WO2022262294A1 - 视频流传输方法以及相关通信装置 - Google Patents

视频流传输方法以及相关通信装置 Download PDF

Info

Publication number
WO2022262294A1
WO2022262294A1 PCT/CN2022/075435 CN2022075435W WO2022262294A1 WO 2022262294 A1 WO2022262294 A1 WO 2022262294A1 CN 2022075435 W CN2022075435 W CN 2022075435W WO 2022262294 A1 WO2022262294 A1 WO 2022262294A1
Authority
WO
WIPO (PCT)
Prior art keywords
video stream
network device
frame
bit rate
transmitted
Prior art date
Application number
PCT/CN2022/075435
Other languages
English (en)
French (fr)
Inventor
刘艳
叶进洲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022262294A1 publication Critical patent/WO2022262294A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/647Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
    • H04N21/64784Data processing by the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/647Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to a video stream transmission method and a related communication device.
  • Reserved bandwidth resources refer to the bandwidth resources reserved in advance by network devices for terminal devices to transmit data such as video or audio.
  • each frame of video needs to be compressed before video transmission to obtain a video stream composed of multiple video frames.
  • the network device directly uses the maximum bit rate (maximum bit rate, MBR) and guaranteed bit rate (guaranteed bit rate, GBR) received from the IP multimedia subsystem core (IP multimedia subsystem core, IMSCORE) device as the transmission of the aforementioned video stream.
  • MBR maximum bit rate
  • GBR guaranteed bit rate
  • the bandwidth upper limit and bandwidth lower limit of reserved bandwidth resources Then, the terminal device transmits the foregoing video stream by using the bandwidth upper limit and bandwidth lower limit of the foregoing reserved bandwidth resources.
  • the bandwidth required for transmitting each data packet may not reach or approach the aforementioned upper limit and lower limit of bandwidth. Therefore, the current scheme for reserving bandwidth resources may reserve too much bandwidth resources, resulting in reduced bandwidth resource utilization.
  • the embodiment of the present application provides a video stream transmission method and a related communication device, which are used to determine the reserved bandwidth resources according to the characteristics of the video frames in the video stream, and use the aforementioned reserved bandwidth resources to transmit the video stream to be transmitted, which can improve Bandwidth resource utilization.
  • the present application provides a video stream transmission method, which involves a terminal device and a wireless network device.
  • the wireless network device obtains the video stream characteristic information of the terminal device, and the wireless network device will also obtain the maximum bit rate and guaranteed bit rate corresponding to the video stream to be transmitted, wherein the video stream characteristic information indicates Distribution characteristics of the sizes of multiple video frames.
  • the wireless network device determines a reserved resource according to the video stream feature information, the maximum bit rate and the guaranteed bit rate, and the reserved resource is used to transmit the video stream to be transmitted. Then, the wireless network device uses the reserved resource to transmit the video stream to be transmitted.
  • the maximum bit rate in the video stream transmission method of the present application refers to the upper limit of the bit rate determined by the core network equipment to transmit the aforementioned video stream to be transmitted, and the maximum bit rate may be the quality of service (QoS) in the traditional technology
  • QoS quality of service
  • MBR can also be other parameters indicating the upper limit of the transmission rate.
  • This application only uses the term "maximum bit rate” for introduction, and the "maximum bit rate” can also be replaced by other terms in subsequent evolutionary standards or other protocols.
  • the guaranteed bit rate in the video stream transmission method of this application refers to the lower limit of the bit rate determined by the core network equipment to be able to transmit the aforementioned video stream to be transmitted.
  • the guaranteed bit rate can be the quality of service QoS parameter guarantee bit in traditional technology
  • the rate GBR can also be other parameters indicating the lower limit of the transmission rate. This application only uses the term "guaranteed bit rate” for introduction, and the “guaranteed bit rate” can also be replaced by other terms in subsequent evolutionary standards or other protocols.
  • the aforementioned maximum bit rate and guaranteed bit rate corresponding to the video stream to be transmitted can also be understood as the maximum bit rate and guaranteed bit rate of the session where the video stream to be transmitted is located; The maximum bit rate and guaranteed bit rate required for this service.
  • the wireless network device can obtain the video stream characteristic information of the terminal device, wherein the video stream characteristic information can indicate the distribution characteristics of the sizes of multiple video frames in the video stream to be transmitted, and the wireless network device can also obtain Maximum bit rate and guaranteed bit rate. Then, the wireless network device determines reserved resources (also referred to as reserved bandwidth resources) according to the foregoing video stream feature information, maximum bit rate and guaranteed bit rate. That is to say, the aforementioned reserved resources are determined according to the distribution characteristics of the sizes of multiple video frames in the video stream, and the reserved resources can be adaptively changed with the size of the video frames instead of directly multiplexing the traditional technology Maximum Bit Rate MBR and Guaranteed Bit Rate GBR in . Therefore, it is beneficial to improve bandwidth resource utilization.
  • reserved resources also referred to as reserved bandwidth resources
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame All belong to the same group of pictures GOP of the video stream to be transmitted.
  • the feature information of the video stream includes a first scale factor
  • the first scale factor is a ratio of a size of a non-I frame to a size of an I frame in the same GOP. Therefore, the first scale factor can reflect the ratio between the size of the non-I frame and the size of the I frame in the same GOP in the video stream to be transmitted.
  • the size of a non-I frame in the same GOP is much smaller than the size of an I frame.
  • the aforementioned first scale factor as an adjustment coefficient to determine the reserved resources on the basis of the maximum bit rate and the guaranteed bit rate can not only Guaranteeing the bandwidth resources required by the terminal equipment to transmit the video stream to be transmitted can also make the finally determined reserved resources better than the reserved resources determined according to the traditional technology (that is, the reserved resources determined only based on the maximum bit rate MBR and the guaranteed bit rate GBR resources) are scarce. Therefore, it is beneficial to improve bandwidth resource utilization.
  • the non-I frame is a P frame, and the size of the non-I frame is the size of the P frame; or, the non-I frame includes a P frame and a B frame, and the size of the non-I frame is is the size of the P frame or the size of the B frame.
  • the aforementioned non-I frames are P frames; when there are not only I frames and P frames but also B frames in the aforementioned GOP, the previous non-I frames may be P frames, and possibly B frames.
  • the size of a P frame is larger than that of a B frame, but the situation that the size of a B frame is larger than that of a P frame is not excluded, but the size of a P frame is not much different from that of a B frame.
  • the size of the P frame can be directly used as the size of the non-I frame, or the size of the B frame can be directly used as the size of the non-I frame.
  • the feature information of the video stream includes the length of a GOP of the video stream to be transmitted.
  • the length of the GOP is used to indicate the total number of video frames in one GOP. Because, a GOP contains an I frame and at least one non-I frame. Therefore, when the length of a GOP is known, the wireless network device can calculate the ratio of the number of I frames to the number of non-I frames in the same GOP. In addition, combined with the preset or (default) frame rate, the wireless network device can determine the duration required to transmit each frame, and then determine the duration of the upper and lower limits of the reserved resource bandwidth.
  • the aforementioned feature information of the video stream only includes the length of one GOP and does not include the frame rate of the video stream to be transmitted.
  • the wireless network device may use a preset or (default) frame rate to determine the duration of the upper and lower bandwidth limits of reserved resources.
  • the feature information of the video stream includes a length of a GOP of the video stream to be transmitted and a frame rate of the video stream to be transmitted.
  • the length of the GOP is used to indicate the total number of video frames in one GOP. Because, a GOP contains an I frame and at least one non-I frame. Therefore, when the length of a GOP is known, the wireless network device can calculate the ratio of the number of I frames to the number of non-I frames in the same GOP.
  • the aforementioned video stream feature information includes not only the length of a GOP but also the frame rate of the video stream to be transmitted. That is to say, the frame rate of the video stream to be transmitted is provided by the terminal device instead of the preset (or default) frame rate in the wireless network device.
  • the default frame rate may be any one of the following: 25 frames per second, 30 frames per second, 60 frames per second, or 80 frames per second.
  • the wireless network device determines the reserved resource according to the video stream feature information, the maximum bit rate, and the guaranteed bit rate, including: the wireless network device determines the reserved resources according to the first scaling factor and the maximum The bit rate determines the upper limit of the bandwidth of the reserved resource, and determines the lower limit of the bandwidth of the reserved resource according to the first scaling factor and the guaranteed bit rate.
  • the wireless network device will also determine the maximum bit rate as the upper limit of bandwidth for transmitting data packets carrying I frames, and determine the guaranteed bit rate as the lower limit of bandwidth for transmitting data packets carrying I frames.
  • the wireless network device determines the reserved resource according to the video stream feature information, the maximum bit rate, and the guaranteed bit rate, including: the wireless network device determines the reserved resources according to the first scaling factor and the maximum The bit rate determines the upper limit of the bandwidth of the reserved resource, and determines the lower limit of the bandwidth of the reserved resource according to the first scaling factor and the guaranteed bit rate; the wireless network device determines according to the length of the GOP and the frame rate of the video to be transmitted The usage time of the resource with the bandwidth upper limit and the usage time of the resource with the bandwidth lower limit.
  • the frame rate of the video stream to be transmitted is included in the feature information of the video stream, or, the frame rate of the video stream to be transmitted is a preset frame rate in the wireless network device.
  • the wireless network device acquiring the video stream feature information of the terminal device includes: the wireless network device receiving the video stream feature information from the terminal device; or, the wireless network device receiving the video stream feature information from the core network The feature information of the video stream of the device.
  • the present application provides a video stream transmission method, which involves a terminal device and a wireless network device.
  • the terminal device sends video stream feature information to the network device
  • the video stream feature information indicates the distribution feature of the size of multiple video frames in the video stream to be transmitted
  • the video stream feature information is used by the wireless network device to determine the transmission of the video stream to be transmitted
  • the reserved resource for the stream If the network device determines the reserved resource based on the aforementioned video stream characteristic information, the terminal device will use the reserved resource to transmit the video stream to be transmitted when transmitting the aforementioned video stream to be transmitted.
  • the network device may be a wireless network device, that is, the terminal device sends the aforementioned video stream feature information to the aforementioned wireless network device; it may also be a core network device, that is, the terminal device sends the aforementioned video stream feature information to the aforementioned core network device, to The core network device is made to send the foregoing video stream feature information to the wireless network device.
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame All belong to the same group of pictures GOP of the video stream to be transmitted.
  • the non-I frame is a P frame, and the size of the non-I frame is the size of the P frame; or, the non-I frame includes a P frame and a B frame, and the size of the non-I frame is is the size of the P frame or the size of the B frame.
  • the video stream characteristic information also includes a frame rate of the video stream to be transmitted.
  • the terminal device sending video stream feature information to the network device includes: the terminal device sending a session establishment request message to the network device, the video stream feature information being carried in the session establishment request message, The session establishment request message is used to establish a session for transmitting the video stream to be transmitted; or, the terminal device sends a real-time transmission control protocol RTCP packet to the network device, and the video stream feature information is carried in the RTCP packet; or, the terminal The device sends a real-time transport protocol RTP media stream to the network device, and the video stream feature information is carried in the RTP media stream.
  • the terminal device can send the aforementioned video stream characteristic information to the core network device through different messages in different scenarios.
  • the present application provides a video stream transmission method, which involves a core network device and a wireless network device.
  • the core network device receives video stream characteristic information from the terminal device, and the video stream characteristic information indicates the distribution characteristics of the sizes of multiple video frames in the video stream to be transmitted; the core network device sends the video stream characteristic information,
  • the maximum bit rate corresponding to the video stream to be transmitted and the guaranteed bit rate corresponding to the video stream to be transmitted, the video stream feature information, the maximum bit rate and the guaranteed bit rate are used to jointly determine the reserved resources for transmitting the video stream to be transmitted.
  • the aforementioned core network device is an IMS core device.
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame All belong to the same group of pictures GOP of the video stream to be transmitted.
  • the non-I frame is a P frame, and the size of the non-I frame is the size of the P frame; or, the non-I frame includes a P frame and a B frame, and the size of the non-I frame is is the size of the P frame or the size of the B frame.
  • the feature information of the video stream includes the length of a GOP of the video stream to be transmitted.
  • the video stream characteristic information also includes a frame rate of the video stream to be transmitted.
  • the core network device sending the video stream characteristic information, the maximum bit rate and the guaranteed bit rate to the wireless network device includes: the core network device sending the quality of service QoS attribute value to the wireless network device For the AVP field, the QoS AVP field includes the video stream characteristic information, the maximum bit rate and the guaranteed bit rate.
  • the core network device encapsulates the video stream characteristic information, the maximum bit rate and the guaranteed bit rate into the QoS AVP field, and indirectly sends the QoS AVP field to the aforementioned wireless network through signaling with other core network devices equipment.
  • the core network device receiving video stream characteristic information from the terminal device includes: the core network device receiving a session establishment request message from the terminal device, the video stream characteristic information carried in the session establishment request In the message, the session establishment request message is used to establish a session for transmitting the video stream to be transmitted; or, the core network device receives a real-time transmission control protocol RTCP packet from the terminal device, and the video stream feature information is carried in the RTCP packet; Alternatively, the core network device receives a real-time transport protocol RTP media stream from the terminal device, and the video stream feature information is carried in the RTP media stream; the core network device decodes the RTP media stream to obtain the aforementioned video stream feature information.
  • the present application provides a wireless network device, including an acquisition module, a resource reservation module and a transmission module.
  • the obtaining module is used to obtain the video stream characteristic information of the terminal device, and the video stream characteristic information indicates the distribution characteristics of the sizes of multiple video frames in the video stream to be transmitted; the obtaining module is also used to obtain the video stream to be transmitted Corresponding maximum bit rate and guaranteed bit rate; resource reservation module, configured to determine reserved resources according to the video stream characteristic information, the maximum bit rate and the guaranteed bit rate, and the reserved resources are used to transmit the video stream to be transmitted ;
  • a transmission module configured to use the reserved resource to transmit the video stream to be transmitted.
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame All belong to the same group of pictures GOP of the video stream to be transmitted.
  • the feature information of the video stream includes the length of a GOP of the video stream to be transmitted.
  • the resource reservation module is specifically configured to determine the bandwidth upper limit of the reserved resources according to the first scaling factor and the maximum bit rate, and, according to the first scaling factor and the guaranteed The bit rate determines the lower bandwidth limit for this reserved resource.
  • the resource reservation module is specifically configured to determine the bandwidth upper limit of the reserved resources according to the first scaling factor and the maximum bit rate, and, according to the first scaling factor and the guaranteed The bit rate determines the lower limit of the bandwidth of the reserved resource; the wireless network device determines the usage time of the resource with the upper limit of the bandwidth and the usage time of the resource with the lower limit of the bandwidth according to the length of the GOP and the frame rate of the video to be transmitted.
  • the frame rate of the video stream to be transmitted is included in the feature information of the video stream, or, the frame rate of the video stream to be transmitted is a preset frame rate in the wireless network device.
  • the obtaining module is specifically configured to: the wireless network device receives the video stream feature information from the terminal device; or, the wireless network device receives the video stream feature information from the core network device .
  • the present application provides a terminal device, including: a sending module and a transmission module.
  • the sending module used to send video stream feature information to the network device
  • the video stream feature information indicates the distribution feature of the size of multiple video frames in the video stream to be transmitted
  • the video stream feature information is used to jointly determine and transmit the video stream to be transmitted
  • the bandwidth of the reserved resource of the video stream
  • a transmission module configured to use the reserved resource to transmit the video stream to be transmitted.
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame All belong to the same group of pictures GOP of the video stream to be transmitted.
  • the feature information of the video stream includes the length of a GOP of the video stream to be transmitted.
  • the video stream characteristic information also includes a frame rate of the video stream to be transmitted.
  • the sending module is specifically configured to: send a session establishment request message to the network device, the video stream feature information is carried in the session establishment request message, and the session establishment request message is used to establish Transmit the session of the video stream to be transmitted; or, send a real-time transport control protocol RTCP packet to the network device, and the video stream feature information is carried in the RTCP packet; or send a real-time transport protocol RTP media stream to the network device, the The feature information of the video stream is carried in the RTP media stream.
  • the present application provides a core network device, including: a receiving module and a sending module.
  • the receiving module is used to receive video stream characteristic information from the terminal device, and the video stream characteristic information indicates the distribution characteristics of the sizes of multiple video frames in the video stream to be transmitted;
  • the sending module is used to send the video stream to the wireless network device Feature information, maximum bit rate and guaranteed bit rate.
  • the video stream feature information, maximum bit rate and guaranteed bit rate are used to determine reserved resources for transmitting the video stream to be transmitted.
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame All belong to the same group of pictures GOP of the video stream to be transmitted.
  • the feature information of the video stream includes the length of a GOP of the video stream to be transmitted.
  • the video stream characteristic information also includes a frame rate of the video stream to be transmitted.
  • the sending module is specifically configured to: send the quality of service QoS attribute value pair AVP field to the wireless network device, and the QoS AVP field includes the video stream characteristic information, the maximum bit rate and the Guaranteed bit rate.
  • the receiving module is specifically configured to: receive a session establishment request message from the terminal device, the video stream feature information is carried in the session establishment request message, and the session establishment request message is used to establish Transmit the session of the video stream to be transmitted; or, receive a real-time transport control protocol RTCP packet from the terminal device, and the video stream feature information is carried in the RTCP packet; or receive a real-time transport protocol RTP media stream from the terminal device, the The feature information of the video stream is carried in the RTP media stream.
  • the present application provides a communication device, where the communication device may be a wireless network device or an integrated circuit chip in the wireless network device.
  • the communications device includes a processor and memory.
  • the processor is coupled with a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor, the communication device executes the method as in the first aspect or any implementation manner of the first aspect .
  • the present application provides a communication device, where the communication device may be a terminal device or an integrated circuit chip in the terminal device.
  • the communications device includes a processor and memory.
  • the processor is coupled with a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor, the communication device executes the method as in the second aspect or any implementation manner of the second aspect .
  • the present application provides a communication device, where the communication device may be a core network device or an integrated circuit chip in the core network device.
  • the communications device includes a processor and memory.
  • the processor is coupled with a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor, the communication device executes the method as in the third aspect or any implementation manner of the third aspect .
  • the embodiment of the present application provides a computer program product containing instructions, which, when run on a computer, enables the computer to execute the above-mentioned first aspect, second aspect, and third aspect, as well as the above-mentioned aspects.
  • the embodiment of the present application provides a computer-readable storage medium, including instructions, when the instructions are run on a computer, so that the computer executes the aforementioned first aspect, second aspect, and third aspect, and The method described in any one of the various implementations of the foregoing aspects.
  • an embodiment of the present application provides a communication system, the communication system includes the wireless network device in any implementation manner of the fourth aspect and the fourth aspect above, and any of the fifth aspect and the fifth aspect A terminal device in an implementation manner, and the sixth aspect and the core network device in any one implementation manner of the sixth aspect.
  • the wireless network device can obtain the video stream characteristic information of the terminal device, wherein the video stream characteristic information can indicate the distribution characteristics of the sizes of multiple video frames in the video stream to be transmitted, and the wireless network device can also obtain Maximum bit rate and guaranteed bit rate. Then, the wireless network device determines the reserved resources (also referred to as reserved bandwidth resources) according to the aforementioned video stream feature information, maximum bit rate and guaranteed bit rate. The reserved resources are based on the size of multiple video frames in the video stream The distribution characteristics are determined. Therefore, the reserved resource can be adaptively changed with the size of the video frame, instead of directly multiplexing the maximum bit rate MBR and the guaranteed bit rate GBR in the traditional technology. Therefore, it is beneficial to improve bandwidth resource utilization.
  • the reserved resources also referred to as reserved bandwidth resources
  • FIG. 1A is a schematic diagram of the principle of compression coding involved in the video stream transmission method in this application;
  • FIG. 1B is another schematic diagram of the principle of compression coding involved in the video stream transmission method in the present application.
  • Fig. 2 is a flowchart of the video stream transmission method in the present application
  • FIG. 3A is an example diagram of reserved resources determined by the video stream transmission method in this application.
  • FIG. 3B is an example diagram of reserved resources determined by using traditional techniques
  • Fig. 4 is another flowchart of the video stream transmission method in the present application.
  • FIG. 5 is a schematic diagram of an embodiment of a communication device in the present application.
  • FIG. 6 is a schematic diagram of another embodiment of the communication device in the present application.
  • FIG. 7 is a schematic diagram of another embodiment of the communication device in the present application.
  • FIG. 8 is a schematic diagram of another embodiment of the communication device in the present application.
  • FIG. 9 is a schematic diagram of another embodiment of the communication device in the present application.
  • Fig. 10 is a schematic diagram of another embodiment of the communication device in this application.
  • the embodiment of the present application provides a video stream transmission method and a communication device, which are used to determine the reserved bandwidth resources according to the characteristics of the video frames in the video stream, and use the aforementioned reserved bandwidth resources to transmit the video stream to be transmitted, which can improve the bandwidth resource utilization.
  • the video generated by the terminal device will be divided into multiple images, and each image will be compressed and encoded into a video frame (also called an image frame, compressed frame or encoded frame).
  • a video frame also called an image frame, compressed frame or encoded frame.
  • multiple consecutive images with small content differences in the video are encoded as a group, and the resulting group of video frames is called a group of picture (GOP).
  • a GOP includes an I frame and at least one P frame; in some scenarios, as shown in Figure 1B, a GOP may also include a B frame, that is, a GOP includes an I frame, at least one P frame and at least one B-frame.
  • the I frame refers to an intra-coded picture frame, and is also called a key frame, a content-coded frame or an intra picture frame.
  • the I frame indicates that a complete image corresponding to this frame can be decoded by using this frame. It can also be understood that during compression encoding, a certain image is completely retained in the aforementioned I frame, and the aforementioned image can be obtained by using the aforementioned I frame during decoding without resorting to other frames.
  • the aforementioned I frame is the first frame of each GOP, and there is one I frame in one GOP.
  • the distance between two adjacent I frames is called the GOP length. Since there is only one I frame in each GOP, the length of the aforementioned GOP can also be understood as the number of video frames contained in one GOP.
  • the P frame refers to a predictive-coded picture frame, also called a forward predictive frame or a forward reference frame.
  • the P frame records the difference between this P frame (ie, this P frame) and the previous I frame (or P frame).
  • the previously cached image (the decoded image of the I frame or the decoded image of the previous P frame) is superimposed on the difference defined by the current P frame, thereby generating a complete image corresponding to the current P frame. That is to say, the aforementioned P frame can be understood as the difference between the complete image corresponding to this P frame and the complete image corresponding to the previous frame, and only one P frame cannot decode a complete image.
  • a B frame refers to a bi-directionally predicted picture frame, and is also called a bidirectional interpolation frame, a bidirectional reference frame, or a bidirectional difference frame.
  • the B frame records the difference between this B frame (that is, the current B frame) and the previous and subsequent frames (possibly I frame, P frame or B frame).
  • the previous and subsequent frames possibly I frame, P frame or B frame.
  • the size of a B frame is similar to that of a P frame, that is, the difference between the amount of data occupied by a B frame and the amount of data occupied by a P frame is smaller than a small threshold.
  • the size of a B frame is smaller than that of a P frame, that is, the amount of data occupied by a B frame is smaller than the amount of data occupied by a P frame.
  • the sizes of the B frames in the GOP are consistent.
  • the compression coding standard adopting the foregoing compression coding principle may be the H.26X series compression standards formulated by the moving picture experts group (MPEG), for example, H.265, H.264, and H.263; It may be other compression encoding standards similar to the aforementioned video frame encoding manner. It should be understood that the video stream transmission method in the present application may be applied to transmit video streams that are compressed and encoded using any of the aforementioned compression coding standards.
  • MPEG moving picture experts group
  • the video stream transmission method proposed in this application can be applied to scenarios such as video calls, augmented reality (augmented reality, AR) services, virtual reality (virtual reality, VR) services, and mixed reality (mixed reality, MR) services.
  • the video stream transmission method involves terminal equipment and network equipment.
  • the terminal device includes a device that provides voice and/or data (eg, media streaming) connectivity to a user.
  • the terminal device can communicate with the core network (for example, 4G core network (evolved packet core, EPC) or 5G core network (5th generation core, 5GC)) via the radio access network (radio access network, RAN), and can communicate with the RAN Voice and/or data (eg, media streams) are exchanged.
  • the terminal device may include user equipment (user equipment, UE), for example, a mobile phone (mobile phone), a portable computer (tablet personal computer, tablet PC) and other devices capable of uploading or downloading media streams.
  • the terminal device in this embodiment of the present application may be any of the above-mentioned devices or chips, which is not specifically limited here. Regardless of being a device or a chip, the terminal device can be manufactured, sold or used as an independent product. In this embodiment and subsequent embodiments, only a terminal device is used as an example for introduction.
  • the wireless network equipment involved in this application is a radio access network (radio access network, RAN) equipment that currently provides services for terminal equipment, and may be a 4G wireless access network equipment, or it may be a 4G access network in the air A device on an interface that communicates with wireless terminal devices through one or more cells.
  • the access network device may be an LTE base station, and may also be called an evolved base station (evolutional node B, NodeB, eNB, or eNB) in a long term evolution LTE system or an evolved LTE system (long term evolution advanced, LTE-A). -NodeB).
  • the front access network equipment may also include the next generation node B (next generation node B, gNB) in the fifth generation mobile communication technology (fifth generation, 5G) new radio (new radio, NR) system or may also include cloud
  • the centralized unit (CU) and the distributed unit (DU) in the access network (CloudRAN) system are not limited in this embodiment of the present application.
  • the wireless network device in this embodiment of the present application may be any of the above-mentioned devices or a chip in the above-mentioned devices, which is not specifically limited here. Regardless of being a device or a chip, the wireless network device can be manufactured, sold or used as an independent product. In this embodiment and subsequent embodiments, only the wireless network device is used as an example for introduction.
  • Step 201a the wireless network device acquires video stream characteristic information of the terminal device.
  • the video stream feature information indicates distribution features of multiple video frames in the video stream to be transmitted.
  • the distribution feature of the video frame includes the size (size) of the video frame.
  • the size of the video frame is also referred to as the size of the video frame, which can be understood as the amount of data occupied by the video frame.
  • a video frame is in units of bytes, therefore, the aforementioned size of the video frame can also be understood as the number of bytes occupied by the video frame.
  • the distribution feature may also include a ratio between the number of I frames and the number of non-I frames in the plurality of video frames. Therefore, the aforementioned feature information of the video stream can be understood as being able to reflect the size of each video frame in the video stream and how the aforementioned video frames of different sizes are arranged and distributed.
  • the aforementioned video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame in the same GOP
  • the GOP is a GOP of the aforementioned video stream to be transmitted . Therefore, the first scale factor can reflect the ratio between the size of the non-I frame and the size of the I frame in the same GOP in the video stream to be transmitted.
  • the aforementioned non-I frame refers to video frames in the GOP except the I frame.
  • the foregoing GOP includes I frames and P frames.
  • the aforementioned non-I frame is a P frame
  • the size of the non-I frame in the first scaling factor is the size of the P frame.
  • the foregoing GOP includes I frames, P frames, and B frames.
  • the aforementioned non-I frame includes a P frame and a B frame
  • the size of the non-I frame in the first scaling factor is the size of the P frame or the size of the B frame.
  • the size of a P frame is larger than that of a B frame, but the situation that the size of a B frame is larger than that of a P frame is not excluded, but the size of a P frame is not much different from that of a B frame.
  • the size of the P frame can be directly used as the size of the non-I frame, or the size of the B frame can be directly used as the size of the non-I frame.
  • the value of the aforementioned first scaling factor is between 0 and 1.
  • the first scaling factor can be expressed as a fraction, a decimal, and the like. Exemplarily, assuming that the size of the I frame in the video stream to be transmitted is 10 bytes, and the size of the P frame is 5 bytes, then the aforementioned first scaling factor can be expressed as "5:10", “1: 2", "0.5” or "1/2", etc. The specific application is not limited.
  • the aforementioned video stream feature information also includes the length of the GOP, and the GOP is the GOP corresponding to the first scale factor, that is, the I frame and the non-I frame in the first scale factor belong to the GOP corresponding to the length of the aforementioned GOP.
  • the length of a GOP is used to indicate the total number (quantity) of video frames in one GOP.
  • the length of the GOP is 6.
  • a GOP contains an I frame and at least one non-I frame. Therefore, when the length of a GOP is known, the wireless network device can calculate the ratio of the number of I frames to the number of non-I frames in the same GOP. For example, in the example shown in FIG. 1A , the ratio of the number of I frames to the number of non-I frames in the GOP is 1:5.
  • the aforementioned video stream feature information also includes the frame rate of the video stream to be transmitted.
  • the frame rate refers to the number of video frames transmitted per unit time, and the unit of the frame rate is generally frames per second (ie frame/s).
  • the wireless network device will use a preset frame rate (or a default frame rate) to transmit the video stream.
  • the preset frame rate (or default frame rate) may be 25 frames/s, 30 frames/s, 60 frames/s or 80 frames/s. The specific application is not limited.
  • the duration required for transmitting a video frame can be determined based on the aforementioned length and frame rate of the GOP. And because, based on the length of the GOP, the ratio of the quantity of the I frame to the quantity of the non-I frame can be deduced, therefore, based on the length and the frame rate of the aforementioned GOP, the time length required for transmitting an I frame can be determined (for ease of introduction, the following Hereinafter referred to as the first duration) and the duration required to transmit all non-I frames in the GOP (for ease of introduction, hereinafter referred to as the second duration).
  • the wireless network device may acquire the foregoing video stream characteristic information in various ways.
  • the wireless network device may directly acquire the foregoing video stream characteristic information from the terminal device, that is, the wireless network device receives the foregoing video stream characteristic information from the terminal device.
  • the wireless network device may acquire the foregoing video stream feature information from a core network device (for example, an IMS core device).
  • a core network device for example, an IMS core device
  • the IMS core device sends the packet or message encapsulated with the feature information of the video stream to other core network devices, and the other core network devices transmit it to the aforementioned wireless network device.
  • An IMS core device may be called an IMS server.
  • step 201b the wireless network device acquires the maximum bit rate and guaranteed bit rate corresponding to the video stream to be transmitted.
  • the maximum bit rate refers to the upper limit of the bit rate determined by the core network equipment required to transmit the aforementioned video stream to be transmitted.
  • the maximum bit rate may be the QoS parameter maximum bit rate MBR in the traditional technology, which indicates the upper limit of the bit rate of the data flow allowed by the system, and the data flow exceeding the maximum bit rate may be discarded.
  • the wireless network device determines the bandwidth upper limit of reserved resources according to the maximum bit rate MBR.
  • the guaranteed bit rate refers to the lower limit of the bit rate determined by the core network equipment to be able to transmit the aforementioned video stream to be transmitted.
  • the guaranteed bit rate may be the guaranteed bit rate GBR of the quality of service QoS parameter in the traditional technology, which means that the system can guarantee the lower limit of the bit rate of the passing data stream in the case of tight network resources.
  • the wireless network device determines the bandwidth lower limit of reserved resources according to the guaranteed bit rate (GBR).
  • the maximum bit rate in this application may also be other parameters representing the upper limit of the transmission rate.
  • This application only uses the term “maximum bit rate” for introduction, and the “maximum bit rate” can also be replaced by other terms in subsequent evolutionary standards or other protocols.
  • the guaranteed bit rate in this application may also be other parameters representing the lower limit of the transmission rate.
  • This application only uses the term “guaranteed bit rate” for introduction, and the “guaranteed bit rate” can also be replaced by other terms in subsequent evolutionary standards or other protocols.
  • the aforementioned maximum bit rate and guaranteed bit rate corresponding to the video stream to be transmitted can also be understood as the maximum bit rate and guaranteed bit rate of the session where the video stream to be transmitted is located; The maximum bit rate and guaranteed bit rate required for this service.
  • the wireless network device receives the aforementioned maximum bit rate and guaranteed bit rate corresponding to the video stream to be transmitted from the core network device.
  • the maximum bit rate and the guaranteed bit rate are determined by a core network device (for example, an IMS core device), and the IMS core device encapsulates the maximum bit rate and the guaranteed bit rate into a packet or a message, through other
  • the core network equipment transmits to the aforementioned wireless network equipment.
  • it is encapsulated in the aforementioned quality of service (quality of service, QoS) attribute-value pair (attribute-value pair, AVP).
  • the wireless network device may execute step 201a first and then step 201b, or may execute step 201b first and then step 201a, or may execute both at the same time.
  • the specific application is not limited.
  • the wireless network device can obtain the aforementioned video stream feature information, maximum bit rate and guaranteed bit rate through a certain message.
  • the IMS core device in the core network encapsulates the video stream characteristic information, the maximum bit rate and the guaranteed bit rate into a message, and transmits it to the aforementioned wireless network device through other core network devices.
  • Step 202 the wireless network device determines reserved resources according to the feature information of the video stream, the maximum bit rate and the guaranteed bit rate.
  • the reserved resource is used to transmit the video stream to be transmitted. Since the aforementioned video stream to be transmitted includes a plurality of video frames, and the aforementioned plurality of video frames are respectively encapsulated in data packets for transmission, before transmitting the aforementioned data packets carrying video frames, an Session, which is mainly used to transmit the aforementioned video stream to be transmitted. Therefore, the reserved resource can be understood as a resource bearing the aforementioned session for transmitting the video stream to be transmitted.
  • reserved resources refer to reserved bandwidth resources, which may be represented by bandwidth upper and lower limits. Since different video frames have different sizes, the number of I frames and non-I frames is also different. Therefore, the reserved resource determined with reference to the feature information of the video stream changes dynamically with the size of each frame in the video stream.
  • reserved resources can be divided into reserved resources corresponding to the transmission of I frames (for ease of introduction, hereinafter referred to as the first reserved resource) and reserved resources corresponding to transmission of non-I frames (for ease of introduction, hereinafter referred to as called the second reserved resource).
  • the duration corresponding to the first reserved resource is the duration required for transmitting an I frame in the aforementioned GOP (i.e. the first duration)
  • the duration corresponding to the second reserved resource is required for transmitting all non-I frames in the aforementioned GOP The duration of (ie the second duration).
  • the wireless network device determines the upper and lower bandwidth limits of reserved resources for transmitting non-I frames (that is, the upper and lower bandwidth limits of the second reserved resources) according to the video stream characteristic information, the maximum bit rate, and the guaranteed bit rate, and the The maximum bit rate and the guaranteed bit rate are used as the upper and lower limits of the bandwidth of the reserved resource for transmitting the I frame (that is, the upper and lower limits of the bandwidth of the first reserved resource).
  • the wireless network device may determine the bandwidth of reserved resources according to the video stream characteristic information, the maximum bit rate and the guaranteed bit rate.
  • the wireless network device determines the bandwidth upper limit of the reserved resource according to the first scaling factor and the maximum bit rate. As shown in FIG. 3A , the wireless network device uses the product of the previous first scaling factor and the maximum bit rate as the bandwidth upper limit of the second reserved resource, and uses the maximum bit rate as the bandwidth upper limit of the first reserved resource. In addition, the wireless network device determines the lower bandwidth limit of the second reserved resource according to the first scaling factor and the guaranteed bit rate, and uses the guaranteed bit rate as the lower bandwidth limit of the first reserved resource.
  • the wireless network device determines the usage duration of the resources with the upper bandwidth limit and the usage duration of the resources with the lower bandwidth limit according to the length of the GOP and the frame rate of the video to be transmitted. That is to say, the wireless network device determines, according to the length of the GOP and the frame rate of the video to be transmitted, the usage time of the upper and lower limits of the bandwidth of the second reserved resource (that is, the second duration), and the upper and lower limits of the bandwidth of the first reserved resource The duration of use (that is, the first duration).
  • the length of GOP refers to how many frames there are in a GOP, and there is only one I frame in a GOP, therefore, the number of I frames and the number of non-I frames in a GOP can be determined based on the length of the GOP, then, based on the GOP The length can determine the ratio of the number of I frames to the number of non-I frames.
  • the maximum bit rate is MBR and the guaranteed bit rate is GBR in conjunction with the example shown in FIG. 3A .
  • the required time length for example, the second time length in Figure 3A
  • the second time length is one
  • the duration of the upper and lower limits of the bandwidth of the aforementioned second reserved resource (wherein, the first scale factor ⁇ MBR is the upper limit and the first scale factor ⁇ GBR is the lower limit) is used in the GOP.
  • the required time length for example, the first time length among Fig. 3A
  • the first time length is used in a GOP to use the aforementioned first reserved
  • the resource bandwidth upper and lower limits where MBR is the upper limit and GBR is the lower limit
  • Step 203 the wireless network device uses the reserved resource to transmit the video stream to be transmitted.
  • the wireless network device determines the aforementioned reserved resource
  • the wireless network device when the terminal device starts to transmit the video stream to be transmitted, the wireless network device will also use the aforementioned reserved resource to transmit the video stream to be transmitted.
  • the aforementioned reserved resources are used to receive the video stream sent by the terminal device or to send the video stream to the terminal device.
  • the wireless network device adopts the first scale factor as an adjustment parameter, and the maximum bit rate (for example, MBR determined based on traditional technology) and guaranteed bit rate (for example, GBR determined based on traditional technology) are used as adjustment parameters.
  • MBR maximum bit rate
  • GBR guaranteed bit rate
  • the reserved resources determined by this scheme take into account the characteristics of each frame in the video stream. Since the value of the first scaling factor is between 0 and 1, the bandwidth resource reserved by the method of the present application is less than that determined by the traditional technical solution, which is beneficial to improve the utilization rate of the bandwidth resource.
  • the solution proposed in this application also combines the MBR and GBR calculated by adopting the new rules to determine reserved resources. Therefore, the scheme proposed in this application has high feasibility and is easy to implement.
  • the video stream transmission method involves terminal equipment, wireless network equipment and core network equipment (including IMS core equipment).
  • step 401 the terminal device sends video stream feature information to the IMS core device.
  • the video stream feature information indicates the distribution feature of the sizes of multiple video frames in the video stream to be transmitted.
  • the video stream feature information includes the first scale factor and the length of the GOP.
  • the feature information of the video stream may also include a frame rate.
  • the IMS core equipment includes proxy-call session control function (proxy-call session control function, P-CSCF), service call session control function (service-call session control function, S-CSCF), IMS access gateway (IMS access gateway, IMS-AGW) and other equipment.
  • the IMS core device may be an application server (application server, AS) or an application function (application function, AF).
  • the specific content contained in the aforementioned video stream characteristic information sent by the terminal device to the IMS core device may be different.
  • sending the feature information of the video stream can be implemented in the following ways:
  • Implementation mode 1 In a session establishment scenario, the IMS core device obtains the video stream characteristic information of the video stream to be transmitted by the terminal device for the first time. At this time, the feature information of the video stream includes the length of the GOP and the first scaling factor. Optionally, the feature information of the video stream in this scenario may include the frame rate of the video stream to be transmitted. If the video stream feature information does not include the aforementioned frame rate of the video stream to be transmitted, the wireless network device will adopt a preset frame rate (or a default frame rate).
  • the terminal device may carry the video stream characteristic information in the session establishment request message, so as to send it to the aforementioned IMS core device.
  • the session establishment request message is used to establish a session for transmitting the video stream to be transmitted.
  • the session establishment request message is a message based on the session description protocol (session description protocol, SDP) protocol.
  • the session establishment request message may be an SDP offer.
  • the foregoing session establishment request message based on the SDP protocol may add the length of the GOP and the first scale factor to the foregoing newly added SDP parameters by adding an SDP parameter.
  • the newly added SDP parameters in the SDP offer include: "SDP: bw-N-GoP" field and "SDP: bw-SizeRatio-PFandIF” field.
  • the "SDP:bw-N-GoP” field indicates the length of the GOP of the video stream to be transmitted.
  • the "SDP:bw-SizeRatio-PFandIF” field indicates the ratio of the size of a non-I frame to the size of an I frame in the GOP, that is, the aforementioned first scaling factor.
  • Implementation method 2 After the session is established, in the scene where the video stream screen is switched, if the video stream feature information only includes the first scale factor, but does not include the length of the GOP of the video stream to be transmitted, it means that compared with the session establishment The first scale factor in the feature information of the video stream used in the scene is changed, but the length of the GOP is not changed.
  • Implementation method 3 After the session is established, in the scene where the video stream screen is switched, if the video stream feature information only includes the length of a GOP of the video stream to be transmitted, but does not include the first scale factor, it means that compared with the session The length of the GOP in the feature information of the video stream used in establishing the scene is changed, but the first scaling factor is not changed.
  • the terminal device may send the video stream feature information to the IMS core device through a message on the control plane or the media plane.
  • the terminal device carries the video stream feature information in a real-time control protocol (real-time control protocol, RTCP) packet (or RTCP message) to send to the aforementioned IMS core device.
  • the terminal device sends the media stream to the aforementioned IMS core device through a real-time transport protocol (real-time transport protocol, RTP) media stream.
  • real-time control protocol real-time control protocol, RTCP
  • RTP real-time transport protocol
  • the IMS core device will first determine a maximum bit rate and a guaranteed bit rate for the video stream to be transmitted based on various factors, and then, the IMS core device will receive the video stream feature information, maximum bit rate and guaranteed bit rate The bit rate is encapsulated into the QoS AVP field.
  • the IMS core device can be based on operator specific policy (operator specific policy), application function application identification (AF application identifier) AVP, coded data (codec data) AVP, flow usage (flow-usage) AVP, RTCP flow ( RTCP flows) and other policies or factors determine the maximum bit rate.
  • operator specific policy operator specific policy
  • AF application identifier application function application identification
  • coded data coded data
  • flow usage flow-usage
  • RTCP flow RTCP flows
  • other policies or factors determine the maximum bit rate.
  • the IMS core device will first check the specific policy of the operator, that is, whether the operator has set a specific policy for the terminal device. For example, if the terminal device is a user with a higher priority, the IMS core device has priority A higher bit rate is set as the MBR for the video stream transmission service of the terminal device.
  • the IMS core device will query the application function The application identification AVP of the application function, and based on the application identification AVP of the application function, determine to set the MBR for the video streaming service of the terminal device. If the IMS core device does not obtain the application identification AVP of the application function, the IMS core device will also determine the MBR based on the coded data AVP, the stream use AVP, and the RTCP stream.
  • the IMS core device may comprehensively consider the above-mentioned policies or factors such as the specific policies of the operator, the application identification AVP of the application function, the coded data AVP, the stream use AVP, and the RTCP stream to determine the time for the terminal device to transmit the video stream to be transmitted. MBR. Specifically, there is no limitation here.
  • the IMS core device can be determined based on policies or factors such as operator specific policy, application identifier (AF application identifier) AVP, codec data (codec data) AVP, flow description (flow description) AVP, etc. Guaranteed bit rate.
  • the IMS core device will first check the operator's specific policy, that is, whether the operator has set a specific policy for the terminal device. For example, the terminal device is a user with a higher priority, and the IMS core device preferentially sets a higher bit rate as the GBR for the video stream transmission service of the terminal device.
  • the terminal device is a user with a lower priority
  • the IMS core device may set a lower bit rate as the GBR for the video stream transmission service of the terminal device. If the IMS core device has not obtained the operator-specific policy related to the terminal device, or if the IMS core device has not obtained the operator-specific policy related to the video streaming service of the terminal device, the IMS core device will query the application function The application identifier AVP of the application function, and determine to set the GBR for the video streaming service of the terminal device based on the application identifier AVP of the application function. If the IMS core device does not obtain the application identification AVP of the application function, the IMS core device will also determine the GBR based on the encoded data AVP and the stream description AVP.
  • the IMS core device may comprehensively consider the above-mentioned policies or factors such as the specific policies of the operator, the application identification AVP of the application function, the coded data AVP, and the stream description AVP to determine the GBR for the terminal device to transmit the video stream to be transmitted. Specifically, there is no limitation here.
  • the IMS core device can obtain the characteristic information of the video stream sent by the terminal device by receiving the RTCP packet, and the IMS core device can also decode the RTP media stream to obtain the characteristic information of the video stream sent by the terminal device.
  • Step 403 the IMS core device sends video stream feature information to the wireless network device through the QOS AVP field.
  • the IMS core device sends the video stream feature information to other core network devices through the QOS AVP field, so that other core network devices send the aforementioned QOS AVP field to the wireless network device.
  • PCRF policy and charging rules function
  • SGW/S-GW serving gateway
  • PDN GW packet data network gateway
  • PGW/P-GW mobility management entity
  • MME mobility management entity
  • the IMS core device will send the aforementioned QOS AVP field to the PCRF through an authentication authorization request (authentication authorization request, AAR) message; then, the PCRF will take out the QOS AVP field in the AAR message, and send the QOS AVP field Encapsulate into a re-authentication request (re-authentication request, RAR) message, and send it to the PGW/SGW through the RAR message; then, the PGW/SGW sends the aforementioned QOS AVP field to the MME through a create bearer request (create bearer request) message; Then, the MME sends the aforementioned QOS AVP field to the wireless network device through a session management request (session management request) message and a bearer setup request message respectively, that is, the aforementioned session management request message carries the QOS AVP field, and the bearer setup request message carries the QOS AVP field.
  • the QOS AVP field is also carried in the establishment request.
  • the IMS core device can be replaced by an application server AS or an application function AF.
  • Other network devices include: policy control function (policy control function, PCF), session management function (session management function, SMF), access and mobility management function (access and mobility management function, AMF), etc.
  • policy control function policy control function, PCF
  • session management function session management function
  • SMF session management function
  • AMF access and mobility management function
  • the IMS core device sends the aforementioned QOS AVP field to the PCF through a policy authorization update (policy authorization update) message (for example, Npcf policy authorization update message); then, the PCF sends the QOS AVP in the policy authorization update message field storage backup, and encapsulate the QOS AVP field into a policy control update (policy control_update) message (for example, Npcf SM policy control_update message, wherein, Npcf refers to a service-based interface (service-based interface exhibited by PCF) displayed by means of PCF )), the aforementioned policy control update message is sent to the SMF; then, the SMF sends the aforementioned QOS AVP field to the AMF through message forwarding (for example, Namf_Communication_N1N2Message Transfer) between the N1 interface and the N2 interface; then, the AMF sends the aforementioned QOS AVP field to the AMF through the N2 message ( N2message) sends the a policy
  • Step 404 the wireless network device determines reserved resources according to the video stream characteristic information, the maximum bit rate and the guaranteed bit rate.
  • the feature information of the video stream includes the first scale factor.
  • the wireless network device determines the upper bandwidth limit of the second reserved resource according to the first scaling factor and the maximum bit rate, and the wireless network device determines the lower bandwidth limit of the second reserved resource according to the first scaling factor and the guaranteed bit rate. For example, the wireless network device uses the product of the previous first scaling factor and the maximum bit rate as the upper limit of the bandwidth of the second reserved resource, and uses the product of the previous first scaling factor and the guaranteed bit rate as the lower limit of the bandwidth of the second reserved resource .
  • FIG. 1A and FIG. 3A are taken as examples, and the maximum bit rate is MBR, and the guaranteed bit rate is GBR as an example for introduction.
  • MBR maximum bit rate
  • GBR guaranteed bit rate
  • the size of the I frame in the video stream to be transmitted is 10 bytes
  • the size of the P frame is 5 bytes
  • the value of the first scaling factor received by the wireless network device is 0.5.
  • the first scale factor received by the wireless network device may be represented by "5:10", “1:2", "0.5” or "1/2", which is not limited in this application.
  • the representation form of the first scaling factor will not affect the value of the first scaling factor, that is, the value of the first scaling factor in any of the foregoing representation forms is 0.5.
  • the value of the MBR received by the wireless network device is 50 Mbps
  • the value of the GBR is 10 Mbps.
  • the length of the GOP is six.
  • the wireless network device will first allocate 50Mbps as the upper bandwidth limit and 10Mbps as the lower bandwidth limit for 1/30s; then, allocate 25Mbps as the upper bandwidth limit and 5Mbps As the lower limit of the bandwidth, it lasts for 1/6s. If the video stream characteristic information of the video stream to be transmitted has not changed, the wireless network device continues to allocate reserved bandwidth according to the aforementioned rule, and the cycle is repeated until the wireless network device uses the new video stream characteristic information to reserve resources again. It can be seen that the wireless network device determines that the reserved resources form a change curve (as shown in FIG. 3A ), rather than a constant straight line in the traditional technology (as shown in FIG. 3B ).
  • Step 405 the wireless network device configures the aforementioned reserved resources for the terminal device through radio resource control (radio resource control, RRC) signaling.
  • radio resource control radio resource control, RRC
  • the wireless network device sends an RRC connection reconfiguration (RRC connection configuration) message to the terminal device, so that the wireless network device establishes an RRC connection with the aforementioned terminal device, and allocates reserved resources to the terminal device. Then, the terminal device sends an RRC connection complete (RRC connection complete) to the wireless network device to indicate that the establishment of the RRC connection between the terminal device and the wireless network device is completed.
  • RRC connection reconfiguration RRC connection configuration
  • RRC connection complete RRC connection complete
  • Step 406 the wireless network device sends a response message to the IMS core device through other core network devices.
  • the wireless network device sends a response message to the IMS core device through other core network devices, so that the IMS core device knows that the aforementioned QOS AVP field has been sent to the wireless network device, and the wireless network device has already sent the QOS AVP field based on the QOS AVP field.
  • the information in ie video stream feature information, maximum bit rate and guaranteed bit rate) allocates reserved resources (ie bandwidth resources) for terminal equipment.
  • other network devices include: PCRF, PGW/SGW, MME, etc.
  • the wireless network device sends a session management response (session management response) message and a bearer setup response (bearer setup response) message to the MME; then, the MME sends a create bearer response (create bearer response) message to the PGW/SGW; then , the PGW/SGW sends a re-authentication answer (re-authentication answer, RAA) message to the PCRF; then, the PCRF sends an authentication authorization answer (authentication authorization answer, AAR) message to the IMS core device.
  • session management response session management response
  • bearer setup response bearer setup response
  • RAA re-authentication answer
  • AAR authentication authorization answer
  • other network devices include: a policy control function PCF, a session management function SMF, and an access and mobility management function AMF.
  • the wireless network device sends a response to the AMF through an N2 message (N2 message); then, the AMF forwards the message through the N1 interface and the N2 interface (for example, Namf_Communication_N1N2Message Transfer, wherein, Namf refers to a service-based Service-based interface exhibited by AMF) sends a response to SMF; then, SMF sends a response to PCF through a policy control update response (policy control_update response) message; then, PCF sends a response to PCF through a policy authorization update response (policy authorization update response) ) message to send a response to the IMS core device.
  • N2 message for example, Namf_Communication_N1N2Message Transfer, wherein, Namf refers to a service-based Service-based interface exhibited by AMF
  • SMF sends a response to PCF through a policy control update response (policy control_update response) message
  • PCF sends a response to PCF through a policy
  • Step 407 the IMS core device sends a session establishment response to the terminal device.
  • the session establishment response may be a response based on the SDP protocol, for example, the session establishment response is SDP answer.
  • the terminal device When the terminal device receives the aforementioned session establishment response, the terminal device can start to use the reserved resource to transmit the RTP media stream.
  • the RTP media stream includes the aforementioned video stream to be transmitted.
  • the terminal device will send the length of the changed GOP to the IMS core device, and the IMS core device will encapsulate the maximum bit rate, guaranteed bit rate and the length of the changed GOP into a message, and send the message through other core network
  • the device is transmitted to the aforementioned wireless network device.
  • the wireless network device re-determines the upper and lower bandwidth limits of the reserved resources based on the updated GOP length and the first scale factor.
  • the wireless network device can obtain the video stream characteristic information of the terminal device, wherein the video stream characteristic information can indicate the distribution characteristics of the sizes of multiple video frames in the video stream to be transmitted, and the wireless network device can also Get the maximum bitrate and guaranteed bitrate. Then, the wireless network device determines the reserved resources (also referred to as reserved bandwidth resources) according to the aforementioned video stream feature information, maximum bit rate and guaranteed bit rate. The reserved resources are based on the size of multiple video frames in the video stream The distribution characteristics are determined. Therefore, the reserved resource can be adaptively changed with the size of the video frame, instead of directly multiplexing the maximum bit rate MBR and the guaranteed bit rate GBR in the traditional technology. Therefore, it is beneficial to improve bandwidth resource utilization.
  • the reserved resources also referred to as reserved bandwidth resources
  • FIG. 5 it is a schematic structural diagram of a communication device 50 provided in this embodiment. It should be understood that the terminal device in the method embodiment corresponding to FIG. 2 or FIG. 4 may be based on the structure of the communication apparatus 50 shown in FIG. 5 in this embodiment.
  • the communication device 50 includes at least one processor 501 , at least one memory 502 and at least one transceiver 503 . Wherein, the processor 501, the memory 502 and the transceiver 503 are connected.
  • the communication apparatus 50 may further include an input device 505 , an output device 506 and one or more antennas 504 . Wherein, the antenna 504 is connected to the transceiver 503 , and the input device 505 and the output device 506 are connected to the processor 501 .
  • the memory 502 is mainly used to store software programs and data.
  • the memory 502 may exist independently and be connected to the processor 501 .
  • the memory 502 may be integrated with the processor 501, for example, integrated into one or more chips.
  • the memory 502 can store program codes for executing the technical solutions of the embodiments of the present application, and the execution is controlled by the processor 501 , and various types of computer program codes to be executed can also be regarded as drivers for the processor 501 .
  • FIG. 5 in this embodiment only shows one memory and one processor.
  • the communication device 50 may have multiple processors or multiple memories, which are not specifically described here. limited.
  • the memory 502 may also be called a storage medium or a storage device.
  • the memory 502 may be a storage element on the same chip as the processor (that is, an on-chip storage element), or an independent storage element, which is not limited in this embodiment of the present application.
  • the transceiver 503 may be used to support the receiving or sending of radio frequency signals between the communication device 50 and the access network equipment, and the transceiver 503 may be connected to the antenna 504 .
  • the transceiver 503 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 504 can receive radio frequency signals
  • the receiver Rx of the transceiver 503 is used to receive the radio frequency signals from the antennas 504, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals.
  • the digital baseband signal or digital intermediate frequency signal is provided to the processor 501, so that the processor 501 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 503 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 501, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a
  • the radio frequency signal is transmitted by one or more antennas 504 .
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the sequence of the aforementioned down-mixing processing and analog-to-digital conversion processing The order is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal.
  • the up-mixing processing and digital-to-analog conversion processing The order of priority is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • transceiver 503 may also be referred to as a transceiver unit, a transceiver, a transceiver device, and the like.
  • the device used to realize the receiving function in the transceiver unit can be regarded as a receiving unit
  • the device used to realize the sending function in the transceiver unit can be regarded as a sending unit, that is, the transceiver unit includes a receiving unit and a sending unit, and the receiving unit also It can be called receiver, input port, receiving circuit, etc., and the sending unit can be called transmitter, transmitter, or transmitting circuit, etc.
  • the foregoing transmitter Tx is also called a transmission channel or a radio frequency (radio frequency, RF) transmission channel.
  • the transmission channel can work in the following manner, but is not limited to the following manner: the transmission channel can receive the baseband signal from the baseband chip, and perform radio frequency processing (such as up-conversion, amplification and filtering) on the baseband signal to obtain the radio frequency signal , and finally radiate the radio frequency signal into space through the antenna 504 .
  • radio frequency processing such as up-conversion, amplification and filtering
  • the foregoing processor 501 may be a baseband processor, or may be a central processing unit (central processing unit, CPU), and the baseband processor and the CPU may be integrated or separated.
  • the processor 501 can be used to implement various functions for the terminal device, for example, to process communication protocols and communication data, or to control the entire terminal device, execute software programs, and process data of software programs; or
  • the processor 501 is used to assist in completing calculation processing tasks, such as graphics and image processing or audio processing, etc.; or the processor 501 is used to implement one or more of the above-mentioned functions.
  • the output device 506 communicates with the processor 501 and can display information in various ways, which are not limited here.
  • the communication device 50 also includes an encoder and a decoder.
  • the encoder encodes multiple images in the video separately to generate a section of GOP, that is, the video stream to be transmitted; the decoder reads the section-by-section GOP in the video stream to be transmitted for decoding, and then Render and display the read screen.
  • the transceiver 503 sends video stream characteristic information to the network device through the antenna 504, the video stream characteristic information indicates the distribution characteristics of the sizes of multiple video frames in the video stream to be transmitted, and the video stream characteristic information The information is used to determine the reserved resource for transmitting the video stream to be transmitted.
  • the processor 501 controls the encoder to encode and compress the video to obtain a video stream to be transmitted.
  • the transceiver 503 also receives the configuration about reserved resources from the network device through the antenna 504, and after the configuration is completed, the processor 501 uses the aforementioned reserved resources to transmit the video stream to be transmitted.
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame both belong to the video stream to be transmitted The same group of pictures GOP.
  • the feature information of the video stream includes the length of a GOP of the video stream to be transmitted.
  • the feature information of the video stream also includes the frame rate of the video stream to be transmitted.
  • the transceiver 503 sends a session establishment request message to the network device through the antenna 504, the video stream feature information is carried in the session establishment request message, and the session establishment request message is used to establish and transmit the pending A session that transmits video streams.
  • the transceiver 503 sends a real-time transmission control protocol RTCP packet to the network device through the antenna 504, and the video stream characteristic information is carried in the RTCP packet.
  • the transceiver 503 sends a real-time transport protocol RTP media stream to the network device through the antenna 504, and the feature information of the video stream is carried in the RTP media stream.
  • FIG. 6 it is a schematic structural diagram of another communication device 60 provided in this embodiment.
  • the wireless network device in the method embodiment corresponding to FIG. 2 or FIG. 4 may be based on the structure of the communication apparatus 60 shown in FIG. 6 in this embodiment.
  • the wireless network device can be a 4G access network device or a base station, or a 5G access network device or a base station.
  • the access network or base station of the subsequent evolution standard may also use the communication shown in Figure 6 in this embodiment Structure of device 60 .
  • the communication device 60 includes at least one processor 601 , at least one memory 602 , at least one transceiver 603 , at least one network interface 605 and one or more antennas 604 .
  • the processor 601 , the memory 602 , the transceiver 603 and the network interface 605 are connected through a connecting device, and the antenna 604 is connected to the transceiver 603 .
  • the foregoing connection device may include various types of interfaces, transmission lines or buses, etc., which are not limited in this embodiment.
  • the aforementioned network interface 605 is used to connect the communication device 60 with other communication devices through a communication link.
  • the network interface 605 may include a network interface between the communication device 60 and a core network device, such as an S1 interface; the network interface 605 may also include the communication device 60 and other network devices (such as other access network devices or A network interface between core network devices), such as an X2 or Xn interface.
  • transceiver 603, the memory 602, and the antenna 604 reference may be made to the related description of the transceiver 503, the memory 502, and the antenna 504 in the embodiment corresponding to FIG. 5 , and details are not repeated here.
  • the foregoing processor 601 is mainly used to process communication protocols and communication data, control the entire network equipment, execute software programs, and process data of software programs, for example, to support the communication device 60 to execute the described action.
  • the communication device 60 may include a baseband processor and a central processing unit, wherein the baseband processor is mainly used for processing communication protocols and communication data, and the central processing unit is mainly used for controlling the entire communication device 60, executing software programs, and processing software Program data.
  • the processor 601 in FIG. 6 can integrate the functions of the baseband processor and the central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • the communication device 60 may include a plurality of baseband processors to adapt to different network standards, the communication device 60 may include a plurality of central processing units to enhance its processing capability, and each component of the communication device 60 may be configured through various bus connection.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the processor 601 controls the transceiver 603 to acquire video stream feature information of the terminal device, where the video stream feature information indicates the distribution feature of the sizes of multiple video frames in the video stream to be transmitted.
  • the processor 601 controls the transceiver 603 to obtain the maximum bit rate and the guaranteed bit rate corresponding to the video stream to be transmitted.
  • the processor 601 determines a reserved resource according to the feature information of the video stream, the maximum bit rate and the guaranteed bit rate, and the reserved resource is used to transmit the video stream to be transmitted.
  • the processor 601 controls the transceiver 603 to use the reserved resource to transmit the video stream to be transmitted.
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame All belong to the same group of pictures GOP of the video stream to be transmitted.
  • the feature information of the video stream includes the length of a GOP of the video stream to be transmitted.
  • the processor 601 is specifically configured to determine the bandwidth upper limit of the reserved resource according to the first scaling factor and the maximum bit rate, and, according to the first scaling factor and the guaranteed bit rate Determine the bandwidth lower limit of the reserved resource.
  • the processor 601 is specifically configured to determine the bandwidth upper limit of the reserved resource according to the first scaling factor and the maximum bit rate, and, according to the first scaling factor and the guaranteed bit rate Determine the lower limit of the bandwidth of the reserved resources; determine the usage time of the resource with the upper limit of the bandwidth and the usage time of the resource with the lower limit of the bandwidth according to the length of the GOP and the frame rate of the video to be transmitted.
  • the frame rate of the video stream to be transmitted is included in the feature information of the video stream, or, the frame rate of the video stream to be transmitted is a preset frame rate in the wireless network device.
  • the processor 601 is specifically used to control the transceiver 603 to receive the video stream characteristic information from the terminal device; or, the processor 601 is specifically used to control the transceiver 603 to receive the video stream feature information from the core network device The feature information of the video stream.
  • the communication device 70 includes at least one processor 701 , at least one memory 702 , at least one transceiver 703 , at least one network interface 705 and one or more antennas 704 .
  • the processor 701 , the memory 702 , the transceiver 703 and the network interface 705 are connected through a connecting device, and the antenna 704 is connected to the transceiver 703 .
  • the foregoing connection device may include various types of interfaces, transmission lines or buses, etc., which are not limited in this embodiment.
  • the aforementioned network interface 705 is used to connect the communication device 70 with other communication devices through a communication link.
  • the network interface 705 may include a network interface between the communication device 70 and core network equipment, such as an S1 interface; the network interface 705 may also include the communication device 70 and other network equipment (such as other access network equipment or A network interface between core network devices), such as an X2 or Xn interface.
  • transceiver 703, the memory 702, and the antenna 704 reference may be made to the relevant description of the transceiver 503, the memory 502, and the antenna 504 in the embodiment corresponding to FIG. 5 , and details are not repeated here.
  • the processor 701 controls the transceiver 703 to receive video stream feature information from the terminal device, where the video stream feature information indicates the distribution feature of the sizes of multiple video frames in the video stream to be transmitted.
  • the processor 701 generates a maximum bit rate and a guaranteed bit rate corresponding to the video stream to be transmitted.
  • the processor 701 sends the video stream characteristic information, maximum bit rate and guaranteed bit rate to the wireless network device, and the video stream characteristic information, maximum bit rate and guaranteed bit rate are used to determine reserved resources for transmitting the video stream to be transmitted.
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame All belong to the same group of pictures GOP of the video stream to be transmitted.
  • the feature information of the video stream includes the length of a GOP of the video stream to be transmitted.
  • the video stream characteristic information also includes a frame rate of the video stream to be transmitted.
  • the processor 701 controls the transceiver 703 to send the quality of service QoS attribute value pair AVP field to the wireless network device, and the QoS AVP field includes the video stream feature information, the maximum bit rate and the guaranteed bit rate.
  • the processor 701 controls the transceiver 703 to receive a session establishment request message from the terminal device, the video stream characteristic information is carried in the session establishment request message, and the session establishment request message is used to establish transmission The session of the video stream to be transmitted; or, receiving a real-time transport control protocol RTCP packet from the terminal device, and the video stream characteristic information is carried in the RTCP packet; or receiving a real-time transport protocol RTP media stream from the terminal device, the video Stream feature information is carried in the RTP media stream.
  • the present application also provides another communication device 80 , where the communication device 80 may be a terminal device or a chip in the terminal device.
  • the communication device 80 includes: a sending module 801 and a transmission module 802 .
  • the sending module 801 is used to send video stream feature information to the network device
  • the video stream feature information indicates the distribution feature of the size of multiple video frames in the video stream to be transmitted
  • the video stream feature information is used to determine the transmission of the video stream to be transmitted
  • the reserved resources of the video stream the transmission module 802, configured to use the reserved resources to transmit the video stream to be transmitted.
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame All belong to the same group of pictures GOP of the video stream to be transmitted.
  • the feature information of the video stream includes the length of a GOP of the video stream to be transmitted.
  • the video stream characteristic information also includes a frame rate of the video stream to be transmitted.
  • the sending module 801 is specifically configured to: send a session establishment request message to the network device, the video stream feature information is carried in the session establishment request message, and the session establishment request message is used for Establish a session for transmitting the video stream to be transmitted; or, send a real-time transport control protocol RTCP packet to the network device, and the video stream feature information is carried in the RTCP packet; or send a real-time transport protocol RTP media stream to the network device, The feature information of the video stream is carried in the RTP media stream.
  • the present application also provides another communication device 90 , where the communication device 90 may be a wireless network device or a chip in the wireless network device.
  • the communication device 90 includes: an acquisition module 901 , a resource reservation module 902 and a transmission module 903 .
  • the obtaining module 901 is used to obtain the video stream feature information of the terminal device, and the video stream feature information indicates the distribution characteristics of the sizes of multiple video frames in the video stream to be transmitted; the obtaining module 901 is also used to obtain the video stream to be transmitted The maximum bit rate and guaranteed bit rate corresponding to the video stream; the resource reservation module 902 is configured to determine reserved resources according to the video stream characteristic information, the maximum bit rate and the guaranteed bit rate, and the reserved resources are used to transmit the pending Transmitting the video stream; a transmission module 903, configured to use the reserved resource to transmit the video stream to be transmitted.
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame All belong to the same group of pictures GOP of the video stream to be transmitted.
  • the feature information of the video stream includes the length of a GOP of the video stream to be transmitted.
  • the resource reservation module 902 is specifically configured to determine the bandwidth upper limit of the reserved resource according to the first scaling factor and the maximum bit rate, and, according to the first scaling factor and the The guaranteed bit rate determines the lower bandwidth limit of the reserved resource.
  • the resource reservation module 902 is specifically configured to determine the bandwidth upper limit of the reserved resource according to the first scaling factor and the maximum bit rate, and, according to the first scaling factor and the The guaranteed bit rate determines the lower limit of the bandwidth of the reserved resource; the usage time of the resource with the upper limit of the bandwidth and the usage time of the resource with the lower limit of the bandwidth are determined according to the length of the GOP and the frame rate of the video to be transmitted.
  • the frame rate of the video stream to be transmitted is included in the feature information of the video stream, or, the frame rate of the video stream to be transmitted is a preset frame rate in the wireless network device.
  • the obtaining module 901 is specifically configured to: the wireless network device receives the video stream feature information from the terminal device; or, the wireless network device receives the video stream feature information from the core network device information.
  • the present application also provides another communication device 100 , and the communication device 100 may be a core network device or a chip in the core network device.
  • the communication device 100 includes: a receiving module 1001 and a sending module 1002 .
  • the receiving module 1001 is configured to receive video stream characteristic information from the terminal device, the video stream characteristic information indicating the distribution characteristics of the sizes of multiple video frames in the video stream to be transmitted;
  • the sending module 1002 is configured to send the video stream to the wireless network device Video stream characteristic information, maximum bit rate and guaranteed bit rate, where the video stream characteristic information, maximum bit rate and guaranteed bit rate are used to determine reserved resources for transmitting the video stream to be transmitted.
  • the video stream feature information includes a first scale factor
  • the first scale factor is the ratio of the size of a non-I frame to the size of an I frame
  • the I frame and the non-I frame All belong to the same group of pictures GOP of the video stream to be transmitted.
  • the feature information of the video stream includes the length of a GOP of the video stream to be transmitted.
  • the video stream characteristic information also includes a frame rate of the video stream to be transmitted.
  • the communication device 100 further includes a processing module 1003, and the processing module 1003 is configured to encapsulate the video stream characteristic information, the maximum bit rate and the guaranteed bit rate into a quality of service QoS attribute value pair AVP field.
  • the sending module 1002 is specifically configured to: send a QoS AVP field to the wireless network device, where the QoS AVP field includes the video stream feature information, the maximum bit rate and the guaranteed bit rate.
  • the receiving module 1001 is specifically configured to: receive a session establishment request message from the terminal device, the video stream characteristic information is carried in the session establishment request message, and the session establishment request message is used for Establishing a session for transmitting the video stream to be transmitted; or, receiving a real-time transport control protocol RTCP packet from the terminal device, and the video stream feature information is carried in the RTCP packet; or receiving a real-time transport protocol RTP media stream from the terminal device, The feature information of the video stream is carried in the RTP media stream.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here. It should also be understood that the first, second, third, fourth and various numbers mentioned herein are only for convenience of description, and are not used to limit the scope of the embodiments of the present application.
  • the present application provides a computer program product comprising one or more computer instructions.
  • the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • implement the method related to the wireless network device as in the foregoing FIG. 2 or FIG. 4 .
  • implement the method related to the terminal device as in the aforementioned FIG. 2 or FIG. 4 .
  • implement the method related to the core network device for example, IMS core device
  • the computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wirelessly (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available medium may be a magnetic medium, (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (digital versatile disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (digital versatile disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • the present application also provides a computer-readable storage medium, the storage medium stores a computer program, and the computer program is executed by a processor to implement the method related to the terminal device as in the aforementioned FIG. 2 or FIG. 4 .
  • the present application also provides a computer-readable storage medium, which stores a computer program, and the computer program is executed by a processor to implement the method related to the wireless network device in FIG. 2 or FIG. 4 .
  • the present application also provides a computer-readable storage medium, the storage medium stores a computer program, and the computer program is executed by a processor to implement the core network device (for example, the IMS core device ) related methods.
  • the core network device for example, the IMS core device
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种视频流传输方法以及相关通信装置,其中,无线网络设备能够根据待传输视频流的视频流特征信息、待传输视频流对应的最大比特速率和保证比特速率确定预留资源。然后,该无线网络设备使用该预留资源传输该待传输视频流。由于,前述预留资源是按照视频流中多个视频帧的大小的分布特征确定的,该预留资源是能够随着视频帧的大小而适应性改变的,而不是直接复用传统技术中的最大比特速率和保证比特速率。因此,有利于提高带宽资源利用率。

Description

视频流传输方法以及相关通信装置
本申请要求于2021年06月15日提交中国国家知识产权局、申请号为202110662970.8、申请名称为“视频流传输方法以及相关通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种视频流传输方法以及相关通信装置。
背景技术
预留带宽资源指网络设备为终端设备传输视频或音频等数据而预先保留的带宽资源。
在目前的视频传输过程中,为了降低传输视频所需要的带宽,在传输视频之前需要将视频的每一帧图像进行压缩,获得由多个视频帧组成的视频流。网络设备直接将收到的来自是IP多媒体系统核心(IP multimedia subsystem core,IMSCORE)设备的最大比特速率(maximum bit rate,MBR)和保证比特速率(guaranteed bit rate,GBR)作为传输前述视频流的预留带宽资源的带宽上限和带宽下限。然后,终端设备采用前述预留带宽资源的带宽上限和带宽下限传输前述视频流。
然而,在视频流传输过程中,并不是传输每一个数据包所需的带宽都能达到或接近前述带宽上限和带宽下限,因此,目前的预留带宽资源的方案可能预留的过多的带宽资源,而导致降低带宽资源利用率。
发明内容
本申请实施例提供了一种视频流传输方法以及相关通信装置,用于根据视频流中的视频帧的特征确定预留带宽资源,并且,采用前述预留带宽资源传输待传输视频流,可以提高带宽资源利用率。
第一方面,本申请提供了一种视频流传输方法,该方法涉及终端设备和无线网络设备。其中,无线网络设备获取终端设备的视频流特征信息,并且,该无线网络设备还将获取待传输视频流对应的最大比特速率和保证比特速率,其中,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征。然后,该无线网络设备根据该视频流特征信息、该最大比特速率和该保证比特速率确定预留资源,该预留资源用于传输该待传输视频流。然后,该无线网络设备使用该预留资源传输该待传输视频流。
本申请的视频流传输方法中的最大比特速率指核心网设备确定的传输前述待传输视频流所需的比特速率上限,该最大比特速率可以是传统技术中的服务质量(quality of service,QoS)参数最大比特速率MBR,也可以是其他表示传输速率上限的参数。本申请仅采用“最大比特速率”这个称谓进行介绍,在后续演进制式或其他协议中,该“最大比特速率”也可以替换为其他称谓。此外,本申请的视频流传输方法中的保证比特速率指核心网设备确 定的能够传输前述待传输视频流所需的比特速率下限,该保证比特速率可以是传统技术中的服务质量QoS参数保证比特速率GBR,也可以是其他表示传输速率下限的参数。本申请仅采用“保证比特速率”这个称谓进行介绍,在后续演进制式或其他协议中,该“保证比特速率”也可以替换为其他称谓。
此外,前述待传输视频流对应的最大比特速率和保证比特速率,也可以理解为,待传输视频流所在的会话的最大比特速率和保证比特速率;也可以理解为,传输该视频流(即前述待传输视频流)这项业务所需的最大比特速率和保证比特速率。
本申请中,无线网络设备能够获取到终端设备的视频流特征信息,其中,视频流特征信息能够指示待传输视频流中多个视频帧的大小的分布特征,并且,该无线网络设备还能够获取最大比特速率和保证比特速率。然后,无线网络设备根据前述视频流特征信息、最大比特速率和保证比特速率确定预留资源(也可以被称为预留带宽资源)。也就是说,前述预留资源是按照视频流中多个视频帧的大小的分布特征确定的,该预留资源是能够随着视频帧的大小而适应性改变的,而不是直接复用传统技术中的最大比特速率MBR和保证比特速率GBR。因此,有利于提高带宽资源利用率。
在一种可选的实施方式中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
本实施方式中,提出视频流特征信息包括一个第一比例因子,该第一比例因子是同一GOP中一个非I帧的大小与一个I帧的大小之比。因此,该第一比例因子能够反映出待传输视频流中的同一个GOP中非I帧的大小和I帧的大小的比例情况。一般地,同一个GOP中一个非I帧的大小远小于一个I帧的大小,因此,采用前述第一比例因子作为调整系数在最大比特速率和保证比特速率的基础上确定预留资源,不仅能够保证终端设备传输待传输视频流所需的带宽资源,还能够使最终确定出的预留资源比按照传统技术确定的预留资源(即仅基于最大比特速率MBR和保证比特速率GBR确定的预留资源)少。因此,有利于提高带宽资源利用率。
在一种可选的实施方式中,该非I帧为P帧,该非I帧的大小为该P帧的大小;或者,该非I帧包括P帧和B帧,该非I帧的大小为该P帧的大小或该B帧的大小。
本实施方式中,提出当GOP中仅有I帧和P帧时,前述非I帧为P帧;当前述GOP中不仅有I帧和P帧,还有B帧时,前非I帧可能是P帧,也可能是B帧。一般地,P帧的大小大于B帧的大小,但不排除B帧的大小大于P帧的大小的情况,但P帧的大小与B帧的大小相差不大。在实际应用中,可以直接将P帧的大小作为非I帧的大小,或者,直接将B帧的大小作为非I帧的大小。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。其中,GOP的长度用于指示一个GOP中的视频帧的总数。由于,一个GOP包含一个I帧和至少一个非I帧。因此,在已知GOP的长度的情况下,无线网络设备可以推算出同一GOP中的I帧的数量与非I帧的数量之比。此外,该无线网络设备再结合预设的或(默认的) 的帧率,该无线网络设备能够确定传输每一帧所需的时长,进而确定预留资源的带宽上下限持续的时长。
本实施方式中,提出前述视频流特征信息仅包含一个GOP的长度而不包含待传输视频流的帧率。但是,无线网络设备可以使用预设的或(默认的)的帧率确定预留资源的带宽上下限持续的时长。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个GOP的长度和待传输视频流的帧率。其中,GOP的长度用于指示一个GOP中的视频帧的总数。由于,一个GOP包含一个I帧和至少一个非I帧。因此,在已知GOP的长度的情况下,无线网络设备可以推算出同一GOP中的I帧的数量与非I帧的数量之比。
本实施方式中,提出前述视频流特征信息不仅包含一个GOP的长度还包含待传输视频流的帧率。也就是说,该待传输视频流的帧率是终端设备提供的而不是无线网络设备中预设的(或默认的)帧率。其中,默认的帧率可以为如下任意一种:25帧每秒、30帧每秒、60帧每秒或80帧每秒等。
在一种可选的实施方式中,该无线网络设备根据该视频流特征信息、该最大比特速率和该保证比特速率确定预留资源,包括:该无线网络设备根据该第一比例因子和该最大比特速率确定该预留资源的带宽上限,并且,根据该第一比例因子和该保证比特速率确定该预留资源的带宽下限。
在一种可选的实施方式中,该无线网络设备根据该视频流特征信息、该最大比特速率和该保证比特速率确定预留资源的带宽。
应当理解的是,本实施方式提出的预留资源的带宽上下限用于传输携带非I帧的数据包。在实际应用中,该无线网络设备还会将最大比特速率确定为传输携带I帧的数据包的带宽上限,将保证比特速率确定为传输携带I帧的数据包的带宽下限。
在一种可选的实施方式中,该无线网络设备根据该视频流特征信息、该最大比特速率和该保证比特速率确定预留资源,包括:该无线网络设备根据该第一比例因子和该最大比特速率确定该预留资源的带宽上限,并且,根据该第一比例因子和该保证比特速率确定该预留资源的带宽下限;该无线网络设备根据该GOP的长度和待传输视频的帧率确定该带宽上限的资源的使用时长和该带宽下限的资源的使用时长。
本实施方式中,提出无线网络设备不仅确定预留资源的带宽上下限,还确定前述预留资源的带宽上下限的使用时长。由于,GOP的长度指一个GOP中有多少帧,并且,一个GOP中仅有一个I帧,因此,基于GOP的长度可以确定一个GOP中I帧的数量和非I帧的数量。基于前述非I帧的数量和帧率可以确定传输一个GOP中的全部非I帧所需时长(后文称为第一时长),那么,该第一时长为一个GOP中使用前述预留资源的带宽上下限的时长。基于前述I帧的数量和帧率可以确定传输一个GOP中的一个I帧所需时长(后文称为第二时长),那么,该第二时长为一个GOP中使用最大比特速率和保证比特速率作为预留资源的带宽上下限的使用时长。
可选的,该待传输视频流的帧率包含于该视频流特征信息中,或者,该待传输视频流的帧率为该无线网络设备中的预设帧率。
在一种可选的实施方式中,该无线网络设备获取终端设备的视频流特征信息,包括:该无线网络设备从该终端设备接收该视频流特征信息;或者,该无线网络设备接收来自核心网设备的该视频流特征信息。
本实施方式中,提出无线网络设备可以直接从终端设备获取前述视频流特征信息,即该无线网络设备从终端设备接收前述视频流特征信息。另外,无线网络设备可以从核心网设备(例如,IMS核心设备)获取前述视频流特征信息。一般地,IMS核心设备将封装有视频流特征信息的包或消息发送至其他的核心网设备,由其他的核心网设备传输至前述无线网络设备。
第二方面,本申请提供了一种视频流传输方法,该方法涉及终端设备和无线网络设备。其中,终端设备向网络设备发送视频流特征信息,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征,该视频流特征信息用于无线网络设备确定传输该待传输视频流的预留资源。若该网络设备基于前述视频流特征信息确定了预留资源,则该终端设备在传输前述待传输视频流时,将采用该预留资源传输该待传输视频流。
其中,网络设备可以是无线网络设备,即终端设备将前述视频流特征信息发送至前述无线网络设备;也可以是核心网设备,即终端设备将前述视频流特征信息发送至前述核心网设备,以使得该核心网设备将前述视频流特征信息发送至无线网络设备。
在一种可选的实施方式中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
在一种可选的实施方式中,该非I帧为P帧,该非I帧的大小为该P帧的大小;或者,该非I帧包括P帧和B帧,该非I帧的大小为该P帧的大小或该B帧的大小。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。
在一种可选的实施方式中,该视频流特征信息还包括该待传输视频流的帧率。
在一种可选的实施方式中,该终端设备向网络设备发送视频流特征信息包括:该终端设备向该网络设备发送会话建立请求消息,该视频流特征信息携带于该会话建立请求消息中,该会话建立请求消息用于建立传输该待传输视频流的会话;或者,该终端设备向该网络设备发送实时传输控制协议RTCP包,该视频流特征信息携带于该RTCP包中;或者,该终端设备向该网络设备发送实时传输协议RTP媒体流,该视频流特征信息携带于该RTP媒体流中。
本实施方式中,提出终端设备可以在不同的场景下通过不同的消息将前述视频流特征信息发送至核心网设备。
第三方面,本申请提供了一种视频流传输方法,该方法涉及核心网设备和无线网络设备。其中,核心网设备从终端设备接收视频流特征信息,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征;该核心网设备向无线网络设备发送该视频流特征信息、该待传输视频流对应的最大比特速率和该待传输视频流对应的保证比特速率,该视频流特征信息、最大比特速率和保证比特速率用于联合确定传输该待传输视频流的预留资源。
可选的,前述核心网设备为IMS核心设备。
在一种可选的实施方式中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
在一种可选的实施方式中,该非I帧为P帧,该非I帧的大小为该P帧的大小;或者,该非I帧包括P帧和B帧,该非I帧的大小为该P帧的大小或该B帧的大小。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。
在一种可选的实施方式中,该视频流特征信息还包括该待传输视频流的帧率。
在一种可选的实施方式中,该核心网设备向无线网络设备发送该视频流特征信息、最大比特速率和保证比特速率,包括:该核心网设备向该无线网络设备发送服务质量QoS属性值对AVP字段,该QoS AVP字段包括该视频流特征信息、该最大比特速率和该保证比特速率。
本实施例中,提出核心网设备将视频流特征信息、最大比特速率和保证比特速率封装至QoS AVP字段,通过与其他核心网设备之间的信令间接地将QoS AVP字段发送至前述无线网络设备。
在一种可选的实施方式中,该核心网设备从终端设备接收视频流特征信息,包括:该核心网设备从该终端设备接收会话建立请求消息,该视频流特征信息携带于该会话建立请求消息中,该会话建立请求消息用于建立传输该待传输视频流的会话;或者,该核心网设备从该终端设备接收实时传输控制协议RTCP包,该视频流特征信息携带于该RTCP包中;或者,该核心网设备从该终端设备接收实时传输协议RTP媒体流,该视频流特征信息携带于该RTP媒体流中;核心网设备对该RTP媒体流进行解码,获得前述视频流特征信息。
第四方面,本申请提供了一种无线网络设备,包括获取模块、资源预留模块和传输模块。其中:获取模块,用于获取终端设备的视频流特征信息,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征;该获取模块,还用于获取该待传输视频流对应的最大比特速率和保证比特速率;资源预留模块,用于根据该视频流特征信息、该最大比特速率和该保证比特速率确定预留资源,该预留资源用于传输该待传输视频流;传输模块,用于使用该预留资源传输该待传输视频流。
在一种可选的实施方式中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。
在一种可选的实施方式中,该资源预留模块,具体用于根据该第一比例因子和该最大比特速率确定该预留资源的带宽上限,并且,根据该第一比例因子和该保证比特速率确定该预留资源的带宽下限。
在一种可选的实施方式中,该资源预留模块,具体用于根据该第一比例因子和该最大比特速率确定该预留资源的带宽上限,并且,根据该第一比例因子和该保证比特速率确定该预留资源的带宽下限;该无线网络设备根据该GOP的长度和待传输视频的帧率确定该带宽上限的资源的使用时长和该带宽下限的资源的使用时长。
在一种可选的实施方式中,该待传输视频流的帧率包含于该视频流特征信息中,或者,该待传输视频流的帧率为该无线网络设备中的预设帧率。
在一种可选的实施方式中,该获取模块,具体用于:该无线网络设备从该终端设备接收该视频流特征信息;或者,该无线网络设备接收来自核心网设备的该视频流特征信息。
第五方面,本申请提供了一种终端设备,包括:发送模块和传输模块。其中:发送模块,用于向网络设备发送视频流特征信息,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征,该视频流特征信息用于联合确定传输该待传输视频流的预留资源的带宽;传输模块,用于采用该预留资源传输该待传输视频流。
在一种可选的实施方式中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。
在一种可选的实施方式中,该视频流特征信息还包括该待传输视频流的帧率。
在一种可选的实施方式中,该发送模块,具体用于:向该网络设备发送会话建立请求消息,该视频流特征信息携带于该会话建立请求消息中,该会话建立请求消息用于建立传输该待传输视频流的会话;或者,向该网络设备发送实时传输控制协议RTCP包,该视频流特征信息携带于该RTCP包中;或者,向该网络设备发送实时传输协议RTP媒体流,该视频流特征信息携带于该RTP媒体流中。
第六方面,本申请提供了一种核心网设备,包括:接收模块和发送模块。其中,接收模块,用于从终端设备接收视频流特征信息,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征;发送模块,用于向无线网络设备发送该视频流特征信息、最大比特速率和保证比特速率,该视频流特征信息、最大比特速率和保证比特速率用于确定传输该待传输视频流的预留资源。
在一种可选的实施方式中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。
在一种可选的实施方式中,该视频流特征信息还包括该待传输视频流的帧率。
在一种可选的实施方式中,该发送模块,具体用于:向该无线网络设备发送服务质量QoS属性值对AVP字段,该QoS AVP字段包括该视频流特征信息、该最大比特速率和该保证比特速率。
在一种可选的实施方式中,该接收模块,具体用于:从该终端设备接收会话建立请求消息,该视频流特征信息携带于该会话建立请求消息中,该会话建立请求消息用于建立传输该待传输视频流的会话;或者,从该终端设备接收实时传输控制协议RTCP包,该视频流特征信息携带于该RTCP包中;或者,从该终端设备接收实时传输协议RTP媒体流,该视频流特征信息携带于该RTP媒体流中。
第七方面,本申请提供了一种通信装置,该通信装置可以是无线网络设备或无线网络设备中的集成电路芯片。该通信装置包括处理器和存储器。该处理器与存储器耦合,该存储器用于存储程序或指令,当该程序或指令被该处理器执行时,使得该通信装置执行如第一方面或第一方面的任一种实施方式中的方法。
第八方面,本申请提供了一种通信装置,该通信装置可以是终端设备或终端设备中的集成电路芯片。该通信装置包括处理器和存储器。该处理器与存储器耦合,该存储器用于存储程序或指令,当该程序或指令被该处理器执行时,使得该通信装置执行如第二方面或第二方面的任一种实施方式中的方法。
第九方面,本申请提供了一种通信装置,该通信装置可以是核心网设备或核心网设备中的集成电路芯片。该通信装置包括处理器和存储器。该处理器与存储器耦合,该存储器用于存储程序或指令,当该程序或指令被该处理器执行时,使得该通信装置执行如第三方面或第三方面的任一种实施方式中的方法。
第十方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如前述第一方面、第二方面以及第三方面,以及前述各个方面的各种实施方式中的任一种实施方式所介绍的方法。
第十一方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,以使得计算机执行如前述第一方面、第二方面以及第三方面,以及前述各个方面的各种实施方式中的任一种实施方式所介绍的方法。
第十二方面,本申请实施例提供了一种通信系统,该通信系统包括上述第四方面以及第四方面的任一种实施方式中的无线网络设备,上述第五方面以及第五方面的任一种实施方式中的终端设备,以及,上述第六方面以及第六方面的任一种实施方式中的核心网设备。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请中,无线网络设备能够获取到终端设备的视频流特征信息,其中,视频流特征信息能够指示待传输视频流中多个视频帧的大小的分布特征,并且,该无线网络设备还能够获取最大比特速率和保证比特速率。然后,无线网络设备根据前述视频流特征信息、最大比特速率和保证比特速率确定预留资源(也可以被称为预留带宽资源),该预留资源是按照视频流中多个视频帧的大小的分布特征确定的。因此,该预留资源是能够随着视频帧的大小而适应性改变的,而不是直接复用传统技术中的最大比特速率MBR和保证比特速率GBR。因此,有利于提高带宽资源利用率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所使用的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1A为本申请中视频流传输方法涉及的压缩编码原理的一个示意图;
图1B为本申请中视频流传输方法涉及的压缩编码原理的另一个示意图;
图2为本申请中视频流传输方法的一个流程图;
图3A为本申请中视频流传输方法确定的预留资源的一个示例图;
图3B为采用传统技术确定的预留资源的一个示例图;
图4为本申请中视频流传输方法的另一个流程图;
图5为本申请中的通信装置的一个实施例示意图;
图6为本申请中的通信装置的另一个实施例示意图;
图7为本申请中的通信装置的另一个实施例示意图;
图8为本申请中的通信装置的另一个实施例示意图;
图9为本申请中的通信装置的另一个实施例示意图;
图10为本申请中的通信装置的另一个实施例示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例提供了一种视频流传输方法以及通信装置,用于根据视频流中的视频帧的特征确定预留带宽资源,并且,采用前述预留带宽资源传输待传输视频流,可以提高带宽资源利用率。
为便于理解,下面先对本申请中视频流传输方法涉及的压缩编码原理进行简单介绍:
本申请中,终端设备生成的视频将被划分为多幅图像,每一幅图像将被压缩编码为视频帧(也被称为图像帧、压缩帧或编码帧)。一般地,将视频中多个连续的内容差异较小的图像作为一组进行编码,得到的一组视频帧被称为图像组(group of picture,GOP)。一般地,图1A所示,一个GOP包含一个I帧和至少一个P帧;在一些场景中,图1B所示,一个GOP还可能包含B帧,即一个GOP包含一个I帧、至少一个P帧以及至少一个B帧。
其中,I帧指帧内编码图像(intra-coded picture)帧,也被称为关键帧、内容编码帧或内部画面(intra picture)帧。该I帧表示采用这一个帧可以解码出这一帧对应的完整图像。也可以理解为,在压缩编码时,将某一幅图像完整地保留在了前述I帧,并且,在解码时使用前述I帧可获得前述图像,而不需要借助其他帧。通常前述I帧为每个GOP的第一个 帧,一个GOP中有一个I帧。一般地,将两个相邻的I帧之间的距离称为GOP的长度。由于,每个GOP中仅有一个I帧,因此,前述GOP的长度也可以理解为是一个GOP中包含视频帧的数量。
P帧指前向预测编码图像(predictive-coded picture)帧,也被称为前向预测帧或前向参考帧。该P帧记录的是这一个P帧(即本P帧)与之前的一个I帧(或P帧)的差别。在解码P帧时,将之前缓存的图像(I帧解码的图像或前一个P帧解码的图像)叠加上本P帧定义的差别,从而生成本P帧对应的完整图像。也就是说,前述P帧可以理解为是本P帧对应的完整图像与前一帧对应的完整图像的差别,仅有一个P帧无法解码出完整的图像。一般地,在同一个GOP中,一个I帧的大小大于一个P帧的大小,并且,一个I帧的大小与一个P帧的大小相差较大。也可以理解为,一个I帧所占数据量与一个P帧所占数据量的差值大于某个较大的阈值。另外,当一个GOP中包含多个P帧时,该GOP中的各个P帧的大小可以是一致的。
B帧指双向预测编码图像(bi-directionally predicted picture)帧,也被称为双向内插帧、双向参考帧或双向差别帧。该B帧记录的是这一个B帧(即本B帧)与前后帧(可能是I帧、P帧或B帧)的差别。在解码B帧时,需要取得之前的缓存图像,然后解码之后的图像,将前后图像与本B帧数据的叠加可以获得本B帧对应的完整图像。一般地,在同一个GOP中,一个B帧的大小与一个P帧的大小相近,即一个B帧所占数据量与一个P帧所占数据量的差值小于一个较小的阈值。在常见的示例中,一个B帧的大小小于一个P帧的大小,即一个B帧所占的数据量小于一个P帧所占的数据量。另外,当一个GOP中包含多个B帧时,该GOP中的各个B帧的大小是一致的。
其中,采用前述压缩编码原理的压缩编码标准可以是动态图像专家组(moving picture experts group,MPEG)制定的H.26X系列压缩标准,例如,H.265、H.264以及H.263等;还可以是其他类似于前述视频帧的编码方式的压缩编码标准。应当理解的是,本申请中的视频流传输方法可以应用于传输采用前述任意一种压缩编码标准进行压缩编码的视频流。
本申请提出的视频流传输方法可以应用于视频通话、增强现实(augmented reality,AR)业务、虚拟现实(virtual reality,VR)业务以及混合现实(mixed reality,MR)业务等场景。该视频流传输方法涉及终端设备和网络设备。
其中,终端设备包括向用户提供语音和/或数据(例如,媒体流)连通性的设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网(例如,4G核心网(evolved packet core,EPC)或5G核心网(5th generation core,5GC))进行通信,可以与RAN交换语音和/或数据(例如,媒体流)。该终端设备可以包括用户设备(user equipment,UE),例如,手机(mobile phone)、便携式电脑(tablet personal computer,tablet PC)以及其他能够上传或下载媒体流的设备等。应当理解的是,本申请实施例中的终端设备可以是上述任意一种设备或芯片,具体此处不做限定。无论作为设备还是作为芯片,该终端设备都可以作为独立的产品进行制造、销售或者使用。在本实施例以及后续实施例中,仅以终端设备为例进行介绍。
此外,本申请所涉及的无线网络设备是当前为终端设备提供服务的无线接入网(radio access network,RAN)设备,可以是4G无线接入网络设备,也可以是4G接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。例如,接入网设备可以为LTE基站,也可以被称为长期演进LTE系统或演进的LTE系统(long term evolution advanced,LTE-A)中的演进型基站(evolutional node B,NodeB或eNB或e-NodeB)。此外,前接入网设备也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。应当理解的是,本申请实施例中的无线网络设备可以是上述任意一种设备或上述设备中的芯片,具体此处不做限定。无论作为设备还是作为芯片,该无线网络设备都可以作为独立的产品进行制造、销售或者使用。在本实施例以及后续实施例中,仅以无线网络设备为例进行介绍。
下面将结合图2对本申请中视频流传输方法的流程进行介绍:
步骤201a,无线网络设备获取终端设备的视频流特征信息。
其中,该视频流特征信息指示待传输视频流中多个视频帧的分布特征。
其中,视频帧的分布特征包括视频帧的大小(size),视频帧的大小也被称为视频帧的尺寸,可以理解为该视频帧所占用的数据量。一般地,视频帧以字节为单位,因此,前述视频帧的大小也可以理解为该视频帧所占用的字节数。另外,分布特征还可以包括多个视频帧中I帧的数量和非I帧的数量之比。因此,前述视频流特征信息,可以理解为,能够反映视频流中各个视频帧的大小,以及前述不同大小的视频帧是如何排列分布的。
具体地,前述视频流特征信息包括第一比例因子,该第一比例因子是同一GOP中一个非I帧的大小与一个I帧的大小之比,而该GOP是前述待传输视频流的一个GOP。因此,该第一比例因子能够反映出待传输视频流中的同一个GOP中非I帧的大小和I帧的大小的比例情况。
其中,前述非I帧指该GOP中除了I帧之外的视频帧。在一种可能的实施方式中,如图1A所示,前述GOP包含I帧和P帧。此时,前述非I帧为P帧,第一比例因子中非I帧的大小为该P帧的大小。在另一种可能的实施方式中,如图1B所示,前述GOP包含I帧、P帧和B帧。此时,前述非I帧包括P帧和B帧,第一比例因子中非I帧的大小为该P帧的大小或该B帧的大小。一般地,P帧的大小大于B帧的大小,但不排除B帧的大小大于P帧的大小的情况,但P帧的大小与B帧的大小相差不大。在实际应用中,可以直接将P帧的大小作为非I帧的大小,或者,直接将B帧的大小作为非I帧的大小。
由于,同一个GOP中一个非I帧的大小远小于一个I帧的大小,因此,前述第一比例因子的取值介于0到1之间。该第一比例因子可以表示为分数、小数等形式。示例性的,假设待传输视频流中的I帧的大小为10个字节,P帧的大小为5个字节,那么,前述第一比例因子可以表示为“5:10”、“1:2”、“0.5”或“1/2”等。具体本申请不做限定。
进一步地,前述视频流特征信息还包括GOP的长度,该GOP为第一比例因子对应的 GOP,也就是说,第一比例因子中的I帧和非I帧属于前述GOP的长度对应的GOP。
其中,GOP的长度用于指示一个GOP中的视频帧的总数(数量)。例如,图1A的示例中,GOP的长度为6。由于,一个GOP包含一个I帧和至少一个非I帧。因此,在已知GOP的长度的情况下,无线网络设备可以推算出同一GOP中的I帧的数量与非I帧的数量之比。例如,图1A的示例中,该GOP中I帧的数量与非I帧的数量之比为1:5。
可选的,前述视频流特征信息还包括该待传输视频流的帧率。其中,帧率指单位时间传输视频帧的数量,该帧率的单位一般为帧每秒(即帧/s)。若该视频流特征信息中不包含前述待传输视频流的帧率,则无线网络设备将采用预设的帧率(或默认的帧率)来传输视频流。其中,预设的帧率(或默认的帧率)可以为25帧/s、30帧/s、60帧/s或80帧/s。具体本申请不做限定。
由于,GOP的长度能够反映出一个GOP有多少帧,因此,基于前述GOP的长度和帧率可以确定出传输一个视频帧所需要的时长。又由于,基于GOP的长度能够推算出I帧的数量和非I帧的数量之比,因此,基于前述GOP的长度和帧率可以确定出传输一个I帧所需要的时长(为便于介绍,后文称为第一时长)以及传输该GOP中的全部非I帧所需要的时长(为便于介绍,后文称为第二时长)。
应当理解的是,该无线网络设备可以通过多种方式获取前述视频流特征信息。
在一种可选的实施方式中,无线网络设备可以直接从终端设备获取前述视频流特征信息,即该无线网络设备从终端设备接收前述视频流特征信息。
在另一种可选的实施方式中,无线网络设备可以从核心网设备(例如,IMS核心设备)获取前述视频流特征信息。一般地,IMS核心设备将封装有视频流特征信息的包或消息发送至其他的核心网设备,由其他的核心网设备传输至前述无线网络设备。IMS核心设备可以称为IMS服务器。
步骤201b,无线网络设备获取该待传输视频流对应的最大比特速率和保证比特速率。
本申请中,最大比特速率指核心网设备确定的传输前述待传输视频流所需的比特速率上限。该最大比特速率可以是传统技术中的服务质量QoS参数最大比特速率MBR,表示系统允许通过的数据流的比特速率上限,超过最大比特速率的数据流量可能会丢弃。传统技术中,无线网络设备根据最大比特速率MBR确定预留资源的带宽上限。
本申请中,保证比特速率指核心网设备确定的能够传输前述待传输视频流所需的比特速率下限。该保证比特速率可以是传统技术中的服务质量QoS参数保证比特速率GBR,表示在网络资源紧张的情况下,系统能够保证通过的数据流的比特速率下限。传统技术中,无线网络设备根据保证比特速率GBR确定预留资源的带宽下限。
应当注意的是,本申请中的最大比特速率也可以是其他表示传输速率上限的参数。本申请仅采用“最大比特速率”这个称谓进行介绍,在后续演进制式或其他协议中,该“最大比特速率”也可以替换为其他称谓。类似的,本申请中的保证比特速率也可以是其他表示传输速率下限的参数。本申请仅采用“保证比特速率”这个称谓进行介绍,在后续演进制式或其他协议中,该“保证比特速率”也可以替换为其他称谓。
此外,前述待传输视频流对应的最大比特速率和保证比特速率,也可以理解为,待传 输视频流所在的会话的最大比特速率和保证比特速率;也可以理解为,传输该视频流(即前述待传输视频流)这项业务所需的最大比特速率和保证比特速率。
具体地,该无线网络设备从核心网设备接收前述待传输视频流对应的最大比特速率和保证比特速率。一般地,最大比特速率和保证比特速率由核心网设备(例如,IMS核心设备)确定,并且,由该IMS核心设备将最大比特速率和保证比特速率封装至一个包或一个消息中,通过其他的核心网设备传输至前述无线网络设备。示例性的,封装在前述服务质量(quality of service,QoS)属性值对(attribute-value pair,AVP)中。
应当理解的是,步骤201a和步骤201b之间没有明确的时间先后顺序的限定,该无线网络设备可能先执行步骤201a再执行步骤201b,也可能先执行步骤201b再执行步骤201a,还可能同时执行前述步骤201a和步骤201b。具体本申请不做限定。另外,当无线网络设备同时执行前述步骤201a和步骤201b时,该无线网络设备可以通过某一个消息便获得前述视频流特征信息、最大比特速率和保证比特速率。例如,核心网中的IMS核心设备将视频流特征信息、最大比特速率和保证比特速率封装至一个消息中,通过其他的核心网设备传输至前述无线网络设备中。
步骤202,无线网络设备根据视频流特征信息、最大比特速率和保证比特速率确定预留资源。
其中,该预留资源用于传输该待传输视频流。由于,前述待传输视频流包括多个视频帧,前述多个视频帧是分别封装在一个个数据包中进行传输的,传输前述携带视频帧的数据包之前可以在发送端与接收端之间建立会话,该会话主要用于传输前述待传输视频流。因此,该预留资源可以理解为是承载前述用于传输待传输视频流的会话的资源。
此外,该预留资源指预留的带宽资源,可以用带宽上下限来表示。由于,不同视频帧的大小不同,I帧的数量与非I帧的数量也不同,因此,参考了视频流特征信息确定的预留资源是随着视频流中各个帧的大小而动态变化的。具体地,可以将预留资源分为传输I帧对应的预留资源(为便于介绍,后文称为第一预留资源)和传输非I帧对应的预留资源(为便于介绍,后文称为第二预留资源)。其中,第一预留资源对应的时长为传输前述GOP中的一个I帧所需要的时长(即第一时长),第二预留资源对应的时长为传输前述GOP中的全部非I帧所需要的时长(即第二时长)。
本实施例中,无线网络设备根据视频流特征信息、最大比特速率和保证比特速率确定传输非I帧的预留资源的带宽上下限(即第二预留资源的带宽上下限),并且,将最大比特速率和保证比特速率作为传输I帧的预留资源的带宽上下限(即第一预留资源的带宽上下限)。
其中,无线网络设备可以根据该视频流特征信息、该最大比特速率和该保证比特速率确定预留资源的带宽。
具体地,该无线网络设备根据该第一比例因子和该最大比特速率确定该预留资源的带宽上限。如图3A所示,无线网络设备将前第一比例因子与最大比特速率的乘积作为第二预留资源的带宽上限,并且,将最大比特速率作为第一预留资源的带宽上限。此外,该无线网络设备根据该第一比例因子和该保证比特速率确定前述第二预留资源的带宽下限,并 且,将保证比特速率作为前述第一预留资源的带宽下限。
此外,该无线网络设备根据该GOP的长度和待传输视频的帧率确定该带宽上限的资源的使用时长和该带宽下限的资源的使用时长。也就是说,该无线网络设备根据该GOP的长度和待传输视频的帧率确定第二预留资源的带宽上下限的使用时长(即第二时长),以及第一预留资源的带宽上下限的使用时长(即第一时长)。由于,GOP的长度指一个GOP中有多少帧,并且,一个GOP中仅有一个I帧,因此,基于GOP的长度可以确定一个GOP中I帧的数量和非I帧的数量,那么,基于GOP的长度便可以确定I帧的数量与非I帧的数量的比值。
为便于理解,下面结合图3A所示的示例,以最大比特速率为MBR且保证比特速率为GBR例进行介绍。如图3A所示,基于前述非I帧的数量和帧率可以确定传输一个GOP中的全部非I帧所需时长(例如,图3A中的第二时长),那么,该第二时长为一个GOP中使用前述第二预留资源的带宽上下限(其中,第一比例因子×MBR为上限,第一比例因子×GBR为下限)的时长。基于前述I帧的数量和帧率可以确定传输一个GOP中的一个I帧所需时长(例如,图3A中的第一时长),那么,该第一时长为一个GOP中使用前述第一预留资源的带宽上下限(其中,MBR为上限,GBR为下限)时长。
而在图3B所示的采用传统技术预留资源的方案中,无论视频流中的视频帧的大小如何变化,该预留资源的带宽上限恒定为MBR,该预留资源的带宽下限恒定为GBR。因此,采用前述第一比例因子作为调整系数在MBR和GBR的基础上确定预留资源,不仅能够保证终端设备传输待传输视频流所需的带宽资源,还能够使最终确定出的预留资源比按照传统技术确定的预留资源(即仅基于MBR和GBR确定的预留资源)少。因此,有利于提高带宽资源利用率,尤其是针对带宽资源有限的无线空口场景。
步骤203,无线网络设备使用该预留资源传输该待传输视频流。
本实施例中,待无线网络设备确定了前述预留资源之后,当该终端设备开始传输该待传输视频流时,该无线网络设备也将采用前述预留资源传输待传输视频流。例如,采用前述预留资源接收终端设备发送的视频流或向终端设备发送视频流。
此外,本申请提出的方案是无线网络设备采用第一比例因子作为调整参数,将最大比特速率(例如,基于传统技术确定的MBR)和保证比特速率(例如,基于传统技术确定的GBR)作为调整基准,计算出匹配待传输视频流的视频帧特征信息的带宽上限和带宽下限作为预留资源的带宽上下限。该方案确定的预留资源考虑了视频流中各个帧的特征。由于,第一比例因子的取值介于0到1之间,采用本申请的方法预留的带宽资源比传统技术方案确定的预留资源更少,有利于提高带宽资源利用率。另外,本申请中,可以不需要IMS核心设备更改计算MBR和GBR的规则,即使随着网络技术的发展,IMS核心设备(或其他的应用服务AS或应用功能AF)变更了计算MBR和/或GBR的规则,本申请提出的方案也结合采用新规则计算出的MBR和GBR确定预留资源。因此,本申请提出的方案具有较高的可行性,易于实现。
下面将结合图4对本申请中视频流传输方法的流程进行进一步介绍。其中,该视频流 传输方法涉及终端设备、无线网络设备以及核心网络设备(包括IMS核心设备)。
步骤401,终端设备向IMS核心设备发送视频流特征信息。
其中,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征。该视频流特征信息包括第一比例因子和GOP的长度。可选的,该视频流特征信息还可以包含帧率。具体请参阅前述步骤201a中的相关介绍,此处不再赘述。其中,该IMS核心设备包含代理呼叫会话控制功能(proxy-call session control function,P-CSCF)、服务呼叫会话控制功能(service-call session control function,S-CSCF)、IMS接入网关(IMS access gateway,IMS-AGW)等设备。其中,该IMS核心设备可以为应用服务器(application server,AS)或应用功能(application function,AF)。
在实际应用中,由于应用场景不同,前述该终端设备发送给IMS核心设备的视频流特征信息包含的具体内容可能不同。具体地,发送该视频流特征信息可以有如下多种实现方式:
实现方式一,在会话建立场景中,IMS核心设备首次获得该终端设备待传输视频流的视频流特征信息。此时,该视频流特征信息包括GOP的长度和第一比例因子。可选的,本场景中的视频流特征信息可以包括待传输视频流的帧率。若该视频流特征信息中不包含前述待传输视频流的帧率,则无线网络设备将采用预设的帧率(或默认的帧率)。
本实现方式中,终端设备可以将视频流特征信息携带于会话建立请求消息中,以发送至前述IMS核心设备。其中,该会话建立请求消息用于建立传输该待传输视频流的会话。可选的,该会话建立请求消息是基于会话描述协议(session description protocol,SDP)协议的消息。例如,该会话建立请求消息可以为SDP offer。
前述基于SDP协议的会话建立请求消息可以通过新增SDP参数的方式,将前述GOP的长度和第一比例因子携带于前述新增的SDP参数中。示例性的,该SDP offer中新增的SDP参数包括:“SDP:bw-N-GoP”字段和“SDP:bw-SizeRatio-PFandIF”字段。其中,“SDP:bw-N-GoP”字段表示待传输视频流的GOP的长度。其中,SDP参数direction=send,表示上行视频编码时的GoP的长度;direction=recv,表示下行视频编码的GoP的长度;direction=sendrecv,表示上下行视频编码的GoP的长度。另外,“SDP:bw-SizeRatio-PFandIF”字段表示该GOP中一个非I帧的大小与一个I帧的大小的比值,即前述第一比例因子。
实现方式二,在会话建立完成之后,视频流画面切换的场景中,若该视频流特征信息仅包括第一比例因子,而不包括待传输视频流的GOP的长度,则表示相比于会话建立场景中所使用的视频流特征信息中的第一比例因子发生了改变,而GOP的长度未发生改变。
实现方式三,在会话建立完成之后,视频流画面切换的场景中,若该视频流特征信息仅包括待传输视频流的一个GOP的长度,而不包括第一比例因子,则表示相比于会话建立场景中所使用的视频流特征信息中的GOP的长度发生了改变,而第一比例因子未发生改变。
在前述实现方式二和实现方式三中,终端设备可以通过控制面或媒体面的消息将视频流特征信息发送到IMS核心设备。例如,终端设备将视频流特征信息携带于实时传输控制协议(real-time control protocol,RTCP)包(或RTCP消息)中,以发送至前述IMS核心 设备。或者,该终端设备通过实时传输协议(real-time transport protocol,RTP)媒体流,以发送至前述IMS核心设备。
步骤402,IMS核心设备将视频流特征信息、最大比特速率和保证比特速率封装至QoS AVP字段中。
一般地,IMS核心设备会先基于多方面的因素针对该待传输视频流确定一个最大比特速率和一个保证比特速率,然后,该IMS核心设备将收到的视频流特征信息、最大比特速率和保证比特速率封装至QoS AVP字段中。
其中,该IMS核心设备可以基于运营商具体政策(operator specific policy)、应用功能的应用标识(AF application identifier)AVP、编码数据(codec data)AVP、流用途(flow-usage)AVP、RTCP流(RTCP flows)等策略或因素确定最大比特速率。以传统技术确定MBR为例,IMS核心设备会先查看运营商具体政策,即运营商针对该终端设备是否设置有具体的政策,例如,该终端设备为优先级较高的用户,IMS核心设备优先为该终端设备的视频流传输业务设置较高的比特速率作为MBR。若该IMS核心设备未获得与该终端设备相关的运营商具体政策,或者,该IMS核心设备未获得与该终端设备的视频流业务相关的运营商具体政策,则该IMS核心设备会查询应用功能的应用标识AVP,并基于应用功能的应用标识AVP确定为该终端设备的视频流业务设置MBR。若该IMS核心设备未获得应用功能的应用标识AVP,该IMS核心设备还将基于编码数据AVP、流用途AVP以及RTCP流等确定MBR。另外,该IMS核心设备还可能综合考虑前述运营商具体政策、应用功能的应用标识AVP、编码数据AVP、流用途AVP、RTCP流等策略或因素,以确定该终端设备传输该待传输视频流的MBR。具体此处不做限定。
另外,该IMS核心设备可以基于运营商具体政策(operator specific policy)、应用功能的应用标识(AF application identifier)AVP、编码数据(codec data)AVP、流描述(flow description)AVP等策略或因素确定保证比特速率。以传统技术确定GBR为例,IMS核心设备会先查看运营商具体政策,即运营商针对该终端设备是否设置有具体的政策。例如,该终端设备为优先级较高的用户,IMS核心设备优先为该终端设备的视频流传输业务设置较高的比特速率作为GBR。例如,该终端设备为优先级较低的用户,IMS核心设备可以为该终端设备的视频流传输业务设置较低的比特速率作为GBR。若该IMS核心设备未获得与该终端设备相关的运营商具体政策,或者,该IMS核心设备未获得与该终端设备的视频流业务相关的运营商具体政策,则该IMS核心设备会查询应用功能的应用标识AVP,并基于应用功能的应用标识AVP确定为该终端设备的视频流业务设置GBR。若该IMS核心设备未获得应用功能的应用标识AVP,该IMS核心设备还将基于编码数据AVP以及流描述AVP等确定GBR。另外,该IMS核心设备还可能综合考虑前述运营商具体政策、应用功能的应用标识AVP、编码数据AVP、以及流描述AVP等策略或因素,以确定该终端设备传输该待传输视频流的GBR。具体此处不做限定。
其中,IMS核心设备可以通过接收RTCP包来获取终端设备发送的视频流特征信息,IMS核心设备还可以对RTP媒体流进行解码,来获得终端设备发送的视频流特征信息。
步骤403,IMS核心设备通过QOS AVP字段向无线网络设备发送视频流特征信息。
本步骤中,IMS核心设备通过QOS AVP字段发送视频流特征信息至其他核心网设备中,以使得其他核心网设备将前述QOS AVP字段发送至无线网络设备。
具体地,在4G应用场景中,其他网络设备包括:策略与计费规则功能单元(policy and charging rules function,PCRF)、服务网关(serving gateway,SGW/S-GW)、分组数据网网关(packet data network gateway,PDN GW,PGW/P-GW)以及移动管理实体(mobility management entity,MME)等。
示例性的,该IMS核心设备将通过认证授权请求(authentication authorization request,AAR)消息将前述QOS AVP字段发送至PCRF;然后,该PCRF将AAR消息中的QOS AVP字段取出,并将该QOS AVP字段封装至重鉴权请求(re-authentication request,RAR)消息中,通过RAR消息发送至PGW/SGW;然后,PGW/SGW通过创建承载请求(create bearer request)消息将前述QOS AVP字段发送至MME;然后,MME分别通过会话管理请求(session management request)消息和承载建立请求(bearer setup request)消息将前述QOS AVP字段发送至无线网络设备,即前述会话管理请求消息中携带了QOS AVP字段,该承载建立请求中也携带了QOS AVP字段。
具体地,在5G应用场景中,IMS核心设备可以替换为应用服务器AS或应用功能AF。其他网络设备包括:策略控制功能(policy control function,PCF)、会话管理功能(session management function,SMF)以及接入和移动性管理功能(access and mobility management function,AMF)等。IMS核心设备通过PCF、SMF和AMF将视频流特征信息发送到无线网络设备。
示例性的,该IMS核心设备将通过策略授权更新(policy authorization update)消息(例如,Npcf policy authorization update message)将前述QOS AVP字段发送至PCF;然后,该PCF将策略授权更新消息中的QOS AVP字段存储备份,并将该QOS AVP字段封装至策略控制更新(policy control_update)消息(例如,Npcf SM policy control_update message,其中,Npcf指借助PCF展示的基于服务化的接口(service-based interface exhibited by PCF))中,通过前述策略控制更新消息发送至SMF;然后,SMF通过N1接口和N2接口之间的消息转发(例如,Namf_Communication_N1N2Message Transfer)将前述QOS AVP字段发送至AMF;然后,AMF通过N2消息(N2message)将前述QOS AVP字段发送至无线网络设备。其中,N1接口和N2接口为3GPP协议中定义的接口,N1接口为UE(例如,前述第一终端设备)与AMF之间的接口,N2接口为RAN(例如,无线网络设备)与AMF之间的接口。
步骤404,无线网络设备根据视频流特征信息、最大比特速率和保证比特速率确定预留资源。
其中,该预留资源为预留的带宽资源,可以采用某一时刻的带宽上下限来度量该时刻预留的带宽资源。本实施例中,预留资源分为传输I帧对应的预留资源(即前文介绍的第一预留资源)和传输非I帧对应的预留资源(即前文介绍的第二预留资源)。其中,第一预留资源采用第一预留资源的带宽上下限来度量;第二预留资源采用第二预留资源的带宽上下限来度量。
其中,视频流特征信息包括第一比例因子。该无线网络设备根据第一比例因子和最大比特速率确定第二预留资源的带宽上限,并且,该无线网络设备根据第一比例因子和保证比特速率确定第二预留资源的带宽下限。例如,无线网络设备将前第一比例因子与最大比特速率的乘积作为第二预留资源的带宽上限,并且,将前第一比例因子与保证比特速率的乘积作为第二预留资源的带宽下限。
为便于理解,以图1A和图3A为例,并且,以最大比特速率为MBR,保证比特速率为GBR为例进行介绍。假设,待传输视频流中的I帧的大小为10个字节,P帧的大小为5个字节,那么,无线网络设备收到的第一比例因子的取值为0.5。当然,该无线网络设备收到的第一比例因子可以以“5:10”、“1:2”、“0.5”或“1/2”等方式表示,具体本申请不做限定。例如,无线网络设备收到的消息封装有:“SDP:bw-SizeRatio-PFandIF=5:10”字段;或者,无线网络设备收到的消息封装有:“SDP:bw-SizeRatio-PFandIF=0.5”字段等。但是,该第一比例因子的表示形式不会影响第一比例因子的取值,即前述任意一种表示形式的第一比例因子的取值均为0.5。另外,假设,无线网络设备收到的MBR的取值为50Mbps,并且,GBR的取值为10Mbps。例如,无线网络设备收到消息封装有:“MaxSupBw=50”,“MinDesBw=10”。此时,该无线网络设备可以计算出:第二预留资源的带宽上限=bw-SizeRatio-PFandIF×MaxSupBw=0.5×50=25Mbps,即图3A所示示例中第二时长对应的带宽上限;第二预留资源的带宽下限=bw-SizeRatio-PFandIF×MinDesBw=0.5×10=5Mbps,即图3A所示示例中第二时长对应的带宽下限。此外,该无线网络设备还直接基于MBR确定第一预留资源的带宽上限,并且,基于GBR确定第一预留资源的带宽下限:第一预留资源的带宽上限=MaxSupBw=50Mbps,即图3A所示示例中第一时长对应的带宽上限;第一预留资源的带宽下限=MinDesBw=10Mbps,即图3A所示示例中第一时长对应的带宽下限。
此外,假设一个GOP包含一个I帧和5个P帧(如图1A所示),此时,GOP的长度为6。该无线网络设备收到的消息中封装有:“SDP:bw-N-GoP=6”,表示待传输视频流的一个GOP中有6个视频帧。又假设,帧率为30帧/s,该帧率可以是无线网络设备收到的,也可以是无线网络设备中预设的帧率。基于前述帧率可以确定出,传输一个视频帧所需的时间为1/30s。由于,传输每一个视频帧所需的时长是一致的,因此,传输1个I帧所需的时长为1/30s,即第一时长=1/30s;传输5个P帧所需的时长为1/6s,即第二时长=1/6s。
综上所述,在本示例中,针对预留资源的带宽上限,该无线网络设备会先分配50Mbps作为带宽上限以及10Mbps作为带宽下限,并持续1/30s;然后,分配25Mbps作为带宽上限以及5Mbps作为带宽下限,并持续1/6s。若待传输视频流的视频流特征信息未发生改变,则该无线网络设备继续按照前述规律分配预留带宽,依次循环,直到该无线网络设备采用新的视频流特征信息重新预留资源。由此可见,该无线网络设备确定预留资源形成了变化曲线(如图3A所示),而不是传统技术中恒定不变的直线(如图3B所示)。
步骤405,无线网络设备通过无线资源控制(radio resource control,RRC)信令为终端设备配置前述预留资源。
具体地,无线网络设备向终端设备发送RRC连接重配置(RRC connection configuration)消息,以使得该无线网络设备与前述终端设备建立RRC连接,并且,将预留资源分配给该 终端设备。然后,该终端设备向该无线网络设备发送RRC连接完成(RRC connection complete),以表示该终端设备与该无线网络设备之间的RRC连接建立完成。
步骤406,无线网络设备通过其他核心网络设备向IMS核心设备发送响应消息。
本步骤中,无线网络设备通过其他核心网络设备向IMS核心设备发送响应消息,以使得该IMS核心设备获知已将前述QOS AVP字段发送给无线网络设备,并且,该无线网络设备已经基于QOS AVP字段中的信息(即视频流特征信息、最大比特速率和保证比特速率)为终端设备分配了预留资源(即带宽资源)。
具体地,在4G应用场景中,其他网络设备包括:PCRF、PGW/SGW、MME等。
示例性的,该无线网络设备向MME发送会话管理响应(session management response)消息和承载建立响应(bearer setup response)消息;然后,MME向PGW/SGW发送创建承载响应(create bearer response)消息;然后,PGW/SGW向PCRF发送重鉴权应答(re-authentication answer,RAA)消息;然后,PCRF向IMS核心设备发送认证授权应答(authentication authorization answer,AAR)消息。
具体地,在5G应用场景中,其他网络设备包括:策略控制功能PCF、会话管理功能SMF以及接入和移动性管理功能AMF等。
示例性的,该无线网络设备通过N2消息(N2 message)向AMF发送响应;然后,AMF通过N1接口和N2接口之间的消息转发(例如,Namf_Communication_N1N2Message Transfer,其中,Namf指借助AMF展示的基于服务化的接口(Service-based interface exhibited by AMF))向SMF发送响应;然后,SMF通过策略控制更新响应(policy control_update response)消息向PCF发送响应;然后,PCF通过策略授权更新响应(policy authorization update response)消息向IMS核心设备发送响应。
步骤407,IMS核心设备向该终端设备发送会话建立响应。
其中,该会话建立响应可以是基于SDP协议的响应,例如,该会话建立响应为SDP answer。
当该终端设备收到前述会话建立响应时,该终端设备便可以开始采用预留资源传输RTP媒体流。其中,该RTP媒体流包含前述待传输视频流。
在本实施例中,当前述视频流特征信息发生改变时,则该终端设备将向IMS核心设备发送新的视频流特征信息。当视频流特征信息中的任意一项参数发生改变时,该终端设备可以将该视频流特征信息中变更的参数(例如,第一比例因子、GOP的长度以及帧率等)发送至IMS核心设备。例如,假设,待传输视频流的GOP的长度发生改变,并且,非I帧的大小和I帧的大小之比未发生改变(即第一比例因子未发生改变)。此时,该终端设备将向IMS核心设备发送变更后的GOP的长度,该IMS核心设备将最大比特速率、保证比特速率以及变更后的GOP的长度封装至一个消息中,并通过其他的核心网设备传输至前述无线网络设备中。然后,该无线网络设备基于更新的GOP的长度和第一比例因子重新确定预留资源的带宽上下限。
本实施例中,无线网络设备能够获取到终端设备的视频流特征信息,其中,视频流特征信息能够指示待传输视频流中多个视频帧的大小的分布特征,并且,该无线网络设备还 能够获取最大比特速率和保证比特速率。然后,无线网络设备根据前述视频流特征信息、最大比特速率和保证比特速率确定预留资源(也可以被称为预留带宽资源),该预留资源是按照视频流中多个视频帧的大小的分布特征确定的。因此,该预留资源是能够随着视频帧的大小而适应性改变的,而不是直接复用传统技术中的最大比特速率MBR和保证比特速率GBR。因此,有利于提高带宽资源利用率。
如图5所示,为本实施例提供的一种通信装置50的结构示意图。应当理解的是,前述图2或图4对应的方法实施例中的终端设备可以基于本实施例中图5所示的通信装置50的结构。
该通信装置50包括至少一个处理器501、至少一个存储器502和至少一个收发器503。其中,处理器501、存储器502和收发器503相连。可选的,该通信装置50还可以包括输入设备505、输出设备506和一个或多个天线504。其中,天线504与收发器503相连,输入设备505、输出设备506与处理器501相连。
本实施例中,该存储器502主要用于存储软件程序和数据。存储器502可以是独立存在,与处理器501相连。可选的,该存储器502可以和该处理器501集成于一体,例如集成于一个或多个芯片之内。其中,该存储器502能够存储执行本申请实施例的技术方案的程序代码,并由处理器501来控制执行,被执行的各类计算机程序代码也可被视为是处理器501的驱动程序。应当理解的是,本实施例中的图5仅示出了一个存储器和一个处理器,但是,在实际应用中,该通信装置50可以存在多个处理器或多个存储器,具体此处不做限定。此外,该存储器502也可以称为存储介质或者存储设备等。该存储器502可以为与处理器处于同一芯片上的存储元件(即片内存储元件),或者为独立的存储元件,本申请实施例对此不做限定。
本实施例中,该收发器503可以用于支持该通信装置50与接入网设备之间射频信号的接收或者发送,收发器503可以与天线504相连。收发器503包括发射机Tx和接收机Rx。具体地,一个或多个天线504可以接收射频信号,该收发器503的接收机Rx用于从天线504接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器501,以便处理器501对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器503中的发射机Tx还用于从处理器501接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线504发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,前述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
应当理解的是,前述收发器503也可以称为收发单元、收发机、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功 能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
可选的,前述发射机Tx也被称为发射通道或射频(radio frequency,RF)发射通道。在本申请中,发射通道可以是按照如下方式工作的,但不仅限于如下方式:发射通道可接收来自基带芯片的基带信号,对基带信号进行射频处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线504将该射频信号辐射到空间中。
此外,前述处理器501可以是基带处理器,也可以是中央处理单元(central processing unit,CPU),基带处理器和CPU可以集成在一起或者分开。该处理器501可以用于为该终端设备实现各种功能,例如用于对通信协议以及通信数据进行处理,或者用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据;或者用于协助完成计算处理任务,例如对图形图像处理或者音频处理等等;或者处理器501用于实现上述功能中的一种或者多种。该输出设备506和处理器501通信,可以以多种方式来显示信息,具体从此处不做限定。
此外,通信装置50还包含编码器和解码器。其中,编码器将视频中的多张图像分别进行编码,生成一段一段的GOP,即待传输视频流;解码器在播放时读取该待传输视频流中的一段一段的GOP进行解码,然后再将读取到的画面进行渲染显示。
具体地,在该通信装置50中,收发器503通过天线504向网络设备发送视频流特征信息,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征,该视频流特征信息用于确定传输该待传输视频流的预留资源。处理器501控制编码器对视频进行编码压缩得到待传输视频流。该收发器503还通过天线504从网络设备接收关于预留资源的配置,待配置完成之后,该处理器501采用前述预留资源传输该待传输视频流。
其中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
可选的,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。
可选的,该视频流特征信息还包括该待传输视频流的帧率。
在一种可选的实施方式中,收发器503通过天线504向网络设备发送会话建立请求消息,该视频流特征信息携带于该会话建立请求消息中,该会话建立请求消息用于建立传输该待传输视频流的会话。
在一种可选的实施方式中,收发器503通过天线504向该网络设备发送实时传输控制协议RTCP包,该视频流特征信息携带于该RTCP包中。
在一种可选的实施方式中,收发器503通过天线504向该网络设备发送实时传输协议RTP媒体流,该视频流特征信息携带于该RTP媒体流中。
其余可以参考上述实施例中终端设备的方法,此处不再赘述。
如图6所示,为本实施例提供的另一种通信装置60的结构示意图。应当理解的是,前述图2或图4对应的方法实施例中的无线网络设备可以基于本实施例中图6所示的通信装置60的结构。该无线网络设备可以是4G接入网设备或基站,也可以是5G接入网设备或 基站。还应理解的是,当后续演进制式的接入网设备或基站执行本申请实施例所涉及的方法时,后续演进制式的接入网或基站也可以采用本实施例中图6所示的通信装置60的结构。
该通信装置60包括至少一个处理器601、至少一个存储器602、至少一个收发器603、至少一个网络接口605和一个或多个天线604。处理器601、存储器602、收发器603和网络接口605通过连接装置相连,天线604与收发器603相连。其中,前述连接装置可包括各类接口、传输线或总线等,本实施例对此不做限定。
其中,前述网络接口605用于使该通信装置60通过通信链路,与其它通信装置相连。具体地,该网络接口605可以包括该通信装置60与核心网设备之间的网络接口,例如S1接口;该网络接口605也可以包括该通信装置60和其他网络设备(例如其他接入网设备或者核心网设备)之间的网络接口,例如X2或者Xn接口。
收发器603、存储器602以及天线604可以参考图5对应实施例中收发器503、存储器502以及天线504的相关描述,具体此处不再赘述。
此外,前述处理器601主要用于对通信协议以及通信数据进行处理,以及对整个网络设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持该通信装置60执行前述实施例中所描述的动作。通信装置60可以包括基带处理器和中央处理器,其中,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个通信装置60进行控制,执行软件程序,处理软件程序的数据。如图6中的处理器601可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,通信装置60可以包括多个基带处理器以适应不同的网络制式,通信装置60可以包括多个中央处理器以增强其处理能力,通信装置60的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
具体地,在该通信装置60中,处理器601控制收发器603获取终端设备的视频流特征信息,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征。该处理器601控制收发器603获取该待传输视频流对应的最大比特速率和保证比特速率。处理器601根据该视频流特征信息、该最大比特速率和该保证比特速率确定预留资源,该预留资源用于传输该待传输视频流。此外,该处理器601控制收发器603使用该预留资源传输该待传输视频流。
在一种可选的实施方式中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。
在一种可选的实施方式中,该处理器601具体用于根据该第一比例因子和该最大比特速率确定该预留资源的带宽上限,并且,根据该第一比例因子和该保证比特速率确定该预 留资源的带宽下限。
在一种可选的实施方式中,该处理器601具体用于根据该第一比例因子和该最大比特速率确定该预留资源的带宽上限,并且,根据该第一比例因子和该保证比特速率确定该预留资源的带宽下限;根据该GOP的长度和待传输视频的帧率确定该带宽上限的资源的使用时长和该带宽下限的资源的使用时长。其中,该待传输视频流的帧率包含于该视频流特征信息中,或者,该待传输视频流的帧率为该无线网络设备中的预设帧率。
在一种可选的实施方式中,该处理器601具体用于控制收发器603从该终端设备接收该视频流特征信息;或者,该处理器601具体用于控制收发器603接收来自核心网设备的该视频流特征信息。
其余可以参考上述实施例中无线网络设备的方法,此处不再赘述。
如图7所示,为本实施例提供的另一种通信装置70的结构示意图。应当理解的是,前述图2或图4对应的方法实施例中的核心网设备(例如,IMS核心设备、应用服务器AS或应用功能AF)可以基于本实施例中图7所示的通信装置70的结构。
该通信装置70包括至少一个处理器701、至少一个存储器702、至少一个收发器703、至少一个网络接口705和一个或多个天线704。处理器701、存储器702、收发器703和网络接口705通过连接装置相连,天线704与收发器703相连。其中,前述连接装置可包括各类接口、传输线或总线等,本实施例对此不做限定。
其中,前述网络接口705用于使该通信装置70通过通信链路,与其它通信装置相连。具体地,该网络接口705可以包括该通信装置70与核心网设备之间的网络接口,例如S1接口;该网络接口705也可以包括该通信装置70和其他网络设备(例如其他接入网设备或者核心网设备)之间的网络接口,例如X2或者Xn接口。
收发器703、存储器702以及天线704可以参考图5对应实施例中收发器503、存储器502以及天线504的相关描述,具体此处不再赘述。
具体地,在该通信装置70中,处理器701控制收发器703从终端设备接收视频流特征信息,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征。该处理器701生成关于该待传输视频流对应的最大比特速率和保证比特速率。该处理器701向无线网络设备发送该视频流特征信息、最大比特速率和保证比特速率,该视频流特征信息、最大比特速率和保证比特速率用于确定传输该待传输视频流的预留资源。
在一种可选的实施方式中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。
在一种可选的实施方式中,该视频流特征信息还包括该待传输视频流的帧率。
在一种可选的实施方式中,处理器701控制收发器703向该无线网络设备发送服务质量QoS属性值对AVP字段,该QoS AVP字段包括该视频流特征信息、该最大比特速率和 该保证比特速率。
在一种可选的实施方式中,处理器701控制收发器703从该终端设备接收会话建立请求消息,该视频流特征信息携带于该会话建立请求消息中,该会话建立请求消息用于建立传输该待传输视频流的会话;或者,从该终端设备接收实时传输控制协议RTCP包,该视频流特征信息携带于该RTCP包中;或者,从该终端设备接收实时传输协议RTP媒体流,该视频流特征信息携带于该RTP媒体流中。
其余可以参考上述实施例中核心网设备(例如,IMS核心设备)的方法,此处不再赘述。
如图8所示,本申请还提供了另一种通信装置80,该通信装置80可以为终端设备或终端设备中的芯片。该通信装置80包括:发送模块801和传输模块802。其中:发送模块801,用于向网络设备发送视频流特征信息,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征,该视频流特征信息用于确定传输该待传输视频流的预留资源;传输模块802,用于采用该预留资源传输该待传输视频流。
在一种可选的实施方式中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。
在一种可选的实施方式中,该视频流特征信息还包括该待传输视频流的帧率。
在一种可选的实施方式中,该发送模块801,具体用于:向该网络设备发送会话建立请求消息,该视频流特征信息携带于该会话建立请求消息中,该会话建立请求消息用于建立传输该待传输视频流的会话;或者,向该网络设备发送实时传输控制协议RTCP包,该视频流特征信息携带于该RTCP包中;或者,向该网络设备发送实时传输协议RTP媒体流,该视频流特征信息携带于该RTP媒体流中。
其余可以参考上述实施例中终端设备的方法,此处不再赘述。
如图9所示,本申请还提供了另一种通信装置90,该通信装置90可以为无线网络设备或无线网络设备中的芯片。该通信装置90包括:获取模块901、资源预留模块902和传输模块903。其中:获取模块901,用于获取终端设备的视频流特征信息,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征;该获取模块901,还用于获取该待传输视频流对应的最大比特速率和保证比特速率;资源预留模块902,用于根据该视频流特征信息、该最大比特速率和该保证比特速率确定预留资源,该预留资源用于传输该待传输视频流;传输模块903,用于使用该预留资源传输该待传输视频流。
在一种可选的实施方式中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。
在一种可选的实施方式中,该资源预留模块902,具体用于根据该第一比例因子和该最大比特速率确定该预留资源的带宽上限,并且,根据该第一比例因子和该保证比特速率确定该预留资源的带宽下限。
在一种可选的实施方式中,该资源预留模块902,具体用于根据该第一比例因子和该最大比特速率确定该预留资源的带宽上限,并且,根据该第一比例因子和该保证比特速率确定该预留资源的带宽下限;根据该GOP的长度和待传输视频的帧率确定该带宽上限的资源的使用时长和该带宽下限的资源的使用时长。其中,待传输视频流的帧率包含于该视频流特征信息中,或者,该待传输视频流的帧率为该无线网络设备中的预设帧率。
在一种可选的实施方式中,该获取模块901,具体用于:该无线网络设备从该终端设备接收该视频流特征信息;或者,该无线网络设备接收来自核心网设备的该视频流特征信息。
其余可以参考上述实施例中无线网络设备的方法,此处不再赘述。
如图10所示,本申请还提供了另一种通信装置100,该通信装置100可以为核心网设备或核心网设备中的芯片。该通信装置100包括:接收模块1001和发送模块1002。其中,接收模块1001,用于从终端设备接收视频流特征信息,该视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征;发送模块1002,用于向无线网络设备发送该视频流特征信息、最大比特速率和保证比特速率,该视频流特征信息、最大比特速率和保证比特速率用于确定传输该待传输视频流的预留资源。
在一种可选的实施方式中,该视频流特征信息包括第一比例因子,该第一比例因子为一个非I帧的大小与一个I帧的大小之比,该I帧与该非I帧均属于该待传输视频流的同一个图像组GOP。
在一种可选的实施方式中,该视频流特征信息包括该待传输视频流的一个图像组GOP的长度。
在一种可选的实施方式中,该视频流特征信息还包括该待传输视频流的帧率。
在一种可选的实施方式中,该通信装置100还包括处理模块1003,该处理模块1003用于将视频流特征信息、该最大比特速率和该保证比特速率封装至服务质量QoS属性值对AVP字段中。该发送模块1002,具体用于:向该无线网络设备发送QoS AVP字段,该QoS AVP字段包括该视频流特征信息、该最大比特速率和该保证比特速率。
在一种可选的实施方式中,该接收模块1001,具体用于:从该终端设备接收会话建立请求消息,该视频流特征信息携带于该会话建立请求消息中,该会话建立请求消息用于建立传输该待传输视频流的会话;或者,从该终端设备接收实时传输控制协议RTCP包,该视频流特征信息携带于该RTCP包中;或者,从该终端设备接收实时传输协议RTP媒体流,该视频流特征信息携带于该RTP媒体流中。
其余可以参考上述实施例中核心网设备(例如,IMS核心设备)的方法,此处不再赘 述。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
此外,本申请提供了一种计算机程序产品,该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例该的流程或功能。例如,实现如前述图2或图4中的无线网络设备相关的方法。又例如,实现如前述图2或图4中的终端设备相关的方法。又例如,实现如前述图2或图4中的核心网设备(例如,IMS核心设备)相关的方法。该计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如,同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
此外,本申请还提供了一种计算机可读存储介质,该存储介质存储有计算机程序,该计算机程序被处理器执行以实现如前述图2或图4中的终端设备相关的方法。
此外,本申请还提供了一种计算机可读存储介质,该存储介质存储有计算机程序,该计算机程序被处理器执行以实现如前述图2或图4中的无线网络设备相关的方法。
此外,本申请还提供了一种计算机可读存储介质,该存储介质存储有计算机程序,该计算机程序被处理器执行以实现如前述图2或图4中的核心网设备(例如,IMS核心设备)相关的方法。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (24)

  1. 一种视频流传输方法,其特征在于,包括:
    无线网络设备获取终端设备的视频流特征信息,所述视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征;
    所述无线网络设备获取所述待传输视频流对应的最大比特速率和保证比特速率;
    所述无线网络设备根据所述视频流特征信息、所述最大比特速率和所述保证比特速率确定预留资源,所述预留资源用于传输所述待传输视频流;
    所述无线网络设备使用所述预留资源传输所述待传输视频流。
  2. 根据权利要求1所述的方法,其特征在于,所述视频流特征信息包括第一比例因子,所述第一比例因子为一个非帧内编码图像I帧的大小与一个帧内编码图像I帧的大小之比,所述I帧与所述非I帧均属于所述待传输视频流的同一个图像组GOP。
  3. 根据权利要求1或2所述的方法,其特征在于,所述视频流特征信息包括所述待传输视频流的一个图像组GOP的长度。
  4. 根据权利要求2或3所述的方法,其特征在于,所述无线网络设备根据所述视频流特征信息、所述最大比特速率和所述保证比特速率确定预留资源,包括:
    所述无线网络设备根据所述第一比例因子和所述最大比特速率确定所述预留资源的带宽上限,并且,根据所述第一比例因子和所述保证比特速率确定所述预留资源的带宽下限。
  5. 根据权利要求3所述的方法,其特征在于,所述无线网络设备根据所述视频流特征信息、所述最大比特速率和所述保证比特速率确定预留资源,包括:
    所述无线网络设备根据所述第一比例因子和所述最大比特速率确定所述预留资源的带宽上限,并且,根据所述第一比例因子和所述保证比特速率确定所述预留资源的带宽下限;
    所述无线网络设备根据所述GOP的长度和待传输视频的帧率确定所述带宽上限的资源的使用时长和所述带宽下限的资源的使用时长。
  6. 根据权利要求5所述的方法,其特征在于,所述待传输视频流的帧率包含于所述视频流特征信息中,或者,所述待传输视频流的帧率为所述无线网络设备中的预设帧率。
  7. 根据权利要求1至6中任意一项所述的方法,其特征在于,所述无线网络设备获取终端设备的视频流特征信息,包括:
    所述无线网络设备从所述终端设备接收所述视频流特征信息;
    或者,
    所述无线网络设备接收来自核心网设备的所述视频流特征信息。
  8. 一种视频流传输方法,其特征在于,包括:
    终端设备向网络设备发送视频流特征信息,所述视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征,所述视频流特征信息用于确定传输所述待传输视频流的预留资源;
    所述终端设备采用所述预留资源传输所述待传输视频流。
  9. 根据权利要求8所述的方法,其特征在于,所述视频流特征信息包括第一比例因子,所述第一比例因子为一个非I帧的大小与一个I帧的大小之比,所述I帧与所述非I帧均属 于所述待传输视频流的同一个图像组GOP。
  10. 根据权利要求8或9所述的方法,其特征在于,所述视频流特征信息包括所述待传输视频流的一个图像组GOP的长度。
  11. 根据权利要求10所述的方法,其特征在于,所述视频流特征信息还包括所述待传输视频流的帧率。
  12. 根据权利要求8至11中任意一项所述的方法,其特征在于,所述终端设备向网络设备发送视频流特征信息包括:
    所述终端设备向所述网络设备发送会话建立请求消息,所述会话建立请求消息包含所述视频流特征信息,所述会话建立请求消息用于建立传输所述待传输视频流的会话;
    或者,
    所述终端设备向所述网络设备发送实时传输控制协议RTCP包,所述RTCP包包含所述视频流特征信息;
    或者,
    所述终端设备向所述网络设备发送实时传输协议RTP媒体流,所述RTP媒体流包含所述视频流特征信息。
  13. 一种视频流传输方法,其特征在于,包括:
    核心网设备从终端设备接收视频流特征信息,所述视频流特征信息指示待传输视频流中多个视频帧的大小的分布特征;
    所述核心网设备向无线网络设备发送所述视频流特征信息、所述待传输视频流对应的最大比特速率和所述待传输视频流对应的保证比特速率,所述视频流特征信息、所述最大比特速率和所述保证比特速率用于确定传输所述待传输视频流的预留资源。
  14. 根据权利要求13所述的方法,其特征在于,所述视频流特征信息包括第一比例因子,所述第一比例因子为一个非I帧的大小与一个I帧的大小之比,所述I帧与所述非I帧均属于所述待传输视频流的同一个图像组GOP。
  15. 根据权利要求13或14所述的方法,其特征在于,所述视频流特征信息包括所述待传输视频流的一个图像组GOP的长度。
  16. 根据权利要求15所述的方法,其特征在于,所述视频流特征信息还包括所述待传输视频流的帧率。
  17. 根据权利要求13至16中任意一项所述的方法,其特征在于,所述核心网设备向无线网络设备发送所述视频流特征信息、所述待传输视频流对应的最大比特速率和所述待传输视频流对应的保证比特速率,包括:
    所述核心网设备向所述无线网络设备发送服务质量QoS属性值对AVP字段,所述QoS AVP字段包括所述视频流特征信息、所述最大比特速率和所述保证比特速率。
  18. 根据权利要求13至17中任意一项所述的方法,其特征在于,所述核心网设备从终端设备接收视频流特征信息,包括:
    所述核心网设备从所述终端设备接收会话建立请求消息,所述会话建立请求消息包含所述视频流特征信息,所述会话建立请求消息用于建立传输所述待传输视频流的会话;
    或者,
    所述核心网设备从所述终端设备接收实时传输控制协议RTCP包,所述RTCP包包含所述视频流特征信息;
    或者,
    所述核心网设备从所述终端设备接收实时传输协议RTP媒体流,所述RTP媒体流包含所述视频流特征信息;
    所述核心网设备对所述RTP媒体流进行解码,获得所述视频流特征信息。
  19. 一种通信装置,其特征在于,包括处理器和存储器;
    其中,存储器存储有计算机程序;
    所述处理器调用所述存储器中的所述计算机程序以使得所述通信装置执行如权利要求1至7中任意一项所述的方法。
  20. 一种通信装置,其特征在于,包括处理器和存储器;
    其中,存储器存储有计算机程序;
    所述处理器调用所述存储器中的所述计算机程序以使得所述通信装置执行如权利要求8至12中任意一项所述的方法。
  21. 一种通信装置,其特征在于,包括处理器和存储器;
    其中,存储器存储有计算机程序;
    所述处理器调用所述存储器中的所述计算机程序以使得所述通信装置执行如权利要求13至18中任意一项所述的方法。
  22. 一种通信系统,其特征在于,包括:
    无线网络设备,用于执行如权利要求1至7中任意一项所述的方法;
    终端设备,用于执行如权利要求8至12中任意一项所述的方法;
    以及,核心网设备,用于执行如权利要求13至18中任意一项所述的方法。
  23. 一种计算机可读存储介质,存储有指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至7或8至12或13至18中任意一项所述的方法。
  24. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1至7或8至12或13至18中任意一项所述的方法。
PCT/CN2022/075435 2021-06-15 2022-02-08 视频流传输方法以及相关通信装置 WO2022262294A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110662970.8 2021-06-15
CN202110662970.8A CN115484506A (zh) 2021-06-15 2021-06-15 视频流传输方法以及相关通信装置

Publications (1)

Publication Number Publication Date
WO2022262294A1 true WO2022262294A1 (zh) 2022-12-22

Family

ID=84419218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075435 WO2022262294A1 (zh) 2021-06-15 2022-02-08 视频流传输方法以及相关通信装置

Country Status (2)

Country Link
CN (1) CN115484506A (zh)
WO (1) WO2022262294A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209494A (zh) * 2013-03-20 2013-07-17 西安交通大学 一种基于重要性标记的实时视频业务资源分配方法
CN103283249A (zh) * 2010-12-09 2013-09-04 赛格纳斯广播公司 用于在通信网络中针对智能丢弃来进行数据的优先次序排定的系统和方法
JP2017059912A (ja) * 2015-09-14 2017-03-23 富士通株式会社 伝送装置
CN106657855A (zh) * 2016-12-16 2017-05-10 西北工业大学 一种适用于无人机spi接口视频码率控制方法
CN109417534A (zh) * 2016-05-02 2019-03-01 华为技术有限公司 通信网络服务质量能力开放方法和装置
CN109479136A (zh) * 2016-08-04 2019-03-15 深圳市大疆创新科技有限公司 用于比特率控制的系统和方法
CN112740711A (zh) * 2018-07-26 2021-04-30 瑞典爱立信有限公司 用于配置为支持多个360度视频会话的网络中的带宽优化的系统和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283249A (zh) * 2010-12-09 2013-09-04 赛格纳斯广播公司 用于在通信网络中针对智能丢弃来进行数据的优先次序排定的系统和方法
CN103209494A (zh) * 2013-03-20 2013-07-17 西安交通大学 一种基于重要性标记的实时视频业务资源分配方法
JP2017059912A (ja) * 2015-09-14 2017-03-23 富士通株式会社 伝送装置
CN109417534A (zh) * 2016-05-02 2019-03-01 华为技术有限公司 通信网络服务质量能力开放方法和装置
CN109479136A (zh) * 2016-08-04 2019-03-15 深圳市大疆创新科技有限公司 用于比特率控制的系统和方法
CN106657855A (zh) * 2016-12-16 2017-05-10 西北工业大学 一种适用于无人机spi接口视频码率控制方法
CN112740711A (zh) * 2018-07-26 2021-04-30 瑞典爱立信有限公司 用于配置为支持多个360度视频会话的网络中的带宽优化的系统和方法

Also Published As

Publication number Publication date
CN115484506A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2021259112A1 (zh) 一种业务传输方法及装置
WO2019228214A1 (zh) 一种无线承载建立、业务流的监测方法及装置
US10939127B2 (en) Method and apparatus for transmission of substreams of video data of different importance using different bearers
US10638351B2 (en) Service rate adjustment method and apparatus
US10412463B2 (en) Resource based-video quality adjustment
WO2021244218A1 (zh) 一种通信方法及装置
WO2022088833A1 (zh) 用于传输媒体流的数据包的方法和通信装置
US20230354334A1 (en) Communication method and apparatus
US20240031870A1 (en) Media data transmission method and communication apparatus
WO2013155981A1 (zh) 数据分流的方法和装置
US20240314637A1 (en) Data transmission method and communication apparatus
WO2022262294A1 (zh) 视频流传输方法以及相关通信装置
WO2016184281A1 (zh) 一种媒体互通方法及其装置
WO2021218593A1 (zh) 一种通信方法及装置
EP4114026A1 (en) Video transmission method and system, and related device and storage medium
KR102179212B1 (ko) 제어 정보에 대한 송신 방법 및 장치
CN115696462A (zh) 一种网络编码方法及装置
CN101772077B (zh) 一种传输实时媒体流数据的方法及视频会议系统
WO2022178778A1 (zh) 一种数据传输方法及通信装置
WO2023109743A1 (zh) 传输数据的方法和通信装置
WO2024067374A1 (zh) 一种通信方法及装置
WO2023185608A1 (zh) 一种数据传输的方法及通信装置
CN114424498A (zh) 数据传输方法、装置、系统和存储介质
WO2024169477A1 (zh) 上行链路控制信息的发送方法及装置
US20240089209A1 (en) Method and device for video transmission, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22823787

Country of ref document: EP

Kind code of ref document: A1