
  • user terminal station #A will send the device data generated by the embedded OPC UA server in the form of TSN flow through its UA-TSN coordinator.
  • the UA-TSN coordinator is connected to a TSN switch, and the TSN switch transmits the TSN flow to the UA-TSN coordinator of user end station #B, and send to the embedded OPC UA server of user end station #B through the UA-TSN coordinator.
  • user terminal station #A can also be used as the terminal station of the receiving party.
  • Terminal station #B can also be used as the terminal station of the sender.
  • Each user terminal station can have N embedded OPC UA servers, and each embedded OPC UA server can correspond to a user. This user can be used as a sender or as a receiver.
  • the UA-TSN coordinator inside the user terminal station and the embedded OPC UA servers all use the OPC UA protocol for communication; the communication between the centralized user configuration entity and the centralized network configuration entity, as well as between the centralized network configuration entity and the TSN switch, are all communicated through traditional network protocols, and this application will not discuss this in detail. limit.
  • Fig. 4 is a kind of OPC UA-based time-sensitive network centralized user configuration method flowchart in the embodiment of the present application, as shown in Fig. 4, described method comprises:
  • the embedded OPC UA server of the field device in the user terminal station obtains the data information of the field device in real time, and constructs the OPC UA information model of the TSN network;
  • the embedded OPC UA server of the field device in the user terminal station first needs to collect the data of the device where it is located in real time, and build an OPC UA information model in the server address space.
  • the embedded OPC UA server needs to collect user device data for information modeling.
  • the acquired data mainly includes two types of equipment information, static data and dynamic data.
  • the information modeling of static data can be implemented by programming, or by importing XML format documents defined in advance; in the process of dynamic data collection, the embedded OPC UA server is first bound to the real-time data source of the user equipment, when the data source information When changing dynamically, call a predefined function to write new data values.
  • said constructing the OPC UA information model of the TSN network includes constructing a static data information model according to a predefined XML format document or a preset program or/and binding the embedded OPC UA server to a real-time data source of a field device It is determined that when the real-time data source information changes dynamically, call a predefined function to write new data values to construct a dynamic data information model.
  • the embedded OPC UA server actively registers with the UA-TSN coordinator in the user terminal station where it is located, and stores the registered OPC UA server address information in the UA-TSN coordinator;
  • FIG. 5 is a registration process diagram of the embedded OPC UA server in the embodiment of the present application. As shown in Figure 5, the embedded OPC UA server actively registers with the UA-TSN coordinator in the user terminal station where it is located, including:
  • the first registration information includes basic information such as communication protocol, port number, secure channel and session service of the server.
  • start described embedded OPC UA server to collect the data information of field equipment, call described analysis function to obtain the dynamic data of field equipment;
  • the first registration client starts and queries the LDS-ME discovery server in the UA-TSN coordinator. After the first registration client queries the LDS-ME discovery server, the embedded OPC UA discovers the server in the LDS-ME to complete the registration.
  • Fig. 6 is the operating flowchart of embedded OPC UA server in the embodiment of the present application, as shown in Fig. 6, this process mainly includes the creation of embedded OPC UA server, the creation of the first registration client, OPC UA server to LDS-ME
  • the registration of the server, the disconnection of the first registered client, the deletion of the first registered client and the deletion of the embedded OPC UA server, in the running process it is first necessary to create the OPC UA server and initialize the embedded OPC UA server Configuration; after the configuration is completed, read the XML file to construct the address space of OPC UA; analyze the data information, add the parsed data information to the corresponding node of the address space, and start the embedded OPC UA server at this time, after the startup is completed , judge in real time whether the embedded OPC UA server needs to be stopped, if the embedded OPC UA server needs to be stopped, then delete the embedded OPC UA server directly; if it does not need to be stopped, you need to create the first registered
  • the first registration client establishes a connection with the LDS-ME server.
  • the embedded OPC UA server registers with the LDS-ME server through the first registration client.
  • the first registration client disconnects from the LDS-ME server, and Delete the first registered client from the embedded OPC UA server, and finally delete the embedded OPC UA server.
  • the UA-TSN configuration management middleware communicates with the UA-TSN coordinator to discover and obtain the address information list of the embedded OPC UA server in all user terminal stations;
  • the communication between the UA-TSN configuration management middleware and the UA-TSN coordinator is that the UA-TSN configuration management middleware communicates with the LDS-ME discovery server in the UA-TSN coordinator through its user equipment discovery module.
  • the user equipment discovery flow chart in the application embodiment, as shown in Figure 7, the discovery process of the user equipment discovery module and the LDS-ME discovery server includes:
  • the discovery process may also include step 304:
  • the user device discovery module discovers the field devices in different user terminal stations, and obtains the address information of the embedded OPC UA server of all field device users.
  • the address information is mainly composed of a static IP address and a standard OPC UA port.
  • the user equipment discovery module stores the obtained address information in a fixed list, and maintains the OPC UA address information of all devices in the system. When it is necessary to connect with the embedded OPC UA server, its address information should be queried. When the device is disconnected from the system, its corresponding information will be deleted in the address information list.
  • Fig. 8 is the operation flowchart of user equipment discovery module in the embodiment of the present application, as shown in Fig. 8, this process mainly comprises the creation of the second OPC UA server, the creation of the second registration client, the disconnection of the second registration client, The second registered client is deleted and the second OPC UA server is deleted.
  • the second OPC UA server During the running process, it is first necessary to create the second OPC UA server and initialize the configuration of the second OPC UA server; after the configuration is completed, enable the mDNS service configuration LDS-ME server; start the second OPC UA server and wait for LDS multicast discovery, add a callback function in the second OPC UA server, and judge whether to find other new LDS-ME discovery servers, if indeed find new LDS-ME
  • the discovery server calls the callback function to obtain the URL information and port information of the new LDS-ME discovery server; checks whether the new LDS-ME discovery server supports signature and encryption, and calls the function to generate the corresponding second registered client, the second OPC UA
  • the server connects with the new LDS-ME discovery server and registers with it. After the registration is completed, close the second OPC UA server and disconnect the connection of the second registered client. After deleting the second registered client, delete the second OPC UA server .
  • the UA-TSN configuration management middleware is respectively connected to the field devices in the user terminal station, reads the data information in the OPC UA server embedded in it, and performs all acquired data information Unified collection and management;
  • the UA-TSN configuration management middleware is respectively connected to a plurality of field devices in the user terminal station through communication between the user data aggregation module and the embedded OPC UA server of the user terminal station, wherein Fig. 9 is an embodiment of the present application
  • the communication process between the user data aggregation module and the embedded OPC UA server includes:
  • OPC UA client creates and initialize a plurality of OPC UA clients according to the obtained address information, and the OPC UA client connects to the corresponding embedded OPC UA server according to the URL address information; the OPC UA client reads the embedded OPC UA server data, and write the data into the address space of the third OPC UA server;
  • the third OPC UA server receives the stop signal, the data interaction is interrupted, the communication connection between the OPC UA client and the embedded OPC UA server is disconnected, and the third OPC UA server stops and releases the server address space.
  • Fig. 10 is the operation flowchart of user data aggregation module described in the embodiment of the present application, as shown in Fig. 10, this process mainly comprises the creation of the 3rd OPC UA server, the creation of OPC UA client, the creation of OPC UA client, OPC The UA client is disconnected, the OPC UA client is deleted, and the third OPC UA server is deleted. During this operation, the third OPC UA server needs to be created first. After the configuration is completed, the address space of the third OPC UA server is constructed, and then Start the third OPC UA server.
  • the server and the OPC UA client read the data corresponding to the embedded OPC UA server, and the OPC UA client writes these data information into the third OPC UA server, and continues to judge whether a stop signal is received.
  • the OPC UA client in the centralized user configuration entity completes initialization, and then initiates a connection establishment request to the UA-TSN message broker middleware, reads the TSN flow requirements and network topology information stored in the user data aggregation module, and performs The read information is processed.
  • Fig. 11 provides a kind of preferred OPC UA-based time-sensitive network centralized user configuration method flow chart in the embodiment of the present application, as shown in Fig. 11, described method comprises:
  • the embedded OPC UA server of the industrial equipment in the user terminal station acquires the data information of the equipment in real time, and constructs the OPC UA information model of the TSN network;
  • the embedded OPC UA server actively registers with the UA-TSN coordinator in the user terminal station where it is located, and the LDS-ME discovery server in the coordinator stores the registered OPC UA server address information;
  • the UA-TSN configuration management middleware communicates with the LDS-ME discovery server in the coordinator through its user equipment discovery module to obtain a list of address information of all registered embedded OPC UA servers;
  • the user data aggregation module is respectively connected to the field devices in the user terminal station, reads the data information in the address space of the embedded OPC UA server, and unifies all the obtained data information collection and management;
  • the OPC UA client in the centralized user configuration entity (CUC) completes the initialization, and then initiates a connection establishment request to the UA-TSN message broker middleware, and reads the TSN flow requirements and network topology information stored in the user data aggregation module, etc. , and further process the read data information, waiting for the invocation of the centralized network configuration entity (CNC);
  • the CUC entity transmits the processed flow demand information to the CNC entity. After the CUC entity initiates the TSN flow scheduling calculation request, the CNC entity starts the calculation of the TSN flow scheduling, and returns the result of the scheduling request (success or failure) );
  • the CUC entity requests the CNC entity to return the detailed content of the calculated TSN scheduling result information table, which contains key information about the TSN network configuration, such as flow identifiers, transmission windows, and end-to-end delay, etc.;
  • the CUC returns the acquired TSN flow scheduling result information table to the UA-TSN configuration management middleware, and then forwards the corresponding information to the field device in the user terminal station, and the field device can send and receive data information regularly according to the scheduling result and so on.
  • Fig. 12 is a sequence flow chart of the execution of each entity in the preferred embodiment of the present application, as shown in Fig. 12, wherein the CUC entity is mainly responsible for the configuration and management of the user side in the TSN network, and the specific process is as follows:
  • the OPC UA client that has completed initialization in the CUC initiates a connection establishment request, reads stream demand and network topology information from the UA-TSN message broker middleware, processes the acquired data, and sends it to CNC entity;
  • the CUC entity sends a TSN flow scheduling calculation request to the CNC entity, and the CNC will return the result of the request (success or failure);
  • the CUC entity When the TSN flow scheduling calculation is completed, the CUC entity requests the CNC entity to return the calculated scheduling result information table, which contains key information about the TSN network configuration, such as flow identifiers, transmission windows, and end-to-end delays;
  • CUC returns the obtained TSN flow scheduling result information table to UA-TSN configuration management middleware, and then forwards the corresponding information to the field devices in the user terminal station, and the field devices can perform operations such as timing sending and receiving of data information according to the scheduling results .
  • the OPC UA-based time-sensitive network centralized user configuration method of the present application and the OPC UA-based time-sensitive network centralized user configuration system belong to the same conception of the application, so the features of the two can be referred to each other. I won't repeat them one by one.

Abstract

本申请属于工业通信技术领域,涉及基于OPC UA的时间敏感网络集中用户配置方法及系统;所述系统包括用户终端站、UA-TSN配置管理中间件和集中式用户配置实体;用户终端站包括多个现场设备和UA-TSN协调器;设备内嵌OPC UA服务器向UA-TSN协调器注册后,UA-TSN配置管理中间件通过访问UA-TSN协调器获取OPC UA地址信息列表,通过对应地址信息与现场设备通信并汇集设备信息;集中式用户配置实体提取并解析UA-TSN配置管理中间件聚合的TSN流需求信息;利用该信息进行调度计算完成配置。本申请实现对TSN网络调度信息的自动传输与配置,降低了大规模TSN网络配置过程中的操作复杂度的问题。

Description

基于OPC UA的时间敏感网络集中用户配置方法及系统
本申请要求于2021年6月18日提交中国专利局、申请号为2021106785142、申请名称为“基于OPC UA的时间敏感网络集中用户配置方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及工业通信技术领域,具体涉及基于OPC UA的时间敏感网络集中用户配置方法及系统。
背景技术
在工业4.0信息化变革的深入过程中,工业制造系统对数据通信的实时性和互操作性需求不断提升。时间敏感网络(Time Sensitive Network,TSN)是一组支持实时数据传输的标准集,其低延迟,低抖动和极低的丢包率等特点能够为工业应用提供确定性通信保障,而其中时间敏感机制的配置是时间敏感网络全面部署和集成的关键。但是对于当前大规模的工业生产系统而言,TSN网络的配置过程相对繁琐,手动配置的依赖性较强,多种工业设备间由于协议一致性等问题存在一定程度上的数据通信障碍,这使得系统中TSN网络的配置过程缺乏标准化和互操作性。
开放平台通信统一架构(Open Platform Communications Unified Architecture,OPC UA)作为一种高度标准化的数据通信规范,具备设备信息统一描述和跨平台数据互通的能力,借助工业互联网技术地不断推进,OPC UA得到了工业自动化生产领域的广泛认可与推广应用。OPC UA和TSN两种技术的结合,不仅能够发挥OPC UA在语义互操作方面的优势,也能借助TSN的网络特性为工业系统带来更为高效和标准化的数据通信方式。
目前虽然已经出现了OPC UA和TSN的融合技术,但是当前OPC UA和TSN两种技术融合程度较低,因此亟需一种在大规模应用场景下将OPC UA应用于TSN网络中,以标准化的方式进行批量TSN流配置,实现TSN网络用户 设备的自动发现以及调度信息有效传输与配置的方法。
发明内容
有鉴于此,本申请的目的在于提供一种基于OPC UA的时间敏感网络集中用户配置方法及系统,通过将OPC UA应用于TSN网络调度配置的用户侧,完成对TSN网络的自动用户发现、多协议数据聚合以及网络调度需求参数的传输与配置等功能。
为达到上述目的,本申请提供如下技术方案:
在本申请的第一方面,本申请提供了一种基于OPC UA的时间敏感网络集中用户配置系统,所述用户配置系统至少包括用户终端站、UA-TSN配置管理中间件以及集中式用户配置实体;所述用户终端站包括采用不同工业协议的现场设备和UA-TSN协调器;所述用户终端站中现场设备内嵌OPC UA服务器主动向UA-TSN协调器进行注册后,所述UA-TSN配置管理中间件通过访问所述UA-TSN协调器获取OPC UA地址信息列表;所述UA-TSN配置管理中间件通过对应的OPC UA地址信息与用户终端站中的现场设备进行通信并汇集设备信息;所述集中式用户配置实体提取并解析UA-TSN配置管理中间件中聚合的TSN流需求信息;将所述TSN流需求信息进行调度计算完成配置。进一步的,所述UA-TSN配置管理中间件包括数据管理模块、数据分发与控制模块、用户数据聚合模块以及用户发现模块;所述数据管理模块负责对系统中的数据信息进行存储,并将数据信息保存在本地数据库中;所述数据分发与控制模块负责对OPC UA地址信息列表、TSN流需求信息和调度结果信息表进行分发和管控;所述用户数据聚合模块负责连接现场设备并将所有设备数据聚合到服务器地址空间中;所述用户设备发现模块负责与UA-TSN协调器中的发现服务器建立连接,获取现场设备的OPC UA地址信息列表。
进一步的,所述集中式用户配置实体包括OPC UA客户端、TSN调度控制模块、管理模块以及通信接口;所述OPC UA客户端负责与UA-TSN配置管理中间件进行通信,以获取整合的TSN流需求信息;TSN调度控制模块负责数据 流传输和配置过程的控制工作;所述管理模块负责信息管理;所述通信接口保障集中式用户配置实体与外部其他实体的数据交互。
进一步的,所述管理模块包括配置状态管理单元、用户资源管理单元以及网络拓扑管理单元;所述用户资源管理单元和所述网络拓扑管理单元负责对获取的对应TSN用户流需求的相应信息进行管理;所述配置状态管理单元负责分配从外部其他实体中返回的TSN用户通信配置结果。在本申请的第二方面,本申请还提供了一种优选的基于OPC UA的时间敏感网络集中用户配置系统,所述用户配置系统至少包括用户终端站、UA-TSN配置管理中间件、集中式用户配置实体以及集中式网络配置实体;所述用户终端站包括采用不同工业协议的现场设备和UA-TSN协调器;所述用户终端站中现场设备内嵌OPC UA服务器主动向UA-TSN协调器进行注册后,所述UA-TSN配置管理中间件通过访问所述UA-TSN协调器获取OPC UA地址信息列表;所述UA-TSN配置管理中间件通过对应的OPC UA地址信息与用户终端站中的现场设备进行通信并汇集设备信息;所述集中式用户配置实体提取并解析UA-TSN配置管理中间件中的TSN流需求信息;将所述TSN流需求信息传输到集中式网络配置实体,所述集中式网络配置实体进行调度计算完成配置。
在本申请的第三方面,本申请提供了一种基于OPC UA的时间敏感网络集中用户配置方法,所述方法包括:
用户终端站中现场设备的内嵌OPC UA服务器实时获取现场设备的数据信息,并构建出TSN网络的OPC UA信息模型;
所述内嵌OPC UA服务器主动向其所在用户终端站中的UA-TSN协调器进行注册,并在所述UA-TSN协调器中存储其服务器的地址信息;
UA-TSN配置管理中间件与UA-TSN协调器通信,发现并获取用户终端站中所有已注册内嵌OPC UA服务器的地址信息列表;
根据所述地址信息列表,UA-TSN配置管理中间件分别与用户终端站中的现场设备相连接,读取其内嵌OPC UA服务器中的数据信息,并对所有获取到的 数据信息进行统一的汇集与管理;
集中式用户配置实体中的OPC UA客户端完成初始化,随后向UA-TSN消息代理中间件发起建立连接请求,读取用户数据聚合模块中存储的TSN流需求和网络拓扑信息等,并对读取的信息进行处理。进一步的,所述构建出TSN网络的OPC UA信息模型包括根据预定义的XML格式文档或者预设的程序构建出静态数据信息模型或/和将内嵌OPC UA服务器与现场设备的实时数据源进行绑定,当所述实时数据源信息动态变动时,调用预定义的函数写入新的数据值构建出动态数据信息模型。
进一步的,所述内嵌OPC UA服务器主动向其所在用户终端站中的UA-TSN协调器进行注册包括:
根据内嵌OPC UA服务器所需的第一注册信息,创建出内嵌OPC UA服务器并初始化配置;
定义出解析函数以及数据源信息的读写方法,按照所述数据源信息的读写方法来构建出内嵌OPC UA服务器的地址空间;
调用所述解析函数对数据进行处理,将处理后的数据信息添加到OPC UA服务器地址空间对应的节点之中;
启动所述内嵌OPC UA服务器采集现场设备的数据信息,调用所述解析函数获取现场设备的动态数据;
创建第一注册客户端,并初始化第一注册客户端配置;
第一注册客户端启动并查询UA-TSN协调器中的LDS-ME发现服务器,当第一注册客户端查询到LDS-ME发现服务器后,所述内嵌OPC UA在LDS-ME发现服务器中完成注册。进一步的,所述UA-TSN配置管理中间件与UA-TSN协调器通信是UA-TSN配置管理中间件通过其用户设备发现模块与UA-TSN协调器中的LDS-ME发现服务器通信,其中所述用户设备发现模块与所述LDS-ME发现服务器的发现过程包括:
对用户设备发现模块创建出第二OPC UA服务器并初始化配置,使能mDNS 服务并设置所述第二OPC UA服务器的应用类型和URL信息,随机分配服务器端口号,并添加服务器信息;
启动第二OPC UA服务器并等待LDS多播发现,当通过mDNS多播发现其他新的LDS-ME发现服务器时,调用对应的回调函数,获取新LDS-ME发现服务器的URL信息和端口信息等;
检查新LDS-ME发现服务器是否支持签名和加密,调用函数生成对应的第二注册客户端,第二OPC UA服务器与新LDS-ME发现服务器连接并向其进行注册登记。
进一步的,所述UA-TSN配置管理中间件分别与用户终端站中的多个现场设备相连接,通过其用户数据聚合模块与用户设备的内嵌OPC UA服务器通信,其中所述用户数据聚合模块与所述内嵌OPC UA服务器的通信过程包括:
在用户数据聚合模块中创建并初始化一个第三OPC UA服务器,并为所述第三OPC UA服务器的地址空间添加所需节点和引用;
启动第三OPC UA服务器,新建OPC UA客户端去调用对应的回调函数,获取用户终端站的内嵌OPC UA服务器地址信息列表;
根据获取的地址信息去创建并初始化多个OPC UA客户端,所述OPC UA客户端根据URL地址信息连接对应的内嵌OPC UA服务器;所述OPC UA客户端读取内嵌OPC UA服务器的数据,并将数据写入第三OPC UA服务器地址空间之中;
当第三OPC UA服务器接收到停止信号时,数据交互中断,OPC UA客户端与内嵌OPC UA服务器的通信连接断开,第三OPC UA服务器停止并释放服务器地址空间。
在本申请的第四方面,本申请还提供了一种优选的基于OPC UA的时间敏感网络集中用户配置方法,所述方法包括:
用户终端站中工业设备的内嵌OPC UA服务器对设备的数据信息进行实时获取,并构建TSN网络的OPC UA信息模型;
内嵌OPC UA服务器主动向其所在用户终端站中的UA-TSN协调器进行注册,协调器中的LDS-ME发现服务器存储已注册的OPC UA服务器地址信息;
UA-TSN配置管理中间件通过其用户设备发现模块与协调器中的LDS-ME发现服务器通信,获取所有已注册内嵌OPC UA服务器的地址信息列表;
根据获取的地址信息列表,用户数据聚合模块分别与用户终端站中的现场设备相连接,读取内嵌OPC UA服务器地址空间中的数据信息,并对所有获取到的数据信息进行统一的汇集与管理;
集中式用户配置实体(CUC)中的OPC UA客户端完成初始化,随后向UA-TSN消息代理中间件发起建立连接请求,读取用户数据聚合模块中存储的TSN流需求和网络拓扑信息等,并进一步的对读取的数据信息进行处理,等待集中式网络配置实体(CNC)的调用;
CUC实体将处理完成的流需求信息等传输到CNC实体中,当CUC实体发起TSN流调度计算请求之后,CNC实体开始进行TSN流调度的计算,并将返回调度请求的结果(成功或者失败);
当TSN流调度计算完成后,CUC实体向CNC实体请求返回计算完成的TSN调度结果信息表的详细内容,这些信息包含TSN网络配置的关键信息,诸如流标识符、传输窗口以及端到端延迟等;
CUC将获取到的TSN流调度结果信息表返回UA-TSN配置管理中间件,其再将相应的信息转发给用户终端站中的现场设备,,现场设备可以根据调度结果进行数据信息的定时收发等操作。
本申请的有益效果:
本申请为大规模工业自动化生产系统中时间敏感网络的用户侧调度配置提供了标准化的、可互操作的、安全可靠的数据交互方案。即利用OPC UA实现了对TSN网络用户设备的自动发现和多协议数据聚合,实现对TSN网络调度信息的自动传输与配置,降低了TSN网络配置过程的操作复杂度,解决了大规模TSN流配置过程相对繁琐,手动配置的依赖性较强的问题。
本申请的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本申请的实践中得到教导。本申请的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
图1为本申请一个实施例中基于OPC UA的时间敏感网络集中用户配置方法的系统结构图;
图2是本申请一个优选实施例中基于OPC UA的时间敏感网络集中用户配置系统结构图;
图3是在本申请一个更为优选实施例中的基于OPC UA的时间敏感网络集中用户配置系统结构图;
图4是本申请实施例中一种基于OPC UA的时间敏感网络集中用户配置方法流程图;
图5是本申请实施例中内嵌OPC UA服务器的注册流程图;
图6是本申请实施例中内嵌OPC UA服务器的运行流程图;
图7是本申请实施例中用户设备发现流程图;
图8是本申请实施例中用户设备发现模块的运行流程图;
图9是本申请实施例中用户数据聚合模块通信流程图;
图10是本申请实施例中所述用户数据聚合模块的运行流程图;
图11是本申请实施例中一种优选的基于OPC UA的时间敏感网络集中用户配置方法流程图;
图12是本申请优选实施例中各实体执行的时序流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性 劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
图1是本申请一个实施例中基于OPC UA的时间敏感网络集中用户配置方法的系统结构图,如图1所示,所述用户配置系统至少包括用户终端站、UA-TSN配置管理中间件以及集中式用户配置实体;所述用户终端站包括采用不同工业协议的现场设备和UA-TSN协调器;所述用户终端站中现场设备内嵌OPC UA服务器主动向UA-TSN协调器进行注册后,所述UA-TSN配置管理中间件通过访问所述UA-TSN协调器获取OPC UA地址信息列表;所述UA-TSN配置管理中间件通过对应的OPC UA地址信息与用户终端站中的现场设备进行通信并汇集设备信息;所述集中式用户配置实体提取并解析UA-TSN配置管理中间件中聚合的TSN流需求信息;将所述TSN流需求信息进行调度计算完成配置。
图2是本申请一个优选实施例中基于OPC UA的时间敏感网络集中用户配置系统结构图,如图2所示,所述用户终端站中包含多种工业现场设备(Talker或者Listener),每个现场设备内部都包含一个单独的内嵌OPC UA服务器,可以理解的是,这里的Talker或者Listener指的是在通信过程中当前现场设备作为发送方或者作为接收方的对象属性,并不是对现场设备本身属性的限定。
所述UA-TSN配置管理中间件实现用户设备的自动发现和数据聚合等功能,所述UA-TSN配置管理中间件包括数据管理模块、数据分发与控制模块、用户数据聚合模块以及用户发现模块;所述数据管理模块采用MySQL数据库实现,负责对系统中的数据信息进行存储,将数据保存在本地数据库中,以便操作人 员进行管理;所述数据分发与控制模块负责对OPC UA地址信息列表、TSN流需求信息和TSN流调度结果信息等进行分发和管控;所述用户设备发现模块为一个LDS-ME发现服务器,所述用户设备发现模块负责与UA-TSN协调器中的发现服务器建立连接,获取现场设备的地址信息列表;所述用户数据聚合模块为一个OPC UA聚合服务器实现,所述用户数据聚合模块负责连接现场设备并将所有设备数据聚合到其服务器地址空间之中。
所述集中式用户配置实体包括OPC UA客户端、TSN调度控制模块、管理模块以及通信接口;所述OPC UA客户端负责与UA-TSN配置管理中间件进行通信,以获取整合的TSN流需求信息;TSN调度控制模块负责数据流传输和配置过程的控制工作;所述管理模块负责信息管理,即对获取的TSN用户流需求的相应信息进行管理以及负责管理分配从CNC中返回的TSN用户通信配置结果;所述通信接口保障集中式用户配置实体与外部其他实体的数据交互,这里的外部其他实体可以是集中式网络配置实体CNC,也可以外部的web服务器等等。
更进一步的,所述管理模块包括配置状态管理单元、用户资源管理单元以及网络拓扑管理单元;所述用户资源管理单元和所述网络拓扑管理单元负责对获取的TSN用户流需求的相应信息进行管理;所述配置状态管理单元负责分配从外部其他实体中返回的TSN用户通信配置结果。
图3是在本申请一个更为优选实施例中的基于OPC UA的时间敏感网络集中用户配置系统结构图,如图3所示,所述用户配置系统至少包括用户终端站、UA-TSN配置管理中间件、集中式用户配置实体、集中式网络配置实体、web服务器以及TSN交换机;所述用户终端站包括采用不同工业协议的现场设备和UA-TSN协调器;所述用户终端站中现场设备内嵌OPC UA服务器主动向UA-TSN协调器进行注册后,所述UA-TSN配置管理中间件通过访问所述UA-TSN协调器获取OPC UA地址信息列表;所述UA-TSN配置管理中间件通过对应的OPC UA地址信息与用户终端站中的现场设备进行通信并汇集设备信 息;所述集中式用户配置实体能够通过其通信接口与web服务器通信;所述集中式用户配置实体提取并解析UA-TSN配置管理中间件中的TSN流需求信息;将所述TSN流需求信息传输到集中式网络配置实体,所述集中式网络配置实体进行调度计算完成配置;所述集中式网络配置实体将计算完成的TSN流调度结果信息表返回集中式用户配置实体,并根据该调度结果信息表配置TSN交换机。
在本申请实施例中,以两个用户终端站构成的基于OPC UA的时间敏感网络集中用户配置系统为例,用户终端站#A表示发送方的终端站,用户终端站#B表示接收方的终端站,用户终端站#A将产生的设备数据从内嵌OPC UA服务器以TSN流的形式通过其UA-TSN协调器发出,该UA-TSN协调器连接有TSN交换机,TSN交换机将TSN流传输到用户终端站#B的UA-TSN协调器,并通过该UA-TSN协调器发送给用户终端站#B的内嵌OPC UA服务器。
可以理解的是,本申请中的用户终端站可以有多个,上述用#A和#B仅仅只是为了区分数据传输流向,实际上,用户终端站#A也可以作为接收方的终端站,用户终端站#B也可以作为发送方的终端站,每个用户终端站中可以有N个内嵌OPC UA,每个内嵌OPC UA服务器可以对应一个用户,该用户可以作为发送者也可以作为接收者。
在本申请实施例中,集中式用户配置实体与UA-TSN配置管理中间件之间、UA-TSN配置管理中间件与用户终端站之间,用户终端站内部的UA-TSN协调器与内嵌OPC UA服务器都是采用OPC UA协议通信;集中式用户配置实体与集中式网络配置实体之间,以及集中式网络配置实体与TSN交换机之间都通过传统的网络协议通信,本申请对此不作具体的限定。
图4是本申请实施例中一种基于OPC UA的时间敏感网络集中用户配置方法流程图,如图4所示,所述方法包括:
101、用户终端站中现场设备的内嵌OPC UA服务器实时获取现场设备的数据信息,并构建出TSN网络的OPC UA信息模型;
用户终端站中现场设备的内嵌OPC UA服务器,首先需要对其所处设备的 数据进行实时采集,并在服务器地址空间中构建OPC UA信息模型。以用户终端站1中的一个现场设备内嵌OPC UA服务器为例,首先内嵌OPC UA服务器需要对用户设备数据进行收集以进行信息建模工作。在信息建模过程中,获取的数据主要包含静态数据和动态数据两种类型的设备信息。静态数据的信息建模可由编程实现,或是提前定义的XML格式文档导入来完成;动态数据的采集过程中,首先内嵌OPC UA服务器与用户设备的实时数据源进行绑定,当数据源信息动态变动时,调用预定义的函数写入新的数据值。
其中,所述构建出TSN网络的OPC UA信息模型包括根据预定义的XML格式文档或者预设的程序构建出静态数据信息模型或/和将内嵌OPC UA服务器与现场设备的实时数据源进行绑定,当所述实时数据源信息动态变动时,调用预定义的函数写入新的数据值构建出动态数据信息模型。
102、所述内嵌OPC UA服务器主动向其所在用户终端站中的UA-TSN协调器进行注册,并在所述UA-TSN协调器中存储已注册的OPC UA服务器地址信息;
图5是本申请实施例中内嵌OPC UA服务器的注册过程图,如图5所示,内嵌OPC UA服务器主动向其所在用户终端站中的UA-TSN协调器进行注册包括:
201、根据内嵌OPC UA服务器所需的第一注册信息,创建出内嵌OPC UA服务器并初始化配置;
所述第一注册信息包括服务器的通信协议、端口号、安全通道和会话服务等基本信息。
202、定义出解析函数以及数据源信息的读写方法,按照所述数据源信息的读写方法来构建出内嵌OPC UA服务器的地址空间;
203、调用所述解析函数对数据进行处理,将处理后的数据信息添加到OPC UA服务器地址空间对应的节点之中;
204、启动所述内嵌OPC UA服务器采集现场设备的数据信息,调用所述解 析函数获取现场设备的动态数据;
205、创建第一注册客户端,并初始化第一注册客户端配置;
206、第一注册客户端启动并查询UA-TSN协调器中的LDS-ME发现服务器,当第一注册客户端查询到LDS-ME发现服务器后,所述内嵌OPC UA在LDS-ME发现服务器中完成注册。
图6是本申请实施例中内嵌OPC UA服务器的运行流程图,如图6所示,该过程主要包括内嵌OPC UA服务器的创建、第一注册客户端的创建、OPC UA服务器向LDS-ME服务器的注册、第一注册客户端的断开、第一注册客户端被删除以及内嵌OPC UA服务器被删除,在该运行过程中,首先需要创建OPC UA服务器,并对该内嵌OPC UA服务器初始化配置;配置完成后读取XML文件来构建出OPC UA的地址空间;对数据信息进行解析,将解析后的数据信息添加到地址空间的对应节点,此时启动内嵌OPC UA服务器,启动完成后,实时判断该内嵌OPC UA服务器是否需要停止,如果该内嵌OPC UA服务器需要停止,则直接删除该内嵌OPC UA服务器;如果不需要停止,则需要创建第一注册客户端,并对第一注册客户端进行配置,所述第一注册客户端启动相应指令去查询发现LDS-ME服务器,如果确实发现了LDS-ME服务器,则第一注册客户端与LDS-ME服务器建立连接,此时内嵌OPC UA服务器通过第一注册客户端向LDS-ME服务器注册,内嵌OPC UA服务器向LDS-ME服务器注册完成后,第一注册客户端断开与LDS-ME服务器的连接,并在内嵌OPC UA服务器中删除第一注册客户端,最后再删除该内嵌OPC UA服务器。
103、UA-TSN配置管理中间件与UA-TSN协调器通信,发现并获取所有用户终端站中的内嵌OPC UA服务器的地址信息列表;
所述UA-TSN配置管理中间件与UA-TSN协调器通信是UA-TSN配置管理中间件通过其用户设备发现模块与UA-TSN协调器中的LDS-ME发现服务器通信,其中图7是本申请实施例中用户设备发现流程图,如图7所示,所述用户设备发现模块与所述LDS-ME发现服务器的发现过程包括:
301、对用户设备发现模块创建出第二OPC UA服务器并初始化配置,使能mDNS服务并设置所述第二OPC UA服务器的应用类型和URL信息,随机分配服务器端口号,并添加服务器信息;
302、启动第二OPC UA服务器并等待LDS多播发现,当通过mDNS多播发现其他新的LDS-ME发现服务器时,调用对应的回调函数,获取新LDS-ME发现服务器的URL信息和端口信息等;
303、检查新LDS-ME发现服务器是否支持签名和加密,调用函数生成对应的第二注册客户端,第二OPC UA服务器与新LDS-ME发现服务器连接并向其进行注册登记。
在一些优选实施例中,所述发现过程还可以包括步骤304:
304、用户设备发现模块对不同用户终端站中的现场设备进行发现,获取所有现场设备用户内嵌OPC UA服务器的地址信息,地址信息主要由静态IP地址和标准OPC UA端口构成。用户设备发现模块将获取的地址信息保存在一个固定的列表中,并对系统中所有设备的OPC UA地址信息进行维护。当需要与内嵌OPC UA服务器连接时应当可查询其地址信息,当设备从系统中断开时在地址信息列表中删除其对应信息。
图8是本申请实施例中用户设备发现模块的运行流程图,如图8所示,该过程主要包括第二OPC UA服务器的创建、第二注册客户端的创建、第二注册客户端的断开、第二注册客户端被删除以及第二OPC UA服务器被删除,在该运行过程中,首先需要创建第二OPC UA服务器,并对该第二OPC UA服务器初始化配置;配置完成后使能mDNS服务配置LDS-ME服务器;启动第二OPC UA服务器并等待LDS多播发现,在第二OPC UA服务器中添加回调函数,并判断是否发现其他新的LDS-ME发现服务器,如果确实发现新的LDS-ME发现服务器则调用回调函数去获取新LDS-ME发现服务器的URL信息和端口信息等;检查新LDS-ME发现服务器是否支持签名和加密,调用函数生成对应的第二注册客户端,第二OPC UA服务器与新LDS-ME发现服务器连接并向其进行 注册登记,登记完成后,关闭第二OPC UA服务器,并断开第二注册客户端的连接,删除第二注册客户端后删除第二OPC UA服务器。
可以理解的是,上述实施例中,各个函数可以参考现有技术实现,本领域技术人员可以在不付出创造性劳动的前提下设置对应的函数以实现对应的功能。
104、根据所述地址信息列表,UA-TSN配置管理中间件分别与用户终端站中的现场设备相连接,读取其内嵌OPC UA服务器中的数据信息,并对所有获取到的数据信息进行统一的汇集与管理;
所述UA-TSN配置管理中间件分别与用户终端站中的多个现场设备相连接是通过其中的用户数据聚合模块与用户终端站的内嵌OPC UA服务器通信,其中图9是本申请实施例中用户数据聚合模块通信流程图,如图9所示,所述用户数据聚合模块与所述内嵌OPC UA服务器的通信过程包括:
401、在用户数据聚合模块中创建并初始化一个第三OPC UA服务器,并为所述第三OPC UA服务器的地址空间添加所需节点和引用;
402、启动第三OPC UA服务器,新建OPC UA客户端去调用对应的回调函数,获取用户终端站的内嵌OPC UA服务器地址信息列表;
403、根据获取的地址信息去创建并初始化多个OPC UA客户端,所述OPC UA客户端根据URL地址信息连接对应的内嵌OPC UA服务器;所述OPC UA客户端读取内嵌OPC UA服务器的数据,并将数据写入第三OPC UA服务器地址空间之中;
404、当第三OPC UA服务器接收到停止信号时,数据交互中断,OPC UA客户端与内嵌OPC UA服务器的通信连接断开,第三OPC UA服务器停止并释放服务器地址空间。
图10是本申请实施例中所述用户数据聚合模块的运行流程图,如图10所示,该过程主要包括第三OPC UA服务器的创建、OPC UA客户端的创建、OPC UA客户端的创建、OPC UA客户端的断开、OPC UA客户端被删除以及第三 OPC UA服务器被删除,在该运行过程中,首先需要创建第三OPC UA服务器,配置完成后构建第三OPC UA服务器的地址空间,随后启动第三OPC UA服务器,启动完成后,创建OPC UA客户端,并调用回调函数去获取用户终端站中已注册内嵌OPC UA服务器的URL信息;判断是否接收到停止信号,若收到停止信号,则释放第三OPC UA服务器的地址空间,删除第三OPC UA服务器;若没有收到停止信号,则创建并初始化多个OPC UA客户端,根据对应的URL地址信息连接对应的内嵌OPC UA服务器,OPC UA客户端读取对应内嵌OPC UA服务器的数据,OPC UA客户端将这些数据信息写入至第三OPC UA服务器中,继续判断是否收到停止信号。
105、集中式用户配置实体中的OPC UA客户端完成初始化,随后向UA-TSN消息代理中间件发起建立连接请求,读取用户数据聚合模块中存储的TSN流需求和网络拓扑信息等,并对读取的信息进行处理。
在本申请的实施例中,图11给出了本申请实施例中一种优选的基于OPC UA的时间敏感网络集中用户配置方法流程图,如图11所示,所述方法包括:
101、用户终端站中工业设备的内嵌OPC UA服务器对设备的数据信息进行实时获取,并构建TSN网络的OPC UA信息模型;
102、内嵌OPC UA服务器主动向其所在用户终端站中的UA-TSN协调器进行注册,协调器中的LDS-ME发现服务器存储已注册的OPC UA服务器地址信息;
103、UA-TSN配置管理中间件通过其用户设备发现模块与协调器中的LDS-ME发现服务器通信,获取所有已注册内嵌OPC UA服务器的地址信息列表;
104、根据获取的地址信息列表,用户数据聚合模块分别与用户终端站中的现场设备相连接,读取内嵌OPC UA服务器地址空间中的数据信息,并对所有获取到的数据信息进行统一的汇集与管理;
105、集中式用户配置实体(CUC)中的OPC UA客户端完成初始化,随后 向UA-TSN消息代理中间件发起建立连接请求,读取用户数据聚合模块中存储的TSN流需求以及网络拓扑信息等,并进一步的对读取的数据信息进行处理,等待集中式网络配置实体(CNC)的调用;
106、CUC实体将处理完成的流需求信息等传输到CNC实体中,当CUC实体发起TSN流调度计算请求之后,CNC实体开始进行TSN流调度的计算,并将返回调度请求的结果(成功或者失败);
107、当TSN流调度计算完成后,CUC实体向CNC实体请求返回计算完成的TSN调度结果信息表的详细内容,这些信息包含TSN网络配置的关键信息,诸如流标识符、传输窗口以及端到端延迟等;
108、CUC将获取到的TSN流调度结果信息表返回UA-TSN配置管理中间件,其再将相应的信息转发给用户终端站中的现场设备,现场设备可以根据调度结果进行数据信息的定时收发等操作。
图12是本申请优选实施例中各实体执行的时序流程图,如图12所示,其中CUC实体主要负责TSN网络中用户侧的配置和管理工作,具体流程如下:
TSN用户流需求信息传输阶段,CUC中完成初始化的OPC UA客户端发起建立连接请求,从UA-TSN消息代理中间件中读取流需求和网络拓扑信息,对获取到的数据进行处理并发送到CNC实体;
TSN流调度结果返回阶段,首先CUC实体向CNC实体发送一个TSN流调度计算请求,CNC将返回请求的结果(成功或失败);
当TSN流调度计算完成后,CUC实体向CNC实体请求返回计算完成的调度结果信息表,这些信息包含TSN网络配置的关键信息,诸如流标识符、传输窗口以及端到端延迟等;
CUC将获取到的TSN流调度结果信息表返回UA-TSN配置管理中间件,其再将相应的信息转发给用户终端站中的现场设备,现场设备可以根据调度结果进行数据信息的定时收发等操作。
可以理解的是,本申请的基于OPC UA的时间敏感网络集中用户配置方法 以及基于OPC UA的时间敏感网络集中用户配置系统属于本申请的同一构思,所以两者的特征可以相互引用,本申请就不再一一赘述。
在本申请的描述中,需要理解的是,术语“同轴”、“底部”、“一端”、“顶部”、“中部”、“另一端”、“上”、“一侧”、“顶部”、“内”、“外”、“前部”、“中央”、“两端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,术语“安装”、“设置”、“连接”、“固定”、“旋转”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
尽管已经示出和描述了本申请的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本申请的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种基于OPC UA的时间敏感网络集中用户配置系统,其特征在于,所述用户配置系统至少包括用户终端站、UA-TSN配置管理中间件以及集中式用户配置实体;所述用户终端站包括采用不同工业协议的现场设备和UA-TSN协调器;所述用户终端站中现场设备内嵌OPC UA服务器主动向UA-TSN协调器进行注册后,所述UA-TSN配置管理中间件通过访问所述UA-TSN协调器获取OPC UA地址信息列表;所述UA-TSN配置管理中间件通过对应的OPC UA地址信息与用户终端站中的现场设备进行通信并汇集设备信息;所述集中式用户配置实体提取并解析UA-TSN配置管理中间件中聚合的TSN流需求信息;将所述TSN流需求信息进行调度计算完成配置;
    其中,所述用户终端站中现场设备内嵌OPC UA服务器主动向UA-TSN协调器进行注册的过程包括:
    根据内嵌OPC UA服务器所需的第一注册信息,创建出内嵌OPC UA服务器并初始化配置;
    定义出解析函数以及数据源信息的读写方法,按照所述数据源信息的读写方法来构建出内嵌OPC UA服务器的地址空间;
    调用所述解析函数对数据进行处理,将处理后的数据信息添加到OPC UA服务器地址空间对应的节点之中;
    启动所述内嵌OPC UA服务器采集现场设备的数据信息,调用所述解析函数获取现场设备的动态数据;
    创建第一注册客户端,并初始化第一注册客户端配置;
    第一注册客户端启动并查询UA-TSN协调器中的LDS-ME发现服务器,当第一注册客户端查询到LDS-ME发现服务器后,所述内嵌OPC UA服务器在LDS-ME发现服务器中完成注册。
  2. 根据权利要求1所述的一种基于OPC UA的时间敏感网络集中用户配置系统,其特征在于,所述UA-TSN配置管理中间件包括数据管理模块、数据分 发与控制模块、用户数据聚合模块以及用户发现模块;所述数据管理模块负责对系统中的数据信息进行存储,并将数据信息保存在本地数据库中;所述数据分发与控制模块负责对OPC UA地址信息列表、TSN流需求信息和调度结果信息表进行分发和管控;所述用户数据聚合模块负责连接现场设备并将所有设备数据聚合到服务器地址空间中;所述用户设备发现模块负责与UA-TSN协调器中的发现服务器建立连接,获取现场设备的OPC UA地址信息列表。
  3. 根据权利要求1所述的一种基于OPC UA的时间敏感网络集中用户配置系统,其特征在于,所述集中式用户配置实体包括OPC UA客户端、TSN调度控制模块、管理模块以及通信接口;所述OPC UA客户端负责与UA-TSN配置管理中间件进行通信,以获取整合的TSN流需求信息;TSN调度控制模块负责数据流传输和配置过程的控制工作;所述管理模块负责信息管理;所述通信接口保障集中式用户配置实体与外部其他实体的数据交互。
  4. 根据权利要求3所述的一种基于OPC UA的时间敏感网络集中用户配置系统,其特征在于,所述管理模块包括配置状态管理单元、用户资源管理单元以及网络拓扑管理单元;所述用户资源管理单元和所述网络拓扑管理单元负责对获取的对应TSN流需求信息进行管理;所述配置状态管理单元负责分配从外部其他实体中返回的TSN用户通信配置结果。
  5. 一种基于OPC UA的时间敏感网络集中用户配置方法,其特征在于,所述方法包括:
    用户终端站中现场设备的内嵌OPC UA服务器实时获取现场设备的数据信息,并构建出TSN网络的OPC UA信息模型;
    所述内嵌OPC UA服务器主动向其所在用户终端站中的UA-TSN协调器进行注册,并在所述UA-TSN协调器中存储其服务器的地址信息;
    UA-TSN配置管理中间件与UA-TSN协调器通信,发现并获取用户终端站中所有已注册内嵌OPC UA服务器的地址信息列表;
    根据所述地址信息列表,UA-TSN配置管理中间件分别与用户终端站中的现 场设备相连接,读取其内嵌OPC UA服务器中的数据信息,并对所有获取到的数据信息进行统一的汇集与管理;
    集中式用户配置实体完成初始化工作,随后向UA-TSN消息代理中间件发起建立连接请求,读取用户数据聚合模块中存储的TSN流需求和网络拓扑信息,并对读取的信息进行处理;
    其中,所述用户终端站中现场设备内嵌OPC UA服务器主动向UA-TSN协调器进行注册的过程包括:
    根据内嵌OPC UA服务器所需的第一注册信息,创建出内嵌OPC UA服务器并初始化配置;
    定义出解析函数以及数据源信息的读写方法,按照所述数据源信息的读写方法来构建出内嵌OPC UA服务器的地址空间;
    调用所述解析函数对数据进行处理,将处理后的数据信息添加到OPC UA服务器地址空间对应的节点之中;
    启动所述内嵌OPC UA服务器采集现场设备的数据信息,调用所述解析函数获取现场设备的动态数据;
    创建第一注册客户端,并初始化第一注册客户端配置;
    第一注册客户端启动并查询UA-TSN协调器中的LDS-ME发现服务器,当第一注册客户端查询到LDS-ME发现服务器后,所述内嵌OPC UA服务器在LDS-ME发现服务器中完成注册。
  6. 根据权利要求5所述的一种基于OPC UA的时间敏感网络集中用户配置方法,其特征在于,所述构建出TSN网络的OPC UA信息模型包括根据预定义的XML格式文档或者预设的程序构建出静态数据信息模型或/和将内嵌OPC UA服务器与现场设备的实时数据源进行绑定,当所述实时数据源信息动态变动时,调用预定义的函数写入新的数据值构建出动态数据信息模型。
  7. 根据权利要求5所述的一种基于OPC UA的时间敏感网络集中用户配置方法,其特征在于,所述UA-TSN配置管理中间件与UA-TSN协调器通信是 UA-TSN配置管理中间件通过其用户设备发现模块与UA-TSN协调器中的LDS-ME发现服务器通信,其中所述用户设备发现模块与所述LDS-ME发现服务器的发现过程包括:
    对用户设备发现模块创建出第二OPC UA服务器并初始化配置,使能mDNS服务并设置所述第二OPC UA服务器的应用类型和URL信息,随机分配服务器端口号,并添加服务器信息;
    启动第二OPC UA服务器并等待LDS多播发现,当通过mDNS多播发现其他新的LDS-ME发现服务器时,调用对应的回调函数,获取新LDS-ME发现服务器的URL信息和端口信息;
    检查新LDS-ME发现服务器是否支持签名和加密,调用函数生成对应的第二注册客户端,第二OPC UA服务器与新LDS-ME发现服务器连接并向其进行注册登记。
  8. 根据权利要求5所述的一种基于OPC UA的时间敏感网络集中用户配置方法,其特征在于,所述UA-TSN配置管理中间件分别与用户终端站中的多个现场设备相连接,通过其用户数据聚合模块与用户设备的内嵌OPC UA服务器通信,其中所述用户数据聚合模块与所述内嵌OPC UA服务器的通信过程包括:
    在用户数据聚合模块中创建并初始化一个第三OPC UA服务器,并为所述第三OPC UA服务器的地址空间添加所需节点和引用;
    启动第三OPC UA服务器,新建OPC UA客户端去调用对应的回调函数,获取用户终端站的内嵌OPC UA服务器地址信息列表;
    根据获取的地址信息去创建并初始化多个OPC UA客户端,所述OPC UA客户端根据URL地址信息连接对应的内嵌OPC UA服务器;所述OPC UA客户端读取内嵌OPC UA服务器的数据,并将数据写入第三OPC UA服务器地址空间之中;
    当第三OPC UA服务器接收到停止信号时,数据交互中断,OPC UA客户端与内嵌OPC UA服务器的通信连接断开,第三OPC UA服务器停止并释放服 务器地址空间。
PCT/CN2022/091493 2021-06-18 2022-05-07 基于opc ua的时间敏感网络集中用户配置方法及系统 WO2022262465A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/500,024 US11929873B1 (en) 2021-06-18 2023-11-01 OPC UA-based centralized user configuration method and system for time-sensitive network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110678514.2 2021-06-18
CN202110678514.2A CN113411215B (zh) 2021-06-18 2021-06-18 基于opc ua的时间敏感网络集中用户配置方法及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/500,024 Continuation US11929873B1 (en) 2021-06-18 2023-11-01 OPC UA-based centralized user configuration method and system for time-sensitive network

Publications (1)

Publication Number Publication Date
WO2022262465A1 true WO2022262465A1 (zh) 2022-12-22

Family

ID=77681336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091493 WO2022262465A1 (zh) 2021-06-18 2022-05-07 基于opc ua的时间敏感网络集中用户配置方法及系统

Country Status (3)

Country Link
US (1) US11929873B1 (zh)
CN (1) CN113411215B (zh)
WO (1) WO2022262465A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411215B (zh) * 2021-06-18 2022-06-03 重庆邮电大学工业互联网研究院 基于opc ua的时间敏感网络集中用户配置方法及系统
CN114189444A (zh) * 2021-11-05 2022-03-15 网络通信与安全紫金山实验室 纳管工业端设备的方法、时间敏感网络控制器及系统
CN114189438B (zh) * 2021-12-15 2023-09-05 重庆邮电大学 一种基于opc ua的工业设备自动发现与配置方法
CN114338802B (zh) * 2022-02-21 2023-07-18 重庆邮电大学 一种支持发布/订阅的opc ua多服务器聚合方法和系统
CN114598603A (zh) * 2022-03-22 2022-06-07 北京东土科技股份有限公司 一种tsn网络的调度方法和集中式网络配置器及外置调度器
CN114884811B (zh) * 2022-05-06 2023-12-29 中国电子科技集团公司第五十四研究所 一种时间敏感网络集中用户配置实现方法
CN115150274B (zh) * 2022-09-06 2022-11-25 国网湖北省电力有限公司电力科学研究院 时间敏感网络设备的统一配置方法、系统及存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660682A (zh) * 2015-01-27 2015-05-27 华南理工大学 一种基于td-lte的opc数据采集与监控智能终端
CN105847420A (zh) * 2016-05-16 2016-08-10 重庆邮电大学 一种适用于无线现场设备的opc ua休眠代理方法
CN106658224A (zh) * 2016-12-21 2017-05-10 厦门普杰信息科技有限公司 一种基于dss分时系统的tcp方式中转音视频数据流的方法
CN107357272A (zh) * 2017-07-03 2017-11-17 燕山大学 一种基于opc‑ua的dcs移动远程监控系统及方法
CN108199897A (zh) * 2018-01-17 2018-06-22 重庆邮电大学 一种支持缓存管理的opc ua多服务器聚合方法
CN109687995A (zh) * 2018-12-04 2019-04-26 重庆邮电大学 一种适用于资源受限型工业现场设备的基于CoAP的OPC UA报文传输方法
US20200028791A1 (en) * 2019-09-27 2020-01-23 Intel Corporation Changing a time sensitive networking schedule implemented by a softswitch
CN111142487A (zh) * 2019-12-30 2020-05-12 浪潮通用软件有限公司 一种基于opc ua统一架构协议的设备数据采集系统
CN111970212A (zh) * 2020-08-27 2020-11-20 重庆邮电大学 一种基于tsn网络和opc ua架构的确定性通信系统
CN112688865A (zh) * 2020-12-10 2021-04-20 西安理工大学 一种图形化在线建模的opc ua网关的设计方法
EP3820121A1 (en) * 2019-11-07 2021-05-12 ABB Schweiz AG Time-sensitive networking for industrical automation
WO2021095936A1 (ko) * 2019-11-15 2021-05-20 전자부품연구원 오피씨 유에이 서버를 이용한 오피씨 유에이 발행자 게이트웨이 구성 방법
CN113411215A (zh) * 2021-06-18 2021-09-17 重庆邮电大学工业互联网研究院 基于opc ua的时间敏感网络集中用户配置方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017092879A1 (de) * 2015-11-30 2017-06-08 Siemens Aktiengesellschaft Verfahren zur industriellen kommunikation über tsn
CN110708240A (zh) * 2019-09-26 2020-01-17 机械工业仪器仪表综合技术经济研究所 基于opc ua的物联网通用网关
CN111556163A (zh) * 2020-05-13 2020-08-18 常熟瑞特电气股份有限公司 基于opc ua的多传输协议设备监控系统
CN112529497A (zh) * 2020-12-03 2021-03-19 安徽理工大学 5G网络下基于OPC UA over TSN的智能仓储系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660682A (zh) * 2015-01-27 2015-05-27 华南理工大学 一种基于td-lte的opc数据采集与监控智能终端
CN105847420A (zh) * 2016-05-16 2016-08-10 重庆邮电大学 一种适用于无线现场设备的opc ua休眠代理方法
CN106658224A (zh) * 2016-12-21 2017-05-10 厦门普杰信息科技有限公司 一种基于dss分时系统的tcp方式中转音视频数据流的方法
CN107357272A (zh) * 2017-07-03 2017-11-17 燕山大学 一种基于opc‑ua的dcs移动远程监控系统及方法
CN108199897A (zh) * 2018-01-17 2018-06-22 重庆邮电大学 一种支持缓存管理的opc ua多服务器聚合方法
CN109687995A (zh) * 2018-12-04 2019-04-26 重庆邮电大学 一种适用于资源受限型工业现场设备的基于CoAP的OPC UA报文传输方法
US20200028791A1 (en) * 2019-09-27 2020-01-23 Intel Corporation Changing a time sensitive networking schedule implemented by a softswitch
EP3820121A1 (en) * 2019-11-07 2021-05-12 ABB Schweiz AG Time-sensitive networking for industrical automation
WO2021095936A1 (ko) * 2019-11-15 2021-05-20 전자부품연구원 오피씨 유에이 서버를 이용한 오피씨 유에이 발행자 게이트웨이 구성 방법
CN111142487A (zh) * 2019-12-30 2020-05-12 浪潮通用软件有限公司 一种基于opc ua统一架构协议的设备数据采集系统
CN111970212A (zh) * 2020-08-27 2020-11-20 重庆邮电大学 一种基于tsn网络和opc ua架构的确定性通信系统
CN112688865A (zh) * 2020-12-10 2021-04-20 西安理工大学 一种图形化在线建模的opc ua网关的设计方法
CN113411215A (zh) * 2021-06-18 2021-09-17 重庆邮电大学工业互联网研究院 基于opc ua的时间敏感网络集中用户配置方法及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAI YA'NAN: "Research and Application of Key Technology of Intelligent Factory Data Center Based on OPC UAC", CHINA DOCTORAL DISSERTATIONS/MASTER'S THESES FULL-TEXT DATABASE (MASTER), 15 December 2018 (2018-12-15), XP093015665 *
LI YUTING; JIANG JUNHUI; LEE CHANGDAE; HONG SEUNG HO: "Practical Implementation of an OPC UA TSN Communication Architecture for a Manufacturing System", IEEE ACCESS, IEEE, USA, vol. 8, 3 November 2020 (2020-11-03), USA , pages 200100 - 200111, XP011819569, DOI: 10.1109/ACCESS.2020.3035548 *
WAN HAO: "Research on OPC UA Over TSN Integration Technology in Edge Gateway Nodes", CHINA DOCTORAL DISSERTATIONS/MASTER'S THESES FULL-TEXT DATABASE (MASTER), 15 March 2020 (2020-03-15), XP093015662 *
WANG YI, PU CHENGGEN, WANG PING, WU JUNRUI: "A CoAP-based OPC UA Transmission Scheme for Resource-Constrained Devices", 2020 CHINESE AUTOMATION CONGRESS (CAC), IEEE, 6 November 2020 (2020-11-06) - 8 November 2020 (2020-11-08), pages 6089 - 6093, XP093015663, ISBN: 978-1-7281-7687-1, DOI: 10.1109/CAC51589.2020.9326995 *

Also Published As

Publication number Publication date
US11929873B1 (en) 2024-03-12
CN113411215A (zh) 2021-09-17
US20240064059A1 (en) 2024-02-22
CN113411215B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2022262465A1 (zh) 基于opc ua的时间敏感网络集中用户配置方法及系统
KR100978336B1 (ko) 리모트 액세스
KR100413684B1 (ko) 서로 다른 미들웨어를 가진 디바이스들간 통신을 가능하게하는 게이트웨이, 홈네트웍시스템 및 데이터 중계방법
WO2019141111A1 (zh) 通信方法和通信装置
WO2007112673A1 (en) The method of device capability information negotiation, the method, system and device of synchronization
WO2009111965A1 (zh) 一种数据同步的方法、设备及系统
US10666512B2 (en) Current configuration state specific device configuration
WO2020135574A1 (zh) 报文处理方法、装置、控制面设备和计算机存储介质
WO2013170818A2 (zh) 错误码转换方法、系统、PPPoE服务器及移动终端
CN102763373A (zh) 基于远程访问使用本地网络装置的服务的方法和设备
CN101197724A (zh) 基于IPv6的IGRS家庭网络中信息家电的远程控制系统和方法
CN112769602A (zh) 一种白盒交换机统一配置管理系统、方法和网络操作系统
CN110771117B (zh) 一种采用面向id的网络的会话层通信
WO2013120325A1 (zh) 浏览器与浏览器直通的方法、装置和通信系统
WO2013185696A2 (zh) 一种数据处理的方法与设备
Moritz et al. Devices profile for web services in wireless sensor networks: Adaptations and enhancements
WO2021102694A1 (zh) BLE Mesh设备的访问方法、装置、设备及存储介质
CN101621528B (zh) 基于以太交换机集群管理的会话系统及会话通道实现方法
KR101673755B1 (ko) Dds 기반의 사물 인터넷의 네트워크와 지그비 네트워크와의 연동 시스템 및 그 방법
TW201006191A (en) UPnP/DLNA device support apparatus, system, and method
KR20070113823A (ko) Oma 마스터 장치 관리 클라이언트를 이용한 장치 관리시스템 및 그 방법
KR100641831B1 (ko) 동적 노드 관리를 위한 oma 장치 관리 시스템 및 방법
CN114338802B (zh) 一种支持发布/订阅的opc ua多服务器聚合方法和系统
JP2015201758A (ja) 中継装置、通信システム、情報処理方法及びプログラム
KR100456457B1 (ko) 유니버셜 플러그앤 플레이 전력선 통신 어댑터 장치 및 그제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE